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Preface

This thesis addresses one of the pressing challenges of our time: the need for sustainable urban mo-
bility while contributing to the decarbonization of the transport and energy sectors. The combination
of Electric Vehicles (EVs), Vehicle-to-Grid (V2G) technology, and Car Sharing Systems (CSS) presents
an opportunity to significantly reduce greenhouse gas (GHG) emissions and improve energy efficiency.
The focus of this research is on optimizing vehicle relocation strategies for Electric Car Sharing Systems
(ECSS) by integrating V2G technology. In this study, a mathematical model is developed and applied to
case studies to optimize financial profits while addressing relocation, charging, and grid-related chal-
lenges. However, like all models, it operates within certain assumptions and limitations. By addressing
these, the research aims to clarify both the strengths and the constraints of the findings presented.

The study is relevant given the growing push for the integration of renewable energy and the increasing
popularity of shared mobility services. It is my hope that this research contributes to the ongoing dis-
cussion around sustainable transportation and inspires further exploration of the synergies between
shared mobility, smart energy management, and grid support.

Cas Oudijk
Delft, January 2025



Summary

This research explores the potential of integrating V2G technology with ECSS to enhance Car Sharing
Operator (CS0) profits while incorporating active peak reduction strategies. The study focuses on a
station-based ECSS with a fleet of EVs and evaluates the operational and economic impacts of enabling
V2G functionality across various case studies.

The mathematical model developed for this study aims to maximize the financial profit of a CSO man-
aging five stations with 24 EVs. Key factors considered include driving, relocation, charging, and the dis-
charging of EVs via V2G technology. The model explores scenarios with and without V2G, accounting
for both uniform time-varying and location-dependent time-varying electricity prices. It also considers
summer and winter conditions, as well as the impact of peak-reducing measures.

The results demonstrate that V2G technology boosts overall profit by allowing energy to be sold back
to the grid during periods of low driving demand and high electricity prices, particularly when electricity
prices vary across different stations. Additionally, peak-reducing measures effectively reduce peak load
demand without substantially compromising overall profit. However, the integration of V2G increases
the complexity of vehicle relocation, which can lead to higher relocation costs. This highlights the
importance of developing optimized vehicle management strategies to balance the trade-offs between
V2G implementation and operational efficiency.

The findings have significant implications for the design of Electric Vehicle Sharing Systems (EVSS)
and related policies, particularly in the context of dynamic electricity pricing and incentives for grid
participation. Additionally, the study highlights key limitations, such as the simplification of real-world
factors, and provides recommendations for future research aimed at refining the model using real-world
data and advanced vehicle relocation algorithms.
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Introduction

Reducing GHG emissions is crucial to mitigate the adverse effects of climate change, including extreme
weather events, rising sea levels, and loss of biodiversity [1]. These changes pose significant threats
to global ecosystems, human health, and economies [2]. Immediate and sustained action to reduce
emissions can help stabilize the climate, protect natural resources, and ensure a sustainable future for
all. Therefore, transitioning to renewable energy sources and improving energy efficiency are essential
steps to reduce our carbon footprint [3].

The transport sector contributes approximately 25% of global CO2 emissions from fuel combustion,
with road transport being responsible for nearly 75% of these emissions. Cars alone account for about
45% of road transport emissions, making their decarbonization critical [4].

Mitigating transport emissions involves exploring alternatives such as cycling and public transport [5].
However, these options are not universally viable. Therefore, it is necessary to enhance the environ-
mental sustainability of automobile transportation as it currently exists.

1.1. Decarbonizing Car Transport

1.1.1. Electrification

The transition to EVs is considered one of the key strategies for decarbonizing the transport sector [4,
6]. EVs are driven by electric motors that are powered by electricity instead of internal combustion en-
gines (ICE) that are powered by fossil fuels, such as traditional internal combustion vehicles (ICV). The
potential of EVs to combat GHG emissions is significant as they have the potential to run on electricity
that is generated in a renewable manner [7]. However, switching from ICVs to EVs is not a straightfor-
ward transition. EVs are typically more costly than ICVs, limiting their accessibility and adoption rate.
In addition, the production of EVs, particularly the extraction of rare metals for batteries, presents sig-
nificant environmental challenges. Furthermore, the infrastructure demands of EVs, such as the need
for charging stations and parking facilities, strain existing resources [8]. Hence, to handle the increased
load on the electricity grid, the grid must be expanded [9]. Moreover, increasing the share of renewable
energy in the overall energy mix is essential, as reducing emissions through car electrification relies on
a substantial portion of renewable electricity in the power supply [4].

The intermittent nature of renewable energy sources and the increased load demand caused by EVs
challenge the balance between energy supply and demand, increasing the need for flexibility services
within the electricity system [10, 11].

To address this issue, several solutions have been developed. Smart Charging Algorithms (SCA) deter-
mine the optimal time for EVs to charge based on energy market conditions and requirements set by
the vehicle owner. SCAs primarily aim to reduce charging costs by scheduling charging sessions when
electricity prices are low, which typically occurs during off-peak hours when demand is low or when
there is a high share of renewable energy in the mix [12]. Additionally, SCAs can stop charging, (par-
tially) delay charging, and reduce charging power during periods of high demand, a practice known as
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demand response [13]. Consequently, SCAs enable cost-effective and renewable energy-based charg-
ing while assisting the grid with reducing peak demand [14].

V2G technology, while relatively new in practical applications, has been extensively studied in academic
circles and is regarded as a major breakthrough in the fields of electricity and EVs. V2G technology
enables bidirectional electricity flow between EVs and the electrical grid. This means that EVs can not
only draw electricity from the grid to charge but also discharge electricity back into the grid when needed
[4]. V2G supports the integration of renewable energy and EVs into the grid by providing flexibility
services as EVs can absorb electricity when there is a surplus and supply it back during shortages,
helping with congestion management and frequency regulation [9].

1.1.2. Carsharing

Increasing the prevalence of CSS is regarded as another key strategy for decarbonizing the transport
sector [4, 6]. Car-sharing improves vehicle efficiency by ensuring cars are utilized more frequently and
makes transportation more affordable and accessible by eliminating the high costs associated with
car ownership.

Car-sharing significantly reduces the need for private car ownership. According to Rijkswaterstaat, one
shared car can replace four to eight private cars [15]. In addition, each shared car provides a space sav-
ing of 36—38 square meters [15]. Also, since shared cars decrease the demand for private vehicles,
fewer cars need to be produced, which reduces the pollution associated with car manufacturing, par-
ticularly for EVs.

An intriguing finding is that adopting car-sharing may also reduce the total distance traveled by car. A
study from the Netherlands revealed that, on average, car sharers drive 1,600 kilometers less per year
after switching from private car ownership [15]. Another Dutch study found that car travel distances
decrease by 20% [16]. Both studies attribute this behavior to increased awareness of mobility choices.
Breaking habitual reliance on private cars encourages people to consider alternative modes of trans-
portation, such as walking, cycling, and using public transport.

CSSs exist in various forms with increasing user flexibility, including two-way station-based, one-way
station-based, and free-floating systems respectively, [7, 17, 18]. Two-way station-based CSS require
rented vehicles to be returned to their departure station, similar to traditional car rental models. One-
way station-based CSS allows users return the rented vehicle to the same station or to a different station
belonging to the CSO [4]. Free-floating CSS offers users the flexibility to pick up and park vehicles within
designated zones.

In this context, combining vehicle sharing with EVs, offers a compelling and renewable alternative to
current day to day car transport. Together, these approaches promote sustainable, efficient, and equi-
table urban mobility. Notably, in the Netherlands, companies like Greenwheels (two-way station-based)
[19], Felyx [20], and Check [21] (free-floating) have pioneered such services.

1.2. The Electric Vehicle Relocation Problem

A common challenge faced by both one-way station-based and free-floating CSS is the imbalance in
vehicle distribution. Vehicles tend to be picked up in high-demand areas (hot zones) and returned in
low-demand areas (cold zones), decreasing the likelihood of the vehicle being picked up again and
profitability [17, 18]. Additionally, vehicles are often returned with low battery levels, requiring dedicated
staff to recharge them and relocate them to hot zones to better serve customers and enhance revenue
[17,18].

This issue, often referred to in the literature as the Electric Vehicle Relocation Problem (EVReP) [18, 22,
23] or the Dynamic Electric Car Relocation Problem (DECRP) [17], revolves around optimizing vehicle
relocation strategies to optimize financial outcomes while taking into account charging requirements.
To address this, research has focused on developing digital models capable of effectively solving the
relocation problem and maximizing overall profitability within CSS networks.
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1.3. Contribution

This study presents a mathematical Mixed-Integer Linear Programming (MILP) model that integrates
V2G functionality with optimal vehicle relocation strategies for a centralized station-based fleet of
shared EVs. The primary aim is to demonstrate how the incorporation of V2G capabilities can enhance
the profitability of EVSS while simultaneously supporting the electricity grid by alleviating peak load
demand.

Research Objectives
+ Financial Analysis
To analyze the financial implications of enabling SEVs to participate in energy markets.

+ Impact of Electricity Prices
To investigate the impact of location-dependent time-varying electricity prices on the economic
outcomes of V2G-enabled ECSS.

+ Peak Load Reduction
To explore the impact of peak reduction on the performance of V2G-enabled ECSS.

+ Seasonal Dynamics
To assess the effect of seasonal variation on the performance of V2G-enabled ECSS.
Research Questions

+ How do ECSS benefit financially from integrating V2G technology?

+ How do location-dependent time-varying electricity prices affect the profitability of V2G-enabled
ECSS?

+ How do vehicle relocation and energy procurement contribute to the overall costs of implementing
V2G in ECSS?

+ How do peak reducing measures help with mitigating peak load demand?

1.4. Thesis Structure

This thesis report is organized as follows: First, Chapter 2 reviews and discusses the existing literature.
Next, Chapter 3 provides a detailed explanation of the mathematical model. Chapter 4 discusses the
model inputs that are common to all case studies and simulations. Chapter 5 presents the case studies
used to test the model. The results are analyzed and presented in Chapters 6, 7, and 8. Chapter 9 pro-
vides a discussion of the findings and presents recommendations for future research. Finally, Chapter
10 concludes the study with a summary of key insights.



Literature Review

This chapter provides a comprehensive review of the current literature on the EVReP, V2G, and their
integration. It begins with Section 2.1, which addresses the imperative of decarbonizing car transport
and evaluates the most promising approaches to achieve this goal. Section 2.2 then reviews the liter-
ature on ECSS, including operational challenges and modeling strategies. Following this, Section 2.3
explores V2G technology and its potential benefits. Section 2.4 examines the integration of V2G with
ECSS, summarizing the latest research in this area. Finally, Sections 2.5 and 2.6 identify research gaps
and outline the contributions of this study.

2.1. Car Transport Decarbonization

The transport sector is a major contributor to global CO2 emissions, accounting for approximately
25% of emissions from fuel combustion. Within this sector, road transport is responsible for nearly
75% of these emissions, with cars alone contributing to about 45% of road transport emissions. Thus,
decarbonizing cars is crucial for reducing overall emissions [4].

In urban environments, the negative impacts of car emissions are significantly exacerbated due to a
variety of factors. High traffic density in cities leads to increased tailpipe emissions, which tend to linger
longer in the air because of phenomena such as street canyons—narrow streets lined with tall buildings
that trap pollutants [24]. This lack of air circulation prevents the dispersion of harmful gases, leading
to concentrated levels of air pollution [25]. As a result, air quality deteriorates rapidly, posing serious
health risks such as respiratory illnesses, cardiovascular diseases [26], and an increased incidence of
asthma [27], particularly in vulnerable populations like children and the elderly [28]. Beyond the direct
expenses related to treating these pollution-induced diseases, there are indirect costs such as reduced
worker productivity and lost school days for children [29].

In addition to air pollution, cities also suffer from the urban heat island effect, where large concen-
trations of buildings, vehicles, and paved surfaces absorb and retain heat. This contributes to higher
temperatures compared to surrounding rural areas, which further intensifies the negative impacts of
car emissions. Warmer conditions speed up the chemical reactions that form ground-level ozone, exac-
erbating smog formation and worsening the health effects of pollution [30]. Moreover, the combination
of heat and pollution creates an environment that can increase the frequency of heat-related illnesses,
compounding the public health burden [31, 32].

Urban areas also face challenges such as congestion and the need for vast parking spaces, which
further strain already crowded environments and contribute to the cycle of pollution and inefficiency.
Noise pollution from vehicles is another significant issue in cities, contributing to stress, sleep distur-
bances, and overall reduced quality of life for urban residents [33].

Therefore, addressing car transport emissions is not only critical for improving air quality but also for
mitigating the broader environmental, economic, and health impacts that disproportionately affect ur-
ban areas.
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Gschwendtner [4] and Suel [6], among others, have identified electrification and the increased adoption
of CSS as some of the most promising solutions to the aforementioned challenges.

2.1.1. Electrification

EVs are a key solution for improving urban air quality and addressing environmental challenges. Unlike
ICVs, EVs produce no tailpipe emissions, and their environmental impact can be further minimized
when powered by renewable energy sources. This transition to EVs, driven by growing environmental
awareness and advancements in renewable energy technologies, offers a significant opportunity to
reduce GHG emissions and air pollution in cities [22]. Moreover, the quieter operation of EVs reduces
noise pollution, enhancing the quality of life in densely populated urban areas. As the adoption of EVs
and their integration with renewable energy systems accelerate, substantial improvements in urban air
quality and environmental sustainability are expected.

