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Summary

With the rapid rise of micromobility vehicles such as e-bikes and e-scooters, concerns about the safety
of shared cycling spaces have increased significantly. These vehicles, owing to their higher speeds
and motorized assistance, are now more frequently sharing infrastructure with conventional bicycles,
which introduces new challenges for road safety. As e-bikes and e-scooters typically operate at higher
speeds than traditional bicycles, the likelihood of accidents rises, especially during interactions between
different types of micromobility and conventional bikes. These interactions are complex, especially
in scenarios involving overtaking, where riders must adjust their behavior to safely navigate shared
spaces. This study aims to provide a detailed examination on the behavior of e-scooter and e-bike
riders during overtaking maneuvers. By analyzing such interactions, this research offers insights that
are critical for informing future traffic management strategies, enhancing safety measures, and guiding
infrastructure development.

The research methodology involved a controlled experiment in which detailed data were collected on
the behavior of micromobility riders during overtaking scenarios. Cameras were strategically placed
to track the trajectories of the vehicles, while inertial measurement units (IMUs) were used to capture
roll rate and roll angle. After the data collection, significant processing was undertaken to ensure the
accuracy and reliability of the dataset. The raw trajectories obtained from each camera were corrected
to eliminate detection errors, and multiple cameras were timely synchronized. Following the correction
of trajectories, the data from various cameras weremerged to form a unified set of trajectory information.
Additionally, the IMU data were synchronized with the trajectory data to ensure that roll-related metrics
such as roll angle and roll rate were precisely aligned with the positional information of the vehicles.
This comprehensive dataset enabled a detailed analysis of rider behavior, particularly in relation to the
overtaking phase.

The analysis yielded several important findings. One of the key observations was that when e-bikes
overtook e-scooters, the riders typically initiated the maneuver from a greater distance than e-bike over-
taking e-bike, while maintaining smaller lateral distances during the overtaking process. Conversely,
when e-bikes overtook other e-bikes, the overtaking maneuver was initiated from a shorter distance,
but the lateral distances were larger, suggesting that riders were more cautious when overtaking the
same type of vehicle. Speed dynamics also played a crucial role in the overtaking behavior, with lat-
eral position differences showing a stronger correlation with speed difference than longitudinal position
differences. Moreover, the study found that the highest roll rates and roll angles occurred during the
overtaking phase, which was particularly evident in scenarios where e-bikes were overtaking e-scooters.
However, prior to the overtaking phase, higher roll rates and roll angles were observed in cases where
e-bikes overtook other e-bikes, indicating greater control adjustments were made in anticipation of
overtaking vehicles of the same type.

Gender differences were not evident in overtaking.But in non-interactive scenario, particularly in the
case of e-scooter riders. Male e-scooter riders were found to travel at significantly higher speeds than
their female counterparts. In contrast, no significant gender-based differences were observed among
e-bike riders.

Overall, the results of this study provide valuable insights into the complex interactions between dif-
ferent types of micromobility vehicles during overtaking maneuvers. By highlighting the influence of
vehicle type and gender, the findings underscore the need for targeted safety interventions and infras-
tructure improvements that can mitigate the risks associated with shared cycling spaces. By analyzing
overtaking behavior in such detail, this study not only enhances our understanding of micromobility in-
teractions but also provides actionable insights that can be used to design safer, more efficient cycling
infrastructures, ensuring that both micromobility users and conventional cyclists can coexist in urban
spaces with minimal risk.

Keywords: overtaking; micromobility rider; e-bike; e-scooter; video data; roll angle; roll rate
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1
Introduction

Firstly, the Section1.1 provides an overview and introduction to the study’s background information. The
global expansion of e-scooters and e-bikes has been accompanied by a significant rise in the number of
incidents and more severe injury risks and outcomes for both riders in comparison to traditional bicycles.
The e-bikes and e-scooters are distinct from bicycles, which may contribute to a greater number and
severity of accidents. In a vast majority of countries today, they are required to share space with
bicycles in bike lanes and are subject to nearly identical regulations. The safety of all users on bike
paths is reliant upon an investigation and understanding of the microscopic behavior of e-bike and e-
scooter riders when interacting between them and conventional bicycles. Then, Section1.2 specifies
the research focus of this study, which is overtaking, and explains the decision. Section1.3 gives the
research objective and questions of this thesis.Section1.4 shows an outline of this thesis report.

1.1. Background
Travel patterns and lifestyles in cities around the world have been undergoing significant transforma-
tions recently, primarily due to the explosive growth of various modes of transportation collectively
termed micro-mobility. These vehicles, which facilitate personal mobility and augment the capabilities
of pedestrians, encompass a broad spectrum of designs and functionalities, ranging from lightweight
rollers and skis to more substantial options like two-wheeled self-balancing personal transporters[1].
Notably, both motorized and non-motorized varieties of these vehicles exist, offering flexible choices
for individual users, whether owned privately or accessed through shared services.

Among the most popular types of micro-mobility vehicles are e-scooters and e-bikes. Their popularity
has surged remarkably over the last few years. This surge can be attributed to several factors: the
decreasing costs of purchasing these vehicles, improvements in the efficiency of their motors, and in-
novations leading to more lightweight and manageable designs. Furthermore, there is an increasing
global emphasis on sustainability, which has propelled the adoption of these environmentally friendly
transportation alternatives[2]. The integration of these vehicles into urban transport ecosystems repre-
sents a pivotal shift towards more sustainable urban mobility, promoting reduced reliance on traditional
fuel-based vehicles and encouraging a more active, health-conscious urban populace. These trends
are reshaping urban environments, making them more navigable and less congested, thus significantly
enhancing the quality of urban life.

The notable rise in the number of micro-mobility vehicles, particularly e-bikes and scooters, is evidenced
by the significant increases in both private ownership and participation in shared mobility programs.
This trend also manifests in the broader metrics of transportation such as the increase in the total
distance traveled and the number of trips undertaken by users. Specifically, the market for e-bikes
has seen an exponential growth in recent years. For instance, electric bicycle sales in the European
Union surged to approximately 5.3 million units in 2022, a stark contrast to the 854,000 units recorded
in 2012[3]. This surge is not uniformly distributed across Europe; Germany stands out as a particularly
strong market, with over 2.2 million e-bikes sold in 2022 alone[4], making it the largest e-bike market

1



1.1. Background 2

in Europe for that year. Moreover, the expansion of e-scooter services further illustrates the growing
appeal of micromobility. VOI, a leading e-scooter service provider that started its operations in Sweden
in 2018, exemplifies this growth. Within just a year, VOI expanded its operations to 10 countries. By
2020, they recorded nearly 16 million rides[5], highlighting not only the rapid adoption of e-scooters as a
viablemode of urban transport but also reflecting a broader shift in urbanmobility preferences. This shift
suggests a significant change in how people choose to navigate city environments, increasingly favoring
smaller, more efficient forms of transportation that align with growing environmental consciousness and
urban planning aimed at reducing traffic congestion and pollution.

With the significant rise in both the number and use of e-bikes, there has been a corresponding increase
in traffic accidents involving these vehicles. For instance, in Germany, which boasts the largest e-bike
market in the European Union, there has been a notable increase in traffic crash injuries among e-
bike riders. Statistics from 2019 to 2022 show a worrying trend: in 2022, approximately 22,500 e-bike
riders were injured in traffic crashes, a sharp rise from 10,505 in 2019[6]. Research indicates that
the frequency and severity of accidents involving e-bikes are considerably higher than those involving
traditional bicycles. A study from Denmark highlights that e-bike users are more likely to experience
an accident compared to traditional bicycle riders[7]. Additionally, it has been found that e-bike users
suffer more frequent thoracic trauma and soft-tissue injuries than those riding conventional bicycles[8].
The heightened risk associated with e-bikes can be attributed to several factors. E-bikes typically
achieve higher speeds due to their motorized assistance, often reaching the maximum allowable speed
of 25 km/h under EU standards, which is considerably faster than the average speed of conventional
bicycles[9]. Studies indicate that on average, e-bikes are ridden 2–9 km/h faster than regular bicycles,
whether on urban roads, rural areas, or dedicated bike paths[9, 10, 11]. This increased speed reduces
the rider’s response time, making it more challenging to react promptly to prevent accidents or lessen
their severity[12].

Moreover, the similarity in appearance between traditional bicycles and e-bikes can create difficulties in
distinguishing between them from a distance, potentially leading to misunderstandings and accidents
on the road[13]. The added weight of the battery, which enhances pedal force, also contributes to
the increased mass of e-bikes compared to traditional bicycles. This additional mass not only impacts
the handling and dynamics of e-bikes but also increases the likelihood of more severe injuries during
accidents[13].

Similarly to e-bikes, e-scooters have also seen a surge in popularity, which has been accompanied
by an increase in accident rates. However, the data on e-scooter crashes is less comprehensive,
as many city agencies do not specifically categorize e-scooter crashes[14]. In Germany, where e-
scooter accidents have been recorded separately from other motorized two-wheelers since 2021, there
has been a notable increase in the number of injuries. In 2022, approximately 7,400 e-scooter riders
were injured in traffic crashes, a significant rise from the 4,800 incidents reported in 2021[6]. The
outcomes and nature of injuries from e-scooter accidents have been the subject of various studies, often
using data from hospitals and emergency centers. These studies have yielded mixed results regarding
the severity and types of injuries compared to those sustained in bicycle accidents. For example,
one study found that e-scooter accident victims had injury profiles similar to those of cyclists but with
a higher incidence of severe traumatic brain injuries[15]. Conversely, another study highlighted that
injured bicycle riders were more likely to require immediate medical care compared to their e-scooter
counterparts (7% vs 1%)[16].

Research indicates that both e-scooters and e-bikes typically reach higher peak speeds than traditional
bicycles, necessitating quicker reactions when interacting with other road users[17, 18]. E-scooters, in
particular, face additional challenges due to their smaller wheels and stand-up riding posture, which
can lead to more severe vibrations on uneven road surfaces. This, coupled with their rapid acceleration,
can complicate speed management for riders. Consequently, e-scooters are often more prone to acci-
dents than bicycles, especially in environments where they must navigate close to other vehicles and
stationary objects[19]. This heightened risk underscores the need for more targeted safety regulations
and better infrastructure to accommodate the growing number of e-scooter users in urban areas.

The motorized features of e-bikes and e-scooters place them in a unique position within urban traffic
dynamics. On one hand, their motorized features, such as better acceleration capability and higher
top speeds than traditional bicycles, make them vulnerable to serious injuries in accidents. On the
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other hand, these same features pose a risk to other vulnerable road users, including pedestrians and
traditional cyclists, due to the potential for causing collisions.

Despite the distinct differences in speed, power assistance, and weight between traditional bikes, e-
bikes, and e-scooters, the regulatory framework often treats e-bikes and e-scooters similarly to con-
ventional bicycles. For example, in many European countries, both e-bikes and e-scooters are legally
required to use bike lanes or paths, just like traditional bicycles[20, 21, 22]. However, these paths were
originally designed for non-motorized bicycles, and the presence of faster, motorized vehicles like e-
scooters and e-bikes can lead to increased disturbances and safety risks for all users[14, 23]. The
safety of these pathways, and by extension, the safety of all road users on these pathways, hinges on
the individual behaviors of e-bike and e-scooter riders, particularly during their interactions with each
other and with traditional cyclists. This behavior operates on two levels: operational mental layer and
operational physical layer. The mental layer involves decisions about path choice, while the physical
layer involves the actual controls exercised by the rider, such as steering, pedaling, and in the case of
motorized vehicles, managing acceleration[24, 25]. Unique to e-bikes and e-scooters are the motor-
ized controls, such as the acceleration grip, which necessitate different handling techniques compared
to traditional bicycles. Furthermore, body gestures play a crucial role in maintaining control and sta-
bility while riding. Research focusing on the riding behavior of e-scooter users has highlighted body
gestures as a critical element of safe vehicle operation[26]. Stability, therefore, is not just about main-
taining physical balance but also involves a range of corrective actions including steering adjustments
and body positioning, crucial for avoiding accidents and ensuring the safety of all road users[27, 28,
26].

To ensure the effective integration of e-bikes and e-scooters into urban environments, understanding
and adapting to the behavioral nuances of micro-mobility users, especially on shared paths, is crucial.
By addressing these behavioral patterns, there is a potential to significantly reduce the incidence of
accidents and enhance safety for all road users. This approach necessitates the incorporation of such
insights into safety regulations and urban infrastructure planning. Effective management and design of
urban spaces must account for the growing prevalence of e-bikes and e-scooters to create a safe and
inclusive environment for all forms of mobility.

1.2. Focus on overtaking
The specific focus of this study would be the overtaking maneuver of micro-mobility users. The focus
stems from several critical considerations. Firstly, unlikemotor vehicles, micro-mobility vehicles such as
e-bikes and e-scooters have lower visibility in vehicle-following scenarios, making overtaking a pivotal
aspect of their interaction within mixed traffic flows[29]. This behavior is not only frequent but also a
significant safety concern, as overtaking maneuvers often lead to conflicts that can disrupt the regular
movement of both the overtaking vehicle and others in the vicinity. Such incidents directly compromise
the safety of traffic movements in bike lanes, making them a primary focus of safety assessments in
practical engineering applications[30]. Moreover, with the widespread adoption of these vehicles, the
risk of collisions during overtaking maneuvers is increasingly prevalent in lanes designated for non-
motorized vehicles[31].

Investigating the microscopic behavior of these users during overtaking is essential for several reasons.
It aids in determining the appropriate width of bicycle tracks and influences the estimation of bicycle
level of service (BLOS). Moreover, it supports the development of micro-simulation models. These
models are invaluable tools for enhancing the planning of bicycle tracks, improving traffic modeling,
and conducting thorough safety assessments. Additionally, they contribute to broader objectives such
as energy conservation, public health enhancement, and informed policy-making[14].

1.3. Research objective and questions
Thus, this thesis aims to investigate the individual behavior of micromobility users (including e-bike and
e-scooter users) during their interaction with regular bikes, and within themselves. Particularly, this
thesis focuses on looking into the impact of types/modes ridden by participants (e-bike, e-scooter), the
modes they overtake (bike, e-bike, e-scooter), and individual factors on the individual behavior during
the interaction of overtaking. So the main question is formulated as follows:
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”How do different combinations of ridden types of micro-mobility vehicles and overtaken types
of micro-mobility vehicles and individual characteristics of the rider affect individual behavior
during overtaking?”.

The sub-questions are designed to dissect how rider characteristics and micromobility types influence
overtaking behavior, particularly focusing on the strategic decisions made by the rider. These decisions
include selecting the overtaking path, adjusting speed, and determining the extent of body gestures.
However, these decision-making processes are not directly observable. Instead, they manifest as
physical control actions taken by the rider after the decision is made. The outcomes of these control
actions can be observed and reflected in various traffic data and information.

Therefore, the core of this research involves collecting and analyzing traffic information to investigate
how various factors influence these observable parameters. By extension, this approach allows us to
infer the impact of these factors on riders’ decision-making processes.

Then the following 4 sub-questions are formulated:

1. What data and information need to be collected to analyze overtaking behavior between
micromobility vehicles?

2. What are the appropriate data collection methods and equipment for analyzing overtaking
behavior?

3. Based on the collected data, what is the conceptual model of overtaking behavior that
includes influencing factors, decision-making, and control actions?

4. What is the influence of different combinations of micromobility vehicles and rider charac-
teristics on decision-making and control actions in the conceptual model?

The first sub-question will be addressed through a literature review to identify the types of data needed
to analyze micromobility overtaking behaviors. The second sub-question will also be informed by a
literature review, drawing on previous studies’ experience, as well as adapting the methods to the
specific practical conditions of this study. The third sub-question will involve developing a conceptual
model that integrates the identified influencing factors, decision-making, and control actions.The fourth
sub-question will be addressed by using common statistical analysis techniques to examine the rela-
tionships outlined in the conceptual framework.

1.4. Outline
• Chapter1 introduces the background of the research, the focus of the study, the research objec-
tives and questions, and the outline of the report.

• Chapter2 conducts the literature review to find answers for the subquestions 1 and 2 constructs
a conceputal framework (subquestion 3) based on the literature review.

• Chapter3 explains the data collection methodology adopted in the research, including the data
requirement and the methodology to collect the data.

• Chapter4 describes the data processing methodology and the data analysis methodology, which
are used to process and analyse the data collected.

• Chapter5 explains the detailed implementation of the data collection methodology of Chapter3.
• Chapter6 explains the detailed implementation of the data processing methodology of Chapter4.
• Chapter7 implemented the data analysis methodology and presents the findings.
• Chapter8 presents the conclusion of the research and reflects to limitations.



2
Literature review

The literature review serves two primary objectives within the context of this research. As this study
aims to investigate the effect of individual factors and microbility types on the behavior of riders during
overtaking, First the literature review summarized the current research, in order to understand what
kind of individual factors would have any effect on their behavior, and during this process, some other
influences were found which were summarized in section2.1. Then based on these factors, section2.2
built a rough conceptual model to help us understand what data needed to be collected. Then, this
literature answers the first two sub-questions. Through the literature, we can identify the types of
information and data that can be effectively collected to study overtaking behavior in micromobility
scenarios and explore various methodologies and techniques for collecting these data and information.
These two sections are corresponding in section2.3 and section2.4.

After deciding on the information and data needed, and taking into account the main research ques-
tions of this study, section2.5 developed a complete conceptual model representing the relationships
between factors and microvariables. These possible relationships need to be analyzed using statistical
methods, and section2.6 summarizes the methods of analysis.

For this literature review, a systematic approach to identifying relevant sources was employed. The
primary search engines utilized were Scopus and Google Scholar, chosen for their comprehensive
coverage of academic publications across various disciplines. The search strategy primarily relied on a
keyword-based method. Key search terms included ”micromobility,” ”e-bike,” ”e-scooter,” ”overtaking,”
”interaction,” and ”behavior.” These terms were used both individually and in combination to ensure
a thorough exploration of the research landscape. In addition to the keyword search, a snowballing
technique was implemented. This involved examining the reference lists of particularly relevant articles
identified through the initial search. This method, also known as citation chaining or reference mining,
allowed for the discovery of additional pertinent studies that may not have been captured by the keyword
search alone.

2.1. Factoring influencing riding behavior
First, section 2.1.1 and section 2.1.2 summarize the two main factors of greatest interest in this study:
one is the individual factor, and the other is the current state of research on micromobility type.

2.1.1. Micro-mobility type
Studies have assessed the safety, stability, maneuverability, and comfort of micromobility vehicles. A
study revealed that although e-bikes and e-scooters offer superior rider comfort and stability, e-scooters
tend to fall short in terms of safety due to inadequate braking performance [27]. Additionally, when com-
pared to bicycles, both e-scooters and other similar micro-mobility devices like Segways also demon-
strate inferior braking capabilities, where bicycles are considered to be more stable and safer [32].

Regarding speed, e-bikes and e-scooters generally achieve higher maximum and average speeds
than traditional bikes, particularly in conditions that allow the right of way or involve inclines. This
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capability enhances their overtaking potential but also increases the risks associated with high-speed
travel. Studies in different urban settings have shown that while e-scooters often match or slightly
exceed the average travel speeds of bicycles, their ability to accelerate more quickly necessitates
shorter response times to avoid hazards [33, 9, 18, 34, 35].

Moreover, e-bikes tend to have more conflicts with motorized vehicles than conventional bikes due
to their higher speeds and different interaction dynamics with other road users. The design, weight,
and acceleration capabilities of e-bikes and e-scooters not only influence their overtaking behavior but
also impact how pedestrians and other cyclists perceive and react to these vehicles. For instance, e-
bike riders are more likely to undertake overtaking maneuvers, followed by riders of human-powered
tricycles and traditional bicycles [12, 31].

Overview:
Overall, the literature supports that different micromobility types significantly impact rider behavior, par-
ticularly regarding safety, stability, and speed. Specifically, studies such as [27, 32] support the idea
that while e-bikes and e-scooters are generally more stable, they exhibit poorer braking performance
compared to bicycles. Additionally, six studies [33, 9, 18, 34, 35, 12] confirm that higher speeds, espe-
cially for e-bikes and e-scooters, enhance overtaking potential but also increase risks.

2.1.2. Demographic and experience
Various demographic factors, such as gender, age, and riding experience, influence the riding behavior
of cyclists beyond just safety and violations. Gender, for instance, plays a significant role in shaping cy-
clists’ behavior, with male riders exhibiting not only on increased violation rates but also higher speeds,
more aggressive maneuvers compared to their female counterparts [33, 36, 31]. Men also tend to
overtake more frequently, which impacts interactions with other cyclists and motorized vehicles.

Age is another important factor; younger riders are more likely to overtake frequently and ride at higher
speeds. In contrast, older riders, particularly those over 60, tend to be more cautious due to balance
issues and reduced physical agility, which is especially evident when handling heavier e-bikes [36, 37].
This age-related caution affects their overtaking frequency and distance maintained during overtaking.

Riding experience also has a notable impact. While one study found that cyclists with longer riding
experience exhibit fewer violations [36], another study observed that frequent e-scooter users are more
likely to develop risky behaviors [38]. Experienced riders tend to have better control over their vehicles,
making them more comfortable in overtaking scenarios, whereas less experienced riders may be more
hesitant and conservative in their behavior.

Overview:
The literature consistently highlights the influence of demographic factors on riding behavior, beyond
safety and violations. Three studies [33, 36, 31] support that male riders engage in more aggressive
behaviors compared to females. Two studies [36, 37] agree that younger riders are more prone to
frequent overtaking, while older riders are more cautious. However, there are contrasting findings re-
garding riding experience—[36] suggests that more experience reduces violations, while [38] indicates
that experienced e-scooter users might develop risky behaviors.

The following section summarizes other factors that were found during the literature search.

2.1.3. Infrastructure factors
Several studies consistently indicate that lane width affects the likelihood of overtaking maneuvers and
meeting clearance. Wider lanes facilitate overtaking, while narrower lanes reduce lateral space and
lead to more cautious riding behavior [31, 39].

The influence of obstacles and boundaries on cyclist behavior consistently shows that the presence
of obstacles leads to more cautious riding behaviors.For example, obstacles positioned along the lane
edges prompt cyclists to maintain lower clearances from these obstacles [14, 39]. Additionally, obsta-
cles at handlebar height specifically have been found to increase braking behaviors, as riders become
more cautious to avoid potential balance issues [39]. Thus, while different studies emphasize different
cautious behaviors—either reducing clearance or increasing braking—the general trend remains that
obstacles cause more cautious maneuvering.
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Meeting and overtaking maneuvers are among the most common interactions on bicycle lanes. Many
current studies, such as study [14, 39], choose to focus on the impact of bicycle lane characteristics on
meeting maneuvers, as they are easier to collect during natural data collection compared to overtaking
maneuvers. However, considering that both meeting and overtaking maneuvers require riders to pass
side-by-side on the lateral horizontal plane, the factors that influence meeting behavior, such as lane
width, boundary conditions, and obstacles, are likely to also impact overtaking behavior. Consequently,
this study hypothesizes that lane width, topology, and boundaries will have a significant effect on riders’
overtaking behavior, just as they do on meeting behavior.

Overview:
The influence of infrastructure on riding behavior is well-documented, especially regarding lane width
and the presence of obstacles. Two studies [31, 39] support that wider lanes facilitate overtaking
by increasing available lateral space, while obstacles along the lane edges prompt riders to reduce
clearance and ride more cautiously. Studies [14, 39] agree that obstacles, particularly at handlebar
height, significantly reduce clearance and lead to increased braking behaviors.

2.1.4. Traffic conditions
Lin et al. [40] provided insights into how traffic density affects overtaking dynamics on shared lanes. In
scenarios of low traffic density, overtaking maneuvers such as moped-passing-bicycle are observed to
be more stable and less likely to encounter disturbances, allowing vehicles to return smoothly to their
original lanes post-overtaking. Conversely, in conditions of high traffic density, overtaking becomes
more complex and often results in incomplete maneuvers, where vehicles fail to return to their lanes
promptly. This variation in traffic dynamics can lead to increased interactions and potential conflicts
among road users.

Speed plays a critical role in influencing the interactions of cyclists with other transportation modes and
is a significant contributor to traffic accidents. Studies have consistently shown that traveling greater
distances at higher speeds increases the likelihood of encountering dangerous situations, with cyclists
traveling at speeds above 25km/h facing a significantly higher risk of accidents compared to those
traveling at 15-25km/h [12, 41]. This heightened risk is not limited to potential accidents but extends to
actual crash occurrences and the severity of resulting injuries.E-scooter riders, for example, are about
twice as likely to sustain severe injuries on roads where travel speeds are typically higher, compared
to injuries sustained in more controlled environments like bike lanes or sidewalks [42]. This trend
is echoed in studies of bicycle safety, where high speed is a frequent contributor to single-bicycle
crashes, significantly impairing the cyclist’s ability to effectively respond to unexpected obstacles or
sudden environmental changes [43]. Moreover, the speed of the bicycle being overtaken also plays
a crucial roles in the dynamics of overtaking maneuvers on dedicated bike lanes, with higher speeds
complicating these maneuvers and increasing the risk of close passes or collisions [29]. Collectively,
these studies underscore the importance of managing cyclist speeds to enhance safety.

Overview:
The role of traffic conditions in overtaking behavior is consistently addressed in the literature. The study
by [40] indicates that low traffic density contributes to more stable overtaking, while high traffic density
complicates overtaking dynamics, increasing risks of incomplete maneuvers. Additionally, multiple
studies [12, 41, 43, 42] emphasize that higher speeds, which are often influenced by traffic conditions,
correlate with a higher risk of accidents and conflicts.

2.2. Overview and Rough Conceptual Model
Before discussing the required data and information, it is important to provide a comprehensive overview
of the influencing factors previously discussed, leading to the formation of a conceptual model.

The core of this conceptual framework in Figure2.1 revolves around a cyclical interaction between the
decision-making(mental) layer and the action (physical) layer. This cycle captures the dynamic nature
of the overtaking process for micromobility users.

1. Decision-Making Layer: Riders first make decisions at a mental level, where they assess the need
for speed adjustments, path selection, and body action adjustment to ensure a safe overtaking
maneuver.
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Figure 2.1: conceptual framework

2. Control Actions: These decisions are then executed physically through actions at the physical
layer. These include actions like steering adjustments, acceleration, or even posture shifts, which
directly affect the micromobility rider’s position and movement in space.

3. Micro-Level Variables as Feedback: The result of these control actions is reflected in observable
micro-level variables such as speed difference, lateral and longitudinal position differences, roll
rate, and roll angle. These variables provide feedback on the success or necessity of further
adjustments to the initial decisions.

4. Feedback to Decision-Making: This feedback loop enables the decision-making layer to con-
stantly refine its strategies. The micro-level variables reflect the real-time state of the system,
allowing for adjustments to be made, further feeding into control actions in a continuous loop.

In thismodel, the decision-making process informs actions, which are in turn reflected bymicro-variables.
These micro-variables provide feedback, creating a continuous cycle that ensures optimal and safe
overtaking behavior. This cyclical interaction is fundamental to understanding how micromobility users
navigate shared spaces during overtaking maneuvers.

To operationalize this model, it is crucial to identify the specific data and information(the micro-variables)
that can effectively reflect the outcomes of physical actions and, by extension, the riders’ decisions. To
address this need, the following section synthesizes the micro-variables employed in existing research
on bicycle overtaking behavior. This comprehensive review of current literature aims to elucidate the
key parameters that have proven effective in capturing the nuances of overtaking decisions and actions
in micromobility scenarios.

2.3. Required data and information
Previous studies on bicycle overtaking behavior have primarily focused on collecting and analyzing
trajectory data, which includes the position information of each bicycle in time and space. Utilizing this
fundamental trajectory information, researchers have further calculated more complex measurement
indicators such as speed, lateral distance, longitudinal distance and speed difference to gain deeper
insights into the behavioral patterns in environments like dedicated bicycle lanes [29, 40, 44, 45].

In addition to trajectory data, some studies employed roll rate and roll angle to compare the stability
of different vehicle types in relatively simple task scenarios. The studies compared the absolute mean
values of these parameters and the relationship between roll rate and steer rate[27, 28]. Another study
Kovacsova et al. [46] utilized these indicators to compare the differences between elderly and young
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Figure 2.2: Reference system for the vehicles and directions names

riders. Roll angle refers to the rotational angle of an object along its longitudinal axis, as illustrated in
the figure2.2 taken from Violin [28].

All of the aforementioned indicators are directly relevant to understanding micromobility overtaking be-
havior, particularly within the context of the decision-making(mental) layer and control action (physical)
layer. The decision-making layer involves assessing and determining optimal speed, path selection,
and maneuvering strategies to ensure a safe and effective overtaking process. Indicators like speed,
speed difference, longitudinal distance, and lateral distance provide critical insights into these mental-
level decisions. For instance, overtaking length and longitudinal distance are crucial for understanding
path selection, while speed and speed difference reflect the strategies used for adjusting speed—key
aspects of decision-making to ensure a safe overtaking maneuver. Lateral distance indicates the rider’s
avoidance behavior, reflecting safety considerations and decisions regarding adequate clearance from
the overtaken vehicle. Roll rate and roll angle are also connected to the mental layer, as they reflect
the rider’s decisions regarding the extent of body posture adjustments.

Together, these indicators provide a comprehensive understanding of the interaction between the decision-
making and control action layers. They demonstrate how decisions at the mental level are translated
into physical actions and how these actions influence the dynamics of overtaking. This interaction is
crucial for understanding the feedback loop between decision-making and physical control, which is at
the core of the conceptual model for micromobility overtaking behavior

2.4. Data collection approaches
2.4.1. General data collection approaches
Recent advances in data collection methodologies have significantly enhanced the study of micromo-
bility user behavior. The approaches used can be broadly categorized into real-world observations and
controlled experiments, each with its own strengths and limitations. Following this, we delve into the
specific techniques used to collect trajectory data and roll angle and roll rate data.

Real-World Observations
Some studies use real-world observation methods, such as the study byWang et al. [31], Gulino et
al. [33], Lin et al. [40], Garcia et al. [39]. Real-world observational methods involve collecting data
on micromobility users in natural traffic environments without any intervention that might alter their
behavior. The key strength of this approach is its ability to capture genuine rider behavior, providing
high ecological validity. Real-world settings allow for studying micromobility dynamics in varied and
unpredictable conditions and enable the collection of data from multiple users simultaneously, offering
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a broader context of interactions.

However, the main limitations include the presence of numerous uncontrollable factors that make it
challenging to isolate the influence of specific variables, and the susceptibility of data to environmental
factors, such as occlusions, which can lead to incomplete data collection.

Controlled experiments
Some studies have used controlled experiments, such as the study byGavriilidou et al. [25], Garman
et al. [26], Billstein and Svernlöv [27], Violin [28], Yuan et al. [47]

Controlled experiments involve simulating specific riding scenarios in a structured environment where
relevant variables can be controlled and manipulated. The main advantage of this approach is the
precise manipulation of environmental factors, allowing researchers to study specific aspects of mi-
cromobility behavior under repeatable conditions. Controlled settings provide high-quality data with
minimal noise from external sources, making it easier to analyze the effects of particular variables on
rider behavior. However, controlled experiments have limited generalizability because the artificial en-
vironment may not fully replicate the complexities of real-world conditions. Additionally, riders may alter
their behavior because they are aware of being observed, which could introduce bias.

2.4.2. Data collection techniques
Trajectory data collection techniques
Trajectory data, which includes information related to longitudinal and lateral positions, and then further
processed to get speed, lateral and longitudinal distances, and speed differences, can be collected
using a variety of techniques.

Video extraction techniques have been used to collect detailed trajectory data in both naturalistic and
controlled settings[25, 31, 47]. The key advantage of this technique is its ability to provide a wide
field of view, allowing the simultaneous tracking of multiple road users without interfering with their
natural behavior. However, this approach is limited by occlusions, which can result in gaps in the data,
especially in crowded environments.

Another approach involves using GPS and laser technologies to increase the precision of trajectory
data collection. Garcia et al. [39], Lin et al. [40] utilized these technologies on instrumented bikes to
accurately capture longitudinal and lateral positions, speed, and distances between users in different
traffic densities. This method offers high accuracy but requires a complex setup and calibration, making
it more resource-intensive.

Comprehensive sensor setups have also been employed to studymicromobility behaviors.[12, 44] used
video cameras and GPS on e-bikes to collect trajectory data in urban environments like the Brooklyn
Bridge. This method allows for a rich understanding of rider trajectories, although it involves the chal-
lenge of integrating data from multiple sensors and potential issues with GPS signal loss in urban
settings.

Roll angle and roll rate collection techniques

IMU(Inertial measurement unit)s have been widely used in different contexts to collect roll dynamic
data, including roll angle and roll rate, providing high-resolution measurements of rider dynamics.

Gulino et al. [33] used IMUs to collect precise measurements of roll dynamics during road tests. Dozza,
Piccinini, and Werneke [12] combined IMUs with GPS and video cameras to assess rider stability
in urban environments. Violin [28] used IMUs in controlled experimental settings to capture stability
metrics for e-scooters and e-bikes.

Overall, the use of IMUs across various studies has provided highly accurate roll dynamic data, with
the main challenges being the synchronization with other data sources and potential differences in IMU
models.

2.4.3. Assessment of Data Collection Approaches
Overall, each data collection approach has distinct advantages and limitations:

Real-World Observations offers high ecological validity by capturing rider behavior in authentic traffic
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environments, which is valuable for understanding natural decision-making processes. However, the
presence of uncontrollable environmental factors can compromise data completeness, especially with
issues like occlusions. Collecting comprehensive data in real-world settings can also be challenging
due to the lack of control over specific vehicle characteristics, potentially extending study durations and
complicating analysis.

Controlled settings allow precise manipulation of variables, resulting in high-quality, low-noise data,
which is ideal for repeatable observations. Nevertheless, the artificial nature of these environments
may reduce generalizability, as participants might not behave as they would in real-world scenarios.
To mitigate learning effects and fatigue, it’s essential to design experiments with adequate rest periods
and task variety.

Techniques like video extraction, GPS, and laser technologies are effective for capturing natural move-
ment patterns with high precision. Video extraction allows simultaneous tracking of multiple users but is
susceptible to occlusions. GPS and laser technologies offer high accuracy but are resource-intensive,
requiring complex setups and calibration. Comprehensive sensor setups (e.g., GPS with video) pro-
vide valuable contextual information but require careful integration and can suffer from signal issues in
urban areas.

IMUs are widely used for capturing roll dynamics such as roll angle and roll rate, offering high-resolution
data suitable for detailed stability assessments. When combined with GPS and video cameras, they
yield a comprehensive dataset, although sensor synchronization can be challenging. IMUs performwell
in controlled environments, though differences between IMU models can affect consistency. Despite
these challenges, IMUs are essential for analyzing micromobility user control actions.

2.5. Full conceptual framework
In section2.3, we specify the micro variables. And since the main research question of this study is to
explore the influence of individual factors(Demographic and experience) and the overtaken vehicle, the
conceptual framework in Figure2.1 can be further refined into the conceptual framework in Figure2.3.

Based on the literature, these factors can influence these micro variables, which in turn affects decision-
making at the mental layer during overtaking maneuvers.

Gender has been shown to impact bike cycling speeds in non-interactive scenarios[33]. Younger riders
are shown more likely to ride at higher speeds[36]. It is reasonable to postulate that gender, age and
experience level may similarly influence the riding speeds of e-bikes and e-scooters.

The E-bike and E-scooter shows higer speed than bike due to their power assistance[33, 9]. Given the
design differences between e-bikes and e-scooters, it is plausible that speed variations exist between
these two modes as well.

