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SUMMARY

Electric power has became an essential part of daily life: we plug our electronic devices
in, switch our lights on, and expect to have power. As the availability of power is usually
taken for granted in modern societies, we mostly feel annoyed at its absence and per-
ceive the importance of power during outages which have severe effects on the public
order.

Blackouts have had disastrous consequences for many countries (such as the U.S.
and Canada [1], Turkey [2], India [3]) and they continue to occur frequently. In fact, the
data from the North American Electrical Reliability Council show that blackouts happen
on average every 15 days which leads an economic cost of in the order of tens of billion
dollars per year [4]. Such examples demonstrate the necessity for careful analysis and
planning of power grids, to ultimately increase the reliability of power grids.

In current practice, flow-based simulations play an essential role in both the secu-
rity analyses and medium- and long-term planning of power grids. Given the generation
and demand profiles, the steady-state analyses estimate the operation of power grids.
Additionally, many countries require that the power grids should withstand the sched-
uled and unscheduled outages of its most critical lines or other components. In these
contingency analyses, the component outages are also simulated to determine whether
the power grids can still function properly under the failure and consequent loss of an
element.

The power grids have evolved due to economic, environmental and human-caused
factors. In addition to the contingency analysis, nowadays, the operation and plan-
ning of power grids are facing many other challenges (such as demand growth, targeted
attacks, cascading failures, and renewable energy integration). Thus, many questions
arise, including: which buses (nodes) to connect with a new line (link)? What are the
impacts of malicious attacks on power grids? How may an initial failure result in a cas-
cade of failures? How to prepare for the integration of renewable energy? Answering
such questions requires developing new concepts and tools for analysing and planning
of power grids.

Power grids are one of the largest and the most complex man-made systems on earth.
The complex nature of power grids and its underlying structure make it possible to anal-
yse power grids relying on network science [5, 6]. The applications of network science
on power grids have shown the promising potential to capture the interdependencies
between components and to understand the collective emergent behaviour of complex
power grids [7, 8].

This thesis is motivated by the increasing need of reliable power grids and the mer-
its of network science on the investigation of power grids. In this context, relying on
network science, we model and analyse the power grid and its near-future challenges
in terms of line removals/additions, malicious attacks, cascading failures, and renew-
able integration. We express the flow behaviour in power grids in terms of graph-related
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matrices (Chapter 2), so that we can model power grids as simple and weighted graphs,
calculate the centrality of each node in power grids (Chapter 3) and investigate the oper-
ation in various graphs (Chapter 4). Furthermore, we provide tools to investigate the cur-
rent and the near-future challenges of power grids such as link failure/addition (Chapter
2), critical asset identification and targeted attacks (Chapter 3), network expansion and
performance analysis (Chapter 4), cascading failures (Chapter 5), and wind power inte-
gration (Chapter 6).

The developed concepts in this thesis provide for a better understanding of the op-
eration of the power grid, with the ultimate goal of increasing its reliability. We demon-
strate the applicability of our methodologies in the synthetic power grids, in the IEEE-
test power grids, and in the real-world power grids. The developed concepts extend the
state of the art in the applications of network science on power grids and (i) can be the
interest of researchers in the field, (ii) can support grid operators in analysing the vulner-
ability of their network to the current and the near-future challenges, and (iii) can assist
decision makers and investors with the planning for the future trends in power grids.



SAMENVATTING

Elektriciteit is een zeer essentieel onderdeel geworden van ons dagelijks leven. We zijn
er aan gewend om elektriciteit te krijgen wanneer we onze elektronische apparaten met
het stopcontact verbinden, of wanneer we onze lichten aan doen. De beschikbaarheid
van elektriciteit wordt als iets vanzelfsprekends gezien in onze moderne maatschappij,
waardoor we voornamelijk geïrriteerd raken bij de afwezigheid ervan. Het belang van
elektriciteit wordt des temeer duidelijk tijdens een stroomstoring, wat soms zelfs ern-
stige gevolgen kan hebben op de maatschappelijke orde.

Vele landen, zoals de V.S. en Canada [1], Turkije [2] en India [3], hebben desastreuze
gevolgen ondervonden door stroomstoringen, en soortgelijke gebeurtenissen zetten zich
ook tegenwoordig met regelmaat voort. Gegevens van de ‘North American Electrical Re-
liability Council’ laten zien dat stroomstoringen gemiddeld eens per 15 dagen gebeuren,
en dat de economische gevolgen hiervan in de orde van tientallen miljarden dollars per
jaar kunnen oplopen [4]. Dit soort voorbeelden laten de noodzaak zien voor nauwkeu-
rige analyses en planningen van elektriciteitsnetwerken, om zo uiteindelijk de betrouw-
baarheid van deze infrastructuur te verbeteren.

In het huidige toepassingsgebied spelen ‘flow-based’ simulaties een belangrijke
rol voor zowel veiligheidsanalyses als medium- tot lange- termijn planningen van
het elektriciteitsnetwerk. Bij een gegeven ‘generation and demand’ (‘vraag en aan-
bod/opwekking’) profiel kan via een ‘steady-state’ analyse een voorspelling gedaan wor-
den van de werking van het net. Bovendien vereisen vele landen dat het elektriciteitsnet
bestand moet zijn tegen geplande en ongeplande uitvallen van de meest kritieke elektri-
citeitslijnen, of van andere cruciale componenten. Ook het uitvallen van deze onderde-
len wordt gesimuleerd, om zodoende te bepalen of het elektriciteitsnetwerk nog steeds
juist kan functioneren.

Het elektriciteitsnetwerk heeft een grote ontwikkeling ondergaan door economische,
milieuvriendelijke, en menselijke invloeden. Bijkomend aan eventualiteit analyses zijn
er tegenwoordig vele uitdagingen betreffende de werking en het plannen van het elek-
trische netwerk (zoals bijvoorbeeld de groeiende vraag naar energie). Dit brengt vele
vragen met zich mee. Op welke knooppunten kan een nieuwe lijn of verbinding worden
aangesloten? Wat is de impact van kwaadwillige aanvallen op het netwerk? Hoe kan een
initiële storing resulteren in het oplopende falen van andere componenten en een uit-
eindelijk uitval van het netwerk? Hoe moeten we ons voorbereiden op de integratie van
hernieuwbare energie in het huidige netwerk? Het beantwoorden van deze vragen ver-
antwoorden de ontwikkeling van nieuwe concepten en hulpmiddelen voor de analysis
en planning voor elektrische netwerken.

Elektrische infrastructuren zijn één van de meest complexe door de mens gemaakte
systemen op de aarde. De complexe aard van het elektriciteitsnet, en diens onderlig-
gende structuren, maakt het mogelijk om bij de analyse gebruik te maken van ‘network
science’ [5, 6]. Het toepassen van ‘network science’ op het elektriciteitsnet heeft zeer
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veelbelovende resultaten laten zien bij het begrijpen van de interne afhankelijkheden
tussen de componenten en bij het begrijpen van het samenhangende gedrag van com-
plexe elektriciteitsnetwerken [7, 8].

De motivatie voor deze dissertatie komt voort uit de toenemende behoefte naar be-
trouwbare elektriciteitsnetten en de verdiensten van ‘network science’ bij het onderzoek
naar elektrische infrastructuren. Met behulp van ‘network science’ zullen we electri-
citeitsnetten en de bijhorende toekomstige uitdagingen analyseren en modeleren met
betrekking tot het toevoegen of verwijderen van lijnen, kwaadwillige aanvallen, opeen-
hopende uitvallen, en de integratie van hernieuwbare energie. Ook brengen we het
stromingsgedrag in elektrische netwerken tot uiting via ‘graph-related matrices’ (hoofd-
struk 2), zodat (i) we het elektriciteitsnet kunnen modeleren als simpele en gewogen
grafieken, (ii) we de centraliteit van elk knooppunt kunnen berekenen (hoofdstuk 3),
en (iii) we de werking ervan kunnen onderzoeken in verschillende grafieken (hoofdstuk
4). Tevens presenteren we hulpmiddelen voor het onderzoek van de uitdagingen be-
treffende het elektriciteitsnet in het heden en in de nabije toekomst, zoals het toevoe-
gen/verwijderen van verbindingen (hoofdstuk 2), ‘critical asset identification’ (kritische
eigendom identificatie) en doelgerichte aanvallen (hoofdstuk 3), netwerk uitbreidingen
(hoofdstuk 4), opeenhopende uitvallen (hoofdstuk 5), en de integratie van wind energie
(hoofdstuk 6).

De ontwikkelde concepten in deze dissertatie zorgen voor een beter inzicht in de
operatie van elektriciteitsnetwerken, met het verbeteren van de betrouwbaarheid hier-
van als uiteindelijk ultiem doel. We laten de toepasbaarheid van onze methodes zien
voor synthetische en echte fysieke elektriciteitsnetten, alsmede voor de IEEE power grid
test. De ontwikkelde concepten geven een uitbreiding aan de hedendaagse technische
en conceptuele mogelijkheden, welke (i) van interesse kunnen zijn voor onderzoekers in
dit vakgebied, (ii) een bijdrage kunnen leveren aan netwerk opperanten/exploitanten bij
de analyse van netwerk kwetsbaarheden bij toekomstige uitdagingen, en (iii) beleidsma-
kers en investeerders kunnen helpen bij het plannen van toekomstige trends betreffende
elektriciteitsnetwerken.



ÖZET

Elektrik günlük yaşantımızın vazgeçilmez bir parçası haline gelmiştir: elektronik
eşyalarımızı prize sokup, aydınlatma anahtarlarına basıp, devrenin tamamlanmasını
beklemekteyiz. Modern toplumun gelişmesinde elektriğin varlığının büyük bir etken
olduğu kabul edildiği gibi, genellikle elektriğin yokluğunda veya bir arıza olduğunda ra-
hatsız oluruz ve elektrik kesintisinin günlük yaşantımızın üzerinde ne kadar olumsuz
etki bıraktığını hissederiz.

Elektrik kesintilerinin birçok ülke üzerinde feci sonuçları olmuştur (A.B.D. ve
Kanada [1], Türkiye [2], Hindistan [3]’da görüldüğü gibi) ve olmaya da devam edecek-
tir. Kuzey Amerika Elektrik Güvenilirlik Konseyi’nden elde edilmiş verilere göre her 15
günde bir oluşan elektrik kesintisi yıllık 10 milyar dolarlık bir ekonomik maliyete sebep
olmaktadır [4]. Bu tip örnekler, elektrik şebekesinin güvenilirliğini arttırmak için detaylı
analiz ve planlamanın yapılmasının önemini göstermektedir.

Günümüzde, şebekenin güvenlik analizlerinde ve kısa veya uzun dönem yatırım
planlamasında yük akışı temelli simülasyonlar önemli bir role sahiptir. Durağan durum
(steady-state) analizleri, verilmiş olan üretim ve tüketim profillerine göre şebeke işley-
işini analiz eder. Buna ek olarak, birçok ülke şebekelerinin planlanmış veya planlan-
mamış kesintilere dayanıklı olmasını bekler. Bu tip beklenmedik olay analizlerinde, yani
bir elemanın kaybında veya hata durumnda, şebekenin hala düzgün olarak çalışıp çalış-
madığını bulmak için, şebeke elemanlarının devre dışı kaldığı durumlar analiz edilir.

Elektrik şebekeleri, ekonomik, çevresel, ve sosyal faktörler gibi nedenlerden ötürü
evrim geçirmiştir ve geçirmektedir. Günümüzde beklenmedik olay analizlerine ek olarak
şebekenin planlanması ve işleyişi çeşitli meydan okumalar ile karşı karşıya kalmaktadır
(örneğin elektrik tüketiminin artması, hedeflenmiş kötücül saldırılar, kaskad arızalar
ve yenilenebilir enerji entegrasyonu gibi). Böylece: “Hangi hat şebekede hangi nok-
taya konulmalıdır? Şebekeye hasar verici planlı saldırıların sonuçları nelerdir? Şe-
bekede kaskad arızalar nasıl oluşur? Yenilenebilir enerji entegrasyonuna nasıl hazırlanıl-
malıdır?" gibi sorular ortaya çıkmaktadır. Bu tip soruları cevaplamak için şebekenin de-
taylı analizi ve planlaması üzerine yeni konseptler ve araçlar geliştirilmelidir.

Elektrik şebekesi dünya üzerinde bulunan ve insanlar tarafından yapılmış olan
en büyük ve en karmaşık yapılardan biridir. Elektrik şebekesinin karmaşık doğası
ve altyapısı, onu Ağ Bilimi (Network Science) yolu ile güvenilir şekilde analiz etmeyi
mümkün kılmıştır [5, 6]. Ağ biliminin elektrik şebekeleri üzerinde kullanılması, şe-
bekenin karmaşık doğasının ve davranışlarının anlaşılmasında yardımcı olmuştur [7, 8].

Bu tezin motivasyonunu güvenilir elektrik şebekesine olan ihtiyacın artışı ve Ağ bil-
iminin elektrik şebekesi üzerine olan araştırmalarının katkısı oluşturmaktadır. Bu tezde
Ağ bilimini kullanarak, şebekeden hat çıkarılması/şebekeye hat eklenmesi, hasar verici
kötücül saldırılar, peşi sıra gelen kaskad arızalar, ve şebekeye yenilenebilir enerji en-
tegrasyonu gibi yakın gelecekteki ortaya çıkabilecek problemleri modelliyor ve analiz
ediyoruz. Şebekeleri Çizge Kuramı (Graph Theory) ile modelleyerek (Bölüm 2), şebeke
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üzerindeki her baranın önemini hesaplayıp (Bölüm 3), çeşitli şebeke dizaynlarının iş-
leyişini araştırıyoruz (Bölüm 4). Ayrıca, şebekenin şuan ve gelecekte yüzleşebileceği hat
arızası veya eklemesi gibi meydan okumaları (Bölüm 2), şebekede kritik eleman belir-
leme ve hedeflenmiş saldırıların etkileri (Bölüm 3), şebekenin genişlemesi ve perfor-
mans analizi (Bölüm 4), kaskad arızalar (Bölüm 5) ve şebekeye rüzgar gücü entegrasy-
onunu (Bölüm 6) incelemek için bu tezde araçlar sağlıyoruz.

Bu tezde geliştirilmiş olan konseptler daha güvenilir elektrik şebekesi operasyonuna
ulaşmayı amaçlamaktadır. Bu tezdeki metodolojilerimizin uygulamasını sentetik şe-
bekeler, IEEE test şebekeleri ve gerçek şebekeler üzerinde göstermekteyiz. Bu tezde
geliştirilmiş konseptler, Ağ Bilimi’nin şebeke üzerine olan uygulamalarının içeriğini art-
tırmış olup (i) bu bölümdeki araştırmacıların ilgi alanı olabilir, (ii) şebeke operatörlerinin
gelecekteki güvenlik açığı taramasına yardımcı olabilir (iii) oparatörlere ve yatırımcılara
elektrik şebekesinin geleceğini tahmin etmede yardımcı olabilir.
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INTRODUCTION

Every time you switch on your lights, do you realise that you are completing an electrical
circuit? In fact, this circuit connects your bulb to the lines that serve your house, next, to
the thicker lines that serve your neighbourhood and, finally, to a network of high capacity
lines that transfer power across the country. This network –the power grid– is complex,
costly and crucial to modern societies [9].

It all began with the 19th century inventors who put their small generators next to
the machines that needed electricity. Then, in 1882, Thomas Edison presented a sys-
tem of commercial electric lighting and power with the opening of the Pearl Street sta-
tion in Manhattan. This system, like most of the systems constructed during the next
few years, distributed power within a few kilometres over copper lines using direct cur-
rent [10]. Thus, it might not be easy to see at that time that the “power grid” of few small
power plants serving nearby demands would in the near future develop into a truly in-
terconnected and sophisticated network with more than hundred thousand kilometres
of high-voltage transmission lines, different types of power plants and various voltage
levels.

Today, the availability of electric power is receiving more attention than ever. The
power grid has became an essential part of a modern society. Electric power is vital not
only for daily life, but also many other critical infrastructures such as public transporta-
tion, telecommunications depend on the power supply [11]. Disruptions to power sup-
ply have severe effects on public order and could lead to substantial economic cost for
the society.

An example of such severe disruption happened on 14 August 2003. The United
States of America experienced the largest blackout event in the North American his-
tory [1]. The outage affected nearly 50 million people and power supply was not re-
stored for 4 days in some parts of the United States. This catastrophic blackout, with an
estimated cost of $ 6 billion, also contributed to the death of at least 11 people. Other ex-
amples of blackouts in different countries [2, 3] illustrate the key importance of a reliable
power grid.
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2 1. INTRODUCTION

1.1. NEAR-FUTURE CHALLENGES TO POWER GRIDS
The initial “Edison system” tied its customers to one generator. However, now, the power
grid is a highly interconnected and sophisticated network, and it continues evolving.
Many different power plants using diverse resources operate across the countries to
serve the increasing demand of the customers who could be far from the power plants.
In fact, it was reported [12] that the United States nowadays have 285 % more often dis-
ruptions to power supply than in 1984. The Government Accountability Office further
stated that the reliability and security of power grids are threatened by a number of chal-
lenges and as a result, they have become increasingly fragile and vulnerable to extended
disruptions [13].

INCREASED USER DEMAND

According to the International Energy Agency data [14, 15], the global power demand
has continuously increased and is expected to increase in the next 20 years by nearly
30 %. However, power grids have not been invested accordingly, for mainly because of
economic reasons. This continuous imbalance between demand growth and network
investments has resulted in an overloaded system, increasing the number of disruptions.

AGEING INFRASTRUCTURE

The power grid is one of the oldest man-made technological systems on earth. In many
developed countries, not much has changed after they were built at the beginning of 20th

century. In fact, it was stated [16] that 80 % of the grid in some areas of the United States
has not been upgraded since 1960s. This over-ageing assets dramatically increase the
failure rates in power grids.

MALICIOUS ATTACKS

Most people discuss the drastic effects of potential malicious attacks such as the 2013
attack in California, in which gunmen fired on 17 electrical transformers [17]. Despite
these concerns, however, the preventive measures and progress receive relatively less
attention. The power grid relies on thousands of points that are often remote and or
poorly secured. Deliberate attacks in power grids could have disastrous consequences
for the society.

DISTRIBUTED GENERATION

Due to the increasing environmental concerns and the technology-driven trends, nowa-
days, consumers are rapidly becoming producers of electricity by installing solar panels
and wind turbines etc. In fact, Edison Electric Institute expects the capacity of such re-
newable energy sources to triple before 2040 [12]. This energy revolution and dramatic
growth of renewables could negatively affect the power grids in terms of increasing need
for reserve capacity, the regional overloading of assets, poor frequency performance and
increasing reactive power compensation etc., making power grids more vulnerable to
disturbances.

Motivated by the increasing need for reliable power grids and the above-mentioned
environmental, economic and human-caused near-future challenges, our objective in
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this thesis is to analyse and plan for the challenges of power grids with the ultimate pur-
pose of improving the reliability of power grids.

1.2. A NETWORK PERSPECTIVE
A reliable power grid should be able to supply the electrical demand and comply with
the requirements of its customers. This means, as well as the normal operation, it should
also withstand the scheduled and unscheduled outages of its most critical lines or other
components. Power system analysts often refer to this failure and the consequent loss
of an element as the contingency analysis, or N − 1 analysis. The N − 1 criterion, i.e.,
affording the outage of any single component is compulsory for many transmission grid
operators [18].

In current practice, power system analysts carry out the security assessments of
power grids mainly via flow-based simulations. Under certain demand and generation
profiles, analysts use the nonlinear AC and/or linearised DC power flow analyses [19]
to estimate the steady-state operation of the power grid. Subsequently, by disabling the
particular elements of the network, the impact of the outages on the system are evalu-
ated. These analyses help to understand whether the power grid can properly function
for the given generation and demand profile and to investigate what to do under contin-
gencies.

Although N −1 and N −2 contingency analyses may be possible from the computa-
tional point of view, evaluating scenarios where more than three components fail at the
same time requires substantial computational time due to the complexity of the simu-
lation models. However, various outages do occur and could result in very large black-
outs [1–3]. Thus, additional complementary measures to traditional flow-based assess-
ments are needed to analyse and understand the subtle behaviour of power grids.

Most real-world infrastructures including power grids display non-trivial topological
features, with patterns of connection between their elements that are neither purely reg-
ular nor random [20]. Researchers define a complex network as a large group of relatively
simple components with no central control and where organization and emergent non-
trivial behaviour are exhibited. In other words, (i) a complex network has a large number
of components (ii) these components interact with each other at different levels, and (iii)
as a result, non-trivial system behaviour emerges [21]. As an example, cascading failures
are an emergent phenomenon of a power grid, rather than independent and coinciden-
tal failures of its individual components [22].

The power grid is now one of the most complex technological networks. The inter-
actions between a large number of components govern the global flow behaviour and
the spread of failures. This complex nature of power grids and its underlying structure
make it possible to analyse power grids relying on network science [5, 6]. The applica-
tions of network science on power grids have shown the promising potential to capture
the interdependencies between components and to understand the collective emergent
behaviour of complex power grids [7, 8].

Motivated by the above-mentioned observations and the merits of network science
in studying power grids, our objective in this thesis is to further model and analyse the
operation of power by a network perspective with the final goal of improving the relia-
bility of power grids.



1

4 1. INTRODUCTION

1.3. RESEARCH QUESTIONS
This thesis is motivated by the increasing need of reliable power grids and the merits of
network science on the investigation of power grids. We regard the term reliability as a
beneficial property for a power grid that refers to its ability to supply electric loads with
a high level of probability, both during normal operations and under random or targeted
failures. Similarly, we use the term robustness to measure to what extent a power grid has
this reliability in terms of different metrics. In this context, relying on network science,
the aims of this dissertation are to model and analyse the power grid and its near-future
challenges in terms of line removals/additions, malicious attacks, network expansion,
cascading failures, and renewable integration. Thus, the main questions this thesis aims
to answer are:

Chapter 2: Can we express the flow behaviour in power grids in terms of graph-
related matrices? What are the sensitivities of link flows to the topological changes in
power grids? How can we identify the critical line removals and additions in power grids?

Chapter 3: How can we model power grids as a graph? How can we extend the ex-
isting centrality metrics so that they can also include the flow behaviour in power grids?
What is the impact of targeted node removals in power grids?

Chapter 4: Can we derive the analytic expressions of power transmission in path and
complete graphs? Is a complete graph the ultimate topology for power grids? How can
we compare the impacts of power transmission in different graph types?

Chapter 5: How can one predict the evolution of cascading failures in power grids?
How may an initial failure result in a cascade of failures? What are the effects of cascading
failures in power grids?

Chapter 6: How can we model the long-term wind speed and wind power character-
istics? What are the factors determining the location of a probable wind farm? How can
we plan for the integration of wind farms into power grids?

1.4. THESIS OUTLINE
This dissertation consists of 7 chapters.

Chapter 2 combines the fundamentals of power grids with graph theory. This section
expresses the linearised DC power flow equations via graph-related matrices and further
derives the effective resistance matrix and the sensitivities of link flows to the changes in
network topology.

Chapter 3 presents two different graph models for power grids as simple and
weighted graphs. This chapter further calculates the centrality metrics of each node and
analyses the critical node removals in power grids.

Chapter 4 uses a weighted graph model for power grids and in various graph types,
this chapter further investigates the electric power transmission under the normal oper-
ation and under a link failure contingency using both the linearised DC and nonlinear
AC power flow equations.

