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A B S T R A C T

Decision support systems (DSS) have improved significantly but are more complex due to recent advances in
Artificial Intelligence. Current XAI methods generate explanations on model behaviour to facilitate a user’s
understanding, which incites trust in the DSS. However, little focus has been on the development of methods that
establish and convey a system’s confidence in the advice that it provides. This paper presents a framework for
Interpretable Confidence Measures (ICMs). We investigate what properties of a confidence measure are desirable
and why, and how an ICM is interpreted by users. In several data sets and user experiments, we evaluate these
ideas. The presented framework defines four properties: 1) accuracy or soundness, 2) transparency, 3) ex-
plainability and 4) predictability. These characteristics are realized by a case-based reasoning approach to
confidence estimation. Example ICMs are proposed for -and evaluated on- multiple data sets. In addition, ICM
was evaluated by performing two user experiments. The results show that ICM can be as accurate as other
confidence measures, while behaving in a more predictable manner. Also, ICM’s underlying idea of case-based
reasoning enables generating explanations about the computation of the confidence value, and facilitates user’s
understandability of the algorithm.

1. Introduction

The successes in Artificial Intelligence (AI), Machine Learning (ML)
in particular, caused a boost in the accuracy and application of in-
telligent decision support systems (DSS). They are used in lifestyle
management (Wu et al., 2017), management decisions (Bose and
Mahapatra, 2001), genetics (Libbrecht and Noble, 2015), national se-
curity (Pita et al., 2011), and in prevention of environmental disasters
in the maritime domain (van Diggelen et al., 2017). In these high-risk
domains, a DSS could be beneficial as it can reduce workload of a user,
and increase task performance. However, the complexity of current DSS
(e.g. based on Deep Learning) impedes users’ understanding of a given
advice, often resulting in too much or too little trust in the system,
which can have catastrophic consequences (Burrell, 2016; Cabitza
et al., 2017).
The field of Explainable AI (XAI) researches how a DSS can improve

a user’s understanding of the system by generating explanations about
its behaviour (Guidotti et al., 2018; Kim et al., 2015; Miller, 2018b;
Miller et al., 2017; Ridgeway et al., 1998). More specifically, the goal of
these explanations is to increase understanding of the system’s rationale
and certainty of an advice that it provides (Holzinger et al., 2019a;
2019b; Miller, 2018a). It is hypothesized that the understanding that a

user gains from these explanations facilitates adequate use of the DSS
(Hoffman et al., 2018), and calibrates the user’s trust in the system
(Cohen et al., 1998; Fitzhugh et al., 2011; Hoffman et al., 2013).
Although understanding of the system can help a user to decide

when to follow the advice of a DSS, it is often overlooked that a con-
fidence measure can achieve the same effect (Papadopoulos et al.,
2001). In this paper, we define a confidence measure as a measure that
provides an expectation that an advice will prove to be correct (or in-
correct). To help develop such measures, we introduce the Interpretable
Confidence Measure (ICM) framework. The ICM framework assumes
that a confidence measure should be 1) accurate, 2) able to explain a
single confidence value, 3) use a transparent algorithm and 4) providing
confidence values that are predictable for humans (see Fig. 1).
To illustrate the ICM framework, we will define an example ICM.

We evaluated its accuracy, robustness and genericity on several clas-
sification tasks with different machine learning models. In addition, we
applied the concept of an ICM on the use case of Dynamic Positioning
(DP) within the maritime domain (van Diggelen et al., 2017). Here, a
human operator supervises a ship’s auto-pilot while receiving assistance
from a DSS that provides a warning when human intervention is
deemed necessary (e.g. based on weather conditions). It can be cata-
strophic if the operator fails to intervene in time. For example, an oil
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tanker might spill large amounts of oil in the ocean, because the op-
erator failed to intervene to prevent the ship from rupturing its con-
nection to an oil rig. This use case provided a realistic dataset to
evaluate our example ICM, as well as a context for a qualitative us-
ability experiment with these operators. In this experiment, we eval-
uated the transparency and explainability properties of the ICM fra-
mework. To further substantiate these results, we performed a
quantitative online user experiment in the context of self-driving cars.
We provide the ICM framework in Section 3, describe our example

ICM in Section 4, our evaluations on the data sets in Section 4.1, and the
two user experiments in Section 5 and 6. The next Section presents
related work in the field of XAI and confidence measures in Machine
Learning, which defines many current DSS.

2. Related work

Explainable AI (XAI) researches how we can improve the user’s
understanding in a DSS to reach an appropriate level of trust in its
advice (Herman, 2017; Kim et al., 2015; Miller, 2018b; Miller et al.,
2017; Ridgeway et al., 1998). For example by allowing users to detect
biases (Doshi-Velez and Kim, 2017; Gilpin et al., 2018; Goodman and
Flaxman, 2016; Zhou and Chen, 2018). Some XAI research focuses on
these aspects from a societal perspective, trying to identify how in-
telligent systems should be implemented, when they should be used,
and who should regulate them (Doshi-Velez and Kim, 2017; Lipton,
2016; Zhou and Chen, 2018; Zliobaite, 2015). Other researchers ap-
proach the field from a methodological perspective, and aim to develop
methods that solve the potential issues of applying intelligent systems
in society. See for example the overview of methods from
Guidotti et al. (2018).
To generate explanations, many XAI methods use a meta-model that