In overtaking scenarios specifically, Wang et al. [31] found that both gender and micromobility type
influence overtaking willingness and the aggressiveness.Pazzini et al. [48] showed the micromobility
type could affect the lateral distance required for a safe overtaking maneuver. This suggests that the
gender and micromobility types may also affect lateral distance and starting moment of overtaking.

Furthermore, studies have indicated that different micromobility devices exhibit varying roll rates and
roll angles in simple maneuvering scenarios[27, 28]. This study hypothesizes that these differences
may also manifest in overtaking scenarios, potentially influencing the roll rate and roll angle during the
maneuver.

There may also be interrelationships among the micro-level variables themselves. For instance, pre-
vious research has shown a positive correlation between lateral distance and speed difference when
motorized vehicles overtake bicycles [49]. Therefore, in this study, we hypothesize that lateral distance
and speed difference also have a similar relationship during micromobility overtaking.

Additionally, speed of the overtkaing rider is influenced by the type of micromobility vehicle as earlier
mentioned. At the same time, longitudinal distance difference might also play a role in influencing the
rider’s speed choices during overtaking. These will also reflect on the speed difference between ovetak-
ing and overtaken micromobility. Therefore, this study hypothesizes that speed difference is influenced
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Figure 2.3: Detail conceptual framework for this study
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not only by lateral distance but also by micromobility type and longitudinal distance difference.

Previous study have already segmented bicycle overtaking behavior into three distinct phases, includ-
ing pre-passing, passing, and post-passing[29]. These phase concept has been adopted in the present
study as moderating variables. The adoption is based on the following assumption: during different
phases of overtaking, the influence of various attributes on micro variables may exhibit subtle yet signif-
icant differences. Of course, these three phases can also be used directly as an influencing attributes,
for example, the difference in speed maintained between riders and the roll angle and roll rate due to
different extent of control action may also be different in these three phases.

These relationships between attributes (gender and micromobility vehicle type) and micro-variables
(speed, speed difference, lateral distance, longitudinal distance, roll rate, and roll angle), as well as
the potential relationships among the micro-variables themselves, require further test through rigorous
statistical methods

2.6. Data analysis approaches
To test the relationships of the conceptual framework, a thorough analysis of the collected data will be
required. This section reviews existing methodologies for analyzing micromobility data to inform the
approach.

Various studies on micromobility behavior have employed a range of statistical and modeling tech-
niques, which inform the approach for this study. For instance, Wang et al. [31] applied a binary logit
regression model to examine overtaking behaviors by incorporating independent variables such as
gender, enabling the prediction of behavioral choices. Additionally, Gulino et al. [33] used ANOVA to
assess the influence of factors like time to reach maximum speed, while employing linear regression to
explore the relationships between gender and performance outcomes, evaluating model fit through R2

values. In a related context, Useche et al. [36] applied independent sample t-tests to compare behav-
ioral differences across age and gender groups, revealing specific influences of demographic factors
on riding behavior.

Machine learning techniques have also been used in micromobility studies. For example, Haustein
and Møller [37] implemented Random Forest models to rank variable importance, while using fixed
and random parameter logit models to analyze risk-taking behaviors. Their work also included a struc-
tural equation model to examine the dynamics of risk acceptance among micromobility users. In other
cases, regression models like ordered probit and bilinear regression have proven effective. Garcia et al.
[39] used ordered probit and linear regression to study the effects of track characteristics on cyclist posi-
tioning and maneuver dynamics, whereas Lin et al. [40] demonstrated that a bilinear regression model
better captured the relationship between lateral spacing and time compared to a parabolic model.

Furthermore, Khan and Raksuntorn [29] conducted moment-to-moment analyses of speed dynamics
and lateral positioning during bicycle passing and meeting maneuvers, utilizing linear regression and
paired t-tests to evaluate speed differences. To classify overtaking interactions, Mohammed, Bigazzi,
and Sayed [44] applied a Gaussian Finite Mixture Model (GFMM), clustering data based on variables
like longitudinal distance, lateral distance, and speed difference, thus identifying distinct interaction
patterns.

These diverse methods provide a robust framework for analyzing micromobility interactions. T-tests
can be employed to compare the influence of gender and riding experience on riding behavior. ANOVA
analysis is suitable for comparing the effects of different overtaking combinations on behavior. Both T-
tests and ANOVA analyses can be conducted using the indicators mentioned in section2.3. Regression
analysis can be used to study the relationships between these indicators. By leveraging these tech-
niques, this study aims to identify key determinants of overtaking decisions among e-bike, e-scooter,
and conventional bicycle users, offering valuable insights into the various factors that influence rider
behavior under different conditions.



3
Data collection Methodology

This section outlines themethodology to collect the required data. Initially, Section 3.1 details the neces-
sary direct measurements for studying microscopic behaviors, including trajectory, steering angle/rate,
and roll angle/rate. The subsequent Section 3.2 discusses the controlled experiment method chosen
for this study, explaining the reasons for its selection and outlining its advantages and disadvantages.
In Section 3.3, the selection of the experimental data acquisition equipment, specifically cameras, and
IMUs, is described. This selection is closely tied to the required data identified earlier.

The following Sections delve into the experimental design. This includes track design in Section3.4.
Section 3.5 then presents the tasks assigned to experimental participants. Section 3.6 elaborates on
the vehicle selection and the experimental recruitment plan for participants. Section 3.7 estimates the
duration of each scenario based on the number of samples to be collected and the dimensions of the
track design.

3.1. Data requirements
The purpose of this study is to investigate the influence of individual factors and the different combi-
nations of overtaking and overtaken types of vehicles on the microscopic behavior of the rider during
overtaking. These microscopic behaviors can be observed through a number of microscopic measure-
ments presented in Figure2.3.

First, trajectory data is the most necessary data used to study individual behavior. The trajectory data,
which captures the position of the vehicle on a two-dimensional plane at specific times, could be used
further to derive microscopic measurements reflecting the behavior. In section2.3, a comprehensive
summary of the measurement variables pertinent to analyzing microscopic behaviors during overtaking
maneuvers is provided. Key variables include speed, the speed difference, and longitudinal and lateral
distance differences between overtaking and overtaken vehicles. The accuracy of these variables is
heavily dependent on the precision of the trajectory data. For meaningful analysis, the trajectory’s
accuracy should ideally be around a 10cm range[25].

In addition, measurements including roll angle and their rate offer valuable insights into the rider’s
control action during the overtaking process. The angles mentioned here are important indicators of
the control actions needed by the rider including steering the handlebar and adjusting their body posture.
The extent of these control actions have been used in many studies[27, 28, 26].

Furthermore, since this study involves different types of micromobility combinations, it is necessary to
ensure the controllability of the vehicle combinations and to make sure that the targeted interaction
movement takes place.

3.2. Data collection approach
As in section2.4, the ability of isolating specific behaviors or conditions of laboratory settings allows
for the replication of specific traffic scenarios, including various combinations of overtaking maneuvers

14
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between e-bikes, e-scooters, and conventional bicycles. This control is particularly beneficial when
studying interactions that are less common or require specific conditions for their occurrence. Given the
wide range of possible vehicle combinations and interactions, it is challenging to gather comprehensive
and valid data through real-world observations. These environments do not allow for the control of
individual characteristics of each vehicle combination, potentially extending the duration of the study
significantly and complicating the analysis. Therefore, a controlled experiment is determined to gather
the data on the rider’s behavior during overtaking.

One of the drawbacks of using a controlled experiment, however, is that as the experiment progresses
and the participants become more familiar with the tasks they are performing, as well as possibly with
physical and psychological fatigue, the behaviors they exhibit in the experiment may change from what
they were at the beginning of the experiment. although physical fatigue is less likely to be an issue
for powered vehicles. This disadvantage is referred to as the learning effect. To mitigate the learning
effect, it is crucial to minimize riding time, provide adequate rest periods, and ensure that participants
engage in a variety of tasks throughout the experiment.

3.3. Data Collection equipment selection
3.3.1. Cameras
In this study, video extraction technique is used to extract the user’s trajectory data. Based on the
trajectory data, other measurement variables can be further extrapolated. There are several reasons
for choosing cameras to collect data. First, as specified in the section 3.1, we need to achieve trajectory
data with an accuracy of approximately 10 cm. In the section2.4, the two most common methods for
collecting trajectory data are video extraction and GPS as show in section2.4. To achieve this level
of accuracy with GPS, high-precision GPS systems, typically classified as Real-Time Kinematic (RTK)
GPS, are required. RTK GPS systems enhance the precision of position data using a combination of
fixed base stations and mobile receivers[50]. These systems are not only more sophisticated but also
significantly more expensive. Secondly, during the research process, there are often multiple vehicles
on the track simultaneously, and to accurately capture the trajectory of each vehicle, multiple high-
precision GPS devices are needed. In contrast, cameras can provide high-accuracy trajectory data at
a lower cost, making them a more economical and practical choice.

Part of the reason for choosing video equipment is that the supervisor, Yufei has used video extraction
in his previous project experience. Regarding the specific model selection, based on his previous
project experience, he gave the camera parameters that have been used before. However, the specific
equipment search and selection is done by the author.

3.3.2. Inertial Measurement Unit
In this experiment, the Inertial Measurement Unit (IMU) was employed to measure the roll angle and roll
rate of e-bikes and e-scooters. Research by Violin [28], Billstein and Svernlöv [27] used roll angle and
roll rate. The roll angle and roll rate were effectively captured using an IMU. The IMU’s high integration
and ease of installation, requiring only tie-wraps without further modifications and directly outputting
data, made it the preferred choice for this study.

The reason for choosing IMU was that it is indeed an excellent choice for measuring roll angle and roll
rate. Another reason was that the team from China could directly provide IMU. After communicating
with them, the author confirmed the availability of this option.

3.4. Track design
In designing the track for this experiment, several critical factors were considered to ensure the suc-
cessful completion of overtaking maneuvers. The track needed to be sufficiently long to accommodate
the overtaking process. Assuming the speed of the overtaken mode at a higher bound of 4 m/s and the
speed of the overtaking mode at a lower bound of 5 m/s, and considering 5 m safe distance before and
after the overtaking process, the minimal track length should be 50 meters, based on the basic physical
law (speed × distance / speed difference = 5 × 10/(5 − 4) m). Consequently, a main track measuring
60 meters in length is designed to provide extra space to accommodate interactions occurring.
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Figure 3.1: Track design

The order of the camera from right to left is R1-R2-L1-L2

This track includes two-way bike lanes, each lane being 1.8 meters wide (totaling 3.6 meters), with a
buffer distance of ten meters on both the left and right sides. This buffer is intended to accommodate
any necessary acceleration or deceleration. The layout is detailed in figure3.1. The main reference
for the 1.8m width of the lanes is based on a study of field measurements of two-way bicycle lanes
in the Netherlands[51] of field measurements of two-way bicycle lanes in the Netherlands, which is
approximately 370 cm, including the width of the markings in the middle of the road, and therefore
selected as 180 cm in this study.

During the track design process, the track length and track width design were all completed by the
author, and the author’s supervisor gave suggestions on the approximate positions of the two sets of
cameras. However, on the day of the experiment, the specific positions were adjusted on site by the
author and supervisor based on the actual situation.

3.5. Task design
3.5.1. Task design and general instructions
The main task for participants is to perform the overtaking maneuvers. The overtaking maneuver,
consisted of two types of riders, in which some participants would ride at low speeds on the designed
bike lanes as overtaken riders,and the other part of participants would overtake the low-speed vehicles
from the left side in a safe manner as overtaking riders.

For the e-scooter, e-bikes and bikes, their speeds were not strictly when they act as the overtaken
mode. The riders were instructed to ride at a low speed that does not interfere with their control of
balance (e.g., requiring additional control maneuvers such as a large wiggle of the steering grip or
adjustment of body position). Overtaking riders were merely asked to follow their habits and methods
when overtaking low-speed vehicles without colliding.

The maneuver is summarized in Figure 3.2.

Figure 3.2: Overtaking maneuver

It is worth noting that since we want the experimental participants to be able to make overtaking be-
haviors continuously under normal driving speed. It is very important to ensure the continuity of the
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participant’s riding, in order to ensure this continuity, we chose to adopt the practice of letting the ex-
perimental participant run laps along a fixed line in the field, for overtaking, the participant’s riding path
is shown in Figure 3.3.

Figure 3.3: Path of overtaking

The experimental design incorporates specific measures to facilitate and control overtaking behavior
within the designated main track area. Participants are instructed to follow either the red or blue lines
according to their assigned roles. The layout of these routes is strategically designed to ensure that
overtaking maneuvers can only occur within the main track zone. To increase the probability of over-
taking interactions, multiple vehicles are simultaneously present on each route rather than just one.
This approach significantly enhances the likelihood of overtaking and being overtaken within the main
track area. Furthermore, the experiment supervisors have the ability to judiciously control the timing of
vehicles re-entering the main track after completing a full circuit. For instance, they can allow vehicles
on the slower path to enter first, followed by vehicles on the faster path entering the main track. This
sequencing strategy maximizes the occurrence of overtaking events within the main track. The inclu-
sion of buffer zones in the track design serves a crucial purpose. These areas ensure that participants
have reached a steady-state riding condition before entering the main track, even if they have momen-
tarily stopped and restarted. This design element contributes to the consistency and reliability of the
observed overtaking behaviors by eliminating potential variability associated with the initial acceleration
phase. This carefully structured experimental setup allows for the systematic observation and analysis
of overtaking behaviors under controlled conditions, while still maintaining a degree of naturalistic riding
scenarios. This part was completed independently by the author.

3.6. Vehicles selection and number of participants
The first step of the experiment design was to select the specific models of e-scooter and e-bikes that
to be investigated in this study. In selecting the e-scooter and e-bike, the following three factors are
taken into consideration:

• Popularity in the market.
• Easiness of learning to use these vehicles; the need to avoid vehicles that the participants of the
experiment could not learn to ride in a short period of time.

• The maximum speed of the vehicle should not be too high; too high may cause safety problems
during the experiment.

To address the heterogeneity among participants and ensure statistical significance, the experimental
design incorporates a carefully considered sampling strategy. The ideal scenario would include at least
30 unique combinations, with each combination representing a rider proficient in the designated mode
performing the requested maneuver. The least sample size of 30 is supported by statistical theory,
specifically by the Central Limit Theorem (CLT). According to the CLT, with a sample size of around 30
or more, the sampling distribution of the mean is approximately normal, regardless of the population
distribution. This allows researchers to apply parametric tests like t-tests and ANOVA even if the original
data are not perfectly normally distributed[52].

This approach would ideally capture a diverse range of ages and genders within the rider population,
providing a comprehensive representation of micromobility users. However, practical constraints re-
lated to time, financial resources, and overall feasibility necessitated an adjustment to this ideal sce-
nario. After careful consideration, 12 combinations were ultimately selected as the optimal balance
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between representativeness and practicality. This decision resulted in the recruitment of 12 riders per
mode, ensuring a sufficiently diverse sample while remaining within the bounds of the study’s resources.
To compensate for the reduced number of combinations and to enhance the statistical robustness of
the results, each combination of participants performs 4 repetitions or runs. This approach yields a total
of 48 runs per scenario, which significantly bolsters the statistical power of the study. The repetition of
runs allows for the assessment of within-subject variability and increases the reliability of the observed
behaviors. This part was completed independently by the author of this thesis.

3.7. Scenario, duration and schedule design
This study design incorporates a range of intra-modal and intermodal interactions to comprehensively
capture the dynamics of overtaking behavior across different micromobility modes.The planned sce-
nario runs and their specific properties are summarized in TableA.1. This table provides a detailed
overview of each overtaking combination, the modes involved, and the number of repetitions, offering
a clear structure for the experimental design.

The scenario design of the experiment was designed by the author, but the duration and schedule
design of each scenario of the experiment was completed with the help of the supervisor. This part is
mainly through consultation with the supervisor and rough calculation to ensure when designing the
experiment from the beginning, it will not end up with a scenario taking too much time. The specific
process is placed in AppendixA.

Sce No. Sce Name Participating mode Exp. duration (min)
ES EB B

1 Overtaking-intra1 ✓ - - 12 x 4
2 Overtaking-intra2 - ✓ - 12 x 4
3 Overtaking-inter1 ✓ ✓ - 12 x 4
4 Overtaking-inter2 ✓ ✓ - 12 x 4
5 Overtaking-bike1 ✓ - ✓ 12 x 4
6 Overtaking-bike2 - ✓ ✓ 12 x 4

Table 3.1: Table of Overtaking Scenarios and Experimental Details

3.8. Clarify on contribution
For the focus on behavior during overtaking in this thesis, the author proposed the necessary data re-
quirements, designed the track, tasks, overtaking scenarios, and designed the number of experimental
participants and vehicle selection.

With the help of the author’s supervisor, Yufei, the author chose the video data collection method and
selected a specific camera based on the infrared parameters given by my supervisor. The author of
the thesis made the decision on the use of IMU, but received support from the Chinese team.

However, this research on overtaking is part of a large research project. This large research project
also involves other interactive behaviors, including merging, meeting, crossing, etc. The entire larger
project was also designed using the same data collection methods and equipment. In other scenarios,
track design, task design, and schedule design are all joint work between the author and the supervisor.
The workflow is in the following way: The author proposes a preliminary design, the supervisor modifies
it, and the author further improved it.



4
Data processing and analysis

methodology

This section describes the data processing methods in section4.1, and the data analysis methods in
section4.2, which are used to analyse the data collected.

Before introducing the data processing process of this study, it should be clarified that the video data
processing process used in this study mainly refers to the processes of two studies, namely Yuan et al.
[47] and Gavriilidou et al. [25]. The steps ’pixel trajectory extraction’, ’image correction’, and ’height
projection’ of the data flow used in the study are derived from study[47] and use the same tool and
algorithm.

In the next steps, ’combine video files from the same camera’ and ’jump point fix’ are inspired by study
[25], but the specific algorithms used are different. As for the subsequent ’time synchronization’ and
’merging of multiple camera trajectories’, we learned from study [25] that these are necessary process,
but the specific principles and algorithms are different from that study. This is mainly because the
data collection method of study[25] is not consistent with this thesis, and the method used cannot be
applied to this study. The other steps are targeted at the specific problems of this study and aremethods
proposed by the author of this thesis.

4.1. Data processing methodology
The video processing procedure consists of 10 steps.

Initially, the process focuses on handling individual camera feeds.

• 1. Video format conversion: This step addresses the issue of original video data being incompat-
ible with many computers for direct parsing and processing.

• 2. Pixel trajectory extraction: This step extracts the trajectories of riders from the transformed
video, which can be converted to real-world trajectories measured in meters after a series of
transformations. These real trajectories reflect riders’ behavior during overtaking[53].

• 3. Image Correction: This step corrects distortions in the video image, partly due to the camera
angle not being directly downward, and partly due to wide-angle effects causing shape distortions
at the edges. It corrects for camera angle distortion but not barrel distortion due to data limitations.
This step also converts trajectory units from pixels to meters[54].

• 4. Height projection: This step further corrects the meter-converted trajectories to ensure they
accurately reflect real movement states. It accounts for the height of the riders’ hats (detection
points) and projects these coordinates onto the ground plane using trigonometric transforma-
tions[55].

The first four steps used tools and algorithms developed by others.

19
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After steps 2-4, we can extract riders’ real-world coordinate trajectories from the original video. How-
ever, the results still contain many erroneous detections, including non-experimental objects, trajectory
breaks due to shadows, andmismatched trajectory segments. The followings steps are the contribution
of this study.

• 5. Combine video files from the same camera: Before addressing these errors, data from each
camera is combined into a whole file to facilitate comprehensive error correction in the next step.

• 6. Fixes for trajectory errors: This step resolves detection issues, ensuring the remaining data
consists only of meaningful, correct trajectories of experimental subjects.

After converting data from each camera from raw video to real-world trajectories in meters and correct-
ing trajectory errors, the next steps involve combining trajectories from multiple cameras. The reason
why the combination of trajectories from multiple cameras is needed is that the whole process of over-
taking behaviour is relatively long and a single camera cannot cover the whole process.

• 7. Time synchronization: Before combining, the timestamps of all cameras are aligned with the
R1 camera as a reference. This step is necessary because each camera’s recording and storage
was controlled by a separate computer, resulting in a few seconds of time discrepancies despite
synchronized system times. This step also aligns IMU data timestamps with video data.

• 8. Multi-camera trajectory combination: After time correction, data from multiple cameras can
be combined. Despite the challenges posed by uncorrected barrel distortion and shifting camera
positions, the merging process relies primarily on the corrected timestamps. This approach is
effective because, as long as there is an overlap in the cameras’ coverage areas, the end point
of one camera’s trajectory can always be found in the next camera’s data, given that the times-
tamps are correctly aligned. Even if there are discrepancies in the spatial coordinates between
cameras, these can be reconciled through coordinate transformation techniques. This allows for a
seamless connection of trajectory segments across different camera feeds, creating a continuous
trajectory that spans the entire overtaking process. The time-based merging strategy, combined
with coordinate transformations where necessary, ensures that the resulting merged trajectory
accurately represents the subjects’ movements across the full experimental area, despite the
technical limitations of individual camera setups.

• 9. Freezing point handle: This step addresses issues where video frames freeze, causing con-
secutive data points to have identical positions. Smoothing corrects these anomalies to prevent
significant speed calculation errors.

• 10. Accuracy verification and IMU data integration: After merging multi-camera trajectories and
handle the freezing point, the resulting data is verified for accuracy using standard floor tiles at
the experimental site. Once verified as sufficiently accurate for behavior analysis, IMU data is
combined with trajectory data based on the corrected timeline for ease of analysis.

• 11.Trajectory labelling: Each extracted trajectory is labeled with its attributes, including gender,
vehicle type and whether it carries an IMU.

4.1.1. Video format conversion
The video processing workflow begins with addressing compatibility issues between the original video
files and the analysis tools used.

Initially, the videos are in HEVC format, a standard digital container used for transmission and storage of
audio, video, and related data[56]. This encoding presents challenges for analysis in the researcher’s
laptops and the workstation of TU Delft. To overcome this limitation, the solution is to convert the video
to MPEG-4 format encoded in AVC. MPEG-4 is a versatile digital multimedia container format that is
used primarily to store video and audio content[57]. It offers a wide compatibility.

4.1.2. Pixel trajectory extraction
For trajectory extraction, the Moving Object Detection and Tracking (MODT) tool developed by Duives,
Daamen, and Hoogendoorn [53] is employed.

Furthermore, the MODT tool has been improved and extended to include a new feature that calculates
the precise Beijing time corresponding to each frame image in the video. Beijing time was chosen as
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the reference because all computers used in the experiment were set to the Beijing time zone.

To implement this feature, the first step is to determine the precise start time of each video, accurate
to the millisecond level. The calculation method is as follows: Assuming the start time of the video is
known to beA seconds, afterX frames, the video time changes fromA seconds toB seconds. Using the
frame rate information of the video, the time interval between adjacent frames can be calculated. Since
the B moment starts from the whole second, which means the exact time of B starts at (xx:xx:xx.000),
the millisecond-precise value of the A moment can be deduced through the formula:

A = B − (1000ms/Framerate) · (X − 1) (4.1)

The MODT tool, when processing the video frame by frame, also reads the relative time corresponding
to each frame. This relative time ranges from 0 seconds at the beginning of the video to the current
frame and continues until the end of the video. For example, for a video with a duration of 20 minutes,
this relative time ranges from 0 seconds to 1200 seconds.

By adding the precise start time of the video to the relative time of each frame, the precise Beijing
time in the format of hours, minutes, seconds, and milliseconds corresponding to that frame can be
obtained.

This establishes a precisemapping relationship between video frames and real-world time. This precise
mapping between video frames and real-world time is crucial for subsequent data processing in the
research project, specifically on trajectory merging and IMU data synchronization.

4.1.3. Image Correction
Image distortion correction is a vital step in the data processing workflow to ensure accurate spatial anal-
ysis of video footage. The primary objective of this correction is to transform the camera’s perspective
from a side view to a bird’s-eye view—perpendicular to the center of the image from above. This trans-
formation allows for precise measurements and analysis of movements within the video frames.For
this purpose, this study employed a tool called ImageTracker developed by Knoppers, van Lint, and
Hoogendoorn [54]. The fundamental principle is shown in AppendixB.1

4.1.4. Height Projection
The forth step involves height projection. The reason for performing height projection is that when a
camera captures images from an elevated position, objects in the image appear closer to the camera
than their actual positions. Correction is necessary to obtain the true positions of the objects. The
height projection method employed in this study is based on the approach developed by Knoop and
Wierbos [55]. The principle is shown in AppendixB.2

4.1.5. Combine video files from the same camera
After performing height projection, the next step is to combine the trajectory files extracted from each
video captured by the same camera. The purpose of this merging process is to facilitate the division of
different scenarios, as most scenarios span across multiple videos. During the combining process, a
challenge arises when a single trajectory is split by two consecutive videos. In such cases, the same
trajectory may be assigned different IDs in each video, leading to inconsistencies in the combined data.
To address this issue, algorithm1 in appendixB.2.1 was designed in this study to identify and reconcile
the split trajectories. The algorithm aims to merge trajectory data from two videos by comparing the
spatial distance and temporal difference between trajectory points to determine whether they can be
connected. When the distance between the end of a trajectory from the first video and the start of
a trajectory from the second video is less than or equal to a specified distance threshold D and the
time difference is within an allowable range T, the algorithm generates intermediate frames through
linear interpolation and connects the preceding and succeeding trajectories along with the intermediate
frames into a complete trajectory.
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Figure 4.1: Trajectories deviated significantly from the expected path in R1 camera

4.1.6. Fixes for trajectory errors
Trajectory Filtering and U-turn Handling
The first step in the process involved removing incorrectly detected trajectories. These trajectories
were caused by various reasons, such as participants not following instructions correctly and exiting
the experiment prematurely, or the presence of static objects with similar colors. To aid in identifying
these erroneous trajectories, animation playback was used to observe the overall trends and patterns
of each detected trajectory. This visual inspection method allowed for a straightforward identification
of two main types of errors:

1. Stationary Points: Some trajectories exhibited points that remained stationary, likely due to the
system detecting static objects or participants remaining in place for extended periods.

2. Premature Exits: In other cases, participants exited the experiment area prematurely, resulting
in trajectories that deviated significantly from the expected path. Such deviations were character-
ized by movement directions that did not align with the experimental design.

Figure4.1 shows the trajectories that deviated significantly from the expected path in R1 camera. For
the R1 camera, the RGB value searching area of MODT tool was set larger than the coverage area of
the bicycle lane during the first step of trajectory extraction to preserve as many trajectories as possible.
Consequently, this approach captured not only the valid trajectories but also some that included U-turn
behaviors. Figure 4.2 illustrates an example of a U-turn trajectory detected by Camera 1. These
clearly unreasonable trajectories were either removed by manually deleting specific trajectory IDs or
corrected by truncating the U-turn portion of the trajectory, ensuring that only data reflective of the
intended experiment was retained.

Handle split trajectory
After removing erroneous trajectories, the second step of the processing pipeline involves handling
trajectories fragmented due to shadow interference. Shadows cast by the aerial work platform used
to mount the cameras move gradually into the center of the bicycle lane, reducing RGB values in the
shadowed areas. For riders wearing red caps, this reduction often results in undetected segments as
they pass through these shadowed areas, fragmenting their trajectories.

In this study, however, lowering RGB thresholds to enhance detection within shadowed areas proved
challenging. Some vehicles, like bicycles, have orange bodies, and further reducing RGB values would
increase false detections for these colors. Consequently, this limitation leads to trajectories being in-
terrupted by shadows.

To address this, algorithm 2 in AppendixB.2.1 was developed to detect and merge adjacent trajectory
segments that likely belong to the same vehicle. The algorithm enhances vehicle trajectory data by
identifying and merging adjacent trajectory segments that likely belong to the same vehicle. It ana-
lyzes the spatial and temporal continuity between endpoint of trajectory i and start point of trajectory
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Figure 4.2: Example of U-turn trajectory in R1

j where j=i+1, applying predefined thresholds for both distance and time gaps. When two segments
meet these criteria, the algorithm employs linear interpolation to fill the gap between them, assuming
linear motion over short intervals. The algorithm then integrates the interpolated points into the existing
data, removes any duplicate timestamps, and reassigns trajectory IDs for consistency. Instead of in-
terpolating directly from the last point of one segment to the first of the next, the algorithm interpolates
from the second-to-last point of the previous segment to the second point of the following segment.
This adjustment helps reduce inaccuracies that can arise when part of the cap is in shadow while the
rest remains visible.

Figure4.3(a) and Figure4.3(b) demonstrate the fragmented trajectories in the dataset and the reason
behind the fragmentation, respectively.

((a)) Splitted Trajectory by Shallow ((b)) A Sample Split Trajectory of R1

Figure 4.3: Comparison of Sample Split Trajectory

Jump point fix
The third step of the trajectory fix is the jump point fix, where the jump point is caused by a detection
error. This detection error causes the first half of the A trajectory to suddenly join the second half of
the B trajectory at a certain point, and the first half of the B trajectory to join the second half of the A
trajectory, making a crossover between the two as illustrated in Figure4.4(a).

The first step is to split the trajectory with jump points into two segments from the jump point and
number them separately as shown in Figure4.4(b). The algorithm3 in appendixB.2.1 is designed to
identify and process abnormal jumps in trajectory data. It begins by copying the original datasetD toD′,
then performs the following operations for each unique trajectory ID: calculating the distance between
consecutive points in the trajectory, and if a distance exceeds the preset threshold dth, marking that
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((a)) Jump Point Example of R1 ((b)) Split After Jump Point ((c)) Interpolation Trajectory

Figure 4.4: Explanation of the Jump Point fix Process

point as a jump point. For each detected jump point, the algorithm assigns all subsequent points to a
new trajectory ID (starting from newID, which is incremented after each use). This process effectively
separates trajectory segments following abnormal jumps.

The second step is to reconstruct the correct and complete motion trajectories as Figure4.4(c). The
algorithm4 in appendixB.2.1 is designed for this task. It iterates through each unique trajectory ID in
the split dataset D′, performing the following steps for each trajectory: first, it finds the last point of the
trajectory, then searches for the best matching next trajectory among the remaining trajectories. Match-
ing conditions include a time difference not exceeding Tth, a spatial distance not exceeding Dth, and
a Y-coordinate difference not exceeding Yth. If a matching trajectory is found, the algorithm performs
linear interpolation according to the missing time steps between the end point of the current trajectory
and the start point of the matching trajectory, then merges the current trajectory, interpolated points,
and the matching trajectory. If no matching trajectory is found, it retains the current trajectory. Finally,
the algorithm removes duplicate time points within each trajectory, ensuring data uniqueness.

Scenario separation
After completing the error fix, the next step is to split the fixed data of each camera into separate sce-
narios based on the timestamp of each experimental scenario recorded on the day of the experiment.
This step is performed to facilitate the subsequent process of merging trajectories from multiple cam-
eras. Working with smaller, scenario-specific datasets during the trajectory merging step offers several
advantages:

1. Easier error detection: When merging trajectories from multiple cameras, using smaller datasets
makes it easier to identify and troubleshoot any inconsistencies or unreasonable outcomes that
may arise during the merging process.

2. Simplified data analysis: Splitting the data into scenarios simplifies subsequent data analysis
tasks, as researchers can focus on specific scenarios of interest without having to process the
entire dataset.

4.1.7. Time synchronization
Time synchronization is a critical step in merging trajectories from multiple cameras. In this study, the
first task is to calculate the precise Beijing time for each frame, as detailed in section 4.1.2, which is
key to matching and merging trajectories. Despite synchronizing system times via the same WiFi on
the day of the experiment, a time difference of one to two seconds between the cameras still occurred.
Correcting this discrepancy is essential for accurate trajectory merging across cameras.

Since most experiment starting points were within the R1 camera’s field of view, the R1 camera’s time
was used as the reference for aligning other cameras and the computer collecting IMU data. The
correction process, though manual, is straightforward: using the overlapping areas between cameras
(e.g., R1 and R2), a frame is selected where a participant appears within the overlapping region of both
cameras. The pixel coordinates of the participant’s red hat are manually extracted from both frames,
allowing the precise times corresponding to those coordinates to be identified. The time error between
the two cameras is calculated based on these matching times.

To determine the time difference between cameras, 5 trajectories from each camera from different
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Figure 4.5: Speed and distance difference explnation

videos were randomly selected, allowing the calculation of an average time difference. As the time
difference is constant over the whole experiment. We just need to do it once.

For the L1 and L2 cameras, the time error relative to R1 is determined by sequentially adding the time
errors from overlapping cameras. Although L1 and R2 may not always overlap, this issue is minimal,
as overlapping coverage exists at the beginning and end of the videos.

To synchronize the IMU data with the timing of R1, we identify extended periods of vehicle inactivity in
both the IMU recordings and R1’s video footage, during which the experimental vehicles remain station-
ary before initiating movement. By aligning these transitions from inactivity to motion, synchronization
between the two systems is achieved with an accuracy of approximately one second.

4.1.8. Merging of multi-camera trajectories
In this study, the merging of camera trajectories is performed in two stages. The first stage involves
merging cameras in pairs, while the second stage uses the common parts of the pairwise merged data
as a bridge to merge trajectories from more than two cameras. The general merging principle is as
follows: first, for a given trajectory, we identify two other closest trajectories. Where the closest is
determined by the distance from the starting point of the given trajectory to the ending point of the other
trajectory. We then select the trajectory that travels at a speed closest to the given trajectory as the
best match, and finally, we merge these two trajectories.

The detail pairwise merging algorithm operates on the following way: when two cameras have overlap-
ping coverage, the goal is to match trajectories from one camera to the other. Suppose experimental
participant A is captured by camera R1 with a start time t1 and an end time t2, and by camera R2 with
a start time t3 and an end time t4. After synchronizing the timestamps, if there is an overlap between
the two cameras’ fields of view, t3 should be earlier than t2. Therefore, we identify the time point t′2 in
R2 that is closest to t2, and retrieve the trajectory IDs in R2 that contain points at time t′2.

However, due to overtaking behavior, multiple trajectories in R2 may exist at the same time t′2. In this
scenario, we calculate both the physical distance and velocity difference between all points in R2 at
time t′2 and participant A’s position in R1 at time t2 as Figure4.5 shows. Initially, we retain the two
trajectories with the smallest physical distance. From these, we select the trajectory with the smallest
velocity difference. This identified trajectory is assumed to belong to participant A under camera R2.
This process is referred to as trajectory matching in this study.

Once the matching is complete, the matched trajectories are merged.Trajectory merging involves delet-
ing the data of A’s trajectory in camera R2 before time t2’ and shifting the remaining trajectory to the right
so that it connects with A’s trajectory under R1 end-to-end. This process is called trajectory merging.
The specific algorithm design is as shown in Algorithm5 in appendixB.2.1.

After completing the pairwise merging, the next step is to merge trajectories from three or four cameras
using the common overlapping regions. The algroithm6 in appendixB.2.1 is designed to achieve this.
In this process, R2 serves as a bridge between R1 and L1 for merging. The same logic applies when
using L1 as a bridge to merge with L2. To illustrate, we use R1, R2, and L1 as an example.

For each trajectory in the merged R1-R2 dataset, we know the R2 portion of that trajectory corresponds
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to a specific original R2 trajectory. The algorithm6 proceeds by searching the R2-L1 dataset to find the
trajectory in L1 that shares the sameR2 portion. Once the corresponding trajectory in the R2-L1 dataset
is found, the algorithm merges the R1-R2 trajectory with the R2-L1 trajectory based on their shared R2
segment.

The merging process retains only the common R2 portion in both trajectories to ensure continuity.
Specifically, the algorithm6 first checks the temporal overlap by comparing the timestamps of the R2
segments in both datasets. Then, it ensures spatial continuity by applying offsets where necessary.
After aligning the R1-R2 and R2-L1 trajectories at the R2 portion, the algorithm removes duplicate R2
points and assigns a new trajectory ID to the merged R1-R2-L1 trajectory.

