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Navigation on temporal networks
Omar F. Robledo1, Petter Holme2,3 and Huijuan Wang1* 

Introduction
Networks (Newman 2010) are commonly used to represent complex systems, with the 
elements being the nodes of the network, and interactions or relations between them, 
the links. The transfer of information is a vital function in many real and artificial 
complex systems, such as the Internet, social, transportation, or telecommunication 
networks, and knowing the whole structure might not be possible. Navigation is the 
problem of transferring, or routing, this information with partial structure of the 
underlying network.

Many real-world networks evolve over time and are thus called temporal networks. 
Examples include opportunistic mobile networks, vehicle networks, and social contact 

Abstract 

Temporal networks, whose network topology changes over time, are used to represent, 
e.g., opportunistic mobile networks, vehicle networks, and social contact networks, 
where two mobile devices (autos or individuals) are connected only when they are 
close to (interact with) each other. Such networks facilitate the transfer of information. 
In this paper, we address the problem of navigation on temporal networks: 
how to route a traffic demand from a source s to a destination d at time ts , based 
on the network observed before ts ? Whenever the node hosting the information 
has a contact or interacts with another node, the routing method has to decide 
whether the information should be forwarded to the contacted node or not. 
Once the information is forwarded, the contacted node becomes the only node 
hosting the information. Firstly, we introduce a framework of designing navigation 
algorithms, in which a distance metric is defined and computed between any node 
to the target d based on the network observed before ts . Whenever a hosting node 
has a contact, it forwards the information to the contacted node if the contacted 
node is closer to the target than the hosting node according to the distance metric. 
Secondly, we propose systematically distance metrics of a node pair in the temporal 
network observed, that capture different network properties of a node pair. Thirdly, 
these metrics or routing strategies are evaluated in empirical contact networks, 
from the perspective of the time duration of the routing and the probability 
that the destination can be reached. Their performance is further explained 
via the correlation between distance metrics and the stability of each metric in ranking 
nodes’ distance to a target node. This work may serve as inspiration for evaluating 
and redesigning these strategies in other types of networks beyond physical contact 
networks.
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networks, where two mobile devices (autos or individuals) are connected only when they 
are close to (interact with) each other. In these networks, information is transported 
along time-respecting paths (Holme and Saramäki 2012), meaning that each link in 
the chain from one node to another has to occur or be active at a later time than the 
previous ones. For example, two mobile devices in an opportunistic mobile network 
could communicate with each other via Bluetooth or WiFi when they are within each 
other’s transmission range (Fall 2003). Information such as multimedia newspapers and 
movie trailers that do not have strict real-time constraints can be transported in such 
opportunistic mobile networks, offloading cellular traffic. Moreover, temporal networks 
show properties related to their evolving nature, such as the heavy-tail distribution of 
inter-event times between consecutive interactions (burstiness) or the heterogeneous 
distribution of the number of interactions between a node pair. We argue that said 
temporal properties not only affect how information is transported through the network, 
but that they could be used to improve the routing of information in a temporal network 
with only partial knowledge of its structure.

The problem of navigation has been widely studied in static networks (see Kleinberg 
2000; Kumar et  al. 2006; Şimşek and Jensen 2008; Boguñá et  al. 2009; Papadopoulos 
et al. 2010; Kleineberg and Helbing 2017; Yan et al. 2020). Several studies have shown 
that efficient network navigation can be achieved without knowledge of the global 
structure of the network; e.g., by using greedy algorithms, such as the ones proposed 
by Şimşek and Jensen (2008) or Papadopoulos et al. (2010). Ortiz et al. (2017) showed 
how temporal networks can be navigated more efficiently than static networks. Lee and 
Holme (2019) proposed intuitive greedy algorithms for navigation in temporal networks, 
and studied their effectiveness, in terms of hop-count and time, in multiple empirical 
temporal networks.