2.1.2. Vehicle Sharing Systems

Vehicle Sharing Systems (VSS) have advanced significantly, with the support of the internet and driven
by technological innovations and increasing environmental awareness [17]. VSS encompass bikes,
scooters, and cars, and they differ in terms of flexibility. VSS are generally categorized into three mod-
els:

+ Two-Way Station-Based
A vehicle must be returned to the station at which it was picked up. Hence, this system is also
called 'round-trip’. This model provides the least amount of flexibility.

+ One-Way Station-Based
A vehicle can be returned to any station that belongs to the CSO. This model provides more flexi-
bility.

* Free-Floating
A vehicle must be returned anywhere within an area specified by the CSO. This model provides
the highest degree of flexibility.

Each model presents its own set of advantages and challenges [34, 18].

VSS are increasingly viewed as key components of the ‘smart city’ concept. They help reduce the re-
liance on personal vehicle ownership, alleviate parking congestion, and contribute to lower transporta-
tion costs. They also help reduce traffic congestion and the emission of GHGs. [18, 7].

However, despite their growing popularity, managing vehicle distribution and ensuring availability, par-
ticularly in one-way station-based and free-floating systems, remains a significant challenge [17].

2.2. Electric Car-Sharing Systems (ECSS)

Combining EVs with CSS offers an optimal solution for advancing sustainable urban mobility. This
integration is becoming increasingly prevalent as car-sharing programs adopt EVs to leverage their
zero emissions and reduced noise, thereby enhancing environmental benefits and urban livability [22,
8, 18].

2.2.1. Operational Challenges in Car Sharing Systems
CSS face several operational challenges, including fleet management, parking station placement, and
the complexities introduced by short-term vehicle use, which often involves multiple users per day [23].

A primary challenge in vehicle distribution, especially within one-way station-based and free-floating
CSS, istherelocation of vehicles. Vehicle distribution fluctuates as cars are used, leading to imbalances
where some stations may have too many vehicles while others have too few. This, together with uneven
vehicle demand, can result in users abandoning the system if they cannot find a car or parking space
near their destination [17, 34, 22]. Vehicle relocation strategies aim to address these imbalances by
redistributing vehicles from areas of high accumulation to areas of high demand.

Relocation can be managed through two main approaches: user-based and operator-based [23]. User-
based strategies incentivize customers to adjust their behavior, while operator-based strategies involve
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redistributing vehicles either during low-demand periods (static relocation) or throughout the day (dy-
namic relocation). Although both approaches involve personnel costs, these can be offset by increased
revenue from higher user satisfaction.

The integration of EVs adds further complexity due to the need for managing battery levels and charging
infrastructure [8, 34, 7]. This leads to what is known in the literature as the EVReP or the DECRP, which
is extensively studied.

2.2.2. Modelling Relocation Strategies

In recent years, researchers have focused on developing optimization models to determine the most
effective routing for vehicle relocation and charging schedules. These models incorporate continuous
updates on vehicle locations, battery levels, and demand patterns throughout the planning horizon [17].

Several innovative strategies have been proposed to address the EVReP. Notable contributions include
the works of Xiaonong Lu [7] and Zhaoming Wang [8].

Lu [7] developed a model for optimizing one-way ECSS to enhance operational income. This model
involves multiple SEV stations distributed across various city areas (residential, office, commercial),
each equipped with parking and charging facilities. The primary objective is to maximize profit by ef-
ficiently scheduling SEVs for charging, user service, and relocation. The system divides the city into
grids, with up to one SEV station per grid. SEVs must return to their starting or another designated sta-
tion after use, with parking reservations required. Idle SEVs connect to charging stations, and a State
of Charge (SOC) protection level prevents their use when the battery is too low. Decisions on charging
or relocating SEVs are based on real-time electricity pricing, SOC, grid load, and user requests.

Wang [8] employs a different approach to determine optimal routes and schedules for vehicle relocation.
This model aims to balance vehicle distribution across stations, minimize the number of vehicles with
low battery levels, and adhere to battery constraints and route time limits. The study also accounts for
employee constraints: each employee must start and end their shifts at a central depot, use folding
bicycles for relocation, and complete each relocation within a specified time. Additionally, the study
addresses the management of non-charging poles.

2.3.V2G

V2G technology enables EVs to participate in bidirectional energy exchanges with the power grid [35].
This technology transforms EV batteries into Distributed Energy Storage (DES) units, allowing them to
both draw electricity from and supply power to the grid. Unlike the previous unidirectional flow, known
as Grid-to-Vehicle (G2V), V2G facilitates a two-way energy flow [36]. This shift not only allows EVs to
charge during low-demand periods but also to return electricity to the grid during peak demand. Efficient
implementation of V2G requires smart charging systems and aggregators to coordinate multiple EVs
as a unified energy resource [35].

Research has investigated the integration of EVs with the power grid, highlighting how V2G technology
can enhance grid management and support the transition to renewable energy [36, 37]. Technically,
V2G provides several benefits, including flexibility services such as voltage regulation, spinning reserve,
peak load shifting, and frequency regulation [36, 37]. Environmentally, V2G can aid in decarbonizing the
electricity sector, especially when combined with renewable energy sources like solar and wind, by im-
proving grid flexibility and offering backup storage [36, 37]. Economically, V2G presents opportunities
for various stakeholders. EV owners can earn income by selling stored electricity during high-demand
periods when prices are elevated and purchasing energy when prices are lower. For grid operators and
society, V2G can reduce electricity costs [36, 35]. Although individual vehicle profits might be modest,
these can accumulate significantly across a large fleet of EVs. However, the exact profitability can vary
greatly depending on specific market conditions, regulatory frameworks, and technological implemen-
tations.

2.4. V2G coupled with ECSS

While extensive research has been conducted on the EVReP and V2G technology, there is surprisingly
little research on the integration of these elements. This gap is especially notable, since ECSS offer
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substantial cumulative benefits due to their extensive fleets of EVs.

Recently, however, there has been growing interest in combining V2G technology with E-carsharing,
prompting research into its potential benefits, challenges, and adoption factors. This body of work
highlights both the opportunities and complexities associated with this innovative approach.

Integrating V2G technology into carsharing systems offers a promising way to enhance the sustainabil-
ity of both the transportation and electricity sectors.This approach leverages EVs not only for mobility
but also as mobile energy storage units that can provide electricity back to the grid when not in use.This
dual-functionality could create additional revenue streams for carsharing operators, who often face fi-
nancial challenges, while simultaneously supporting the integration of renewable energy sources into
the grid.

At the start of this thesis, three key studies were identified that examine the integration of V2G technol-
ogy within E-carsharing. The first study, by Prencipe [9], presents a MILP model designed to optimize
both the start-of-day EV distribution and their charging/discharging schedules in a one-way station-
based ECSS. This model aims to maximize profits from both car-sharing operations and V2G activities.
The other two studies, conducted by Suel [6] and Gschwendtner [4], explore societal willingness to
adopt V2G-enabled carsharing through stated-choice experiments.

2.4.1. Customer Preferences and Willingness to Adopt V2G Carsharing

Research into customer preferences for V2G CSS reveals significant insights. A stated-choice experi-
ment conducted in Germany and Switzerland reveals that customers exhibit a clear preference for V2G-
enabled car-sharing over conventional CSS in 74.2% of cases and over electric car-sharing in 56.1% of
cases [4]. This preference is primarily driven by the environmental benefits associated with V2G tech-
nology, which aligns with the growing consumer demand for sustainable mobility solutions. However,
cost remains the most significant factor influencing customer decisions, even among environmentally
conscious early adopters [4]. To enhance the appeal of V2G services, CSOs should consider offering
cost-effective discounts or financial incentives into the cost structure. Moreover, improving access
and egress times through robust charging infrastructure, especially in one-way station-based and free-
floating systems, will enhance the appeal [4].

Further research using an integrated choice and latent variable model estimates the financial incen-
tives needed for users to shift their booking slots and examines how socio-demographic factors, latent
attitudes, and trip characteristics influence these incentives [6]. A stated preference survey conducted
with car-sharing users in Switzerland revealed that the value of time flexibility ranged from 22.4 CHF/h
to 35.5 CHF/h [6].The study identified that older adults, lower-income individuals, those in employment,
and those with higher education levels showed less flexibility in changing their booking slots. Addi-
tionally, trips related to work, leisure, social interactions, and those occurring during weekdays and
peak morning hours were less adaptable to changes [6]. These findings are crucial for designing V2G
initiatives and understanding user behavior. This research is notable for being among the first to fo-
cus on the willingness of car-sharing users to offer time flexibility in exchange for financial incentives,
contrasting with the focus on car owners in existing literature [6].

2.4.2. Impact of Socio-Demographic Factors and Infrastructure on V2G Adoption
Gschwendtner [4] indicates that socio-demographic factors, such as prior EV ownership and familiarity
with V2G technology, positively impact the likelihood of adopting V2G CSS. This finding underscores
the potential role of policy interventions in raising awareness and educating the public about V2G tech-
nology. Furthermore, customers demonstrated a preference for longer driving ranges, which CSOs
must take into account when developing their charging strategies. This suggests that V2G function-
ality might be more suitable for vehicles with lower utilization rates to ensure availability for mobility
needs.

2.4.3. Economic, Environmental and Operational Benefits

The integration of V2G technology into E-carsharing systems offers significant economic, environmen-
tal, and operational benefits. According to Prencipe [9], V2G technology can create additional revenue
streams for both CSOs and grid operators by enabling EVs to return stored energy to the grid during
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peak demand periods. This capability can offset charging costs and higher investment costs associ-
ated with EVs. For example, a case study in Delft, Netherlands, demonstrated that V2G operations could
cover daily charging costs and generate additional profits, with a fleet of 50 EVs earning an average of
36.04 €/day in V2G profits [9].

Environmentally, V2G in E-carsharing can contribute to the integration of renewable energy sources into
the grid [4] and support grid operators in managing peak loads and frequency regulation [9]. This dual
benefit underscores V2G's potential to aid in the decarbonization of both the transportation and energy
sectors, making it an attractive option for large-scale implementation as EV demand grows [9].

2.4.4. Conclusion

In summary, the integration of V2G technology into CSS presents a promising but complex opportunity.
While the potential economic and environmental benefits are significant, challenges such as battery
degradation, customer behavior, and the early-stage nature of V2G in the market require careful consid-
eration. Future research should focus on empirical studies, cost-benefit analyses, and the exploration
of synergies between V2G and other sustainable technologies to fully realize the potential of this inno-
vative approach to mobility and energy management.

2.5. Research Gap
The primary research gaps in the existing literature on the potential of V2G integrated with ECSS are
outlined below:

+ There is a lack of accurate and dynamic mathematical models that fully capture the operational
aspects of an ECSS, including vehicle driving, relocation, charging requirements, and particularly
V2G functionality and peak reduction.

* There is a lack of quantitative simulation-based results that evaluate the operational impacts of
V2G in ECSS.

2.6. Contribution

This thesis offers a novel addition to the existing body of literature on the potential of V2G-enabled
ECSS, with its key contributions summarized as follows:

+ Development of a mathematical model that describes the integration of V2G in ECSS.

+ Simulations showing optimal vehicle driving, relocation, charging, and particularly V2G activities
and grid interactions.

+ Empirical validation of V2G integration in ECSS, addressing operational complexities.
« Empirical validation of the effectiveness of peak reducing measures on peak load demand.

+ Emphasizes real-world system performance and provides practical, implementable outcomes,
helping bridge the gap between theoretical concepts and practical application.

+ Enhances understanding of synergies between V2G and ECSS operations.



Model

To assess whether integrating V2G into relocation strategies for an EVSS can enhance overall profitabil-
ity, while simultaneously using peak-reducing measures to minimize peak load demand, a mathemati-
cal model is needed to simulate the real-world scenario.

The following model describes a one-way, station-based EVSS over a single day, divided into half-hour
time steps. During each time step, SEVs can either be driven by consumers, relocated by staff, or
(dis)charged. Each station features location-dependent time-varying load demand and photovoltaic
(PV) generation profiles. Additionally, the electricity price is time-varying and may vary by location,
depending on the test scenario.

The model requires inputs such as electricity price, station load demand, and PV generation (all continu-
ous values), as well as driving demand (binary values). It is characterized by a linear objective function
and constraints, classifying it as a MILP. The model is solved using the CPLEX solver developed by IBM
ILOG, which was selected due to its widespread use in prior studies modeling the EVReP, including [22,
23,9].

This chapter delves into the development of the MILP model used in this study.

Firstly, Section 3.1 explores the mathematical framework of the model. Section 3.2 presents a summary
of the model. Lastly, Section 3.3 enlists model simplifications.

3.1. Model Mathematics

3.1.1. Indices & Variables
For a list of all indices, see Table 3.1.

Index Definition
T Timesteps
| Set of departure stations
J Set of arrival stations
K Set of EVs

Table 3.1: List of indices and definitions.

For a list of all decision variables, see Table 3.2.
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Symbol Definition Type Indices Unit

D Driving boolean [t][liI[IIk] -

R Relocation boolean [t][il[I[k] -

M Movements boolean [tI[il[][k] -

C Connected boolean [t][i][I[k] -

PreMD Pre Movements Distribution boolean [t][i][k] -

PMD  Post Movements Distribution boolean [t][i][k] -
BC Battery Charge float [tIIk]  kWh
peh Charging Power float [tI00k] kW
pdch Discharing Power float  [t][i][k] kW
PEV Electric Vehicle Power float  [tJ[ijk] KW
pbuy Buying Power float  [t]li] kW
pselt Selling Power float  [t]li] kW
porid Grid Power float [l kW
Ech Charging Energy float [tI[[k]  kWh
Edch Discharging Energy float  [t][i][k] KkWh
preak Peak Power float il kw
psur Surpassed Power float [i] kW

Table 3.2: List of decision variables and definitions.
For all other variables, see Table 3.3.