describes the actual system’s behaviour in a limited input space sur-
rounding the to be explained data point (Ribeiro et al., 2016). It only
has to be accurate in this local space and can thus be less complex and

more explainable than the actual system. A disadvantage of these ap-
proaches is that the meaningfulness of the explanation is dependent on
the size of the local space and the brittleness of the used meta-model.
When it is too small, the explanation cannot be generalized, and when it
is too large, the explanation may lack fidelity. The advantage is that
these methods can be applied to most systems (i.e. they are system- or
model-agnostic). A second advantage is that the fidelity of explanations
can be measured, since the meta-model’s ground truth is the output of
the system, which is readily available. This can be exploited to measure
a meta-model’s accuracy through data perturbation. In our proposed
ICM framework, we apply the idea of system-agnostic local meta-
models to obtain an interpretable confidence measure, not a post-hoc
explanation of an output.
Confidence measures allow DSS to convey when an advice is

trustworthy (Papadopoulos et al., 2001). However, a user’s commit-
ment to follow a DSS’ advice is linked to his or her own confidence and
that conveyed by the DSS (Landsbergen et al., 1997). A confident user
confronted with a low system confidence reduces the user’s confidence
in his or herself, and vice versa. The work from Ye and Johnson (1995)
and Waterman (1986) shows that this can be mitigated by explaining
the DSS’ confidence value by using a transparent algorithm. The work
from Walley (1996) shows users tend to change their confidence when
evidence for a correct or incorrect decision is gained or lost. Users ex-
pect the same predictable behaviour from a DSS’ confidence measure.
Hence, it should not only be transparent with explainable values but
also behave predictable for humans.
Current DSS are often based on Machine Learning (ML). Different

categories of confidence measures can be identified from this field, see
Table 1 for an overview. The first, confusion metrics such as accuracy
and the F1-score, are based on the confusion matrix. These tend to be
transparent and predictable but lack accuracy and explainability for
conveying the confidence of a single advice (Foody, 2005; Labatut and
Cherifi, 2011). A ML model’s prediction score such as the SoftMax output
of a Neural Network, are also common as confidence measures. They
represent the model’s estimated likelihood for a certain prediction
(Zaragoza and d’Alché Buc, 1998). They are highly accurate but their
transparency and explainability is often low (Samek et al., 2017; Sturm
et al., 2016). Furthermore, these measures tend to behave un-
predictable as small changes in a data point can cause non-monotonic
increases or decreases in the confidence value (Goodfellow et al., 2014;
Nguyen et al., 2015). In rescaling such as with Platt Scaling (Platt and
others, 1999) or Isotonic Regression (Zadrozny and Elkan, 2001; 2002),
the prediction scores are translated into more predictable and accurate
values (Hao et al., 2003; Liu et al., 2004). However, these are used to
enable post-processing and not intended to be explainable or trans-
parent (Niculescu-Mizil and Caruana, 2005). Some ML models are in-
herently probabilistic and output conditional probability distributions
over its predictions. Examples are Naive Bayes (Rish et al., 2001), the
Relevance Vector Machine (Tipping, 2000) and using neuron dropout
(Gal and Ghahramani, 2016) or Bayesian inference (Fortunato et al.,
2017; Graves, 2011; Paisley et al., 2012) on trained Neural Networks.
Although they are accurate, they are also opaque and difficult to predict
as conditional probabilities are difficult to comprehend by humans

Fig. 1. The four properties of an Interpretable Confidence Measure to perform
effective trust calibration.

Table 1
Categories and examples of commonly used confidence measures in Machine Learning and if their adherence to the four properties of an ICM.

Category

Property Confusion metrics Prediction scores Rescaling Probability Voting

Accurate - + + + +
Predictable + - + - -
Transparent + - - - -
Explainable - - - + +
Example F1-score

Foody (2005)
SoftMax

Papernot and McDaniel (2018)
Platt Scaling

Platt and others (1999)
RVM

Tipping (2000)
Random Forest

Bhattacharyya (2013)
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(Evans et al., 2003; Pollatsek et al., 1987). There are efforts to make
such values more explainable for specific model types, see for example
(Qin, 2006) and (Ridgeway et al., 1998). Finally, ML models are known
to use voting to arrive at a confidence value (Polikar, 2006; Tóth and
Pataki, 2008; Van Erp et al., 2002). Known examples are Random
Forest, Decision Trees and ensembles of Decision Stumps (Stone and
Veloso, 1997). These confidence values can be explained through ex-
amples (Florez-Lopez and Ramon-Jeronimo, 2015). However, their al-
gorithmic transparency depends on the model and their values tend to
change step-wise given continuous changes to the input, making them
hard to predict by humans.
As can be seen in Table 1, neither category is accurate, predictable,

explainable and transparent in a DSS context. A likely reason is that the
purpose of these measures is to convey performance of an ML model to
a developer, not the confidence of a DSS in an advice to a user. As a
consequence, many of these measures are tailored to work for a specific
or subset of model types. Only the confusion metrics of these categories
are system-agnostic. In the next section we propose a system agnostic
approach to confidence measures based on case-based reasoning that
are not only as accurate as the above described measures, but also
transparent, explainable and predictable.