In this paper, we will focus on the problem of navigation on temporal networks, as 
previously studied by Lee and Holme (2019), and interpret it as a routing problem; i.e., 
we study how we can transfer information from a source node s to a target node t starting 
at a particular time ts . Whenever there is a contact involving the node in which the 
information is held, we have to decide whether the information should be forwarded via 
the contact to another node or remain at the current node. Once a node has forwarded 
the information package, it deletes the record to conserve storage space. During this 
navigation process of the traffic demand (s, d, ts) , only one node holds the information 
at any time. We aim to design effective navigation methods that allow each hosting node 
to decide whether it should forward the information or not to the node it contacts now, 
using the temporal network observed before the starting time ts of the traffic demand 
(s, d, ts) . We define a framework for designing navigation algorithms in which a distance 
metric is evaluated between any node and the target node d. Whenever there is a contact 
between a hosting node and a contacted node, the information is transported to the 
contacted node if the contacted node is closer to the target node than the hosting node 
according to the distance metric. We propose several distance metrics/properties of a 
node pair in the temporal network observed. They capture different network properties 
of a node pair in the time-aggregated network of the observed temporal network or 
the observed temporal network. We evaluate these metrics or, equivalently, navigation 
algorithms based on the probability that a target node can be reached and the average 
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time to reach a target node. Traffic demands between all possible node pairs starting 
at various times in various physical contact networks have been considered in the 
evaluation. The proposed navigation methods are also compared to the optimal routing 
in the ideal case in which the future temporal network is known and used to route the 
information optimally. The optimal routing routes any traffic demand via the fastest 
time-respecting path. Its performance is, thus, an upper bound for any navigation 
algorithm. Finally, we study the differences between the performance of these metrics in 
different empirical networks and the stability of the metrics over time.

The remainder of the paper is structured as follows. In Sect.  2, we describe our 
approach, detailing our evaluation process, the properties of the data sets used, and the 
baselines with which we compare our framework. In Sect. 3, we analyse the performance 
of the navigation strategies proposed and that of the baselines, and compare them. We 
also study the rank stability of each link at different time steps by using a specific metric. 
Finally, we present our conclusions in Sect. 4.

Methods
We aim to develop a generic framework to design navigation algorithms on a temporal 
network by using past information of the network. First, we introduce the representation 
of temporal networks. Second, the navigation problem and our evaluation method for 
the navigation strategies are defined. Third, we describe the empirical contact networks 
used for the evaluation. Finally, we describe our framework, under which we introduce 
baseline navigation strategies, and propose our strategies.

Temporal network representation

A temporal network measured at discrete times can be represented as a sequence of 
network snapshots G = {G1,G2, ...,GT } , where T is the duration of the observation 
window [1, T] and Gt = (V ;Et) is the snapshot at time step t with V and Et being the 
set of nodes and contacts, respectively. If two nodes, j and k, have a contact at time 
step t, (j, k) ∈ Et . Here, we assume all snapshots share the same set of nodes V, of size 
N. The temporal network G can be represented by a temporal adjacency matrix A, an 
N × N × T  matrix in which ai,j,t = 1 if node i and j are connected or have a contact at 
time t, and ai,j,t = 0 otherwise. The corresponding time-aggregated network Gw contains 
the same set of nodes V and the set of links E = ∪T

t=1
Et . A pair of nodes is connected 

with a link in the aggregated network if at least one contact occurs between them in 
the temporal network. The total number of links is M = |E| . The weight of each link in 
the aggregated network is the total number of contacts occurring along the link within 
[1, T].

Evaluation of navigation methods

We focus on the following navigation problem on a temporal network. Given a traffic 
demand (s, d, ts) , the information initially hosted at node s at time ts needs to be 
navigated to the destination d. The objective is to design a navigation strategy that 
decides, whenever a hosting node has a contact with any other node k, whether the 
hosting node should forward the information to k or not (thus waiting for its later 
contact), based on the temporal network observed before ts , thus observed within 
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[1, ts] . Once the information is forwarded to, e.g., k, only k hosts the information, 
and nodes that have previously hosted the message have no record of the message 
anymore. This navigation problem corresponds to the routing problems in temporal 
networks, e.g., opportunistic mobile networks, vehicle networks, and social contact 
networks, when the storage capacity of information at nodes is limited.