4.1.9. Freezing point handle
The freezing point handle process was performed after merging the trajectories. This step is necessary.
Because when browsing the data, the author discovered that some videos experienced frame freezing,
where two consecutive frames in the video had exactly the same position, but the third frame jumped.
This issue was found in some videos. The most likely cause of this problem is the limitations of the com-
puter’s performance during the video conversion process. To address this issue, the study employed
the method described in algorithm7 for repair. The repair principle is as follows: if the i-th frame and
the (i+1)-th frame are two consecutive identical frames, i.e., the X and Y coordinates are completely
consistent, then the coordinates of the point corresponding to the (i+1)-th frame are replaced with the
average value of the i-th frame and the (i+ 2)-th frame.

4.1.10. Accuracy validation
The primary objective of the accuracy validation process was to assess whether the processed trajec-
tories accurately reflect overtaking behaviors, specifically in terms of micro-level variables like speed,
speed difference, lateral distance, and longitudinal distance. The validation process primarily focused
on evaluating the accuracy of positional data, as it serves as the basis for calculating position difference,
speed, speed difference, and acceleration.

Due to the absence of a supplementary ground-truth trajectory system for direct comparison, an alter-
native method was employed. The experimental site, as outlined in Section 5.1, is paved with 60 cm
by 60 cm tiles, which served as a basis for two indirect validation approaches:

To evaluate whether the trajectories could differentiate between overtaking pairs, a random sample of
10 overtaking pairs from each camera’s footage was selected. At themoment the vehicles were parallel,
the actual lateral distance between the overtaking and overtaken vehicles was estimated by counting
the tile spans. These estimates were then compared with the lateral position differences calculated
from the trajectory data, serving as an indirect validation of lateral accuracy. The main reason for
choosing parallel moments to compare the distance between the two vehicles rather than comparing the
difference in Y coordinates between one vehicle at one moment and another is that, unlike longitudinal
movement, overall lateral movement is small, and because the floor tiles are supposed to be 60cm in
length and width, it is difficult to get a better estimate of his movement in the Y direction by the number
of tiles.

But this situation is different for the longitudinal direction, which, due to the much larger longitudinal
speed and the longer distance of movement, employs for a rider moving in a straight line through the
section (i.e., the stage where the overtaking maneuver has not yet been made or has already finshed),
it can be easily verified by estimating the floor tiles in order to have a more accurate validation. For
longitudinal validation, 10 rider from each camera was randomly selected, and the number of tiles they
traversed over a one-second interval was recorded to determine the actual distance. This distance was
then compared to the length of the corresponding trajectory segment. This approach directly validates
the accuracy of the longitudinal accuracy of trajectory, also indirectly validates the rider’s speed over
the one-second timeframe.

We chose the methodology because direct validation of speed was not feasible without an additional
precise positioning system, as it would require point-by-point comparison.

To address this, one-second intervals were used to calculate average speeds, which effectively smoothed
out the fluctuations and provided a practical comparison metric. By ensuring that the trajectory-based
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distance covered over one second aligns with the actual tile-measured distance, this method offers an
indirect validation of average speed.

Though we can’t directly validate the instant speed and acceleration, the effect of trajectory accuracy
on speed and acceleration can be reasoned out, as they are both obtained through differencing posi-
tion. A positional inaccuracies (up to 10 cm per point) can significantly impact instantaneous speed
and acceleration calculations—up to 2 m/s and 40 m/s². However, these errors are non-cumulative,
manifesting as fluctuations rather than sustained inaccuracies. The approach of averaging over a pe-
riod of time could reduce such fluctuations, and in this validation process, this is the reason for using
a range of tiles taken over a one-second walk-through. Another reason is due to the ease of finding
video frames for a whole second when looking for the corresponding video frame in a video.

Regarding the acceleration, similarly there is no precise ground state system to help, but this part can
be compared by way of literature, because the acceleration of E-bike and E-scooter has been studied
in some literatures[28, 58], and we can compare the difference between the calculated acceleration
and the acceleration in the literatures to judge whether it is reasonable or not.

4.1.11. Trajectory labelling
This labeling process is performed manually by watching the video footage and tagging each trajectory
accordingly. For example, when a trajectory spans data from multiple cameras (e.g., R1, R2, and L1), it
is sufficient to select data from only one of the cameras, such as R2, to label the entire trajectory. Each
trajectory is then annotated with various attributes, including the corresponding ID, the participant’s
gender, the type of vehicle they are riding, and whether they are carrying an IMU device.

4.1.12. Synchronisation of IMU data and trajectory data
In the IMU output data, the precise Beijing time on the day of the experiment, along with the roll rate and
roll angle data corresponding to each time point, are included. Since the IMU used in this study directly
outputs roll rate and roll angle, no additional processing is required for these data before merging. The
IMU data can be aligned with the trajectory data based on the precise timestamp. While the timestamps
from both sources may not correspond exactly on a one-to-one basis, they can be synchronized by
matching each trajectory data point with the nearest IMU timestamp.

4.2. Data analysis methodology
4.2.1. Scenario renumber
Before proceeding with the analysis of overtaking scenarios, to facilitate the subsequent comparison
of seconds and scenes, this study re-numbered the scenarios according to the sequence on the day
of the experiment. The details are presented in Table 4.1 below:

Table 4.1: Renumbered Overtaking Scenarios According to Experiment Sequence

New Scenario ID Original Scenario Description
2 E-bike overtakes bike
3 E-bike overtakes E-scooter
4 E-bike overtakes E-bike
5 E-scooter overtakes bike
6 E-scooter overtakes E-bike
7 E-scooter overtakes E-scooter

Note: There is no Scenario 1 as it is the non-interactive sce-
nario carried out first on the experiment date

4.2.2. Rationale for Per-Scenario Analysis
First, since this study involves the detection of many relationships, as shown in Figure, GLM and
MANOVA can be used to detect multiple relationships or hypotheses simultaneously. Generalized
linear model (GLM) is a flexible generalization of ordinary linear regression. The GLM generalizes lin-
ear regression by allowing the linear model to be related to the response variable via a link function
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and by allowing the magnitude of the variance of each measurement to be a function of its predicted
value[59]. Multivariate analysis of variance (MANOVA) is a procedure for comparing multivariate sam-
ple means. As a multivariate procedure, it is used when there are two or more dependent variables
and is often followed by significance tests involving individual dependent variables separately[60].

However,this study adopts a per-scenario analysis approach, rather than using GLM or MANOVA, to
explore the relationships within the conceptual framework. The decision to avoid using MANOVA was
primarily due to the nature of the study design, which is not a full factorial design. MANOVA typically
requires a full factorial setup to effectively assess the interactions between multiple factors across all
possible combinations. Since our experimental design does not meet this criterion, the use of MANOVA
would not be appropriate for analyzing the data.

Similarly, using GLM with interaction terms presents significant limitations when dealing with the com-
plexity of this study. The research involves examining specific combinations of micromobility types and
the influence of gender on decision-making within different overtaking contexts. For instance, we aim
to compare the lateral distances when an E-bike overtakes an E-scooter, an E-bike, or a traditional bike,
as well as the differences between scenarios where E-bikes or E-scooters overtake bikes. GLM can
provide an overall assessment of such interactions but lacks the granularity to distinguish these spe-
cific overtaking combinations in sufficient detail. Likewise, when examining gender differences, GLM
interaction terms may fail to accurately reflect how gender impacts decision-making across different
scenarios due to the variability in context.

Moreover, incorporating numerous interaction terms in GLM increases the model’s complexity and the
risk of Type I errors, especially when the study design does not allow for balanced comparisons across
all variable combinations. This makes it challenging to draw reliable conclusions about the unique
effects of gender, micromobility type, and their interactions in each scenario.

To overcome these limitations, a per-scenario analysis approach was selected. This approach allows
for a detailed investigation of each scenario independently, capturing the nuances and specific influ-
ences that might be missed by a generalized model. By analyzing each scenario separately, we reduce
potential biases, minimize the risk of erroneous comparisons, and ensure a more accurate understand-
ing of how gender, micromobility type, and other contextual variables influence overtaking behavior.

This method ultimately provides a clearer and more reliable understanding of the role of these variables
in shaping rider decision-making and control strategies during overtaking interactions, which is crucial
for understanding the variability in rider behavior across different scenarios.

4.2.3. Conceptual framework and hypothesis
In the practical execution of the experiment, only gender was feasible for study among demographic
and experience factors, due to limitations in participant recruitment. Additionally, different types of E-
bikes were included in the experiment, further refining the conceptual framework. As a result, the initial
conceptual framework, shown in Figure 2.3, was adapted to more clearly reflect these considerations,
leading to the updated framework presented in Figure 4.6.

Previous study have already segmented bicycle overtaking behavior into three distinct phases, includ-
ing pre-passing, passing, and post-passing[29]. These phase concept has been adopted in the present
study as moderating variables. The adoption is based on the following assumption: during different
phases of overtaking, the influence of various attributes on micro variables may exhibit subtle yet signif-
icant differences. Of course, these three phases can also be used directly as an influencing attributes,
for example, the difference in speed maintained between riders and the roll angle and roll rate due to
different extent of control action may also be different in these three phases.

The aim of the data analysis is to test these potential relationships. This can be understood as a pro-
cess of hypothesis testing using statistical methods to assess the significance of these factors. These
hypotheses(the relationships) are further detailed as follows:

For non-interactive scenarios:
Speed/Deceleration:
Hypothesis 1: There is a significant difference in speed and deceleration between E-bikes and E-
scooters in non-interactive scenarios.
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Figure 4.6: Conceptual framework before test

Scenario: Non-interactive scenarios
Independent Variable: Micromobility riding type (E-bike, E-scooter)
Dependent Variable: Speed/deceleration
Comparison: Across groups (E-bike vs. E-scooter)
Method: Independent t-test to compare the two vehicle types.
This hypothesis can be further refined:

• H0 (Null Hypothesis 1.1): There is no significant difference in speed between E-bikes and E-
scooters in non-interactive scenarios.

• H1 (Alternative Hypothesis 1.1): There is a significant difference in speed between E-bikes and
E-scooters in non-interactive scenarios.

• H0 (Null Hypothesis 1.2): There is no significant difference in deceleration between E-bikes and
E-scooters in non-interactive scenarios.

• H1 (Alternative Hypothesis 1.2): There is a significant difference in deceleration between E-
bikes and E-scooters in non-interactive scenarios.

Hypothesis 2: There is a significant gender difference in speed and deceleration within E-bike and
E-scooter groups in non-interactive scenarios.
Scenario: Non-interactive scenarios
Independent Variable: Gender
Dependent Variable: Speed/deceleration
Comparison: Within group (separate comparisons within E-bike and E-scooter groups)
Method: Independent t-test within each micromobility group (E-bike and E-scooter).
This hypothesis can be further refined:

• H0 (Null Hypothesis 2.1): There is no significant difference in speed betweenmales and females
within E-bike and E-scooter groups in non-interactive scenarios.

• H1 (Alternative Hypothesis 2.1): There is a significant difference in speed between males and
females within E-bike and E-scooter groups in non-interactive scenarios.



4.2. Data analysis methodology 30

• H0 (Null Hypothesis 2.2): There is no significant difference in deceleration between males and
females within E-bike and E-scooter groups in non-interactive scenarios.

• H1 (Alternative Hypothesis 2.2): There is a significant difference in deceleration between males
and females within E-bike and E-scooter groups in non-interactive scenarios.

Hypothesis 3: There is a significant difference in speed among the three types of E-bikes in non-
interactive scenarios.
Scenario: Non-interactive scenarios
Independent Variable: E-bike type (Regular E-bike, Fat E-bike, Foldable E-bike)
Dependent Variable: Speed/ deceleration
Comparison: Within group (among different E-bike types)
Method: ANOVA followed by post-hoc tests to compare the three types of E-bikes.
This hypothesis can be further refined:

• H0 (Null Hypothesis 3): There is no significant difference in speed among the three types of
E-bikes (Regular E-bike, Fat E-bike, Foldable E-bike) in non-interactive scenarios.

• H1 (Alternative Hypothesis 3): There is a significant difference in speed among the three types
of E-bikes in non-interactive scenarios.

For overtaking scenarios:
Lateral distance:
Hypothesis 4: There is a significant gender difference in lateral distance during passing phase.
Scenario: Scenarios 2, 3, 4, 5, 6, 7
Independent Variable: Gender
Dependent Variable: Lateral distance
Comparison: Within group (within each scenario, comparing males and females)
Method: Independent t-test for gender differences within each scenario.
This hypothesis can be further refined:

• H0 (Null Hypothesis 4): There is no significant gender difference in lateral distance during the
passing phase in each scenario.

• H1 (Alternative Hypothesis 4): There is a significant gender difference in lateral distance during
the passing phase in each scenario.

Hypothesis 6: There is a significant difference in the lateral distance when the samemicromobility riding
type overtakes a different type of overtaken micromobility and when different types of micromobility
overtaking the same type of overtaken during passing phase.
Scenario: Scenarios 2, 3, 4, 5, 6, 7
Independent Variable: Micromobility type
Dependent Variable: Lateral distance
Comparison: Across groups (E-bike, E-scooter, Bike)
Method: ANOVA followed by post-hoc tests to compare micromobility types across different scenarios.
The hypothesis can be further refined as follows:

• H0 (Null Hypothesis 6.1): There is no significant difference in lateral distance when the same
micromobility type overtakes different types during the passing phase.

• H1 (Alternative Hypothesis 6.1): There is a significant difference in lateral distance when the
same micromobility type overtakes different types during the passing phase.

• H0 (Null Hypothesis 6.2): There is no significant difference in lateral distance when different
micromobility types overtake the same type during the passing phase.

• H1 (Alternative Hypothesis 6.2): There is a significant difference in lateral distance when differ-
ent micromobility types overtake the same type during the passing phase.

Hypothesis 7: There is a significant difference in lateral distance among different types of E-bikes during
passing phase.
Scenario: Scenario 3
Independent Variable:E-bike type (Regular E-bike, Fat E-bike, Foldable E-bike)
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Dependent Variable: Lateral distance
Comparison: Within group (among different E-bike types)
Method: ANOVA followed by post-hoc tests to compare lateral distance across E-bike types.
This hypothesis can be further refined:

• H0 (Null Hypothesis 7): There is no significant difference in lateral distance among different
types of E-bikes during the passing phase.

• H1 (Alternative Hypothesis 7): There is a significant difference in lateral distance among differ-
ent types of E-bikes during the passing phase.

Hypothesis 8: The maximum lateral distance occurs during the passing phase.
Scenario: Scenarios 2, 3, 4, 5, 6, 7
Independent Variable: Ovetaking phase (pre-passing, passing, post-passing)
Dependent Variable: Maximum lateral distance
Comparison: Within group (comparing across passing phases)
Method: Qualitative analysis method, identifying the maximum lateral distance point for each rider and
determining in which phase (pre-passing, passing, or post-passing) the maximum distance occurs.
This hypothesis can be further refined:

• H0 (Null Hypothesis 8): The maximum lateral distance does not occur during the passing phase.
• H1 (Alternative Hypothesis 8): The maximum lateral distance occurs during the passing phase.

Starting position of overtaking:
Hypothesis 9:There is a significant difference in the overtaking starting position when the same micro-
mobility riding type overtakes a different type of micromobility overtaken during passing phase.
Scenario: Scenarios 2, 3, 4
Independent Variable: Micromobility type
Dependent Variable: starting position of overtaking
Comparison: Across groups (E-bike, E-scooter, Bike)
Method: ANOVA followed by post-hoc tests to compare starting positions between different micromo-
bility types.
This hypothesis can be further refined:

• H0 (Null Hypothesis 9): There is no significant difference in the starting position of overtaking
when the same micromobility type overtakes different types during the passing phase.

• H1 (Alternative Hypothesis 9): There is a significant difference in the starting position of over-
taking when the same micromobility type overtakes different types during the passing phase.

Hypothesis 10: There is a significant gender difference in the overtaking starting position within each
scenario.
Scenario: Scenarios 2, 3, 4
Independent Variable: Gender
Dependent Variable: starting position of overtaking
Comparison: Within group (comparing males and females within each scenario)
Method: Independent t test to compare gender differences in the starting position of the passing.
This hypothesis can be further refined:

• H0 (Null Hypothesis 10): There is no significant gender difference in the overtaking starting
position within each scenario.

• H1 (Alternative Hypothesis 10): There is a significant gender difference in the overtaking start-
ing position within each scenario.

Speed difference
Hypothesis 5: There is a positive relationship between lateral distance and speed difference during
passing phase.
Scenario: Scenarios 2, 3, 5, 6
Independent Variable: Lateral distance
Dependent Variable: Speed difference
Comparison: Within group (within each scenario)
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Method: Pearson correlation, linear regression to explore the relationship between lateral distance and
speed difference within each scenario.
This hypothesis can be further refined:

• H0 (Null Hypothesis 5): There is no significant relationship between lateral distance and speed
difference during the passing phase.

• H1 (Alternative Hypothesis 5): There is a positive relationship between lateral distance and
speed difference during the passing phase.

Hypothesis 11: Lateral distance, longitudinal distance, and micromobility type significantly influence
the speed difference during the whole process of overtaking.
Scenario: Scenarios 2, 3, 4
Independent Variable: Lateral distance, longitudinal distance, micromobility type
Dependent Variable: Speed difference
Comparison: Across groups and variables
Method: Multiple linear regression to assess the impact of lateral distance, longitudinal distance, and
micromobility type on speed difference.
This hypothesis can be further refined:

• H0 (Null Hypothesis 11): Lateral distance, longitudinal distance, and micromobility type do not
significantly influence speed difference during the overtaking process.

• H1 (Alternative Hypothesis 11): Lateral distance, longitudinal distance, and micromobility type
significantly influence speed difference during the overtaking process.

Hypothesis 12: There is a significant difference in speed difference across the three phases of over-
taking.
Scenario: Scenarios 2, 3, 4
Independent Variable: passing phases (pre-passing, passing, post-passing)
Dependent Variable: Speed difference
Comparison: Within group (comparing speed differences across pre-passing, passing, and post-passing
phases)
Method: ANOVA followed by post-hoc tests to compare speed differences across the three phases.

• H0 (Null Hypothesis 12): There is no significant difference in speed difference across the three
phases of overtaking (pre-passing, passing, post-passing).

• H1 (Alternative Hypothesis 12): There is a significant difference in speed difference across the
three phases of overtaking (pre-passing, passing, post-passing).

Speed of overtaken micromobility
Hypothesis 13 There is a significant change in the speed of the overtaken vehicle between the pre-
passing phase and post-passing phase, and between the beginning and ending of the pre-passing
phase.
Scenario: Scenarios 2, 3, 4
Independent Variable: passing phase (pre-passing, post-passing)
Dependent Variable: Speed of overtaken vehicle
Comparison: Within group (same vehicle, before vs. after passing)
Method: Paired t-test to compare the speed before and after passing for the same overtaken vehicle.
The hypothesis can be further refined as follows:

• H0 (Null Hypothesis 13.1): There is no significant change in the speed of the overtaken vehicle
between the pre-passing phase and the post-passing phase.

• H1 (Alternative Hypothesis 13.1): There is a significant change in the speed of the overtaken
vehicle between the pre-passing phase and the post-passing phase.

• H0 (Null Hypothesis 13.2): There is no significant change in the speed of the overtaken vehicle
between the beginning and the end of the pre-passing phase.

• H1 (Alternative Hypothesis 13.2): There is a significant change in the speed of the overtaken
vehicle between the beginning and the end of the pre-passing phase.
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Roll rate and roll angle
Hypothesis 14 There is a significant difference in roll rate and roll angle across the three passing phases.
Scenario: Scenarios 3, 4, 5, 6
Independent Variable: passing phase (pre-passing, passing, post-passing)
Dependent Variable: Roll rate, roll angle
Comparison: Within group (comparing roll rate and roll angle across phases)
Method: ANOVA followed by post-hoc tests to compare roll rate and roll angle across different phases.
The hypothesis can be further refined as follows:

• H0 (Null Hypothesis 14.1): There is no significant difference in roll rate across the three passing
phases (pre-passing, passing, post-passing).

• H1 (Alternative Hypothesis 14.1): There is a significant difference in roll rate across the three
passing phases (pre-passing, passing, post-passing).

• H0 (Null Hypothesis 14.2): There is no significant difference in roll angle across the three passing
phases (pre-passing, passing, post-passing).

• H1 (Alternative Hypothesis 14.2): There is a significant difference in roll angle across the three
passing phases (pre-passing, passing, post-passing).

Hypothesis 15:There is a significant difference in roll rate and roll angle between E-bikes and E-scooters
during each phase of overtaking.
Scenario: Scenarios 3, 4
Independent Variable: Micromobility type (E-bike, E-scooter)
Dependent Variable: Roll rate, roll angle
Comparison: Across groups (E-bike vs. E-scooter)
Method: Independent t-test to compare roll rate and roll angle between E-bikes and E-scooters during
passing.
The hypothesis can be further refined as follows:

• H0 (Null Hypothesis 15.1): There is no significant difference in roll rate between E-bikes and
E-scooters during each phase of overtaking.

• H1 (Alternative Hypothesis 15.1): There is a significant difference in roll rate between E-bikes
and E-scooters during each phase of overtaking.

• H0 (Null Hypothesis 15.2): There is no significant difference in roll angle between E-bikes and
E-scooters during each phase of overtaking.

• H1 (Alternative Hypothesis 15.2): There is a significant difference in roll angle between E-bikes
and E-scooters during each phase of overtaking.

The hypotheses outlined above form the foundation of the data analysis approach used in this study.
Each hypothesis is carefully tested using statistical methods tailored to the specific variables under
consideration.

The following sections present the definitions of the moderating variables (phases) used in the analysis
of the data for this study, as well as the calculations of speed, deceleration and the moment of the start
of overtaking, and for the roll rate and roll angle.

4.2.4. Definition of passing phases
The concept of ”passing phases” which is similar to previous study[29] as mentioned in section2.5 was
central to the data analysis. In this study, the overtaking process was primarily defined by the ”pass-
ing phase,” with additional phases identified before and after this critical period. The passing phase
was defined as the time period when the longitudinal distance (X-difference) between the front of the
overtaking vehicle and the rear of the overtaken vehicle was within 2 meters. The choice of a 2-meter
threshold for defining the passing phase was based on ensuring that this distance could adequately
cover all possible combinations of vehicles involved in the study. This threshold corresponds to ap-
proximately half the combined length of the overtaking and overtaken vehicles. While this value is
indeed subject to variation—given that riders on E-bikes or bikes may lean forward or change posture,
and e-scooter riders can stand in different positions—the 2-meter range provides a slight redundancy.
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Figure 4.7: Explanation of passing phase

This redundancy is designed to account for these individual differences, ensuring that the threshold
consistently encompasses the range needed for all rider and vehicle combinations in the experiment.

• Passing: The period when the longitudinal distance is within 2 meters.
• Pre-passing: The period before the passing phase begins, i.e., when the longitudinal distance is
greater than 2 meters prior to the passing phase.

• Post-passing: The period after the passing phase ends, i.e., when the longitudinal distance ex-
ceeds 2 meters again following the passing phase.

Figure4.7 illustrates this definition of passing phase, showing how the longitudinal distance changes
throughout the passing phase. This approach allows for a comprehensive analysis of rider behavior be-
fore, during, and after the critical passing phase, providing insights into how riders adjust their behavior
throughout the entire overtaking process.

4.2.5. Speed and deceleration calculation
The speed calculation in this study was conducted using the Triangular Moving Average (TMA) method
with a window size of 10, which corresponds to a 0.5-second span. This choice was based on a detailed
comparison of various smoothing methods and window sizes, as documented in the AppendixE. TMA
was selected because it offers a balanced approach to smoothing the data without sacrificing too much
detail, providing a realistic representation of speed changes over time.

TMA is a type of weighted moving average, where data points near the center of the window are given
more weight compared to those at the edges. In the context of this study, each point’s speed is com-
puted as a weighted average of the surrounding points, where the weights form a triangular distribution.
This method helps to reduce short-term fluctuations caused by minor inaccuracies in trajectory data,
while still capturing overall trends in speed. The window size of 10 (0.5 seconds) was chosen as it
effectively balances smoothness with responsiveness to changes in speed, as confirmed through com-
parative testing. The calculation of acceleration is then consistent with speed using the TMA, window
= 10 calculation.

4.2.6. Overtaking starting position
Detecting the initiation of overtaking for e-bikes and e-scooters is crucial for understanding their over-
taking behavior, particularly in relation to the mental layer of the framework shown in Figure 4.6. This
is especially important when riders decide to change their path and speed during overtaking.

The method for detecting overtaking initiation was based on observing when the lateral position dif-
ference between overtaking and overtaken vehicles began to increase significantly. This methodology
using change rate of lateral distance has been used in a few studies about autonomous vehicles[61, 62,
63].Here, this thesis extends this method to the study of micromobility. The detection process consists
of the following steps:

First, the change rate of lateral distance between the overtaking and overtaken vehicles is calculated
at each time step using the following formula:
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d(t) =
yovertaking(t)− yovertaken(t)− (yovertaking(t− 1)− yovertaken(t− 1))

∆t
(4.2)

where d(t) represents the rate of change in lateral distance at time t, yovertaking(t) is the lateral position
of the overtaking vehicle at time t, yovertaken(t) is the lateral position of the overtaken vehicle at time t,
and ∆t is the time interval between measurements. After calculating the instantaneous rate of change,
a moving average with a window size of 10(0.5S) is applied to smooth the data. This time window is
the same with the one of speed calculation.

In the second step, a threshold for detecting significant lateral movement is established by performing
a statistical analysis on the lateral position change rate during the pre-passing phase. The threshold
is set as the mean minus one standard deviation (Mean - 1σ) of the lateral position change rate during
these non-overtaking periods. The first moment when the rate of change of lateral distance is greater
than that of (Mean - 1σ) is the starting position of overtaking.

The selection of Mean - 1σ as the threshold for detecting the initiation of overtaking maneuvers in
e-bikes and e-scooters is based on two primary considerations:

1. Statistical Robustness: Utilizing the mean and standard deviation of lateral position change rates
during non-overtaking periods establishes a statistically sound baseline. This approach accounts
for the natural variability in rider behavior while enabling the detection of significant deviations.
The Mean - 1σ threshold strikes an optimal balance between sensitivity and specificity, allowing
for the identification of genuine overtaking initiation events while minimizing false positives from
routine movements.

2. Visual Validation: While direct quantitative validation was not possible due to the lack of a ground
truth dataset, the effectiveness of the Mean - 1σ threshold was assessed through a visual analysis
process. This involved plotting the relative coordinates of the overtaking pair (e-bike or e-scooter
and the overtaken vehicle) over time. By visually inspecting these marked points in relation to
the trajectory data, the reasonableness of the detected overtaking initiation moments could be
observed. For a subset of trajectories, five were randomly selected from each scenario for val-
idation, ensuring a representative sample across different contexts. Although qualitative, this
method provides practical insights and an verification step.

4.2.7. Roll rate and roll angle
The experimental design and data collection procedures in this study presented certain limitations that
influenced the analysis. A critical technical issue arose from the placement of the E-scooter’s iner-
tial measurement unit (IMU) on the continuously rotating stem. This positioning resulted in roll angle
and roll rate measurements that do not accurately represent the E-scooter’s true lateral tilt relative to
its direction of travel. This technical limitation significantly impacts our ability to directly compare the
dynamic behavior of E-bikes and E-scooters during overtaking maneuvers, particularly when these
vehicles are overtaking similar vehicle types.

Despite this limitation, the study utilized the collected data to analyze E-scooter behavior when overtak-
ing different types of vehicles. However, it is crucial to exercise caution when interpreting these results.
The data still provide valuable insights into the general patterns of E-scooter movement during overtak-
ing, but the specific magnitudes and timings of roll angles and rates may not be directly comparable to
those of E-bikes or accurately reflect the E-scooter’s true motion relative to the ground.

In this study, mean absolute value was used for all roll angle and roll rate data, which is consistent with
study[28, 27].



5
Implementation of experiment design

This Section details the preparatory steps and execution process of the experiment. Initially, Section 5.1
outlines the selection process for the experiment field.Following this, Section 5.2 introduces the specific
models of e-scooters and e-bikes used in the experiment. Section 5.3 covers the actual recruitment
of participants for the experiment. Subsequently, Section 5.4 elaborates on the detailed experimental
plan, which is based on the actual availability of e-bikes and e-scooters. Section 5.5 then discusses
the models of data collection equipment used in the experiment and their setup. Section 5.6 describes
the events and procedures that took place on the day of the experiment, providing insights into the
practical implementation of the study.

As the execution of this experiment in China, while the author was primarily based in the Netherlands,
necessitated significant collaboration with local teams. Moreover, the author’s supervisor, Yufei, shared
the role of experimental supervisor and implementer with the author during the execution of the experi-
ment. Every step of the implementation has contributions from both Chinese team and the supervisor.
All of their detail contribution and the joint work are in AppendixC.

5.1. Experiment field location
The experimental site is a square area located at the Hebei University of Water Resources and Electric
Engineering in Cangzhou, China, as shown in the red rectangle part of figure5.1. The measurements

Figure 5.1: Experiment field

of this square are about 25 meters in width and 80 meters in length. In the actual experiment, the track

36
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Figure 5.2: Main track and middle line

in figure3.1 was achieved by means of ground tape, where the boundary line of the road was taped in
yellow and black, and the dotted line in the middle of the road was realized by using white ground tape
as show in Figure5.2. The ground taping is achieved with the help of the supervisor and the local team
as in AppendixC.1.

In this experiment, video recognition techniques are used to extract the trajectory data of the e-bike
and e-scooter riders. The video extraction technique requires the camera to be set up in a high place,
and in this experiment, the aerial work platforms are used to lift the cameras. In order to ensure that the
data obtained by the video extraction technique is accurate and consistent, two groups of cameras are
used. Before the experiment started, the position of the two aerial trucks, as well as the exact height
of the lift, were adjusted to achieve the optimal position based on the real-time output from the camera.
Figure5.3 shows the position of the two aerial trucks during the experiment, as well as the track on
the ground, which was taped out with yellow&black tapes and white tapes. The area is covered with
standard square tiles of size 60 x 60 cm.It is regularly used by pedestrians, bicycles, and motor vehicles
within the campus. Therefore, the surface type can resemble real-world riding/cycling conditions.

Figure 5.3: One shot during the experiment

5.2. Micromobilty vehicles used in experiment
For practical reasons, we ended up obtaining three e-scooters on our own, the model being the Ninebot
E9 as shown in figure 5.4, with a top speed of 20 km/h. For the e-bikes as shown in figure5.5, we finally
obtained 4 e-bikes. Two of the e-bikes were regular ones; one was foldable, and the other one was a fat
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e-bike. This implies that the variety within the same e-modes (particularly e-bikes) should be critically
considered when analyzing the data.

The decision on these vehicles are done by the author, while the purchase and renting are done by
Chinese teams as in AppendixC.2

Figure 5.4: E-scooter

5.3. Participant recruitment
Regarding rider personal characteristics, combined with the actual recruitment of the experimental
participants, a broad coverage in age, and the equal level in gender and riding experience were difficult
to realize because the participants were mainly university students, with very little difference in age.
Most of them had similar experience in using e-scooter and e-bike but varying in familiarity level.

In terms of specific arrangements for the participants, two days prior to the experiment, the author
explained how they would be asked to ride on the day of the experiment. After the briefing, participants
were allowed to voluntarily choose the type of vehicle they wanted to ride. The participants who have
more experience in certain modes had the priority of using the corresponding mode in the experiment.
Finally, the male/female ratios are 9/3, 8/4, and 9/3 for e-scooter, e-bike, and e-moped, respectively.
Although it is not 50/50, the effect of rider gender on micromobility interactions can be accommodated.

According to their willingness, the author group the participants. Once the e-scooter and e-bike groups
were formed, each participant was assigned a micromobility vehicle based on their height order. This
measure was taken because the limited number of e-bikes required three people to share one vehicle,
and similar heights ensured that they did not need to adjust the seat height throughout the experiment.
After completing the grouping, the participants familiarized themselves with and test drove the vehicles
they would use during the experiment.

After completing group assignment, participants familiarized themselves with and test drove the ve-
hicles they would use during the experiment, ensuring they were qualified as riders of the assigned
modes, despite varying levels of user experience and familiarity. According to[64],riding a bicycle in-
volves a combination of tasks executed based on rules for performingmaneuvers and automatic actions
for split-second control of the bicycle. We posit that a similar operational process of actions and reac-
tions applies to micromobility traffic. By providing participants with the opportunity and sufficient time
to familiarize themselves with riding the vehicles (particularly e-scooters and e-bikes), their riding and
interactive maneuvers are expected to reflect their natural behavior under split-second decision-making
conditions.
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((a)) E-bike a ((b)) Foldable e-bike b

((c)) E-bike c ((d)) Fat e-bike d

Figure 5.5: E-bikes

And a unique ID system is used to identify the participants during the experiment, the design of this
system, is a joint work by the author and the supervisor. And the recruitment of the participants is a
joint of author and the local team. Then the instruction, grouping and measurement of the height is
joint work of the author, local team and the supervisor. The details on each one’s contribution is shown
in AppendixC.3.

5.4. Experiment schedule
Although a theoretical schedule for each scenario’s duration was initially outlined in section3.7, these
planned durations proved to be excessive for each scenario in practice. To minimize the potential
effects of learning bias, it was necessary to reduce the riding time. The actual schedule implemented
during the experiment is presented in Table5.1.

It’s important to note that while the scenario numbers and names remain consistent with those in sec-
tion3.7, the actual order of implementation differed during the experiment. As mentioned in section3.7,
if transitions between scenarios and rounds were executed efficiently, the actual duration could be
shorter than the planned time.

Table5.2 displays the true duration of each scenario upon completion of the experiment. The scenario
numbers here are the order in which the experiments were actually performed on the day of the ex-
periment. This data provides a realistic picture of the time required for each experimental scenario,
reflecting the adjustments made to optimize the experimental process and reduce potential learning
effects among participants.
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Table 5.1: Schedule used on experiment day
Where Rd stands for Round;ovt stands for overtaking; ovn stands for overtaken,; Dur.Rd. stands for duration of a

round;Dur.Sc. stands for duration of a scenario

Sc. No Sc. Name Rd. No EB ES B Dur. Rd. Dur. Sc.(min)
ovt ovn ovt ovn ovn

2 Ov-bike2

1 3 - - - 3 5

202 3 - - - 3 5
3 3 - - - 3 5
4 3 - - - 3 5

3 Ov-inter2

1 3 - 3 - - 5

202 3 - 3 - - 5
3 3 - 3 - - 5
4 3 - 3 - - 5

4 Ov-intra2

1 2 2 - - - 5

30

2 2 2 - - - 5
3 2 2 - - - 5
4 2 2 - - - 5
5 2 2 - - - 5
6 2 2 - - - 5

5 Ov-bike2

1 - 3 - 3 - 5

202 - 3 - 3 - 5
3 - 3 - 3 - 5
4 - 3 - 3 - 5

6 Ov-inter2

1 - 3 3 - - 5

202 - 3 3 - - 5
3 - 3 3 - - 5
4 - 3 3 - - 5

7 Ov-intra2

1 - 2 1 - - 5

30

2 - 1 2 - - 5
3 - 1 2 - - 5
4 - 1 2 - - 5
5 - 1 2 - - 5
6 - 1 2 - - 5
Where scenario 1 is non-interactive scenario

5.5. Data Collection equipment setup
5.5.1. Cameras setup
The experiment finally used four cameras of Dahua as shown in Figure5.6(a). The four cameras are
divided into two sets to cover the whole range with overlapping area to trajectory stitching purposes.
Before the start of the experiment, the camera was secured to the railing of the aerial truck, which
was physically mounted using wire as shown in figure5.6(b). The offset angle and focal length of the
camera, as well as the position of the aerial work truck and the final operating height, were all adjusted
repeatedly according to the output picture of the camera, which was accomplished after achieving
the effect of clear video effect and reasonable coverage. The final four cameras all output video in
1920*1080, 20fps format, where each focal length is set as shown in the table5.3.