Chapter 5 focuses on the link failures in power grids. This chapter develops models
to simulate cascading failures in power grids and investigates the effects of link failures
in power grids under the linearised DC and the nonlinear AC power flow models.

Chapter 6 focuses on the renewable integration into the power grids. This chapter



1.4. THESIS OUTLINE

1

5

presents models for the probabilistic wind speed and wind power characteristics, and
further investigates the potential locations of wind farms and their integration into the
power grids.

Chapter 7 concludes this dissertation by reflecting on the assessments throughout
the previous chapters with the focuses of the merits of the results and possible future
directions of the field.





2
A TOPOLOGICAL INVESTIGATION

OF POWER FLOW

This chapter combines the fundamentals of an electrical network, such as the flow allo-
cation according to Kirchhoff ’s laws and the effect of electrical impedance, with spectral
graph theory. We express the linearised DC power flow equations using weighted graph
matrices and investigate the relation between the topology and the flow behaviour of
power grids. Based on the pseudo-inverse of the weighted Laplacian matrix, we further
derive the effective resistance matrix in power grids and the sensitivities of active power
flows to the changes in the network topology by means of link removal and link addition.

This chapter is based on a published paper [23].
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2.1. INTRODUCTION

T HE unavailability of electric power can severely disrupt daily life and result in sub-
stantial economic and social costs [24]. This key importance of electric power supply

encourages a robust design and a careful operation of power grids [18]. Grid operators
assess power system security and analyse the system’s critical components during both
under regular operations, but also under the events of component failures or planning
to add new components.

The use of network science has opened the door to a new direction in analysing
power grids, namely, a complex network perspective [5–7, 25]. A significant number of
studies that deploy complex networks investigate the relationship between the topology
and the specific performance metrics of power grids [7, 26, 27]. Various metrics [28] are
proposed to assess the vulnerability of power grids [7, 8, 29], and to identify its critical
elements [30, 31]. Most of these studies are based on classical topology metrics (such
as nodal degree and clustering coefficient [8, 29]), which ignore the electrical proper-
ties, such as the flow allocation according to Kirchhoff’s laws or the impedance values of
transmissions elements in power grids.

Two different aspects are important in the distribution of power flows, and the con-
sequent system’s vulnerability, in an electrical grid: the operating state, including the
supply and demand dispatches of the system, and the topology of the network formed
by electric busbars (or busses) and their interconnection. Accordingly, some stud-
ies propose extended topological metrics (such as effective graph resistance and net-
ability [27, 30, 32]) that reflect some of the electrical properties of grids, and some
studies introduce combined topological and operational algorithms to identify critical
lines [33]. Through empirical studies, those metrics, based on effective resistance, have
been shown to perform better in assessing the vulnerability of power grids than purely
topological approaches. Motivated by this fact and results from empirical studies with
extended graph metrics, this chapter presents an analytical approach to the distribu-
tion of flows in power grids that directly analyses the impact of the topology on those
flows. First, a slack-bus independent representation of power flow behaviour is intro-
duced. Next, a closed-form expression for the effective resistance (Thevenin) matrix,
which represents the topology as well as the power flow allocation behaviour, is derived.
Those formulae allow the computation of the redistribution of power flows under the
changes of network topology, and they provide fine-grained analysis of critical elements
in power grids.

The work presented in this chapter only makes one approximation: the linearisa-
tion of the power flow equations resulting in the so-called DC power flow equations [34],
which facilitates the use of enhanced linear algebra and graph theory leading to expres-
sions that may simplify the design of robust power grids. In particular, the contributions
of this chapter are: (i) A slack-bus independent expression for the linearised power flow.
(ii) An analytical derivation of the effective resistance (Thevenin) matrix of a power grid.
(iii) Expressions for the pseudo-inverse of the Laplacian and the redistribution of the
power flow under link removal/addition.

The remainder of this chapter is organized as follows: Section 2.2 provides details
about power grids and the steady-state power flow equations. Section 2.3 introduces a
spectral graph perspective on the linearised power flow equations and calculates the ef-
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fective resistance matrix in power grids. Section 2.4 develops expressions for the pseudo-
inverse of the weighted Laplacian and the sensitivities of active power flows to link
removal/addition. Section 2.5 illustrates the proposed formulations in IEEE 118-bus
power grids and Section 2.6 concludes this chapter.

2.2. POWER FLOW EQUATIONS
Power grids consist of electrical buses and interconnecting elements (transmission lines
and transformers). The status of each bus i can be represented by its voltage vi = |vi |e iθi

in which |vi | is the voltage magnitude, θi is the phase angle, and i denotes the imaginary
unit. In the steady-state of a power grid with N buses, the injected apparent power si =
pi + iqi at bus i , where pi is the active power and qi is the reactive power, is calculated
using the AC power flow equations [19]:

pi =
N∑

k=1
|vi ||vk |(y (R)

i k cosθi k + y (I)
i k sinθi k ) (2.1)

qi =
N∑

k=1
|vi ||vk |(y (R)

i k sinθi k − y (I)
i k cosθi k ) (2.2)

where θi k = θi −θk and y (R)
i k and y (I)

i k are the real and the imaginary parts of the element in

the bus admittance matrix Y corresponding to the i th row and kth column, respectively.
The AC power flow equations are solved to obtain voltage magnitude |vi | and voltage
angle θi information for each bus i in power grids.

The AC power flow equations (2.1) and (2.2) are non-linear and the solution process
is generally iterative. A linear set of equations is more desirable whenever fast and repet-
itive solutions are needed. Linearisation can be reasonably accurate when the following
conditions are met [34]:

1. The difference between the voltage phase angles of two neighbouring buses is
small so that sinθi k ' θi k and cosθi k ' 1.

2. Line resistances compared to the line reactances are negligible which causes the
entries of the bus admittance matrix Y to be equal to the reciprocal of line reac-
tance values, bi k .

3. The variations in the bus voltage magnitudes are so small that they are assumed to
be all equal to the selected system base.

4. Reactive power flows are ignored.

If these conditions are approximately met, (2.1) can be simplified to the DC power
flow equations:

pi =
N∑

k=1
bi k (θi −θk ) = bi kθi k (2.3)

where bi k is the reciprocal of the reactance between bus i and bus k.
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Since Y is not invertible, (2.3) cannot be directly solved by inversion. The common
procedure is to select a bus i as a reference bus or slack-bus, and drop the equation
corresponding to its power injection. Then, the remaining equations of phase angles
can be solved uniquely with respect to the slack-bus.

2.3. SPECTRAL DECOMPOSITION OF DC POWER FLOW EQUA-
TIONS

This section introduces a spectral graph perspective [35] on the linearised DC power flow
equations and applies the concept of the effective resistance [36] to power grids.

2.3.1. SOLUTION OF DC POWER FLOW EQUATIONS
A power grid with N buses, and L transmission lines and transformers is a complex net-
work, whose underlying topology can be represented by a graph G(N ,L ), where N

denotes the set of N nodes and L denotes the set of L links. The N ×N adjacency ma-
trix A specifies the interconnection pattern of the graph G(N ,L ): ai k = 1 only if the
pair of nodes i and k are connected by a link; otherwise ai k = 0. The DC power flow
equations (2.3) can be written in terms of the adjacency matrix of G(N ,L ) as

pi =
N∑

k=1
ai k bi k (θi −θk ) = θi

N∑
k=1

ai k bi k −
N∑

k=1
ai k bi kθk

where bi k is the reciprocal of the line reactance between the nodes i and k.
The effects of transmission line reactances are represented by the weighted adja-

cency matrix W, where each element wi k = ai k bi k is the weight of the link between
nodes1 i and k:

pi = θi

N∑
k=1

wi k −
N∑

k=1
wi kθk . (2.4)

Since (2.4) holds for every node i in the graph, the corresponding matrix representa-
tion is

P =
{

diag

(
N∑

k=1
wi k

)
−W

}
Θ

= (D−W)Θ (2.5)

where P = [p1, . . . , pN ]T is the vector of net active power injection at the nodes under a
balanced power flow i.e., uTP = 0 where u is an all-one vector, D is the weighted degree
diagonal matrix, andΘ= [θ1, . . . ,θN ]T is the vector of voltage phase angles. Finally, intro-
ducing the weighted Laplacian Q̃ = D−W into (2.5) yields

P = Q̃Θ (2.6)

where the weighted Laplacian is a symmetric, positive semi-definite matrix that pos-
sesses nonnegative eigenvalues apart from the smallest eigenvalue, which is zero [35].

1Parallel links connecting the same pair of nodes are replaced by a single link with equivalent reactance calcu-
lated from Ohm’s law.
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The solution to the DC power flow equations requires finding unknown voltage
phase angles at each node for the given supply and demand values, P. Due to the zero
eigenvalue of Q̃, the matrix equation in (2.6) cannot be inverted. However, using spectral
decomposition [35], the real and symmetric matrix Q̃ can be written as Q̃ = XΛXT, where
Λ = diag(µ j )1≤ j≤N and X = [x1, . . . ,xN] is an orthogonal matrix formed by the eigenvec-

tors x1, . . . ,xN of Q̃ corresponding to the eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µN = 0. The eigen-
vector xj is normalised as xj

Txj = 1. Then, expanding Q̃

Q̃ =
N∑

j=1
µ j xjx

T
j =

N−1∑
j=1

µ j xjx
T
j +

µN

N
uuT =

N−1∑
j=1

µ j xjx
T
j

where u is the all-one vector, shows that the last equation corresponding toµN = 0 can be
omitted. Proceeding with the symmetric N ×N matrix Q̂ = X̂diag(µk )X̂T, where the N ×
(N −1) matrix X̂ consists of all the eigenvectors of Q̃ except the eigenvector u belonging
to µN = 0, and where the (N −1)× (N −1) diagonal matrix diag(µk ) contains the positive
eigenvalues of Q̃, the inverse of Q̂ can be found as

Q̂−1 = (
N−1∑
k=1

µk xkxT
k)−1 =

N−1∑
k=1

1

µk
xkxT

k = Q†

where the N ×N matrix Q† = X̂diag(µ−1
k )X̂T is the pseudo-inverse of the Laplacian obey-

ing

Q†Q̃ =
N−1∑
k=1

1

µk
xkxT

k

N−1∑
j=1

µ j xjx
T
j

=
N−1∑
k=1

N−1∑
j=1

µ j
1

µk
xk(xT

kxj)xT
j = I− 1

N
J

where I is the identity matrix and J the all-one matrix.
Using Q†, the pseudo-inversion of (2.6) gives

Θ= Q†P. (2.7)

Equation (2.7) physically means that only the differences of voltage phase angles be-
tween the nodes matter for the power flow. Additionally, an average value of 0 has been
chosen as reference for the node voltage phase angles and, consequently, the concept of
slack-bus [19] becomes redundant, as a reference is already included in the graph matrix
representation.

For the link flows, the active power flow fi k through the link between nodes i and k
can be calculated using (2.3)

fi k = bi k (θi −θk ). (2.8)

As (2.8) holds for every link, the corresponding matrix equation is

F = B̃TΘ (2.9)
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where the L ×1 vector F = [ f1, . . . , fL]T is the active power flow through the network links
and B̃ is the N ×L weighted incidence matrix of the graph with the elements

b̃i l =


wi k if link el = i → k,

−wi k if link el = i ← k,

0 otherwise.

Combining (2.7) and (2.9) results in the final equation for the active power flows
through the graph links:

F = B̃TQ†P. (2.10)

The above equation represents, assuming that the DC power flow approximation is
sufficiently accurate, the relation between the active power flows through the network
links under the given supply and demand values P, and the graph-related weighted ma-
trices B̃ and Q†.

2.3.2. CALCULATION OF THE EFFECTIVE RESISTANCE MATRIX
In graph theory, the resistance distance between a pair of nodes is the potential differ-
ence between those two nodes in an electrical network, when a unit current is injected at
one node and leaves the network at the other node [36, 37]. In power grids, there are sup-
ply and demand nodes and, under the DC power flow assumptions, active power flows
through the network lines resulting in phase angle differences. This analogy enables the
introduction of the concept of the effective resistance matrixΩwith the elementsΩab to
capture the relation between the voltage phase angle and injected active power:

θa −θb =Ωab pab (2.11)

where pab is the active power injected into the network at node a and leaving from node
b, and θa and θb are the phase angles at nodes a and b, respectively.

Introducing equation (2.7) into (2.11) gives

(ea −eb)TΘ= (ea −eb)TQ†pab(ea −eb) (2.12)

where ek is the basic vector with the mth component equal to 1 if m = k, else 0, and the ef-
fective resistance (or Thevenin resistance)Ωab between nodes a and b can be expressed
as

Ωab = (ea −eb)TQ†(ea −eb). (2.13)

Multiplying out the right hand side of (2.13) yields

Ωab = (Q†)aa + (Q†)bb −2(Q†)ab (2.14)

from which the symmetric effective resistance matrix Ω of the electrical grid can be cal-
culated as

Ω= zuT +uzT −2Q† (2.15)

where the vector z = [(Q†)11, (Q†)22, . . . , (Q†)N N )]T.
The effective resistance matrix allows to introduce the concept of electrical flow dis-

tance rather than physical distances or link weights in a graph. A strong electrical con-
nection between a pair of nodes results in a low effective resistance [30].
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2.4. IMPACT OF TOPOLOGY ON POWER FLOW

As shown so far, the electric power flow depends on the network topology as well as on
the power input. In this section, effective resistances will be used to capture the flow
distribution under the changes in network topology.

2.4.1. LINK REMOVAL

An electrical grid is expected to tolerate the loss of any single component at any time
(which is called the N −1 criterion [18]). Due to the loss of a network component, the
power in the electrical grid will be redistributed, and the resulting situation can lead to
an increase or a decrease in the flow through a particular network link. The link removal
that causes increases in remaining link flows needs to be carefully studied and necessary
measures should be taken to avoid cascading failures [30].

Existing flow-based studies in power grids require the solution of system equations
for each contingency under each loading scenario. Thus, computationally effective al-
ternatives are needed, and power transfer (PTDF) and line outage (LODF) distribution
factors are often used [38, 39]. These metrics capture the relative change in the flow
through a particular link, after a change in injection and corresponding withdrawal at a
pair of nodes (PTDF) or after a line outage (LODF). These direct calculations decrease
the computation time, yet it is not possible to reflect the drivers of flow behaviour as
the formulations are generally result-oriented and based on reduced matrices in the ab-
sence of the slack-bus(es). In this section, we analyse link removals in power grids from
a topological point of view using the graph-related matrices in previous section.

When an arbitrary link li j in an electrical grid is removed, the network topology is
changed. Following the definition of weighted adjacency matrix in Section 2.3.1, the
removal of the link between the nodes i and j zeroes the entries wi j and w j i in the
new weighted adjacency matrix, whereas the other elements remain unchanged. As a
result, the weighted Laplacian will be affected in the i th and j th rows by the weight of the
removed link on the diagonal entry and j th and i th columns, respectively. The relation
between the old and new weighted Laplacians is essentially a rank-one update:

Q̃′ = Q̃−wi j (ei −ej)(ei −ej)
T (2.16)

where Q̃ is the initial Laplacian, Q̃′ is the Laplacian after the removal of link li j , and wi j

is the weight of the removed link. Introducing Meyer’s relation [40] between the pseudo-
inverses denoted by †,

(A+cdT)† = A† − (1+dTA†c)
−1

A†cdTA† (2.17)

allows to express the pseudo-inverse Q′† of the new Laplacian in (2.16) in terms of the
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initial pseudo-inverse Q† and effective resistances in (2.13) as

Q′† = (
Q† + (−wi j )(ei −ej)(ei −ej)

T)†

= Q† − (
1+ (ei −ej)

T Q†(−wi j )(ei −ej)
)−1 Q†(−wi j )(ei −ej)(ei −ej)

T Q†

= Q† + wi j

1−wi j (ei −ej)T Q†(ei −ej)
Q†(ei −ej)(ei −ej)

T Q†

= Q† + wi j

1−wi jΩi j
Q†(ei −ej)(ei −ej)

T Q† (2.18)

whereΩi j is the effective resistance between nodes i and j .
When link li j is removed, the flow fi j through the link before removal is redistributed

over alternative paths between nodes i and j . Under the DC power flow approximation,
which results in (2.10) being linear, the redistribution can be perceived as an additional
injection of active power fi j at node i and leaving node j in the new network, provided
that the supply and demand values of the electrical grid, P, remain unchanged. Hence,
the final flow through an arbitrary link lab can be written as the sum of the previous state
of the system, i.e., the previous flow through the link between nodes a and b when link
li j is present, and the flow resulting from the change of the state due to link removal.
Consequently, the change of the flow through the observed link lab can be calculated
using (2.10) as

∆ fab = wab(ea −eb)TQ′†(ei −ej) fi j (2.19)

where ∆ fab is the change in the flow through link lab due to removal of link li j , and wab

is the weight of link lab . Inserting (2.18) into (2.19) results in

∆ fab = fi j wab(ea −eb)TQ′†(ei −ej)

= fi j wab(ea −eb)T(Q† + wi j

1−wi jΩi j
Q†(ei −ej)(ei −ej)

TQ†)(ei −ej)

= fi j wab
(
(ea −eb)TQ†(ei −ej)+

wi j

1−wi jΩi j
(ea −eb)TQ†(ei −ej)(ei −ej)

TQ†(ei −ej)
)

= fi j wab(1+ Ωi j wi j

1−wi jΩi j
)(ea −eb)TQ†(ei −ej).

Since (ea −eb)TQ†(ei −ej) = 1
2 (Ωa j −Ωai +Ωbi −Ωb j ) according to (2.14), we have

∆ fab = fi j wab
Ωa j −Ωai +Ωbi −Ωb j

2(1−wi jΩi j )

or
∆ fab

fi j
= wab

Ωa j −Ωai +Ωbi −Ωb j

2(1−wi jΩi j )
. (2.20)

Equation (2.20) shows that, due to the removal of link li j , the resultant change in the
flow through a remaining link lab is determined by the network topology via the effective
resistances between the node pairs, and the previous flow fi j through the removed link.
Several observations follow from equation (2.20):
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• The resulting flow change∆ fab through a link lab depends on and is limited by the
magnitude of the previous flow fi j through the removed link li j . Since the flow

fi j is redistributed through the network, it holds that
∣∣∆ fab

fi j

∣∣ ≤ 1, which forces the

right-hand side of equation (2.20) to be between -1 and 1.

• If the directions of the links are defined to be the same as the direction of the ini-
tial flow through the links, a positive (negative) number in the right hand side of
(2.20) indicates an increase (decrease) in the flow through the remaining link in
that direction.

• From a robustness point of view, the network links whose removal increases the
flows through the remaining links are critical. In addition, the network links that
are consistently affected by different link removal scenarios are also critical.

• For the network links whose flows are not affected by the removal, the right-hand
side of equation (2.20) must be 0, meaning the equality Ωa j +Ωbi = Ωai +Ωb j

between the effective resistances of node pairs is satisfied. This equality is sat-
isfied for the links that are in different branches2 of the graph and for Wheatstone
bridges [41] if they are present in the network.

• The denominator (1− wi jΩi j ) of (2.20) is zero when the effective resistance be-
tween the nodes of the link is equal to the inverse of the link weight, i.e., line reac-
tance. It shows that there is no alternative parallel (back-up) path in the graph for
the removed link. Therefore, when this link is removed, some nodes in the graph
will be isolated and the underlying graph of the network will be partitioned, which
can disturb the balance between supply and demand of the network. In this case,
the flow cannot be redistributed without the change of supply and demand values,
thus, the change in the flows through the links cannot be calculated solely from the
topological values. Thus, in such a case, we rewrite (2.20) as

∆ fab

fi j
=

{
Network islanded (N.I.) if wi jΩi j = 1,

wab
Ωa j −Ωai+Ωbi−Ωb j

2(1−wi jΩi j ) otherwise.
(2.21)

Equation (2.21) captures the final network status, i.e., islanded or not, as well as the
effect of link removal on the distribution of flows through the remaining network links,
when the network is not partitioned. The calculation is based on the initial graph-related
matrices, and the computation of new topological matrices is avoided. Consequently, by
spectral decomposition, once the effective resistance matrix is calculated, the effect of
any link removal can be calculated from (2.21) for any balanced supply and demand
values.

2.4.2. LINK ADDITION
The overloads in the transmission lines of power grids can be solved by supply or de-
mand shifting in the short term. However, a long-term investment (such as addition of

2Here, the branch of a graph refers to its subgraph that is radially connected to the other parts of the graph,
such as Barbell-like graphs.
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new transmission lines) needs to be planned in the case of persistent overloads or to
satisfy the N −1 criterion [18].

Determining the right location of a new link is challenging. It is desirable that the
added link increases the robustness of the electrical grid by decreasing the critical flows
through the network links. In flow-based studies, the computational complexity is high,
thus alternatives which decrease the calculation time and determine the right invest-
ment for the system are sought [27], as provided in this section.

It is assumed that a new link can be added between any arbitrary two nodes i and j
in the graph. Similar to Section 2.4.1, the redistribution of flows due to the link addition
can be perceived in the initial network as an additional injection of the active power fi j

over the new link at node j and leaving from node i , i.e., in the opposite direction of the
new flow. The change in the flow ∆ fab on an arbitrary network link lab under the DC
power flow approximation is calculated as

∆ fab = wab(ea −eb)TQ†(ei −ej)(− fi j )

and, using (2.14), as
∆ fab

fi j
= wab(Ωai −Ωa j +Ωb j −Ωbi )

2
(2.22)

where the flow fi j on the new link is calculated by using the new pseudo-inverse Q′† of
the Laplacian and the power input P of the network:

fi j = wi j (ei −ej)
TQ′†P. (2.23)

The addition of the link changes the Laplacian of the network and the relation be-
tween the new Q̃′ and the old Laplacian Q̃ becomes

Q̃′ = Q̃+ (wi j ) (ei −ej)(ei −ej)
T.

Relation (2.17) shows that the new pseudo-inverse can be represented as

Q′† = (Q̃+ (wi j )(ei −ej)(ei −ej)
T)†

= Q† − (1+ (ei −ej)
TQ†(wi j )(ei −ej))−1Q†(wi j )(ei −ej)(ei −ej)

TQ†

= Q† − wi j

1+wi jΩi j
Q†(ei −ej)(ei −ej)

TQ†. (2.24)

Using the above derivation (2.24) of the new pseudo-inverse Q′†, equation (2.23) can
be rewritten as

fi j =wi j (ei −ej)
T(

Q† − wi j

1+wi jΩi j
Q†(ei −ej)(ei −ej)

TQ†)P

=wi j
(
(ei −ej)

TQ†P
)(

1− wi j

1+wi jΩi j
(ei −ej)

TQ†(ei −ej)
)

=wi j θi j
(
1− wi jΩi j

1+wi jΩi j

)
= wi j

1+wi jΩi j
θi j . (2.25)
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Equation (2.25) shows that the new flow fi j through the added link li j is related to
the previous network conditions, i.e., the difference between the voltage phase angles
at nodes i and j , and inversely related to the effective resistance between these nodes.
As θi j and Ωi j are fixed by the initial network topology, the maximum flow through the

added link,
|θi j |
Ωi j

, is achieved when the link weight wi j tends to infinity, meaning that the

reactance of the transmission line is close to zero, a short circuit of the nodes. Conversely,
the flow through the new link is minimum, 0, when wi j approaches zero, meaning con-
necting an infinite reactance between the nodes (an open circuit). Then, by adjusting
the link weight wi j through reconducting or replacing the conductors, it is theoretically
possible to adjust the magnitude of the flow through the added link.