Given a network, we consider traffic demands from any node to any other node 
starting at various starting times chosen uniformly from 1 to T to evaluate the 
performance of any navigation strategy X. The performance of navigation strategies 
is evaluated from two perspectives, efficiency with respect to the time duration of 
the routing paths and effectiveness regarding the probability that a feasible routing 
path can be found.

For each starting time ts , we define the efficiency of any navigation strategy X in 
transporting traffic demands starting at ts between all source and destination node 
pairs on a temporal network G as

where τXs,d(ts) is the temporal distance of the path to route traffic demand (s, d, ts) 
by following strategy X, i.e., the time when the information reaches the destination 
d by using strategy X minus ts ; τs,d(ts) is the temporal distance of the optimal path in 
the ideal case where future contacts are known and traffic is routed along the fastest 
time-respecting path and the set �(ts) contains each source and destination node pair, 
between which since ts a time-respecting path exists in network G, i.e. a feasible path 
can be found by the optimal routing based on the past and future temporal network. 
For any node pair s, d ∈ �(ts) , τs,d(ts) is finite. If the traffic demand (s, d, ts) cannot be 
met, i.e., the destination cannot be reached according to X, the temporal distance τXs,d(ts) 
is infinity. The efficiency EX

G (ts) ∈ [0, 1] , with 1 meaning that the strategy performs 
optimally, i.e., as well as in the ideal case where future contacts are known. A smaller 
efficiency implies that the strategy performs far below the optimal routing when the 
future network is known. This metric is inspired by the temporal closeness centrality, 
defined by Pan and Saramäki (2011).

Beyond efficiency, we also evaluate the performance of navigation methods via the 
probability that a traffic demand is met, i.e., the target could be reached, starting at a 
given time. We define the effectiveness of navigation strategy X as

where the set �X (ts) contains each source destination node pair (k,  m), such that, 
starting from node k at ts , node m can be reached by following strategy X. Similar to 
the efficiency defined above, the effectiveness εXG (ts) ∈ [0, 1] , with 1 meaning that for any 
traffic demand starting at ts , the strategy can find a feasible path, i.e., a time-respecting 
path, as long as the optimal routing can find one.

(1)EX
G (ts) =

1

|�(ts)|

∑

s,d∈�(ts)

τs,d(ts)

τXs,d(ts)
,

(2)εXG (ts) =
|�X (ts)|

|�(ts)|
,
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Navigation strategies

Given a traffic demand (s, d, ts) and the temporal network observed before the starting 
time ts , a navigation method is used to navigate the traffic demand. Specifically, 
each hosting node uses the navigation method to decide whether to forward the 
information or not when it contacts another node.

Baseline strategies

First, we review baseline strategies (Lee and Holme 2019) that do not make use of 
previous information of the network.

Wait for Target (WFT) Once the navigation process has started, the information is 
forwarded only if the hosting node has a direct contact with the target node.

Greedy Walk (GW) The information is transferred to a different node every time 
there is a contact. In case a hosting node has multiple contacts at the same time 
stamp, the information is transported to one of the contacted nodes, chosen 
uniformly at random.

Proposed strategies

Our methodology differs from the aforementioned baselines in that previous 
information of the network is considered to inform the navigation. We define the 
following framework of designing navigation algorithms. Given the traffic demand 
(s, d, ts) , a distance metric is derived between any node to the target node d based 
on the temporal network observed before ts . Whenever there is a contact between 
a hosting node and a contacted node, the information is forwarded to the contacted 
node if the contacted node is closer to the target node than the hosting node 
according to the distance metric.