The acquisition and transport of the camera was done with the assistance of the Beijing team, and
the setup is a joint work of the author and the supervisor both software and hardware as shown in
AppendixC.4.

5.5.2. IMU
The Figure5.7shows the IMU device mounted on the e-scooter’s steering stem. BNO-055 has a built-in
Kalman filter algorithm that directly outputs roll, yaw, and pitch angle and rate data.

It is worth noting that due to the limitation of the number of IMU devices. During the experiment, only
one e-scooter, number two in table AppendixF.2, carried the device; for the e-bike, it was equipped only
on the e-bike in figure5.5(a). And throughout the experiment, neither vehicle is treated as the overtaken
vehicle.
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Table 5.2: Actual Scenarios Duration

Scenario No. Start Time End Time Duration (min)
2 08:58:00 09:27:00 29
3 09:27:00 09:42:00 15
4 09:59:00 10:24:00 25
5 10:25:00 10:45:00 20
6 10:50:00 11:10:00 20
7 11:11:00 11:27:00 16

Where scenario 1 is non-interactive scenario

((a)) Cameras ((b)) Cameras mounting on the railing

Figure 5.6: Comparison of different camera setups

The IMU device were provided by the Beijing team including the setup as shown in AppendixC.5.

5.6. Experiment execution
The experiment was conducted on May 26, 2024, at the Hebei University of Water Resources and Elec-
tric Engineering. Participants were provided with white T-shirts and red caps, as shown in Figure5.9,
which they wore throughout the experiment to ensure consistent visibility in camera images. Each par-
ticipant was assigned a unique identification code, consisting of a specific shape and a Roman numeral,
as described in section5.3.

This identification code was implemented in two forms. One set was affixed to the T-shirts, serving to
assist supervisors in monitoring the experimental process. The second set was placed on the caps, with
the code size on the cap brim designed to be sufficiently large for camera visibility. The cap-mounted
codes were primarily intended to aid in trajectory calibration, allowing for easy identification of vehicle
types and gender information during data analysis.

For most design scenarios, participants were instructed to perform their riding tasks in a sequential
order, eliminating the need for participants to wait for others to complete a lap before entering the track.
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Table 5.3: Camera Settings

Name of camera Zoom Step Length Focus Step Length Camera Height
L1 560 1988 14,5 m
L2 560 1926 14.5 m
R1 560 1982 15.1 m
R2 560 1976 15.1 m

Figure 5.7: E-scooter with IMU

This arrangement expedited most overtaking and bypassing scenarios.

To ensure sufficient interactivemaneuvers were triggered and captured by cameras in designated areas,
multiple vehicles were simultaneously present on both paths shown in Figure3.3, rather than just one
vehicle per path. The specific number of vehicles for each scenario and round is detailed in Table5.1.
Furthermore, as mentioned in section3.5, experiment supervisors could slightly control the timing of
participants re-entering the designed track after completing a lap, maximizing the likelihood of triggering
overtaking maneuvers.

On the day of the experiment, to more effectively capture the overtaking behavior of e-bikes and e-
scooters, the experimental path was modified to the form shown in Figure5.8. Unlike the initially
designed complete circular path, the modified experimental path no longer required participants to
overtake spontaneously. Instead, experimental monitors were stationed on both sides of the field, re-
sponsible for controlling the entry timing of overtaking and overtaken participants in each round of the
experiment to ensure the occurrence of overtaking behavior. The main reason for adopting this strat-
egy lies in the relatively small sample size of e-bikes and e-scooters. By controlling the entry timing,
the time consumed by experimental participants to complete sufficient overtaking behaviors through
meaningless riding can be saved. This meaningless riding may lead to the emergence of the learn

Figure 5.8: Path of intra mode overtaking
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effect, which could affect the validity of the experimental results.

By modifying the experimental path and introducing the control of experimental monitors, this study
minimizes the influence of the learn effect while ensuring the acquisition of sufficient overtaking behavior
samples. This adjustment in the experimental design helps to improve the efficiency of data collection
and ensures that the collected data can more accurately reflect the true behavioral characteristics of
e-bikes and e-scooters during the overtaking process.

The cameras and IMU units began recording simultaneously after camera parameter adjustments. The
researcher then guided participants on the appropriate times to enter the designed track according to
the pre-defined schedule. Once on the track, participants followed their designated paths and per-
formed their assigned tasks.

This detailed experimental setup and execution process demonstrates the careful planning and real-
time management required to ensure the collection of relevant data for analyzing micromobility interac-
tions, particularly overtaking behaviors.

((a)) Caps ((b)) T-shirt

Figure 5.9: Caps and T-shirts

During the whole experiment, the video was recorded without a break, and the experimental researcher
was closely monitoring the experiments to prevent accidents or disruptions to the experimental plan.
Figure5.10 shows one shot from camera L2 during one e-scooter overtake one bicycle.

Figure 5.10: One shot from camera L2 during overtaking

Throughout the course of the experiment, the actual riding time of the riders was only about one-fifth of
the total length of the experiment, and the fatigue level of the experimenters was very low because of
the small amount of physical energy needed to be consumed to ride the e-scooter and e-bike. Moreover,
there were sufficient sunshades for experimental participants to rest during their free time, and the local
logistic team provided sufficient logistic support for the participants, including purchasing and providing
watermelons, beverages, and snacks. Therefore, the learning effect due to exhaustion was artificially
absent in this study.
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Second, the learning effect due to mutual learning and familiarity with the same task was also eliminated
as much as possible. In this experiment, each participant engages in different scenarios, completing
four laps within each scenario. During these laps, participants perform four overtaking maneuvers,
providing multiple data points per individual under consistent conditions.

This design effectively controls for learning effects by introducing variation across scenarios, so while
each participant encounters only one session per scenario, the repeated overtakes within each session
help capture intra-scenario behavior. The four laps per scenario allow us to observe consistent over-
taking patterns and subtle behavioral differences within a single context, thereby balancing the need
for representativeness and capturing individual behavior variability.

The object of overtaking is different each time. In addition, the learning effect due to observing the be-
havior of other experimental participants was also objectively weakened, according to the researchers’
observation that the vast majority of experimental participants were playing with their cell phones, etc.,
in their free time.

Of course during the trial there was some joint work, especially in terms of logistics support, which is
shown in AppendixC.6.

5.7. Clarify on contribution
During the execution of the experiment, the author received help from the supervisor and the Chinese
team.

The team from China provided the purchase and rental of almost all equipment, including cameras,
IMUs, and experimental vehicles. The Chinese team also provided participant recruitment and logis-
tical support during the experiment. The setup of the IMU and the data collection of IMU during the
experiment were also handled by the Chinese team.

The author and his supervisor are mainly responsible for the specific implementation of each step. The
author of this thesis arrived at the test site a week before the experiment date, received the equipment
and set them up. During the preparation week, the author communicated with the supervisor timely
about the situation to make up for the selection and purchase of some equipment, such as shirts and
caps. And jointly, after grouping the experimenters, the author and the supervisor conducted training
participants and measured heights, and jointly served as experimental supervisors on the day of the
experiment. Of course, in the specific implementation process, the author and the supervisor also
received help from the Chinese team, especially in transporting equipment and providing venues.

The details of every single step is shown in the AppendixC.
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Data processing

This section describes, the specific implementation of the video data processing process. The se-
quence of execution follows exactly the data flow described in section4.1. The results of the data
processed through this sequence are used to support the data analysis in the next section.

6.1. Video data processing
6.1.1. Video format conversion
This research employs HandBrake, a free video conversion tool, to convert HEVC format video files to
MP4 format. Handbrake can process most common multimedia files and any DVD sources that do not
contain any kind of copy protection, and it could output .MP4 videos with H.264, MPEG-4 encoding[65].

Through this step, video files that originally could only run on specific computers can now be processed
and analyzed on various computers with different configurations. This not only improves the portability
of the video files but also lays a solid foundation for subsequent research work.

6.1.2. Pixel trajectory extraction
Figure6.1 shows the working of MODT tool in identifying a pair of overtaking pairs. Figure6.2 shows
the sample trajectory extracted from one video of each camera.

For calculating the exact start time of each video, Figure 6.3, which contains two images, shows an
example. As can be seen, the time in the upper right corner transitions from 10:12:32 to 10:13:33. By
manually extracting the first fifty frames, we are able to count them manually and find that at frame
13, the video time changes from 10:13:32 to 10:13:33. Given that the video frame rate is 19.98 FPS
(frames per second), we can calculate the exact start time of the video as follows:

10:13:33.000−
(
1000

19.98

)
× 12 = 10:13:32.400.

Thus, we can determine the exact start time of each video.

After completing the preliminary extraction, the data format was first organized and the data was inte-
grated into a table. There are six columns in total, namely X coordinate (unit: pixel), Y coordinate (unit:
pixel), and trajectory ID, relative video time, frame number, precise Beijing time. The relative video time
and frame number are retained to prepare for time alignment in the subsequent process. The trajec-
tory extracted in the first step has detection errors, including the detection of some non-experimental
research objects, detection errors, trajectory disconnection due to shadow interference, etc. These
errors will be fixed during subsequent processing.

The parameters used in this process include RGB values, standard deviation, camera detection range,
and the precise start time of each video are in table Appendix G.1, G.2 and G.3,G.4,G.5 and ,G.6.

45
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Figure 6.1: A snapshot when MODT tool extracting pixel trajectory from L1 camera

Table 6.1: Scale table

Camera R1 R2 L1 L2
Scale 0.012 0.012 0.013 0.013

6.1.3. Image Correction
Figure6.4 and Figure6.5 respectively show the uncorrected pictures and corrected pictures of the four
cameras R1-R2-L1-L2 (order from right to left) as shown in Figure3.4. And the table6.2 shows the
parameter used for the Figure6.4 and Figure6.5. The R1 and R2 parameters in table6.2 are the pa-
rameters used for all videos.The parameters for L1 and L2 will be put in an independent Excel file in
the name of ParameterImageCorL1 and ParameterImageCorL2, as there are too many columns and
rows.

In Figure 6.5, the black border is present because during the transformation of the original image, some
of the transformed pixel values exceed the range of 1920*1080. To ensure that the trajectories are not
lost after the transformation, a larger canvas is needed to accommodate the image, and the black base
serves as this canvas. In this study, the canvas size was chosen to be 2560*1600, which is the screen
resolution of the computer used by the data processing personnel.

By calculating the average scale from the video frames, a scale table6.1 was obtained for these four
cameras. The scale parameter is an average value, which is calculated by manually counting the
number of standard-sized floor tiles and determining the total physical length in the X direction, then
dividing it by the pixel length of 1920 in the X direction.

It is important to highlight that the aerial work platform, which held the L1 and L2 cameras in a fixed
position, experienced a gradual tilting motion throughout the experiment. This tilting was not uniform; it
included a sudden tilt from the right to the left, followed by a slow tilt from the left back to the right. This
continuous change in camera orientation presented a significant challenge for data processing and
analysis. To address this issue, each video captured by the L1 and L2 cameras was divided into ten
equal segments. This segmentation approach was necessitated by the constantly changing camera
angles, which meant that a single set of parameters could not be used to convert the entire video to
a vertical downward perspective. Instead, parameters needed to be adjusted continuously to account
for the changing viewpoint. The decision to divide each video into ten segments was based on several
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((a)) L1 trajectory step 1 ((b)) Pixel trajectory of R1

((c)) Pixel trajectory of R2 ((d)) Pixel trajectory of L2

Figure 6.2: Samples of extracted Trajectories of L1, R1, R2, and L2

factors:

1. Video Duration: Each video was approximately 20 minutes long.
2. Observational Data: Practical observations indicated that within a 2-minute timeframe, the cam-

era shift was not significantly noticeable.
3. Balance Between Accuracy and Efficiency: Dividing the videos into 10 segments (approximately

2 minutes each) struck a balance between capturing the changing camera angles with sufficient
accuracy and maintaining computational efficiency in the data processing pipeline.

This segmentation approach allowed for more accurate transformation of the video data to a consistent
vertical perspective, despite the ongoing changes in camera orientation. By applying different correc-
tion parameters to each segment, we were able to mitigate the effects of the platform’s tilting motion
on our trajectory data.

Figure6.6shows the comparison of the trajectory data of the first video from the R1 camera before and
after correction.

6.1.4. Height projection
The input parameters required for the height projection algorithm include the camera height in me-
ters, the camera coordinates in meters, and the height of the detected object that needs to be height-
projected. The camera height is measured on the day of the experiment. The camera position is
actually an intermediate calculated value in the Imagetracker tool in step 2.The camera position cal-
culated in the image correction step is relative to the center of the 2560x1600 canvas. However, the
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Figure 6.3: Time change for an example video

Figure 6.4: Camera image before transform

origin of the trajectory position is located at the top-left corner of the 2560x1600 canvas. Figure6.7
shows these two coordinates.

To align the camera coordinates with the trajectory coordinate system, we need to perform a coordinate
transformation by equation6.1.Where x’ and y’ represent the camera position calculated in step 2.

x = x′ +
2560

2
· scale

y = y′ +
1600

2
· scale

(6.1)

After determining the camera coordinates, another input parameter that needs to be determined is
the height of the tracked object. On the day of the experiment, the sitting or standing height of each
participant was measured for each type of vehicle involved. Based on the vehicles involved in each
video, an average height approach is adopted in this study. The specific parameter table can be found
in the Appendix tableG.7 and G.8.

the scene, eliminating the distortion introduced by the camera’s elevated viewpoint. Figure6.8 shows
the change in a trajectory with an ID of 2 from the R1 camera after height projection. It can be observed
that due to the lower position of the camera, the trajectory shifts downward as a whole after the height

Figure 6.5: Camera image after correction
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((a)) R1 first video’s trajectory before correction ((b)) R1 first video’s trajectory after correction

Figure 6.6: Comparison of R1 trajectory before and after correction

Table 6.2: Camera Parameters for Image Correction (R1 and R2)

Parameter R1 Value R2 Value L1 Value L2 Value

Rotation (degrees) 15 -5.5 6 -2.5
Wedge Angle X (degrees) -22 -4 -11 1
Wedge Angle Y (degrees) -14 -1 -16 1.5
Elevation (units) 1258 1258 1,115 1,115

The parameters used for for image correction for R1 and R2 cameras; they are also used for the example. The parameter for
L1 and L2 will be put in an independent Excel file, as there are too many columns and rows

Figure 6.7: Camera position with two coordinates
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projection. To verify the reasonableness of this process, Figure6.8 presents one frame of the trajectory
with an ID of 2 from the R1 camera. It can be seen that the trajectory after height projection should
indeed be located lower.

((a)) Height projection visualization ((b)) Verification on reasonableness of height projection

Figure 6.8: Height projection example

6.1.5. Combine video files from the same camera
The selection of distance and time thresholds D and T of algorithm1, set at 6 meters and 2 seconds re-
spectively, was based on careful consideration of the experimental conditions and data characteristics.
The time threshold of 2 seconds was primarily determined by the inherent limitations of the computer
processing capabilities, which resulted in a minimal gap between consecutive videos of approximately
2 seconds. The spatial coverage of each camera was limited, with fast-moving vehicles typically ap-
pearing in a single camera’s field of view for only 3 to 4 seconds. Analysis of fast-moving vehicle
trajectories from R2 camera between 8:58:26 and 9:25:20 revealed an average trajectory duration of
3.3 seconds. In contrast, slower vehicles exhibited an average dwell time of 9.8 seconds, with a mean
velocity of 2.2 meters per second. Given these parameters, the algorithm was primarily designed to de-
tect and reconcile fragmented trajectories of slower vehicles. The trajectories of faster vehicles, due to
their brief duration closely matching the inter-video intervals, were less likely to require merging across
video segments.

However, post-implementation analysis, including manual verification, revealed that the actual need for
trajectory merging was minimal. This can be attributed to two main factors:

1. The limited scale of the experiment resulted in few instances of trajectories spanning across video
segments.

2. The intervals between successive videos often exceeded 3 seconds, sometimes extending to
over 10 seconds, which surpassed our initial estimations.

Consequently, the algorithm’s execution on the current dataset did not identify any trajectories requiring
merging. Nevertheless, the inclusion of this algorithm in the processing pipeline remains valuable for
potential future scenarios where experimental conditions or data characteristics may necessitate its
application.

Figure 6.9 illustrates the final picture of all the video data from the four cameras after image correction
and height projection. However, it is evident that the tracks still contain a significant number of errors.
These errors will be addressed and corrected in the subsequent step of the data processing pipeline.

6.1.6. Fixes for trajectory errors
Manual Trajectory Filtering and U-turn Handling
For the detected U-turn behaviors, the method of handling them is to truncate the U-turn portion of the
trajectory. Figure 6.10(a) illustrates the detection of U-turns, early exits, and non-experimental subjects,
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((a)) R1 trajectories after image correction and height projection ((b)) R2 trajectories after image correction and height projection

((c)) L1 trajectories after image correction and height projection ((d)) L2 trajectories after image correction and height projection

Figure 6.9: Unprocessed trajectories from cameras R1, R2, L1, and L2. Note: Trajectories shown are raw and have not
undergone error detection.

all of which are highlighted within the red circles in the image.

The rightmost red circle denotes U-turn. The red circles with X-coordinates between 16 and 18 me-
ters indicate participants who prematurely exited the experiment. The annotations with X-coordinates
between 14 and 16 meters represent detected objects that were not part of the experimental cohort
(in this instance, these were experimenters wearing hats who traversed the area during the idle time
between two scenarios).

Figure 6.10(b) presents the trajectories after manually processing these errors. The trajectory images
of the remaining three cameras after deletion are shown in Figure6.11.

Handle split trajectory
After removing the obviously erroneous trajectories, the second step of the processing pipeline involves
handling trajectories that are fragmented due to shadows.

Two thresholds were established for the algorithm2:a temporal threshold and a spatial threshold. Vi-
sual analysis of the image4.3(a) revealed that the shadow coverage typically spanned approximately
three standard tiles, equating to a length of 1.8 meters. Consequently, the spatial threshold was set
at 3 meters. This extended threshold accounts for potential variations in shadow length and the dis-
crete nature of frame-by-frame analysis. The temporal threshold was set at 2 seconds, derived from
the estimated time required for a slow-moving vehicle to traverse the 3-meter spatial threshold. This
estimation considers that the shadow effect might persist across multiple frames (approximately five
frames in our observations), potentially extending the affected area beyond the observed 1.8 meters
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((a)) All R1 Trajectories with Errors ((b)) R1 Trajectory After Manually Removing Wrong IDs

Figure 6.10: Comparison of R1 Trajectories

((a)) R2 Trajectories After Manual ID
Removal

((b)) L1 Trajectories After Manual ID
Removal

((c)) L2 Trajectories After Manual ID
Removal

Figure 6.11: Comparison of Trajectories After Manual ID Removal

due to the discrete sampling inherent in frame-by-frame analysis.

Figure 6.12 illustrates the results of trajectory processing for camera R1, where trajectories were initially
disrupted by shadows. This phenomenon was observed across multiple cameras, with the processed
trajectory data for the remaining cameras presented in the Appendix figureG.1(b). The algorithm can
handle 100% of all trajectories that are split by shadows.

Jump point fix
The process of setting distance thresholds for separation Algorithm3 involves a largely manual ap-
proach. By utilizing MATLAB’s visualization tools and considering the relatively small number of trajec-
tories, we can identify all of the trajectories with jump points as shown in figure4.4(a). After calculating
the distance from the jump point i to i + 1 of these trajectory with jump points, the selected threshold
values should be less than the minimum calculated distance. This is to ensure that we can split all of
the error trajectories shown by figure4.4(a) at the jump point. Finally, the thresholds are selected 0.7
meters for the two cameras on the right side and 0.9 meters for the two cameras on the left side.

When setting the distance threshold for match and merge Algorithm4, it is essential to ensure that the
threshold is larger than the distance between the jump point i and the next point i + 1 in the correct
ID part. For example, in Figure6.12(b) this means the distance between ID 522 and ID 763(where
763 is the bule trajectory with Y coordinates lie between 11m and 12m) This can be roughly calculated
using MATLAB’s interactive plotting tool. In this study, a distance threshold of 2 meters was ultimately
adopted for all cameras.

Regarding the time threshold, the minimum speed of slow vehicles was taken into consideration. Since
the minimum speed of slow vehicles is sometimes could reach 2 m/s,If the slowest car passes through
the breakpoint, it takes 1s, and the time threshold is chosen to be greater than one second. a time
threshold of 2 seconds(the first whole value larger than 1) was chosen.
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((a)) Split Trajectory R1 ((b)) Interpolated Split Trajectories R1

Figure 6.12: Split and Interpolated Split Trajectories for R1

As for the Y-axis threshold, it is based on the assumption that the movement direction should be con-
sistent within a short time for the same trajectory. Therefore, a threshold of 0.5 meters was selected,
which corresponds to an angle of approximately 20 degrees calculated by arctan(Δy/Δx).The trajectory
after jump point fix of R1 is shown in Figure6.13.

Figure 6.13: Trajectory after jumpoint fix R1

Scenario separation
The Table6.3 shows the result of the scenario separation. Each scenario has a separate file.This table
also shows which cameras recorded the different scenarios respectively.

During the experimental procedure, data loss occurred in specific scenarios due to technical limitations
of the recording equipment. Specifically, the computer responsible for video capture from both cam-
eras in region R2 failed to record data for scenarios 5, 6, and 7. Additionally, region R1 experienced
data loss for scenario 1. The most probable cause of this data loss is attributed to the performance con-
straints of the laptop computers utilized for storage, resulting in incomplete video preservation. Given
the irretrievable nature of the lost data, it was not feasible to reconstruct the missing information. Con-
sequently, our methodological approach adhered to the principle of maximizing data utilization within
the constraints of the available information. This principle was consistently applied throughout the
subsequent data processing and analysis phases.

6.1.7. Time synchronization
Figure6.14 shows an example to fix the time between R1 and R2. To determine the time difference
between the rider’s positions in the R1 and R2 data, we can utilize the precise timestamps obtained
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Table 6.3: Scenario Time and Captured Cameras

Scenario No. Start Time End Time Captured Cameras
2 08:58:00 09:27:00 R1, R2,L1, L2
3 09:27:00 09:42:00 R1, R2,L1, L2
4 09:59:00 10:24:00 R1, R2,L1, L2
5 10:25:00 10:45:00 R1, L1, L2
6 10:50:00 11:10:00 R1, L1, L2
7 11:11:00 11:27:00 L1, L2

Where number 1 is non-interactive scenario starting from 08:40:00 until 08:55:00

((a)) Time fix example of camera R1

((b)) Time fix example of camera R2

Figure 6.14: Time fix examples for cameras R1 and R2

from the pixel trajectory extraction process described in Section 4.1.2. By manually identifying the
rider’s position using the red hat as a reference point, we can associate these positions with their
corresponding timestamps in the R1 and R2 data. The precise timestamp for the rider in the R1 data is
8:59:12.992, while in the R2 data, the timestamp is 8:59:12.069. By calculating the difference between
these two timestamps, we can determine the time offset between the R1 and R2 data for this specific
rider. Let tR1 and tR2 denote the timestamps for the rider in the R1 and R2 data, respectively. The time
difference ∆t can be calculated as follows:

∆t = tR1 − tR2 = 8 : 59 : 12.992− 8 : 59 : 12.069 = 0.923 seconds (6.2)

Therefore, based on the manual identification of the rider’s position using the red hat and the precise
timestamps obtained from the pixel trajectory extraction, we can conclude that there is a time offset of
0.923 seconds between the R1 and R2 data for this particular rider.

It is important to note that when attempting to identify the exact position where an experimental partici-
pant appears simultaneously in the overlapping field of view of two cameras, perfect alignment is often
unattainable. This discrepancy primarily arises from the discrete nature of video images, which are
captured at specific frame rates rather than continuously. Consequently, it is challenging to guarantee
a perfect matching point between the two camera feeds. To mitigate this issue and ensure the highest
possible accuracy in position matching, we implemented a methodological approach. For each camera,
we extracted a sequence of 20 frames surrounding the target time. From these frame sequences, we
then identified the pair of frames (one from each camera) that exhibited the closest spatial correspon-
dence for the participant’s position. This method allows us to approximate the optimal matching point
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within the constraints of the discrete frame-based nature of video data.

6.1.8. Merging of multi-camera trajectories
In the pairwise merging algorithm, there is an important threshold called the time threshold. The time
threshold is used to find the closest t2’ (the time point in R2 that is closest to t2 in R1), and its significance
lies in several aspects. Firstly, although the timestamps in the dataset are precise to the millisecond,
the video frames correspond to discrete time points rather than being perfectly continuous. As a result,
the closest t2’ found may not be exactly equal to t2. Therefore, a threshold is needed to accommodate
this discrepancy. In this study, the time threshold is set to 0.2 seconds.

Furthermore, due to the offset between the two cameras on the left side (L1 and R2), there is a period
when L1 and R2 do not have an overlapping range. Consequently, a reasonable time matching range
needs to be set to ensure that trajectories can still be matched even when there is no overlap. In this
case, the threshold is set to 6 seconds. The main reason for setting the threshold to 6 seconds is that
the maximum non-overlapping range between L1 and R2 is close to 12 meters, and the minimum speed
of slow vehicles could read 2m/s, then it took 6s. By allowing a time matching range of 6 seconds, the
algorithm can still effectively match trajectories even when there is a significant spatial gap between
the camera views.

During the pairwise merging process, the author discovered that the merging of trajectories from cam-
eras L1 and L2 often produced unreasonable results. This issue manifested as a significant number of
trajectories in each scenario having merged lengths much greater than the expected real-world lengths
as shown in the green rectangle of Figure6.15. The root cause of this phenomenon lies in the fact that
the precise time corresponding to each frame is the primary variable determining whether two trajecto-
ries can be reasonably merged in the pairwise merging algorithm. When the time of one of the cameras
is problematic, the matching and merging results will be affected, as time is used as the first matching
dimension.

((a)) The L1-L2 merger process for Scenario 3 ((b)) The L1-L2 merger process for Scenario 5

Figure 6.15: The merged result of camera L1 and L2

For example, if a trajectory in L1 has a calculated end time of tL1, theoretically, there should be a
corresponding point with the same time tL1 in the L2 camera data after time correction. These two
points should have the same physical coordinates, meaning they should be within the overlapping
range of the cameras. However, the frame rate of the video recorded by the L2 camera was not stable.
Although the overall frame rate of L2 videos could be maintained at around 20 frames per second, some
parts had higher frame rates while others had lower and more fluctuating frame rates. This led to many
trajectories having calculated precise Beijing times that did not match the actual situation. Sometimes,
the calculated time was later than the actual Beijing time, causing the theoretical corresponding physical
coordinates of tL1 in L2 to fall outside the overlapping range of the cameras, resulting in an elongation
of the overall merged trajectory. This issue was present in almost all scenarios’ data, and the calculated
time was difficult to repair due to its nature as a computed value. Considering the actual data situation,
where most overtaking behaviors were completed before the L2 camera, and the large overlapping
range between L1 and L2 (with L1 covering half of L2’s range), the data from the L2 camera was
discarded in subsequent processing.



6.1. Video data processing 56

Figure6.16(a) and Figure6.16(b) show results of the processing of R2-L1 in scenarios 2 and 3. Where
green represents data from R2, red represents data from L1, and black represents the connection part.

((a)) Merged Trajectories for R2-L1 Scenario 2 ((b)) Merge of R2-L1 Scenario 3

Figure 6.16: EXample R2-L1 merged trajectories in scenario 2 and 3

After completing the two-by-two merger, the work of combining the trajectories of the three cameras
R1R2L1 based on the common portion of R2 as a medium is to be carried out. Figure6.17 shows result
of triple camera merging of scenario 3.

6.1.9. Freezing point handle
In this step, the algorithm 7 will first detect consecutive points with the same position on each trajectory
and replace the X, Y coordinates of the first of these points that stays in place. Table6.4 and Table6.5
shows an exapmle of the standsstill point and its result after smoothing.

Table 6.4: Original Trajectory (Stationary Point)

Trajectory ID X Coordinate Y Coordinate Timestamp Camera
12 28.761 11.070 34 206.673 R2
12 28.761 11.070 34 206.723 R2
12 29.006 11.092 34 206.773 R2

Note: All points are stationary with identical or minimal coordinate changes.

6.1.10. Accuracy validation
Figure 6.18 demonstrates the principle of lateral accuracy validation. The blue lines in the image repre-
sent the actual lateral distance between two experimental participants. Visual inspection indicates that
this distance spans approximately two floor tiles, which corresponds to 1.2 meters. We can corroborate
this visual estimation by examining the coordinate data for the corresponding frame, as shown in Table

Figure 6.17: R1R2L1 merged result of scenario3
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Table 6.5: Transformed Trajectory (Moving Points)

Tajectory ID X Coordinate Y Coordinate Timestamp Camera
12 28.761 11.070 34 207.023 R2
12 28.884 11.081 34 207.073 R2
12 29.006 11.092 34 207.123 R2

Note: Points have been transformed to indicate movement.

6.6. The data reveals a difference in Y-coordinates of 1.2206 meters, which closely aligns with our
visual assessment.

Figure 6.18: An example of accuracy validation of camera L1

Table 6.6: Position Data for Frame 102 of L1

Frame Number Y (meters)
102 14.1371
102 12.9044

Figure 6.19 demonstrates the principle of longitudinal accuracy validation. The two red lines in Fig-
ure6.19(a) and in Figure6.19(b) in the image represent the actual longitudinal distance traveled by one
participant during one second. Visual inspection indicates that this distance spans approximately 3
floor tiles, which corresponds to 1.8 meters. We can corroborate this visual estimation by examining
the coordinate data for the corresponding frame, as shown in Table 6.7. The data reveals a difference
in X-coordinates of 1.61 meters, which aligns with our visual assessment.

Through multiple comparisons of this nature, we can establish confidence in the accuracy of our trajec-
tory data.For both the X and Y directions, thirty data were selected. For the Y direction, the average
error was 0.094 meters. For the X direction, the overall difference was 0.196 meters. In percentage
terms, the error/actual value in the X-direction and Y-direction is 6.1% and 7.8%, respectively, as de-
tailed in the table of data in the AppendixD.1 and D.2. Regarding speed, direct validation is not possible.
However, in validating the longitudinal direction, we only selected thirty trajectories that closely followed
linear motion. Assuming the speed is directed along the X-axis, the error of 0.196 meters would result
in a similar magnitude of error when calculating the average speed per second, which is 0.196 meter-
s/second. The same applies to acceleration. However, this is an average calculated over one second;
when calculating the value at each point, there should still be considerable fluctuations. These fluctu-
ations can be addressed using a moving average method. In the subsequent data analysis process,
the average speed and deceleration we calculated align with the performance levels of the vehicles we
purchased and the values found in related literature. These points will be discussed in detail in Section
7.1.

This validation process confirms that the data obtained after our series of processing steps adequately
reflects the riders’ behaviors. The close correspondence between visual cues and processed data
coordinates substantiates the reliability of our methodology in capturing and representing the spatial
relationships of participants throughout the experiment. This validation approach not only verifies the
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((a)) An example of accuracy validation of camera R2 (Image 1) ((b)) An example of accuracy validation of camera R2 (Image 2)

Figure 6.19: Accuracy validation of camera R1

Table 6.7: Position Data for Frame 460 and 480 of R2

Frame Number X (meters)
460 14.5824
480 12.9711

accuracy of our data processing pipeline but also reinforces the validity of subsequent analyses based
on these trajectories. It provides a crucial foundation for the interpretation of rider behaviors and inter-
actions derived from this dataset.

6.1.11. Trajectory Labeling
Table6.8 shows the available overtaking pairs in each of the six scenarios involving overtaking. Ideally,
each scenario should have 48 overtaking pairs, meaning that each of the 12 experimental participants
has four overtaking behaviors. However, the author discovered some issues during the labeling process
that led to fewer than 48 pairs in multiple scenarios. These reasons include:

1. Due to the relatively large interval between two consecutive videos, as mentioned earlier, one
or two pairs in each scenario were not recorded or only partially recorded the trajectory of the
overtaken vehicle.

2. In some cases, the camera suddenly blurred, resulting in the failure to record the trajectories that
occurred precisely during this situation.

These reasons contributed to the final missing one or two overtaking pairs in some scenarios. How-
ever, overall, the vast majority of experimental participants were recorded performing four overtaking
behaviors, although some scenarios did not capture complete overtaking behaviors due to data loss.

Table 6.8: Number of Overtaking Pairs in Different Scenarios

Sce No Sce Vehicle Number of Overtaking Pairs Finally
2 EB-B 47
3 EB-ES 47
4 EB-EB 48
5 ES-B 47
6 ES-EB 46
7 ES-ES 48

Where scenario 1 is non-interactive scenario

In general, after a series of data processing steps, a relatively reliable trajectory data set was obtained
for the next step of data analysis. However, due to missing data, especially the missing R2 camera data,
the data in the E-scooter overtaking scenarios could not be used in many hypothesis tests. Therefore,
in the subsequent data analysis, E-bike-related scenarios would be dominated.



7
Data analysis

This section performs the data analysis process of section4.2 based on the output data from the data
processing. This series of analysis was performed to verify the influence of gender factor and micro-
mobility factor on cyclist behaviour. By testing the hypotheses in the 4.2, we examined the influence of
the upper level factors in the Figure2.3 on the decision-making level and the physical level. section7.8
Answers to subquestion 1,2.5 are given.

7.1. Descriptive statics
Before proceeding to detailed hypothesis testing, this section presents some descriptive statistics for
the micro variables.

Speed
In non-interactive conditions, the average traveling speed for E-bikes was 18.51 km/h (SD = 4.58 km/h),
while E-scooters traveled at an average speed of 15.38 km/h (SD = 3.72 km/h). These values, il-
lustrated in Figure7.1, indicate that E-bikes maintain a higher average speed than E-scooters under
non-interactive conditions. Whether it is statistically significant needs further verification, though.

Figure 7.1: Non-interactive E-bike and e-scooter riding speed

In non-interactive conditions, the average deceleration for E-bikes was 3.83m/s² (SD = 1.46m/s²), while
E-scooters had an average deceleration of 3.24 m/s² (SD = 0.97 m/s²) as shown in Figure7.2. These
findings align with existing research, such as the study by [58], which reported e-scooter deceleration
rates between -3.39 m/s² and -3.84 m/s².