The term
wi j

1+wi jΩi j
in the right-hand side of equation (2.25) is strictly positive for pas-

sive network elements. Thus, the direction of the flow through the new link is deter-
mined only by the difference between the voltage phase angles θi j in the initial network.
A positive difference in voltage phase angles θi j results in a flow from node i to node
j , when the nodes are connected by a link, whereas the opposite results in a flow from
node j to node i . If the voltage phase angle difference θi j is zero, there will be no flow
through the link when these nodes are connected by a link (Wheatstone bridge [41]).

Inserting the result (2.25) of the flow through the new link into (2.22), the change in
the flow through the observed link lab due to link addition can be calculated as

∆ fab = wab wi j (Ωai −Ωa j +Ωb j −Ωbi )

2(1+wi jΩi j )
θi j . (2.26)

Equation (2.26) shows that the change ∆ fab in the flow through the network links
is determined by the network topology via the effective resistances and initial network
conditions, whereas the relative change to the flow fi j through the new link in (2.22) de-
pends only on the network topology. Observations from (2.22) and (2.26) are as follows:

• The change in the flow through network links depends linearly on the flow through
the added link and the changes in flows through the initial network links are
bounded by this value. When the right-hand side of (2.22) is 1 or -1, it means that
the flow through the observed link is directly affected by the link addition.

• The numerator of equation (2.22) is zero when the equality between the effective
resistancesΩai −Ωa j =Ωbi −Ωb j is satisfied, meaning the added link has no effect
on the flow through the observed network link. This is possible for the observed
and added links that are in different branches of the network.

• If the direction of the link is defined as the direction of the initial flow through that
link, then a positive (negative) number in the right-hand side of (2.26) corresponds
to an increase (decrease) in the flow through the observed link in that direction.
Clearly, a decrease in the flow through all network lines is desired.

Finally, equations (2.20) and (2.22) show that the effective resistances between the
node pairs of the observed and the removed/added links determine the effect on the flow
through the observed link. This aligns with the empirical studies that capture the rela-
tion between the effective graph resistance value [36] and the robustness of the power
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grid against cascading failures [27], [30]. Additionally, the weight of the observed link
wab is found to be influential in both link removal and addition calculations, whereas
the weight of the added link wi j does not affect the flow through the observed link rela-
tive to the flow through the added link.

From the graph-related matrices, the changes (2.20) and (2.22) in the flow through
the network links relative to flow through the removed/added link can be represented.
However, for the magnitude of the change, initial conditions, the supply and demand
values of the network, must be known. The direction of the change in the flow through
the observed link, i.e., decrease or increase in magnitude, is also determined by both
the network topology and the power input of the electrical network as it depends on the
existing flow and its direction. However, in electrical grids with limited generation and
load variations, such as directed networks, it is possible to know the flow directions in
advance. Therefore, from the effective resistances, the relative effect on the magnitude
can be found. For the meshed networks with various supply and demand units, the flow
directions may be unknown. Therefore, initial network conditions, the voltage phase
angles, or the power input of the network must be used in the calculations regarding the
direction.

2.5. NUMERICAL ANALYSIS
This section demonstrates the results derived in previous Sections 2.3 and 2.4. For ease
of inspection, first a quantitative analysis is performed for a small test network. Later,
the analysis is demonstrated for the IEEE 118-bus power grids [42].

2.5.1. SYNTHETIC EXAMPLE

The network in Figure 2.1a contains 6 nodes and 7 links. For simplicity, the link weights,
i.e., the reciprocal of line reactances, are set to unity. The direction of the existing flows
through the links is defined to be always from lower to higher node index. The effec-
tive resistance matrix Ω is calculated according to (2.15) and the effective resistances
are shown in Figure 2.1b. The minimum effective resistance is between nodes 2 and
4, whereas the largest is between nodes 1 and 6. The definition of electrical distance
in (2.11) shows that the highest difference in the voltage phase angles of the network
nodes occurs when the electric power is transferred between those nodes, leading to
larger flows through the network links from equation (2.8). Conversely, the minimum
difference in the voltage phase angles of the network nodes occurs for the same amount
of power when it is transferred between nodes 2 and 4, leading to smaller flows through
the network links.

Next, the effect of a link removal on the flows through the remaining network links is
calculated using (2.20). Figure 2.2a illustrates how the flows through the network links
are affected by a particular link removal, as compared to the previous flow through the
removed link. As an example, when link 6 is removed from the network, due to the redis-
tribution of flows, the flows through links 4 and 7 increase by the amount of the previous
flow through the removed link 6. Indeed, this makes the removal of link 6 critical. In or-
der to avoid cascading failures, it must be checked whether the excess capacity of links 4
and 7 can handle the redistributed flow. For the network links 2, 3 and 5, the removal of
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(b) Effective resistances

Figure 2.1: Test network and its effective resistance values.

link 6 decreases the flow through them, thus there is no possibility of cascading failure
due to these links.

Finally, from (2.22), the effect of a link addition is calculated. Figure 2.2b displays
some examples of the changes in the flows through the network links in case of a link
addition, as compared to the flow through the added link. For instance, when a new link
is added between nodes 2 and 6, the flows through all network links decrease except for
link 1, which is connected to a pendant node. In addition, depending on the purpose of
the new investment (link addition), Figure 2.2b can be used to identify the place of the
added link. For example, if the aim is to decrease the flow through link 5 between nodes 3
and 4, three choices are effective: A new link parallel to link 5, a new link between nodes
3 and 5, or a new link between nodes 3 and 6 significantly decrease the flow, whereas the
addition of a new link between nodes 1 and 5 has a relatively small effect on the observed
link for the same amount of new flow. In some cases, the addition of new links can lead to
an increase in the flow through a particular link. For instance, when a new link is added
between nodes 3 and 6, the flow through link 2 increases considerably, which is the so-
called Braess’ paradox in power systems [43]. Therefore, such cases should be avoided
or be carefully investigated before realization.

2.5.2. IEEE 118-BUS POWER GRIDS
In this section, a more realistic IEEE 118-bus power grid is considered. Figure 2.3 shows
the graph representation of the network, containing in total 118 nodes and 179 links. The
direction of existing flows through the links is defined according to initial conditions.

The histogram of effective resistances between all node pairs is shown in Figure 2.4a
and between the observed set in Figure 2.4b, respectively. The effective resistances in the
observed set are relatively small, which suggests a strong electrical connection, whereas
the larger values of effective resistances in Figure 2.4a suggest the opposite, indicating
the points with less back-up paths in the network.

The effect of each link removal on remaining network links is calculated using (2.21)
resulting in 179 link removal cases, each with 178 observed links. The histogram of the
effects of link removals relative to the flow through the removed link is shown in Fig-
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Figure 2.2: Effects of link removal and addition,
∆ fab

fi j
, in the synthetic test network.

Figure 2.3: Graph representation of the IEEE 118-bus power grids. The thicknesses of the links represent the
link weights, i.e., the inverse of line reactances. The average degree in the graph is 3.034, whereas the aver-
age weighted degree is 59.759. The network diameter is 14 and the average path length is 6.309. The links
connected to node 69, an important generator bus serving 12% of the total demand, and their node pairs are
chosen to be the observed set (a,b).
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Figure 2.4: Effective resistances in the IEEE 118-bus power grids.

ure 2.5a. Approximately 95% of the effects have magnitude smaller than 0.2, which is a
sign of a meshed network with alternative paths. However, in 3.8% of the effects, equa-
tion (2.20) results in 0, which refers to network links which are in branches of the net-
work.

In Figure 2.5a, 0.17% of the effects of the link removals have the value 1, meaning that
the previous flow through the removed link is transferred to a single alternative path.
From a robustness point of view, the less frequent this is, the more robust is the network
against overloads due to link removals. Therefore, these cases should be analysed in
reliability assessments. Additionally, the removal of 9 links leads to isolation of one or
more nodes in the network, which is again undesirable in a robust network.

In Figure 2.5b, the effect of link removals in the observed set is shown. When link
76, 82 or 115 is removed from the network, more than half of the redistributed flow goes
through link 110 between nodes 68 and 69, which makes link 110 critical. As a remark,
when a link is removed from the observed set, the magnitudes of changes in the flows
through remaining links must sum up to the previous flow through the removed link
according to Kirchhoff’s law, therefore the row sums in Figure 2.5b are all 1.

From (2.22), the effect of a link addition between each node pair in the network is
calculated, resulting in 118×117

2 = 6903 link addition cases, each with 179 observed links.
The histogram of the effects of all possible link additions relative to the flow through the
added link is presented in Figure 2.6a. 92% of the effects have magnitude smaller than
0.2, which again follows from the meshed topology and the existence of alternative paths
for the redistributed flow. Due to the meshed topology, a link addition to the network can
increase the flows through the network links. However, the probability of an increase in
magnitude is less than compared to the probability of a decrease, which can be observed
from the asymmetrical distribution in Figure 2.6a.

In Figure 2.6b, the effect of link addition in the observed set is shown. Similar to
the link removal case, when a link connected to node 69 is added, the observed relative
changes in the magnitudes must sum up to 1. The magnitude of the flow through link 110
may increase in 3 out of the 7 illustrated link additions, which urges detailed assessments
before realization of these link additions in order to avoid Braess’ paradox.
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Figure 2.5: The effect
∆ fab

fi j
of link removals in the IEEE 118-bus power grids. In Figure 2.5a, the peak corre-

sponding to −0.05 ≤ ∆ fab
fi j

≤ 0.05 is 0.83.
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Figure 2.6: The effect
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of link addition in the IEEE 118-bus power grids. In Figure 2.6a, the peak corre-
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2.6. CONCLUSION
This chapter provided an extended graph approach to analyse the physical operation
of a power grid from a topological point of view. Contrary to the traditional repre-
sentation, the linearised DC power flow equations were expressed in terms of slack-
bus-independent graph matrices. A closed formula for the effective resistance matrix,
which combines the fundamentals of a power grid with the topological structure, was
illustrated. We further derived the expressions for the sensitivities of link flows to link
removal/addition cases to assess the topological vulnerability of power grids. Conse-
quently, link removals that may result in cascading failures or node isolation and link
additions that can decrease the critical flows or result in Braess’ paradox in the power
grid could be identified.





3
NODAL VULNERABILITY TO

TARGETED ATTACKS IN POWER

GRIDS

The previous chapter combines the fundamentals of power grids with topological matrices
and uses the pseudo-inverse of weighted Laplacian to introduce a slack-bus independent
solution to the DC power flow equations. In this chapter, we model the power grid as a sim-
ple graph, and as a weighted graph based on these flow equations. For both graph models,
we present the centrality metrics of each bus (node) in a power grid. Subsequently, we for-
mulate different node-attack strategies based on these centrality metrics and empirically
analyse the impact of targeted-node attacks on the structural and the operational perfor-
mance of power grids. We perform case studies in the high-voltage transmission networks
of 5 European countries and in commonly used IEEE test power grids.

This chapter is based on published papers [44] and [45].
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3.1. INTRODUCTION

T HE unavailability of electrical power can severely disrupt daily life and result in sub-
stantial economic and social costs [24]. This vital importance encourages a robust

design and operation of power grids [18]. Robust power grids are able to anticipate,
adapt to and/or rapidly recover from a disruptive event or a failure.

Disruptions in networks can be caused by unintentional failures or intentional at-
tacks. Unintentional failures can include manufacturing defects, malfunction in net-
work elements or human error. These kinds of failures occur randomly throughout the
grid and are characterized as random failures [46]. Intentional attacks or targeted at-
tacks, on the other hand, are not random and are aimed at maximizing damage [47]. A
major challenge in power grids is to evaluate the vulnerability of a power system to these
intentional hazards, starting by quantifying the importance of electrical buses and the
impact of the attacks on the network performance.

Topological investigations of power grids have demonstrated that power grids have
several components with significant importance compared to the rest of the network
[48]. These components are crucial for the grid as their removal can significantly disrupt
the operation of the power grids. Identifying these critical components in advance can
enable power grid operators to improve system robustness by monitoring and protecting
these components continuously. [48, 49]

Currently, many studies use a complex networks perspective in analysing power sys-
tem vulnerabilities [7, 25, 50]. A significant part of these studies investigates the relation-
ship between the topology and specific performance metrics in the underlying graph of
power grids [7, 26, 29]. Such studies focus on the basic structural properties of a graph
(such as nodal degree, clustering coefficient [28]), which typically ignore the electrical
properties, such as flow allocation according to Kirchhoff’s laws or the impedance values
of transmissions lines in the grid. Mainly, two different aspects are important in the oper-
ation and consequent robustness of power grids: the topology of the network formed by
electrical buses and their interconnections, and the operating conditions such as supply
and demand distributions [23, 32]. Consequently, these purely topological metrics could
result in misleading research results, which may be far from real physical behaviours of
power grids [48, 51, 52].

To include the electrical properties of the grid in the analyses, several studies propose
extended metrics (such as effective graph resistance [27], the electrical centrality [53]
and the net-ability [32]) by introducing a set of link weights (such as distance or resis-
tance [54]) and node properties (such as the electrical demand and supply [32]). Addi-
tionally, other studies have used topological and electrical metrics to rank the electrical
buses and lines in power grids as a selective contingency analysis [55, 56].

Motivated by the increasing need of alternative studies to the flow-based analyses
and the merits of network science on the investigation of power grids, in this chapter, we
combine both of the aforementioned approaches: First, we present two different graph
representations for a power grid in Section 3.2: a simple graph and an extended graph
representation that takes the electrical properties of power grids into account. Next, we
develop a methodology to identify the critical electrical buses (nodes) in power grids
in Section 3.3, and compare the impact of targeted node-attacks in detail for European
high-voltage transmission networks [57] and for the publicly available IEEE test power
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grids [42] in Section 3.4. Our contributions can be summarized as follows: (i) we con-
sider two different graph models for power grids based on either purely topological in-
formation or by including the link weight information and the linearised DC power flow
equations; (ii) we employ these two graph models to formulate the standard and the ex-
tended centrality metrics of nodes in power grids; (iii) we formulate 8 different attack
scenarios according to these centrality metrics and empirically investigate the impact of
targeted node-attacks on the structural and operational performance of power grids.

3.2. POWER GRIDS AND NETWORK SCIENCE
In this section, we provide details about power grids, the steady-state power flow equa-
tions and our models for power grids as simple and weighted graphs.

3.2.1. POWER GRIDS PRELIMINARIES
Power grids consist of nodes (electrical buses) and interconnecting links (transmission
lines and transformers). The status of each node i is represented by its voltage vi =
|vi |e iθi in which |vi | is the voltage magnitude, θi is the phase angle, and i denotes the
imaginary unit. Each line l has a predetermined capacity Cl that bounds its flow fl under
a normal operation of the system. In the steady-state of a power grid with N nodes and
L links, the injected apparent power pi + iqi at node i , where pi is the active power and
qi is the reactive power, is calculated using the AC power flow equations [19]:

pi =
n∑

k=1
|vi ||vk |(y (R)

i k cosθi k + y (I)
i k sinθi k ) (3.1)

qi =
n∑

k=1
|vi ||vk |(y (R)

i k sinθi k − y (I)
i k cosθi k ) (3.2)

where θi k = θi −θk and y (R)
i k = Re(yi k ) and y (I)

i k = Im(yi k ) are the real and the imaginary

parts of the element yi k in the bus admittance matrix Y corresponding to the i th row and
kth column, respectively.

Each node in a power grid contains a number of electrical devices and according to
those, two basic types of nodes can be defined [58]:

• Supply node: A supply node generates the active power pi and controls the voltage
magnitude |vi | at its node i .

• Demand node: At a demand node, it is possible to specify the extracted active pi

and the reactive powers qi from the type of the electrical loads that are connected
to that node. There are also nodes without a supply or a demand connected, which
can be modelled as a demand node with no injected power, i.e., pi = 0 and qi = 0.

Due to the impedance of transmission elements, there are power losses during the
operation in power grids. As the losses are dependent on the system state –the supply
and demand dispatches –they cannot be calculated in advance. Therefore, a slack node
among the supply nodes is assigned in power grids to compensate for the difference
between the total supply and the total demand plus the losses.
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3.2.2. DC POWER FLOW EQUATIONS
The AC power flow equations (3.1) and (3.2) are non-linear and the solution process is
generally iterative. A linear set of equations is more desirable whenever fast and repeti-
tive solutions are needed. Linearisation can be reasonably accurate when the following
conditions are met [34, 59]:

1. The difference between the phase angles of neighbouring nodes is small such that
sinθi k ≈ θi k and cosθi k ≈ 1.

2. The active power losses are negligible, and therefore, the bus admittance matrix
can be approximated as Y ≈ iY(I) where Y(I) is the imaginary part of the admittance
matrix Y, calculated neglecting the line resistances.

3. The variations in the voltage magnitudes |vi | are small and, can be assumed as
|vi | = 1 for all nodes.

If these conditions are approximately met, the AC power flow equations can be sim-
plified to the so-called the DC power flow equations:

pi =
N∑

k=1
y (I)

i k (θi −θk ). (3.3)

Although the DC power flow solution is less accurate than the AC power flow so-
lution, in practice, the differences in high-voltage transmission networks between the
phase angles of neighbouring buses and the variations in voltage magnitudes are rela-
tively small, thus the error is assumed to be negligible [34].

3.2.3. GRAPH REPRESENTATIONS OF POWER GRIDS
This section presents our models for power grids as simple and weighted graphs.

POWER GRID AS A SIMPLE GRAPH

A simple graph is an unweighted, undirected graph containing no self-loops or multiple
links. A power grid can be modelled as a graph G(N ,L ) where N denotes the set of
N nodes and L denotes the set of L links in which multiple lines connecting the same
pair of nodes are modelled as one link. The N ×N adjacency matrix A specifies the in-
terconnection pattern of the graph G(N ,L ): ai k = 1 only if the pair of nodes i and k are
connected by a direct link; otherwise ai k = 0. The N ×N Laplacian matrix Q is defined as

Q =∆−A

where ∆= diag(d1, . . . ,dN ) is the diagonal degree matrix with the diagonal elements di =∑N
k=1 ai k .

POWER GRID AS A WEIGHTED GRAPH

Alternatively, a power grid can be modelled as a weighted graph where each link is as-
signed a weight that is related to the admittance of the transmission line it represents.
We model a power grid as a weighted graph G(N ,L ) where N denotes the set of N
nodes and L denotes the set of L links1. By writing the DC power flow equations in (3.3)

1Multiple lines connecting the same pair of nodes are represented as a single equivalent link in the graph, see
Appendix 3.6.3.
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in terms of the adjacency matrix A of G(N ,L )

pi =
N∑

j=1
ai j y (I)

i k (θi −θ j ) = θi

N∑
j=1

ai j y (I)
i k −

N∑
j=1

ai j y (I)
i kθ j (3.4)

we introduce the weighted adjacency matrix Ã, where each nonzero element ãi j = ai j y (I)
i k

represents both the connectivity and the admittance between nodes i and j . Equa-
tion (3.4) can then be written as:

pi = θi

N∑
j=1

ãi j −
N∑

j=1
ãi jθ j . (3.5)

Since (3.5) holds for every node i , the corresponding matrix representation is

P =
{

diag

(
N∑

k=1
ãi j

)
− Ã

}
Θ

= (∆̃− Ã)Θ (3.6)

where P = [p1 . . . pN ]T is the vector of net active power injection at the nodes with a bal-
anced supply and demand, i.e., uTP = 0 where u is all-one vector, ∆̃ is the weighted diag-
onal degree matrix, andΘ= [θ1 . . .θN ]T is the vector of phase angles at the nodes. Finally,
introducing the weighted Laplacian Q̃ = ∆̃− Ã into (3.6) yields

P = Q̃Θ (3.7)

where the weighted Laplacian Q̃ is a symmetric, positive semi-definite matrix that pos-
sesses non-negative eigenvalues apart from the smallest eigenvalue, which is zero [35].

The inversion of the active power - phase angle relation P = Q̃Θ in (3.7) is not possible
due to the fact that det Q̃ = 0, which follows from the characteristic property Q̃u = 0 of
the weighted Laplacian. Although the inverse of the weighted Laplacian matrix does
not exist, the active power - phase angle relation inversion can be shown to beΘ= Q†P+
uTΘ

N u, where Q† is the pseudo-inverse of the weighted Laplacian Q̃, obeying Q̃Q† = Q†Q̃ =
I− 1

N J with the identity I and all-one matrix J = uuT. By choosing the average phase angle

in the graph θav = uTΘ
N = 0 as the reference [23], the phase angle - active power relation

takes the elegant form of

Θ= Q†P. (3.8)

While the weighted Laplacian Q̃ and its pseudo-inverse Q† are derived here based
on the linearised DC power flow equations in power grids, their applicability is far
wider [45]. A weighted Laplacian Q̃ can describe many processes, that are linear in or
proportional to the network topology such as electrical circuits, water flow networks,
mechanical or thermal systems. The process equivalence between those systems are
given in Table 3.1.
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Power grids Phase angle Power

Electrical circuit Voltage Current
Hydraulic circuit Pressure (height of liquid) Volume flow

Mechanical system Force Displacement velocity
Thermal system Temperature Heat flow

. . . . . . . . .

Table 3.1: Equivalence between linear systems, adopted from [45].

3.3. TARGETED ATTACKS ON POWER GRIDS
The threats for power grids can be classified by using multiple criteria considering the
causes of the threat, their consequences or the preventive actions to manage the haz-
ards [60]. One example of such threats are targeted attacks on power grids, which in-
volve intentional, criminal actions to destroy the network. In modelling these threats,
we assume that the attacks are performed with the knowledge of power grid layout and
with the intention to maximally disrupt the network performance while attacking as few
nodes (electrical buses) as possible. Throughout this section, we describe how network
science can be employed to formulate such attack strategies, where target nodes corre-
spond to most critical or most vulnerable nodes whose removal significantly disrupts the
network functioning. We first describe the standard centrality metrics, which are purely
based on the underlying topology of power grids, and then we extend these metrics to
include the information on the link weights, i.e., the admittances of the transmission
lines, and the DC power flow equations in power grids.

3.3.1. RANKING NODES IN THE SIMPLE GRAPH REPRESENTATION OF A

POWER GRID
The topological investigation of electrical power grids demonstrates that they have scale
free characteristics, suggesting that power grids can have hub components with signif-
icant criticality compared to the rest of the network [6]. These components are crucial
for the grid. Identifying these critical components in a power grid is a major concern
for power system security. In graph theory and network science, centrality metrics are
used to identify the most important nodes within a graph. Different applications can
include identifying the most influential person(s) in a social network, main spreaders of
a disease, etc.

In this section, we review some of the existing topological centrality metrics in order
to rank the importance and the centrality of nodes in the underlying simple graph of
power grids.