Symbol Definition Type Indices  Unit
At Timestep Duration float - h
F! Initial Fee float - €
F¢ Per Distance Fee float - €/km

Fv Worker Fee float - €
cE Energy Cost float ~ [t]li]  €/kWh
SD Station Distance float [0 km
P,fl’}w Maximal Charging Power float [i] kw
pdch Maximal Discharging Power float [i] kw
ptb Load Demand float  [ti] kW
PV PV Generation float  [t][i] kw
pret Net Station Demand float  [t][i] kW
p™mx Maximal Parking Spaces float [i] -
OED Optimal End Distribution float [i] -
SF Selling Factor float - -
pec Grid Capacity float - kW
cP Penalty Cost float . &/kwW
plimit Power Limit float [i] kw
n Vehicle Energy Efficiency float [K]  kWh/km
BCme* Maximal Battery Charge float [K] kWh
BC™in Minimal Battery Charge float k] kWh
BC! Initial Battery Charge float [K] kWh
n°t Charging Efficiency float [K] %
ndeh Discharging Efficiency flat  [K] %
vee Average Car Velocity float - km/h
DD Driving Demand float  [tI[i]0] -
IPreMD Initial Pre Movements Distribution boolean [i][k] -

Table 3.3: List of input variables and definitions.
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3.1.2. Objective Function

For CS: Summer (see Section 5.1) the objective function aims to maximize the difference between
the revenue generated by consumers driving the SEVs and providing V2G services and the cost of
relocation and charging, as shown in Equation 3.1. In CS: Summer + Peak Reduction (see Section 5.2)
the objective function (see Equation 3.2) includes a penalty for exceeding a certain power limit, which
is used to stimulate peak reduction.

maximize Driving Revenue - Relocation Costs + Energy Sold Revenue - Energy Bought Costs  (3.1)

maximize Driving Revenue — Relocation Costs + Energy Sold Revenue — Energy Bought Costs
— Peak Exceedance Penalty (3.2)

For all fulfilled driving demand (D) the total driving revenue is shown by Equation 3.3 and consists
of a fixed initial fee (F) and a per-distance fee (F) that is proportional to the distance between the
departure and arrival station (SD,;).

Driving Revenue : Z Z Z Z Dyiji % (F' + SD;j * F) (3.3)

teT icl jeJ ke K

The relocation costs are calculated by multiplying the total number of relocation trips, R,;;x, by a fixed
per-relocation worker fee (') (see Equation 3.4).

Relocation Costs : » > "> "y~ Ryyjp « F* (3.4)

teT iel jeJ keK

The V2G revenue is calculated as the discharging energy (£+°'¢) multiplied with the energy price (C¥),
the timestep duration (At = 24/48) and the selling factor (SF’) (see Equation 3.5).

Energy Sold Revenue : > > " 3" Pl « Cff x At SF (3.5)

teT icl ke K

The charging cost is calculated as the charging energy (E*°“9"*) multiplied with the energy price (CF)
(see Equation 3.6).

Energy Bought Costs : » ° >~ Y ™ Pra¥ « Cff « At (3.6)

teT iel keK

In CS: Summer + Peak Reduction (see Section 5.2, peak reduction is stimulated by factoring in a penalty
for exceeding a power limit (P}imit). psur denotes the amount by which P!imit is surpassed by P>"Y
and C” denotes the penalty cost in €/kW (see Equation 3.7).

Peak Exceedance Penalty : Y~ Py « C? (3.7)
el

3.1.3. Constraints

The model constraints can be divided into four groups: movement constraints, charging constraints,
battery charge constraints and grid constraints. In that order, this section provides an overview and
elaboration of all constraints .
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Movement Constraints
PreM Dy, = IPreM Dy, Vie ILVke K (3.8)
PreMDyy, = PMDy 1y,  Vt€2.T,Vie LLVke€ K (3.9)
Equation 3.8 and Equation 3.9 ensure that the pre-movements distribution of t=1 is equal to the initial

pre-movements distribution and that the pre-movements distribution of sequential timesteps are equal
to the post-movements distribution of the previous timesteps respectively.

> Duyjx < DDy  VteT,NielVjelJ (3.10)
keK

Equation 3.10 ensures that no more cars are driven than there is demand for.

Mtijk: = Dtijk + Rtijk VteT,VieI,Vje JVke K (311)

Equation 3.11 introduces decision variable Movements, containing all of the car moves.

> Mujw<1 VteTVjeJVkeK (3.12)
el
ZMm«jkg VteT\Vie I Vke K (3.13)
jeJ
> My =0 VteT\VjeJVke K (3.14)
el

Equation 3.12, 3.13 and 3.14 ensure that cars can only be moved to and from one station and cannot
be moved to a station equal to the departure station.

Z Miijx < PreM Dy, YVt eT,Vie I,Vk € K (3.15)
el

Equation 3.15 ensures that there cannot be more cars leaving a station than there are located at that
station pre-movements.

PMDyjy, = PreM Dy + Y (Myiji — Myjir) — Vt€ T,¥j € J,Vk € K (3.16)

el

Equations 3.16 ensures that the post-moving distribution is equal to the pre-moving distribution plus
cars going from any station i to the j station studied minus cars going from the j stations studied to any
station i.

Chijk = PreMDyx — > My, VteT,¥ie I,Vk e K (3.17)
jeJ
Cujk =0 VteTNielVjeJ:i#jVkeK (3.18)

Equations 3.17 and 3.18 ensure that Connected is defined as all cars that do not move. Hence, they are
stationary and connected to a charger. Parking spots are limited by p;"**, but all parking spots have
chargers.
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> PMDri,=OED; Viel (3.19)
keK

Equation 3.19 ensures that the vehicle distribution at the final time step aligns with the optimal end
distribution. This optimal end distribution is an input provided by the CSO and represents the most
favorable start-of-day vehicle distribution for the following day.

> PMDyy <pj™ VteTViel (3.20)
keK

Equation 3.20 ensures that at no timestep t, there are more cars parked at a station than there are
parking spots.

Charging Constraints

Ph < PO AN " Ce VEETVi€ ILVEk € K (3.21)
el

Pgh < PIMTIT AN VEET,Vi€ Ik € K (3.22)
el

Equation 3.21 and 3.22 ensure that a car can only (dis)charge when it is connected and that the (dis)charging
power must be equal to or lower than the maximum (dis)charging power.

Eh =PhxAt  VteTVielVke K (3.23)

Elch — pdeh y At VteT,Vie I,Vk e K (3.24)
Equation 3.23 and 3.24 ensure that the energy that is taken from or fed into the grid to (dis)charge
vehicle k is equal to the product of the (dis)charging power and the timestep duration.
Ptbiuy - Pl = Z (P — P + PP — PEY VieT,Viel (3.25)
keK

Equation 3.25 ensures that, for all stations, the net power purchased and sold equals the difference
between charging and discharging power, plus the station load, minus the station’s PV generation.

Ptgmd _ Ptbiuy B (3.26)

Ph = P — P (3.27)

Pget = Pt%D - PtIiDV (3.28)

Pt =" PRV +Pptt vteTViel (3.29)
keK

To simplify the equation and enhance clarity, Equations 3.26, 3.27, 3.28, and 3.29 are introduced to
make the interpretation of the power balance easier (see Equation 3.25).
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Battery Charge Constraints

BCuy =BC, VkeK (3.30)

BCri1x =BC,,  VkeK (3.31)

Equations 3.30 and 3.31 ensure that the battery charge at t=1 and t=T+1 is equal to the initial battery
charge levels (which is set to 100% (see Section 4)).

BCy, > BCj™™  WteT,Vkec K (3.32)

BCy < BC™*  VteTVke K (3.33)

Equations 3.32 and 3.33 ensure that battery charge levels always remain within their minimum (10%
SO0C) and maximum values (100% SOC) respectively.

SD

2 ch ch dch
e -+ Z(n’f * B vyik — —zan * B i)

el U/ (3.34)
vVte2.T+1,Vke K

BCyy, = BC(t,l)k - Z ZM(tfl)ijk *

iel jeJ

Equation 3.34 ensures that the battery charge at the start of the timestep is equal to the battery charge
of the previous timestep, minus the energy used during moving, plus the energy added during charging
or minus the energy removed during discharging of the previous timestep.

Grid Constraints

Pt < PYC wteT\Viel (3.35)

P < P wteT\Wiel (3.36)

Equations 3.35 and 3.36 limit the power that is being fed into and taken from the grid by the grid capacity.
Equation 3.36 is only applicable in Case Study: Summer and Case Study: Winter.

To enable peak reduction, the following equations are applied exclusively in Case Study: Summer + Peak
Reduction.

Pl < preek e T Viel (3.37)

prek < peC e (3.38)

Equations 3.37 and 3.38 limit P**“* to be larger than P’*¥ and smaller than PG, allowing PP*** to be

used as a measure to minimize Ptbi“y while respecting the grid capacity.

P >0 Viel (3.39)

P;ur > Pipeak _ Plimit Viel (340)

Equations 3.39 and 3.40 ensure proper calculation of the amount of power by which P!i™it is surpassed.
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3.2. Model Summary

The model is a dynamic MILP problem that optimizes the driving, relocation, charging, V2G functionali-
ties while minimizing peak load demand of a one-way station-based ECSS to maximize financial profit
for the CSO.

The system comprises of a set of SEVSs, stations, and operators. All SEVs have unique battery ca-
pacities, driving efficiencies and (dis)charging efficiencies. All stations have location-dependent time-
varying load demand and PV generation. Electricity prices are time-varying and can be location-dependent
depending on the test scenario. Revenue is generated by renting out SEVs to consumers, who pay an
initial fee plus a per-distance fee, and by selling electrical energy to the grid. Conversely, the system
incurs costs from paying operators a fixed cost for each vehicle relocation, for buying electricity from
the grid and for exceeding a certain load demand.

The model operates in 48 half-hour timesteps, starting at 6 AM and ending at 6 AM the following day.
From midnight to 6 AM (At = 37 - 48) there is no driving demand, ensuring all vehicles have sufficient
time to charge fully for the next timestep.

The model logistics are visualized in Figure 3.1. The model is a discrete model that has 48 half-hour
timesteps, starting at 6 AM and ending at 6 AM the following day. From midnight to 6 AM (At = 37
- 48) there is no driving demand, ensuring all vehicles have sufficient time to charge fully for the next
timestep. Per timestep, all cars can perform the following actions: they can be driven by customers,
be relocated by staff, be charged or discharged.

Single Round

Start End

Figure 3.1: Model logistics.

3.3. Model Simplifications

To simplify the model and reduce computational load, several simplifications have been made.
Energy Management

- Energy costs (CF) are assumed to be known for the entire day at the start of the model. In reality,
energy prices are dynamic, influenced by real-time market conditions, and might vary within a
timestep.

+ The model assumes no energy losses during power transmission, while in reality, power grids
experience losses depending on distance and load.

« Asingle grid capacity constraint (P““) applies uniformly to all stations. Real-world grid capacities
are likely station-specific and influenced by infrastructure and location.

« PV generation (P?V) is treated as deterministic, while real solar power depends on weather con-
ditions, which are stochastic.

Vehicle and Battery Dynamics

+ Vehicle energy efficiency (n) is simplified to a fixed value. Real vehicles have varying efficiencies
due to driving conditions, age, and load.
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+ Battery performance is assumed to remain constant over time, with no degradation effects con-
sidered during the constant current (CC) and constant voltage (CV) phases or during discharging,
which would apply in the real world.

« The model does not account for battery degradation, which affects (dis)charging efficiency (n°")
and (n?°"), capacity (BC™*), and longevity over time.

Fleet Management

+ All stations are assumed to have an unlimited supply of operators to fulfill relocation needs.

+ The model assumes the optimal vehicle distribution at the end-of-day (O E D) is known and fixed.
In practice, determining this distribution requires forecasting and may vary with changing demand
or events.

+ Vehicles are assumed to always be operational, ignoring downtime for maintenance or unex-
pected failures.

Driving and Relocation

« Driving demand (D D) is treated as deterministic, while in practice, demand is uncertain and influ-
enced by stochastic factors such as weather, traffic, and user behavior.

+ Travel times and energy consumption are not affected by traffic, weather, or road conditions,
which would influence the real-world performance.

+ Each vehicle is allowed only one movement per timestep, assuming simplified operations and
ignoring scenarios where vehicles could perform multiple trips within a timestep.

Cost Structures

+ Costs for relocation (F'*) is constant, ignoring nonlinear factors like time-dependant rates.
« Revenue from driving (F* and F9) is linear based on distance traveled, ignoring linear factors like
time-dependent rates.
Grid Interaction

« The model assumes a clear distinction between power buying and selling, with no simultaneous
bidirectional flow at a station. Real-world systems might allow for dynamic power exchanges
with time-based net metering.



Baseline Inputs

This chapter discusses the baseline inputs that are consistent throughout all case studies. For an
overview of the index values and all model input variables see Table 4.1 and Table 4.2 respectively. See
Table 3.1 and 3.3 for the definitions of the indices and variables.

Multidimensional variables are discussed in great detail in this chapter. Section 4.1 covers station
data, including locations, the number of parking spots, and (dis)charging power capacities. Section 4.2
addresses the input driving demand. Next, Section 4.3 outlines the initial vehicle distribution at At = 1.
Finally, Section 4.4 provides detailed information on the vehicle data.

Station load demand (PLP), PV generation (P*V) and cost of electricity (C¥) differ per case study or
model scenario, so their values are elaborated upon in Chapter 5.

Index SetSize

T 48
| 5
J 5
K 24

Table 4.1: List of index sizes.