3. A framework for interpretable confidence measures

In this section we propose a framework to create Interpretable
Confidence Measures (ICM) that are not only accurate in their con-
fidence assessment, but whose values are predictable as well as ex-
plainable based on a transparent algorithm. The ICM framework relies
on a system-agnostic approach and performs a regression analysis with
the correctness of an advice as the regressor. It does so based on case-
based reasoning.
Case-based reasoning or learning provides a prediction by extra-

polating labels of past cases to the current queried case (Atkeson et al.,
1997). The basis of many case-based reasoning methods is the k-Nearest
Neighbours (kNN) algorithm (Fix and Hodges Jr, 1951). This method
follows a purely lazy approach (Wettschereck et al., 1997). When
queried with a novel case, it selects the k most similar cases from a
stored data set and assigns the case with a weighted aggregation of the
neighbour’s labels. The advantage of case-based learning methods is
that its principle idea is closely related to that of human decision-
making (Harteis and Billett, 2013; Hodgkinson et al., 2008; Schank
et al., 2014). This makes such algorithms easier to understand and in-
terpret (Freitas, 2014). In addition, they allow for example-based ex-
planations of a single prediction (Doyle et al., 2003). These properties
are exploited in the ICM framework to define a confidence measure as
performing a regression analysis with case-based reasoning.

3.1. The ICM framework

In this section we formally describe the ICM framework. We assume
the DSS as a function f : l that assigns an advice y to data
points x of l dimensions. It does this with a certain accuracy relative to
the ground truth or label y* . An ICM goes through four steps to
define the confidence value C x( ) for x : 1) an update step, 2) a selection
step, 3) a separation step, and 4) a computation step. Below we discuss
these steps, and an overview is shown in Fig. 2.
In the first step, the update, a memory = …D x y x y{( , *), , ( , *)}n n1 1 is

updated. This D forms the set of cases from which the confidence is
computed. Given an update procedure u and new data-label pairs
x y( , *), an ICM continuously updates this memory =D u x y D(( , *), )
such that =D n| | . This ensures that D adapts to changes in the DSS over
time. The initial D is initialized with a training set but is expanded and
replaced with novel pairs during DSS usage. The size of D is fixed to n,
and maintained by u. Examples of u can be as simple as a queue (newest
in, oldest out) or based on more complex sampling methods (e.g. those

that take the label and data distributions into account).
In the selection step a set S is sampled from D such that =S s x y D( , | ),

where s is some selection procedure. The purpose of s is to select all
relevant data-label pairs to define the ICM’s confidence value for the
current x y( , ). For example, following kNN, the k closest neighbours to
x can be selected based on a similarity or distance function.
In the separation step, S is split into +S and S based on the current

x y( , ). The +S contains all x y( , *) where =y y*, with = +S S S . In other
words, +S contains all data points whose advice was similar to the
current advice and correct. The S contains all data points with a dif-
ferent correct advice.
In the computation step, the +S and S are used to calculate the

confidence value +C x S S( | , ) with a weighting scheme w: l

(often abbreviated as C x( ):

=+

+
C x S S Z x S w x x w x x( , ) ( | ) ( , ) ( , )

x S
i

x S
j

1

i j (1)

The weights w represent how much a data point in +S or S influ-
ences the confidence of the advice for x . Again, taking kNN as an ex-
ample, the w can simply contain a delta-function to ‘count’ the number
of points in +S and S . Although, more complex weighting schemes are
possible and advised. The Z 1 is a normalization factor:

=Z x
w x x

( ) 1
( , )x S i

1

i (2)

This ensures that the confidence value is bounded;C [ 1, 1], with
1 and + 1 denoting the confidence that some y would prove to be

incorrect or correct respectively. Intermediate values represent the
surplus of available evidence for a correct or incorrect advice relative to
all available evidence. For example, when =C x( ) 0.5 there is 50%
surplus evidence that the advice y will be incorrect, relative to all
available evidence. What constitutes as ‘evidence’ is determined by s to
select relevant past data-label pairs and the weighting scheme w to
assign their relevance. An ICM allows w and s to be any weighting
scheme or selection procedure. Following other case-based reasoning
methods, w and s often use a similarity or distance measure (e.g.
Euclidean distance).

3.2. The four properties of ICM

In this section we explain why the above proposed ICM framework
results in confidence measures that are not only accurate, but also
predictable, transparent and explainable.

Accurate. We define the accuracy of a confidence measure as its
ability to convey a high confidence for either a correct or incorrect
advice, when the advice is indeed correct or incorrect. For an ICM, this
can be defined as:

=
=

a
D

x y C x1
| |

( , *, ( ))
i

D

i i i
0

| |

(3)

Where δ is the Kronecker delta, with = 1 when =f x y( ) * and
C(x) ≥ 0, or when f x y( ) * and C(x) < 0. Overall, case-based rea-
soning methods are often accurate enough for realistic data sets
(McLean, 2016). However, the accuracy depends on the choice for the
selection procedure s and weighting scheme w. If one chooses a simple
kNN paradigm, one may expect a lower accuracy then when using a
more sophisticated s and w. More complex options could include
learning a complex similarity measure (Papernot and McDaniel, 2018).
This potentially increases the accuracy, but at the cost of ICM’s trans-
parency and predictability.