DEGREE CENTRALITY

The degree di of a node i in the graph G(N ,L ) is equal to the number of its neighbour-
ing nodes [61]. The degree di can be calculated using the adjacency matrix A:

di =
N∑

j=1
ai j . (3.9)
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EIGENVECTOR CENTRALITY

The eigenvector centrality of a node is a global centrality metric that depends not only
on the number of its neighbouring nodes, but also on the number of 2-hop neighbour-
ing nodes, 3-hop neighbouring nodes, and so on [62, 63]. The eigenvector centrality xi

of node i is equal to the i th component of the eigenvector corresponding to the largest
eigenvalue λ1 of the adjacency matrix A. The principal eigenvector centralities thus fol-
low from the linear equations:

xi = 1

λ1

N∑
k=1

ai k xk . (3.10)

BETWEENNESS CENTRALITY

Another metric to assess node importance or centrality is the betweenness central-
ity [64]. In calculating the betweenness centrality, it is assumed that information or ser-
vices are transmitted over shortest paths between node pairs. Hence, if many shortest
paths pass through a certain node, this node takes a central role in the network. If |P s→t |
is the number of all possible shortest paths from node s to node t , and |P s→t (i )| is the
number of those paths that pass through node i , then the betweenness bi of node i is
equal to

bi =
∑

s,t∈N \{i }

|P s→t (i )|
|P s→t |

. (3.11)

In other words, the betweenness centrality of a node i shows the fraction of all shortest
paths between any pair (s, t ) of nodes, that pass through node i .

CLOSENESS CENTRALITY

In calculating the closeness centrality, the hopcount H(P i→ j ) that is the number of links
in the shortest path P i→ j between a pair of nodes i and j , is used. The closeness cen-
trality ci of a node i is defined as [64]:

ci = 1∑
j 6=i H(P i→ j )

, (3.12)

which is the reciprocal of the sum of the hopcounts of node i to all other nodes. A large
closeness centrality value thus corresponds to a “central” node that is well-connected by
a few hops to other nodes.

3.3.2. RANKING NODES IN THE WEIGHTED GRAPH REPRESENTATION OF A

POWER GRID
While the standard centrality metrics are based on purely topological information, it is
possible to extend the definition of these metrics by including the link weight informa-
tion and the power flow equations in power grids. Different definitions of extended cen-
trality metrics (extended betweenness [65], modified betweenness and closeness cen-
trality [66], electical degree [53]) exist2 and are evaluated by simulations via power flow
solvers or by calculating power transfer distribution factors (PTDF) in power grids. Such

2A broad review of robustness studies in power grids using network science can be found in [50].
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simulation-based definitions are generally computationally expensive and formulations
with the absence of slack node(s) may not fully explain the analogy between the ex-
tended centrality definitions and the weighted graph model for power grids.

Extended metrics were also defined before [36, 67] based on the voltage - current re-
lation in electrical circuits. Since the phase angle - active power relations in (3.7) and (3.8)
in power grids obey the same linear relation as those in electrical circuits (as described
before in Table 3.1), these metrics can identify central nodes in power grids.

We take here a graph theoretical approach using the slack-node-independent
weighted graph representation for power grids described in the previous section. This
weighted graph model facilitates both the analogy between the standard and the ex-
tended centrality metrics, and the enhanced linear algebra to formulate the closed-form
expression of centrality metrics via graph-related matrices.

WEIGHTED DEGREE CENTRALITY

Similar to the topological definition in (3.9), the weighted degree centrality is related to
the number of neighbours of a node. However, rather than only considering the number
of neighbours, the weighted degree d̃i also includes the information of the admittances
ãi j of the transmission lines that link the nodes, which leads to the definition:

d̃i =
N∑

j=1
ãi j . (3.13)

A large value of the weighted degree d̃i corresponds to larger values of the admit-
tance directly connected to that node, which indicate that node i is well connected to its
neighbours.

WEIGHTED EIGENVECTOR CENTRALITY

In analogy with the eigenvector centrality in (3.10), the weighted eigenvector centrality
x̃i not only captures the total admittance of all lines connected to node i , but is also
influenced by the admittance of all lines connected to its neighbours, their neighbours
and so on. The weighted eigenvector centralities correspond to the eigenvector of the
highest eigenvalue λ̃1 of the weighted adjacency matrix Ã. Thus, the principal weighted
eigenvector centrality x̃i is given by the equation:

x̃i = 1

λ̃1

N∑
j=1

ãi j x̃ j . (3.14)

FLOW BETWEENNESS CENTRALITY

While in the standard definition of the betweenness and the closeness centrality in (3.11)
and (3.12), information exchange and other processes are assumed to travel over short-
est paths, in the case of the DC power flow equations (or in the equivalent linear systems
in Table 3.1), the flow distribution obeys Kirchhoff’s and Ohm’s laws. Therefore, the stan-
dard betweenness and closeness centrality based on shortest paths may not fully capture
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the operation of power grids. Instead, the flow betweenness centrality b̃i of node i de-
pends on the total flow running through that node, as proposed by [67]:

b̃i =
∑

s,t∈N \{i }

∑
j∈B(i )

| fs→t (i , j )|, (3.15)

where B(i ) denotes the direct neighbours of node i , and | fs→t (i , j )| is the magnitude of
the power flow through the link between i and j when a unit active power is injected
at node s and extracted from node t . In Appendix 3.6.2, we show how these flows can
be calculated from the weighted graph representation of a power grid. Higher values of
the flow betweenness centrality b̃i indicate the importance of a node with respect to the
electrical power transmission in power grids.

ELECTRICAL CLOSENESS CENTRALITY

Similar to the definition of the closeness centrality in (3.12), the electrical closeness cen-
trality of a node is an indicator of the average distance of that node to all other nodes.
However, since the flow in a power grids obeys Kirchhoff’s laws, the effective resis-
tance [23, 36] is a more appropriate distance metric between nodes than the hopcount
of shortest-path. The effective resistance Ωi j between a pair of nodes can be calculated
from the pseudo-inverse Laplacian matrix as [35]:

Ωi j = (Q†)i i + (Q†) j j −2(Q†)i j ,

and captures the effect of the active power transfer pi j and the phase angle difference
θi −θ j between a pair of nodes, when active power is only injected at and extracted from
nodes i or j :

Ωi j =
θi −θ j

pi j
.

Since the effective resistance satisfies the properties3 of a distance function [68] and
obeys the flow equations in power grids, it can be used to define a distance-based cen-
trality metric. The electrical closeness centrality c̃i of a node equals the reciprocal of the
total effective resistance of that node to all other nodes4:

c̃i = 1∑N
j=1Ωi j

. (3.16)

Compared to the shortest-path hopcount H(P i→ j ), the effective resistanceΩi j does
not depend only on the shortest path, but also incorporates the information of all pos-
sible paths between node i and j , where the contribution of each possible path follows
from the linear flow equations. In the case of the unweighted tree networks, the effective

3The properties of a distance function D(i , j ) between a pair of nodes i and j are: (a) non-negativity: D(i , j ) ≥
0, (b) zero distance for identical nodes: D(i , j ) = 0 if and only if i = j , (c) symmetry: D(i , j ) = D( j , i ) and
(d) the triangle inequality: D(i ,k)+D(k, j ) ≥ D(i , j ). The effective resistance D(i , j ) = Ωi j satisfies all four
properties [68].

4[45] defines the node i? which is electrically the best spreader to all other nodes based on the flow equations
in electrical circuits. This best spreader node i? corresponds here to the node with the highest electrical
closeness centrality, i.e., i? = argmax

i∈N
c̃i .
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resistanceΩi j equals the hopcount H(P i→ j ) for all nodes. Thus, for tree-like power grids
with equal admittances, the electrical closeness centrality closely resembles the topolog-
ical closeness centrality, while for power grids with many loops (i.e., non-tree-like) both
metrics could differ significantly.

Each of the centrality metrics we present captures a certain aspect of the structural
and the operational centrality in the network, such as the strength of a direct connectiv-
ity (degree and eigenvector centrality), being a part of many important paths (between-
ness centrality) or being close to other nodes (closeness centrality). In recent years, an-
other conceptual definition of centrality has emerged. Based on optimal percolation
theory [69], which considers the problem of “finding the smallest set of nodes whose re-
moval fragments the network in small disconnected pieces”, a number of new metrics
have been proposed (such as the collective influence (CI) [69, 70], belief propagation
decimation (BPD) [71] and CoreHD [72]). Such metrics reflect the importance of a node
for the global structural coherence as well as their influence in spreading behaviour.
However, to the best of our knowledge, extended metrics based on percolation theory
have not been studied yet. Therefore, in this work, we focus on the generally accepted
and adopted centrality metrics to the power grids.

3.4. IDENTIFYING THE EFFECT OF NODE REMOVALS IN POWER

GRIDS
In this section, we empirically compare the effects of the targeted node removals based
on the centrality metrics presented in the previous section. To evaluate the change in the
network functioning, we use two performance metrics that can quantify both the topo-
logical and the operational characteristics of the grid after targeted attacks. We consider
the networks from 5 real-world power grids of European countries [57] and 5 synthetic
power grids from the IEEE test case database [42].

3.4.1. PERFORMANCE METRICS
In an ideal power grid which is robust to targeted attacks, the removal of nodes should
not significantly alter the network functioning. In some cases, removing a node from the
power grid can partition the network into several components, which are disconnected
from each other. This is undesirable as this partition both adversely affects (i) the struc-
ture: as the size (i.e., the number of nodes) of the connected component of the network
is decreased, and (ii) the operation: since the disconnected structure disrupts the service
and the capacity of the network. In this work, we present two performance metrics in our
case studies, the size and the capacity of the giant component, to assess the topological
and the operational performance aspects in the network.

THE SIZE OF THE GIANT COMPONENT

The giant component [73] is the connected component of a graph that contains the
largest fraction of the entire graph’s nodes. The change in the size of the giant com-
ponent reflects the disruptive effect of node removals on the structure of the network.

We assume that the underlying graph of the original network is connected, thus the
original size of the giant component is N . Then, we calculate the normalized size σ of



3.4. IDENTIFYING THE EFFECT OF NODE REMOVALS IN POWER GRIDS

3

35

the giant component after each node removal as the ratio between the size of the giant
component after node removal and the original network size N , in other words

σ=
∑N

i=1 1{i∈G ′}

N
(3.17)

where 1{x} is the indicator function: 1{x} = 1 if the condition {x} is true, else 1{x} = 0, and
G ′ is the giant component after node removals.

THE CAPACITY OF THE GIANT COMPONENT

Each transmission line in a power grid is associated with a maximum flow carrying capa-
bility. For the safe operation of a network, the flows through the network links should be
below these capability. If the flow limits are exceeded, the situation is detected by protec-
tion relays, the circuit breakers are tripped, and the corresponding element is taken out
of service. The possibility and the negative impact of cascading failures in power grids
increases when the operating point of a power grid is close to the flow carrying capabil-
ities of its links [30, 59]. Consequently, a network with a high flow carrying capability is
desired.

We calculate the total capacity of the network as the sum of the maximum flow carry-
ing capabilities of links in the largest connected component of the graph. When multiple
lines are connecting the same pair of nodes, we consider an equivalent capacity between
those nodes. This equivalent capacity represents the maximum power that can be trans-
ferred between these nodes such that the resulting power flow through each single line
is at most at its capacity. In Appendix 3.6.3, we describe how this equivalent capacity is
calculated.

The capacity of the giant component depends on the number of links in the giant
component as well as the flow carrying capability of links, which are closely related to
the electrical demands and supplies at the neighbouring nodes5. We calculate the nor-
malized capacity of the giant component γ after each node removal as the ratio between
the total capacity of the giant component after the removal and the total capacity of the
original network, in other words

γ=
∑L

l=1(Cl ·1{l∈G ′})∑L
l=1 Cl

. (3.18)

3.4.2. PROPERTIES OF THE NETWORKS USED IN SIMULATIONS
We considered the high-voltage transmission networks of 5 European countries in our
case studies: Austrian, Belgian, Dutch, French and German power grids. In addition,
we included 5 widely used test power grids from IEEE database [42]. In all networks,
multiple lines connecting the same pair of nodes are represented as an equivalent single
link using the equivalent admittance (3.23) and the equivalent maximum flow carrying

5Another metric that can be used to capture the operational performance of power grids is Yield which is
the ratio of the total demand supplied at the end of an attack with respect to the initial demand of the net-
work [59]. This electrical demand information, which is needed to calculate Yield, is not available in our data
sets of real-world power grids.
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Austrian power grid
N=72
L=88
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Belgian power grid
N=56
L=67
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Dutch power grid
N=35
L=43
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French power grid
N=449
L=613
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German power grid
N=71
L=103

Figure 3.1: The degree distributions of the simple graphs of 5 European power grids.

capability (3.25). The degree distributions of the underlying graphs are shown Figures 3.1
and 3.2. Additionally, more details of the power grids in our case study are available on
our GitHub page [57].

3.4.3. THE EFFECTS OF TARGETED NODE REMOVALS IN POWER GRIDS
We apply both the standard and the extended centrality metrics as node-attack strate-
gies in power grids. For each centrality metric, we start the attacks by removing the node
(and all its links) with the highest value of the chosen centrality metric. After each node
removal, we recalculate the values of the centrality metric, and continue by removing
the node with the highest value of the centrality metric in the current giant component
of the graph. Note that, during the successive node removals, we do not take the cas-
cading dynamics (such as overloading of links or demand/supply redistribution due to
cascading failures [59]) into account. In other words, we focus on the instant just after
the removal of nodes to identify the effects on the structure and the operational perfor-
mance indicators of the power grid.

Figures 3.3 and 3.4 show the changes in the normalized size and the capacity of the
giant component when we sequentially remove the nodes according to 8 different cen-
trality metrics. We observe that the betweenness and the flow betweenness centrality
are the best attack strategies as they can maximally disrupt the network functioning with
fewer attacked nodes. On the other hand, the degree centrality may not always success-
fully assign an important node. Compared to the degree centrality, the betweenness and
the flow betweenness centrality give more fine-grained centrality values for each node,
whereas, multiple nodes with the same degree exist, as illustrated in Figures 3.1 and 3.2,
making them indistinguishable. In addition, we observe that the eigenvector and the
weighted eigenvector centrality are the least effective attack strategies: Targeted attacks
according to these centrality metrics destroy the network slower than other attack strate-
gies.
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Figure 3.2: The degree distributions of the simple graphs of 5 IEEE power grids.
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Figure 3.3: The normalized size of the giant component in the French power grid versus the removal of nodes
according to the standard centrality metrics (left) and the extended centrality metrics (right). The node with
optimal graph metric, computed in the resulting giant component, is removed.
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Figure 3.4: The normalized capacity of the giant components in the French power grid versus the removal of
nodes according to the standard centrality metrics (left) and the extended centrality metrics (right). The node
with optimal graph metric, computed in the resulting giant component, is removed.

Next, in order to compare the attack strategies and to further quantify the topological
and operational changes in power grids, we calculate the average of the structural and
the operational performance indicators (or the energy ε values of a graph [46]) that are
the normalized sums of the size and the capacity of the giant component over successive
targeted attacks, respectively. Thus, the average value σ̄ of the structural performance
indicator of the power grid over K successive node-attacks can be calculated as

σ̄=
∑K

k=1σ(k)

K
(3.19)

whereσ(k) is the normalized size of the giant component after k successive attacks. Sim-
ilarly, the average value γ̄ of the structural performance indicator of the power grid over
K successive node-attacks is

γ̄=
∑K

k=1γ(k)

K
(3.20)

where γ(k) is the normalized capacity of the giant component after k successive attacks.
The structural σ̄ and the operational γ̄ performance indicators in (3.19) and (3.20) are
evaluated on a score between 0 and 1: In an ideal power grid which is robust to targeted
attacks, the node removals should have slight effects on the network performance. Thus,
a performance indicator close to 1 is desirable by the network operators. On the other
hand, a lower performance indicator over successive node-attacks indicates a powerful
(destructive) attack-strategy in which few important nodes of the network are identified
and removed, with negative operational and structural consequences.

In Figures 3.5 and 3.6, we present the average values of the performance indicators
in European and IEEE test power grids (PG) after different attack strategies that remove
10% of the initial network nodes, respectively. Higher values in Figure 3.5 and 3.6 rep-
resent higher robustness to the targeted attacks, whereas lower values indicate vulnera-
bility or a severe disrupt in network functioning. We observe that targeted attacks based
on the flow betweenness and the betweenness centrality followed by the closeness and
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Figure 3.5: The structural performance indicator σ̄ (left) and the operational performance indicator γ̄ (right)
in European power grids after the targeted attacks.

the electrical closeness centrality are the best attack strategies to decrease the structural
and the operational performances of the power grids. As an example, the targeted node
attacks according to the flow betweenness centrality of nodes destroy the Dutch power
grids faster than any other attack strategy.

3.4.4. MAIN LESSONS LEARNED FROM THE ANALYSES
In this section, we summarize the insights obtained in the previous sections. The main
lessons learned from the analyses of the targeted node-attacks based on the different
centrality metrics from the simple and the weighted graph representations of power
grids in the tested networks are as follows:

• The degree centrality (3.9) only provides information on the local structure around
a node. Similarly, the weighted degree centrality (3.13) reflects the local connec-
tivity information. Thus, a node that is connected to many other nodes (with high
admittance) is not necessarily a central node for the whole network. Therefore, as
illustrated by the targeted attack simulations, the degree and the weighted degree
centralities cannot always indicate the important nodes.

• The betweenness centrality (3.11) incorporates information about the global net-
work structure, and in the analyses of the test networks, high betweenness cen-
trality values were found to efficiently indicate the nodes whose removal would
significantly disrupt the network performance. While successfully indicating vul-
nerable nodes, the betweenness centrality (3.11) is based on the shortest paths
only. This means that the betweenness centrality does not discriminate nodes that
are positioned “close” to many shortest paths (and would be considered central),
and peripheral nodes. This limitation is partly addressed by the flow between-
ness centrality (3.15), in which the flows through the network links are distributed
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Figure 3.6: The structural performance indicator σ̄ (left) and the operational performance indicator γ̄ (right)
in IEEE power grids after the targeted attacks.

throughout the network according to the Kirchhoff’s laws. In the analyses of the
test networks, removing nodes with a high flow betweenness usually resulted in
the most destructive effects on the network.

• The closeness centrality (3.12) reflects the average shortest path distance from a
node to all other nodes in the network. Higher closeness centrality values thus
indicate nodes which can easily reach the other nodes in the network. Similarly,
higher values of electrical closeness centrality (3.16) show a node that is on aver-
age close to the other nodes in the network, based on the operationally inspired
effective resistance distance instead of the shortest-path distance. In the analyses
of targeted attacks, the performance of the closeness and the electrical closeness
centrality in identifying the important nodes in the tested power grids are found
to be similar.

• The eigenvector centrality (3.10) can rarely identify the critical nodes, and thus, the
targeted attacks based on the eigenvector centrality are generally the slowest de-
structive strategy among the traditional centrality metrics in the tested networks.
Similarly, the weighted eigenvector centrality (3.14) seems not to successfully in-
dicate important nodes.

The analyses of the targeted node-attacks show that centrality metrics, in particular
the (flow) betweenness and (electrical) closeness, are very successful in indicating the
critical nodes whose removals sharply decrease the selected performance indicators (the
size and the capacity of the giant component) of power grids. Identifying these critical
components in advance can enable power grid operators to improve system robustness
by monitoring and protecting these components continuously. Additionally, although
the effect of targeted attacks are more significant when the centrality information is up-
dated after each node removal, the information based on the initial calculation of the
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centrality metrics is also fairly successful in finding the important nodes. In that case,
the degree centrality is a good indicator to fragment the network to decrease the struc-
tural and operational performance indicators of power grids (See Appendix 3.6.1).

3.5. CONCLUSION
In this chapter, we took a network science approach to investigate the vulnerability of
power grids to malicious targeted attacks. First, we presented two different graph mod-
els for power grids: simple and weighted graphs. Subsequently, using these graph mod-
els, we ranked the importance of each node according to the standard and the extended
centrality metrics that take into account the electrical properties of the grids such as the
admittance of the transmission lines and the flow allocation according to the DC power
flow equations. Via case studies in both real-world and test power grids, we show that the
power grids are highly vulnerable to targeted attacks: sequentially removing the nodes
with the highest centrality is a good strategy to fragment the power grids, and to maxi-
mally decrease its operational performance. In almost all power grids in our case study,
removing approximately 15% of the nodes according to the flow betweenness centrality
destroys the network almost completely. Grid operators can use the proposed method-
ology to analyse the current vulnerability of their network to targeted attacks and to take
necessary measures by protecting the important nodes in their networks.

3.6. APPENDIX

3.6.1. TARGETED ATTACKS BASED ON INITIAL CENTRALITY METRICS

Instead of recalculating the centrality metrics after each node removal, we consider here
a more simplified attack strategy based on calculating the centrality metrics only once,
at the beginning of the attacks. The targeted attacks are then performed sequentially
according to these initial values.

Figures 3.7 and 3.8 show the changes in the normalized size and the capacity of the gi-
ant component in French power grids after the targeted attacks, respectively. Figures 3.7
and 3.8 illustrates that even these simplified attack strategies could inflict a significant
damage on the network functioning: For instance, removal of 15% of the nodes accord-
ing to the initial rankings nearly destroys French power grids. Compared to Figures 3.3
and 3.4, in Figures 3.7 and 3.8, we observe that the degree centrality is the most destruc-
tive attack strategy when the centrality metrics are based on only the initial calculation
of the centrality metrics, i.e., when the node-rankings are not updated after the targeted
attacks.

3.6.2. CALCULATION OF FLOW BETWEENNESS CENTRALITY IN POWER

GRIDS

Following the linearised DC power flow equations in power grids, the active power P and
phase angle Θ in all nodes are related by equations (3.7) and inversely by (3.8). When a
unit active power is injected at node s and extracted at node t , this corresponds to the
active power input to the grid:

Ps→t = es −et
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Figure 3.7: The normalized size of the giant component in the French power grid versus the removal of nodes
according to the standard centrality metrics (left) and the extended centrality metrics (right). Nodes are re-
moved sequentially according to the initial values of the centrality metrics.
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Figure 3.8: The normalized capacity of the giant component in the French power grids versus the removal of
nodes according to the standard centrality metrics (left) and the extended centrality metrics (right). Nodes are
removed sequentially according to the initial values of the centrality metrics.
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where ek is the basis vector with the kth component equal to one and all other compo-
nents zero. Based on equation (3.8), the resulting phase angle vector for this active power
input can be calculated as

Θs→t = Q†(es −et ).

Knowing the phase angle at each node, it is then possible to calculate the flow
fs→t (i , j ) through the link between nodes i and j as

fs→t (i , j ) = ãi j (ei −e j )TΘs→t . (3.21)

The flow betweenness centrality b̃i of a node i is the sum of the absolute flows that
pass through that node i , over all possible pairs of source and target nodes6:

b̃i =
∑

s,t∈N \{i }

∑
j∈B(i )

∣∣∣ãi j (ei −e j )TQ†(es −et )
∣∣∣ . (3.22)

3.6.3. MULTIPLE LINES CONNECTING THE SAME PAIR OF NODES
We consider multiple lines L ′ connecting the same pair of nodes i and j : each line l has
admittance yl and flow capacity Cl . In the weighted graph model for power grids, those
multiple lines L ′ are represented as a single equivalent link between node i and j , with
admittance

y (I)
i j = ∑

l∈L ′
y (I)

l . (3.23)

The maximum possible flow between those nodes i and j is constrained by the ca-
pacity of each single line connecting them. If power fi j flows from node i to node j ,
then according to the DC power flow equations in (3.3), this results in the phase angle
difference

(θi −θ j ) = fi j

y (I)
i j

, (3.24)

where y (I)
i j =∑

l∈L ′ y (I)
l is the equivalent admittance between node i and j of L ′ lines in

parallel. For each single line, Ohm’s law states that the flow fl through that line is related
to the phase angle difference by

fl = y (I)
l (θi −θ j ).