17



4.1. Station Data 18

Symbol  Type Valueorlindices  Unit

At float 24/48 h
F! float 5 €
F¢ float 0.38 €/km
Fv float 3 €
cE float [l €/kWh
SD float aln| km

PEh,  float [l KW
pach float [i] kW
ptp float [t][i] kW
P float [t][i] kW
P™t  float [t][i] kW
p™*  float [i] -
OED float [ -
SF float 0.8 -
pec float 100 kw
c? float - e/kW
pPimit  foat [i] kW
n float [K] KWh/km

BC™%  float [K] kWh

BC™™  float [k] kWh
BC! float [k] kWh
n°t float k] %

nt  float [k] %

VI float 30 km/h
DD float [t -

IPreMD boolean [iIk] -

Table 4.2: List of input variables.

4.1. Station Data

4.1.1. Station Location Data

Station location data is organized into a dataset created in Excel, as shown in Figure 4.1. A fictional
map is designed, placing five stations on an X-Y coordinate system at integer coordinate values. Travel
distances between stations are calculated as Cartesian distances, represented as straight lines derived
from the Pythagorean Theorem.

In the model, these station distances are denoted as SD. A color gradient from green to red is used
to visualize the distances, where green represents shorter distances and red indicates longer distances.

4.1.2. Parking Spot and Charger Data

As shown by Table 4.3 all stations have a limited number of parking spots (p™2%). All parking spots
have chargers, but the maximum charging power (P<" ) and discharging power (P2 ) varies across
stations.
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. Medium
Coordinates Business District
X Y Large
1 6 4 Residential Area .
.5 2 8 0 (2,8)
T 3 -4 4
&
4 2 -6 @ Small
5 2 8 (-4,-4) Residential Area
Station Large Z/
1 2 3 4 5 Business District (8,0)
1 0.000 14.560 8.246 8.246 14.422 °
=
S 2 14.560 0.000 12.649 8.485 10.000 (-6,-4) @ Gity Genter
E 3 8.246 12.649 0.000 11.662 7.211
C 8.246 8485 11662 0000  14.000 (236}
5 14.422 10.000 7.211 14.000 0.000

Figure 4.1: Station map, coordinates and distances in kilometers.

max Piax  Phdk

p kW] [kW]

1 20 3.7 3.7

s 2 14 7.4 7.4
= 3 14 7.4 7.4
Hh 4 24 11 11
5 18 11 11

Table 4.3: Station parking spots.

4.2. Input Driving Demand

The model uses hypothetical driving demand based on typical real-life driving patterns, as summarized
in Table 4.4. In the model, driving demand is represented by DD and is assumed to be known for the
entire day. Figure 4.2b, 4.2c, 4.2d, 4.2e, and 4.2f illustrate the driving demand of station 1, 2, 3, 4, and 5,
respectively, while the overall driving demand is shown in Figure 4.2a.
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Timestep Time Explanation
1 06:00-06:30 . )
Early risers start their commutes to work
2 06:30-07:00
3 07:00-07:30
4 07:30-08:00 Peak rush hour as people
5 08:00-08:30 drive to work or drop off their kids at school
6 08:30-09:00
7 09:00-09:30 . .
Late risers start their commutes to work
8 09:30-10:00
9 10:00-10:30
10 10:30-11:00 Business people go for business appointments within the other
11 11:00-11:30 business area
12 11:30-12:00
13 12:00-12:30
14 12:30-13:00 People head home or to the city centre to have lunch
15 13:00-13:30
16 13:30-14:00
17 14:00-14:30
18 14:30-15:00 . ]
Home carers go for errands in the city centre
19 15:00-15:30
20 15:30-16:00
21 16:00-16:30
22 16:30-17:00  Eveningrush hour begins as people pick up children from school and
23 17:00-17:30 leave work to go home or to the city centre
24 17:30-18:00
25 18:00-18:30
26 18:30-19:00 . . -
Home carers go to the city centre to enjoy the nightlife
27 19:00-19:30
28 19:30-20:00
29 20:00-20:30
30 20:30-21:00 . . . )
People are heading home returning from events in the city centre.
31 21:00-21:30
32 21:30-22:00
33 22:00-22:30
34 22:30-23:00 ) . . .
People are heading home from late-night events in the city centre.
35 23:00-23:30
36 23:30-24:00
37 00:00-00:30
38 00:30-00:10
39 01:00-01:30
40 01:30-02:00
41 02:00-02:30
42 02:30-03:00 . o
43 03:00-03:30 Charglng WlndOW
44 03:30-04:00
45 04:00-04:30
46 04:30-05:00
47 05:00-05:30
48 05:30-06:00

Table 4.4: Driving demand behavior.
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(f) Driving demand from Station 5.

Figure 4.2: Driving demand from Station 1 (a), 2 (b), 3 (c), 4 (d) and 5 (e).

4.3. Vehicle Distribution

The initial car distribution, referred to in the model as the Initial Pre-Movements Distribution (I PreM D),
is based on the driving behaviour described in Section 4.2. At the start of the day, most vehicles are
parked at Station 2 and 3, which are designated as residential areas. This setup is ideal for consumers,
allowing them to easily pick up cars in the morning for their commute to work or the city.

Conversely, at the end of the day, the model incorporates an Optimal End Distribution (OE D), which
represents the most optimal vehicle distribution for the following morning.

Table 4.5 presents both IPreM D and OED. The table shows that cars 1-8 are located at Station 2,
cars 9-22 are at Station 3, and cars 23-24 are parked at Station 4. By the end of the day, the model
ensures that 8, 14, and 2 cars are stationed at Station 2, 3 and 4, respectively.
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Station
1 2 3 4 5

1 0 1 0 0 0

2 0 1 0 0 0

3 0 1 0 0 0

4 0 1 0 0 0

5 0 1 0 0 0

6 0 1 0 0 0

7 0 1 0 0 0

8 0 1 0 0 0

9 0 0 1 0 0 OED

10 0 0 1 0 0 1 0
P 11 0 0 1 0 0 S 2 8
S| 12 0 0 1 0 0 = 3 14
e —
S| 13 0 0 1 0 0 & a 2
> 14 0 0 1 0 0 5 0

15 0 0 1 0 0

16 0 0 1 0 0

17 0 0 1 0 0

18 0 0 1 0 0

19 0 0 1 0 0

20 0 0 1 0 0

21 0 0 1 0 0

22 0 0 1 0 0

23 0 0 0 1 0

24 0 0 0 1 0

Table 4.5: Initial car distribution and optimal end distribution.

4.4. Vehicle Data

The model includes four distinct EV models, namely the KIA e-Soul 64 kWh, Tesla Model 3, Renault Zoe
ZE50 R110 and the Volkswagen ID.4 Pro, as shown in Table 4.6. All vehicle models are characterized
by unique energy efficiencies and battery capacities, based on data from the EV Database [38]. The
charge and discharge efficiencies are assumed to be the same for all models, with a minimum battery
charge level set at 10% of the total battery capacity.

VehiclelD 1t06 7t012 1310 18 19t0 24
Vehicle Model KIA e-Soul 64 kWh Tesla Model 3 Renault Zoe ZE50 R110 = Volkswagen ID.4 Pro
n 5.78 7.19 6.06 5.78 km/kWh

BC™ax 64 57.5 52 77 kWh

BCc™in 6.4 5.75 5.2 7.7 kWh
BC! 64 57.5 52 77 kWh
ner E) 90 90 90 %
n ach 9 90 90 90 %

Table 4.6: Vehicle data.



Case Studies

The primary objective of this research is to assess the potential benefits of integrating V2G technology
into ECSS. Specifically, the study investigates whether V2G can generate additional revenue for CSOs
by enabling EVs to sell electricity back to the grid. Beyond the potential for increased revenue, V2G
could also contribute to grid balancing.

To explore these possibilities, four simulations were conducted. Each simulation was evaluated using
IBM ILOG CPLEX, using a mixed-integer programming (MIP) gap of 0.1 to achieve a balance between
computational efficiency and solution accuracy. The primary focus of the simulations is on total rev-
enue generation, encompassing earnings from both car rentals and potential V2G services. Addition-
ally, relocation and charging costs are factored into each scenario. The simulations are outlined below.

+ Smart charging & same prices (SC-SP)
This simulation provides a baseline scenario where V2G is disabled, and all charging stations
offer electricity at the same time-varying (TV) price. This test case simulates typical shared EV
operations without any grid interaction.

+ V2G & same prices (V2G-SP)
This simulation builds on this by enabling V2G, while maintaining equal time-varying electricity
prices across stations. This will highlight the revenue potential of V2G services in a uniform price
environment.

+ Smart charging & location-dependent prices (SC-LDP)
This simulation examines the impact of location-dependent (LDP) and time-varying electricity
prices across charging stations, without V2G. This allows us to observe how price differences
alone affect overall revenue, with no grid services provided by the EVs.

* V2G & location-dependent prices (V2G-LDP)
This simulation introduces both V2G services and location-dependent time-varying electricity
prices across stations, providing a comprehensive view of how both factors—V2G and price variation—
work together to maximize revenue for the CSO.

See Table 5.1 for a summary of the simulations.

v LDP
- ) - . V2G
Electricity Prices Electricity Prices
S SC-SP Yes No Disabled
',:_“ V2G-SP Yes No Enabled
2 | sc-Lbp Yes Yes Disabled
9 | V2G-LDP Yes Yes Enabled

Table 5.1: Overview of the simulations.
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5.1. Case Study: Summer 24

By comparing the results from these simulations, we can better understand how V2G, location-dependent
time-varying electricity prices, peak reduction and seasonal variation influence the overall profitability
of shared EV systems.

The data used in the simulations varies depending on the specific case study. The model was tested
using three distinct case studies: Case Study: Summer (see Section 5.1), Case Study: Summer + Peak
Reduction (see Section 5.2) and Case Study: Winter (see Section 5.3).

5.1. Case Study: Summer

This case study explores model behavior during the summer months, characterized by relatively low
station load demand due to minimal heating and lighting requirements, coupled with high PV generation
driven by abundant sunlight.

An overview of the data used in Case Study: Summer is shown in Table 5.2. Station load demand
(PEP) and PV generation (P*V) data are elaborated in Section 5.1.1 and electricity price (C*) data is
elaborated upon in Section 5.1.2.

Electricity Price

Load Demand PV Generation SP LDP
1 +100% Normal Normal Normal
= 2 Normal Normal Normal +200%
= 3 Normal -50% Normal +100%
Z 4 Normal +100% Normal 0.6
5 Normal 0 Normal -20%

Table 5.2: Overview of station load demand (PLP), PV generation (P”V) and electricity price (CT) for all stations.

5.1.1. Station Load and PV Data

The stations have the same location-dependent time-varying load demand and PV generation profiles.
Station 2 (see Fig. 5.1b) is considered to have a 'normal’ load demand and PV generation profile. The
other stations have profiles that are scaled versions of these profiles:

+ Station 1 has twice as much load and the same amount of PV generation (see Fig 5.1a);
+ Station 3 has the same amount of load but half as much PV generation (see Fig 5.1c);

« Station 4 has the same amount of load but twice as much PV generation (see Fig 5.1d);
- Station 5 has the same amount of load but no PV generation (see Fig 5.1e).
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(e) Station 5 power profiles.

Figure 5.1: Load demand (PLP), PV generation (P*V) and net demand (P"¢*) profiles for all stations throughout the day.

5.1.2. Electricity Price
Electricity prices differ per simulation.

Same electricity prices

For SC-CP and V2G-SP, all stations have the same time-varying electricity price profile as shown by
Figure 5.2. The price profile is based on real day-ahead electricity price data from the ENTSO-E Trans-
parency Platform [39]. The electricity price has a minimum of 0.42 €/kWh at t = 19-20 (15:00-16:00)
and a maximum of 0.87 €/kWh at t = 29-30 (20:00-21:00).
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Figure 5.2: Electricity prices for all stations throughout the day.

Location-dependent electricity prices

For SC-LDP and V2G-LDP, station load demand and PV generation profiles remain identical to those of
SC-CP and V2G-SP (see Figure 5.1). However, unlike for SC-CP and V2G-SP, electricity prices are now
location-dependent and time-varying, meaning that each station now has a distinct time-varying elec-
tricity price. Station 1 is assigned a 'normal’ price profile (see Fig 5.2), with prices reaching a minimum
of 0.42 €/kWh at t = 19-20 (15:00-16:00) and peaking at 0.87 €/kWh during t = 29-30 (20:00-21:00).

The other stations have price profiles that are scaled versions of the price profile of Station 1 or have a
fixed electricity price.

+ At Station 2 electricity is sold at +200% the price at Station 1;
+ At Station 3 electricity is sold at +100% the price at Station 1;
+ At Station 4 electricity prices are fixed at 0,6 €/kWh;

+ At Station 5 electricity is sold at -20% the price at Station 1.

5.2. Case Study: Summer + Peak Reduction

This case study examines the model’s behavior during the summer months with active peak-reduction
methods enabled. This case study focuses exclusively on the V2G-SP simulation.

For station load demand (P~P), PV generation (P, and electricity prices (C*) the same data as in
Case Study: Summer is used (see Section 5.1.1 and 5.1.2).

5.3. Case Study: Winter

This case study examines model behavior during the winter months, marked by elevated station load de-
mand driven by significant heating and lighting needs, alongside reduced PV generation due to limited
sunlight. This case study focuses exclusively on the V2G-SP simulation.

Station load demand (P*”) and PV generation (P”""") data are elaborated in Section 5.3.1 and electricity
price (CT) data is elaborated upon in Section 5.3.2.

5.3.1. Station Load and PV Data

In Case Study: Winter, the same power profiles are used as in Case Study: Summer (see Section 5.1.1).
However, station load demand has increased by 30% due to higher energy requirements for heating and
lighting during winter. Additionally, PV generation has decreased by 50% because of reduced sunlight.
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Figure 5.3: Load demand (PLP), PV generation (P”") and net demand (P™¢?) profiles for all stations throughout the day.