We will propose various definitions of distance metric mX
i,d(ts) from node i to target 

node d starting at time ts , using contacts occurred prior to the starting ts of the navigation. 
In this notation, X denotes the specific metric or strategy used. This metric is computed 
once before the navigation starts. We propose three metrics, each capturing a different 
aspect of the network and leading to a navigation strategy. In order to compute them, 
we consider the temporal network observed before ts , i.e., G∗(ts) = {G1,G2, . . . ,G(ts)} , 
where ts < T  . The time aggregated network G∗

w(ts) of G∗(ts) is a weighted network and 
can be represented by its weighted adjacency matrix W (ts) with the weight wi,j(ts) being 
the total number of contacts that occur between i and j during [1, ts].

Effective Resistance (RES) We propose the effective resistance mRES
i,d (ts) between two 

nodes in the time aggregated network G∗
w(ts) . It is the effective resistance between the 

two nodes in the electronic circuit that is constructed by considering every link (i,j) 
in the aggregated network G∗

w(ts) as a resistor, whose impedance is 1 over its weight 
wi,j(ts) . The longer the paths between two nodes, the higher the effective resistance; 
similarly, the more paths existing between two nodes, the lower the effective 
resistance between them.

The Laplacian matrix corresponding to the aggregated network G∗
w(ts) is 

defined as L(ts) = D(ts)−W (ts) , with D(ts) being the diagonal matrix, such that 
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Di,i(ts) =
∑N

j=1 wi,j(ts) . Mathematically, the effective resistance between nodes i and d 
in G∗

w(ts) can be derived as:

with L−1 being the pseudo-inverse of the Laplacian L(ts) . It is important to note that this 
distance metric mRES

i,d (ts) does not use any temporal information, as it is based on the 
aggregated topology, but takes into account multiple possible paths in the aggregated 
network observed.

Average Time to Target (T2T) To design this metric, we utilise the temporal network 
observed so far G∗(ts) till the moment ts when a new traffic demand needs to be 
routed. If traffic demands from i to d starting before ts can be transported on average 
within a short time in G∗(ts) , the distance metric mT2T

i,d (ts) is supposed to be small. 
Given a traffic demand (i, d, tk) , where tk < ts , this strategy considers the fastest time-
respecting path from node i to node d in G∗(ts) , and its temporal distance τi,d(tk) . If 
node d cannot be reached in [tk , ts) , then τi,d(tk) = ∞.

The average time to target mT2T
i,d (ts) is the average temporal distance of the fastest 

time-respecting paths from node i to target node d starting at times tk ∈ [1, ts) that 
finish before ts , i.e.,

with T ∗
i,d(ts) being the set of traffic demand times for which a time-respecting path from 

i to d that finishes before ts exists. In order to reduce the computation time, mT2T
i,d (ts) is 

approximated by uniformly sampling tk within T ∗
i,d(ts).

Tendency towards Target (TTT) The metric mTTT
i,d (ts) considers the previous 

contacts between node i and d till time ts . It’s inspired by the finding that if a node 
pair has more contacts in the past and more contacts recently, the node pair is more 
likely to have a contact at the next time step (Zou et  al. 2023). This metric can be 
computed iteratively as:

with mTTT
i,d (0) = 0 . It increases when there is a contact between nodes i and d, and 

decreases over time according to its forgetting factor α , where 0 ≤ α ≤ 1 . When α = 1 , 
mTTT

i,d (ts) counts the total number of contacts between i and d during [1, ts] . When α = 0 , 
mTTT

i,d (ts) = ai,d,ts . The distance mTTT
i,d (ts) tends to be higher if i and d have more contacts 

at times closer to ts.
These three distance metrics, or navigation strategies, define the distance between 

any node and a target node from three perspectives: how well the two nodes are 
connected via different paths in the aggregated network observed (RES), how well the 
two nodes are connected via the fastest paths in the temporal network observed in 
the past (T2T), and how well the two nodes interact directly with each other in the 
temporal network observed (TTT​). For all three metrics, the distance mX

d,d(ts) = 0 of 

(3)mRES
i,d (ts) = L−1

i,i (ts)− 2 · L−1

i,d (ts)+ L−1

d,d(ts),

(4)mT2T
i,d (ts) =

1

|T ∗
i,d(ts)|

∑

tk∈T
∗
i,d(ts)

τi,d(tk),

(5)mTTT
i,d (t) = ai,d,t + αmTTT

i,d (t − 1),
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the destination itself is the minimal among all nodes. Whenever a hosting node has 
contact with the destination, the information will be forwarded to the destination.