Introducing the phase angle difference from equation (3.24) then leads to

fl = fi j
y (I)

l

y (I)
i j

6In power grids, the flow through network links are directed. Different from the load transmissions in other
types of networks, opposite directed flows through a link can cancel out the total flow through that link in
power grids. Therefore, to calculate the maximum possible flow through a link, the absolute sum is nec-
essary. This definition under the maximum possible loading condition is also used in the definition of full
betweenness centrality by [74].
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for the flow fl through line l . Since the maximum flow through each line is constrained
by its flow capacity: fl ≤Cl , we find that the total flow fi j between node i and j is con-
strained by an equivalent capacity Ci j equal to:

fi j ≤Ci j

where,

Ci j = min
l∈L ′

(
Cl

y (I)
l

)
y (I)

i j . (3.25)



4
TOPOLOGY-DRIVEN

PERFORMANCE ANALYSIS OF

POWER GRIDS

The previous chapter presents a weighted graph model for power grids to analyse the
power grids from a graph theoretical point of view. By utilizing this weighted graph model,
in this chapter, we investigate the relation between the topology and the electric power
transmission in power grids. Initially, we focus on synthetic power grids whose underlying
topology can be structured as either a path graph or a complete graph, and we analytically
compute the impact of electric power transmission on link flows under the normal oper-
ation and under a link failure contingency using the linearised DC power flow equations.
Subsequently, in various other graph types, we provide empirical results on the effects of
electric power transmission on the link flow, the voltage magnitude and the total active
power loss in power grids using the nonlinear AC power flow equations.

This chapter is based on a published work [75].

45
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4.1. INTRODUCTION

P OWER grids have been analysed from a graph topological point of view [76, 77]. Var-
ious topology metrics (such as nodal degree, clustering coefficient [28]) have been

proposed to assess the vulnerability and/or to locate the critical components of power
grids [29, 46, 78]. However, electric power transmission is governed by physical laws, and
an assessment based on direct connections between nodes and shortest paths may not
hold in power grids.

In this chapter, we take an extended graph theoretical approach [23, 32, 45, 79] by
modelling the electrical properties, such as the flow allocation according to Kirchhoff’s
laws and the impedances of transmission lines, and investigate the impact of electric
power transmission on the key performance indicators of power grids, which we take as
the node voltage, the link flow, the total power loss and the served power demand.

Initially, we focus on the operation by considering two extreme graphs. In synthetic
power grids whose underlying topology is either a path or a complete (full-mesh) graph,
we analytically derive the steady-state operating conditions under normal operation and
under a random link failure (removal) contingency using the linearised DC power flow
equations. Subsequently, in various other graphs, we empirically investigate the relation
between the topology and the key performance indicators using the nonlinear AC power
flow equations [80].

The remainder of this chapter is organized as follows. Section 4.2 investigates the
electric power transmission in path and complete graphs under normal operation. In
Section 4.3, we focus on single link failure contingencies in those graphs, and derive the
impact of a random link failure on the steady-state link flows and served power demand.
Section 4.4 presents our empirical results on the key performance indicators in various
graphs both under normal operation and single link failure contingencies. Section 4.5
concludes the chapter.

4.2. DC POWER FLOW ANALYSIS IN PATH AND COMPLETE

GRAPHS
A connected simple graph (i.e., a graph with no parallel duplicate links or self-loops) lies
between a tree graph and a complete graph. In a complete graph, every pair of distinct
nodes is connected by a link. On the other hand, a tree has no cycles; consequently, any
two nodes are connected by exactly one path (See Figure 4.1).

The direct connections between nodes usually result in an efficient transmission in a
network. The distances between the nodes in a complete graph are shortest compared to
the other graphs, in which multiple hops are needed to reach the destination. In power
grids, different than the typical transmissions based on the shortest paths, the electric
power transmission is governed by physical laws. Therefore, an assessment based on
purely the direct connections between nodes may not be enough to draw conclusions.
In this section, we investigate the electric power transmission in those extreme graph
types.

We model a power grid with N buses (nodes), and L lines (links) by a weighted graph
G(N ,L). We use N to denote the set of N nodes and L to denote the set of L links with
equal weights, b. Every link li k ∈L between the nodes i ,k ∈N is associated with a max-
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Figure 4.1: An example of a complete graph with 4 nodes (left) and a path graph (which is a type of a tree graph)
with 4 nodes (right).

imum flow capacity Ci k that represents the maximum power flow that can be afforded
by the corresponding line, and a rest flow capacityαi k =Ci k −| fi k | where | fi k | is the flow
through the link li k under the normal operation. We assume a single upstream supply
node, and treat the remaining N −1 downstream nodes as demand nodes. Without loss
of generality, we label the supply node as node 1, and take the total electric power de-
mand of the network as (N −1)p where p ≥ 0 is a constant. Throughout Sections 4.2 and
4.3, we adopt the slack-bus independent solution to the DC power flow equations [23],
which could approximate the steady-state operation under the DC power flow assump-
tions [34].

4.2.1. ELECTRIC POWER TRANSMISSION IN A PATH GRAPH

We investigate the electric power transmission from the supply node 1 to the single de-
mand node N in a path graph (whose nodes are labeled consecutively). The magnitude
| f 1→N

i k | of the flow through a link li k between node i and node k = i +1 is found as (See
4.6.1)

| f 1→N
i k | = b|(θi −θk )|

= p(N −1) ∀li k ∈L , (4.1)

where b is the reciprocal of the line reactance and θi is the voltage phase angle at node i .

Equation (4.1) shows that the resulting link flows due to the electric power transmis-
sion are all the same, and their values increase with the increasing graph size N and unit
power demand p. This linear correlation between the size and the magnitudes of link
flows could lead to substantial flows and result in congestion problems, especially in
large graphs.

On the other hand, in a path graph, the electric power is transferred through a single
path between the supply and the demand node. Consequently, an assessment based on
shortest paths holds, which can ease the supervision of the network operator.
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4.2.2. ELECTRIC POWER TRANSMISSION IN A COMPLETE GRAPH

Similar to Section 4.2.1, we investigate the electric power transmission from the supply
node 1 to a single (randomly chosen) demand node m in a complete graph. The magni-
tude | f 1→m

i k | of the resulting flow through a link li k is found as (See 4.6.2)

| f 1→m
i k | =


2(N−1)p

N if li k = l1m ,
(N−1)p

N if li k ∈ {(
B(1)∪B(m)

)}
\ l1m ,

0 otherwise,

(4.2)

where B(i ) denotes the set of links that are direct neighbors of node i .

Equation (4.2) indicates that three different magnitudes of link flow exist during the
electric power transmission: (a) The flow through the link between the supply and the
demand node is maximum, whereas (b) the flows through the links to the other neigh-
bors of those nodes are half of that maximum flow, and (c) the remaining links that are
not direct neighbors of either the supply or the demand node have zero flows.

Comparing the magnitudes of link flows in a path graph in Equation (4.1) and in a
complete graph in Equation (4.2) shows that the maximum link flow due to the electric
power transmission from the supply node to a demand node is dramatically lower in a
complete graph. However, the distribution of the flows through links in a complete graph
is not homogeneous, thus the relation between the total decrease in the magnitudes of
link flow and the total number of links added to a path graph is not linear.

4.3. DC POWER FLOW ANALYSIS IN PATH AND COMPLETE

GRAPHS AFTER A RANDOM LINK FAILURE
Single line failures are common in power grids. Therefore, as well as under the normal
operation, the operation after a link failure (removal) is important to assess the reliability
of power grids [81]. In this section, we theoretically investigate the effects of a random
link failure on the link flows and the served demand in path and complete graphs using
the linearised DC power flow equations. In this context, for random link removals, we
assume an equal likelihood 1

L of each link li k ∈L to be removed from the graph G(N ,L).
In addition, to quantify the effect of link failure contingencies in a graph, we calculate the
theoretical robustness function of those graphs, which we define as the expected fraction
of served demands after a random link failure.

4.3.1. RANDOM LINK FAILURE IN A PATH GRAPH

First, we focus on the effect of a single link failure in path graphs. Just before the link
failure takes place, we assume that all demand nodes have a unit electric power demand
of p, which we refer to as the symmetrical distribution of demands. In other words, the
supply node transfers a unit electric power of p to every other demand node, resulting in
the magnitude | fi k | of the flow through link li k between node i and node k = i +1 before
the failure

| fi k | = p(N − i ). (4.3)
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As the graph under investigation is a path graph with no cycles, the removal of any
link li k between node i and node k = i+1 partitions the graph (See the derivation in Sec-
tion 4.6.3), and this partition removes in total p(N−i ) demand from the graph according
to Equation (4.3). Therefore, the closer the link failure is to the supply node 1, the worse
is the effect on the served demands.

The continuity of the operation of the network depends on the location of the failed
link. If the failed link is adjacent to the supply node, then the supply node is isolated from
the demand nodes and the network faces a complete blackout. If the failure probabilities
of the links are the same in a path graph, the probability pb that a random link failure
leads to a complete blackout is pb = 1

L = 1
N−1 .

The failure and removal of any other link partitions the network and the remaining
network can continue functioning, though with decreased demands. As the total de-
mand of the network decreases after the link removal, the flows through the remaining
links decrease, and thus, there is no possibility for further cascading failures [59] due
to the insufficient rest flow capacity of the remaining links. Consequently, the expected
fraction E[Fs ] of served demands after a random link failure is

E[Fs ] = 1

N −1

(0+1+·· ·+N −2)

N −1
= N −2

2(N −1)
= 1

2
− 1

2(N −1)
.

4.3.2. RANDOM LINK FAILURE IN A COMPLETE GRAPH
Next, we investigate a random link failure in a complete graph. After the removal of a
link, the flows are redistributed following Kirchhoff’s laws and the flows through the re-
maining links may change. Due to the meshed topology of the graph, this redistribution
can lead to an increase or a decrease in flow through a particular link [23].

Before a link failure happens, under the symmetrical distribution of demands, i.e.,
when the supply node transfers a unit demand of p to every other demand node, the
magnitude | fi k | of the flow through a link li k in a complete graph is

| fi k | =
{

p if li k ∈ B(1),

0 otherwise.
(4.4)

Following Equation (4.4), two different magnitudes of link flows exist in a complete
graph under the symmetrical distribution of demands. As a result, a single link failure
and removal can result in two cases:
Failure of a link with zero flow

When a link li k is removed from the graph, the flow | fi k | through the link before
failure needs to be redistributed over the alternative paths between nodes i and k. Since
a redundant link li k does not transport any flow, its removal does not cause a power
redistribution.
Failure of a link with maximum flow

When a used link li k is removed from the graph, the flow | fi k | = p through the link
before failure is redistributed over alternative paths between nodes i and k. As a re-
sult, the initial link li k failure may trigger further failures in the network if the increase
|∆ fab | = p

N−2 in the flow through a remaining link lab exceeds its rest flow capacity αab

(See the derivation in Section 4.6.4),
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|∆ fab | =
p

N −2
≥αab . (4.5)

When the rest flow capacity αab is smaller than the required value in Equation (4.5),
consecutive failures occur. After the initial failure of the used link li k , the flows through
all remaining used links exceed their maximum flow capacity, and fail in the next stage of
the failure. This isolates the supply node. Consequently, the remaining network cannot
match any demands, and it faces a complete blackout.

When the size N of the graph is 2, i.e., when there is only one link, the failure of that
link destroys the graph by separating the supply node from the demand node regardless
of the rest flow capacity αab of the link. For larger graphs, Equation (4.5) shows the re-
quired rest flow capacity αab of links is maximum when the size of the graph is N = 3,
whereas it decreases as N increases. This means the effect of a link removal on the flows
through the remaining links reduces with the size N of the graph.

Finally, we calculate the theoretical robustness function of a complete graph, which
is the expected fraction E[Fs ] of served demands after a random link removal from the
underlying graph. Figure 4.2 presents the theoretical robustness function of a complete
graph under the symmetrical distribution of demands. If the rest flow capacity of the
links is larger than the required value in Equation (4.5), the remaining links can tolerate
the redistributed flows after a random link removal. The network can continue to serve
the same amount of total demand after any single link failure. Therefore, in region II
in Figure 4.2, the fraction of served demands stays the same. On the other hand, when
the rest flow capacity of the links is smaller than the required value in Equation (4.5) in
region I, the network continues its operation only if the failed link is a redundant link
with zero flow. Otherwise, when a used link with flow p fails, the network faces complete
blackout and cannot serve any demand. Therefore, the expected E[Fs ] fraction of served
demands after a random link failure in region I is calculated as

E[Fs ] = 1 ·pr +0 ·pu = N −2

N
= 1− 2

N
,

where pr = N−2
N represents the probability that the failed link is a redundant link with

zero flow and pu = 2
N represents the probability that the failed link is a used link with

flow p (See Equations (4.16) and (4.17)).
Comparing the effect of single link failures in a path and a complete graph shows that

a path (or a tree) cannot provide a back-up path after a link removal, and the total served
demand in the network definitely decreases. In addition, as the demands in the network
decrease, there is no possibility of cascading failures in a tree graph with no loops. On
the other hand, a meshed topology can provide back-up paths during random link re-
movals. Yet, the correct setting of design parameters, i.e., the rest flow capacities of the
links, is extremely important. If the rest flow capacity αab of the links is smaller than in
Equation (4.5) and a used link fails, then the remaining links in a complete graph can-
not tolerate the redistributed flows. Consequently, a random link removal in a complete
graph could lead to more link and demand losses than a link failure in a simple path
graph.
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Figure 4.2: The expected E[Fs ] fraction of served demands versus the rest flow capacity of the links after a
random link failure in a complete graph under symmetrical distribution of demands. The figure is computed
for N = 5.

4.4. THE IMPACT OF TOPOLOGY ON THE KEY PERFORMANCE

INDICATORS OF POWER GRIDS

In Sections 4.2 and 4.3, we focus on the theoretical analyses of electric power transmis-
sion in path and complete graphs. In this section, we focus on many other graphs and
empirically investigate the key performance indicators of power grids under the normal
operation as well as under the single link failure contingencies. In our analyses, we use
the AC power flow solver in Matlab [80] to calculate the steady-state operating condi-
tions under the symmetrical distribution of demands. In addition to the line reactance x
and the active power p values, we take into account the line resistance r and the reactive
power q values for a more practical model of power grids.

4.4.1. KEY PERFORMANCE INDICATORS UNDER NORMAL OPERATION

For the safe and efficient operation of power grids, lower magnitudes of link flow and
total power loss, and higher values of node voltage (close to 1 per unit) are desired1. In a
power grid whose topology is modelled by the specific graph G , we define the satisfaction
degree of performance indicators of the link flow ζ (G), the node voltage ν (G) and the

1As we focus on the impact of electric power transmission from a supply node to demand nodes, only voltage
drops in the network are considered.
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power loss η (G) as

ζ (G) =



1 if max
li k∈L (G)

(| fi k |
)< p,

τ f − max
li k∈L (G)

(
| fi k |

)
τ f −p if p ≤ max

li k∈L (G)

(| fi k |
)< τ f ,

0 if max
li k∈L (G)

(| fi k |
)≥ τ f ,

(4.6)

ν (G) =



0 if min
i∈N (G)

(
vi

)< τv ,

min
i∈N (G)

(
vi

)
−τv

1−τv
if τv ≤ min

i∈N (G)

(
vi

)< 1,

1 if min
i∈N (G)

(
vi

)≥ 1,

(4.7)

η (G) =


1 if τσ ≤ 0,
τσ−σ(G)

τσ
if 0 <σ (G) < τσ,

0 if σ (G) ≥ τσ,

(4.8)

where | fi k | is the magnitude of the flow through link li k , vi is the magnitude of voltage
at node i , σ (G) is the total active power loss, and L (G) and N (G) denote the set of
links and nodes of graph G , respectively. The performances in Equations (4.6), (4.7) and
(4.8) are evaluated on a scale from 0 to 1 (See Figure 4.3): The highest performance of 1
corresponds to an ideal power grid in which the maximum link flow is equal to the unit
power demand p, the minimum voltage is equal to 1 per unit, i.e., no voltage drop, and
the total power loss is 0, i.e., a lossless power grid. Conversely, the lowest performance of
0 corresponds to the maximum link flow τ f , the minimum node voltage τv and the total
power loss τσ. The requirements of τ f , τv and τσ are usually determined by the specific
grid codes of the operators.

Figure 4.4 shows the variations of the key performance indicators under the symmet-
rical demand distribution throughout the topological transformation of the path graph
with 5 nodes and 4 links2. Figure 4.4 depicts that the performance indicator of the link
flow is lowest in the path, and highest in the complete graph. We observe that the cy-
cle graph dramatically increases the performance indicator of link flow by decreasing the
maximum link flow compared to the path graph. Similar to the link flows, the minimum
voltage is lowest and the total power loss is highest in the path graph. The complete
graph, on the other hand, represents the operation at the minimum voltage drop and
total power losses, thus corresponding to the highest values of key performance indica-
tors.

Figure 4.4 indicates that a meshed topology can improve the key performance indi-
cators compared to the path graph. We showed in Equation (4.2) that the flow distri-
bution in a complete graph due to an electric power transmission is not homogeneous,

2We compute all possible ways to evaluate the transformation from the path to the complete graph, which is
only possible for small graphs.
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Figure 4.3: The functions of the performance indicators of the link flow ζ (G), the node voltage ν (G) and the
power loss η (G).
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Figure 4.4: The variations of the key performance indicators throughout the topological transformation of the
path graph G(5,4) with 5 nodes and 4 links. The transformation towards the complete graph G(5,10) requires

the addition of N (N−1)
2 − (N −1) = 6 links. The bold red data point corresponds to the cycle graph. The perfor-

mance indicators are evaluated for r = 0.1, x = 0.1, p = 0.05, q = 0.01, τ f = 5p, τv = 0.9 and τσ = 0.2p.
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Figure 4.5: The variations of the key performance indicators in graphs with different sizes N . The blue lower
triangle (O), and green upper triangle (4) data points correspond to the graphs that are constructed by adding
one link to the path graph, and adding one link to the cycle graph, respectively. The performance indicators
are evaluated for r = 0.02, x = 0.02, p = 0.005, q = 0.001, τ f = 50p, τv = 0.8 and τσ = 4p.

which could explain the nonlinear relation between the total number of added links to
the path graph and the total increase in the key performance indicators in Figure 4.4. In
particular, the cycle graph and the augmented cycles, i.e., the graphs constructed from
the cycle graph by adding links, are observed to affect the key performance indicators
dramatically.

In Figure 4.5, we present the variations of key performance indicators in the graphs
with different sizes N . In the complete graphs, the maximum link flows are nearly the
same for all sizes N , which is in agreement with the theoretical calculations in Equa-
tion (4.4). In the other graphs, the maximum link flow increases with increasing size N ,
decreasing the performance indicator of the link flow.

From Figure 4.5, we observe that the minimum values of node voltages are nearly
the same in the complete graphs, whereas they decrease dramatically in the path graphs
with increasing size N . On the other hand, the cycle topology increases the node volt-
ages, thus also the performance indicator of the node voltage, rapidly compared to the
path graph.

Similar observations hold for the performance indicator of the power loss. In large
path graphs, the total active power loss of the network is high, which decreases the re-
lated performance indicator. On the other hand, a complete graph nearly zeroes the
power loss and the cycle topology significantly decreases the total loss compared to a
path graph.

Similar to Figure 4.4, Figure 4.5 illustrates that a meshed topology can improve the
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Figure 4.6: The expected E[Fs ] fraction of served demands after a random link failure throughout the topo-
logical transformation of a path graph with 5 nodes. The bold red data point corresponds to the cycle graph.
The remaining links are assumed to have enough rest flow capacity to handle the redistributed flows due to a
random link failure.

key performance indicators compared to a path graph. We conclude that the core con-
tributions to the key performance indicators arise from the first few links added to a
path graph. In particular, for larger graphs, a cycle topology can dramatically increase
the voltage magnitude and decrease the total active power loss of the network compared
to the path graph. Consequently, adding a limited number of links to the tree topology
can still achieve higher levels of performance during the electric power transmission be-
tween a supply and demand nodes.

4.4.2. KEY PERFORMANCE INDICATORS UNDER A SINGLE LINK FAILURE

CONTINGENCY

In this section, we investigate the effect of a single link failure in different graphs. Ini-
tially, we focus on the effect of a link failure on the served demands of the network.
Figure 4.6 illustrates the expected E[Fs ] fraction of served demands after a random link
failure throughout the topological transformation of a path graph G(5,4) with 5 nodes
and 4 links. In Section 4.3, we show that any link removal from a path graph partitions
the graph. Figure 4.6 also depicts that only a cycle or augmented cycles can provide a
back-up after any random link failure. The other graphs may partition after a random
link failure and can continue their operation only with a decreased total demand, which
usually improves the key performance indicators. Therefore, in this subsection, we only
focus on the graphs that can provide a back-up after any random link failure.

To investigate and compare the effects of single link failures in each graph, we remove
one link at a time from the graph, and calculate the changes in the performance indica-
tors. We repeat this link failure contingency simulation for each link, and compare all
changes in the link flow, the node voltage and the active power loss in the network. Fig-
ure 4.7 illustrates the maximum resulting changes in these key performance indicators
after a link removal throughout the topological transformation of a path graph G(5,4)
with 5 nodes and 4 links. The performance indicator of link flow can significantly de-
crease after a link failure in a cycle graph. For the complete graph, on the other hand, we
observe that the effect of a link failure on the indicator of link flow is very small. Similar
to the changes in the indicator of link flow, the decreases in the performance indicators
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Figure 4.7: The variations of the changes ∆ in the key performance indicators after a link failure throughout
the topological transformation of a path graph with 5 nodes. The bold red data point corresponds to the cycle
graph. The performance indicators are evaluated for r = 0.1, x = 0.1, p = 0.05, q = 0.01, τ f = 5p, τv = 0.9 and
τσ = 0.2p.

of node voltage and power loss are highest in the cycle graph after a single link failure.

Finally, in Figure 4.8, we present the variations of key performance indicators after
a link failure in graphs with different sizes N . Similar to the theoretical calculation in
Equation (4.5), the effect of a link failure on the remaining link flows slightly decreases
with the increasing size N in the complete graphs. On the other hand, in cycle graphs,
the change in the magnitude of the flow through a remaining link can significantly in-
crease with the increasing size N , which decreases the related performance indicator. In
the worst case, when one of the links adjacent to the supply node fails in a cycle graph,
it operates as a path graph with the same size N after the link failure. Therefore, the per-
formance indicator of link flow in a cycle graph under a single link failure contingency
becomes the performance indicator of link flow in a path graph under normal operation.

Similar to the changes in the performance indicator of link flow after a link failure,
the indicators of node voltage and power loss slightly decrease in a complete graph with
increasing size N . In the other graphs, however, the decrease in the key performance
indicators could be drastic. Although under the normal operation, the cycle and the
augmented cycles can provide higher values of the performance indicators; after a link
failure, large drops on the key performance indicators in those graphs are expected.
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Figure 4.8: The variations of the changes ∆ in the key performance indicators after a link failure in graphs with
different sizes N . The green upper triangle (4) data points correspond to the graphs that are constructed by
adding one link to the cycle graph. The performance indicators are evaluated for r = 0.02, x = 0.02, p = 0.005,
q = 0.001, τ f = 50p, τv = 0.8 and τσ = 4p.