5.3.2. Electricity Price

All stations share the same time-varying electricity price profile, as shown in Figure 5.2. This price profile
is derived from real day-ahead electricity price data provided by the ENTSO-E Transparency Platform
[39]. The electricity price ranges from a minimum of 0.24 €/kWh at t = 42 (02:30-03:00) to a maximum
of 1.18 €/kWh at t = 26 (18:30-19:00).

In comparison to the electricity prices in Case Study: Summer SC-SP (see Section 5.1.2), the average,
maximum, and minimum electricity prices have all increased. This rise is primarily driven by higher
demand in the winter, which typically results in elevated prices. However, during the night, electricity
prices tend to decrease due to the abundance of wind power generation.
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Figure 5.4: Electricity prices for all stations throughout the day.



Results Case Study: Summer

This chapter presents the results from Case Study: Summer. The results of simulations SC-SP, V2G-SP,
SC-LDP, and V2G-LDP are presented and discussed in Sections 6.1, 6.2, 6.3, and 6.4, respectively.

The results of V2G-SP and SC-LDP are compared to those of SC-SP and the results of V2G-LDP are
compared to those of V2G-SP and SC-LDP. V2G-SP highlights the impact of V2G in a system with uni-
form time-varying electricity prices, while SC-LDP demonstrates the effects of location-dependent time-
varying electricity prices in a system where V2G is disabled. Lastly, V2G-LDP demonstrates the impact
of location-dependent time-varying electricity prices in a system with integrated V2G.

6.1. Smart charging & same prices
All results of SC-SP are plotted in Appendix 11.1.1.

Objective Values

As illustrated in Table 6.1, Driving Revenue constitutes the largest share of total revenue. With 315 out
of 324 drives successfully completed, 97.2% of driving demand is fulfilled (see Tables 6.2 and 6.3a). In
contrast, Energy Sold Revenue contributes only a small portion (1.14%) of total revenue because V2G
is disabled. Energy is sold infrequently, occurring only when PPV exceeds PP and selling directly to
the grid is more profitable than charging vehicles.

Driving and Relocation

Table 6.3a and Figure 6.2 illustrate the fulfilled driving demand, showing that most drives occur between
Station 4 and Stations 2 or 3, in both directions. This pattern corresponds to the input driving demand
(see Figure 4.2), which predominantly consists of drives between the residential areas (Stations 2 and
3) and the city center (Station 4).

The remaining fulfilled drives consist primarily of work-to-home and home-to-work trips, as well as inter-
business area meetings and lunch trips.

Table 6.3b reveals that the majority of relocations occur from Station 1 to Station 3, to and from Station
4, and from Station 5 to Station 2. These relocation patterns are also visualized in Figure 6.3.

The high volume of relocations from Station 1 to Station 3 is driven by the substantial demand for
home-to-work trips at Station 3. To meet this demand, cars used for trips from Station 1 to Station 3
are frequently relocated back to Station 1 in the subsequent round to continue fulfilling similar trips
(see Figure 6.3a). A similar pattern explains the significant relocations from Station 5 to Station 2, as
shown by Figure 6.3e.

The large number of relocations to and from Station 4 is attributed to its role as the city center, which
remains a popular destination throughout the day.

Power and Energy
Table 6.2 shows that Station 3 purchases two to three times more energy than the other stations. This
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is due to a significant peak in charging power occurring between 3 and 5 AM, as shown in Figure 6.4c.
The peak is driven by Station 3's role as a large residential area. By the end of the day, 14 out of 24
vehicles are located at Station 3 due to the OED. Since electricity prices are relatively low during these
hours, vehicles are charged, resulting in the peak station charging power.

Station 4 sells the most energy, as shown by Table 6.2 and the largest amount of negative P97'? in
Figure 6.4d compared to other stations. This is because the PV generation of Station 4 is twice as
large as that of the other stations, making Station 4 responsible for the peak selling power.

A closer look at Figure 6.4 reveals several other significant power peaks in the plots:

- For the same reason, Station 2 experiences a similar peak between 3 and 5 AM (see Figure 6.4b)
as Station 3. This is because Station 2 is a small residential area where 8 out of 24 vehicles are
parked due to the OED (see Figure 6.1).

+ Station 4 has a peak at 5 AM, which is caused by high driving demand to and from Station 4 in the
preceding hours, leaving vehicles with no earlier opportunity to charge. Vehicles that remain at
Station 4 attempt to charge as much as possible before the cost of electricity rises starting from

18 PM.

+ Stations 1 and 5 show peaks between 2 and 4 AM. These peaks occur because driving and relo-
cation demand is minimal during these hours, and electricity prices are low.

It is worth noting that the model strategically schedules vehicle charging during periods of low electric-
ity prices, as illustrated in Figure 6.4.

Driving Revenue € 2,859.30
Relocation Costs € 360.00
Energy Sold Revenue | € 33.08
Energy Bought Costs | € 616.68
Profit e 1,915.70

Table 6.1: SC-SP objective values.

Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[kWh] [KWh] [kw] [kw] [t] [kw] [kw] [t [kw] [kwW] [t [kw] [kw] [t
1 157.42 0.64 4.41 13.38  8:30:00PM| 2.12 2220 2:00:00PM| 6.56 23.26  3:00:00PM| 0.03 1.27  12:30:00 PM
s 2 178.30  18.04 0.93 6.65  8:30:00PM| 5.75 59.20  4:30:00AM| 7.43 60.33  4:30:00AM| 0.75 474 2:00:00 PM
b= 3 446.34 0.00 5.66 13.42  8:30:00PM| 12.94 97.74  4:30:00AM| 18.60  100.00 4:00:00AM| 0.00 0.00  6:00:00 AM
& 4 172.32  63.98 -1.62 6.56  8:30:00PM| 6.14 50.07 5:30:00PM| 7.18 49.16  5:30:00PM| 2.67 12.49  2:00:00 PM
5 221.69 0.00 3.48 6.73  8:00:00PM| 5.75 66.00  3:00:00PM| 9.24 69.75  3:00:00PM| 0.00 0.00  6:30:00 AM
[ sum [ 117606 8266 |
[ Futfiled DrivingDemand [ 97.2% |
Table 6.2: SC-SP KPIs.
Arrival Station Arrival Station
1 2 3 4 5 1 2 3 4 5
1 0 8 12 13 18 51 1 0 0 27 0 0 27
é E 2 14 0 0 28 10 52 é E 2 0 0 0 14 2 16
=4 § 3 19 0 0 47 16 82 s E 3 0 0 0 16 4 20
25 4 10 30 45 0 6 91 2 n 4 17 8 9 0 3 37
5 18 4 7 10 0 39 5 0 18 2 0 0 20
61 42 64 98 50 315 17 26 38 30 9 120

(a) SC-SP driving routes.

(b) SC-SP relocation routes.

Table 6.3: All driving and relocation routes in SC-SP.
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Figure 6.1: SC-SP amount of cars throughout the day.
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Figure 6.2: Drives from all stations in V2G-LDP.
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Figure 6.3: Relocations from all stations in SC-SP.
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Figure 6.4: PLD, pPV pch pgrid and C'P for all stations in SC-SP.

6.2. V2G & same prices
All results from V2G-SP are presented in Appendix 11.2.

Objective Values

Compared to SC-SP, overall profit has increased by 2.25%, as shown in Table 6.4. While the increase is
modest, it is not unexpected. This growth is primarily driven by a significant rise in Energy Sold Revenue,
which has increased by 371.5% following the introduction of V2G (see Table 6.5). The impact of V2G
activity is evident in the greater occurrence of negative P”V values across all stations in Figure 6.5.
However, Energy Bought Costs have also risen, as vehicles are charged more frequently to maintain
higher energy levels in anticipation of discharging back to the grid during periods of elevated electricity
prices.

Driving and Relocation

A comparison of the drives and relocations from V2G-SP (see Figures 11.2 and 11.3) with those from
SC-SP reveals negligible differences in movement patterns. Consequently, both Driving Revenue and
Relocation Costs remain largely unchanged.

Since driving generates more revenue in this scenario than selling energy, it is unsurprising that the
number of fulfilled drives has remained consistent with SC-SP.
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The minimal changes in relocations can be attributed to the apparent lack of benefit in adjusting relo-
cation patterns following the integration of V2G.

Power and Energy
In addition to charging during times of low electricity prices — a behavior already observed in SC-SP —
vehicles in V2G-SP now discharge during periods of relatively high prices. This behavior is particularly

noticeable when comparing the power profiles of Stations 2 and 3, and even more so for Stations 5 and
4.

In SC-SP, Stations 3 and 5 sold little to no energy due to minimal or no PV generation. However, in
V2G-SP, these stations sell energy during periods of peak electricity prices (see Figures 6.5¢ and 6.5e).
Station 4 remains the largest contributor to energy sales. As shown in Figure 6.5d, it capitalizes on peak
electricity prices, low vehicle demand (see Figure 4.2a) and having a relatively high share of vehicles
available for discharging.

Regarding peak demand, there are notable changes at Stations 2, 3, and 4. The charging peaks at
Stations 2 and 3 have increased in duration, and Station 2 now exhibits a discharging peak between
t=19 and t=21.

Driving Revenue € 2,886.30
Relocation Costs € 363.00
Energy Sold Revenue | € 155.96
Energy Bought Costs | € 720.60
Profit e 1,958.66

Table 6.4: V2G-SP objective values.

Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[kWh] [kwh] [kw] [kw] [t [kw] [kw] [t] [kw] [kw] [t [kw] [kw] [t
1 161.97 1.62 4.41 13.38  8:30:00PM| 2.27 2220  2:00:00PM| 6.75 23.26  3:00:00PM| 0.07 1.97  8:30:00 AM
S 2 311.54  18.99 0.93 6.65  8:30:00PM| 11.26 59.20  2:00:00AM| 12.98 61.33  2:00:00AM| 0.79 4.74  2:00:00 PM
= 3 541.89 9.11 5.66 13.42  8:30:00PM| 16.54 98.98  5:30:00AM| 22.58 100.00 2:00:00AM| 0.38 9.45  7:00:00 PM
& 4 189.12  232.70 -1.62 6.56  8:30:00PM| -0.19  -106.55 8:00:00PM| 7.88 57.46  5:30:00PM| 9.70 100.00  7:00:00 PM
5 236.89  10.15 3.48 6.73  8:00:00PM[ 5.96 66.00  2:30:00PM| 9.87 69.75  3:00:00PM| 0.42 20.31  8:30:00 AM

[ sum [ 144142 27258 ]

[ Futfited DrivingDemand | 98.1%

Table 6.5: V2G-SP KPls.
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Figure 6.5: PLD, pPV pEV pgrid gand C'F for all stations in V2G-SP.

6.3. Smart charging & location-dependent prices
All results from SC-LDP are presented in Appendix 11.3.

Objective Values
As shown in Table 6.6, total profit decreased by 9.24% compared to SC-SP. This decline is primarily due
to increase in Relocation Costs (+15%) and Energy Bought Costs (+28%).

Driving and Relocation

The change in Driving Revenue remains negligible, as only one single drive has changed (see Figure
11.10). Driving revenue continues to be the primary source of income, making it essential to fulfill as
much driving demand as possible, just as in SC-SP.

Relocation Costs grew because the variation in electricity prices across stations led the model to move
vehicles more frequently to optimize charging and vehicle availability (see Figure 6.8 and 11.11).

Power and Energy
Energy Bought Costs increased due to higher average electricity prices compared to SC-SP.

The amount of energy sold remains unchanged from SC-SP, as station load demand and PV generation
have not varied. Consequently, the instances where P”V exceeds P“P remain the same. Energy Sold
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Revenue has increased slightly, driven by a marginal rise in average electricity prices, resulting in a
proportional increase in revenue.

For Stations 1, 2, and 3, the power profiles show minimal variation compared to SC-SP. However, Station
4 displays a significant and broad spike in charging power between t=18 and t=20, as illustrated in Figure
6.7c. This spike occurs because, during this period, a large number of vehicles are located at Station
4 (see Figure 6.6), and driving demand is low (see Figure 4.2a). Furthermore, unlike in SC-SP, where
electricity prices at Station 4 peak after t = 18, SC-LDP features stable and relatively low electricity
rates for Station 4, making it more cost-effective to charge during this window.

At the end of the day, most vehicles remain parked at Stations 2 and 3 due to the OED. In SC-SP, all
vehicles were positioned by t = 1 and charged at Stations 2 and 3. However, in SC-LDP, the dynamics
change significantly with electricity prices at Station 2 tripling and at Station 3 doubling. As a result, a
notable portion of vehicles now charge at Station 5, where electricity costs are 20% lower than the "nor-
mal” rate. These vehicles are subsequently relocated to Stations 2 and 3 later in the day, as illustrated
in Figures 11.11e and 6.7d.

There are some notable changes in peak demand. The peak buying power has shifted from Station 3 to
Station 5, as Station 5 now offers the lowest electricity prices (see Table 6.7). Previously, the charging
load at the end of the day was distributed across Stations 2, 3, and 4 (see Figure 6.7a, 6.7b and 6.7c),
but it is now primarily handled by Station 5 (see Figure 6.7d).

Regarding peak selling power, no changes have been observed. This is because the instances and
durations when PPV exceeds PP remain unchanged.

Driving Revenue € 2,885.90
Relocation Costs € 414.00
Energy Sold Revenue | € 56.84
Energy Bought Costs | € 789.83
Profit e 1,738.91

Table 6.6: SC-LDP objective values.

Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[kwh] [kwh] [kw] [kw] [t] [kw] (kW] [t [kw] kW] [t] [kw] [kw] [
1 153.48 0.64 4.41 13.38  8:30:00 PM 1.96 22.20 3:00:00 PM 6.39 23.26 3:00:00 PM 0.03 1.27 12:30:00 PM
g 2 74.52 25.85 0.93 6.65 8:30:00 PM 1.10 34.15 4:30:00 AM 3.11 35.28 4:30:00 AM 1.08 4.74 2:00:00 PM
% 3 178.84 0.00 5.66 13.42  8:30:00 PM 179 30.98  4:30:00 AM 7.45 33.25  4:30:00AM 0.00 0.00 6:00:00 AM
& 4 204.26 55.56 -1.62 6.56 8:30:00 PM 7.82 69.11 6:30:00 PM 8.51 72.55  6:30:00 PM 2.32 12.31  11:00:00 AM
5 597.38 0.00 3.48 6.73 8:00:00 PM| 21.41 94.32  11:00:00AM| 24.89 97.45  11:00:00 AM 0.00 0.00 6:30:00 AM

[ sum | 120848 8204 |

[ Fulfilled DrivingDemand [ 98.1% |

Table 6.7: SC-LDP KPlIs.
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6.4. V2G & location-dependent prices
All results from V2G-LDP are presented in Appendix 11.4.
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6.4.1. Same prices versus location-dependent prices with V2G enabled

Objective Values

Compared to V2G-SP, which also included V2G functionality, the impact of location-dependent time-
varying electricity prices is significant. As shown in Table 6.9, Driving Revenue remains the largest
contributor to total revenue. However, Energy Sold Revenue has become a major revenue stream, now
accounting for approximately 36.8% of the total revenue.

Relocation Costs, Energy Bought, and Energy Bought Costs have all increased compared to V2G-SP
(see Table 6.10).

Driving and Relocation

It is important to note that Driving Revenue has decreased compared to V2G-SP (see Table 6.9). This
decline is attributed to a reduction in the number of drives (see Figure 6.11a) and, consequently, a lower
percentage of fulfilled demand (see Table 6.10). This shift occurs because driving is no longer always
the most profitable option. In some scenarios, keeping vehicles stationary to perform V2G generates
higher revenue than fulfilling driving demand.

The increase in Relocation Costs is modest compared to the rise in Energy Sold Revenue. This is be-
cause the model opts to perform more relocations to optimize not only charging and vehicle availability
but also discharging. However, the primary change lies in the selection of different relocation routes
compared to V2G-SP (see Figure 11.15. In earlier simulations, relocations were primarily driven by the
need to meet driving demand. In this case, however, relocations for V2G play a significant role, as
variations in time-varying electricity prices across stations enhance the revenue potential from V2G
operations.

Supporting the increased use of V2G requires vehicles to charge more often, resulting in more bought
energy and associated costs.

Power and Energy

The power profile of Station 1 shows minimal change, as its electricity price remains unchanged from
V2G-SP. In contrast, the power profiles of the other stations have shifted significantly, as shown in
Figure 6.9.

As depicted in Table 6.10, Station 2 accounts for 90% of all energy sold. This is due to its electricity
price being the highest, at +200%, prompting the model to prioritize vehicle discharging at this location
to maximize revenue.This behavior is clearly reflected in Figure 6.9a, which shows a high volume of
negative PFV. While Station 2 experienced relatively low vehicle traffic in previous simulations, Figure
6.8 demonstrates that it is now heavily frequented for discharging operations.

Station 3's power profile, compared to V2G-SP, shows slightly more discharging and significantly less
charging toward the end of the day (see Figure 6.9b). This change is attributed to its electricity price,
which has doubled relative to the "normal’” rate.

Stations 4 and 5 collectively account for 87% of all energy purchased. This outcome aligns with their
electricity prices, which remain constant at the "normal” average and -20%, respectively. The high PEV
values for these stations, shown in Figures 6.9c and 6.9d, reflect this charging activity.

The model continues to optimize charging and discharging by leveraging periods of low electricity
prices for charging and high electricity prices for discharging (see Figure 6.9). Additionally, it strate-
gically relocates vehicles to stations with low electricity prices for charging and to stations with high
prices for discharging, as illustrated in Figure 6.8.

Peak demand has increased significantly in V2G-LDP. The frequency of peaks reaching grid capacity
P& hasrisen. Power peaks have worsened at Stations 2, 4, and 5, driven by their respective electricity
price variations: +200%, ‘'normal’ average, and -20%. The model seeks to capitalize on these pricing
differences, amplifying peak demand at these stations.

6.4.2. Smart charging versus V2G with location-dependent prices

In SC-LDP (see Section 6.3), overall profit decreased compared to SC-SP due to the implementation of
location-dependent time-varying electricity prices. These prices had a higher average than the uniform
time-varying pricing scheme used in SC-SP, leading to increased operational costs.
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Objective Values

The integration of V2G in V2G-LDP, however, results in a significant improvement, with overall profit
increasing by 28.43% compared to SC-LDP. In this simulation, Energy Sold Revenue becomes a major
revenue stream, accounting for 36.8% of total revenue, while Driving Revenue contributes the remaining
63.2%.

Driving and Relocation
Driving revenue decreased by 17.5%. Again, this decline is attributed to a strategic shift: fulfilling driving
demand is no longer always the most profitable approach. In certain scenarios, selling energy yields
higher revenue, leading to a reduction in the amount of fulfilled driving. This trend is illustrated in Figure
6.10 and Figure 6.11a.

An aspect that might seem unusual is the decrease in relocation costs compared to SC-LDP. This is,
once again, linked to the fact that fulfilling driving demand is not always the top priority. The model
appears to optimize profits by keeping cars more stationary on average to facilitate discharging. Relo-
cation decisions are therefore more influenced by charging and discharging requirements rather than
solely focusing on meeting driving demand.

Power and Energy

The improvement in Energy Sold Revenue is attributed to the model’s ability to optimize not only charg-
ing but also discharging, leveraging the pronounced differences in electricity prices. This is evident
from the substantial amount of energy sold at Station 2 (see Table 6.10 and Figure 6.9a) and the high
volume of energy purchased at Station 5 (see Table 6.10 and Figure 6.9d).

Again, peak demand has increased significantly in V2G-LDP. Compared to SC-LDP, power peaks have
worsened at Stations 2, 4, and 5, driven by their respective electricity price variations.

Driving Revenue € 2,379.70
Relocation Costs € 381.00
Energy Sold Revenue | € 1,383.60
Energy Bought Costs | € 1,149.00

Profit e 2,233.30

Table 6.9: V2G-LDP objective values.

Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Peak Average Peak Peak Average Peak Peak Average Peak Peak
[kwh] [kwh] [kw] [kw] [t] [kw] (kW] [t [kw] kW] [t] [kw] [kw] [
1 152.23 1.56 4.41 13.38  8:30:00 PM 1.86 18.50  12:00:00 PM 6.34 17.23  12:00:00 PM 0.06 1.45 11:00:00 AM
g 2 21.86 845.65 0.93 6.65 8:30:00PM| -35.26 -103.60  4:00:00 AM 0.91 11.80 4:00:00 AM 35.24 98.33 9:00:01PM
'*g 3 113.59 27.77 5.66 13.42  8:30:00PM| -2.08 43.27 5:30:00 AM 4.73 44.30 5:30:00 AM 1.16 13.17 7:00:00 AM
& 4 695.13 67.23 -1.62 6.56 8:30:00PM| 27.78 98.38 3:00:00 AM 28.96 100.00  7:30:00 PM 2.80 12.49 2:00:00 PM
5 1195.13 0.00 3.48 6.73 8:00:00 PM| 46.31 98.87  4:30:00AM 49.80 100.00 11:30:00 PM 0.00 0.00 6:30:00 AM

[ sum [ 2177.94 94221 |

[ Fulfitled DrivingDemand [ 80.2% |

Table 6.10: V2G-LDP KPlIs.
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Figure 6.9: PLD, pPV pEV pgrid gnd C'F for all stations in V2G-LDP.



Results Case Study: Summer + Peak
Reduction

This chapter presents the results from Case Study: Summer + Peak Reduction, in which peak reduction
is enabled by Equations 3.37, 3.38, 3.39 and 3.40 (see Section 3.1.3). In this study, only V2G-SP was
conducted, using the data outlined in Section 5.1. The results are compared with Simulation 1 and 2
from Case Study: Summer (refer to Section 11.2).

7.1. V2G & same prices

All results from V2G-SP of Case Study: Summer + Peak Reduction are presented in Appendix 12.1.

For this simulation, P is set at the average value of P97¢ in V2G-SP of Case Study: Summer (9.74
kW). To begin, the penalty (C’) was initially set at the average electricity cost (0.56 €/kWh). However,
through trial and error, this penalty was found to be excessively high, resulting in no V2G activity and
even less energy sold compared to Simulation 1. A revised penalty value of 0.2 €/kWh proved to be
effective, as it maintained the profitability of V2G while substantially reducing charging peaks seen
previously in V2G-SP of Case Study: Summer without peak reduction.

Objective Values

Compared to V2G-SP of Case Study: Summer, the overall profit has decreased slightly by 0.44% (see
Table 7.1). Considering the MIP gap, this error is negligible. Driving revenue and relocation costs have
remained largely unchanged. However, energy sold revenue and energy bought costs have decreased
by 46% and 15%, respectively. This reduction reflects a strategy of minimizing charging, which in turn
limits opportunities for discharging.

As shown in Table 7.2, P'"™i* has been exceeded at every station. The amount by which the peak limit
is exceeded is penalized, and results in the Peak Exceedance Penalty.

Driving and Relocation
Since driving remains the primary source of revenue, there is minimal to no change in driving activity
and relocation movements compared to V2G-SP of Case Study: Summer.

Power and Energy

A comparison of the power profiles (see Figure 7.1) with those from V2G-SP of Case Study: Summer
reveals that the (dis)charging peaks remain in the same locations. However, the charging peaks exhibit
significantly reduced amplitudes, most of the large peaks have nearly halved. While discharging activity
has generally decreased, it is still present.

41
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Driving Revenue € 2,861.70
Relocation Costs € 363.00
Energy Sold Revenue € 84.64
Energy Bought Costs € 611.28
Peak Exceedance Penalty | € 22.03
| Profit |e 1,950.03]
Table 7.1: V2G-SP objective values.
Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[Kwh] [KWh] [kw] [kw] [t] [kw] [kw] [t] [kw] [kw] ] [kw] [kw] [t]
1 146.47 0.64 4.41 13.38  8:30:00PM| 1.66 15.10  2:00:00PM [ 6.10 13.38  2:00:00PM [ 0.03 1.27  12:30:00 PM
5 2 271.64  20.18 0.93 6.65 8:30:00PM| 9.55 3364  5:30:00AM | 11.32 34.15 12:00:01AM| 0.84 15.55  8:30:00 PM
= 3 429.78 1.53 5.66 1342  8:30:00PM| 15.64 59.78  5:30:00AM | 17.91 60.29  12:00:01AM| 0.06 0.86  2:00:00 PM
& 4 165.34 13270 | -1.62 6.56  8:30:00PM| 298  -106.55 8:00:00PM | 6.89 20.58  1:00:00PM | 5.53 100.00  8:00:00 PM
5 187.68 0.00 3.48 6.73  8:00:00PM| 4.34 27.59  12:00:00PM| 7.82 30.45  11:00:00AM| 0.00 0.00  6:30:00 AM
[ sum [ 1200.00 155.04 ]
[ Futfited DrivingDemand | 97.2% |

Table 7.2: V2G-SP KPlIs.
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Results Case Study: Winter

This chapter presents the results from Case Study: Winter. In this study, only V2G-SP was conducted,
using the data outlined in Section 5.3. The results are compared with V2G-SP from the Case Study:
Summer (refer to Section 11.2).

8.1. V2G & same prices
All results from V2G-SP are presented in Appendix 13.1.

Objective Values

Compared to V2G-SP of Case Study: Summer, overall profit has increased very slightly by 1.95% (see
Table 8.1). This is due to the increase in Energy Sold Revenue, which increased by 84.5%. Driving
Revenue decreased as less driving demand is fulfilled (see Table 8.2). Relocation Costs decreased as
less relocation moves have been performed (see Table 8.2) and Energy Bought Costs increased.

Driving and Relocation
Since the driving demand is identical for both simulations and neither involves location-dependent time-
varying electricity prices, the relocation and driving moves remain largely identical.

Power and Energy

When comparing the power profiles, significant changes can be observed. These differences can be
attributed to the uniform but time-varying electricity prices, which differ from those observed in Case
Study: Summer.

In Case Study: Summer (see Section 5.1), vehicles were predominantly charged between 12:00-16:00
and 02:00-06:00, coinciding with the lowest electricity prices during those periods. However, in this
case, midday charging peaks have disappeared, shifting instead to later in the day. To accommodate
this redistribution, the evening charging peaks now exhibit a longer duration.

Regarding discharging, the timing of the peaks remains consistent with those observed in Case Study:
Summer during peak electricity demand periods. However, the intensity of discharging peaks has
increased due to higher electricity prices, making V2G operations more profitable. Additionally, the
sharper spikes in electricity prices have led to more centralized discharging patterns.