Predictable. A confidence measure should behave predictable; it
should monotonically increase or decrease when more evidence or data
becomes available for an advice being correct or incorrect respectively.
For an ICM to be predictable, it must use a monotonic similarity
function. Any step-wise or non-monotonic similarity function creates
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confidence values that suffer from changes that are unexpected for
humans. In addition, with the update procedure u an ICM adjusts its
confidence according to any changes in the data distribution or DSS
itself.

Transparent. An ICM is transparent; its algorithm can be under-
stood relatively easily by its users. Case-based reasoning is often applied
by humans themselves (Schank et al., 2014). This makes the idea of an
ICM, recall past data-label pairs and extrapolate those to the current
data point into a confidence value, relatively easy to comprehend. A
deeper understanding of the algorithm may be possible, but depends on
the complexity of the similarity measure, the selection procedure s and
weighting scheme w.

Explainable. The confidence of an ICM can be easily explained
using examples as selected from +S and S . It allows for a template-
based explanation paradigm, for example:

“I am C x( ) confident that y will be correct based on |S| past cases
deemed similar to x . Of these cases, in +S| | cases the advice y was
correct. In S| | cases the advice y would be incorrect.”

These cases can then be further visualized through a user-interface,
for example with a parallel-coordinates plot (Artero et al., 2004). Such
plots provide a means to visualize high-dimensional data and convey
the ICM’s weighting scheme. They allow users to identify if the selected
past data points and their weights make sense and evaluate if what the
ICM constitutes as evidence should indeed be treated as such. It may
even enable the user to interact with the ICM by tweaking its potential
hyper parameters (e.g. parameters for the selection procedure and
weighting scheme).
Existing research such as that by Mandelbaum and

Weinshall (2017), Subramanya et al. (2017) and Papernot and
McDaniel (2018) can be framed as an ICM. All are based on case-based
learning and can be described by the four steps of the framework.
However, their transparency and predictability tends to be limited due
to their choice to use a Neural Network to define their similarity
measure. This hinders the ICM’s transparency and predictability, but
still allows the generation of explanations.

4. ICM Examples

In this section we propose three examples of implementing an ICM
using relatively simple techniques from the field of case-based rea-
soning. To define our ICM, we need to define the update procedure u,
the selection procedure s and the weighting scheme w. The u remains
unchanged: A queue mechanism that stores the latest x y( , *) pair and
removes the oldest from D.
The first example, ICM-1, is based on kNN and use it to define both s

and w. The selection procedure is =S s x D k d( | , , ) which selects the k
closest neighbours in D to x with d being a distance function. The
weighting scheme becomes =w x x x S( , ) 1,i i . When applied to
Eq. (1), the resulting ICM counts and the relative number of points in +S
and S to arrive at a confidence value:

=+ +C x S S
k

S S( , ) 1 (| | | |) (4)

This reflects the idea that confidence is ≥ 0 when the majority of k
nearest neighbours are in favor of the given advice, and < 0 otherwise.
For our second example, ICM-2, we extend ICM-1 with the idea of

Weighted kNN (Dudani, 1976; Hechenbichler and Schliep, 2004). It
weights each neighbour with a kernel based on its similarity to x ac-
cording to a distance function d. Given a Radial Basis Function (RBF) as
kernel, the weighting scheme becomes = ( )w x x d x x( , ) exp ( , )i i

1 2
.

The σ is the standard deviation of the RBF and we set it to
= +d x x( , )k 1 where +xk 1 is the +k 1 distant neighbour of x . If we

choose to use the Euclidean distance =d x x ,i
2 the confidence

value becomes:

=+
+ + ( )

( )
C x S S d x x

x x

( | , , ) exp )

exp )

S x S i

S x S j

1
| |

1 2 2

1
| |

1 2 2

i

j (5)

These values depend not only on the number of points in +S and S ,
but also on their similarity to x . With this RBF kernel neighbours are
weighted exponentially less important as they become dissimilar to x .
In our third example, ICM-3, we build further on ICM-2. In it, we

Fig. 2. A visual depiction of the ICM framework and its four steps for computing the confidence value C for a data point x and advice y. Given a continuously
updated data set D, set S is selected containing relevant data-label pairs. This S is separated in +S and S with the points that show y is correct or incorrect
respectively. The confidence value C x( ) is computed using +S and S .
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estimate σ for each confidence value as the average similarity between
the k neighbours. Hence, ICM-3 remains equal to Eq. (5), instead with

= x xk x S i
1 2

i
. With it, ICM-3 provides confidence values that

take the number of data points in +S and S into account, but also
weighs their similarity to x according to how similar the k neighbours
are to each other. Meaning that the neighbour most similar to x con-
tributes the most to the confidence estimation relative to the other
k 1 neighbours.