Lateral distance
The lateral distance during the passing phase is particularly important in this study, as it reflects the

59



7.1. Descriptive statics 60

Figure 7.2: E-bike and E-scooter deceleration

overtaker’s lateral avoidance strategy, an essential aspect of path selection. The mean and standard
deviation of lateral distances for each overtaking scenario are shown below and in Figure7.3:

• E-bike overtaking bike: Mean ± SD: 1.25 ± 0.26 m
• E-bike overtaking e-bike: Mean ± SD: 1.31 ± 0.35 m
• E-bike overtaking e-scooter: Mean ± SD: 0.89 ± 0.34 m
• E-scooter overtaking bike: Mean ± SD: 1.21 ± 0.35 m
• E-scooter overtaking e-bike: Mean ± SD: 1.06 ± 0.31 m
• E-scooter overtaking e-scooter: Mean ± SD: 1.08 ± 0.40 m

Figure 7.3: Lateral distance of differenct scenario

Overtaking starting position
The overtaking start moment refers to the longitudinal distance between the overtaker and the overtaken
vehicle at the initiation of the overtakingmaneuver. Due to missing pre-passing phase data in Scenarios
5, 6, and 7 (E-scooter overtaking bike, E-scooter overtaking e-scooter, and E-scooter overtaking e-
bike), this analysis only includes Scenarios 2, 3, and 4. The means and standard deviations for these
scenarios are as follows and in Figure7.4:

• Scenario 2 (E-bike overtaking bike): Mean = 9.75 m, SD = 2.86 m
• Scenario 3 (E-bike overtaking e-scooter): Mean = 10.19 m, SD = 3.62 m
• Scenario 4 (E-bike overtaking e-bike): Mean = 7.80 m, SD = 4.93 m

Roll rate and roll angle
This study uses the absolute mean values of roll rate and roll angle, consistent with the methods of [28,
27]. Notably, due to incorrect IMU placement for E-scooters and missing trajectory data for Scenarios 5,
6, and 7, only data from Scenarios 3 and 4 were analyzed. Figure 7.5 and Figure7.6 show the variation
of roll angle and roll rate across three phases in Scenarios 3 and 4.

Scenario 3:
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Figure 7.4: starting position of overtaking

• Roll Angle (absolute mean):

– Before: Mean = 4.03°, SD = 2.56°
– During: Mean = 6.66°, SD = 3.71°
– After: Mean = 4.67°, SD = 2.65°

• Roll Rate (absolute mean):

– Before: Mean = 26.17°/s, SD = 3.64°/s
– During: Mean = 36.73°/s, SD = 11.57°/s
– After: Mean = 24.68°/s, SD = 7.56°/s

Scenario 4:

• Roll Angle (absolute mean):

– Before: Mean = 4.48°, SD = 2.87°
– During: Mean = 7.04°, SD = 4.46°
– After: Mean = 4.43°, SD = 4.16°

• Roll Rate (absolute mean):

– Before: Mean = 30.41°/s, SD = 6.52°/s
– During: Mean = 36.21°/s, SD = 25.33°/s
– After: Mean = 27.49°/s, SD = 12.59°/s

((a)) Roll angle across different phases in Scenario 3 ((b)) Roll rate across different phases in Scenario 3

Figure 7.5: Comparison of roll angle and roll rate across different phases in Scenario 3

Figure7.7 shows an example of the change in roll angle and roll rate over time for a trajectory in Scenario
4.
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((a)) Roll angle across different phases in Scenario 4 ((b)) Roll rate across different phases in Scenario 4

Figure 7.6: Comparison of roll angle and roll rate across different phases in Scenario 4

((a)) Roll angle over time of Pair 3 in scenario 4 ((b)) Roll rate over time of Pair 3 in scenario 4

Figure 7.7: Roll angle and roll rate over time example

7.2. Travel speed and dcceleration
7.2.1. Travel speed
This section first addresses Hypothesis 1, which examines the speed difference between e-bikes and
e-scooters in non-interactive scenarios. The goal is to test whether significant speed difference exist
between these two types of micromobility vehicles. The average traveling speed of e-bikes was 18.51
km/h, while the average traveling speed of e-scooters (Camera=R2 section) was 15.38 km/h. This
comparison confirms the hypothesis that there is a significant difference in speed between these two
micromobility types with p-value= 0.0000. This means that we accept alternative hypothesis 1.1.

This finding is also consistent with the actual specifications of the experimental vehicles we selected.
The e-scooter we chose has a maximum speed of only 20 km/h, while the e-bike has a minimum speed
limit of 25 km/h, even when using the pedaling mode. The reason the observed speeds are lower than
the maximum is that we are not asking the riders to reach their top speed. Instead, we are asking them
to maintain a speed that feels normal to them during regular riding.

Next, in line with Hypothesis 2, we examined gender differences in speed within e-bike and e-scooter
groups.

Figure7.8(a) shows the average speed of male and female riders using e-scooters. Gender was found
to have a significant influence on the average e-scooter riding speed. The results revealed that the
average riding speed of male riders was significantly higher than that of female riders, with male riders
having an average speed of 16.21 km/h and female riders having an average speed of 13.93 km/h,with
t-statistic of 4.1970 and a p-value of 0.0000 We performed the same analysis for e-bikes as shown in
Figure7.8(b). However, the results showed no significant difference between male and female riders in
terms of average riding speed for e-bikes, with male value of 19.70 m/s and female of 17.77 m/s, with
t-statistic of 1.602 and a p-value of 0.1170. We conditionally accept the alternative hypothesis 1.2, as
it is supported for e-scooters but not for e-bikes.

Moving forward, Hypothesis 3 explores the differences in speed among the three types of e-bikes
(regular, fat-tire, and foldable e-bikes). The ANOVA analysis on different types of e-bikes as Figure7.9
showed significant differences in the mean travel speeds between the three types of e-bikes (F(2, 37)
= 4.3, p = 0.0210).
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((a)) Average speed of e-scooter by gender

36 Male and 12 Female

((b)) Average speed of e-bike by gender

32 Male and 16 Female

Figure 7.8: Comparison of average speeds by gender for different electric vehicles

Figure 7.9: Speed of e-bike by e-bike type

Regular sample size: 21 Fat E-bike sample size: 11 Foldable E-bike sample size: 8

The results of Tukey’s HSD post hoc test are shown in the table below:

Table 7.1: Tukey HSD table for speed comparison of different types of e-bikes

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject
Fat e-bike Foldable E-bike -1.1067 0.061 -2.2555 0.042 False
Fat e-bike Regular E-bike 0.0177 0.9988 -0.9024 0.9379 False
Foldable E-bike Regular E-bike 1.1245 0.0293 0.0973 2.1516 True

The post hoc test results indicate that there is no significant difference in mean travel speed between
regular e-bikes (mean speed = 20.28 m/s) and fat-tire e-bikes (mean speed = 20.35 m/s) (p = 0.9988).
However, the mean travel speed of foldable e-bikes (mean speed = 16.30 m/s) is significantly lower
than that of regular e-bikes (p = 0.0293), but not significantly different from that of fat-tire e-bikes (p =
0.0610). We accept the null hypothesis 3.

It is important to note that the sample sizes for the different types of e-bikes in this study are relatively
small, particularly for fat-tire e-bikes (n=11) and foldable e-bikes (n=8). Larger sample sizes could
provide more reliable and robust results. Additionally, factors such as rider characteristics, battery
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capacity, motor power, and terrain may influence the observed differences in average travel speed
between different types of e-bikes.

7.2.2. Deceleration
The deceleration analysis also first addresses the hypothesis about deceleration, which compares
speed and deceleration differences between e-bikes and e-scooters in non-interactive scenarios. The
results indicated that there was a difference in the deceleration capabilities between the twomicromobil-
ity modes. The E-bike had an average deceleration rate 3.8262m/s2 and the E-scooter with an average
deceleration 3.2449m/s2, with a t statistic: 2.1668 and a p-value: 0.0332. Therefore, we accept the
alternative hypothesis 2.1.

Furthermore, Hypothesis 2 concerning gender differences in deceleration was also tested for e-bikes
and e-scooters. The results indicated no statistically significant gender differences in deceleration for
either vehicle type, suggesting that both male and female riders display similar braking behaviors. We
accept the null hypothesis 2.2.

7.3. Lateral distance
7.3.1. Gender impact on Lateral distance
The analysis of lateral distance during overtaking connects to Hypothesis 4, which explores gender
differences in lateral distance during overtaking. A series of T-tests were conducted to compare male
and female riders across various scenarios. No significant gender differences were observed in all
scenarios involving E-scooters.We therefore accept null hypothesis 4.

7.3.2. Speed difference impact on Lateral distance
The Hypothesis 5, which posits a positive relationship between speed difference and lateral distance
during passing, is addressed through the analysis of Pearson correlation coefficients across scenarios
where E-scooters overtook bikes(scenario 5) and where E-scooters overtook e-bikes(scenario 6). The
test results are presented in Table7.2.

Table 7.2: Correlation Analysis Results for E-scooter Overtaking Scenarios

Scenario Pearson Correlation Coefficient P-value
E-scooter overtakes E-bike 0.3118 0.0000
E-scooter overtakes bike 0.6061 0.0000

In analyzing the correlation between lateral distance and speed difference across two scenarios, the
scenario 5 yielded a correlation coefficient of 0.3118, indicating a moderate positive correlation. This
suggests that as the speed difference increases, the lateral distance during overtaking tends to in-
crease, albeit at a relatively lower strength. The scenario 6 presented a correlation coefficient of
0.6061, signifying a strong positive correlation. This stronger association indicates that in this scenario,
a greater speed difference is more significantly linked to an increase in lateral distance.

The data points for lateral distance and speed difference were specifically collected during the passing
phase of the overtaking maneuver. This phase represents the moment when the overtaking vehicle
is actively passing the overtaken vehicle, which is critical for analyzing the dynamics of the interac-
tion. By focusing on this phase, we capture the most relevant data reflecting the relationship between
speed difference and lateral distance as the overtaking maneuver is executed. Additionally, this phase
likely represents the moment when the overtaker maintains the maximum distance from the overtaken
vehicle, thereby emphasizing the importance of lateral distance for ensuring safe maneuvering.

In order to further verify this phenomenon, two E-bike scenarios, Scenario 2 and Scenario 3, were
also selected for this correlation. The same analysis was done and the results are in Table 7.3. E-
bike analyses show the same trend. The Figure7.10 further shows the results of linear regression
and polynomial regression for the lateral position difference and speed difference of scenario 2 and
scenario 3, respectively. Figure7.11 shows the relationship between each group of speed difference
and the corresponding transverse positional differences after grouping them.
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For scenario 2, the groups are 0.5170m/s to 2.0126m/s(low),2.0126m/s to 2.6965m/s(medium-low),2.6965m/s
to 3.5450m/s(medium high), and 3.5450m/s to 5.2349m/s(high). For scenario 3, the groups are 0.0071m/s
to 1.7042m/s(low),1.7042m/s to 2.5108m/s(medium-low),2.5108m/s to 3.0769m/s(medium high), and
3.0769m/s to 6.8409m/s(high).

Table 7.3: Correlation Analysis Results for E-bike Overtaking Scenarios

Scenario Pearson Correlation Coefficient P-value
E-bike overtakes bike 0.4110 0.0000
E-bike overtakes E-scooter 0.4063 0.0000

((a)) Regression result scenario 2 ((b)) Regression result scenario 3

Figure 7.10: Overall Regression Results for scenario 2 and scenario 3

((a)) Lateral Speed Distribution by group for Scenario 2 ((b)) Lateral Speed Distribution by group for Scenario 3

Figure 7.11: Overall Lateral Speed Distributions by group

The correlation analysis in both E-scooter overtakes E-bike and E-scooter overtakes bike scenarios
reveals a moderate and statistically significant positive relationship between speed difference and lat-
eral distances during overtaking. This means that we accept the alternative hypothesis 5. Additionally,
in the E-bike overtakes bike and E-bike overtakes E-scooter scenarios, a similar moderate positive
correlation was observed. These findings support the notion that higher speed difference contribute
to larger lateral distances, which may be indicative of safer overtaking practices by providing greater
maneuvering space to avoid collisions. Furthermore, the significant gender differences observed in
E-scooter scenarios highlight the influence of rider speed on overtaking behavior, underscoring the
importance of considering both device type and rider characteristics in traffic safety analyses.

7.3.3. Micromobility type's impact Lateral distance
Hypothesis 6, which explores differences in lateral distance among micromobility types, was tested
using ANOVA.

First we compared the lateral distance difference between the same vehicle when overtaking different
types of vehicles. The results are shown in the table7.4 and the Figure7.12
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((a)) ANOVA analysis of e-bike ((b)) ANOVA analysis of e-scooter

Figure 7.12: Comparison of ANOVA analyses for e-bike and e-scooter scenarios

Table 7.4: Tukey’s HSD Test Results for E-bike Overtaking Different Vehicles

Group 1 Group 2 Mean Diff p-adj Lower Upper Reject
Scenario 2 Scenario 3 -0.3289 0.0000 -0.4880 -0.1697 True
Scenario 2 Scenario 4 0.0643 0.5933 -0.0918 0.2203 False
Scenario 3 Scenario 4 0.3931 0.0000 0.2389 0.5473 True

The results of Tukey’s HSD test reveal significant differences in lateral distance between Scenarios 2
and 3, as well as Scenarios 3 and 4, during e-bike overtaking maneuvers. In Scenario 2, the lateral
distance maintained by e-bikes while overtaking is approximately 0.3289 meters smaller than in Sce-
nario 3. Similarly, the lateral distance in Scenario 3 is about 0.3931 meters less than in Scenario 4.
However, no statistically significant difference was observed between Scenarios 2 and 4. The mean lat-
eral distances for Scenarios 2, 3, and 4 were 1.2491, 0.8946, and 1.3058 meters, respectively. These
findings suggest that the lateral distance adopted by e-bikes during overtaking varies depending on the
type of vehicle being overtaken. Notably, e-bikes tend to maintain a smaller distance when overtak-
ing e-scooters compared to bicycles and other e-bikes. This behavior may be attributed to the visual
similarity between e-bikes and traditional bicycles, as well as the significantly larger volume occupied
by these vehicles in comparison to e-scooters, potentially prompting riders to choose a greater lateral
distance during overtaking maneuvers.

In contrast, the ANOVA analysis for e-scooter overtaking scenarios across three different vehicle types
(Scenarios 5, 6, and 7) did not yield statistically significant differences in mean lateral distances. The
mean lateral distances for Scenarios 5, 6, and 7 were 1.2076, 1.0577, and 1.0778 meters, respectively.
We therefore conditionally accept alternative hypothesis 6.1.

The lack of significant variation in lateral distance during e-scooter overtaking maneuvers may be ex-
plained by several factors. Firstly, riders’ spatial perception may influence their judgment of the space
required for safe overtaking based on their perception of their own vehicle’s size and that of the vehicle
being overtaken. Given the smaller size of e-scooters, riders may believe that they can safely over-
take other vehicles even in narrow spaces, thus not requiring significant adjustments in lateral distance.
Secondly, the agility and maneuverability of e-scooters may further enhance riders’ confidence in their
ability to control the vehicle with smaller lateral distances, reducing the need for substantial adjust-
ments. This effect may be particularly pronounced in the present experiment, where e-bike riders were
instructed to use pedal-assist mode, while e-scooter riders operated in fully electric mode throughout
the study.

Based on the information provided in Figure 7.12(a), it is evident that Scenario 3 exhibits a larger
range of variation in lateral distance compared to the other scenarios. This increased variability may
be attributed to the presence of different types of e-bikes within the e-bike category, namely Fat e-bikes,
Regular e-bikes, and Foldable e-bikes. To further investigate this observation, an additional ANOVA
analysis was conducted to compare the lateral distances maintained by these three e-bike types within
Scenario 3.

The results of this analysis, presented in Figure 7.13, indicate that there are no statistically significant
differences in the mean lateral distances among the three e-bike types. However, it is noteworthy that
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Figure 7.13: Lateral distance by E-bike type(E-bike overtaking e-scooter)

the presence of Foldable e-bikes appears to contribute to a larger overall standard deviation within the
scenario. This finding suggests that while the mean lateral distances may not differ significantly across
e-bike types, the inclusion of Foldable e-bikes introduces greater variability in the lateral distances
maintained by riders during overtaking maneuvers. The design of Foldable e-bikes often prioritizes
compactness and portability, which may come at the expense of performance, including acceleration
capabilities. Foldable e-bikes may have lower-powered motors, and their folding structure can affect
the rigidity of the frame, impacting stability during acceleration. These factors may lead Foldable e-
bike riders to adopt a more conservative approach during overtaking maneuvers, resulting in greater
variability in lateral distances.

Following this, we made a comparison of the differences between various types of vehicles when over-
taking the same type of vehicle. The results indicate that significant differences were observed only in
the context of E-bikes/E-scooters overtaking e-bikes. Specifically, E-bikes maintained a notably larger
lateral distance during the maneuver, with a T-statistic of 3.152 and a P-value of 0.0027. We therefore
conditionally accept alternative hypothesis 6.2.

The smaller lateral distance observed when E-scooters overtook may primarily result from the riders’
perception of their vehicle’s smaller size. E-scooter riders might feel that, due to the compact nature of
their vehicle, they can safely complete the overtaking maneuver with less space. This perception likely
leads E-scooter riders to opt for a smaller lateral gap compared to E-bikes.

Additionally, the modifications to the experimental path could also have influenced this behavior. To
efficiently collect data with the limited number of E-bikes, a shorter experimental path was used, which
necessitated that E-bike riders achieve higher speeds to overtake within the design constraints. How-
ever, E-scooters on this path likely did not need to adapt to higher speeds as E-bikes did, and thus could
choose a smaller lateral distance at relatively lower speeds. This smaller lateral distance reflects not
only the E-scooter’s size advantage but also the differing speed and space requirements imposed by
the path design. Therefore, the reduced lateral distance for E-scooters may result from a combination
of both path adjustments and the riders’ perception of their vehicle’s size.

7.3.4. Maximum lateral distance position
The examination of Hypothesis 8, which posits that the maximum lateral distance occurs during the
passing phase, was tested through custom analysis. Analysis of the data across multiple scenarios as
shown in table7.5 revealed varying degrees of support for the hypothesis.

Table 7.5: Percentage of Max Lateral Distance Moments within Overtaking phase

Scenario Percentage (%)
Scenario 2 88.64
Scenario 3 55.56
Scenario 4 71.43
Scenario 5 91.67
Scenario 6 88.57
Scenario 7 76.32
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The maximum lateral distance during an overtaking maneuver occurs within the overtaking period. The
percentage of maximum lateral distance moments occurring within the overtaking period ranged from
55.56% to 91.67% across the scenarios studied. Notably, Scenario 3 exhibited the lowest concor-
dance with the hypothesis at 55.56%. This scenario also demonstrated the smallest average lateral
distance(0.8956m) among all scenarios examined. A plausible explanation for this observation is the
reduced spatial perception of e-scooters by e-bike riders during overtaking maneuvers. The compact
profile of e-scooters may lead to an underestimation of the necessary lateral clearance by e-bike rid-
ers, resulting in closer passing distances and potentially altering the typical overtaking dynamics. The
data provides support for our hypothesis across multiple scenarios. Specifically, in Scenarios 2, 5,
and 6, a high proportion of maximum lateral distance moments (88.64%, 91.67%, and 88.57% respec-
tively) occurred within the overtaking period. Scenarios 7 and 4 also showed considerable alignment
with our hypothesis, with 76.32% and 71.43% of maximum lateral distance moments occurring during
overtaking.

These findings suggest that while the alternative hypothesis 8 is generally accepted, there is consider-
able variability across different overtaking scenarios. The observed differences, particularly in Scenario
3, underscore the importance of considering vehicle type and rider perception in micro-mobility interac-
tions as mentioned in section7.3.3.

7.4. Overtaking starting position
The starting position is a relative position in the x-direction. We first implemented a comprehensive
visual validation of our overtaking detection threshold. This process involved creating detailed plots
of the relative coordinates of the overtaking pairs (e-bike or e-scooter and the overtaken vehicle) over
time. On these plots, we marked the detected overtaking initiation points, as illustrated in Figure 7.14.
After validation by randomly selecting 10 for each scenario, it was shown that the selection of (Mean
- 1σ) is justified. The choice is because 10 is already greater than 20 percent of the dataset and is
representative.

((a)) Overtaking moment of pair 3 in scenario 2 ((b)) Overtaking moment of pair 9 in scenario 2

Figure 7.14: Comparison of overtaking moments for different pairs in scenario 2

7.4.1. Micromobility's impact
The findings in this section relate directly to Hypothesis 9, which proposed that micromobility type would
influence the overtaking starting position.For Hypothesis 9, an ANOVA test and subsequent Tukey’s
HSD post-hoc analysis were conducted to assess differences in the overtaking starting positions among
various micromobility types. The results of this analysis are presented in Table 7.6.

Table 7.6: ANOVA Results for Relative Overtaking Times

Statistic Value p-value
F-value 4.1921 0.0171

For scenario 2 (E-bike overtaking bike) the mean value is 9.75 m, with SD 2.86 m; for scenario 3
(E-bike overtaking e-scooter), the mean value is 10.19 m, with SD 3.62 m; for scenario 4 (E-bike
overtaking e-bike), the mean is 7.80 m, with SD 4.93 m. The ANOVA results indicate a statistically
significant difference in relative overtaking times between scenarios (F = 4.2474, p = 4.2474). This
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p-value, being less than the conventional significance level of 0.05, suggests that there are indeed
significant differences in overtaking behavior across the different micromobility scenarios tested.

To further investigate which specific scenarios differ from each other, a post-hoc analysis using Tukey’s
Honest Significant Difference (HSD) test was performed. The results of this test are presented in Table
7.7.

Table 7.7: Tukey’s HSD Test Results of starting position of overtaken

Group 1 Group 2 Mean Difference p-adj Lower Upper
Scenario 2 Scenario 3 0.4387m 0.8587 -1.5380 2.4154
Scenario 2 Scenario 4 -1.8717m 0.0716 -3.8710 0.1276
Scenario 3 Scenario 4 -2.3104m 0.0183 -4.2987 -0.3221

The Tukey’s HSD test reveals that:

1. There is no statistically significant difference between Scenario 2 and Scenario 3 (p-adj = 0.8587).
2. The difference between Scenario 2 and Scenario 4 is not statistically significant (p-adj = 0.0716),

although there is a trend towards shorter overtaking starting position in Scenario 4 (mean differ-
ence = -1.8717).

3. There is a statistically significant difference between Scenario 3 and Scenario 4 (p-adj = 0.0183).
Scenario 4 has a shorter overtaking starting position in Scenario 4 (mean difference = -2.3104m).

The analysis reveals intriguing patterns in overtaking behavior across different micromobility scenarios.
E-bike riders tend to initiate overtaking later when passing e-bikes. We therefore accept alternative
hypothesis 9.

The phenomenon of e-bike riders initiating overtaking maneuvers later when passing other e-bikes can
be primarily attributed to two key factors:

1. Familiarity and Predictability: E-bike riders likely possess a more nuanced understanding of the
performance characteristics and typical behaviors of other e-bikes. This familiarity engenders
a sense of predictability, allowing overtaking riders to feel more at ease when initiating the ma-
neuver at a closer distance. The shared experience of riding e-bikes may contribute to a mutual
understanding of acceleration patterns, speed maintenance, and potential reactions to traffic con-
ditions. This implicit knowledge could lead to a more confident approach to overtaking, resulting
in later initiation of the maneuver.

2. Confidence in Acceleration: E-bikes are equipped with electric assistance, providing them with
the capability for rapid acceleration.Additionally, Section 7.2 confirms that the normal riding speed
of e-bikes is faster. In fact, the experimental equipment used on the day of testing showed that
the maximum speed of e-bikes was indeed higher than that of e-scooters. Overtaking riders may
leverage this feature, feeling assured in their ability to swiftly increase speed and execute the
overtaking maneuver efficiently, even when initiating it at a closer proximity to the vehicle being
overtaken. This confidence in the e-bike’s performance characteristics may allow riders to delay
the start of their overtaking action, knowing they can rely on the bike’s electric boost to complete
the maneuver safely and effectively.

These factors combined suggest that e-bike riders, when overtaking other e-bikes, may feel a greater
sense of control and predictability in the overtaking process. This increased comfort level, coupled with
the confidence in their vehicle’s capabilities, could explain the observed tendency to initiate overtaking
maneuvers at a later point and closer distance compared to overtaking other micromobility modes.

7.4.2. Gender's impact
In terms of Hypothesis 10, which examined the effect of gender on overtaking starting positions, no
significant gender differences were detected in these scenarios. We therefore accept null hypothesis
10. This suggests that gender does not significantly impact when the overtaking maneuver begins.
While gender was tested in earlier sections, no notable differences emerged, indicating that the type of
vehicle being overtaken plays a more crucial role than gender in this context.
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7.5. Regression analysis on speed difference
This section addresses Hypotheses 11 and 12, which explore the influence of lateral and longitudi-
nal position differences, vehicle types, and overtaking phases on speed difference during the whole
overtaking process.

Multiple Regression Analysis
First, for Hypothesis 11, a multiple regression analysis was conducted to assess the relationship be-
tween speed difference and position differences (both lateral and longitudinal), as well as vehicle type.
The results, as detailed in the regression equation:

Speed difference = 6.4167 + 0.2567X + 1.2394Y + 0.8093T2 − 0.8093T3 (7.1)

Where X is the longitudinal position difference, Y is the lateral position difference, and T2 and T3

represent overtaken vehicle types e-bike and e-scooter respectively (relative to the reference type
bike). The model’s R2 value is 0.1240.

The analysis results reveal significant influences of position differences, vehicle types, scenarios, and
overtaking phases on speed difference. We therefore accept the alternative hypothesis 11. Several
key findings warrant further discussion:

1. Lateral vs. Longitudinal Position Difference: The lateral position difference shows a greater im-
pact (coefficient: 1.2394) on speed difference compared to the longitudinal position difference
(coefficient: 0.2567). This aligns with our expectations of overtaking behavior. The overtaking
process typically involves the rider accelerating in the initial phase, maintaining a higher speed
during the passing maneuver, and then decelerating after completion. Throughout this process,
the speed difference difference generally increases as the lateral distance increases, and de-
creases as it narrows, given that lateral distance difference is always positive.

Conversely, the longitudinal distance difference transitions from positive (before overtaking) to
negative (after overtaking). In the pre-passing phase, the positive longitudinal difference cor-
responds to the acceleration stage, resulting in a positive change in speed difference. Post-
overtaking, as the longitudinal difference becomes negative, the speed difference naturally de-
creases.

2. Vehicle Type Influence: The results indicate that when an E-bike overtakes another E-bike, the
speed difference is greater than when overtaking a bicycle. Conversely, when an E-bike over-
takes an E-scooter, the speed difference is lower than when overtaking a bicycle. These findings
suggest that the type of vehicle being overtaken significantly influences the overtaking dynamics.

This pattern could be attributed to several factors. E-bike riders might be more comfortable main-
taining higher speeds when overtaking similar vehicles (other E-bikes).The lower speed differ-
ence when overtaking E-scooters could indicate a more cautious approach due to the perceived
instability or unpredictability of E-scooters.

Phase-wise Comparison Analysis of Overtaking
Moving forward, Hypothesis 12 examined differences in speed difference across the overtaking phases
(before, during, and after) as in Figure7.15.

An ANOVA analysis on this data revealed a significant effect of overtaking phase on speed difference
(F = 4.7211, p = 0.0009). Subsequent Tukey HSD post-hoc tests yielded the following results:

• Significant difference between After and During phases (p = 0.0009)
• Difference between Before and After phases approaching significance (p = 0.2371)
• No significant difference between Before and During phases (p = 0.2922)

These results unveil distinct patterns of speed difference dynamics across overtaking phases:

• In Scenario 2, speed difference shows a gradual decrease from the Before phase to the After
phase.
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Figure 7.15: Phase-wise Comparison Analysis of Overtaking

• Scenario 3 exhibits a unique pattern where speed difference peaks during the During phase,
followed by a significant decrease in the After phase.

• Scenario 4 demonstrates a trend of increasing speed difference from the Before phase to the
After phase.

These phase-wise variation patterns reflect differences in driver behavior across different overtaking
scenarios. For instance, the gradual deceleration in Scenario 2 might indicate drivers adopting a more
cautious strategy after completing the overtaking maneuver. Conversely, the speed increase trend
in Scenario 4 could suggest specific traffic or environmental factors prompting drivers to accelerate
progressively during the overtaking process.We therefore accept alternative hypothesis 12.

A plausible explanation for the observed trend in scenario 2 stems from the experimental conditions.
During the bike overtaking experiments, the number of bicycles on the red overtaken path was notably
higher than in other scenarios, with at least 5 and sometimes 6 bicycles present. Despite efforts by
experiment supervisors to moderate the conditions, there were instances where two or three bicycles
occupied the main track simultaneously. This higher density of bicycles significantly altered the dynam-
ics of the overtaking process. In some cases, overtaking vehicles were not merely passing a single
bicycle but were engaged in consecutive overtaking maneuvers involving two bicycles in close suc-
cession. This scenario introduces a more complex overtaking behavior where the overtaking vehicle
initiates the maneuver to pass the first bicycle at its typical speed, but upon approaching the second
bicycle in close proximity, adopts a more cautious approach. Rather than maintaining or increasing
speed to complete the second overtaking maneuver quickly, the driver opts for a slight deceleration.
This deceleration during the second overtaking phase results in a lower speed difference between the
overtaking vehicle and the bicycle being overtaken, which is reflected in the data and contributes to the
observed trend of lower speed difference in scenario 2.

In Scenario 4, which focuses on overtaking e-bikes, the utilization of a smaller circular path, as illus-
trated in Figure 5.8, in the experimental design is particularly noteworthy. By comparing the path length
used in this scenario to the natural encountering distance in other scenarios, it becomes apparent that
the shorter path could potentially create a perceived time constraint for the participants to complete the
overtaking process.

7.6. Change of overtaken mode motion
7.6.1. Compare pre-passing and post-passing phase
This section relates to Hypothesis 13, which addresses the speed changes of overtaken riders before
and after being overtaken. The study investigates whether there is a significant difference in the behav-
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ior of overtaken vehicles after overtaking, with a focus on how different types of micromobility vehicles
respond to overtaking events.

To test Hypothesis 13, paired t-tests were conducted to compare the speeds of overtaken riders before
and after overtaking across Scenarios 2, 3, and 4. The results showed that only scenario 4 exhibited
a significant difference, with an overall trend of acceleration. The T-value is -3.1412 and p-value is
0.0031.

However, upon examining the paired comparison boxplots for the three scenarios as in Figure7.16,
it was observed that both acceleration and deceleration accounted for a certain proportion in each
scenario. In scenarios 2 and 3, the proportions of acceleration and deceleration were similar, resulting
in no significant overall change in speed. We therefore accept null hypothesis 13.1.

((a)) Scenario 2 ((b)) Scenario 3 ((c)) Scenario 4

Figure 7.16: Speed distribution of overtaken modes across different scenarios

To address this phenomenon more comprehensively, we conducted a detailed analysis of individual
speed changes within each scenario. While the aggregate data showed significant acceleration only
for e-bikes across all scenarios, we found that in Figure7.16 that this might be due to the offsetting
effects of individual accelerations and decelerations within each group. To test this hypothesis, we per-
formed a more granular analysis. For every scenario, we calculated the proportion of cases where the
absolute speed change after overtaking phase exceeded 2 km/h. This threshold was chosen because
it represents a substantial change (approximately 20%) relative to the average speeds of overtaken
vehicles, which ranged from 7.88 km/h to 10.22 km/h across scenarios. We categorized these sig-
nificant speed changes into acceleration cases and deceleration cases. Figure 7.17 illustrates the
proportions of significant acceleration and deceleration cases among all cases of each scenario. This
analysis reveals the percentage of overtaken riders who exhibited notable acceleration or deceleration
post-overtaking, providing a more nuanced understanding of individual behavioral responses.

Interestingly, it was found that overtaken bicycle riders typically experienced minimal speed changes,
with a low percentage of significant changes. In contrast, e-scooter and e-bike riders showed much
larger variations in speed.

This difference may be related to vehicle type and rider behavior. E-scooters and e-bikes are equipped
with electric assist systems, making it easier for riders to accelerate using the electric system when
being overtaken. On the other hand, traditional bicycles rely on human power, making it more difficult
for riders to significantly accelerate or quickly adjust their speed when being overtaken.

Additionally, psychological factors of the riders may play a role. E-scooter and e-bike riders may feel
the need to adjust their position or avoid potential risks by accelerating or decelerating when being
overtaken. Traditional bicycle riders may not feel the same pressure or may be limited in their ability to
accelerate, resulting in a weaker response.

Another possible reason is that the average speed of e-scooters and e-bikes is typically faster than
that of traditional bicycles. At relatively higher speeds, changes in vehicle speed may appear more
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Figure 7.17: Percentage of riders with significant change on speed in three scenairos

pronounced.

Notably, the high proportion of significant acceleration among e-bike riders may be largely attributed
to individual rider behavior habits. During the process of trajectory labelling through some of the L1
videos,the authors noticed three male E-bike riders frequently accelerating while being overtaken.

7.6.2. Compare the speed change between beginning and ending of the pre-passing
phase

The purpose of this comparison remains focused on analyzing the behavior of the overtaking rider.
However, in this case, we are specifically examining the rider’s behavior at the start position of being
overtaken, which corresponds to the end of the pre-passing phase. This phase represents the point
at which the overtaken rider becomes aware that they are about to be passed. We aim to determine
whether any speed changes—either deceleration or acceleration—occur compared to the beginning of
the pre-passing phase.

The results indicate that both E-bikes and E-scooters exhibit a slight acceleration at the end of the
pre-passing phase, whereas bikes show no significant change. The speed changes observed in the
three scenarios are as follows:

• E-bike overtaking bike: p-value = 0.4933, Mean speed difference = -0.21 km/h
• E-bike overtaking E-scooter: p-value = 0.0591, Mean speed difference = 1.02 km/h
• E-scooter overtaking bike: p-value = 0.0001, Mean speed difference = 2.32 km/h

Overall, the alternative hypothesis 13.2 is accepted. Although some acceleration is observed, the
magnitude of these acceleration changes remains relatively small. In the study by [66], it was shown
that 38.3% of bicyclists accelerate when being overtaken. However, there is currently almost no com-
parison of E-bike and E-scooter as overtaken modes. Considering that E-bikes and E-scooters are
either assisted or fully electric, it is a reasonable outcome that they generally exhibit acceleration due
to a higher percentage of acceleration. This adjustment can be seen as a natural reaction to being
overtaken, facilitated by the stronger acceleration capabilities of these vehicles

7.7. Roll angle and roll rate
This section examines the changes in roll angle and roll rate during the overtaking process, as hypothe-
sized in Hypotheses 14 and 15, which focus on the differences in roll dynamics across different phases
of overtaking and the influence of micromobility type on these dynamics.

The first analysis on different phases inside each scenario shows that in all scenarios, the rate of change
in roll angle during the overtaking phase is higher than in the pre-passing and post-passing phases. A
similar trend is observed in the roll angle itself, indicating that vehicles experience larger angle changes
and more intense rates of angle change during the overtaking process. We therefore accept alternative
hypothesis 14.1 and 14.2.

This phenomenon may be attributed to the following reasons: During overtaking, riders need to rapidly
change position to avoid collisions with the overtaken vehicle, inevitably leading to larger angle changes.
Completing an overtaking maneuver within limited lane width requires riders to make more abrupt and
pronounced steering actions.



7.8. Summary 74

In the comparison between E-bikes overtaking E-scooters (Scenario 3) and E-bikes overtaking E-bikes
(Scenario 4), Scenario 4 exhibits a significantly higher lateral angle change rate in the pre-passing
phase. The roll angles for scenario 3 in the three overtaking phases were 4.03, 6.66, and 4.67 degrees,
respectively. The roll rate is 26.17, 36.73, and 24.68 degree/s for scenario 3. The roll angles for
scenario 4 in the three overtaking phases were 4.48, 7.04, and 4.43 degrees, respectively. The roll
rate is 30.41,36.21, and 27.49 degree/s for scenario 4. The results of the T-tests for roll rate and roll
angle (absolute values) during the before-overtaking phase are as follows:

• Roll Rate (Absolute): The t-statistic is -3.2385 and the p-value is 0.0012, indicating a statistically
significant difference.

• Roll Angle (Absolute): The t-statistic is -2.7336 and the p-value is 0.0063, also indicating a
statistically significant difference.