Given a traffic demand (s, d, ts) and a navigation strategy X, the navigation process 
is as follows. First, the distance metric is computed between any node and d based on 
the temporal network observed until ts . Initially, the information is hosted at s. At every 
contact involving the node hosting the information, the information is forwarded to the 
contacted node only if it has a smaller distance to destination d than the hosting node, 
thus becoming the only node that hosts the information. The process ends when the 
destination d is reached or all contacts till the end time T of the temporal network G 
have already been taken into account.

Data

In this paper, we confine ourselves to four empirical physical contact networks (human 
interaction)  to evaluate navigation methods: Hospital http://​www.​socio​patte​rns.​org/​
datas​ets/​hospi​tal-​ward-​dynam​ic-​conta​ct-​netwo​rk/ (Vanhems et  al. 2013), conference 
Hypertext 2009 http://​www.​socio​patte​rns.​org/​datas​ets/​hyper​text-​2009-​dynam​ic-​conta​
ct-​netwo​rk/ (Isella et  al. 2011), conference SFHH http://​www.​socio​patte​rns.​org/​datas​
ets/​sfhh-​confe​rence​data-​set/ (Génois and Barrat 2018), and High School 2011 http://​
www.​socio​patte​rns.​org/​datas​ets/​high-​school-​dynam​ic-​conta​ct-​netwo​rks/ (Mastrandrea 
et  al. 2015)]. In each of the networks, two individuals have a contact (their link being 
activated) when they interact, i.e., they are close in space. All  interaction networks 
are constructed based on wearable devices that monitor face-to-face interactions. A 
summary of the properties of the networks can be found in Table 1. Each network has 
no contact for approximately 40–69% of the time, partially due to resting periods such 
as evenings.

Results
In this section, we first evaluate the performance of the different strategies proposed in 
Sect. 2 in the data sets previously described. Then, we study the correlation between any 
two distance metrics/strategies. This aims to understand whether any two metrics rank 
nodes similarly or not, with respect to nodes’ distance to any target at any time associ-
ated with any traffic demand. This could help us explain the (dis)similar performance 
between strategies. Finally, we study the stability of the ranking of nodes’ distance to a 

Table 1  Basic properties of the empirical networks used

N is the number of nodes, M is the number of pairs of nodes with one or more contacts, L is the total number of contacts 
recorded, T is the time span of the observation window in number of time steps, δ denotes the time resolution, which is the 
duration of each time step, and p is the probability that a random node pair has a contact at any time step

Network N M L T δ (s) p Type

Hospital 75 1139 32424 17375 20 6.7× 10
−4 Human interaction

Hypertext 2009 (HT09) 113 2196 20818 10607 20 3.1× 10
−4 Human interaction

SFHH 403 9565 70261 5715 20 1.5× 10
−4 Human interaction

High School 2011 126 1710 28561 13617 20 2.7× 10
−4 Human interaction

http://www.sociopatterns.org/datasets/hospital-ward-dynamic-contact-network/
http://www.sociopatterns.org/datasets/hospital-ward-dynamic-contact-network/
http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/
http://www.sociopatterns.org/datasets/hypertext-2009-dynamic-contact-network/
http://www.sociopatterns.org/datasets/sfhh-conferencedata-set/
http://www.sociopatterns.org/datasets/sfhh-conferencedata-set/
http://www.sociopatterns.org/datasets/high-school-dynamic-contact-networks/
http://www.sociopatterns.org/datasets/high-school-dynamic-contact-networks/
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target as the time of a traffic demand varies, which may explain why some strategies per-
form well when the temporal network is only observed for a short period [1, ts].