4.1. Comparison of exemplar ICM behaviour

In this section we evaluate ICM-1, ICM-2 and ICM-3 and assess their
behaviour, accuracy and predictability over changes in the data.
See Table 2 for the confidence values of all three example ICM on a

synthetic 2D binary classification solved by standard SVM. This data set
was generated using Python’s SciKit Learn package (Pedregosa et al.,
2011). The table contains six plots of ICM-1, ICM-2 and ICM-3 with

=k 2 and =k 8. ICM-1 shows a high confidence when we would expect
it. As points with a certain prediction approaches memorized points (in
Euclidean space) with that prediction as their label, the confidence for a
correct predictions increases. As opposed to an increasing confidence
for an incorrect prediction when such points approach memorized data
points whose label is different than the prediction. ICM-1 does show
abrupt confidence changes with =k 2, that decrease for =k 8. Similar
behaviour can be seen for ICM-2 and ICM-3. The difference is that both
show even smaller abrupt changes due to their RBF kernel, with ICM-3
being the smoothest as the kernel adapts to the local density. For =k 8
we see that ICM-2 and ICM-3 result in an overall lack of confidence.
With higher k values, S starts to contain nearly all data points from D.
The summed weights for +S and S begin to represent the label ratio
and confidence goes to zero. This sensitivity is likely unique to our ICM
examples, and state of the art case-based reasoning algorithms are less
likely to be as sensitive to k or use a different mechanism than kNN.

Next, we evaluate the accuracy of ICM-3 on two benchmark clas-
sification tasks each solved by a Support Vector Machine (SVM),
Random Forest and Multi-layer Perceptron (MLP). We chose for ICM-3
as the most sophisticated ICM example. The confidence accuracy of
ICM-3 was computed using Eq. (3). The confidence values of the SVM
were computed using Platt scaling (Platt and others, 1999), of the
Random Forest using its voting mechanism, and of the MLP by setting
SoftMax as its output layer’s activation function. Since neither of these
confidence values could express a high confidence for an incorrect
classification, the accuracy from Eq. (3) was adjusted to measure zero
confidence as correct for an incorrect classification. The two classifi-
cation tasks were a handwritten digits recognition task (Alimoglu et al.,
1996) and the diagnoses of heart failure in patients (Detrano et al.,
1989). The data set properties, trained models and their hyper para-
meters are summarized in Tables 3 and 4 respectively.
Fig. 3 shows the results from ten different runs per test set and

model combination. The ICM performs equally well in confidence es-
timation as the models on both data sets. It shows that an ICM can be
applied to a variety of models and performs equally well in terms of
estimating when a classification would be correct. In addition, an ICM
conveys also its confidence in a classification being incorrect and tends
to be more transparent, predictable and explainable.
Fig. 4 shows the accuracy of the example ICM over different values

Table 2
These figures show the confidence values for the three example ICM implementations on a 2D synthetic binary classification task for

=k 2 and =k 3. The background of each figure represents the confidence value at that point, the classification model’s decision
boundaries are shown by the dashed lines and D is plotted as points coloured by their true class label.

=k 2 =k 8

ICM-1

ICM-2

ICM-3

Table 3
The properties of the two benchmark data sets used to evaluate the three ICM
examples. Also shows the properties of the synthetic data used to evaluate the
robustness to changes in data distributions.

Name Classes Type Features Train/test

Heart Detrano et al. (1989) 3 Tabular 4 227/76
Digits Alimoglu et al. (1996) 10 Images 64 1347/450
Synthetic 6 Tabular 2 100/300
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for k. The n was set to encapsulate the entire training data set. This
figure shows that ICM-3 is most robust against different values for k.
More state of the art algorithms based on kNN can be applied to in-
crease this robustness further, or algorithms based on an entirely dif-
ferent paradigm can be used to define the selection procedure s.
Fig. 5 shows how the example ICM behaves with different numbers

of memorized data points. The k was fixed to its optimal value of 10
neighbours for both data sets. These results show that even these simple
ICM are accurate at memory sizes around 10% of the data the models
needed for training.
In a separate study (van Diggelen et al., 2017) we applied ICM-3 to a

real-world DSS in the Dynamic Positioning case described in the in-
troduction. This case was also used in one of our user experiments,
described in detail in Section 5. Here, a Deep Neural Network predicted

when an ocean ship was likely to drift of course and notified a human
operator to intervene. The ICM-3 was used to express more information
to the operator on whether a prediction could be trusted to prevent
under- or over-trust. In this study, we showed that ICM was able to
compute a confidence value of the Deep Neural Networks prediction
with 87% accuracy (van Diggelen et al., 2017).
Finally, we evaluated how well ICM-3 was able to adjust its con-

fidence values when faced with a shift in the data and label distribution.
As stated in Section 4, the update procedure u used a simple queuing
method to update D. To test the effects this u has on the confidence
accuracy, we constructed a synthetic non-linear classification task and
artificially shifted its data distribution after having computed the con-
fidence of the first 100 data points. We compared this confidence ac-
curacy over time with the performance of the Random Forest model
with and without continuously updating that model.
The results of are shown in Fig. 6, repeated ten times with different

random seeds to obtain the confidence bounds that are shown. The plot
shows that ICM-3 is capable of adjusting its confidence estimation to
abrupt changes in the data distribution. It performs nearly the same to
continuously retraining the model when obtaining a new data point,
however the ICM requires no explicit update.
The above results illustrate that even simple ICM can already per-

form surprisingly accurate on two benchmark data sets and on different
models. In addition, even a simple update of the memorized data points
result in an confidence estimation adaptive to changes in the data. It
shows that ICM can provide a common framework to devise system-
agnostic confidence measures.