Therefore we accept the alternative hypothesis 15.1 and 15.2. There is no significant difference be-
tween the other phases in terms of either roll rate or roll angle.

This finding aligns with previous analysis results: in Scenario 4, overtakers tend to initiate overtaking
maneuvers at closer positions to the overtaken vehicle but ultimately maintain a larger lateral distance
difference than in Scenario 3. This behavior pattern implies that riders need to complete larger lateral
movements in a shorter time, which is likely the direct cause of the higher roll rate in the pre-passing
phase of Scenario 4 compared to Scenario 3. This phenomenon may reflect the strategy differences of
E-bike riders when facing different types of overtaken vehicles. E-bike riders may be more familiar with
the performance characteristics of other E-bikes, thus exhibiting more confidence and willingness to
adopt more aggressive overtaking strategies. E-bike riders might underestimate the speed difference
difference with other E-bikes, causing them to realize the need for overtaking at a closer distance,
necessitating more abrupt maneuvers.

7.8. Summary
This chapter first compares the normal driving speeds and deceleration capabilities of vehicles in
non-interactive scenarios. The results revealed significant speed differences between E-bikes and
E-scooters, with E-bikes traveling at notably higher speeds. However, no distinction was observed in
their deceleration capabilities. Gender differences in speed were only significant in E-scooter riders,
where male riders consistently exhibited higher speeds than females.

To explore the influence of gender factors and the combination of overtaking and overtaken vehicles on
overtaking behavior, the study analyzed the lateral position difference. The findings indicate that the
maximum lateral distance difference mostly occurs within the passing phase. During this phase, the
overtaker’s choice of lateral distance is influenced by speed difference; higher speed differences corre-
spond to larger maintained lateral distances. This reflects the riders’ adaptation to safety requirements
based on speed differentials.

The study then compared the behavioral differences of overtaking vehicles when passing different
vehicle types. These differences were less pronounced for E-scooters but more evident for E-bikes,
potentially reflecting the overtaking riders’ perceptions of their own vehicle’s size and that of the over-
taken vehicle. Additionally, when comparing different vehicles overtaking the same type, a significant
difference emerged only when E-bikes and E-scooters overtook E-bikes, with E-bikes maintaining a
larger lateral distance. This increased lateral distance was likely due to that e-scooter riders may
perceive themselves as occupying less space and thus more maneuverable compared to e-bike riders,
prompting them to feel more comfortable overtaking with a smaller lateral gap. However, it may also be
influenced by modifications to the experimental path, which required higher speeds and, consequently,
greater spacing to ensure safety.

Using an analysis of the rate of change in lateral position difference, the study detected the initiation
points for overtaking maneuvers in E-bikes overtaking E-scooters and E-bikes. Interestingly, E-bikes
initiated overtaking of E-scooters at a greater distance compared to overtaking other E-bikes, without
significant gender influence.

Combining these findings with the maximum lateral distance difference tests provides an overview of
E-bike overtaking patterns for E-scooters and E-bikes, as illustrated in Figure 7.18. Generally, E-bikes
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Figure 7.18: Overtaking pattern of e-bike overtaking e-scooter and e-bike

initiate overtaking E-scooters from a greater distance but maintain a smaller maximum lateral distance
during the process. Conversely, when overtaking other E-bikes, they initiate the maneuver closer but
choose a larger lateral spacing.

This pattern is further corroborated by the phase-wise comparison of roll rates and roll angles’ absolute
values across different overtaking scenarios. Additionally, this comparison reveals a common motion
characteristic: roll rates and roll angles reach their maximum values during the passing phase.

To further understand the differences between pre-passing, overtaking, and post-overtaking phases,
the study compared average speeds during these phases for E-bikes overtaking bikes, E-scooters, and
E-bikes. These results revealed some experimental design flaws, such as an excess of vehicles on
the bike lap leading to continuous deceleration while overtaking two bicycles consecutively(scenario2),
and inappropriate timing control during internal overtaking experiments resulting in continuous accel-
eration during overtaking(scenario4). In Scenario 2, an overtaker may accelerate to a high speed to
overtake the first vehicle and then realize that there is a second overtaken vehicle, but instead of accel-
erating further, he slowly decelerates to overtake the second low-speed vehicle. In scenario 4, since
the experimental requirement is to complete the overtaking inside the design track, it may result in the
overtaking vehicle that starts later needing to keep accelerating in order to complete the overtaking
maneuver before the end of the deisgn track, this phenomenon may also occur in scenario 7, but due
to the missing data of 7, it is not possible to test it.

Furthermore, the study examined the behavior of overtaken vehicles during the overtaking process,
particularly focusing on speed changes before and after the passing phase, and within the pre-passing
phase. When comparing the speed between the pre-passing phase and post-passing phase, E-scooters
and E-bikes showed a significantly higher proportion of noticeable speed changes compared to bikes.
Due to someE-bike riders’ personal preferences, E-bikes as overtaken vehicles demonstrated amarkedly
higher proportion of acceleration after being overtaken. when comparing within pre-passing phase, e-
bike and e-scooter exhibit a slight acceleration at the end of the pre-passing phase, showing that riders
alter their speed as a form of defensive or adaptive behavior when interacting with others in close
proximity.

The final test results of the relationships in the Conceptual framework are shown below in Figure7.19
is the conceptual framework that has been tested.
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Figure 7.19: Conceptual framework after test

Where + means there is significant positive relationship, +/- means there is significant relationship but whether it is postive or
negative is up to the characteristic, 0 means there is no significant relationship



8
Conclusion and discussion

This thesis aims to investigate the individual behavior of micromobility users, specifically e-bike and
e-scooter riders, during their interactions with regular bicycles and with each other. To study and under-
stand rider behavior during overtaking scenarios, this research designed and implemented a controlled
experiment to collect trajectory data of e-scooter and e-bike riders through video recording during over-
taking maneuvers, along with data on roll angle and roll rate from IMU sensors. After processing the
video data, trajectory data of the participants were obtained, which were then synchronized with the
IMU data on a common timeline. From these trajectory data, micro-level variables such as lateral po-
sition difference, longitudinal position difference, and speed difference were derived. The study then
employed statistical methods, including t-tests, ANOVA, Pearson correlation analysis, and regression
models, to examine the effects of gender, vehicle type, and other influencing factors on these micro-
level variables. Ultimately, the results revealed several behavioral characteristics and patterns during
the overtaking process, providing key insights into how different micromobility types and individual
characteristics influence rider behavior.

8.1. Answers to the main research question
”How do different combinations of ridden types of micro-mobility vehicles and overtaken types
of micro-mobility vehicles and individual characteristics of the rider affect individual behavior
during overtaking?”.

In this study, the individual characteristics is speficed to gender.

8.1.1. Affect of micro-mobility type combination
In the context of overtaking behavior, micromobility vehicle type had a substantial impact. E-bike riders,
when overtaking e-scooters, initiated the overtaking maneuver from a greater distance but maintained
a smaller maximum lateral distance throughout the maneuver. Conversely, when overtaking other e-
bikes, riders initiated the overtaking maneuver closer to the overtaken vehicle but maintained a larger
lateral distance, indicating more caution and space in similar-vehicle interactions.

The vehicle type also influenced the speed difference dynamics during the overtaking process. As the
multiple regression analysis, lateral position differences were more strongly correlated with speed dif-
ference than longitudinal differences, confirming that riders prioritize lateral safety margins when over-
taking. The type of overtaken vehicle also affected the speed, with e-bikes maintaining higher speed
diference when overtaking other e-bikes compared to when overtaking e-scooters, demonstrating that
vehicle-type familiarity influences rider behavior.

The roll rate and roll angle peaked during the passing phase. Moreover, in the process of E-bike
overtaking E-bike, the roll angle and roll rate are significantly larger in the pre-phasing stage when E-
bike overtakes E-scooter because more lateral movement has to be accomplished in a shorter period
of longitudinal distance.

77
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8.1.2. Gender affect
Gender differences in riding behavior were clearly observed in non-interactive driving, especially for
e-scooter riders, where male riders showed significantly higher speeds than female riders. However,
no gender-based differences were found for e-bike riders in similar conditions, suggesting that vehicle
type plays a role in how gender impacts driving behavior.

Initially, it was hypothesized that gender might influence lateral distance decisions during overtaking,
particularly for e-scooter riders. However, subsequent analysis revealed no significant gender-based
differences in lateral distances maintained during overtaking maneuvers. This finding suggests that
while gender may influence riding speed in non-interactive scenarios, it does not significantly affect
spatial decisions during overtaking.

Furthermore, gender had no significant impact on the initiation of overtaking maneuvers. These results
collectively indicate that factors such as vehicle type and speed may be more influential than gender
in determining both the timing and spatial characteristics of overtaking behaviors.

8.1.3. Key findings overall
Several key findings emerged regarding rider behavior as follows:

1. speed difference and Lateral Distance: There was a consistent positive correlation between
speed difference difference and lateral distance, with higher speeds associated with larger lat-
eral distances during overtaking. This indicates that riders adapt their lateral space for safety
based on speed differences.

2. Maximum Lateral Distance Timing: The maximum lateral distance typically occurred during the
passing phase, though there was some variation across scenarios . In scenarios where e-bikes
overtook e-scooters, this pattern was less consistent, suggesting that e-bike riders may underes-
timate the space needed when overtaking smaller vehicles like e-scooters.

3. Phase-Wise Speed Differences: The phase-wise comparison of speed difference revealed that
in some scenarios, speed difference gradually decreased after overtaking, while in others, the
speed difference continued to increase post passing. This could reflect environmental factors or
experimental design conditions, such as the number of vehicles on the track.

4. Behavior of Overtaken Vehicles: Electrically-powered vehicles like e-bikes and e-scooters exhib-
ited more speed variation when overtaken compared to bicycles. Notably, some e-bike riders
increased their speed after being overtaken, indicating individual behavioral preferences or reac-
tions to being passed. And at the start moment of being overtaken, the e-bike and e-scooter rider
have a noticeable acceleration.

5. The roll rate and roll angle were consistently higher during the passing phase across all scenar-
ios. In the case of an E-bike overtaking another E-bike, the overtaking began with a later start
and maintained a greater lateral distance. Consequently, both the roll rate and roll angle were
larger in the pre-passing phase compared to another overtaking scenario(E-bike overtaking E-
scooter), reflecting the increased maneuvering needed to initiate the overtaking maneuver with a
safe lateral buffer

8.2. Societal Contributions
The findings from this research can have several significant applications in guiding infrastructure devel-
opment, informing traffic regulations, and enhancing the design of traffic simulation models, especially
with the growing popularity of micromobility vehicles like e-bikes and e-scooters. The following are
some key areas where this research can be applied:

1. Wider and Safer Lanes: Based on the findings that micromobility users, particularly e-bike riders,
tend to maintain larger lateral distances when overtaking other vehicles, the study suggests that
wider cycling lanes should be considered in urban planning. This would provide adequate space
for safe overtaking and reduce the risk of collisions, particularly in areas with high mixed-use
traffic involving micromobility vehicles. Wider lanes could ensure safer maneuverability for both
overtaking and overtaken riders, especially in congested areas. In the past, the recommended
width for two-way bicycle paths in the Netherlands was 2meters[67], based on the assumption of a
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minimum lateral spacing of 0.75 meters between two bicycles. This study, however, recommends
increasing the minimum width to 2.3 meters, as the observed average maximum lateral spacing
in this research was 1.1 meters.

Coincidentally, in 2022, the CROW Design Manual for Bicycle Traffic updated the recommended
width for one-way bicycle paths in the Netherlands from 2 meters to 2.35 meters[68]. However,
CROW did not explicitly cite the introduction of e-bikes or e-scooters as a reason for this change;
instead, the update was motivated by the potential safety benefits of wider paths. This study’s
findings further validate the reasoning behind CROW’s recommendation, as larger lateral spacing
can accommodate various micromobility types and contribute to overall riding safety.

2. Overtaking Distance Guidelines: The analysis of lateral distances and speed differences during
overtaking demonstrates the need for clearer guidelines on safe overtaking distances between
different types of micromobility vehicles. Transport authorities can use these findings to develop
minimum overtaking distance standards for micromobility users. Such guidelines could be inte-
grated into traffic laws, ensuring that riders are aware of the necessary space required to safely
overtake other vehicles, ultimately enhancing road safety for all users.

3. Traffic Calming Measures: The differences in speed and acceleration between e-scooters, e-
bikes, and traditional bicycles could be used to design more effective traffic calming measures.
Implementing speed limits tailored to different types of micromobility vehicles and creating desig-
nated overtaking zones could help reduce conflicts between riders andminimize high-risk overtak-
ing behaviors. This approach could also prevent scenarios where slower bicycles are overtaken
in unsafe conditions, thus mitigating potential hazards.

4. Micromobility Integration into Traffic Systems: Given the increasing integration of e-bikes and e-
scooters into urban transportation, the study’s insights into overtaking behavior could inform traffic
simulation models that reflect real-world dynamics of mixed micromobility interactions. These
models could be used by transportation planners and engineers to simulate and optimize the flow
of micromobility vehicles in urban traffic systems, allowing for the development of infrastructure
that accommodates the unique behaviors of these vehicles, leading to safer and more efficient
traffic networks.

8.3. Research contribution
This study presents a comprehensive experimental design process that can serve as a reference for
future researchers undertaking similar investigations in the field of micromobility behavior. The method-
ology developed here offers a systematic approach to studying complex interactions between different
types of micromobility vehicles and users.

Moreover, this research has resulted in the development of a robust video data processing pipeline.
This pipeline is characterized by its adaptability to datasets of varying quality, making it particularly
suitable for studies where data collection conditions may not be ideal. The process is designed with a
focus on reproducibility, allowing other researchers to apply and build upon this methodology in their
own work.

The video processing workflow developed in this study addresses common challenges in micromobility
research, such as multi-camera trajectory merging, time synchronization across different data sources,
and trajectory smoothing. By providing solutions to these technical hurdles, this research contributes
to the standardization of data processing methods in micromobility studies. Furthermore, the approach
taken in this study to define and analyze overtaking phases offers a nuanced framework for examining
micromobility interactions. This framework can be adapted and refined by future researchers to explore
various aspects of micromobility behavior beyond overtaking.

In summary, the methodological contributions of this study - including the experimental design, data
processing pipeline, and analytical framework - provide a solid foundation for future research in micro-
mobility behavior. These tools and approaches can enhance the rigor and comparability of studies in
this rapidly evolving field.
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8.4. Limitations and recommendation for future research
This study provides valuable insights into micromobility overtaking behavior. However, several limi-
tations should be recognized and addressed in future research. Each limitation highlights areas for
improvement and suggests potential avenues for further investigation:

1. Cultural and Market Context: This study was conducted within the unique micromobility land-
scape of China, where e-mopeds dominate and e-bikes are less common, with e-scooters pri-
marily used in specific areas such as university campuses. While participants were given time to
adjust to the vehicles, their behavior may not fully reflect that of experienced riders in regions like
Europe, where e-bikes are more prevalent and used in diverse settings. These contextual fac-
tors may have influenced overtaking behaviors specific to the Chinese market. Future research
should consider cross-cultural comparisons in regions with established e-bike ecosystems to ex-
amine if local factors and cultural norms shape rider behavior, ultimately determining if findings
are generalizable or if region-specific safety guidelines are necessary.

2. Experimental Design Constraints: The simultaneous presence of multiple slow-moving vehi-
cles in the study may have impacted participant behavior, particularly when e-bikes overtook
bicycles. This multi-target environment might have inadvertently altered overtaking decisions,
introducing confounding variables. To address this, future studies should control for individual
overtaking events by isolating specific scenarios. For example, carefully staged setups or vir-
tual simulations could allow researchers to capture single overtaking actions without additional
distractions, thereby providing a clearer understanding of specific overtaking initiation behaviors
across micromobility types.

3. Data Collection Challenges: Several technical issues impacted data quality and analysis:

• Camera Positioning: Non-vertical camera placements, combined with the absence of cal-
ibration images, led to edge distortions that compromised visual data accuracy. Future re-
search should prioritize comprehensive camera calibration, possibly using pre-calibration
with a chessboard or software that automatically corrects distortions. Advanced video pro-
cessing tools, such as motion-capture software, could further enhance data fidelity.

• Equipment Setup: Extended multi-camera recordings highlighted the need for more robust
data capture systems. To address issues such as data loss during transfer and the need for
frequent camera synchronization, future studies could use high-performance setups, includ-
ing Power over Ethernet (PoE) collect station and backup systems to preserve data integrity.
Real-time monitoring of data collection could further ensure recording reliability.

• IMU Data Collection: Incorrect sensor placement on the e-scooter’s stems led to incorrect
roll rate and angle measurements, as the data did not reflect the travel direction. Future
research should focus on calibrating and securing IMU devices in a way that aligns the
sensor measurements with the vehicle’s travel direction, ensuring that the roll rate and angle
data are consistent with the e-scooter’s actual movement. Testing and validating sensor
orientation and placement prior to data collection can help improve the accuracy of dynamic
measurements for micromobility vehicles.

4. Data Processing and Analysis: Although this study developed a novel video data processing
pipeline, further refinements could improve robustness. Future research should enhance this
pipeline, specifically targeting improvements in distortion correction and multi-camera trajectory
merging. Applying machine learning algorithms for trajectory tracking and pattern recognition
could yield deeper insights. Additionally, automated data alignment solutions could simplify the
data processing workflow, supporting the scalability of future studies on micromobility interactions.

To build on these findings, future research should focus on:

1. Conducting cross-cultural studies in various micromobility markets to understand behavioral dif-
ferences.

2. Designing experiments that isolate individual overtaking maneuvers to minimize external influ-
ences.
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3. Enhancing data collection methodologies, with attention to camera calibration, sensor placement,
and real-time equipment monitoring.

4. Developing sophisticated data processing techniques, such as machine learning-based trajectory
analysis.

5. Exploring long-term studies on how rider behaviors evolve with increased exposure to different
micromobility vehicles.

By addressing these limitations and implementing the recommended improvements, future research
can contribute to a more comprehensive understanding of micromobility overtaking behaviors and in-
form the development of safety guidelines tailored to diverse rider groups and regions.
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A
Scenario, duration and schedule

design

As the primary objective of this study is to examine the influence of two main attributes namely micromo-
bility type and individual factors & experience. The latter has been addressed in the previous section
through the participant selection process. For the former, the study design incorporates a range of intra-
modal and inter-modal interactions to comprehensively capture the dynamics of overtaking behavior
across different micromobility modes. The experimental scenarios include:

1. Two intra-modal interactions:

(a) E-scooter (ES) vs. E-scooter (ES)
(b) E-bike (EB) vs. E-bike (EB)

2. Two inter-modal interactions:

(a) E-scooter (ES) vs. E-bike (EB)
(b) E-bike (EB) vs. E-scooter (ES)

To broaden the scope of the study and provide a more comprehensive understanding of micromobility
interactions, two additional combinations involving conventional bicycles (B) are also considered, which
include:

1. Two inter-modal interactions involving conventional bicycles (B):

(a) E-scooter (ES) vs. Bike (B)
(b) E-bike (EB) vs. Bike (B)

This inclusion allows for comparative analysis between newer forms of micromobility and traditional
cycling. The planned scenario runs and their specific properties are summarized in TableA.1. This table
provides a detailed overview of each overtaking combination, the modes involved, and the number of
repetitions, offering a clear structure for the experimental design.

Sce No. Sce Name Participating mode Exp. duration (min)
ES EB B

1 Overtaking-intra1 ✓ - - 12 x 4
2 Overtaking-intra2 - ✓ - 12 x 4
3 Overtaking-inter1 ✓ ✓ - 12 x 4
4 Overtaking-inter2 ✓ ✓ - 12 x 4
5 Overtaking-bike1 ✓ - ✓ 12 x 4
6 Overtaking-bike2 - ✓ ✓ 12 x 4

Table A.1: Table of Overtaking Scenarios and Experimental Details
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The estimation of the duration of each scenario depends on several factors. One is the time it takes
to run a lap. The second one is the number of samples(number of laps) that need to be collected for
each participant. The final one is the minimum number of experiments necessary for each participant
to complete this scenario.

For the time taken to complete a lap, considering that the average speed of the e-bike and e-scooter
is around 15km/h and the maximum distance to complete a full lap is roughly 150 meters, it will take
around 36 seconds to complete a lap, but taking into account the starting time, the probability of slowing
down when turning, etc., a lap of one minute is taken. Each experimental participant needs to run four
laps to collect four valid interactive actions. The expected duration for each scenario is presented in
TableA.1, the actual duration might be less due to the fact that participant’s riding would be scheduled
in a consecutive order when conditions allow.



B
Data processing methodology

B.1. Image Correction
Image distortion correction is a vital step in the data processing workflow to ensure accurate spatial
analysis of video footage. The primary objective of this correction is to transform the camera’s perspec-
tive from a side view to a bird’s-eye view—perpendicular to the center of the image from above. This
transformation allows for precise measurements and analysis of movements within the video frames.

For this purpose, this study employed a tool called ImageTracker developed by Knoppers, van Lint,
and Hoogendoorn [54]. The fundamental principle of this tool is to apply geometric transformations—
stretching and rotating the image in multiple directions—to convert each frame of the video into a verti-
cally downward view. This process effectively aligns the image plane with the ground plane, minimizing
perspective distortion and facilitating accurate trajectory extraction.

Ideally, image distortion correction should also address lens distortions such as barrel distortion, which
is common in wide-angle lenses. The chessboard algorithm bt Zhang [69] are typically used for this
purpose, requiring images of chessboard patterns at different angles to calculate the correction matrix.
However, this study did not incorporate barrel distortion correction due to two primary reasons:

1. Lack of Calibration Images: The data collected did not include the necessary calibration images
required for methods like the chessboard algorithm.

2. Focus on Relative Variables: The study concentrates on overtaking behavior, analyzing relative
variables such as speed difference and position. Since these variables are less affected by edge
distortions, the impact of barrel distortion on the data analysis is minimal.

Despite this, we acknowledge that including barrel distortion correction could enhance the accuracy of
the results and remains an area for future improvement.

An essential aspect of the methodology is the conversion of pixel-based trajectories into real-world units
(meters). The ImageTracker tool facilitates this by calculating the actual distance represented by each
pixel in the image. This involves determining a scale factor based on known measurements within the
scene, such as the size of standard floor tiles.

The scale parameter is an average value, which is calculated by manually counting the number of
standard-sized floor tiles and determining the total physical length in the X direction, then dividing it by
the pixel length in the X direction. The scale factors in the X and Y directions for videos recorded by the
same camera should be consistent. In this study, the same scale factor was used for both directions,
and the reasonableness of using the same value was proven in the subsequent accuracy verification
step.

In addition to the scale parameter, distortion correction involves several other angle parameters. These
angles include:
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1. Rotation Angle : This is the angle used to rotate the image or the coordinate grid around the
center of the image in the plane of the image (2D rotation).

2. WedgeX Angle: This represents a perspective transformation applied along the X-axis (horizontal
axis). The wedgeX angle adjusts how the scene appears to tilt toward or away from the viewer
along the horizontal direction.

3. WedgeY Angle: This angle is similar to wedgeX, but it applies the transformation along the Y-axis
(vertical axis). The wedgeY adjusts the perspective effect as if the scene is tilted up or down

The determination of these parameters is a relatively manual process. Firstly, the Imagetracker is
modified to display the comparison between the corrected image and the original image after entering
different parameters. Through repeated parameter testing, the best set of parameters was selected for
each camera.

B.2. Height Projection
The forth step involves height projection. The reason for performing height projection is that when a
camera captures images from an elevated position, objects in the image appear closer to the camera
than their actual positions. Correction is necessary to obtain the true positions of the objects. The
height projection method employed in this study is based on the approach developed by Knoop and
Wierbos [55].

B.2.1. Algorithm
The algorithm processes each point in the trajectory data sequentially:

It first calculates the relative distance R between the object’s position and the camera’s position in the
ground plane using the Pythagorean theorem:

R =
√

(x−A)2 + (y −B)2 (B.1)

Where (X, Y) represents the wrong unprocessed coordinates, and (A, B) represents the camera coor-
dinates.

The algorithm then computes a corrected distance r, which represents the true ground distance that
accounts for the height of the object:

r =
(H − h) ·R

H
(B.2)

This correction is based on the principle of similar triangles, where the ratio of the corrected distance
to the observed distance is equal to the ratio of the height difference between the camera and object
to the camera height.

Finally, the corrected x and y coordinates (X and Y ) are calculated:

X = (x−A) · r

R
+AY = (y −B) · r

R
+B (B.3)

These equations adjust the position of the object proportionally based on the ratio of the corrected
distance to the observed distance, maintaining the object’s relative position with respect to the camera’s
ground position.

The principle of this method is also illustrated in figureB.1(a) and figureB.1(b).

B.3. Algorithms by the author
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((a)) Side view of camera and observed object

Note: The blue dot represents the camera position in
from side view

((b)) Top view of camera and observed object

Note: The black dot indicates the camera position in the
top view.

Figure B.1: Top and side view of tracked object from study[55]

Algorithm 1 Combine matching trajectories from two videos
Input: Trajectory data from previous videoP, Trajectory data from current videoC, Distance threshold

D, Time threshold T
Output: Merged trajectories M
1: M = ∅
2: prevIDs = unique(P[ID])
3: currIDs = unique(C[ID])
4: for all prevID ∈ prevIDs do
5: prevTraj = P[P[ID] == prevID]
6: prevFrame = lastFrame(prevTraj)
7: for all currID ∈ currIDs do
8: currTraj = C[C[ID] == currID]
9: currFrame = firstFrame(currTraj)
10: distance =

√
(currFrame[x]− prevFrame[x])2 + (currFrame[y]− prevFrame[y])2

11: timeDiff = currFrame[time]− prevFrame[time]
12: if distance ≤ D and 0 < timeDiff ≤ T then
13: interpFrames = linearInterpolation(prevFrame, currFrame, timeDiff)
14: mergedTraj = concatenate(prevTraj, interpFrames, currTraj)
15: Add mergedTraj to M
16: end if
17: end for
18: end for
19: if M == ∅ then
20: Output warning: ”No matching trajectories found”
21: end if
22: return M
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Algorithm 2 Handling split trajectories by shallow Algorithm
Input: Trajectory data D (containing ID, x, y, time for each point), Spatial threshold Sth, Temporal

threshold Tth

Output: Merged and interpolated trajectory data D′

1: D′ = D, merged_pairs = ∅
2: for all idi ∈ unique IDs in D do
3: (xi, yi, ti) = the second last point of trajectory idi
4: for all idj ∈ next two unique IDs after idi do
5: (xj , yj , tj) = the second point of trajectory idj
6: ∆s =

√
(xj − xi)2 + (yj − yi)2

7: ∆t = tj − ti
8: if ∆s ≤ Sth and 0 < ∆t ≤ Tth then
9: interpolated_points = linear_interpolation((xi, yi, ti), (xj , yj , tj))
10: D′ = update_trajectories(D′, idi, idj , interpolated_points)
11: merged_pairs = merged_pairs ∪ {(idi, idj)}
12: end if
13: end for
14: end for
15: D′ = remove_duplicate_timestamps(D′)
16: D′ = reassign_trajectory_ids(D′)
17: return D′

Algorithm 3 Jump Point Detection and Separation
Input:
1: D = {(idi, xi, yi, ti, traj_idi) | i = 1, . . . , n}: trajectory data, where i is order of a point on a trajectory
with n points

2: dth: distance threshold
Output:
3: D′: updated trajectory data
4: Initialize D′ = D
5: Let T = {traj_idi | (idi, xi, yi, ti, traj_idi) ∈ D}
6: new_id = max(T ) + 1
7: for each j ∈ T do
8: Let Pj = {(id, x, y, t, traj_id) ∈ D′ | traj_id = j}
9: for k = 1 to |Pj | − 1 do
10: dk =

√
(xk+1 − xk)2 + (yk+1 − yk)2

11: if dk > dth then
12: for all m > k do
13: Update (idm, xm, ym, tm, j) to (idm, xm, ym, tm, new_id) in D′

14: end for
15: new_id = new_id+ 1
16: end if
17: end for
18: end for
19: return D′
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Algorithm 4 Interpolation after jump point split
Input:
1: D′ = {(idi, xi, yi, ti, traj_idi) | i = 1, . . . , n}: trajectory data from the output of algorithm 4
2: Tth: time threshold
3: Dth: distance threshold
4: Yth: Y-coordinate threshold
Output:
5: D′′: merged and interpolated trajectory data
6: Initialize D′′ = ∅
7: Let T = {traj_idi | (idi, xi, yi, ti, traj_idi) ∈ D′}
8: for each j ∈ T do
9: Let Pj = {(id, x, y, t, traj_id) ∈ D′ | traj_id = j}
10: pend = (xend, yend, tend) where tend = max({t | (id, x, y, t, j) ∈ Pj})
11: Find k ∈ T \ {j} that minimizes:
12:

√
(xstart − xend)2 + (ystart − yend)2

13: subject to:
14: tstart − tend ≤ Tth

15:
√
(xstart − xend)2 + (ystart − yend)2 ≤ Dth

16: |ystart − yend| ≤ Yth

17: where (xstart, ystart, tstart) is the first point in Pk

18: if such k exists then
19: Interpolate between pend and (xstart, ystart, tstart)
20: Pmerged = Pj ∪ interpolated points ∪ Pk

21: Add Pmerged to D′′

22: else
23: Add Pj to D′′

24: end if
25: end for
26: for each trajectory P in D′′ do
27: Remove duplicate time points from P
28: end for
29: return D′′
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Algorithm 5 Pairwise Trajectory Matching and Merging (using R1 and R2 as example)
Input:
1: DR1: trajectory data for Camera R1 (containing X, Y, Time, ID)
2: DR2: trajectory data for Camera R2 (containing X, Y, Time, ID)
3: Tth: time threshold (maximum allowable time difference for matching)
Output:
4: D′: merged and matched trajectory data
5: CalculateAvgVelocity(trajectory, start_time, end_time):
6: Extract all points in trajectory between start_time and end_time
7: Calculate total distance between these points
8: Calculate time difference (end_time− start_time)
9: return average velocity (total distance / time difference)
10: Load trajectory data DR1 and DR2

11: Extract unique IDs from DR1 and DR2

12: Initialize empty lists: new_trajectories, matched_ids, match_details
13: for each unique ID i in DR1 do
14: if i not in matched_ids then
15: Extract current trajectory data TR1,i from DR1

16: last_pointR1 = last point of TR1,i

17: t2 = last_pointR1.time
18: Step 1: Calculate R1 Velocity (Last 0.5s)
19: t1 = t2− 0.5 {Find start time for the last 0.5s in R1}
20: vR1,i = CalculateAvgVelocity(TR1,i, t1, t2)
21: best_match = NULL
22: min_distance1 = ∞
23: min_distance2 = ∞
24: min_speed_diff = ∞
25: Step 2: Find Best Match in R2
26: Find all trajectories in DR2 containing t2′, the time closest to t2
27: Initialize list candidate_matches
28: for each trajectory TR2,j in DR2 containing t2′ do
29: first_pointR2 = point in TR2,j closest to t2
30: spatial_dist = distance between last_pointR1 and first_pointR2
31: Step 3: Calculate R2 Velocity (Next 0.5s from Matching Point)
32: t2′ = first_pointR2.time
33: t3 = t2′ + 0.5 {Find end time for the next 0.5s in R2}
34: vR2,j = CalculateAvgVelocity(TR2,j , t2′, t3)
35: speed_diff = |vR1,i − vR2,j |
36: Add (TR2,j , spatial_dist, speed_diff ) to candidate_matches
37: end for
38: Step 4: Select the Best Match
39: Sort candidate_matches by spatial_dist and retain the two closest trajectories
40: From the two closest, select the trajectory with the smallest speed_diff
41: best_match = selected trajectory TR2,j

42: if best_match is not NULL then
43: Add i and best_match to matched_ids
44: t2′ = time in best_match closest to t2
45: Step 5: Trajectory Merging
46: Remove all points in TR2,j before t2′

47: Shift remaining points in TR2,j to connect with TR1,i

48: Merge TR1,i and remaining TR2,j

49: Add merged trajectory to new_trajectories
50: end if
51: end if
52: end for
53: Combine all trajectories in new_trajectories
54: return D′
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Algorithm 6 Three Camera Trajectory Merge Algorithm
Input:
1: data_r1_r2: trajectory data from R1-R2 cameras
2: data_r2_l1: trajectory data from R2-L1 cameras
Output:
3: merged_df : merged trajectory data
4: Initialize all_trajectories = ∅
5: final_id = 1
6: for each unique New_ID (id1) in data_r1_r2 do
7: Extract R1 and R2 data for id1 from data_r1_r2
8: if R2 data is empty then
9: continue
10: end if
11: old_id_r2 = R2 data’s Old_ID
12: r1_end_time = max(Time) from R1 data
13: Find matching R2L1 trajectory in data_r2_l1 using old_id_r2
14: if no matching R2L1 trajectory found then
15: continue
16: end if
17: r2l1_id = matching R2L1 trajectory’s New_ID
18: Extract R2 and L1 data from data_r2_l1 for r2l1_id
19: Trim R2 data to keep only points after r1_end_time
20: if trimmed R2 data is empty then
21: continue
22: end if
23: Add id1 to used_r1r2_ids
24: Add r2l1_id to used_r2l1_ids
25: Calculate spatial offset:
26: r1_end_x, r1_end_y = R1 data coordinates at r1_end_time
27: data2_start_x, data2_start_y = first point of trimmed R2 data
28: shift_x = data2_start_x− r1_end_x
29: shift_y = data2_start_y − r1_end_y
30: Apply spatial offset to trimmed R2 and L1 data
31: Remove first point of trimmed R2 data
32: Merge R1, trimmed R2, and L1 data
33: Assign final_id to merged trajectory
34: Append merged trajectory to all_trajectories
35: final_id = final_id+ 1
36: end for
37: merged_df = concatenate all_trajectories
38: return merged_df
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Algorithm 7 Stationary Point Smoothing in Trajectory
Input:
1: D: Trajectory data with columns [ID, X, Y, Time]
Output:
2: Updated D with smoothed stationary points
3: Calculate ’Distance’ between consecutive points:
4: Distance =

√
(X2 −X1)2 + (Y2 − Y1)2

5: Identify stationary points:
6: Stationary = (Distance = 0)
7: for each point i in D do
8: if Stationary[i] is True then
9: if i is not first or last point then
10: X[i] = (X[i− 1] +X[i+ 1])/2
11: Y [i] = (Y [i− 1] + Y [i+ 1])/2
12: end if
13: end if
14: end for
15:
16: return Updated D



C
Implementation of experiment design

The contributions of the two Chinese teams were instrumental in the preparation and implementation
of the study. Two main teams provided crucial support:

1. The Beijing Team: This group, affiliated with Beijing Jiaotong University, was primarily responsible
for the equipment used in data collection for the experiment.

2. The Cangzhou Team: This team was from the university where the experimental site was located.
For convenience, we refer to them as the Cangzhou team.

The roles of these teams were distinct and complementary: The Beijing Team’s primary responsibility
was to assist in acquiring various data collection devices and experimental vehicles. Their expertise in
equipment and technical setup was crucial for ensuring the quality and reliability of the data collected.

The Cangzhou Team’s contributions were multifaceted: They provided the experimental site Assisted in
recruiting participants for the study Offered logistical support throughout the duration of the experiment

This collaborative approach was essential in overcoming the challenges posed by the author’s geo-
graphical distance from the experimental site. It ensured that the study could be conducted efficiently
and effectively, with local expertise complementing the author’s research design. The specific contri-
butions of each team at various stages of the experiment will be detailed in the subsequent sections.
This breakdown will provide a comprehensive understanding of how the international collaboration fa-
cilitated the successful implementation of the research project, highlighting the importance of teamwork
in conducting complex field experiments across geographical boundaries.