Navigation performance

Since the strategy Tendency towards Target (TTT​) has one control parameter α , we eval-
uate the efficiency of strategy TTT​ with different values of α to identify the optimal α 
first. As shown in Fig. 1, α = 1.0 tends to result in the highest efficiency for all possible 
starting times ts in all data sets. Therefore, we will compare the rest of the metrics with 
TTT​ using α = 1 , and we will refer to the TTT​ metric with α = 1 as the TTT​ strategy for 
simplicity.

We measure both the effectiveness and efficiency of the three strategies proposed, 
along with the two baselines, in four empirical datasets. Figures 2 and 3 show the com-
parison between them. In every data set, all the proposed strategies improve over the 
Wait for Target WFT baseline. The other baseline, Greedy Walk (GW), performs the best 
when ts is small, i.e., when there is hardly any network information observed to estimate 
the distance of each node to the target node. From the three proposed strategies, TTT​ 
tends to perform the best more consistently along different starting times and data sets. 
This suggests that, in general, it is wise to forward the information to a node that has 
more contacts with the target node in the observation period [1, ts] than the hosting 
node. Furthermore, RES strategy tends to slightly outperform TTT​ when ts is large, at 
least larger than T/2. Strategy RES forwards the information to a contacted node in case 
the contacted node has more and shorter paths with the target than the hosting node 
in the observed aggregated network. A long observation period, thus a large ts tends 
to enhance the performance of RES. Among the four temporal networks, we observe 

Fig. 1  Efficiency ETTTG (ts) of strategy Tendency towards Target (TTT) as a function of the starting time ts of 
traffic demands for different values of α in four empirical temporal networks
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network SFHH has the lowest contact density (probability p that a node pair has a con-
tact at any time, shown in Table 1). Its low contact density leads to low navigation per-
formance, so we could not distinguish the performance among the strategies considered. 

Fig. 2  Effectiveness εXG(ts) of each strategy X as a function of the starting time ts of traffic demands in four 
empirical temporal networks

Fig. 3  Efficiency EXG(ts) of each strategy X as a function of the starting time ts of traffic demands in four 
empirical temporal networks
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If a network has extremely high contact density, every node tends to have a high chance 
of contacting the target node at any time. This leads to the high performance of all strat-
egies, almost the same as the optimal strategy that assumes the future network is known. 
Differences among the strategies in navigation can be observed in temporal networks 
between these two extremes.

Correlation between metrics

We study further how the proposed distance metrics are related to each other. The 
objective is to verify whether these metrics indeed capture different network proper-
ties as intended when defining them, which could explain their different performance 
in navigation. Given a traffic demand (s, d, ts) , the distance of each node to the tar-
get d can be computed according to each distance definition X based on the network 
observed till ts and recorded as a distance vector mX

d (ts) . We compute the Kendall 
rank correlation Kendall (1938) between two distance metrics, namely the two cor-
responding distance vectors for each combination of destination d and starting times 
ts . The distribution of the correlation considering different destinations d and starting 
times ts is shown in Fig. 4 for each data set. The choice of Kendall rank correlation is 
motivated by the following. Given a traffic demand (s, d, ts) , the routing decision, to 
forward the information or not when a hosting node has a contact, depends only on 
whether the contacted node has a smaller distance to the destination or not than the 
hosting node. Hence, the routing decision based on any distance metric, depends only 
on the ranking of nodes in the distance vector. Kendall rank correlation between two 
distance metrics naturally indicates the tendency that these two metrics/strategies 
lead to the same routing decision. The correlation between any two metrics, as shown 
in Fig. 4, is in general low, suggesting that each metric captures a different property, 
or distance perspective between two nodes. This observation also indicates that the 

Fig. 4  Distribution of the correlation of metrics for different strategies
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proposed strategies are supposed to perform differently, as long as the temporal net-
work does not belong to the two extreme cases discussed above.