5. A qualitative user experiment: Interviews with domain experts

This section summarizes the first of two user experiments. This
experiment is explained in more detail in our previous work
(van der Waa et al., 2018). In the experiment, several domain experts

Table 4
Shows the hyper parameters and accuracy on train- and test set for each model and data set combination used to compare our example ICM with. We used the SciKit
Learn package from Python as the implementation of each model (Pedregosa et al., 2011).

Data Model Accuracy (train) Parameters

Heart SVM 77.63% (94.27%) RBF kernel, = 0.1, =C 1.0
Heart MLP 76.32% (91.85%) Adam optimizer ( = e1 ,3 decay= e1 6), 100 epochs, 16 batch size, Softmax output layer, 2 hidden Layers ([16, 3], ReLu, 20%

dropout)
Heart Random Forest 73.68% (100%) Gini, Bootstrapping, 50 estimators
Digits SVM 98.22% (100%) RBF kernel, = 0.01, =C 10.0
Digits MLP 99.33% (99.73%) Adam optimizer ( = e1 ,4 decay= e1 6), 250 epochs, 16 batch size, Softmax output layer, 3 hidden layers ([64, 32, 6], ReLu,

20% dropout)
Digits Random Forest 97.33% (100%) Gini, Bootstrapping, 100 estimators
Synthetic Random Forest 97.33% (100%) Gini, Bootstrapping, 100 estimators

Fig. 3. The accuracy of ICM-3 on two data sets with the accuracy of the con-
fidence estimates from various models. It shows that ICM implementations are
applicable to different models and can be equally accurate as the model itself.
The error bars represent the 95% confidence intervals.

Fig. 4. The accuracy of ICM on two data sets for different numbers of nearest
neighbours used. It shows our proposed Robust Weighted kNN algorithm (ICM-
3) compared to ICMs with weighted kNN (ICM-2) and kNN (ICM-1). It illus-
trates the robustness of ICM-3 against different k.

Fig. 5. The accuracy of the example ICM on the two benchmark data sets for
different values of n, the number of memorized data points. It illustrates the
robustness of each ICM with different n.
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were interviewed to evaluate the transparency of the case-based rea-
soning approach underlying an ICM compared to other confidence
measures.
Dynamic Positioning (DP) formed the use case of the experiment.

Here, a ship’s bridge operator is responsible for maintaining the ship’s
position aided by an auto-pilot and a DSS (van Diggelen et al., 2017).
The DSS warns the user when the ship’s position is expected to deviate
from course and human intervention is required. Structured interviews
with DP operators were conducted where we elicited their under-
standing and needs of a confidence value that accompany the DSS’
prediction. Three confidence measure categories were evaluated; 1)
ICM, 2) Platt Scaling and 3) SoftMax activation functions.
The interview was structured in three phases. In the first phase we

provided a layman’s - but complete - description of each confidence
measure. Participants were asked to select their preferred method fol-
lowed by explaining each measure in their own words. This enables us
to discover which algorithm they preferred, but also which they could
reproduce accurately (signifying a better understanding). We found that
they understood ICM best, but preferred the SoftMax measure. When
asked, participants mentioned that estimating confidence in their line
of work is difficult and as such they expected a confidence measure to
be very complex. This result points towards what users might prefer in a
confidence measure (complexity), may not necessarily be what they
need (transparency).
The second phase provided examples of realistic situations, the DSS’

prediction and a confidence value. Each example was accompanied by
three explanations, one from each measure. Participants were asked
which explanation they preferred for each example. On average, they
preferred the explanations from ICM as it specifically addressed past
examples and explained their contribution to the confidence value.
Afterwards, participants were asked to explain in their own words how
each confidence measure would compute their values for unseen si-
tuations. The results showed that the operators could replicate ICM’s
explanations more easily than that of the other two.
The third and final phase allowed the participants to describe their

ideal confidence measure for the DSS. Several participants described a
case-based reasoning approach as used by ICM. Others preferred a
combination of both an ICM and SoftMax. When asked why, they re-
plied that they preferred the case-based reasoning approach but they
believed it to be too simplistic on its own to be accurate in their line of
work. They tried to add their interpretation of a SoftMax activation
function to ICM to satisfy their need for added complexity.
These results may indicate that domain experts are able to under-

stand a case-based reasoning approach for a confidence measure more
easily than the DSS’ prediction scores defined by a SoftMax output
layer, or the scaled prediction scores with Platt Scaling.

6. A quantitative user experiment: an online survey on user
preferences

The second experiment was performed using a quantitative online
survey. We evaluated the users’ interests and preferences concerning
explanations about the confidence of an advice as provided by a DSS.
Moreover, we investigated if the proposed ICM, based on case-based
reasoning, is in line with what humans desire from a confidence mea-
sure and explanations.
Below we describe the use case, participant group, stimuli, design

and analyses in more detail, followed by the results.