Driving Revenue € 2,830.40
Relocation Costs € 348.00
Energy Sold Revenue | € 287.75
Energy Bought Costs | € 773.17

Profit e 1,996.98

Table 8.1: V2G-SP objective values.
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Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[kwWh] [kWh] [kw] (kW] [t kW] [kw] [t] (kW] [kw] [ [kw] kW] [
1 177.70 3.35 7.78 17.46  8:30:00PM| -0.51 -11.10  8:30:00AM |  7.40 17.46  8:30:00PM [ 0.14 6.71  8:30:00AM
s 2 47410  12.50 3.25 871  8:30:00PM| 15.98 59.20  12:00:01AM| 19.75 64.40  12:00:01AM| 0.52 14.73  6:00:00 PM
E=] 3 786.74 6270 3.89 8.73  8:30:00PM| 26.28 99.07  5:00:00AM | 32.78  100.00 11:30:00PM| 2.61 51.38  6:00:00 PM
1773 4 179.36  230.35 1.98 8.67  8:30:00PM| -4.10  -108.18 7:30:00PM | 7.47 33.08  11:00:00PM| 9.60 100.00  6:30:00 PM
5 97.95 26.07 4.53 8.75  8:00:00PM| -1.53 -55.00  8:30:00AM | 4.08 8.75  8:00:00PM [ 1.09 52.13  8:30:00AM
[ sum [1715.85 334.97 |
[ Fulfitled DrivingDemand | 96.3% |
Table 8.2: V2G-SP KPIs.
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Discussion

The primary aim of this study is to evaluate the operational and economic impacts of enabling V2G
functionality in a station-based EVSS. Specifically, scenarios have been studied with and without V2G,
with and without location-dependent time-varying electricity prices, and with and without peak reduc-
ing measures. The key metrics for comparison were Driving Revenue, Relocation Costs, Energy Sold
Revenue, Energy Bought Costs, and Peak Exceedance Penalty.

All simulations are compared to each other to illustrate key differences. For Case Study: Summer, V2G-
SP versus SC-SP and V2G-LDP versus SC-LDP highlight the impact of V2G in a system with uniform
time-varying electricity prices and location-dependent time-varying electricity prices respectively (see
Section 6.2 and Section 6.4.2). SC-LDP versus SC-SP and V2G-LDP versus V2G-SP demonstrate the
effects of location-dependent time-varying electricity prices in a system where V2G is disabled (see
Section 6.3 and Section 6.4.1).

A comparison between V2G-SP of Case Study: Summer (see Section 6.2) and Case Study: Summer
(Peak Reduction) (see Section 7.1) highlights the significant impact of peak reduction on the system'’s
charging behavior.

V2G enhances profitability of EVSS

As demonstrated in the results presented in Section 6.2 and 6.4.2, integrating V2G into the ECSS en-
hances overall profitability. This improvement arises from the model’s ability to capitalize on high elec-
tricity prices during periods of low driving demand, thereby introducing a valuable additional revenue
stream.

However, the increase in Energy Sold Revenue observed in Section 6.2 was minimal. This prompts the
question of whether integrating V2G into a system with uniform time-varying electricity prices across
stations justifies the added model complexity and extended computational time. Furthermore, it is cru-
cial to highlight that V2G operations increase battery cycling, which can accelerate battery degradation.
Since the impact of V2G on total profit is relatively negligible, the faster degradation of batteries due to
increased cycling could potentially outweigh any minor gains in energy revenue.

Location-dependent electricity prices enhance V2G profitability

As highlighted in the result comparisons in Section 6.4.1 and 6.4.2, the introduction of location-dependent
time-varying electricity prices significantly impacts overall system performance and dynamics. These
prices amplify the potential benefits of V2G by increasing price variability not only over time but also
across locations. This creates stronger incentives to strategically charge during low-cost periods and
locations and to sell during high-cost periods and locations, optimizing profitability.

As demonstrated in Section 6.4.1, V2G-LDP maximized profits by reducing fulfilled driving demand in
favor of using vehicles for discharging, which generates higher revenue. Depending on the objectives
of the CSO, a penalty could be introduced into the model to prioritize fulfilling driving demand over V2G
operations. While this may result in lower profits, it could enhance customer satisfaction — consistent
with the traditional goals of a CSS.
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It is important to note that the model used in Case Study: Summer did not account for peak reduction.
Instead, it focused solely on maximizing profit through V2G optimization, leading to a high frequency of
electricity peaks reaching grid capacity P““, particularly under location-dependent time-varying elec-
tricity prices. In reality, this can pose significant challenges, as it may overload certain parts of the
electricity grid due to uneven distribution of (dis)charging demand.

Peak reduction reduces charging peaks without significantly affecting revenue

As demonstrated in V2G-SP of Case Study: Summer + Peak Reduction (see Section 7.1), peak reduc-
tion significantly lowers the amplitudes, nearly halving them, with minimal impact on profit. However,
determining the optimal buying power limit (P"™*) and penalty (C*’) remains a challenging task.

9.1. Contribution

These results are consistent with prior research highlighting the economic benefits of integrating V2G
into the EVReP, particularly in leveraging grid support to generate additional revenue from stored energy
[9, 6, 4]. This study adds to this by presenting a MILP model that combines V2G with EVReP. In addition,
this study demonstrates that location-dependent time-varying electricity prices further enhance the
revenue potential from V2G, as opposed to systems with uniform time-varying electricity prices.

9.2. Implications

The findings of this study have several implications for the design of EV-sharing systems. First, enabling
V2G clearly enhances revenue potential, particularly in regions with location-dependent time-varying
electricity prices. Operators of EV fleets should prioritize V2G integration to capitalize on grid service
opportunities. However, the increase in relocation costs suggests that system operators will need to
develop more sophisticated vehicle management algorithms to optimize energy pricing and vehicle
availability simultaneously. From a policy perspective, the success of V2G integration depends heavily
on dynamic electricity pricing structures, suggesting that regulatory bodies should encourage or main-
tain price variability across regions to incentivize grid participation. Furthermore, energy policies that
reward grid contributions from EVs could make such systems even more economically viable.

9.3. Limitations

There are several limitations to this study that should be considered. First, regarding SEVs, the model
assumes no battery degradation and that vehicles do not experience breakdowns. It also simplifies
driving conditions by assuming cars travel at fixed speeds, directly from point A to point B without de-
tours. In reality, these factors affect vehicle availability and reliability. In terms of driving logistics, the
model assumes fixed demand throughout the day, with no accounting for variations in user behavior
or potential booking cancellations. In practice, fluctuations in demand and user unpredictability could
influence vehicle availability, particularly for V2G services. In terms of cost structure, the relocation
model employs a simplified version that may not adequately reflect the complexities of real-world lo-
gistics. The relocation dynamics and costs are likely more intricate than what is captured in the study.
Overall, the study relies on hypothetical data, limiting the applicability of the results to real-world situa-
tions. Finally, the model’s solving time is highly influenced by the provided inputs. While incorporating
location-dependent time-varying electricity prices and V2G capabilities boosts revenue, it also signifi-
cantly increases complexity and extends computation time. This trade-off requires careful considera-
tion.

9.4. Research recommendations

Future research should focus on validating the model using comprehensive and temporally consistent
real-world data. While the electricity prices and PV generation data in this study are based on real data,
the driving demand and station location data were synthesized. Addressing these limitations would
improve the model’'s accuracy and practical applicability. Investigating user behavior and demand vari-
ability, such as changes during rush hours or special events, will help refine the model’s predictions.

Studying a Model Predictive Control (MPC) approach for this model could enhance its applicability in
real-world scenarios. MPC accounts for variability in inputs such as vehicle demand, vehicle availabil-
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ity, and electricity prices, which are subject to change throughout the day. Aiming for a framework
that adapts to unknown conditions and evolving information provides a more realistic and practical
approach, as real-world systems rarely have full, upfront knowledge of all conditions.

Additionally, studying the impact of V2G on battery degradation and vehicle maintenance is essential,
as frequent charging and discharging may affect battery longevity and costs. Incorporating real-world
grid constraints, such as congestion and voltage deviations, would provide insights into how ECSS can
support grid stability.

Exploring how dynamic pricing and regulatory policies, like time-of-use tariffs or carbon credits, impact
the profitability of V2G services is also crucial. Different regions’ regulatory frameworks should be
compared to assess their influence on the adoption of V2G-enabled CSS. Furthermore, evaluating the
effect of fleet size and vehicle composition on operational efficiency and grid interaction could provide
insights into optimizing fleet performance. Larger fleets or heterogeneous vehicle types may present
unique challenges and opportunities for balancing driving demand and grid support.

Finally, developing advanced relocation algorithms that account for energy pricing and vehicle demand
could help operators reduce costs while maximizing V2G revenues.



Conclusion

In conclusion, this study presents a novel approach to integrating V2G technology with ECSS to enhance
the profitability of transportation services. The results show that V2G can improve financial outcomes
by enabling EVs to participate in energy markets, particularly in scenarios where time-varying electricity
prices fluctuate across different locations. Additionally, peak load demand can be significantly reduced
without substantially impacting overall profit. However, this added complexity increases vehicle relo-
cation costs, highlighting the need for more sophisticated vehicle management strategies.

The integration of V2G not only provides economic benefits but also supports the broader goal of de-
carbonizing the transport sector by optimizing the use of renewable energy. The findings align with
existing literature on the potential of V2G technology but also extend it by demonstrating the impor-
tance of location-based price differentiation in enhancing profitability.

Nevertheless, this study has limitations, including simplified assumptions regarding vehicle operation,
user behavior, and grid conditions. Future research should address these limitations by incorporating
real-world data and developing more advanced and realistic models that account for dynamic pricing,
as well as variations in user demand, vehicle availability, and other relevant factors. Additionally, further
exploration of policy incentives for V2G participation and the development of more efficient vehicle
relocation algorithms could enhance the practical application of these systems.

By combining car-sharing with V2G, this research contributes to the growing body of knowledge on
sustainable urban mobility and renewable energy integration, providing a promising direction for future
innovation in transportation and energy systems.
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Simulation Plots Case Study: Summer

11.1. Smart charging & same prices
11.1.1. Objective and KPIs

Station

Departure

Driving Revenue € 2,859.30
Relocation Costs € 360.00
Energy Sold Revenue | € 33.08
Energy Bought Costs | € 616.68
Profit e 191570

Table 11.1: SC-SP objective values.

Station

Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[KWh] [KWh] (kW] (kW] [t] (kW] (kW] [t] (kW] (kW] [t] (kW] (kW] [t]
1 157.42 0.64 4.41 13.38  8:30:00PM| 2.12 2220  2:00:00PM| 6.56 23.26  3:00:00PM| 0.03 1.27  12:30:00 PM
2 178.30  18.04 0.93 6.65  8:30:00PM| 5.75 59.20  4:30:00AM| 7.43 60.33  4:30:00AM| 0.75 474 2:00:00 PM
3 446.34 0.00 5.66 13.42  8:30:00PM| 12.94 97.74  4:30:00AM| 18.60  100.00 4:00:00AM| 0.00 0.00  6:00:00 AM
4 172.32  63.98 -1.62 6.56  8:30:00PM| 6.14 50.07 5:30:00PM| 7.18 49.16  5:30:00PM| 267 12.49  2:00:00 PM
5 221.69 0.00 3.48 6.73  8:00:00PM| 5.75 66.00  3:00:00PM| 9.24 69.75  3:00:00PM| 0.00 0.00  6:30:00 AM
[ sum J1176.06 8266 |
[ Futfiled DrivingDemand [ 97.2% |
Table 11.2: SC-SP KPlIs.
11.1.2. Driving and Relocating
Arrival Station Arrival Station
1 2 3 4 5 1 2 3 4 5

1 0 8 12 13 18 51 1 0 0 27 0 0 27

2 14 0 0 28 10 52 5 s 2 0 0 0 14 2 16

3 19 0 0 47 16 82 §L £ 3 0 0 0 16 4 20

4 10 30 45 0 6 91 8 4 17 8 9 0 3 37

5 18 4 7 10 0 39 5 0 18 2 0 0 20

61 42 64 98 50 315 17 26 38 30 9 120

(a) SC-SP driving routes.

(b) SC-SP relocation routes.

Table 11.3: All driving and relocation routes in SC-SP.
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Figure 11.1: SC-SP number of cars per station throughout the day.
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Figure 11.2: Drives from all stations in SC-SP.
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Figure 11.3: Relocations from all stations in SC-SP.
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11.1.3. Power Profiles
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(b) Power profiles for Station 2.
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(d) Power profiles for Station 4.
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Figure 11.4: PLD, pPV pch pgrid and CT for all stations in SC-SP.

11.2. V2G & same prices
11.2.1. Objective and KPIs

Driving Revenue € 2,886.30
Relocation Costs € 363.00
Energy Sold Revenue | € 155.96
Energy Bought Costs | € 720.60
Profit e 1,958.66

Table 11.4: V2G-SP objective values.
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Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[kwh] [KWh] [kw] (kW] [t [kw] [kw] [t [kw] [kw] [t [kw] [kw] [t
1 161.97 162 4.41 13.38  8:30:00PM[ 2.27 2220 2:00:00PM| 6.75 23.26  3:00:00PM| 0.07 1.97  8:30:00 AM
s| 2 311.54  18.99 0.93 6.65 8:30:00PM| 1126  59.20 2:00:00AM| 12.98  61.33 2:00:00AM| 0.79 474 2:00:00 PM
= 3 541.89 9.1 5.66 1342 8:30:00PM| 16.54  98.98 5:30:00AM| 22.58  100.00 2:00:00AM| 0.38 9.45  7:00:00 PM
Hhl 4 189.12 23270 | -1.62 6.56  8:30:00PM| -0.19  -106.55 8:00:00PM| 7.88 57.46 5:30:00PM| 9.70  100.00  7:00:00 PM
5 236.89  10.15 3.48 6.73  8:00:00PM| 5.96 66.00  2:30:00PM| 9.87 69.75  3:00:00PM| 0.42 20.31  8:30:00 AM
[ sum [ 144142 27258 ]
[ Fulfited brivingDemand | 98.1% |
Table 11.5: V2G-SP KPlIs.
11.2.2. Driving and Relocating
Arrival Station Arrival Station
1 2 3 4 5 1 2 3 4 5
1 0 8 12 e 18 51 1 0 0 28 o 0 28
g c 2 14 0 0 28 10 52 g c 2 0 0 0 14 2 16
2s T £ g
g% 3 20 0 0 48 16 84 g% 3 0 0 0 16 4 20
o a4 10 30 46 0 6 92 ol a4 17 8 9 0 3 37
5 18 4 7 10 0 39 5 0 18 2 0 0 20
62 42 65 99 50 318 17 26 39 30 9 121

(a) V2G-SP driving routes.