Rank stability

We explore further whether the ranking of nodes with respect to their distance to a given 
target d derived from each distance metric is stable as ts increases. In other words, we 
wonder whether the ranking of nodes in the distance vector mX

d (ts) changes with ts . In 
order to answer this question, we explore the average Kendall rank correlation between 
m

X
d (ts) and mX

d (ts −�t)) over all possible targets d and times ts , i.e.,

where N is the number of nodes, T is the length of the time window, X is the relevant 
metric, �t is the time delay, and τ (x, y) represents Kendall’s τ between vectors x and y. 
The results are represented in Fig. 5 for all delays and metrics per each data set.

In general, the correlation decays as the time delay increases. We observe that the 
Tendency towards Target (TTT​) strategy is the most stable or decays the least over 
time. For such a stable metric, the distance vector mX

d (ts) is not needed to be updated 
frequently to route demands towards d at different times. The stability of tendency-
towards-target (TTT​) also supports the reasonably good performance of TTT​ when 
the starting time is small, i.e., when the temporal network has been observed for a 
short period.

(6)τX (�t) =
1

N · (T −�t)

∑

d

T∑

ts=�t

τ (mX
d (ts),m

X
d (ts −�t)),

Fig. 5  Average Kendall correlation τ between a distance metric at two times with given a time delay



Page 12 of 13Robledo et al. Applied Network Science            (2025) 10:7 

Conclusions
In this paper, we have studied the problem of navigation in temporal networks based on 
the temporal network observed in the past. We have proposed three distance metrics or 
routing strategies based on different topological and temporal properties of the network 
and considered two benchmark strategies. These navigation methods are evaluated in 
physical contact networks from the perspectives of efficiency, i.e., how fast information 
can be transported, and effectiveness, i.e., the probability that the target can be reached, 
both compared with the optimal solution when the temporal network in the future is 
known. These distance metrics capture different properties between nodes, supported 
by their definitions as well as the relatively low correlation among them.

Among all the strategies proposed, we found that the Tendency towards Target (TTT​
) performs the best overall, even when the starting time of a traffic demand is early; 
thus, temporal network observed for routing has a short duration. This can be partially 
explained by the stability of the metric in ranking nodes over time. When the starting 
time is late, the Effective Resistance (RES), which takes into account all paths between 
each node pair in the aggregated network of the temporal network observed, tends 
to slightly outperform TTT​. It is worth noting that the best performance of TTT​ was 
achieved by using a parameter α = 1.0 , which means the distance metric from a node 
to the target is simply the number of contacts between the two nodes that have been 
observed in the past. In practice, only the number of contacts between each node pair 
needs to be recorded over time until a new traffic demand is launched. When the hosting 
node has a contact with a node that has more contacts with the target, the information 
is forwarded. Hence, the TTT​ strategy is, in general, efficient, effective, and of low cost.

The design of the two best-performing strategies TTT​ and RES utilizes the 
heterogeneous distribution of inter-event times between consecutive interactions 
(burstiness) and of the number of interactions between a node pair. The distance metric 
of TTT​ estimates the tendency of future connections between two nodes by considering 
both the frequency and timing of their previous interactions. The distance metric of 
RES takes into account not only the number of contacts between a node pair, but also 
how well the node pair is connected by paths. These two examples could inspire the 
development of novel navigation strategies that integrate burstiness and various forms 
of heterogeneity in temporal networks. Moreover, burstiness and heterogeneity have 
been mostly observed in physical contact networks, not necessarily in other types of 
networks. In this work, we have only considered physical contact networks, and the 
results are therefore limited to them. Studying how navigation methods perform and 
could be redesigned in other types of temporal networks is an interesting future research 
question. This will also unravel how the properties of a temporal network affect the 
performance of routing strategies.
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