4.5. CONCLUSION

In this chapter, we investigated the impact of topology on the electric power transmis-
sion and the performance of power grids. By utilizing a graph theoretical approach, we
first focused on two extreme graphs, complete and path graphs, and analysed the electric
power transmission under normal operation and under single link failure contingencies.
We showed that in complete graphs, due to the redistributed flows, the survival of power
grids from a random link failure depends on the rest flow capacity of the remaining links.
Consequently, when the rest flow capacities are insufficient to handle the redistributed
flows, a single link failure could result in more link and demand loss in a complete graph
than in a path graph.

Subsequently, we empirically investigated the effect of the electric power transmis-
sion on the link flow, the node voltage and the active power loss in power grids in various
other graphs. Our results show that adding few links to a path graph can significantly
improve these key performance indicators of power grids compared to a path graph.
However, at the same time, the performance indicators could also remarkably decrease
after a link failure. Consequently, throughout a topological transformation towards a
meshed topology with loops, redundancies in the design parameters of power grids are
needed to ensure safety under normal operation and as well as under single link failure
contingencies.
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4.6. APPENDIX
We model power grids with N buses (nodes), and L lines (links) by a weighted graph
G(N ,L). The N ×N weighted adjacency matrix W specifies the interconnection pattern
of the graph G(N ,L): wi k is non-zero only if the nodes i and k are connected by a link;
otherwise wi k = 0. In the slack-bus independent solution of the DC power flow equa-
tions [23], the relation between the phase angles Θ = [θ1 . . .θN ]T of node voltages, and
the power input P = [p1 . . . pN ]T is given as [23]

Θ= Q+P, (4.9)

where Q+ is the pseudo-inverse of the Laplacian Q of the weighted graph G(N ,L).

4.6.1. OPERATING CONDITIONS IN A PATH GRAPH
For a path graph, whose nodes are numbered consecutively and links have equal link
weights b > 0, the structure of weighted Laplacian Q can be written as

Q =



b −b 0 . . . 0 0
−b 2b −b 0 . . . 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 −b 2b −b
0 0 . . . 0 −b b


.

In order to find Q+ in Equation (4.9), we use the definition [35] of the pseudo-inverse
of Laplacian Q+ = X̂diag( 1

µk
)X̂T, where the N×(N−1) matrix X̂ consists of all the normal-

ized eigenvectors of Q, except for the eigenvector u belonging to eigenvalue µ = 0, and
where the (N −1)× (N −1) diagonal matrix diag( 1

µk
) contains the positive eigenvalues of

Laplacian Q.
The positive eigenvaluesµk and the corresponding normalized eigenvector elements

X̂(v,k) of the weighted Laplacian of a path graph are [45]

µk = 2b
(
1−cos(

πk

N
)
)
,

X̂(v,k) =
p

2p
N

cos(
πkv

N
− πk

2N
),

where 1 ≤ k ≤ N −1, and 1 ≤ v ≤ N . Then, the elements q+
i k of the pseudo-inverse of the

Laplacian are

q+
i k =

N−1∑
v=1

X̂(i , v)X̂(k, v)

µv
. (4.10)

Inserting the elements of pseudo-inverse in Equation (4.10) and the power input P =
[(N −1)p,0, . . . ,0,−(N −1)p]T into the DC power flow equations in Equation (4.9) results
in the operating conditions, i.e., the phase angles Θ of node voltages, when the electric
power is transferred from the supply node 1 to the demand node N :
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θi = p(N −1)(q+
i 1 −q+

i N )

= p(N −1)(N −2i +1)

2b
. (4.11)

4.6.2. OPERATING CONDITIONS IN A COMPLETE GRAPH
For a complete graph with equal link weights b > 0, the structure of the weighted Lapla-
cian Q can be written as

Q = b(N I− J), (4.12)

where J is the all-one matrix, and I is the identity matrix. Using the definition of pseudo-
inverse of the Laplacian [35]

Q+ = (Q+αJ)−1(I− 1

N
J), (4.13)

whereα> 0 is a scalar, and choosing the scalarα= b, the pseudo-inverse of the weighted
Laplacian of a complete graph can be found as

Q+ = (Q+bJ)−1(I− 1

N
J)

= 1

N b
(I− 1

N
J) = 1

N 2b
(N I− J). (4.14)

From Equation (4.9), the phase angles Θ of node voltages when the electric power
transferred from the supply node 1 to the demand node N can be found as

Θ= Q+P

= 1

bN 2


(N −1) −1 . . . −1

−1
. . .

...
...

. . . −1
−1 . . . −1 (N −1)




(N −1)p
0
...

−(N −1)p

= p

bN


(N −1)

0
...

−(N −1)

 .

4.6.3. SINGLE LINK FAILURE IN A PATH GRAPH
The failure and removal of a link li k from a network partitions its underlying graph if the
equality between the reactance xi k of the link and the effective resistance ri k between
its node pairs satisfies [23]

xi k = ri k .

When the underlying topology is a path graph, the effective resistance ri k between
nodes i and k = i +1 can be written as

ri k = |i −k|xi k ,

meaning that the removal of any link li k partitions the path graph.
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4.6.4. SINGLE LINK FAILURE IN A COMPLETE GRAPH
When a link li k with flow | fi k | = p is removed from the graph, the flow | fi k | = p through
the link before its removal is redistributed over alternative paths between nodes i and k.
Hence, the final flow through an arbitrary remaining link lab can be written as the sum of
the previous state of the network, i.e., the previous flow through the link between nodes
a and b when link li k is present, and the flow resulting from the change of the state due
to the removal of link li k . The change in the flow ∆ fab through a remaining link lab can
be calculated as [23]

∆ fab = wab
(rak − rai + rbi − rbk )

2(1−wi k ri k )
p, (4.15)

where wab is the weight of the link lab and rak is the effective resistance between the
nodes a and k.

The effective resistance between any two distinct nodes in the complete graph with
equal link weights b is 2

bN . Therefore, the numerator (rak − rai + rbi − rbk ) of Equation

(4.15) is nonzero and its magnitude is equal to |rak − rai + rbi − rbk | = 2
bN only when the

removed link li k and the observed link lab share a node. Then,

|∆ fab | =
{

0 if li k ∩ lab =∅,
p

N−2 otherwise.

If the failure probabilities of the links in a complete graph are the same, 1
L , we can

calculate the probability pr that a failed link is a redundant link with zero flow, and the
probability pu that a failed link is a used link with non-zero flow as

pr = (N −1)(N −2)

2

2

N (N −1)
= N −2

N
= 1− 2

N
, (4.16)

pu =(N −1)
2

N (N −1)
= 2

N
, (4.17)

where pu +pr = 1.



5
EFFECTS OF FAILURES IN POWER

GRIDS UNDER THE AC AND DC
POWER FLOW MODELS

In the previous chapter, we use the linearised DC power flow equations to capture the
changes in link flows, whereas we use the nonlinear AC power flow equations for a more
detailed analysis of power grids. In this chapter, we compare the effects of failures in power
grids under both the nonlinear AC and the linearised DC power flow models. We numeri-
cally compare the effects of single line failures and the evolution of cascades under the AC
and the DC flow models using different metrics, such as yield (the ratio of the demand sup-
plied at the end of the cascade to the initial demand). Our numerical results in the tested
networks demonstrate that the effects of a single line failure on the distribution of the flows
through other lines are similar under the AC and DC power flow models. However, the cas-
cade simulations in the tested networks suggest that the assumptions underlying the DC
power flow model (e.g., ignoring power losses, reactive power flows, and voltage magni-
tude variations) can lead to inaccurate and overly optimistic cascade predictions.

This chapter is based on published papers [59, 82].
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5.1. INTRODUCTION

P OWER grids are vulnerable to external events, such as natural disasters and cyber-
attacks, as well as to internal events, such as unexpected variability in load or gen-

eration, aging, and control device malfunction. The operation of a power grid is gov-
erned by the laws of physics [19], and the outage of an element may result in a cascade
of failures and a blackout [24]. The recent blackouts in Turkey [2], India [3], the U.S. and
Canada [1] had devastating effects and thus motivated the study of power grid vulnera-
bilities to cascading failures (e.g., [18, 24, 83–88]).

Some of the recent work on cascading failures considers a topological perspective
where, once a network element fails, the neighboring elements also fail [78]. However,
such topological models do not consider the flow behaviour of power grids. More real-
istic cascading failures models use the linearized DC power flow equations [30, 89]. The
DC power flow equations are based on a linearization of the nonlinear AC power flow
dynamics. The induced linearization error can be small in large transmission grids and
high for some particular networks [34, 90]. Motivated by these observations, we study
the effects of line failures and cascades under both the linearized DC model and a non-
linear AC model by performing simulations on four test networks.

Due to their complexity, the AC power flow equations are not as commonly used as
the DC power flow equations in studying cascading failures in power grids. An AC power
flow model is utilized in [87, 91], as well as in some (mostly commercial) software tools
for modeling the evolution of the cascade [92]. Unfortunately, none of these tools is pub-
licly available. Hence, for the evaluation in this chapter, we developed an AC cascading
failures simulator [93], using the MATPOWER AC power flow solver [80].

Previous work on determining the accuracy of the DC power flow approximation in-
cludes [34, 90, 94–98]. However, these works did not consider accuracy of the DC flows
in predicting the evolution of a cascade. In [87], the DC and the AC cascading failures are
compared when all the buses (nodes) in the AC model are voltage controlled (PV) buses.
To the best of our knowledge, this work is the first to compare the evolution of cascades in
power grids under the AC and DC power flow models in detail and for many of the publicly
available power grid networks [42, 80].

First, we numerically evaluate the accuracy of the DC power flow model when there
are no failures. Then, we compare the effects of single line failures under the AC and the
DC power flow models. We numerically demonstrate that the DC power flow model can
capture the effects of a single line failure on the flow changes on other lines relatively
close to the AC power flow model.

Subsequently, we present an AC cascading failures model that is based on the nonlin-
ear power flow equations, and is therefore, is more realistic than the corresponding DC
model. We empirically compare the AC and DC cascade models based on robustness
metrics that quantify the operational and topological characteristics of the grid during
a cascade for all cascading failures initiated by single and two line failures. Our simula-
tions demonstrate that the assumptions underlying the DC model (assuming a lossless
network and ignoring reactive power flows and voltage variations) can lead to inaccurate
and overly optimistic cascade predictions.

Moreover, we empirically compare the AC and DC cascades under different supply
and demand balancing and line outage rules. Our simulation results show that the dif-
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ference between the cascade evolution under the AC and DC power flows depends on
the balancing and line outage rules in power grids. In particular, the supply and demand
balancing rule that separates the excess supply or demand from the grid increases the
difference between the AC and DC models the most.

The remainder of this chapter is organized as follows. Section 5.2 presents the power
flow equations. Section 5.3 presents the cascading failures models. Section 5.4 presents
the numerical comparison of the AC and DC flow models in four different test networks
and Section 5.5 concludes the chapter.

5.2. POWER FLOW EQUATIONS
In this section, we provide details on the AC and DC power flow equations.

5.2.1. AC POWER FLOW EQUATIONS
A power grid with n nodes (buses) and m transmission lines constitutes a complex net-
work whose underlying topology can be represented by an undirected graph G (N ,L ),
where N denotes the set of nodes and L denotes the set of lines. Each line l has a pre-
determined capacity cl that bounds its flow | fl | under a normal operation of the system.
The status of each node i is represented by its voltage Vi = |Vi |e iθi in which |Vi | is the
voltage magnitude, θi is the phase angle at node i , and i denotes the imaginary unit.

The goal of an AC power flow analysis is the computation of the voltage magnitudes
and phase angles at each bus in steady-state conditions [99]. In the steady-state, the
injected apparent power Si at node i equals to

Si =Vi (YV)∗i (5.1)

where ∗ denotes the complex conjugation, V = [V1, . . . ,Vn]T is the vector of node voltages,
and Y is the n×n bus-admittance matrix [19]. The elements of the admittance matrix Y,
which depend on the topology of the grid as well as the admittance values of the lines.

Rewriting the admittance matrix as Y = G+ iB where G and B are real matrices, and
using the definition of the apparent power Si = Pi +iQi in (5.1) leads to the equations for
the active power Pi and the reactive power Qi at each node i :

Pi =
n∑

k=1
|Vi ||Vk |(Gi k cosθi k +Bi k sinθi k ) (5.2)

Qi =
n∑

k=1
|Vi ||Vk |(Gi k sinθi k −Bi k cosθi k ) (5.3)

where θi k = θi −θk .
In the AC power flow analysis, each node i is categorized into one of the following

three types:

1. Slack node: The node for which the voltage is typically 1.0. For convenience, it is
indexed as node 1. The slack node compensates for network losses by emitting
or absorbing power. The active power P1 and the reactive power Q1 need to be
computed.
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2. Demand node: The active power Pi and the reactive power Qi at these nodes are
known and the voltage Vi needs to be computed.

3. Supply node: The active power Pi and the voltage magnitude |Vi | at these nodes
are known and the reactive power Qi and the phase angle θi need to be computed.

5.2.2. DC POWER FLOW EQUATIONS
The AC power flow equations are nonlinear in the voltages. The DC power flow equation
provides a linearized approximation of the active power flows in the AC model. Lin-
earization is possible under the following conditions [99]:

1. The difference between the voltage phase angles of every couple of neighboring
nodes is small such that sinθi k ≈ θi k and cosθi k ≈ 1.

2. The active power losses are negligible, and therefore, Y ≈ iB where B is the imagi-
nary part of the admittance matrix Y, calculated neglecting the line resistances.

3. The variations in the voltage magnitudes |Vi | are small and, therefore, it is assumed
that |Vi | = 1 ∀i .

Under these assumptions, given the active power Pi at each node i , the phase angle
of the nodes can be estimated by θ̃i using the DC power flow equations as follows:

Pi =
n∑

k=1
Bi k (θ̃i − θ̃k ) (5.4)

or in matrix form,
P̃ =−BΘ̃ (5.5)

where P̃ = [P̃1,P2, . . . ,Pn]T, Θ̃ = [θ̃1, . . . , θ̃n]T. Notice that the vectors P and P̃ are equal
except in the slack node (first entry) since in the DC power flows, the lines are lossless
and therefore P̃1 +∑n

i=2 Pi = 0.
By assuming that the phase angle at the slack node is 0, the phase angle of the nodes

can be estimated uniquely by solving (5.5) for the DC power flow.
In Section 5.4, we numerically compare the AC and DC power flow models.

5.3. MODELING CASCADING FAILURES
An initial failure in power grids may result in subsequent failures in other parts of the
grid. These consecutive failures following an initial failure constitute a cascading failure.
In this section, we follow [30, 84, 87, 100] and develop models for cascading failures due
to line failures in power grids.

Before a cascading failure, we assume that G (N ,L ) is connected, the power flows
satisfy (5.2) and (5.3) or (5.5), and the flow magnitude | fl | of each line is at most its ca-
pacity cl .

Next, we describe the cascading failures models. When an initial set of lines fail,
they are removed from the network. As a result of this removal, the network topology is
changed, and the power grid can be divided into one or more connected components.
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Following [30], we assume that each connected component can operate autonomously.
If there is no supply or no demand within a connected component Gk , the component
becomes a dead component, and all the demand or supply nodes within the component
are put out of service. If there are both supply and demand nodes within a connected
component Gk , the connected component remains an alive component, but the supply
and demand within the component should be balanced. We use two different supply
and demand balancing rules [30, 84, 87]:

1. Shedding and curtailing: The amount of the power supply or demand are reduced
at all nodes by a common factor. If the total active power supply is more than the
total active power demand in a connected component Gk , the active power out-
puts of supplies are curtailed. On the other hand, if the total active power supply
is not sufficient to serve the total active power demand, demand shedding is per-
formed to balance the supply and demand within Gk .

2. Separating and adjusting: Excess supplies or demands are separated from the grid.
In this case, we assume that the dynamic responses of the supplies (or vice versa,
demands) are related to their sizes [19]. Namely, the supplies (demands) with
lower amounts of power output are assumed to be faster to respond to the imbal-
ances between supply and demand. Thus, within each component Gk with excess
supply (demand), the supplies (demands) are separated from the grid according
their sizes from the smallest to largest until the removal of one more supply (de-
mand) results in the shortage of supply (demand). Then, the active power output
(demand) of the largest supply (demand) node is reduced in order to balance sup-
ply and demand.

After supply and demand are balanced within each alive component using the se-
lected balancing rule, the power flow equations are solved to compute new flows through
the lines. Note that the line capacities are not taken into account in determining the
flows. The new set of line failures are then found in all alive components. In a practical
power grid, transmission lines are usually protected by relays and circuit breakers. A re-
lay of a transmission line measures certain variables, and compares them with threshold
values. When the threshold is violated, and/or this violation lasts long enough, the re-
lay notifies the circuit breaker to trip the transmission line. To approximate this tripping
mechanism, we use two different line outage rules [84, 87, 100]:

1. Deterministic: A line l fails when the power flow magnitude through that line, de-
noted by | fl |, exceeds its capacity cl .

2. Probabilistic: A line l fails with probability pl at each stage of the cascade. We
assume that each line l with a flow capacity cl has also a nominal power flow level
ξl ∈ [0,cl ], after which the line may fail with a certain probability (due to increase
in line temperature etc.). Under this model, the probability pl is approximated as:

pl =


0, if | fl | < ξl
| fl |−ξl
cl−ξl

, if ξl ≤ | fl | < cl

1, if | fl | ≥ cl .

(5.6)
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After finding the new set of line failures using the selected line outage rule, the cas-
cade continues with the removal of those lines. If there are no new line failures in any of
the alive components, the cascade ends.

In this chapter, we study three cascade processes:

I) Cascade with shedding and curtailing balancing rule and deterministic line outage
rule,

II) Cascade with separating and adjusting balancing rule and deterministic line out-
age rule,

III) Cascade with shedding and curtailing balancing rule and probabilistic line outage
rule.

In order to study the differences between the AC and DC models, we mostly focus on
the cascade process I with shedding and curtailing balancing rule and deterministic line
outage rule. In order to further capture the effects of these processes on the differences
obtained under the AC and DC cascade models, in Subsection 5.4.5, we briefly compare
the three cascade processes.

In the following two subsections, we provide the details of the cascade models under
the AC and DC power flows.

5.3.1. AC CASCADING FAILURES MODEL
In the cascade under the AC power flow model, the flows are composed of active parts
Pi in (5.2) and reactive parts Qi in (5.3). Hence, the apparent power Si in (5.1) is used to
calculate the flows. In general, due to transmission line impedances, the voltage at the
sending node of a line is different than the one at the receiving node, resulting in different
values of the apparent power flows at each side of the line. Hence, in the cascade under
the AC model, we define the magnitude | fl | of flow through a line l = {i ,k} as follows:

| fl | =
|Si k |+ |Ski |

2
. (5.7)

The difference, Si k − Ski , between the sent and received apparent flows through a
line l represents the power loss over that line. The sum of the losses over all the lines is
the total loss in the network. The total loss cannot be calculated in advance and is only
known after the power flow equations in (5.1) are solved. Therefore, in the cascade under
the AC flow, a part of the total supply in the network is reserved to supply the network
losses and denoted by the reserved loss factor η.

The case of zero reserved loss factor, η= 0, means that no reserve supply is allocated
for network losses, whereas a large reserved loss factor η corresponds to a large reserve
supply for the network losses. Once the power flow equations are solved and the network
losses are calculated, the difference between the allocated supply and the total demand
with losses is compensated by the slack-node. Therefore, in the AC cascading failures
model, the simulation is slack-node dependent, and for every alive component without
such a node, a slack-node must be assigned. The developed model chooses the slack-
node as the supply node with the maximum power output in that alive component.
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The iterative process of solving the AC power flow equations (5.2) and (5.3) may re-
sult in the absence of a solution or a divergence in iterations. In such cases, it is per-
ceived that the connected component cannot function at those operational conditions,
and supply and demand shedding is applied. The amount of active and reactive power
demands, and active power supply within that component are decreased until either
convergence is reached in the flow equations or the component becomes a dead com-
ponent with no demand.

We numerically study the three cascade processes under the AC power flow model in
Section 5.4.

5.3.2. DC CASCADING FAILURES MODEL
In the cascade under the DC power flow model, the magnitude | fl | of the flow through a
line l = {i ,k} is equal to the magnitude of active power flow in (5.4) on that line:

| fl | = |Pi k | = |Pki |. (5.8)

Since the network is assumed to be lossless, the magnitude of the active power at
the sending side of a line is equal to the magnitude of active power at the receiving side,
|Pi k | = |Pki |, and the total supply is equal to the total demand. Therefore, the supply and
demand balancing is performed without a reserved loss factor η. Moreover, the no-loss
assumption means that the flows in the network are slack-node independent.

Contrary to the AC power flow equations (5.2) and (5.3), which are nonlinear, the
DC power flow equations (5.5) are linear, and a solution always exists for a connected
network with balanced supply and demand [23]. Hence, no supply or demand shedding
due to convergence issues is needed in the DC model.

We numerically study the three cascade processes under the DC power flow model
in Section 5.4.

5.4. NUMERICAL COMPARISON OF THE AC AND DC FLOW

MODELS
This section presents the numerical comparison of the AC and DC power flow models.
After providing the simulations setup, we numerically evaluate the accuracy of the DC
power flow model when there are no failures. Then, we compare the effects of single line
failures, and the evolution of the cascade process I initiated by single and two line fail-
ures under the AC and DC flow models. Next, we compare the three cascade processes
under the AC and DC flow models. Finally, we discuss the main lessons learned from the
simulations.

5.4.1. SIMULATIONS SETUP

METRICS

We define metrics for evaluating the grid vulnerability (some of which were originally
used in [23, 89, 100, 101]). To study the effects of a single line e failure on the flows
through other lines we define:
Ï Line flow change ratio (sl ,e ): the ratio ∆ fl / fl of the change ∆ fl in the flow through a
line l due to the failure at line e to its original flow value fl .
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Ï Line outage distribution factor (ml ,e ): the ratio ∆ fl / fe of the change ∆ fl in the flow
through a line l due to the failure at line e to the flow value fe of the failed line e.

Additionally, we define the following metrics to measure other dynamics of the sys-
tem after a single line failure, which can only be captured under the AC power flow model
due to the DC power flow assumptions 2 and 3 in Section 5.2.2:
Ï Node voltage change (∆vi ,e ): the change in the voltage magnitude at node i after the
failure at line e.
Ï Power loss change ratio (∆pµ,e ): the ratio of the change in the active power output of
the slack generator due to the failure at line e to the initial loss.

We also define metrics to evaluate the cascade severity:
Ï Node-loss ratio (NG ): the ratio of the total number of failed nodes (i.e., nodes in dead
components) at the end of the cascade to the total number of nodes.
Ï Line-loss ratio (LG ): the ratio of the total number of failed lines at the end of the cas-
cade to the total number of lines.
Ï Yield (YG ): the ratio of the demand supplied at the end of the cascade to the initial
demand.

In addition to the previous metrics which capture the overall effect of a cascading
failure on a power grid, we identify the frequently overloaded lines that may cause cas-
cading failures to persist. Hence, we define
Ï Line-vulnerability ratio (Rl ): the total number of cascading failures in which line l is
overloaded over the total number of cascading failures simulations. Higher values of Rl

indicate the vulnerability of the line l as a possible bottleneck in the network.