6.1. Use case: Autonomous driving

In the survey, participants were provided a written scenario de-
scribing an autonomous car. This scenario stated that the car could
provide an advice to turn its self-driving mode on or off, given the
current and predicted road, weather and traffic conditions. The advice
would be accompanied by a confidence value as calculated by the car.
Participants were instructed to assume several years of experience with
the car and that the car showed to be capable of driving autonomously
on frequently used roads. At some point on such a familiar road, the car
would provide the advice to turn on automatic driving mode. The ex-
periment followed with a questionnaire revolving around this advice
and the given confidence value.

6.2. Participants

Recruitment was done via Amazon’s Mechanical Turk, and each parti-
cipant received $0.45 for participating in the survey based on the estimated
time for completion and average wages. Only participants of 21 years or
older were included. A total of 26 men and 14 women aged between 24 and
64 years (M = 35.6, SD = 9.4) were recruited, who were all (self-rated)
fluent English speakers. On average, participants indicated on a 5-point
Likert scale that they had some prior knowledge with self-driving cars (M=
3.00, SD = 0.68). Hence, participants could be biased towards answering
questions based upon knowledge about self-driving cars, instead of using the
description in the questions. However, the scores on the dependent variables
of the participants indicated they were knowledgeable ( =n 6) or very
knowledgeable ( =n 1) did not significantly differ from the scores of others
and were included.

6.3. Stimuli

We composed a survey in which we asked participants about their
interests and preferences concerning explanations about the confidence

Fig. 6. The moving average accuracy of
querying confidence values from ICM-3, a
static Random Forest and a continuously up-
dated Random Forest. It shows a shift in the
label distribution after 100 data points in the
synthetic data. The plot shows that ICM-3 is
capable of adjusting its confidence values
nearly as well as the confidence from the con-
tinuously updating model.
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of an advice as provided by a self-driving car. The system was presented
as being able to drive perfectly without assistance from a user within
most situations, but unable to drive fully autonomously in some other
undefined situations. We asked participants to indicate how much im-
portance they would attach to: 1) understanding the confidence mea-
sure’s underlying algorithm, 2) their past experience with other advice
from the car, and 3) predictions about future conditions (e.g. weather).
The importance was indicated on a 7-point Likert scale with 1 meaning
‘not at all important’ and 7 meaning ‘very much important’.
Moreover, we asked participants to rank five methods of presenting

the advice that the car could provide (with 1 being most preferred, and
5 being least preferred):

a) No additional information;
b) A general summary of prior experiences;
c) General prior experience accompanied by an illustrative specific
past experience;

d) Current situational aspects that played a role;
e) Predicted future situational characteristics that could affect the de-
cision’s outcome.

Fig. 7 shows a screenshot that contains the question in that asked
users to rank different types of explanations according to their pre-
ference. Advice 2 and 3 provide illustrative examples of the type of
information that an ICM can provide to a user (corresponding to b) and
c) in the above enumeration). That is, the confidence of the DSS is

explained in terms of similar stored past experiences with its own
performance. The difference between advice 2 and 3 is that the latter
includes a specific example of a situation in which the advice appeared
not to be correct, while the former does not.

6.4. Experimental design

We investigated two variables. 1) The importance of different in-
formation in determining when to follow an advice: information about
the confidence measure’s algorithm, information about prior experi-
ence, or information about the predicted future situation. 2) The in-
formation preference in an accompanying explanation: no additional
explanation, general prior experience, specific prior experience, current
situation, or predicted future situation. Both dependent variables were
investigated within-subjects, meaning that all participants indicated
their importance rating and preference rankings for all types of in-
formation and explanations respectively.

6.5. Analyses

We performed two non-parametric Friedman tests with post-hoc
Wilcoxon signed rank tests on the ordinal Likert scale data to in-
vestigate two topics: 1) The relative importance of information that
taken into account when deciding whether or not to follow the advice,
and 2) the difference between preference ratings of the types of ex-
planation.

Fig. 7. Screenshot of the section of the survey in which participants were asked to rank different kinds of explanations based on their preference. Advice 2 and 3
provide illustrative examples of the type of information that an ICM can provide to a user.
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6.6. Results

Fig. 8 shows the distribution of Likert scale ratings concerning the
importance of information in the advice. Ratings are high in general, as
indicated by the high medians and the minor deviations from these
median scores.
There is a statistically significant difference in importance ratings of

the considered information when evaluating an advice, χ2(2) = 16.77,
p < 0.001. Wilcoxon signed-rank tests showed that participants rated
prior experience with the system as more important for deciding about
following an advice than understanding the advice system ( =Z 3.71,
p<0.001), but not more important than predictions about future si-
tuational circumstances ( =Z 1.58, =p 0.115). However, predictions
about future circumstances were rated as being more important than
understanding the advice system ( =Z 2.89, =p 0.004).
Fig. 9 shows the means and 95% confidence intervals of the rank-

ings concerning the preferences of participants for different types of
additional information given in an advice.
There is a statistically significant difference in rankings of the five

types of advice, χ2(4) = 39.38, p<0.001. Table 5 shows the results of
the post-hoc tests. Importantly, participants preferred the explanation
that contained general prior experiences over the one that presented a
specific experience of a case in which the advice was not followed. They

also preferred general prior information over information concerning
the future situation, and over no additional information. However,
preference ratings for using general prior experience as explanation
about an advice were, on average, not higher than using information
about present situational circumstances.
In this user experiment, we investigated how participants judged

different types of information a confidence measure may use and in-
clude in an explanation. Overall, the use of relevant prior experiences
was judged as important in both defining confidence values and ex-
plaining them. Equally important was the information contained in the
current situation. This indicates that ICM and its explanations match
peoples expectations and preferences of a confidence estimation. It also
underlines the importance of confidence measures providing an ex-
planation about its values, something ICM readily supports. However,
confidence measures may also require to explain how the current si-
tuation relates to those past experiences. For ICM that entails explaining
the similarity function and why it selected those past experiences given
the current situation. To do so, the similarity function needs to be easily
understood or explained.