Of course, in addition to the two Chinese teams, my supervisor, Yufei also fully participated in the
execution of the experiment and his contribution at every step was crucial.

C.1. Joint work on experiment location
In regards to the laying of themain track in the test site, it was two days before the start of the experiment.
It was done by the author himself and the author’s supervisor as well as people from two separate
Chinese teams. We tape the ground together.The choice on the color is provided by the supervisor,
while the purchase and taping is achieved together.

C.2. Joint work on vehicle selection
The acquisition of vehicles for the experiment involved a collaborative effort. This is done by the au-
thor and the two teams, with specific processes for different vehicle types. For e-scooters, the author
selected the models, communicated with the Beijing team, who then ordered and shipped them to the
experimental site, where the Cangzhou team received and stored them. Prior to the experiment, the
author personally assembled, activated, and tested these e-scooters. The e-bikes, on the other hand,
were sourced by the Beijing team through renting from students at Beijing Jiaotong University. They
were then transported to the experimental site, where the author, along with a member of the Beijing
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team, personally received and tested them. This collaborative approach in vehicle acquisition demon-
strates the synergy between the author’s research requirements and the local teams’ resources and
logistical capabilities, ensuring that all vehicles met the specific needs of the experiment andmaintained
consistency and reliability in the equipment used for data collection.

C.3. Joint work on participants recruitment
The recruitment of experimental participants was accomplished with the assistance of the Cangzhou
team. The author of this study provided the recruitment requirements to the Cangzhou team based on
the experimental design. Subsequently, the Cangzhou team utilized their internal educational network
within their campus to recruit participants, adhering as closely as possible to the specified criteria. The
Cangzhou team then furnished the author with the information of the recruited participants. Additionally,
prior to the commencement of the experiment, they provided a classroom that allowed the author to
brief the participants on the experimental procedures, ensuring that all participants were well-informed
about their roles and the overall process before the trials began.

And the measure of the sitting or standing heights of each participant is a joint work by the author and
the supervisor.

The design of the unique ID system is also jointly designed and achieved by the author and the super-
visor.

The identification of trial participants was achieved through a unique combination of a special shape
and a Roman numeral, as illustrated in FigureC.1(a) and FigureC.1(b).

This system served to indicate which pattern each trial participant belonged to. Following the assign-
ment of these shape-numeral combinations, participants’ names were replaced with these combina-
tions to maintain anonymity. This unique identification is used for two main purposes: it facilitated the
author’s ability to distinguish participants by mode and vehicle during the experiment, enabled efficient
monitoring throughout the trial, and aided in the subsequent attribution of individual characteristics to
each trajectory data point during analysis. The specific details for E-bike and E-scooter participants
are presented in their respective tables in the appendixF, providing a comprehensive overview of the
participant demographics and their assigned identifiers.

((a)) Special shape ((b)) Roman numeral

Figure C.1: Two different shapes

C.4. Joint work on camera acquisition and setup
The acquisition and transport of the camera was done with the assistance of the Beijing team, with the
authors of this paper receiving and testing at the test site. The setup of the cameras involved two main
aspects: software configuration and hardware connection. The software configuration was primarily
conducted by the author of this study over the three days preceding the experiment, individually setting
up each camera. Some aspects of the setup, such as the choice of video recording software and IP
address configuration, were based on the supervisor’s experience. The adjustment of various camera
parameters was guided by the Dahua product manual. The hardware connection phase, which included
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assembling the cameras with their supports and mounting them onto the aerial truck, was completed
with the assistance of members from the Beijing team.

C.5. Joint work on IMU acquisition
The Inertial Measurement Unit (IMU) devices were provided by the Beijing team. The setup of these
IMU devices encompassed both software and hardware aspects. The software setup for the IMU
was primarily handled by the Beijing team. This was due to their expertise with the control program,
which they had developed based on the original program provided by the device manufacturer. Their
extensive experience with the equipment made them the ideal choice for this task. Additionally, the
author of this study requested that the IMU unit’s time be synchronized with the computer’s system
time, a requirement that the Beijing team successfully implemented. The hardware setup consisted of
two main components: preliminary testing and the actual installation and securing of the devices on
the day of the experiment. Both of these tasks were also carried out by the Beijing team.

C.6. Joint work on Experiment Execution
During the entire experiment, the author of this thesis was primarily responsible for monitoring the
experimental process, including keeping track of the number of overtaking maneuvers performed by
each participant, controlling their entry into the main track, and answering any questions from the partic-
ipants. The author’s supervisor also assisted in the monitoring work, with his main task being to gather
the participants for the next round as each round was about to end and to re-explain the experimental
procedure to ensure a smooth transition between rounds and minimize waiting time. Throughout the
process, two members of the Beijing team were responsible for monitoring the recording status of the
two groups of cameras and promptly reporting any issues to the author and the author’s supervisor.
Two additional members from the Beijing team were mainly in charge of overseeing the data collection
work of the IMU units. Furthermore, the Cangzhou team, responsible for the experimental site, pro-
vided extensive logistical support. Prior to the start of the experiment, they guided the aerial truck into
the experimental site and provided power supply solutions, sun umbrellas, tables, chairs, and assis-
tance with equipment transportation. During the experiment, members of the Cangzhou team helped
with charging the electric scooters and provided emergency repairs for one of the electric bicycles that
malfunctioned. The logistics team also provided the participants with ample beverages, food, and sun
protection tools. Additionally, some of the participants themselves voluntarily helped with some of the
site cleanup and equipment transportation tasks after the end of the experiment.



D
Accuracy validation

Table D.1: X Position validation

X Position at A X Position at A+1s Calculation Distance Real Distance Deviation Percentage

13.01 10.97 2.04 2.2 0.16 0.072727273
14.02 11.83 2.19 2.4 0.21 0.0875
19.64 15.97 3.67 3.5 0.17 0.048571429
13.42 11.66 1.76 2.0 0.24 0.12
22.01 19.65 2.36 2.4 0.04 0.016666667
19.15 15.75 3.40 3.6 0.20 0.055555556
15.58 11.00 4.58 3.6 0.98 0.272222222
18.67 14.62 4.05 4.2 0.15 0.035714286
14.58 10.00 4.58 4.8 0.22 0.045833333
19.47 16.54 2.93 3.0 0.07 0.023333333
17.68 8.89 8.79 9.0 0.21 0.023333333
14.87 11.70 3.17 3.0 0.17 0.056666667
20.03 13.48 6.55 6.6 0.05 0.007575758
14.03 10.58 3.45 3.6 0.15 0.041666667
19.87 16.96 2.91 2.6 0.31 0.119230769
11.52 7.83 3.69 3.6 0.09 0.025
24.52 21.09 3.43 3.6 0.17 0.047222222
25.05 21.60 3.45 3.6 0.15 0.041666667
11.30 6.04 5.26 5.4 0.14 0.025925926
15.50 11.50 4.00 3.6 0.40 0.111111111
18.39 12.89 5.50 5.4 0.10 0.018518519
15.61 9.92 5.69 6.0 0.31 0.051666667
13.15 8.13 5.02 4.8 0.22 0.045833333
14.58 12.97 1.61 1.8 0.19 0.105555556
8.12 6.80 1.32 1.5 0.18 0.12
11.42 9.13 2.29 2.4 0.11 0.045833333
18.63 16.48 2.15 2.4 0.25 0.104166667
15.90 13.54 2.36 2.4 0.04 0.016666667
22.14 15.59 6.55 6.6 0.05 0.007575758
23.63 18.98 4.65 4.8 0.15 0.03125

Average 0.196 0.060819657
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Table D.2: Y Position Data Analysis

X Position at A X Position at A+1s Calculation Distance Real Distance Deviation Percentage

11.64 10.18 1.46 1.4 0.06 0.042857143
11.53 10.25 1.28 1.2 0.08 0.066666667
11.49 10.42 1.07 1.2 0.13 0.108333333
11.32 9.74 1.58 1.6 0.02 0.0125
11.22 9.74 1.48 1.4 0.08 0.057142857
11.82 10.66 1.16 1.2 0.04 0.033333333
11.50 10.06 1.44 1.5 0.06 0.04
11.57 10.25 1.32 1.2 0.12 0.1
11.44 10.32 1.12 1.2 0.08 0.066666667
11.70 10.31 1.39 1.2 0.19 0.158333333
13.45 12.14 1.31 1.2 0.11 0.091666667
13.20 12.09 1.11 1.2 0.09 0.075
12.99 11.57 1.42 1.6 0.18 0.1125
13.68 12.20 1.48 1.5 0.02 0.013333333
13.21 11.68 1.53 1.5 0.03 0.02
13.27 12.22 1.05 0.9 0.15 0.166666667
13.41 11.41 2.00 1.8 0.20 0.111111111
13.57 11.97 1.60 1.5 0.10 0.066666667
13.33 12.21 1.12 1.0 0.12 0.12
13.47 12.15 1.32 1.2 0.12 0.1
12.53 10.70 1.83 1.8 0.03 0.016666667
11.49 13.12 1.63 1.6 0.03 0.01875
11.23 12.03 0.80 0.7 0.10 0.142857143
12.51 11.05 1.46 1.5 0.04 0.026666667
12.20 11.22 0.98 0.8 0.18 0.225
11.22 11.40 0.18 0.0 0.18
11.95 11.43 0.52 0.6 0.08 0.133333333
10.97 11.93 0.96 0.9 0.06 0.066666667
13.90 12.62 1.28 1.2 0.08 0.066666667
11.53 10.90 0.63 0.7 0.07 0.1

Average 0.094333333 0.077961433



E
TMA moving average method

verfivation

The FigureE.1 compares the calculation of the four moving average methods when window size=10,
and you can see that TMA has the smoothest effect. The FigureE.2 compares the TMA effect of different
window sizes, you can see that the change from 10 to 15 is not so obvious, and 10 points is exactly
0.5s, from the choice of value is more reasonable to consider, and finally chose window size=10.

Figure E.1: Moving average methods Comparison

Figure E.2: Comparison of TMA with Different Window Sizes
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F
Parameter tables during experiment

implementation

Gender Sitting Height (cm) Category Number Group Type of e-bike IMU
Male 173 EB 1 Spade + I Fat-ebike
Male 168 EB 1 Spade + II Fat-ebike
Male 168 EB 1 Spade + III Fat-ebike
Male 168 EB 2 Spade + IV Regular one 1
Male 168 EB 2 Spade + V Regular one 1
Male 165 EB 2 Spade + VI Regular one 1
Male 160 EB 3 Spade + VII Regular one
Female 158 EB 3 Spade + VIII Regular one
Female 157 EB 3 Spade + IX Regular one
Female 155 EB 4 Spade + X Small wheel one
Male 155 EB 4 Spade + XI Small wheel one
Female 154 EB 4 Spade + XII Small wheel one

Table F.1: E-bike riders group information

EB means E-bike; Spade is a shape of playcards; where IMU=1 means that that vehicle is equipped with IMU.

Gender Standing Height (cm) Category Number Group IMU
Male 155 ES 1 Diamond I
Female 165 ES 1 Diamond II
Female 168 ES 1 Diamond III
Female 151 ES 1 Diamond IV
Male 167 ES 2 Diamond V 1
Male 168 ES 2 Diamond VI 1
Male 168 ES 2 Diamond VII 1
Male 174 ES 2 Diamond VIII 1
Male 152 ES 3 Diamond IX
Male 161 ES 3 Diamond X
Male 172 ES 3 Diamond XI
Male 165 ES 3 Diamond XII

Table F.2: E-scooter riders group information

Es means E-bike; Diamond is a shape of playcards; where IMU=1 means that that vehicle is equipped with IMU.
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G
Data processing

Table G.1: RGB values for Red Cap

Parameter Value
Hats.Color{1} [230, 42, 69]
Hats.STD{1} [21, 11, 19]

Table G.2: Detection Areas for Different Cameras

Case Number Detection Area X Coordinates Detection Area Y Coordinates

1 [0, 1920, 1920, 0] [950, 1000, 670, 340]
2 [0, 1920, 1920, 0] [400, 400, 900, 900]
3 [0, 1600, 1600, 0] [300, 690, 1060, 850]
4 [0, 1000, 1920, 1920, 940, 0] [600, 500, 360, 850, 1000, 1000]

Table G.3: R1 Video File Information with exact starting time

Filename Frame Rate Time Step Frame Number Exact Start Time

2024.05.26 08-40-05.mp4 19.98880383 0.050028006 3 08:40:06.900
2024.05.26 09-00-05.mp4 19.99306198 0.050017351 12 09:00:05.450
2024.05.26 09-23-54.mp4 19.98796236 0.050030112 17 09:23:56.200
2024.05.26 09-33-32.mp4 19.99100909 0.050022487 17 09:33:33.200
2024.05.26 09-53-32.mp4 19.9891001 0.050027265 6 09:53:33.750
2024.05.26 10-13-32.mp4 19.98808299 0.05002981 13 10:13:32.400
2024.05.26 10-33-32.mp4 19.99077759 0.050023067 19 10:33:33.100
2024.05.26 10-53-32.mp4 19.98980182 0.050025508 7 10:53:33.700

where the frame number in The video infromation tables is the number of frame when the time change from second i
to i+1.
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Table G.4: R2 Video File Information with exact starting time

Filename Frame Rate Time Step Frame Number Exact Start Time

2024.05.26 08-40-11.mp4 19.97845332 0.050053925 20 08:40:12.049
2024.05.26 08-58-05.mp4 19.99533532 0.050011664 11 08:58:05.500
2024.05.26 09-00-10.mp4 19.94594595 0.050135501 11 09:00:11.499
2024.05.26 09-00-37.mp4 19.96865204 0.050078493 10 09:00:37.549
2024.05.26 09-01-25.mp4 20.00580814 0.049985484 10 09:01:25.550
2024.05.26 09-03-11.mp4 19.98287019 0.050042861 9 09:03:13.600
2024.05.26 09-14-57.mp4 19.99104468 0.050022398 14 09:14:56.350
2024.05.26 09-34-57.mp4 19.98974757 0.050025644 21 09:34:55.999
2024.05.26 09-54-57.mp4 19.99046605 0.050023846 5 09:54:55.800
2024.05.26 10-14-57.mp4 19.98106778 0.050047375 11 10:14:57.500
2024.05.26 10-19-30.mp4 19.98697917 0.050032573 11 10:19:29.500
2024.05.26 11-18-55.mp4 18.70340929 0.053466188 20 11:18:54.984
2024.05.26 11-26-13.mp4 19.98366458 0.050040872 14 11:26:13.349

where the frame number in The video infromation tables is the number of frame when the time change from second i
to i+1.

Table G.5: L1 Video File Information with exact starting time

Filename Frame Rate Time Step Frame Number Exact Start Time

2024.05.26 08-39-57.mp4 17.42634146 0.057384391 11 08:39:40.426
2024.05.26 08-58-33.mp4 19.97583736 0.05006048 10 08:58:32.549
2024.05.26 09-18-33.mp4 19.9741699 0.050064659 15 09:18:33.299
2024.05.26 09-38-34.mp4 19.97916753 0.050052135 2 09:38:33.950
2024.05.26 09-58-34.mp4 19.98250146 0.050043785 12 09:58:32.450
2024.05.26 10-18-34.mp4 19.97833514 0.050054221 3 10:18:32.900
2024.05.26 10-38-34.mp4 19.97666958 0.050058394 10 10:38:33.549
2024.05.26 10-58-34.mp4 18.38596491 0.054389313 15 10:58:33.239
2024.05.26 11-00-19.mp4 19.98444185 0.050038926 14 11:00:19.349
2024.05.26 11-03-03.mp4 19.97833694 0.050054216 2 11:03:02.950
2024.05.26 11-23-03.mp4 19.99025708 0.050024369 11 11:23:03.500

where the frame number in The video infromation tables is the number of frame when the time change from second i
to i+1.

Table G.6: L2 Video File Information with exact starting time

Filename Frame Rate Time Step Frame Number Exact Start Time

2024.05.26 08-59-55.mp4 19.21655334 0.052038468 19 08:59:59.063
2024.05.26 09-19-55.mp4 18.77409664 0.05326488 15 09:19:59.254
2024.05.26 09-39-55.mp4 19.99248842 0.050018786 8 09:39:59.650
2024.05.26 09-59-55.mp4 19.99249937 0.050018759 3 09:59:57.900
2024.05.26 10-19-55.mp4 19.9874974 0.050031276 18 10:19:58.149
2024.05.26 10-39-55.mp4 19.98832798 0.050029197 12 10:39:58.450
2024.05.26 10-59-55.mp4 19.98762267 0.050030962 5 10:59:58.800
2024.05.26 11-09-40.mp4 19.98827961 0.050029318 2 11:09:44.950

where the frame number in The video infromation tables is the number of frame when the time change from second i
to i+1.
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Table G.7: R1 Camera Coordinates and objective height in height projection

Height Camera X Camera Y Filename

1.8 -3.763855531 6.099179905 Orthorectification_Traj_2024.05.26 08-40-05_new_test.mat
1.68 -3.763855531 6.099179905 Orthorectification_Traj_2024.05.26 09-00-05_new_test.mat
1.74 -3.763855531 6.099179905 Orthorectification_Traj_2024.05.26 09-23-54_new_test.mat
1.74 -3.763855531 6.099179905 Orthorectification_Traj_2024.05.26 09-33-32_new_test.mat
1.6 -3.763855531 6.099179905 Orthorectification_Traj_2024.05.26 09-53-32_new_test.mat
1.65 -3.763855531 6.099179905 Orthorectification_Traj_2024.05.26 10-13-32_new_test.mat
1.73 -3.763855531 6.099179905 Orthorectification_Traj_2024.05.26 10-33-32_new_test.mat
1.8 -3.763855531 6.099179905 Orthorectification_Traj_2024.05.26 10-53-32_new_test.mat

where Orthorectification_Traj_2024.05.26 08-40-05_new_test.mat is the output of image correction

Table G.8: R2 Camera Coordinates and objective height in height projection

Height Camera X Camera Y Filename

1.8 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 08-40-11_new_test.mat
1.68 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 08-58-05_new_test.mat
1.68 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 09-00-10_new_test.mat
1.68 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 09-00-37_new_test.mat
1.68 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 09-01-25_new_test.mat
1.68 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 09-03-11_new_test.mat
1.74 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 09-14-57_new_test.mat
1.74 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 09-34-57_new_test.mat
1.6 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 09-54-57_new_test.mat
1.65 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 10-14-57_new_test.mat
1.73 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 10-19-30_new_test.mat
1.8 -0.26350166 1.055615153 Orthorectification_Traj_2024.05.26 11-18-55_new_test.mat

where Orthorectification_Traj_2024.05.26 08-40-05_new_test.mat is the output of image correction
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((a)) Trajectories split by shallow L1

((b)) Interpolated trajectories split by shallow L1

Figure G.1: Handle shallow effect of L1 of camera L1
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((a)) Original trajectories with jump points of L1

((b)) Interpolated and merged trajectories of L1

Figure G.2: Handle jump point effect of L1 of camera L1
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((a)) Original trajectories with jump points of L2

((b)) Interpolated and merged trajectories of L2

Figure G.3: Handle jump point of L2





A study on individual behavior of e-scooter and e-bike users during

overtaking

Wenyi Zhang

Abstract

The increasing prevalence of micromobility vehicles in urban environments has raised concerns about 
safety in shared cycling spaces. This study examines the overtaking behavior of e-scooter and e-bike 
riders to inform traffic management strategies and infrastructure development. A  controlled experiment 
was conducted using strategically placed cameras to track vehicle trajectories and inertial measurement 
units (IMUs) to capture roll data. Extensive data processing ensured accuracy and synchronization of 
trajectory and IMU information. Key findings reveal that e-bikes overtaking e-scooters initiate maneuvers 
from greater distances but maintain smaller lateral distances compared to e-bikes overtaking e-bikes. 
Lateral position differences showed a stronger correlation with speed difference than longitudinal posi-

tion differences. The highest roll rates and angles occurred during the overtaking phase. Pre-overtaking, 
higher roll rates and angles were observed when e-bikes overtook other e-bikes, indicating greater 
control adjustments. No significant gender d ifferences were found i n overtaking behavior. However, in 
non-interactive scenarios, male e-scooter riders traveled at higher speeds than females, while no gender 
differences were observed among e-bike riders. These results provide insights into the complex inter-

actions between different types of micromobility vehicles during overtaking maneuvers. The findings 
underscore the need for targeted safety interventions and infrastructure improvements to mitigate risks 
associated with shared cycling spaces, ensuring safer coexistence of micromobility users and conven-

tional cyclists in urban environments.

Keywords: overtaking; micromobility rider; e-bike; e-scooter; video data; roll angle; roll rate

Introduction

The global proliferation of e-scooters and e-bikes has been accompanied by a significant rise in incidents 
and injury risks, exceeding those associated with traditional bicycles. Despite their distinct dynamics, 
these vehicles often share the same bike lanes under similar regulations, potentially contributing to an 
increased number of accidents. Understanding the microscopic behavior of e-bike and e-scooter users 
interacting with conventional bicycles is essential for enhancing safety on shared paths [1, 2]. E-scooters 
and e-bikes have surged in popularity in recent years due to decreasing costs, improved motor efficiency, 
and an emphasis on sustainability [3, 4]. The European Union experienced a significant g rowth i n e-

bike sales, reaching 5.3 million units in 2022, up from 854,000 units in 2012, with Germany being the 
largest market [4]. The rapid expansion of e-scooter services also exemplifies the growing adoption of 
micromobility, with companies like VOI recording millions of rides by 2020 [5].

However, the increasing prevalence of these vehicles is associated with heightened safety risks. 
In Germany, injuries among e-bike users rose from 10,505 in 2019 to approximately 22,500 in 2022 [6]. 
E-bike users face a higher likelihood of thoracic trauma compared to traditional cyclists, due to factors 
such as their higher speed and increased mass [7, 8]. E-scooters face additional risks, including insta-

bility on uneven surfaces due to smaller wheels and stand-up posture, which contributes to elevated ac-
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cident rates [9, 10]. Despite these differences, regulatory frameworks often treat e-bikes and e-scooters

similarly to conventional bicycles. For example, in many European countries, they are mandated to use

bike lanes originally designed for non-motorized bicycles, which can increase safety risks for all users

[11, 12]. The safety of these shared paths is largely dependent on understanding the individual behavior

of micromobility users, particularly in their interactions with other cyclists. This behavior encompasses

both mental decision-making (e.g., path choice) and physical control actions (e.g., steering and body

positioning) [8, 13].This study specifically focuses on the overtaking behavior of micromobility users.

Overtaking is a critical behavior in mixed traffic flows, especially given the lower visibility and smaller

size of e-scooters and e-bikes. It often leads to conflicts that can compromise the safety of bike lanes,

making overtaking maneuvers an important focus for improving shared infrastructure [14, 15]. Investi-

gating overtaking behavior aids in determining appropriate bike lane width, informs traffic modeling, and

supports safety assessments [10].

The objective of this study is to analyze the overtaking behavior of micromobility users, specif-

ically e-bikes and e-scooters, during interactions with other cyclists. The first step involved a literature

review to identify the types of data needed for understanding micromobility overtaking behavior. Subse-

quently, a comprehensive data collection methodology was developed, focusing on sensor placement,

calibration, and minimizing confounding variables during data collection. The conceptual model inte-

grates influencing factors, decision-making processes, and observable control actions. Finally, statistical

analysis was used to examine the influence of different combinations of micromobility vehicles and rider

characteristics.

Literature review

The literature review summarized current research, identifying individual factors influencing behavior

and developing a rough conceptual model for data collection.

Micro-mobility type
Studies have assessed the safety, stability, maneuverability, and comfort of micromobility vehi-

cles. A study revealed that although e-bikes and e-scooters offer superior rider comfort and stability,

e-scooters tend to fall short in terms of safety due to inadequate braking performance [16]. Additionally,

when compared to bicycles, both e-scooters and other similar micro-mobility devices like Segways also

demonstrate inferior braking capabilities, where bicycles are considered to be more stable and safer

[17].

Regarding speed, e-bikes and e-scooters generally achieve higher maximum and average speeds

than traditional bikes, particularly in conditions that allow the right of way or involve inclines. This capa-

bility enhances their overtaking potential but also increases the risks associated with high-speed travel.

Studies in different urban settings have shown that while e-scooters often match or slightly exceed the

average travel speeds of bicycles, their ability to accelerate more quickly necessitates shorter response

times to avoid hazards [18, 19, 20, 21, 22].

Moreover, e-bikes tend to have more conflicts with motorized vehicles than conventional bikes

due to their higher speeds and different interaction dynamics with other road users. The design, weight,

and acceleration capabilities of e-bikes and e-scooters not only influence their overtaking behavior but

also impact how pedestrians and other cyclists perceive and react to these vehicles. For instance, e-bike

riders are more likely to undertake overtaking maneuvers, followed by riders of human-powered tricycles

and traditional bicycles [23, 24].

Demographic and experience
Various demographic factors, such as gender, age, and riding experience, influence the riding
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behavior of cyclists beyond just safety and violations. Gender, for instance, plays a significant role in

shaping cyclists’ behavior, with male riders exhibiting not only on increased violation rates but also higher

speeds, more aggressive maneuvers compared to their female counterparts [18, 25, 24]. Men also tend

to overtake more frequently, which impacts interactions with other cyclists and motorized vehicles.

Age is another important factor; younger riders are more likely to overtake frequently and ride

at higher speeds. In contrast, older riders, particularly those over 60, tend to be more cautious due to

balance issues and reduced physical agility, which is especially evident when handling heavier e-bikes

[25, 26]. This age-related caution affects their overtaking frequency and distance maintained during

overtaking.

Riding experience also has a notable impact. While one study found that cyclists with longer

riding experience exhibit fewer violations [25], another study observed that frequent e-scooter users are

more likely to develop risky behaviors [27]. Experienced riders tend to have better control over their

vehicles, making them more comfortable in overtaking scenarios, whereas less experienced riders may

be more hesitant and conservative in their behavior.

Infrastructure factors
Several studies consistently indicate that lane width affects the likelihood of overtaking maneu-

vers and meeting clearance. Wider lanes facilitate overtaking, while narrower lanes reduce lateral space

and lead to more cautious riding behavior [24, 28].

The influence of obstacles and boundaries on cyclist behavior consistently shows that the pres-

ence of obstacles leads to more cautious riding behaviors.For example, obstacles positioned along the

lane edges prompt cyclists to maintain lower clearances from these obstacles [10, 28]. Additionally, ob-

stacles at handlebar height specifically have been found to increase braking behaviors, as riders become

more cautious to avoid potential balance issues [28]. Thus, while different studies emphasize different

cautious behaviors—either reducing clearance or increasing braking—the general trend remains that

obstacles cause more cautious maneuvering.

Traffic conditions
Study[29] provided insights into how traffic density affects overtaking dynamics on shared lanes.

In scenarios of low traffic density, overtaking maneuvers such as moped-passing-bicycle are observed

to be more stable and less likely to encounter disturbances, allowing vehicles to return smoothly to their

original lanes post-overtaking. Conversely, in conditions of high traffic density, overtaking becomes more

complex and often results in incomplete maneuvers, where vehicles fail to return to their lanes promptly.

This variation in traffic dynamics can lead to increased interactions and potential conflicts among road

users.

Required data and information
Previous studies on bicycle overtaking behavior have primarily focused on collecting and analyz-

ing trajectory data. Utilizing this fundamental trajectory information, researchers have further calculated

more complex measurement indicators such as speed, lateral distance, longitudinal distance and speed

difference to gain deeper insights into the behavioral patterns in environments like dedicated bicycle

lanes [14, 29, 30, 31].

In addition to trajectory data, some studies employed roll rate and roll angle to compare the

stability of different vehicle types in relatively simple task scenarios. The studies compared the absolute

mean values of these parameters and the relationship between roll rate and steer rate[16, 32]. Another

study [33] utilized these indicators to compare the differences between elderly and young riders. Roll

angle refers to the rotational angle of an object along its longitudinal axis, as illustrated in the figure1

taken from [32].

All of the aforementioned indicators are directly relevant to understanding micromobility overtak-
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Figure 1: Reference system for the vehicles and directions names

ing behavior, particularly within the context of the decision-making(mental) layer and control action (phys-

ical) layer. The decision-making layer involves assessing and determining optimal speed, path selection,

and maneuvering strategies to ensure a safe and effective overtaking process. Indicators like speed,

speed difference, longitudinal distance, and lateral distance provide critical insights into these mental-

level decisions. For instance, overtaking length and longitudinal distance are crucial for understanding

path selection, while speed and speed difference reflect the strategies used for adjusting speed—key

aspects of decision-making to ensure a safe overtaking maneuver. Lateral distance indicates the rider’s

avoidance behavior, reflecting safety considerations and decisions regarding adequate clearance from

the overtaken vehicle. Roll rate and roll angle are also connected to the mental layer, as they reflect the

rider’s decisions regarding the extent of body posture adjustments.

Conceptual Model

And since the main research question of this study is to explore the influence of individual factors(gender)

and the overtaken vehicle, the conceptual framework is built as shown in Figure2. The core of this con-

ceptual framework in Figure2 revolves around a cyclical interaction between the decision-making(mental)

layer and the action (physical) layer. This cycle captures the dynamic nature of the overtaking process

for micromobility users.

1. Decision-Making Layer: Riders first make decisions at a mental level, where they assess the need

for speed adjustments, path selection, and body action adjustment to ensure a safe overtaking

maneuver.

2. Control Actions: These decisions are then executed physically through actions at the physical layer.

These include actions like steering adjustments, acceleration, or even posture shifts, which directly

affect the micromobility rider’s position and movement in space.

3. Micro-Level Variables as Feedback: The result of these control actions is reflected in observable

micro-level variables such as speed difference, lateral and longitudinal position differences, roll

rate, and roll angle. These variables provide feedback on the success or necessity of further ad-

justments to the initial decisions.
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Figure 2: conceptual framework

4. Feedback to Decision-Making: This feedback loop enables the decision-making layer to constantly

refine its strategies. The micro-level variables reflect the real-time state of the system, allowing for

adjustments to be made, further feeding into control actions in a continuous loop.

In this model, the decision-making process informs actions, which are in turn reflected by micro-variables.

These micro-variables provide feedback, creating a continuous cycle that ensures optimal and safe

overtaking behavior. This cyclical interaction is fundamental to understanding how micromobility users

navigate shared spaces during overtaking maneuvers.

Research methodology

The purpose of this study is to investigate the influence of individual factors and different combinations

of micromobility modes on the operational riding behavior during interactive movements. These oper-

ational behaviors can be observed through a number of microscopic variables presented in Figure2.

First, trajectory data is the necessary data used to study individual behavior. The trajectory data, which

captures the position of the vehicle on a two-dimensional plane at specific times, could be used further

to derive microscopic variables reflecting the behavior. Key variables include speed, speed difference,

and longitudinal and lateral distance differences between vehicles. The accuracy of these variables is

heavily dependent on the precision of the trajectory data. For meaningful analysis, the trajectory’s pre-

cision should ideally be within a 10 cm range[34]. Besides, roll rate and roll angle should be collected

to reflect stability. Furthermore, since this study involves different types of micromobility combinations, it

is necessary to ensure the controllability of the vehicle combinations and to make sure that the targeted

interaction movement takes place.
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Data collection approach and equipment

The ability of isolating specific behaviors or conditions of laboratory settings allows for the replication

of specific traffic scenarios, including various combinations of overtaking maneuvers between e-bikes,

e-scooters, and conventional bicycles. Given the wide range of possible vehicle combinations and inter-

actions, it is challenging to gather comprehensive and valid data through real-world observations. There-

fore, a controlled experiment is determined to gather the data on the rider’s behavior during overtaking.

One of the drawbacks of using a controlled experiment, however, is that as the experiment progresses

and the participants become more familiar with the tasks they are performing, as well as possibly with

physical and psychological fatigue, the behaviors they exhibit in the experiment may change from what

they were at the beginning of the experiment. although physical fatigue is less likely to be an issue for

powered vehicles. This disadvantage is referred to as the learning effect. To mitigate the learning effect,

it is crucial to minimize riding time, provide adequate rest periods, and ensure that participants engage

in a variety of tasks throughout the experiment.

In this study, video extraction technique is used to extract the user’s trajectory data. Based on

the trajectory data, other measurement variables can be further extrapolated. There are several reasons

for choosing cameras to collect data. First, we need to achieve trajectory data with an accuracy of ap-

proximately 10 cm. The two most common methods for collecting trajectory data are video extraction

and GPS. To achieve this level of accuracy with GPS, high-precision GPS systems, typically classified

as Real-Time Kinematic (RTK) GPS, are required. RTK GPS systems enhance the precision of posi-

tion data using a combination of fixed base stations and mobile receivers[35]. These systems are not

only more sophisticated but also significantly more expensive. Secondly, during the research process,

there are often multiple vehicles on the track simultaneously, and to accurately capture the trajectory of

each vehicle, multiple high-precision GPS devices are needed. In contrast, cameras can provide high-

accuracy trajectory data at a lower cost, making them a more economical and practical choice. In this

experiment, the Inertial Measurement Unit (IMU) was employed to measure the roll angle and roll rate

of e-bikes and e-scooters. Research by [32, 16] used roll angle and roll rate. The roll angle and roll rate

were effectively captured using an IMU.

Track design

In designing the track for this experiment, several critical factors were considered to ensure the suc-

cessful completion of overtaking maneuvers. The track needed to be sufficiently long to accommodate

the overtaking process. Assuming the speed of the overtaken mode at a higher bound of 4 m/s and the

speed of the overtaking mode at a lower bound of 5 m/s, and considering 5 m safe distance before and

after the overtaking process, the minimal track length should be 50 meters, based on the basic physical

law (speed × distance / speed difference = 5 × 10/(5 4) m). Consequently, a main track measuring 60

meters in length is designed to provide extra space to accommodate interactions occurring. This track

includes two-way bike lanes, each lane being 1.8 meters wide (totaling 3.6 meters), with a buffer distance

of ten meters on both the left and right sides. This buffer is intended to accommodate any necessary ac-

celeration or deceleration. The layout is detailed in figure3. The main reference for the 1.8m width of the

lanes is based on a study of field measurements of two-way bicycle lanes in the Netherlands[36] of field

measurements of two-way bicycle lanes in the Netherlands, which is approximately 370 cm, including

the width of the markings in the middle of the road, and therefore selected as 180 cm in this study.
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Figure 3: Track design

The order of the camera from right to left is R1-R2-L1-L2

Vehicle and participant selection

The first step of the scenario design is to select the specific models of e-scooter, e-bikes and e-mopeds

that to be investigated in this study. In selecting the travel modes, the following three factors are taken

into consideration:

– Popularity in the market.

– Easiness of learning to use these e-mode vehicles - the need to avoid vehicles that participants

could not learn to ride in a short period of time.

– The maximum speed of the vehicle should be kept below 25 km/h to prevent potential safety issues

during the experiment.

To consider the heterogeneity among participants, each scenario should include at least 30 combina-

tions, where one combination involves a rider with the designated mode performing the requested ma-

neuver. The rider should be proficient in operating the specified mode. Ideally, the rider population should

encompass a broad range of ages and genders. Considering the trade-off between time, financial bud-

get, and feasibility, 12 combinations were ultimately selected. Consequently, 12 riders can be recruited

per mode. And 4 repetitions/runs per combinations of participants (in total 48 runs per scenario) are

performed to get statistically significant results.

Scenario, duration and schedule design

This study design incorporates a range of intra-modal and intermodal interactions to comprehensively

capture the dynamics of overtaking behavior across different micromobility modes.The planned scenario

runs and their specific properties are summarized in Table1. This table provides a detailed overview

of each overtaking combination, the modes involved, and the number of repetitions, offering a clear

structure for the experimental design.