PROPERTIES OF THE NETWORKS USED IN SIMULATIONS

We considered four realistic networks: the IEEE 30-bus, the IEEE 118-bus, and the IEEE
300-bus test systems [42], as well as the Polish transmission grid [80]. The details of these
networks are as follows.
ÏThe IEEE 30-bus test system contains 30 nodes and 41 lines with a total power demand
of 189.2 MW.
Ï The IEEE 118-bus test system contains 118 nodes and 186 lines with a total power
demand of 4242 MW.
Ï The IEEE 300-bus test system contains 300 nodes and 411 lines with a total power
demand of 23,525.85 MW.
Ï The Polish transmission grid, at summer 2008 morning peak, contains 3120 nodes
and 3693 lines with a total power demand of 21,181.5 MW.

In the IEEE test networks, maximum line flow capacities are not present. Follow-
ing [30], the line flow capacities are estimated as cl = (1+α)max{| fl |, f }, where α is the
line tolerance parameter, and f is the mean of the initial magnitude of line flows. For the
remainder of this chapter, we assume α= 1.

In the Polish transmission grid data, emergency ratings are used for the flow capac-
ities of the network. In order to eliminate existing overloaded transmission lines at the
base case operation, the line flow capacities of such overloaded lines are changed to
cl = (1+α)| fl | where α= 1.
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POWER FLOW SOLVER

In the simulations, we used MATPOWER [80] package in MATLAB for solving the AC and
DC power flows.

5.4.2. NO FAILURES CASE
In this section, we numerically evaluate the accuracy of the DC power flow model when
there are no failures in four test networks. First, we check the validity of the assumptions
underlying the DC power flow approximation (as mentioned in Section 5.2.2). Then, we
compute the absolute difference between the AC and DC power flow models.

Figure 5.1 shows the cumulative distribution functions (CDFs) of the absolute differ-
ence between the voltage phase angle of neighboring nodes, the ratio of the real to the
imaginary part of the admittance values, the deviation of the voltage magnitudes from 1
p.u., and the absolute difference of the AC and DC active power flow through links.

In particular, Figure 5.1a demonstrates that the difference between the voltage phase
angles of neighboring nodes (condition 1) is less than 0.1 for 80% of the pairs in all test
networks. Figure 5.1b shows that the imaginary part of the admittance values are dom-
inant (condition 2) in the test networks. Figure 5.1c shows that the voltage magnitudes
are close to 1.0 (condition 3) for all the nodes. In Figure 5.1d, the differences between the
AC and DC power flows is less than 0.2 (p.u.) for nearly 80% of the lines.

Figure 5.1 demonstrates that when the assumptions underlying the DC power flow
approximation are valid, the DC power flows could approximate the AC power flows of
most of the network lines relatively well when there are no failures. In the following
subsections, we show that upon cascading failures, however, the DC approximation may
become inaccurate. Moreover, the small differences between the AC and DC power flows
in different cascade stages may lead to drastic differences at the end of the cascade.

5.4.3. COMPARISON OF THE SINGLE LINE FAILURE EFFECTS
Single line failure and its consequent removal is the first stage and the triggering event
of possible cascading failures. In this section, we perform empirical studies on single
line failures in four realistic networks. Since the line flow change ratios sl ,e for the lines
with a low initial flow can be unreasonably high [89], these values are calculated only
for the lines whose initial flow is larger than the mean flow. Additionally, to capture the
variations of the line outage distribution factors ml ,e and power loss change ratios∆pµ,e ,
line failures that partition the network are not considered in the set of failed lines.

Figure 5.2 presents the CDFs of the differences in the line flow change ratios and
line outage distribution factors calculated based on the AC and DC flows. These results
show that the differences decrease with the size of the network. In nearly 80% of the
observed values in the IEEE 30-bus network, the magnitudes of the differences in the
line flow change ratios sl ,e and the line outage distribution factors ml ,e are smaller than
0.05, whereas, in the Polish transmission grid this percentage is nearly 98%.

Since the DC power flow model cannot capture the node voltage changes ∆vi ,e (the
node voltages are always equal to 1 under the DC model) and the power loss change ra-
tios∆pµ,e (the network is assumed to be lossless under the DC model) after a line failure,
the CDFs of these two metrics are shown in Figure 5.3 only for the AC flow model. Fig-
ure 5.3a shows the absolute changes in the magnitude of the node voltages due to a line
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Figure 5.1: The validity of the assumptions underlying the DC power flow approximation and the resulting
difference between the AC and DC power flow models: the CDFs of (a) the absolute difference between the
voltage phase angle of neighboring nodes, (b) the ratio of the real to the imaginary part of the admittance
values, (c) the deviation of the voltage magnitudes from 1, and (d) the absolute difference of the AC and DC
active power flows.
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Figure 5.2: The CDFs of the differences in the line flow change ratios and the line outage distribution factors
based on the AC and DC flow models.
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Figure 5.3: The CDFs of the magnitudes of node voltage changes and the power loss change ratios after a single
line failure for all the test networks under the AC flow model.

failure using the AC model. Both increase and decrease in the values of the node voltages
are observed. However, the probability of a decrease is higher as the system continues to
operate with fewer lines.

Figure 5.3b illustrates the power loss change ratios after a line failure using the AC
model. A line failure can lead to an increase or a decrease in the slack node power out-
put. However, the probability of a decrease is quite low since the system’s loss generally
increases when lines are removed from the grid.

Similar to our observations in Figure 5.2, the node voltage changes and power loss ra-
tios generally become smaller with the size n of the network. For the Polish transmission
grid, the obtained values of nearly all the node voltage changes and power loss change
ratios are smaller than 0.005 and 0.05, respectively.
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5.4.4. COMPARISON OF THE CASCADE PROCESS I EVOLUTION UNDER THE

AC AND DC MODELS
The models introduced in Sections 5.3.1 and 5.3.2 are used to simulate cascading failures
under the AC and DC flow models, respectively. For a fair comparison between the AC
and DC models, the loss factor in the AC cascading failures model (in Section 5.3.1) is
taken to be zero. Moreover, the cascade process I is used in this subsection in order to
focus on the differences between the AC and DC models.

CASCADING FAILURES INITIATED BY A SINGLE LINE FAILURE

An example of a cascade initiated by a single line failure in the IEEE 118-bus network
under the two cascade models is shown in Figure 5.4. The basic observation from this
figure is that the evolution of the cascade under the two models can be quite different.
For instance, in Figure 5.4a, there are two overloaded lines at the first stage of the cascade
under the AC model which are not overloaded under the DC model. This initial differ-
ence results in a considerable difference in the evolution of the cascade: An important
flow path in the AC model is failed at the first stage, resulting in more severe consecutive
stages. Therefore, the differences between the AC and DC models accumulate at each
cascade stage and may lead to a drastic difference at the end of the cascade.

To further investigate the differences, we simulate cascading failures due to all single
line failures whose initial flows were larger than the mean of initial flows in the four test
networks. Figures 5.5, 5.6, 5.7, and 5.8 provide the detailed results obtained under the
two cascade models.

Figure 5.5 shows the scatter plot of the yield values under the two models for the
four test networks. It suggests that the yield values obtained by the DC cascade model
are usually higher, specially for large networks. Moreover, Figure 5.8a, which presents
the CDFs of the differences in yield values for all the test networks, also shows that the
differences in the obtained yield values can grow quite high in large networks.

In Figure 5.6 and Figure 5.8b, however, the line-loss ratios are observed to be close
under the two cascade models in all the four networks. The same is true for the node-loss
ratios (see Figure 5.8c). Despite the similarity of the line-loss and node-loss ratios under
the two cascade models, Figure 5.7, which presents the line-vulnerability ratios, suggests
that as networks become larger, the individual lines that fail frequently under the AC
model are very different from their counterparts under the DC model (see Figures 5.7c
and 5.7d). Figure 5.8d also shows that the differences in the line-vulnerability ratios are
close for most of the lines, but the differences may be quite large for roughly 10% of the
lines in large networks.

CASCADING FAILURES INITIATED BY TWO-LINE FAILURES

We study cascades that are triggered by two-line failures. Two-line combinations of all
lines whose initial flows are larger than the mean initial flows are investigated in the IEEE
30- and 118-bus networks, whereas, in the IEEE 300-bus network and the Polish trans-
mission grid, 1000 random two-line removals are selected out of those combinations.
The same set of results as in the previous section are presented in Figures 5.9, 5.10, 5.11,
and 5.12. Similar observations as in the previous section can be made from these figures
for the differences in the cascades initiated by two line failures under the AC and DC
cascade models.
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Figure 5.4: Evolution of a cascade initiated by a single line failure in the IEEE 118-bus network under the AC
and DC cascade models. The remaining load at the end of the simulation is 1594.5 MW under AC cascading
failures model, and 2446.3 MW under DC cascading failures model.
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Figure 5.5: The scatter plots of the yield values under the AC versus DC cascade models initiated by single line
failures. Markers are scaled according to the frequencies of corresponding data points.
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Figure 5.6: The scatter plots of the line-loss ratios under the AC versus DC cascade models initiated by single
line failures. Markers are scaled according to the frequencies of corresponding data points.
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Figure 5.7: Comparison between the line-vulnerability ratios under the AC and DC cascade models initiated by
single line failures. The lines with the highest line-vulnerability ratios under the AC cascade model are selected
for comparison.
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Figure 5.8: The CDFs of the differences between the metrics after cascading failures initiated by single line
failures under the AC and DC flow models for all the test networks.
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Figure 5.9: The scatter plots of the yield values under the AC versus DC cascade models initiated by two-line
failures. Markers are scaled according to the frequencies of corresponding data points.

Figure 5.9 shows the scatter plot of the yield values under the AC and DC cascad-
ing failures models for the four test networks. Yield values obtained by the DC cascade
model are usually higher, specially for large networks. Figure 5.12a presents the CDFs of
the differences in yield values for all the test networks. Removal of two lines usually puts
the system in a more critical condition with more cascade stages: The magnitudes of the
differences in the obtained yield values are slightly higher for the cascades initiated by
two line failures than by one line failure.

Figure 5.10 and Figure 5.12b show the line-loss ratios are still close under the two
cascade models in all the four networks. The same is true for the node-loss ratios (see
Figure 5.12c). However, similar to the yield, the differences in the line-loss and node-loss
ratios are slightly higher for the cascades initiated by two line failures than by a single line
failure.

Similar to the cascades initiated by single line failures, the lines that fail frequently
under the AC model are also different here from their counterparts under the DC model
(see Figures 5.11c and 5.11d) when the networks become larger. Figure 5.12d also sug-
gests that the differences in the line-vulnerability ratios are also slightly higher here than
in the cascades initiated by single line failures.
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Figure 5.10: The scatter plots of the line-loss ratios under the AC versus DC cascade models initiated by two-
line failures. Markers are scaled according to the frequencies of corresponding data points.
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Figure 5.11: Comparison between the line-vulnerability ratios under AC and DC cascade models initiated by
two-line failures. The lines with the highest line-vulnerability ratios under the AC cascade model are selected
for comparison.
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Figure 5.12: The CDFs of the differences between the metrics after cascading failures initiated by two-line
failures under the AC and DC flow models for all the test networks.
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5.4.5. COMPARISON BETWEEN THE THREE CASCADE PROCESSES UNDER

THE AC AND DC MODELS

In this subsection, we compare the three cascade processes defined in Section 5.3 initi-
ated by single line failures under the AC and DC models. For the cascade process III, we
set the threshold ξl of a line l in (5.6) as ξl = 0.8 · cl .

Figures 5.13-5.17 provide detailed comparisons between the results obtained under
the AC and DC cascade models for the three cascade processes. Figure 5.13a and Fig-
ure 5.13b show the scatter plots of the yield values for cascades in the IEEE 118-bus net-
work and Polish grid. They suggest that the yield values obtained by the cascade process
II are generally lower than the other two cascade processes under the AC model. Fig-
ure 5.17a and Figure 5.17b, which present the CDFs of the differences in yield values
under the AC and DC cascade models for the three cascade processes in the IEEE 118-
bus network and Polish grid, also show that the differences in the obtained yield values
under the AC and DC models can grow high for the cascade process II.

Figure 5.14a and Figure 5.14b show the scatter plots of the line-loss ratios under the
AC and DC cascade models for the three cascade processes in the IEEE 118-bus network
and Polish grid. Line-loss ratios obtained by the cascade process II are usually higher,
leading to higher differences between the line-loss ratios obtained by the AC and DC
flow models. Figure 5.17c and Figure 5.17d present the CDFs of the differences in line-
loss ratios in the IEEE 118-bus network and Polish grid. Similar to Figure 5.17a and Fig-
ure 5.17b, the magnitudes of the differences in the obtained line-loss ratios under the AC
and DC models are highest for the cascade process II.

Figure 5.15a and Figure 5.15b present the comparison between the highest line-
vulnerability ratios under the AC and DC cascade models for the cascade process II in
the IEEE 118-bus network and Polish grid. Figure 5.16a and Figure 5.16b present the
comparison between the highest line-vulnerability ratios under the the AC and DC cas-
cade models for the cascade process III in the IEEE 118-bus network and Polish grid. The
difference between the individual line-vulnerability ratios in Figure 5.16b is particularly
high for the cascade process III. Figure 5.17e and Figure 5.17f show that the differences
in the line-vulnerability ratios may be larger for the cascade process III.

Figures 5.13-5.17 suggest that different rules for the supply and demand balancing
and line outages could have different effect on the evaluation of the cascades under the
AC and DC flow models. In particular, the cascade process II increases the differences
between the AC and DC models the most. In this model, by disconnecting many small-
sized generators distributed in the network, the demands are supplied by few large-sized
generators during the cascade stages. Consequently, the remaining network suffers from
low voltage magnitudes and overloaded lines, which can lead to divergence in iterations
of AC power flow equations. Moreover, the reactive power flows and voltage magnitudes
are not modeled by the DC flow model which can lead to higher differences between the
cascades under AC and DC flow models.

Although the cascade process III does not affect the yield values and line-loss ratios
very much, its effect is more significant in identifying the most vulnerable set of lines.
Due to the probabilistic line tripping model in (5.6), different lines may trip at each cas-
cade stage, which can result in detecting different sets of vulnerable lines under AC and
DC flow models.
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Figure 5.13: The scatter plots of the yield values under the AC vs DC cascade models for the three cascade
processes initiated by single line failures. Markers are scaled according to the frequencies of corresponding
data points.
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Figure 5.14: The scatter plots of the line-loss ratios under the AC vs DC cascade models for the three cascade
processes initiated by single line failures. Markers are scaled according to the frequencies of corresponding
data points.
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Figure 5.15: Comparison between the line-vulnerability ratios under the AC and DC cascade models for the
cascade process II initiated by single line failures. The lines with the highest line-vulnerability ratios under the
AC cascade model are selected for comparison.
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Figure 5.16: Comparison between the line-vulnerability ratios under the AC and DC cascade models for the
cascade process III initiated by single line failures. The lines with the highest line-vulnerability ratios under
the AC cascade model are selected for comparison.
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Figure 5.17: The CDFs of the differences between the metrics after cascades under the AC and DC models for
the three cascade processes initiated by single line failures in IEEE 118-bus network and Polish grid.



5

86
5. EFFECTS OF FAILURES IN POWER GRIDS UNDER THE AC AND DC POWER FLOW

MODELS

5.4.6. MAIN LESSONS LEARNED FROM THE SIMULATIONS
In this section, we summarize the results obtained in the previous subsections. The main
lessons learned from the analysis of the DC cascading failures model compared to the AC
cascading failures model from the simulations are as follows:

1. When there are no failures and the assumptions underlying the DC power flow
approximation are valid, the DC power flow model can approximate the AC power
flow model in the network relatively well.

2. The DC power flow model can capture the effects of a single line failure on the
flow changes on other lines (i.e., line flow change ratios and line outage distribu-
tion factors) relatively accurately. However, because of their limitations, they fail
to capture other dynamics such as node voltage changes and power loss change
ratios.

3. The AC and DC cascade models with the cascade process I provide similar line-
and node-loss ratios (i.e., total number of line and node failures) most of the time.

4. The AC and DC cascade models with the cascade process I provide similar yield for
small networks. However, for large networks (e.g., the Polish grid) the DC cascade
model tends to overestimate the yield.

5. The AC and DC cascade models with the cascade process I agree on the most vul-
nerable lines under the line-vulnerability ratios in small networks, most of the
time. However, for larger networks (i.e., the Polish grid) they tend to detect dif-
ferent sets of lines.

6. The DC cascade model with the cascade process II could underestimate the sever-
ity of the cascade compared to AC model with the same cascade process, as the
effects of node voltage changes and reactive power flows are neglected under the
DC flow model.

7. The AC and DC cascade models with the cascade process III provide similar yield,
line-loss, and vulnerability ratios for small networks. However, for larger networks
(e.g., the Polish grid) they result in different sets of most vulnerable lines.

Overall, the obtained results suggest that due to the voltage constraints, the divergence
problems, and the reactive power flows, the cascades under the AC flow models are more
significant compared to the ones under the DC flow model. Hence, the DC model may
underestimate the severity of the cascade, especially for larger networks.

5.5. CONCLUSION
In this chapter, we thoroughly compared the AC and DC power flow models in describ-
ing the state of the grid when there are no failures as well as in predicting the effect of
single line failures and the evolution of cascades. We numerically compared the AC and
DC power flow models and numerically demonstrated in the tested networks that when
there are no failures, the DC power flow model provides relatively accurate approxima-
tion of the AC power flow model. Upon failures, numerical results for the single line
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failure analysis show that the DC power flow model provides a similar flow redistribu-
tion after single line failures as the AC flow model. On the other hand, the cascading
failures simulation demonstrates that even slight errors in individual line flows can turn
out to be important at cascade stages, and the metrics that capture the operational and
topological aspects of the cascade can differ significantly under the two models. These
results suggest that special care should be taken when drawing conclusions based on the
DC cascade model in power grids. Overall, the DC cascade model can provide an overly
optimistic estimation compared to the AC cascade model.





6
PLANNING FOR WIND POWER

INTEGRATION INTO POWER GRIDS

In previous chapter, we show that the generation dispatch of the network is important as
well as the underlying topology in the analyses of power grids. Many countries aim to
integrate a substantial amount of wind power in the near future. This requires meticulous
planning, as the integration of wind farms and their power outputs into the power grid
affect the operation of network. In this chapter, we investigate the optimal placement of
wind farms, thereby taking into account wind characteristics and power grid constraints.
We model the long-term variability of wind speed using a Weibull distribution according
to wind direction intervals, and formulate the metrics that capture wind characteristics
at a specific location, namely the arithmetic mean of wind speed, the theoretical wind
power density and the capacity factor of a prospective wind power plant. Subsequently, we
construct a linear optimization to determine the geographical locations and the installed
capacities of wind farms in order to maximize the expected annual wind power generation
while obeying the constraints from the power grid and the transmission system operator.

This chapter is based on published papers [102] and [103].
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6.1. INTRODUCTION

D RIVEN by the long-term goals to achieve a sustainable energy system, the utiliza-
tion of renewable energy, especially wind power, is rising. Wind farm investments

are usually large in size (installed capacity), and their output can be integrated into the
power grid from the high-voltage level. The intermittent nature of wind power can chal-
lenge the stability and reliability of the power grid. The wind speed characteristics at a
wind farm determine the power generation from wind turbines. Therefore, for prospec-
tive investors and for power system analysts who carry out the reliability analyses, mod-
elling the variation of wind speed is essential [104].

Many researchers have conducted case studies to investigate the distribution of wind
speed for various purposes [105]: In risk analyses concerning extreme or maximum wind
speeds, extreme value distributions [106] are typically used [107], whereas in grid inte-
gration studies, the Weibull distribution is widely used because of its flexibility and sat-
isfactory results in fit tests [108, 109]. This chapter investigates wind power integration
with a long-term focus. Consequently, the Weibull distribution according to wind direc-
tion intervals [110] is utilised to model the annual wind speed distributions. We further
formulate the metrics [111], average wind speed, wind power density and the capacity
factor of a wind power plant, to assess the wind characteristics at a geographical loca-
tion.

The main motivation for investing in a wind farm is the expected profit. On sites
with strong wind, investors prefer to establish wind farms of substantial sizes. In order
to avoid network congestion due to the power outputs of such wind farms, the grid op-
erators are conservative about the integration of new power plants into the power grid
and may impose limits on the maximum installed capacities in certain regions [112].
Various methodologies have been proposed to facilitate the determination of wind farm
locations [113]. A number of these studies are based on the maximization of the profit
of investors [114], which ignore the integration effects of wind farms into the power grid.
Therefore, some studies propose methods for wind power integration according to the
needs of the power grid (such as loss reduction, voltage regulation [115, 116]). Never-
theless, those theoretical integration plans may fail to be realised as the proposed wind
farm locations do not necessarily attract investors. To solve this wind farm placement
problem, this chapter presents a combined methodology for countrywide optimal wind
power integration: Initially, the metrics that capture the quality of wind are utilised to
assess the feasible locations for establishing wind farms from an investor’s point of view.
Subsequently, those feasible geographical sites are mapped on the power grid, and the
optimal siting and sizing of wind farms to maximize annual wind power generation,
while obeying the constraints from the power grid and the transmission system oper-
ator are determined. Therefore, the proposed placement of wind farms is of interest to
investors, and the prospective integration of the power outputs of wind farms does not
violate the transmission grid constraints.

The remainder of this chapter is organised as follows: Section 6.2 explains the mod-
els for wind speed and the power output of a wind turbine. The criteria for the evaluation
of potential sites for wind farms are discussed in Section 6.3. Section 6.4 formulates the
linear optimization problem to investigate the optimal integration of wind power plants,
and the results of the optimization are presented in Section 6.5. Finally, Section 6.6 con-
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Figure 6.1: Model for annual variability of wind speed (Nd =6).

cludes the chapter.

6.2. PROBABILISTIC MODEL FOR THE POWER OUTPUT OF A

WIND TURBINE
This section presents probabilistic models for wind speed and formulates the long-term
variability of the power output of a wind turbine.

6.2.1. WIND SPEED CHARACTERISTICS

The annual variability of wind speed is used in assessing the integration of wind farms
into the power grid [104], and typically, the Weibull distribution is used to represent the
annual variation of wind speed [108, 109]. The probability density function (pdf) fV (v)
and the cumulative distribution function (cdf) FV (v) of the Weibull distribution are de-
fined as

fV (v) = b a−b vb−1e−( v
a )b

FV (v) = 1−e−( v
a )b

where v denotes the Weibull random variable (wind speed), a is a scale parameter and b
is a shape parameter [109].

Measurements show that wind speed characteristics depend on wind direction [110,
117, 118]. In this chapter, the dependence of wind speed on wind direction is incorpo-
rated into the probabilistic model of wind speed as follows: Annual wind measurement
data (usually on an hourly basis) at a specific site are divided into Nd intervals according
to wind direction. Subsequently, the wind speed values clustered for each interval are
represented by a fitted Weibull distribution and a frequency value that captures how of-
ten wind blows from this direction interval as compared to all intervals [110]. Figure 6.1
illustrates a long-term wind speed model at an arbitrary site.
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Figure 6.2: A typical p-v characteristic of a wind turbine.

As a result, the probability density function of wind speed at a site is defined as

fV (v) =
Nd∑
i=1

fVi (v) ωi (6.1)

where Nd is the total number of direction intervals, fVi (v) is the Weibull probability den-
sity function of wind speed for the i th interval, andωi is the frequency of the i th interval.