7. Discussion

Although the proposed ICM framework relies on a case-based rea-
soning approach, it is also closely related to the field of conformal
prediction (Shafer and Vovk, 2008). Methods from this field define a set
of predictions that is guaranteed to contain the true prediction with a
certain probability (e.g. 95%). Conformal prediction methods share
many similarities to ICM, such as their model-agnostic approach and
use of (dis)similarity functions. Current research focuses on making
these methods more explainable and transparent (Johansson et al.,
2018). Our experimental work on these topics may provide valuable
insights for future conformal prediction methods. In addition, future
work may aim to explore how conformal prediction methods can be
used in the ICM framework.
An important trade-off in an ICM is between its accuracy and

transparency, as an increase in accuracy implies an increase in com-
plexity. A concrete example is the similarity measure, it can be as
straightforward as Euclidean distance or as complex as a trained Deep
Neural Network (as in Mandelbaum and Weinshall, 2017). For some
domains, a relative simple similarity measure may not suffice due to its
high dimensional nature or less-than apparent relations between fea-
tures (e.g. the many pixels in an image recognition task). A more
complex or even learned similarity measure may solve such issues.
However, it may may prevent users from adopting the system in their
work due to a lack of understanding (Ye and Johnson, 1995). This is
sometimes referred to as the accuracy and transparency trade-off in
current AI. To solve this, simplified model-agnostic methods generating
explanations may be a solution. However, it also requires exploring
where users allow for system complexity and where transparency is
required.
Besides such technical issues, an interesting finding from the online

survey was that participants did not found it important for an ex-
planation to refer to past situations in which the provided advice
proved to be incorrect. This could indicate the tendency of people to
favor information that confirms their preexisting beliefs and to be ig-
norant towards falsification, a phenomenon known as the confirmation
bias (Gilovich et al., 2002). Importantly, such a preference does not
necessarily mean that it is best to omit this kind of information. That is,
the main goal of the transparency and explainability properties of an
ICM is to enable users to better understand where the confidence value
originates from in order to more accurately predict the extent to which
an advice of the system can be trusted. In order to enable people to
make an accurate assessment, it is essential to provide both confirming
and contradictory information, precisely because we know that people
are prone to ignore information that does not confirm their beliefs.
Future work on confidence measures should not only conduct user

Fig. 8. Boxplot of the Likert scale ratings indicating the importance of different
types of information used to determine to follow the advice to turn on auto-
matic driving mode. The higher the ratings, the more the information was
preferred.

Fig. 9. Means and 95% confidence intervals of the preference rankings con-
cerning the different types of advice that are provided by the autonomous car.
The rankings are inverted, the higher the rank the more preferred.

J.v.d. Waa, et al. International Journal of Human-Computer Studies 144 (2020) 102493

9



experiments revolving around preferences, but also on how they affect
system adoption, usage and task performance.
Moreover, findings from our user experiments implied that people

prefer to know about the current situational circumstances. This pre-
ference holds even when a given confidence value was high and they
said they trusted this estimation. This could indicate that people still
want to be able to form their own judgement about the DSS’ advice
based on their own observations, in order to maintain a sense of control
and autonomy (Legault, 2016). Hence, a confidence measure is not a
substitute for a user’s own judgement process and should be designed to
facilitate this process. ICM’s property of explainability may offer a vital
contribution to this process. Further investigation is required to identify
what should be explained in addition to an ICM and how this should be
presented.

8. Conclusion

In this work we proposed the concept of Interpretable Confidence
Measures (ICM). We used the idea of case-based reasoning to formalise
such measures. In addition, we motivated the need for confidence
measures to be not only accurate, but also explainable, transparent and
predictable. An ICM aims to provide a user of a decision support system
(DSS) information whether a DSS’s advice should be trusted or not. It
does so by conveying how likely it is that the given advice turns out to
be correct based on past experiences.
Three straightforward ICM implementations were proposed and

evaluated, to serve as concrete examples of the proposed ICM frame-
work. Two user experiments were conducted that showed that partici-
pants were able to understand the idea of case-based reasoning and that
this was in line with their own reasoning about confidence. In addition,
participants especially preferred their confidence values to be explained
by referring to past experiences and by highlighting specific experi-
ences in the process.
Future work may focus on further expanding the ICM framework by

incorporating more state of the art methods for confidence estimation.
Especially methods from the field of conformal prediction may prove
valuable. Additional user experiments could provide more insight in
user requirements for confidence measures. Other user experiments
could investigate the effects of confidence measures on actual task
performance.
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