General instruction and task design

On the straight main track, participants are asked to slow down 5 m before the endpoint (there was

a road marker) to facilitate the turning. Prior to conducting the interactive maneuver experiment, it is

important to first conduct an unhindered scenario where the rider maintains a normal/desired speed,
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Sce No. Sce Name Participating mode Exp. duration (min)

ES EB B

1 Overtaking-intra1 ✓ - - 12 x 4

2 Overtaking-intra2 - ✓ - 12 x 4

3 Overtaking-inter1 ✓ ✓ - 12 x 4

4 Overtaking-inter2 ✓ ✓ - 12 x 4

5 Overtaking-bike1 ✓ - ✓ 12 x 4

6 Overtaking-bike2 - ✓ ✓ 12 x 4

Table 1: Table of Overtaking Scenarios and Experimental Details

decelerates to standstill, and then accelerates back to the normal speed without any interruptions. This

step is primarily aimed at understanding the rider’s speed and acceleration/deceleration capabilities

under normal riding conditions, also obtaining the reference values in these key variables. The main

tasks for participants are to perform various interactive maneuvers: overtaking, merging, yielding, head-

on meeting. The overtaking maneuver, consisted of two types of riders, in which some participants would

ride at low speeds on the designed bike lanes as overtaken riders,and the other part of participants

would overtake the low-speed vehicles from the left side in a safe manner as overtaking riders. The

speedometer dashboard was available for e-scooter, the speed was bounded to be around 10 km/h

under the cruise control mode. For the e-bikes or e-mopeds, their speeds were not strictly limited due to

the absence of dashboards and cruise control functions. The overtaken riders were asked to ride at a low

speed that does not interfere with their control of balance (e.g., requiring additional control maneuvers

such as a large wiggle of the steering grip or adjustment of body position). Overtaking riders were

merely asked to follow their habits and methods when overtaking low-speed vehicles without colliding.

In situations involving yielding to pedestrians at crosswalks or to traffic approaching from the right, riders

without the right of way were instructed to behave as they would in reality — continuing to ride, stopping,

or yielding — as long as no collision occurred. In cases involving bi-directional encounters, participants

must prioritize their riding behavior to prevent head-on collisions or ensure safety

Implementation of experiment

Location selection
The experimental site is a square area located at the Hebei University of Water Resources and Electric

Engineering in Cangzhou, China, as shown in the red rectangle part of figure4. The measurements of

this square are about 25 meters in width and 80 meters in length. In the actual experiment, the track

in figure3 was achieved by means of ground tape, where the boundary line of the road was taped in

yellow and black, and the dotted line in the middle of the road was realized by using white ground tape.

The area is covered with standard square tiles of size 60 x 60 cm.It is regularly used by pedestrians,

bicycles, and motor vehicles within the campus.

Vehicles and Participant usage
For practical reasons, we ended up obtaining three e-scooters on our own, the model being the

Ninebot E9, with a top speed of 20 km/h. For the e-bikes, we finally obtained 4 e-bikes. Two of the e-bikes

were regular ones; one was foldable, and the other one was a fat e-bike. This implies that the variety

within the same e-modes (particularly e-bikes) should be critically considered when analyzing the data.

Regarding rider personal characteristics, combined with the actual recruitment of the experi-

mental participants, a broad coverage in age, and the equal level in gender and riding experience were
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Figure 4: Experiment field

difficult to realize because the participants were mainly university students, with very little difference in

age. Most of them had similar experience in using e-scooter and e-bike but varying in familiarity level.

In terms of specific arrangements for the participants, two days prior to the experiment, the author ex-

plained how they would be asked to ride on the day of the experiment. After the briefing, participants

were allowed to voluntarily choose the type of vehicle they wanted to ride. The participants who have

more experience in certain modes had the priority of using the corresponding mode in the experiment.

Finally, the male/female ratios are 9/3, 8/4, and 9/3 for e-scooter, e-bike, and e-moped, respectively.

Although it is not 50/50, the effect of rider gender on micromobility interactions can be accommodated.

According to their willingness, the author group the participants. Once the e-scooter and e-bike groups

were formed, each participant was assigned a micromobility vehicle based on their height order. This

measure was taken because the limited number of e-bikes required three people to share one vehicle,

and similar heights ensured that they did not need to adjust the seat height throughout the experiment.

After completing the grouping, the participants familiarized themselves with and test drove the vehi-

cles they would use during the experiment. After completing group assignment, participants familiarized

themselves with and test drove the vehicles they would use during the experiment, ensuring they were

qualified as riders of the assigned modes, despite varying levels of user experience and familiarity. Ac-

cording to[37],riding a bicycle involves a combination of tasks executed based on rules for performing

maneuvers and automatic actions for split-second control of the bicycle. We posit that a similar opera-

tional process of actions and reactions applies to micromobility traffic. By providing participants with the

opportunity and sufficient time to familiarize themselves with riding the vehicles (particularly e-scooters

and e-bikes), their riding and interactive maneuvers are expected to reflect their natural behavior under

split-second decision-making conditions.

Data Collection equipment setup

The experiment finally used four high resolution cameras (Dahua), which were divided into two sets

to cover the whole range of the main track with overlapping area for trajectory stitching purposes. An

asymmetric setup of the two cameras will be used, that means one camera would cover most of the

interactive area, the other one will cover the central area plus a further area in the riding direction.

Before the start of the experiment, the camera was secured to the railing of the aerial platform. The
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Figure 5: Path of intra mode overtaking

offset angle and focal length of the camera, as well as the position of the aerial work truck and the final

operating height, were all adjusted repeatedly according to the output picture of the camera, which was

accomplished after achieving the effect of clear video effect and reasonable coverage. The final four

cameras all output video in 1920×1080, 20 fps format.

The IMU device was mounted on the e-scooter’s steering stem or the e-bike’s backseat. Sensor

BNO-055 has a built-in Kalman filter algorithm that directly outputs roll angle, yaw angle,and pitch angle.

Due to the limitation of the number of IMU devices, only one e-scooter and one e-bike, carried the device

throughout the experiment. The devices did not need to dismount or be calibrated again. This allowed

consistent and continuous data recording.

Experiment execution

The experiment was conducted on May 26, 2024, at the Hebei University of Water Resources and Elec-

tric Engineering. Participants were provided with white T-shirts and red caps, which they wore throughout

the experiment to ensure consistent visibility in camera images.

For most design scenarios, participants were instructed to perform their riding tasks in a sequen-

tial order, eliminating the need for participants to wait for others to complete a lap before entering the

track. This arrangement expedited most overtaking and bypassing scenarios.

To ensure sufficient interactive maneuvers were triggered and captured by cameras in desig-

nated areas, multiple vehicles were simultaneously present on both paths, rather than just one vehicle

per path. Furthermore, experiment supervisors could slightly control the timing of participants re-entering

the designed track after completing a lap, maximizing the likelihood of triggering overtaking maneuvers.

On the day of the experiment, to more effectively capture the overtaking behavior of e-bikes

and e-scooters, the experimental path was modified to the form shown in Figure5. Unlike the initially de-

signed complete circular path, the modified experimental path no longer required participants to overtake

spontaneously. Instead, experimental monitors were stationed on both sides of the field, responsible for

controlling the entry timing of overtaking and overtaken participants in each round of the experiment to

ensure the occurrence of overtaking behavior. The main reason for adopting this strategy lies in the rel-

atively small sample size of e-bikes and e-scooters. By controlling the entry timing, the time consumed

by experimental participants to complete sufficient overtaking behaviors through meaningless riding can

be saved. This meaningless riding may lead to the emergence of the learn effect, which could affect the

validity of the experimental results.

By modifying the experimental path and introducing the control of experimental monitors, this

study minimizes the influence of the learn effect while ensuring the acquisition of sufficient overtaking

behavior samples. This adjustment in the experimental design helps to improve the efficiency of data col-

lection and ensures that the collected data can more accurately reflect the true behavioral characteristics

of e-bikes and e-scooters during the overtaking process.

The cameras and IMU units began recording simultaneously after camera parameter adjust-

ments. The researcher then guided participants on the appropriate times to enter the designed track
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according to the pre-defined schedule. Once on the track, participants followed their designated paths

and performed their assigned tasks.

This design effectively controls for learning effects by introducing variation across scenarios, so

while each participant encounters only one session per scenario, the repeated overtakes within each

session help capture intra-scenario behavior. The four laps per scenario allow us to observe consistent

overtaking patterns and subtle behavioral differences within a single context, thereby balancing the need

for representativeness and capturing individual behavior variability.

The object of overtaking is different each time. In addition, the learning effect due to observ-

ing the behavior of other experimental participants was also objectively weakened, according to the

researchers’ observation that the vast majority of experimental participants were playing with their cell

phones, etc., in their free time.

Video processing

Video format conversion
The video processing workflow begins with addressing compatibility issues between the original

video files and the analysis tools used. Initially, the videos are in HEVC format. This encoding presents

challenges for analysis in the researcher’s laptops and the workstation of TU Delft. To overcome this

limitation, the solution is to convert the video to MPEG-4 format encoded in AVC using a software called

Handbrake.

Pixel trajectory extraction
For trajectory extraction, the Moving Object Detection and Tracking (MODT) tool developed by

study [38] is employed. The MODT tool has been enhanced to calculate the exact Beijing time for each

video frame by determining the millisecond-precise start time using the frame rate and a known end

time. Given the end time B (formatted as xx:xx .000) after X frames, starting from A seconds, the start

time A is computed as:

A = B −
(
1000 ms

Framerate

)
· (X − 1) (1)

This setup calculates the precise Beijing time for each frame by adding the known start time to

the relative time elapsed since the video began, which ranges from 0 seconds up to the video’s total

duration. This method ensures accurate synchronization between video frames and real-world time,

critical for trajectory merging and IMU data synchronization in research analyses.

Image Correction
Image distortion correction is a vital step in the data processing workflow to ensure accurate spa-

tial analysis of video footage. The primary objective of this correction is to transform the camera’s per-

spective from a side view to a bird’s-eye view—perpendicular to the center of the image from above. This

transformation allows for precise measurements and analysis of movements within the video frames.For

this purpose, this study employed a tool called ImageTracker developed by study[39].

Height Projection
The forth step involves height projection. The reason for performing height projection is that when a

camera captures images from an elevated position, objects in the image appear closer to the camera

than their actual positions. Correction is necessary to obtain the true positions of the objects. The height

projection method employed in this study is based on the approach developed by study [40].

Fixes for trajectory errors
In the initial stage, we removed incorrectly detected trajectories caused by various reasons, such

as participant errors and static objects. We used animation playback to spot two main types of errors:
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Figure 6: R1R2L1 merged result of scenario3

stationary points and premature exits. For the R1 camera, we adjusted the tool to capture more trajec-

tories, including U-turn behaviors. Unreasonable trajectories were either manually removed or corrected

to retain only relevant data.

The next step after removing incorrect trajectories involves addressing trajectories fragmented

due to shadow interference. An algorithm was developed to detect and merge adjacent trajectory seg-

ments likely belonging to the same vehicle. It examines spatial and temporal continuity between tra-

jectory endpoints and applies predefined thresholds for distance and time gaps. The algorithm then

integrates the interpolated points into the existing data and reassigns trajectory IDs for consistency. This

approach helps reduce inaccuracies caused by shadows.

The third step involves fixing jump points caused by detection errors, resulting in crossover tra-

jectories. The first step splits trajectories at jump points, while the second step reconstructs complete

motion trajectories through interpolation. The algorithm identifies abnormal jumps and separates trajec-

tory segments, then iterates through each unique trajectory ID to find the best matching next trajectory

and perform linear interpolation.

Merging of multi-camera trajectories
In this study, camera trajectories are merged in two stages. The first stage merges cameras in

pairs, while the second stage uses common data to merge trajectories from more than two cameras. The

merging principle involves identifying the closest trajectories and merging them. The detailed pairwise

merging algorithm matches trajectories from overlapping cameras. After the matching, the trajectories

are merged, and the process retains only the common parts. The next step involves merging trajectories

from three or four cameras using overlapping regions. Figure6 shows result of triple camera merging of

scenario 3.

Freezing point handle
After merging the trajectories, a freezing point handling process was performed. Some videos

showed frame freezing, where consecutive frames had the same position and then jumped. This issue

was likely due to computer performance during video conversion. To address this, the study used a repair

method to replace coordinates of consecutive identical frames with the average value of the previous

and subsequent frames.

Accuracy validation
The primary goal of the accuracy validation process was to confirm that the processed trajec-

tories accurately depict overtaking behaviors in terms of micro-level variables like speed, speed differ-

ences, and distances. The absence of a ground-truth system necessitated indirect validation methods

based on the 60 cm square tiles at the experimental site:

1. Lateral Accuracy: Lateral distances between vehicles during overtaking were estimated by count-
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ing the tile spans and comparing these with the trajectory data, leveraging minimal lateral move-

ment and consistent tile dimensions for accuracy.

2. Longitudinal Accuracy: Longitudinal validation involved estimating the distance riders covered over

one-second intervals through tile counts, which was then validated against trajectory lengths to

indirectly confirm speed accuracy.

These methods, chosen due to the impracticality of direct speed validation, relied on averaging

over time to mitigate fluctuations in speed and acceleration measurements. Further validation for accel-

eration was conducted by comparing calculated values with existing literature on e-bike and e-scooter

accelerations. This approach ensures the reliability of trajectory data for analyzing micromobility over-

taking behaviors despite the limitations.

Through multiple comparisons of this nature, we can establish confidence in the accuracy of our

trajectory data.For both the X and Y directions, thirty data were selected. For the Y direction, the average

error was 0.094 meters. For the X direction, the overall difference was 0.196 meters. In percentage

terms, the error/actual value in the X-direction and Y-direction is 6.1% and 7.8%, respectively.

Trajectory labelling
This labeling process is performed manually by watching the video footage and tagging each

trajectory accordingly. For example, when a trajectory spans data from multiple cameras (e.g., R1, R2,

and L1), it is sufficient to select data from only one of the cameras, such as R2, to label the entire

trajectory. Each trajectory is then annotated with various attributes, including the corresponding ID, the

participant’s gender, the type of vehicle they are riding, and whether they are carrying an IMU device.

Data analysis result

Descriptive statics

Before proceeding to detailed statistical analysis, this section presents some descriptive statistics for the

micro variables.

Speed and deceleration
In non-interactive conditions, the average traveling speed for E-bikes was 18.51 km/h (SD = 4.58

km/h), while E-scooters traveled at an average speed of 15.38 km/h (SD = 3.72 km/h). These values,

illustrated in Figure7, indicate that E-bikes maintain a higher average speed than E-scooters under non-

interactive conditions. Whether it is statistically significant needs further verification, though.

Figure 7: Non-interactive E-bike and e-scooter riding speed

In non-interactive conditions, the average deceleration for E-bikes was 3.83 m/s² (SD = 1.46

m/s²), while E-scooters had an average deceleration of 3.24 m/s² (SD = 0.97 m/s²) as shown in Fig-
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Figure 8: E-bike and E-scooter deceleration

ure8. These findings align with existing research, such as the study by [41], which reported e-scooter

deceleration rates between -3.39 m/s² and -3.84 m/s².

Lateral distance
The lateral distance during the passing phase is particularly important in this study, as it reflects the

overtaker’s lateral avoidance strategy, an essential aspect of path selection. The mean and standard

deviation of lateral distances for each overtaking scenario are shown below and in Figure9:

– E-bike overtaking bike: 44 samples, Mean ± SD: 1.25 ± 0.26 m

– E-bike overtaking e-bike: 50 samples, Mean ± SD: 1.31 ± 0.35 m

– E-bike overtaking e-scooter: 46 samples, Mean ± SD: 0.89 ± 0.34 m

– E-scooter overtaking bike: 23 samples, Mean ± SD: 1.21 ± 0.35 m

– E-scooter overtaking e-bike: 40 samples, Mean ± SD: 1.06 ± 0.31 m

– E-scooter overtaking e-scooter: 23 samples, Mean ± SD: 1.08 ± 0.40 m

Figure 9: Lateral distance of differenct scenario

Overtaking starting position
The overtaking start moment refers to the longitudinal distance between the overtaker and the overtaken

vehicle at the initiation of the overtaking maneuver. Due to missing pre-passing phase data in Scenarios

5, 6, and 7 (E-scooter overtaking bike, E-scooter overtaking e-bike, and E-scooter overtaking e-scooter),

this analysis only includes Scenarios 2, 3, and 4. The means and standard deviations for these scenarios

are as follows and in Figure10:

– Scenario 2 (E-bike overtaking bike): Mean = 9.75 m, SD = 2.86 m

14



Figure 10: starting position of overtaking

– Scenario 3 (E-bike overtaking e-scooter): Mean = 10.19 m, SD = 3.62 m

– Scenario 4 (E-bike overtaking e-bike): Mean = 7.80 m, SD = 4.93 m

Roll rate and roll angle
This study uses the absolute mean values of roll rate and roll angle, consistent with the methods of [32,

16]. Notably, due to incorrect IMU placement for E-scooters and missing trajectory data for Scenarios 5,

6, and 7, only data from Scenarios 3 and 4 were analyzed. Figure 11 and Figure12 show the variation

of roll angle and roll rate across three phases in Scenarios 3 and 4.

Scenario 3:

– Roll Angle (absolute mean):

– Before: Mean = 4.03°, SD = 2.56°

– During: Mean = 6.66°, SD = 3.71°

– After: Mean = 4.67°, SD = 2.65°

– Roll Rate (absolute mean):

– Before: Mean = 26.17°/s, SD = 3.64°/s

– During: Mean = 36.73°/s, SD = 11.57°/s

– After: Mean = 24.68°/s, SD = 7.56°/s

Scenario 4:

– Roll Angle (absolute mean):

– Before: Mean = 4.48°, SD = 2.87°

– During: Mean = 7.04°, SD = 4.46°

– After: Mean = 4.43°, SD = 4.16°

– Roll Rate (absolute mean):

– Before: Mean = 30.41°/s, SD = 6.52°/s

– During: Mean = 36.21°/s, SD = 25.33°/s

– After: Mean = 27.49°/s, SD = 12.59°/s

Figure13 shows an example of the change in roll angle and roll rate over time for a trajectory in

Scenario 4.
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(a) Roll angle across different phases in Scenario 3 (b) Roll rate across different phases in Scenario 3

Figure 11: Comparison of roll angle and roll rate across different phases in Scenario 3

(a) Roll angle across different phases in Scenario 4 (b) Roll rate across different phases in Scenario 4

Figure 12: Comparison of roll angle and roll rate across different phases in Scenario 4

Statistical analysis

Statistical analysis is performed to verify the relationships represented by the arrows in Figure2.

Lateral distance
The investigation into gender differences in lateral distance during overtaking found no significant

differences across scenarios involving e-scooters.

This section also proposed a positive correlation between speed difference and lateral distance

during overtaking. Pearson correlation coefficients indicated a moderate to strong positive correlation in

scenarios where e-scooters overtook bikes and e-bikes. The detailed regression and grouping analyses

further supported these findings, showing that larger speed differences typically correspond to larger

lateral distances, indicative of safer overtaking practices.

This section then explored the impact of micromobility types on lateral distance using ANOVA

and Tukey’s HSD tests. Significant differences were observed between various scenarios, particularly

when e-bikes overtook different vehicle types. These differences highlight the influence of vehicle type

on overtaking behavior, emphasizing how riders adjust lateral distances based on the perceived size

and maneuverability of overtaken vehicles.

Overtaking starting position
The starting position’s analysis assessed the impact of micromobility type on overtaking initia-

tion. ANOVA results demonstrated significant differences across scenarios, suggesting that vehicle type

affects how and when overtakers initiate maneuvers. The findings indicated that e-bike riders often start

overtaking maneuvers later when overtaking other e-bikes, possibly due to familiarity with similar vehicle

behaviors.

Regression analysis on speed difference
Multiple regression and phase-wise analyses were conducted to explore the relationships involv-

ing speed differences, lateral and longitudinal distances, vehicle types, and overtaking phases. Signifi-

cant influences were found, with lateral distances showing a stronger impact on speed differences than
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(a) Roll angle over time of Pair 3 in scenario 4 (b) Roll rate over time of Pair 3 in scenario 4

Figure 13: Roll angle and roll rate over time example

longitudinal distances. These insights align with overtaking dynamics, where lateral adjustments during

overtaking are crucial for maintaining safety and efficiency.

Roll angle and roll rate
The examination of roll dynamics revealed that roll angles and rates vary significantly across

different phases of overtaking and among micromobility types. These variations underscore the physical

adjustments riders make during overtaking, particularly in scenarios involving similar types of vehicles,

where familiarity and performance expectations influence maneuvering strategies.

Summary

This chapter first compares the normal driving speeds and deceleration capabilities of vehicles in non-

interactive scenarios. The results revealed significant speed differences between E-bikes and E-scooters,

with E-bikes traveling at notably higher speeds. However, no distinction was observed in their decelera-

tion capabilities. Gender differences in speed were only significant in E-scooter riders, where male riders

consistently exhibited higher speeds than females.

To explore the influence of gender factors and the combination of overtaking and overtaken vehi-

cles on overtaking behavior, the study analyzed the lateral position difference. The findings indicate that

the maximum lateral distance difference mostly occurs within the passing phase. During this phase, the

overtaker’s choice of lateral distance is influenced by speed difference; higher speed differences corre-

spond to larger maintained lateral distances. This reflects the riders’ adaptation to safety requirements

based on speed differentials.

The study then compared the behavioral differences of overtaking vehicles when passing differ-

ent vehicle types. These differences were less pronounced for E-scooters but more evident for E-bikes,

potentially reflecting the overtaking riders’ perceptions of their own vehicle’s size and that of the over-

taken vehicle. Additionally, when comparing different vehicles overtaking the same type, a significant

difference emerged only when E-bikes and E-scooters overtook E-bikes, with E-bikes maintaining a

larger lateral distance. This increased lateral distance was likely due to that e-scooter riders may per-

ceive themselves as occupying less space and thus more maneuverable compared to e-bike riders,

prompting them to feel more comfortable overtaking with a smaller lateral gap. However, it may also be

influenced by modifications to the experimental path, which required higher speeds and, consequently,

greater spacing to ensure safety.

Using an analysis of the rate of change in lateral position difference, the study detected the

initiation points for overtaking maneuvers in E-bikes overtaking E-scooters and E-bikes. Interestingly,

E-bikes initiated overtaking of E-scooters at a greater distance compared to overtaking other E-bikes,

without significant gender influence.
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Figure 14: Overtaking pattern of e-bike overtaking e-scooter and e-bike

Combining these findings with the maximum lateral distance difference tests provides an overview

of E-bike overtaking patterns for E-scooters and E-bikes, as illustrated in Figure 14. Generally, E-bikes

initiate overtaking E-scooters from a greater distance but maintain a smaller maximum lateral distance

during the process. Conversely, when overtaking other E-bikes, they initiate the maneuver closer but

choose a larger lateral spacing.

This pattern is further corroborated by the phase-wise comparison of roll rates and roll angles’

absolute values across different overtaking scenarios. Additionally, this comparison reveals a common

motion characteristic: roll rates and roll angles reach their maximum values during the passing phase.

To further understand the differences between pre-passing, overtaking, and post-overtaking

phases, the study compared average speeds during these phases for E-bikes overtaking bikes, E-

scooters, and E-bikes. These results revealed some experimental design flaws, such as an excess

of vehicles on the bike lap leading to continuous deceleration while overtaking two bicycles consec-

utively(scenario2), and inappropriate timing control during internal overtaking experiments resulting in

continuous acceleration during overtaking(scenario4). In Scenario 2, an overtaker may accelerate to a

high speed to overtake the first vehicle and then realize that there is a second overtaken vehicle, but

instead of accelerating further, he slowly decelerates to overtake the second low-speed vehicle. In sce-

nario 4, since the experimental requirement is to complete the overtaking inside the design track, it may

result in the overtaking vehicle that starts later needing to keep accelerating in order to complete the

overtaking maneuver before the end of the deisgn track, this phenomenon may also occur in scenario 7,

but due to the missing data of 7, it is not possible to test it.

Furthermore, the study examined the behavior of overtaken vehicles during the overtaking pro-

cess, particularly focusing on speed changes before and after the passing phase, and within the pre-

passing phase. When comparing the speed between the pre-passing phase and post-passing phase,

E-scooters and E-bikes showed a significantly higher proportion of noticeable speed changes compared

to bikes. Due to some E-bike riders’ personal preferences, E-bikes as overtaken vehicles demonstrated

a markedly higher proportion of acceleration after being overtaken. when comparing within pre-passing

phase, e-bike and e-scooter exhibit a slight acceleration at the end of the pre-passing phase, showing

that riders alter their speed as a form of defensive or adaptive behavior when interacting with others in

close proximity.

The final test results of the relationships in the Conceptual framework are shown below in Fig-

ure15 is the conceptual framework that has been tested.
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Figure 15: Conceptual framework after test

Where + means there is significant positive relationship, +/- means there is significant relationship but

whether it is postive or negative is up to the characteristic, 0 means there is no significant relationship
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Conlusion and Discussion

This research aims to investigate the individual behavior of micromobility users, specifically e-bike and

e-scooter riders, during their interactions with regular bicycles and with each other. To study and under-

stand rider behavior during overtaking scenarios, this research designed and implemented a controlled

experiment to collect trajectory data of e-scooter and e-bike riders through video recording during over-

taking maneuvers, along with data on roll angle and roll rate from IMU sensors. After processing the

video data, trajectory data of the participants were obtained, which were then synchronized with the IMU

data on a common timeline. From these trajectory data, micro-level variables such as lateral position dif-

ference, longitudinal position difference, and speed difference were derived. The study then employed

statistical methods, including t-tests, ANOVA, Pearson correlation analysis, and regression models, to

examine the effects of gender, vehicle type, and other influencing factors on these micro-level variables.

Ultimately, the results revealed several behavioral characteristics and patterns during the overtaking pro-

cess, providing key insights into how different micromobility types and individual characteristics influence

rider behavior.

Affect of micro-mobility type combination

In the context of overtaking behavior, micromobility vehicle type had a substantial impact. E-bike riders,

when overtaking e-scooters, initiated the overtaking maneuver from a greater distance but maintained a

smaller maximum lateral distance throughout the maneuver. Conversely, when overtaking other e-bikes,

riders initiated the overtaking maneuver closer to the overtaken vehicle but maintained a larger lateral

distance, indicating more caution and space in similar-vehicle interactions.

The vehicle type also influenced the speed difference dynamics during the overtaking process.

As the multiple regression analysis, lateral position differences were more strongly correlated with speed

difference than longitudinal differences, confirming that riders prioritize lateral safety margins when over-

taking. The type of overtaken vehicle also affected the speed, with e-bikes maintaining higher speed

diference when overtaking other e-bikes compared to when overtaking e-scooters, demonstrating that

vehicle-type familiarity influences rider behavior.

The roll rate and roll angle peaked during the passing phase. Moreover, in the process of E-bike

overtaking E-bike, the roll angle and roll rate are significantly larger in the pre-phasing stage when E-

bike overtakes E-scooter because more lateral movement has to be accomplished in a shorter period of

longitudinal distance.

Gender affect

Gender differences in riding behavior were clearly observed in non-interactive driving, especially for e-

scooter riders, where male riders showed significantly higher speeds than female riders. However, no

gender-based differences were found for e-bike riders in similar conditions, suggesting that vehicle type

plays a role in how gender impacts driving behavior.

Initially, it was hypothesized that gender might influence lateral distance decisions during over-

taking, particularly for e-scooter riders. However, subsequent analysis revealed no significant gender-

based differences in lateral distances maintained during overtaking maneuvers. This finding suggests

that while gender may influence riding speed in non-interactive scenarios, it does not significantly affect

spatial decisions during overtaking.

Furthermore, gender had no significant impact on the initiation of overtaking maneuvers. These

results collectively indicate that factors such as vehicle type and speed may be more influential than

gender in determining both the timing and spatial characteristics of overtaking behaviors.
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Societal Contributions

The findings from this research can have several significant applications in guiding infrastructure devel-

opment, informing traffic regulations, and enhancing the design of traffic simulation models, especially

with the growing popularity of micromobility vehicles like e-bikes and e-scooters. The following are some

key areas where this research can be applied:

1. Wider and Safer Lanes: Based on the findings that micromobility users, particularly e-bike riders,

tend to maintain larger lateral distances when overtaking other vehicles, the study suggests that

wider cycling lanes should be considered in urban planning. This would provide adequate space

for safe overtaking and reduce the risk of collisions, particularly in areas with high mixed-use

traffic involving micromobility vehicles. Wider lanes could ensure safer maneuverability for both

overtaking and overtaken riders, especially in congested areas. In the past, the recommended

width for two-way bicycle paths in the Netherlands was 2 meters[42], based on the assumption of

a minimum lateral spacing of 0.75 meters between two bicycles. This study, however, recommends

increasing the minimum width to 2.3 meters, as the observed average maximum lateral spacing in

this research was 1.1 meters.

Coincidentally, in 2022, the CROW Design Manual for Bicycle Traffic updated the recommended

width for one-way bicycle paths in the Netherlands from 2 meters to 2.35 meters[43]. However,

CROW did not explicitly cite the introduction of e-bikes or e-scooters as a reason for this change;

instead, the update was motivated by the potential safety benefits of wider paths. This study’s

findings further validate the reasoning behind CROW’s recommendation, as larger lateral spacing

can accommodate various micromobility types and contribute to overall riding safety.

2. Overtaking Distance Guidelines: The analysis of lateral distances and speed differences during

overtaking demonstrates the need for clearer guidelines on safe overtaking distances between

different types of micromobility vehicles. Transport authorities can use these findings to develop

minimum overtaking distance standards for micromobility users. Such guidelines could be inte-

grated into traffic laws, ensuring that riders are aware of the necessary space required to safely

overtake other vehicles, ultimately enhancing road safety for all users.

3. Traffic Calming Measures: The differences in speed and acceleration between e-scooters, e-bikes,

and traditional bicycles could be used to design more effective traffic calming measures. Imple-

menting speed limits tailored to different types of micromobility vehicles and creating designated

overtaking zones could help reduce conflicts between riders and minimize high-risk overtaking be-

haviors. This approach could also prevent scenarios where slower bicycles are overtaken in unsafe

conditions, thus mitigating potential hazards.

4. Micromobility Integration into Traffic Systems: Given the increasing integration of e-bikes and e-

scooters into urban transportation, the study’s insights into overtaking behavior could inform traffic

simulation models that reflect real-world dynamics of mixed micromobility interactions. These mod-

els could be used by transportation planners and engineers to simulate and optimize the flow of

micromobility vehicles in urban traffic systems, allowing for the development of infrastructure that

accommodates the unique behaviors of these vehicles, leading to safer and more efficient traffic

networks.
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Research contribution

This study presents a comprehensive experimental design process that can serve as a reference for

future researchers undertaking similar investigations in the field of micromobility behavior. The method-

ology developed here offers a systematic approach to studying complex interactions between different

types of micromobility vehicles and users.

Moreover, this research has resulted in the development of a robust video data processing

pipeline. This pipeline is characterized by its adaptability to datasets of varying quality, making it par-

ticularly suitable for studies where data collection conditions may not be ideal. The process is designed

with a focus on reproducibility, allowing other researchers to apply and build upon this methodology in

their own work.

The video processing workflow developed in this study addresses common challenges in micro-

mobility research, such as multi-camera trajectory merging, time synchronization across different data

sources, and trajectory smoothing. By providing solutions to these technical hurdles, this research con-

tributes to the standardization of data processing methods in micromobility studies. Furthermore, the

approach taken in this study to define and analyze overtaking phases offers a nuanced framework for

examining micromobility interactions. This framework can be adapted and refined by future researchers

to explore various aspects of micromobility behavior beyond overtaking.

In summary, the methodological contributions of this study - including the experimental design,

data processing pipeline, and analytical framework - provide a solid foundation for future research in

micromobility behavior. These tools and approaches can enhance the rigor and comparability of studies

in this rapidly evolving field.

Limitations and recommendation for future research

This study provides valuable insights into micromobility overtaking behavior. However, several limitations

should be recognized and addressed in future research. Each limitation highlights areas for improvement

and suggests potential avenues for further investigation:

1. Cultural and Market Context: This study was conducted within the unique micromobility land-

scape of China, where e-mopeds dominate and e-bikes are less common, with e-scooters primar-

ily used in specific areas such as university campuses. While participants were given time to adjust

to the vehicles, their behavior may not fully reflect that of experienced riders in regions like Europe,

where e-bikes are more prevalent and used in diverse settings. These contextual factors may have

influenced overtaking behaviors specific to the Chinese market. Future research should consider

cross-cultural comparisons in regions with established e-bike ecosystems to examine if local fac-

tors and cultural norms shape rider behavior, ultimately determining if findings are generalizable

or if region-specific safety guidelines are necessary.

2. Experimental Design Constraints: The simultaneous presence of multiple slow-moving vehi-

cles in the study may have impacted participant behavior, particularly when e-bikes overtook bicy-

cles. This multi-target environment might have inadvertently altered overtaking decisions, introduc-

ing confounding variables. To address this, future studies should control for individual overtaking

events by isolating specific scenarios. For example, carefully staged setups or virtual simulations

could allow researchers to capture single overtaking actions without additional distractions, thereby

providing a clearer understanding of specific overtaking initiation behaviors across micromobility

types.

3. Data Collection Challenges: Several technical issues impacted data quality and analysis:
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– Camera Positioning: Non-vertical camera placements, combined with the absence of cal-

ibration images, led to edge distortions that compromised visual data accuracy. Future re-

search should prioritize comprehensive camera calibration, possibly using pre-calibration with

a chessboard or software that automatically corrects distortions. Advanced video processing

tools, such as motion-capture software, could further enhance data fidelity.

– Equipment Setup: Extended multi-camera recordings highlighted the need for more robust

data capture systems. To address issues such as data loss during transfer and the need for

frequent camera synchronization, future studies could use high-performance setups, includ-

ing Power over Ethernet (PoE) collect station and backup systems to preserve data integrity.

Real-time monitoring of data collection could further ensure recording reliability.

– IMU Data Collection: Incorrect sensor placement on the e-scooter’s stems led to incorrect

roll rate and angle measurements, as the data did not reflect the travel direction. Future

research should focus on calibrating and securing IMU devices in a way that aligns the sensor

measurements with the vehicle’s travel direction, ensuring that the roll rate and angle data are

consistent with the e-scooter’s actual movement. Testing and validating sensor orientation and

placement prior to data collection can help improve the accuracy of dynamic measurements

for micromobility vehicles.

4. Data Processing and Analysis: Although this study developed a novel video data process-

ing pipeline, further refinements could improve robustness. Future research should enhance this

pipeline, specifically targeting improvements in distortion correction and multi-camera trajectory

merging. Applying machine learning algorithms for trajectory tracking and pattern recognition could

yield deeper insights. Additionally, automated data alignment solutions could simplify the data pro-

cessing workflow, supporting the scalability of future studies on micromobility interactions.

To build on these findings, future research should focus on:

1. Conducting cross-cultural studies in various micromobility markets to understand behavioral differ-

ences.

2. Designing experiments that isolate individual overtaking maneuvers to minimize external influ-

ences.

3. Enhancing data collection methodologies, with attention to camera calibration, sensor placement,

and real-time equipment monitoring.

4. Developing sophisticated data processing techniques, such as machine learning-based trajectory

analysis.

5. Exploring long-term studies on how rider behaviors evolve with increased exposure to different

micromobility vehicles.

By addressing these limitations and implementing the recommended improvements, future research can

contribute to a more comprehensive understanding of micromobility overtaking behaviors and inform the

development of safety guidelines tailored to diverse rider groups and regions.
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