Amount of cars

Table 11.6: All driving and relocation routes in V2G-SP.
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Figure 11.5: V2G-SP number of cars per station throughout the day.

(b) V2G-SP relocation routes.
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Figure 11.6: Drives from all stations in V2G-SP.
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Figure 11.7: Relocations from all stations in V2G-SP.
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11.2.3. Power Profiles
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Figure 11.8: PLD, pPV pEV pgrid gand ' for all stations in V2G-SP.

11.3. Smart charging & location-dependent prices

11.3.1. Objective and KPIs

Driving Revenue € 2,885.90
Relocation Costs € 414.00
Energy Sold Revenue | € 56.84
Energy Bought Costs | € 789.83
Profit e 1,738.91

Table 11.7: SC-LDP objective values.
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Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[kwh] [kwh] [kw] [kw] [t] [kw] kW] [t [kw] kW] [t] [kw] [kw] [t
1 153.48 0.64 4.41 13.38  8:30:00PM| 1.96 2220  3:00:00PM [ 6.39 23.26  3:00:00PM [ 0.03 1.27  12:30:00 PM
s 2 74.52 25.85 0.93 6.65  830:00PM| 1.10 34.15  4:30:00AM | 3.1 3528  4:30:00AM [ 1.08 474 2:00:00 PM
= 3 178.84 0.00 5.66 13.42  8:30:00PM| 1.79 30.98  4:30:00AM | 7.45 33.25  4:30:00AM [ 0.00 0.00  6:00:00 AM
& 4 20426  55.56 -1.62 6.56  8:30:00PM| 7.82 69.11  6:30:00PM | 8.51 72.55  6:30:00PM [ 2.32 1231 11:00:00 AM
5 597.38 0.00 3.48 6.73  8:00:00PM| 21.41 94.32  11:00:00AM| 24.89 97.45  11:00:00AM[ 0.00 0.00  6:30:00 AM
[ sum | 1208.48 8204 |
[ Fulfitled DrivingDemand [ 98.1% |
Table 11.8: SC-LDP KPIs.
11.3.2. Driving and Relocating
Arrival Station Arrival Station
1 2 3 4 5 1 2 3 4 5
1 0 8 1 18 50 1 0 T 1220 o 0 28
g 2 14 0 0 10 52 g c 2 0 0 0 14 4 18
£ 8 £ 2
g% 3 20 0 0 16 84 g% 3 0 0 0 16 10 26
2 4 10 30 46 6 92 e 4 16 7 9 0 5 37
5 18 4 8 0 40 5 0 20 9 0 0 29
62 42 65 50 318 16 28 45 30 19 138

(a) SC-LDP driving routes.

Figure 11.9: SC-LDP number of cars per station throughout the day.

Amount of cars

Table 11.9: All driving and relocation routes in SC-LDP.
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(b) SC-LDP relocation routes.
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Figure 11.10: Drives from all stations in SC-LDP.
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Figure 11.11: Relocations from all stations in SC-LDP.
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11.3.3. Power Profiles
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(c) Power profiles for Station 3.
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(b) Power profiles for Station 2.
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(d) Power profiles for Station 4.
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(e) Power profiles for Station 5.

Figure 11.12: PLD, pPV pch pgrid and CF for all stations in SC-LDP.

11.4. V2G & location-dependent prices

11.4.1. Objective and KPIs

Cost [€/KWh]

Driving Revenue € 2,379.70
Relocation Costs € 381.00
Energy Sold Revenue |€ 1,383.60
Energy Bought Costs | € 1,149.00
Profit e 2,233.30

Table 11.10: V2G-LDP objective values.
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Station

Departure

Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Peak Average Peak Peak Average Peak Peak Average Peak Peak
[kwh] [kwh] [kw] [kw] [t] [kw] kW] [t [kw] kW] [t] [kw] [kw] [t
1 152.23 1.56 4.41 13.38  8:30:00PM| 1.86 18.50  12:00:00PM| 6.34 17.23  12:00:00PM| 0.06 1.45  11:00:00 AM
2 21.86 84565 | 0.93 6.65 8:30:00PM| -35.26  -103.60 4:00:00AM | 0.91 11.80  4:00:00AM | 3524  98.33  9:00:01PM
3 11359  27.77 5.66 13.42  8:30:00PM| -2.08 4327  5:30:00AM [ 4.73 4430  5:30:00AM [ 1.16 13.17  7:00:00 AM
4 695.13  67.23 -1.62 6.56  8:30:00PM| 27.78  98.38  3:00:00AM | 28.96 = 100.00 7:30:00PM | 2.80 12.49  2:00:00 PM
5 1195.13  0.00 3.48 673 8:00:00PM| 46.31  98.87  4:30:00AM | 49.80  100.00 11:30:00PM| 0.00 0.00  6:30:00 AM
[ sum [ 217794 94221 |
[ Fulfitled DrivingDemand [ 80.2% |
Table 11.11: V2G-LDP KPIs.
11.4.2. Driving and Relocating
Arrival Station Arrival Station
2 3 4 5 1 2 3 4 5
1 0 8 1 9 18 46 1 0 ) 0 24
5 2 12 0 0 25 4 0 g < 2 1 0 0 12 5 18
= 3 15 0 o W 13 72 g5 3 0 0 0 12 9 21
@ 4 9 16 35 0 6 66 g o 4 14 13 0 1 43
5 18 4 6 7 0 35 5 0 9 12 0 0 21
54 28 52 85 41 260 16 31 41 24 15 127
(a) V2G-LDP driving routes. (b) V2G-LDP relocation routes.
Table 11.12: All driving and relocation routes in V2G-LDP.
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Figure 11.13: V2G-LDP number of cars per station throughout the day.
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Figure 11.14: Drives from all stations in V2G-LDP.
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Figure 11.15: Relocations from all stations in V2G-LDP.
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11.4.3. Power Profiles

Power [kW]

Power [kW]

20

15

= | 0ad Demand

50

40

30

20

10

-10

-20

-30

e | 0ad Demand

10 7120 14 16 18 20 22 24

Time [h]

(a) Power profiles for Station 1.

Time [h]

(c) Power profiles for Station 3.

120
100
80
60

40

Power [kW]

20

0

-20

e oad Demand

2

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Cost [€/kWh]

PV Generation e Pey e Pgli( e e e Cp

Cost [€ / kWh]

PV Generation e Pey e Pgri( e e Cp

20

-20

-40

-60

Power [kW]

-80

-100

-120

e | 0ad Demand

120

100

)
=3

Power [kW]
]

-20

e | 0ad Demand

(e) Power profiles for Station 5.

14 16 18 20 22 24

Time [h]

f
I
]
|
|
'
\
.
- e
&
Cost [€/KWh]

o
o

Time [h]

PV Generation e Pey e Pgri( = == Cp

(b) Power profiles for Station 2.

Cost [€/kWh]

6 18 20 22

Time [h]

PV Generation e Pey e Pgrid e e Cp

(d) Power profiles for Station 4.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Cost[€/kWh]

PV Generation e Pey e Pgrid e e Cp

Figure 11.16: PLD, pPV pEV pgrid gnd C' for all stations in V2G-LDP.
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Simulation Plots Case Study: Summer +
Peak Reduction

12.1. V2G & same prices

12.1.1. Objective and KPIs

Driving Revenue € 2,861.70
Relocation Costs € 363.00
Energy Sold Revenue € 84.64
Energy Bought Costs € 611.28
Peak Exceedance Penalty | € 22.03

| Profit le 1,950.03]

Table 12.1: V2G-SP objective values.

Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[kwh] [kwh] (kW] [kw] [t [kw] [kw] [t] (kW] (kW] [t [kw] [kwW] [t
1 146.47 0.64 4.41 13.38  8:30:00PM| 1.66 15.10  2:00:00PM | 6.10 13.38  2:00:00PM [ 0.03 1.27  12:30:00 PM
S 2 27164  20.18 0.93 6.65  8:30:00PM| 9.55 3364  5:30:00AM | 11.32 34.15 12:00:01AM| 0.84 15.55  8:30:00 PM
2 3 429.78 1.53 5.66 13.42  8:30:00PM| 15.64 59.78  5:30:00AM [ 17.91 60.29  12:00:01AM| 0.06 0.86  2:00:00 PM
& 4 165.34 13270 | -1.62 6.56  8:30:00PM| 298  -106.55 8:00:00PM | 6.89 20.58  1:00:00PM | 5.53 100.00  8:00:00 PM
5 187.68 0.00 3.48 6.73  8:00:00PM| 4.34 27.59  12:00:00PM| 7.82 30.45  11:00:00AM| 0.00 0.00  6:30:00 AM
[ sum [ 1200.90 155.04 |
[ Fulfitled Driving Demand | 97.2%
Table 12.2: V2G-SP KPlIs.
12.1.2. Driving and Relocating
Arrival Station Arrival Station
1 2 3 4 5 1 2 3 4 5
1 0 8 11 13 18 50 1 0 1 27 0 0 28
g c 2 14 0 0 28 10 52 g c 2 1 0 0 11 2 14
£ 8 £ 8

s B 3 20 0 0 48 16 84 s 5 3 0 0 0 17 4 21

8 4 10 28 46 0 6 920 8 4 15 8 10 0 4 37

5 18 4 7 10 0 39 5 0 17 4 0 0 21

62 40 64 99 50 315 16 26 41 28 10 121

(a) V2G-SP driving routes.

Table 12.3: All driving and relocation routes in V2G-SP.
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(b) V2G-SP relocation routes.
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Figure 12.1: V2G-SP number of cars per station throughout the day.
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(c) Drives from Station 3.
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(d) Drives from Station 4.
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(e) Drives from Station 5.

Figure 12.2: Drives from all stations in V2G-SP.
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Amount of cars
IS

Amount of cars
P

Time [h] Time [h]

mToStation2 mToStation3 mToStation4 mTo Station5 mToStation1 mToStation3 mToStation4 mTo Station 5

(a) Relocations from Station 1. (b) Relocations from Station 2.
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(c) Relocations from Station 3. (d) Relocations from Station 4.

Amount of cars

P

16
18
20 22

Time [h]

mToStation1 mToStation2 mToStation3 mTo Station4
(e) Relocations from Station 5.

Figure 12.3: Relocations from all stations in V2G-SP.
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12.1.3. Power Profiles
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Figure 12.4: PLD, pPV pEV pgrid gand C'F for all stations in V2G-SP.
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Simulation Plots Case Study: Winter

13.1. V2G & same prices
13.1.1. Objective and KPIs

Station

Departure

Driving Revenue € 2,830.40
Relocation Costs € 348.00
Energy Sold Revenue | € 287.75
Energy Bought Costs | € 773.17
Profit e 1,996.98

Table 13.1: V2G-SP objective values.

Total Energy Station Net Demand Charging Power Buying Power Selling Power
Bought Sold Average Peak Time Average Peak Time Average Peak Time Average Peak Time
[KWh] [kWh] [kw] [kw] [t] [kwW] [kwW] t] [kw] [kw] [t] [kwW] [kw] [t
1 177.70 3.35 7.78 17.46  8:30:00PM| -0.51 -11.10  8:30:00AM |  7.40 17.46  8:30:00PM | 0.14 6.71  8:30:00AM
2 47410 12,50 3.25 871  830:00PM| 15.98 59.20  12:00:01AM| 19.75 64.40  12:00:01AM| 0.52 14.73  6:00:00 PM
3 786.74  62.70 3.89 8.73  8:30:00PM| 26.28 99.07  5:00:00AM | 32.78  100.00 11:30:00PM| 2.61 51.38  6:00:00 PM
4 179.36  230.35 1.98 8.67 830:00PM| -4.10  -108.18 7:30:00PM | 7.47 33.08  11:00:00PM| 9.60 100.00  6:30:00 PM
5 97.95 26.07 4.53 8.75  8:00:00PM| -1.53 -55.00  8:30:00AM | 4.08 8.75  8:00:00PM | 1.09 52.13  8:30:00 AM
[ sum [1715.85 334.97 |
[ Futfited DrivingDemand [ 96.3% |
Table 13.2: V2G-SP KPls.
13.1.2. Driving and Relocating
Arrival Station Arrival Station
1 2 3 4 5 1 2 3 4 5
1 0 7 11 13 18 49 1 0 2 26 0 0 28
s 2 14 0 0 26 10 50 g s 2 0 0 0 14 2 16
= 3 20 0 0 47 16 83 § = 3 0 0 0 16 3 19
@ 4 10 30 46 0 6 92 8 4 15 8 7 0 3 33
5 18 3 8 9 0 38 5 0 16 4 0 0 20
62 40 65 95 50 312 15 26 37 30 8 116

(a) V2G-SP driving routes.

(b) V2G-SP relocation routes.

Table 13.3: All driving and relocation routes in V2G-SP.
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Figure 13.1: V2G-SP number of cars per station throughout the day.
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(c) Drives from Station 3.
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(d) Drives from Station 4.
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(e) Drives from Station 5.

Figure 13.2: Drives from all stations in V2G-SP.
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(a) Relocations from Station 1. (b) Relocations from Station 2.
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Figure 13.3: Relocations from all stations in V2G-SP.
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13.1.3. Power Profiles
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(c) Power profiles for Station 3.
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Figure 13.4: PLD, pPV pch pgrid and CF for all stations in V2G-SP.
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