6.2.2. THE POWER OUTPUT OF A WIND TURBINE

The power available in wind is converted to a useful form of energy by wind turbines.
The power output of a wind turbine depends on wind speed and the characteristics of
the wind turbine, such as efficiency, size and power curve. The power curve or the p-v
characteristic of a wind turbine defines how the power output of the wind turbine varies
with wind speed [119]. In Figure 6.2, a typical power curve of a wind turbine is illustrated.

The power curve of a wind turbine can be analysed in three regions: In order for the
wind turbine to start generating power, wind speed must be greater than the cut-in speed
vin. Consequently, below the cut-in speed, in region I, the power output of a wind turbine
is zero. Similarly, in region III, the wind turbine stops operating to prevent damage at
higher speeds than the cut-off speed voff and does not generate power. Therefore, the
wind turbine generates power when wind speed is between the cut-in and the cut-off
speeds, in region II. In this region, the power output of a wind turbine increases with
increasing wind speed till the rated speed at which the maximum power output of the
wind turbine is reached and generated till the cut-off speed. Hence, the power output p
of a wind turbine can be expressed as

p =
{

0 if v < vin or v > voff,

PC (v) if vin ≤ v ≤ voff
(6.2)
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where PC (.) represents the power curve of the wind turbine.

From (6.2), the probability of zero power output can be calculated as the sum of the
probabilities that wind speed is smaller than the cut-in speed or larger than the cut-off
speed

FP (0) =Pr(v < vin)+Pr(v > voff)

=FV (vin −ε)+1−FV (voff +ε)

where FP (p) is the cdf of the power output of the wind turbine, and ε is a small positive
number.

The power curve of a wind turbine is a non-decreasing function in regions I and II.
Therefore, from the change of variables technique in probability theory [120], the cdf of
the power output can be expressed as the sum of the cdf of wind speed and the proba-
bility that power output is zero due to speeds higher than the cut-off speed:

FP (p) = FV (v)+1−FV (voff +ε) (6.3)

where p = PC (v), i.e., the power output of the wind turbine at wind speed v .

From the cdf of the power output, the expected annual power generation from the
wind turbine GW can be found by integration:

GW =
∫ pmax

0

(
1−FP (p)

)
d p ·8760 [MWh] (6.4)

where pmax is the size of the wind turbine in MW and 8760 represents the hours in a year.

6.3. THE ASSESSMENT OF POTENTIAL SITES FOR WIND FARMS

FROM AN INVESTOR’S POINT OF VIEW
The location of a wind farm influences the power generated from wind turbines and the
impact on the power grid. Therefore, the assessment of potential sites for wind farms
is crucial to the wind power integration analyses. Based on the models for wind speed
and the power output of a wind turbine presented in Section 6.2, this section develops
the criteria for evaluating a potential site for wind farm construction from an investor’s
point of view.

6.3.1. INDICATORS OF SUITABLE LOCATIONS FOR WIND FARMS

The decision to invest in a wind farm at a certain location depends on two main criteria:
wind power potential and investment disincentives. The wind power generative poten-
tial of an area can be captured by indicators such as average wind speed, wind power
density, and the capacity factor of a prospective wind turbine. On the other hand, disin-
centive indicators can include economic and environmental criteria such as high values
of land cost or altitude levels, and the proximity to urban areas.
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THE ARITHMETIC MEAN OF WIND SPEED

The arithmetic mean of wind speed v̄ at a site is calculated using the expected value
theorem [120] in the model for wind speed (6.1) as

v̄ =
Nd∑
i=1

∫ ∞

0
bi a−bi

i vbi e
−( v

ai
)bi

d v ωi

=
Nd∑
i=1

ai Γ(1+ 1

bi
) ωi (6.5)

where Γ(.) is the Gamma function, and ai and bi are the Weibull parameters of fVi (v).

THE THEORETICAL WIND POWER DENSITY

The theoretical power available in wind pw at an instant of time [111] is calculated as

pw = 1

2
ρa v3 A⊥ (6.6)

where ρa is the air density and A⊥ is the area perpendicular to wind, i.e., the blade sweep
area of a wind turbine. As the calculation in (6.6) depends on the size of the wind turbine
due to the cross-sectional area A⊥, wind power density ρ is defined [111] so that wind
power potential can be captured regardless of the turbine size:

ρ = 1

2
ρa v3. (6.7)

The expected theoretical wind power density ρ̄ at a site can be calculated by intro-
ducing the proposed model for wind speed in (6.1) and the expected value theorem
into (6.7) as

ρ̄ =
Nd∑
i=1

1

2
ρa

∫ ∞

0
bi a−bi

i vbi+2 e
−( v

ai
)bi

d v ωi

= 1

2
ρa

Nd∑
i=1

ai
3 Γ(1+ 3

bi
) ωi . (6.8)

THE CAPACITY FACTOR OF A WIND TURBINE

The capacity factor [111] of a wind turbine is defined as the ratio of actual power genera-
tion over a period of time, to the potential power generation if it were possible to operate
at full capacity indefinitely:

Capacity Factor = Total Generation

Turbine Size ·Operating Hours
. (6.9)

For the proposed model, the annual capacity factorηof a wind turbine at a site can be
calculated using the expected annual power generation (6.4) in the definition of capacity
factor (6.9) as

η=
∫ pmax

0

(
1−FP (p)

)
d p

Pmax
. (6.10)
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ECONOMIC AND ENVIRONMENTAL CRITERIA

Strong wind characteristics are good indicators of potential sites for wind farms. How-
ever, it is not possible to construct a wind farm at every promising site. Additional cri-
teria for site selection may be imposed due to economic or environmental concerns.
Economic criteria could comprise the lack or difficulty of transportation to the site, the
land cost or the distance to the power grid, whereas environmental factors could be the
site being close to city centres, airports, or forested areas, having high altitude and so
on. Indeed, in some countries, for wind power plants to have a generation license, in-
vestors have to submit an assessment showing that the wind farm to be established does
not result in any harm to the nature and environment. Therefore, these criteria should
be included in the studies related to the determination of wind farm locations and the
integration of wind farms into the power grid.

6.3.2. QUANTIFYING THE CRITERIA FOR WIND FARMS
In previous section, we show that two main criteria are important while deciding on
suitable locations for wind farms: wind power potential and investment disincentives
due to economic and environmental criteria. Ideally, an investor should review all M
related indicators {r1(k), . . . ,rM (k)} before investing in a wind farm at a site k. In this
section, we model those indicators of a wind farm investment using fuzzy sets [121],
which enables us to quantify the satisfaction degree of each indicator during the decision
process of a wind farm at a site k.

We use increasing fuzzy function F
(
ri (k)

)
in (6.11) and decreasing fuzzy function

F
(
ri (k)

)
in (6.12) to evaluate the satisfaction degree of each indicator ri (k) for a wind

farm in site k. The increasing fuzzy function represents the incentive indicators, whereas
the decreasing fuzzy function represents the disincentive indicators. The resulting fuzzy
membership degrees take values between 0 and 1 corresponding to the unsatisfactory
and full-satisfactory evaluations of a site k, respectively.

F
(
ri (k)

)=


0 if ri (k) < qi ,
ri (k)−qi

pi−qi
if qi ≤ ri (k) ≤ pi ,

1 if ri (k) > pi ,

(6.11)

F
(
ri (k)

)=


1 if ri (k) < pi ,
ri (k)−qi

pi−qi
if pi ≤ ri (k) ≤ qi ,

0 if ri (k) > qi ,

(6.12)

where for each indicator ri , qi and pi correspond to the thresholds of unsatisfactory and
full-satisfactory evaluations, respectively.

6.3.3. MULTIPLE-CRITERIA DECISION ANALYSIS OF WIND FARMS
Since we have to deal with and optimize for multiple fuzzy parameters, we focus on
multiple-criteria decision analysis in this section.

The perspective of an investor is important when assessing the criteria for a wind
farm at a site k. For instance, an investor could consider a worst-case scenario of the re-
lated indicators or could, as the other extreme, consider a best-case scenario. Following
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[122], [123], we employ fuzzy logic aggregation operators to allow for variability in per-
spective. We use the and ∧ and the or ∨ aggregation operators to map two extreme cases
of an investor’s stance on multiple-criteria decisions. The and operator ∧ of the fuzzy
membership degrees requires the satisfaction of all desired criteria, in other words, a
conservative perspective when evaluating the satisfaction degrees of related indicators:

min
1≤i≤M

F
(
ri (k)

)
. (6.13)

The or operator ∨ is appropriate to model a more optimistic or lenient perspective.
The implementation of the or operator in (6.14) passes over the less satisfactory indica-
tors of site k:

max
1≤i≤M

F
(
ri (k)

)
. (6.14)

Lastly, to model the perspective of an investor in between those two extreme cases,
we can use a weighted mean operator µ in (6.15):

M∑
i=1

wi F
(
ri (k)

)
(6.15)

where the ultimate decision is the convex combination of the satisfaction degrees of the
decision indicators, such that

∑
i wi = 1.

By applying these aggregation operators to each site k, we can obtain an suitabil-
ity value ∈ [0,1] of that site for building wind farms. The higher suitability values of a
site indicate a potential location of wind farms from an investors point of view. In the
next section, an optimization problem is formulated to find the optimal siting and sizing
of wind farms among those potential sites which maximizes the expected total annual
power generation while adhering to the rules by transmission system operator.

6.4. PLACING WIND FARMS UNDER GRID CONSTRAINTS
The integration of wind farms and their power outputs into the power grid affects its
operation. Therefore, grid operators demand that newly integrated wind power plants
into the power grid do not violate the transmission system constraints. Additionally, grid
operators could declare regional upper bounds on wind farms due to economic and ge-
ographical concerns. On the other hand, the expected profit from a wind farm is the
main concern for power plant investors, and the revenue from a wind farm is closely
related to the expected total generation. Therefore, on sites with strong wind, investors
prefer to establish wind farms of substantial sizes whose power output integration into
the power grid can cause problems. In Section 6.3, the criteria governing the potential
sites for wind power plants from an investor’s point of view are determined. In this sec-
tion, an optimization problem is formulated to find the best solution to the wind farm
placement problem: The expected total annual power generation from the selected sites
is maximized, while adhering to the rules established by transmission system operator.
Consequently, the objective function f (Sk ) to be maximized is defined as

f (Sk ) =
N∑

k=1

∫ Sk

0

(
1−FPk (p)

)
d p ·8760 (6.16)
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where f (Sk ) represents the total annual generation from the wind farms, N is the total
number of potential sites for wind farms satisfying the criteria according to Section 6.3,
FPk (p) is the cdf of the wind farm power output at the kth site and Sk represents the size
of the wind farm at the kth site.

When wind power outputs are integrated into the power grid, power flow in the net-
work changes, and the final state of the power grid must satisfy the power flow laws.
We assume that a prospective wind farm at the kth site will be electrically connected to
the power grid at a pre-defined network node (substation) i , and we use the linearised
DC power flow [34] to represent the power flow behaviour in the grid. Consequently, the
maximization of (6.16) is subjected to the linearised power flow equations (6.17) for each
network link l , and the power balance equations (6.18) for each network node i :

Pl −
Θs −Θr

Xl
= 0 (6.17)

PCi +PWi +Pli −Li = 0 (6.18)

where Pl is the active power flow over the network link l ,Θs is the voltage phase angle at
the sending node of link l ,Θr is the voltage phase angle at the receiving node of link l , Xl

is the reactance of link l , PCi is the total power output of the existing generators at node
i , PWi is the total wind power output at node i , i.e., the sum of the power outputs of the
wind farms that are electrically connected to node i , Pli is the net link flow received at
node i , and Li is the electrical load consumed at node i .

The power output of a wind turbine is shown to be a random variable in Section 6.2.
Therefore, total wind power output PWi integrated into the power grid from node i at an
instant is not known in advance. We deploy a diversity factor1 fD to define the relation
between the power output at an instant and the total installed capacity of wind farms
connected to a node i

fDi =
PWi∑N
k→i Sk

(6.19)

where
∑N

k→i Sk represents the sum of the installed capacities of wind farms electrically
connected to node i , and fDi is the diversity factor of node i . The diversity factor needs
to be input to the optimization problem and reflects the level of conservatism wanted by
the transmission system operator. The maximum diversity factor of a node is 1, demon-
strating the instant at which all wind farms connected to node i are producing their max-
imum power output. Consequently, assuming a diversity factor of 1 in the optimization
formulation is the most conservative integration planning, as it is expected to be most
confined by the power grid constraints.

As the power outputs of the wind farms are not known in advance, the balance be-
tween the generated power and the consumed electrical load in (6.18) is achieved by
giving a margin of safety to the selected existing reserve power plants, whereas for the
other existing plants the generation output is fixed

PCi min
≤ PCi ≤ PCi max

(6.20)

1Demand diversity factor in power system analyses is defined as the ratio of the peak demand of the loads as a
whole to the sum of the non-coincident peak demands of all individual units [124].
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where PCi min
represents the minimum generation from existing generators at node i , and

PCi max
represents the maximum generation from existing generators at node i .

Finally, the objective function in (6.16) is subjected to the constraints which are im-
posed by the transmission system operator: The final flows over each network link l
must be smaller than the maximum flow limit, and the total size of wind farms at each
site k and in each region r should not exceed the limits set by the transmission system
operator

|Pl | ≤ Pl ,max (6.21)

Sk ≤ Sk,max (6.22)

N∑
k ∈ r

Sk ≤Ur,max (6.23)

where Pl ,max is the maximum flow limit of the link l , Sk,max is the maximum total size
of the wind farm at the kth site,

∑N
k ∈ r Sk represents the sum of the installed capacities

of wind farms in region r and Ur,max is the regional upper bound for the wind farms in
region r .

The resulting linear optimization, i.e., the maximization of the objective func-
tion (6.16), subject to the linear equality constraints (6.17), (6.18), and the linear inequal-
ity constraints (6.20), (6.21), (6.22), (6.23) for different values of diversity factors in (6.19),
can be solved by the linear programming.

6.5. CASE STUDY: WIND FARM PLANNING IN TURKEY
This section presents a case study to demonstrate how the proposed methodology can
be applied to assess the potential sites for wind farms in Turkey and to plan for the wind
power integration into the power grid.

6.5.1. WIND CHARACTERISTICS

The countrywide wind data of Turkey that include historical annual hourly wind speed
and direction values for every 6×6 km2 geographical area have been utilised to define
the probability density function of wind speed (6.1) for each site2.

For the power curve model in (6.2), the power curve of a practical wind turbine3 is
used and the cdf of the power output of a prospective wind turbine at each geographical
area in Turkey is calculated according to (6.3). As an example, Figure 6.3 illustrates the
pdf of the wind speed according to wind direction intervals at a specific area, and Fig-
ure 6.4 shows the cdf of the power output of a wind turbine at the specific area for the
wind speed characteristics in Figure 6.3: The unpromising wind speed characteristics in
the 1st, 2nd, 5th, 6th and 9th direction intervals in Figure 6.3 result in higher probabilities
of zero power output of the wind turbine.

2The data were retrieved from TÜBITAK Marmara Research Center. The total number of geographical areas is
21,983. The total number of direction intervals Nd in (6.1) is selected as 12, since the minimum error in the
Weibull fitting is obtained for Nd = 12 for randomly chosen test areas, which is in-line with [110].

3The power curve of the Vestas V112-3.0 MW wind turbine was retrieved from:
http://www.vestas.com.
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Figure 6.3: The wind speed variation according to wind direction intervals at a specific location.

6.5.2. POTENTIAL SITES FOR WIND FARMS

Following from Section 6.3, the arithmetic mean of wind speed (6.5), the theoretical wind
power density (6.8), and the capacity factor of a prospective wind turbine (6.10) are cal-
culated for each geographical area. Due to the positive correlation between the promis-
ing wind energy potential and the investment criteria for wind farms, the increasing
fuzzy function in (6.11) is used to calculate corresponding satisfaction degrees of those
indicators. The landscape of Turkey contains heterogeneously distributed mountainous
regions with varying altitudes. High altitude regions and high slope lands are undesir-
able for establishing wind farms. Thus, we use the altitude of a site k as a disincentive
indicator for wind farms. Due to the negative correlation between the altitude and the
investment criteria for wind farms, the decreasing fuzzy function in (6.12) is used. The
resulting membership functions of selected indicators are shown in Figure 6.5. The full-
satisfactory and unsatisfactory thresholds of indicators are determined based on related
works [125] and the wind power characteristic of Turkey [126].

The potential sites of wind farms are evaluated based on their suitability values. We
used and operator (6.13) to aggregate the indicators of wind farms and set the minimum
suitability value of a potential wind farm site to 0.5. In other words, the sites that have
higher values of 6 m/s for the arithmetic mean of wind speed, 200 W/m2 for the theoret-
ical wind power density, and 15% for the capacity factor of a prospective wind turbine
and lower values of 2000 m for the altitude are selected as potential sites. Under these
constraints, more than three quarters of the geographical areas in Turkey are not fea-
sible for the establishment of wind farms. We also eliminated ineligible geographical
areas which can contain urban areas, natural parks, airports, etc.4 Finally, we show the

4The related lists of national parks, natural monuments, protected areas in Turkey were retrieved from the
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Figure 6.4: The cdf of power output of a wind turbine at the specific location in Figure 6.3.

potential sites for wind farms Figure 6.6. The white coloured areas in Figure 6.6 show the
geographical areas in Turkey that satisfy the proposed criteria in Section 6.3 and each of
them is treated as a potential site for the establishment of wind farms in the optimization
formulation.

6.5.3. OPTIMAL SITES FOR WIND FARMS

The optimal integration of wind farms into the Turkish electricity grid is investigated ac-
cording to the proposed methodology in Section 6.4 for the declared 3 GW of the wind
power integration. The weighted graph representation of the high-voltage (400 kV and
154 kV) transmission grid is used. The substations are modelled as nodes, whereas the
transmission lines and the transformers are modelled as links. The constructed model
for the power grid has in total 1499 nodes and 2479 links. Year 2017 forecasts for the
supply and demand are used in the model for the power grid in (6.17) and (6.18) at the
instant of peak load5 conditions. Flexible generation is allowed for the largest 2 hydro-
power plants of Turkey. The thermal ratings of transmission elements are used as the
flow limits in (6.21). The geographic coordinates of substations are utilised to couple
each feasible site k with the closest node i in the power grid, and with the region r .
The maximum size of a wind farm in (6.22) is restricted to 30 MW and maximum wind
farm connection capacities announced by the Turkish electricity transmission operator
(TEİAŞ) are used as the regional constraints in (6.23). Lastly, the optimization problem in
Section 6.4 is solved by the linear programming solver (linprog) in MATLAB for the maxi-

websites of Republic of Turkey, Energy Market Regulatory Authority, and Republic of Turkey, Ministry of En-
ergy and Natural Resources:
http://www.epdk.gov.tr, and http://www.enerji.gov.tr, respectively.

5Peak load describes the period in which the power requirement of a power system is expected to be maximum.
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Figure 6.5: The membership functions of the selected indicators of wind farms.

Figure 6.6: The determination of potential sites for wind farms in Turkey. White areas satisfy the criteria in
Section 6.3, whereas light grey, dark grey and black areas are ineligible for the establishment of wind power
plants due to the quality of wind criterion, economic and environmental criteria, and both of the criteria,
respectively.

mization of the objective function (6.16), subject to the linear equality constraints (6.17),
(6.18), and the linear inequality constraints (6.20), (6.21), (6.22), (6.23) for different val-
ues of diversity factors in (6.19).

Figure 6.7 illustrates the optimal siting and sizing of wind farms for the diversity fac-
tor fD = 1. The selected placement maximizes the annual wind power generation from
the wind farms, while complying with the power grid constraints. The thermal ratings
of 16 transmission elements are found to be binding6 in the optimal solution, and the
whereabouts of those transmission elements indicate the bottlenecks of the power grid.
The expected total annual wind power generation is calculated as 8.2796 TWh with the
average capacity factor of 31.9%, which support the feasibility of the proposed place-

6A constraint is binding if changes in its value change the optimal solution. In other words, at the optimal
solution, a binding inequality constraint is satisfied at its limit. Less severe constraints that do not affect the
optimal solution are called non-binding.
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Figure 6.7: The optimal wind farm placement when fD = 1.

Table 6.1: The value of the objective function in different power output scenarios.

fD f (Sk ) [TWh]
0.1 8.4136
0.2 8.4136
0.3 8.4136
0.4 8.4136
0.5 8.4136

fD f (Sk ) [TWh]
0.6 8.4136
0.7 8.4107
0.8 8.3953
0.9 8.3503
1.0 8.2796

ment plan from an investor’s point of view.

Finally, the impact of the diversity factor on the optimal locations is analysed. Ta-
ble 6.1 presents the results of the objective function for 10 different values of diversity
factor (6.19) in the optimization problem. The same optimal sizes and locations, which
produce 8.4136 TWh of annual wind generation, are selected in 6 out of 10 cases. The
power grid inequality constraints (6.21) are observed to be non-binding for that solution,
which means that the most contributing sites to the objective function (6.16) in each re-
gion are selected for the integration, and their simultaneous power output up to 60% of
the total installed capacity does not violate the transmission grid constraints. However,
in the remaining cases with diversity factor equal to or larger than 0.7, the power grid in-
equality constraints also become binding. Consequently, new sets of sizes and locations
with less-favourable wind characteristics that comply with the power grid constraints
are selected, which decreases the annual wind power generation. The diversity factor
could be determined by transmission system operators depending on the planned de-
gree of flexibility in the operation of transmission system. If minimum risk of overloads
is desired by the transmission system operators, the solution of the optimization prob-
lem for maximum diversity factor, fD = 1, could be used for the long-term integration
plan of wind farms.
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6.6. CONCLUSION
This chapter presented a comprehensive methodology to investigate the wind power in-
tegration into the power grid. We calculated the probabilistic functions for the long-
term variability of wind speed and the power output of a wind turbine. We presented the
expressions for three metrics, arithmetic mean of wind speed, theoretical wind power
density, and the capacity factor, which capture the quality of wind at a specific area and
used them while determining the feasible locations for wind farm establishment. We
further utilised a map-based approach to couple each wind farm site with the nodes in
the power grid. Subsequently, we formulated an optimization problem to find the opti-
mal sizing and siting of wind farms, such that the selected sites can generate maximum
expected annual wind power generation while satisfying the regional and the power grid
constraints. The constructed optimization formulation facilitates the assessment of the
placement of wind power plants, and could be used by transmission system operators as
a long-term transmission network planning tool for the grid integration of wind power
plants.





7
CONCLUSION

Network science provides a complementary approach to the traditional flow-based meth-
ods for investigating the subtle behaviour of power grids. Motivated by the increasing need
of reliable power grids and the merits of network science on the analyses of power grids,
this thesis develops concepts and tools for modelling, analysing and planning of power
grids relying on network science. The developed concepts for investigating the power grids
and its current and/or near-future challenges can be used to exploit the relationship be-
tween the topology, the operation and the performance of power grids, and help to address
the near-future challenges of power grids by simulating their impacts and by assisting in
network planning processes.
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7.1. MAIN CONTRIBUTIONS

T HE main contribution of this thesis is the additional insight, concepts and measures
for a better understanding of (i) the network science approach for power grids, and

(ii) how to utilize it to solve the current and/or the near-future challenges of power grids
in terms of line removals/additions, malicious attacks, network expansion, cascading
failures, and renewable integration. The operation of a power grid, thus also its reliabil-
ity, is mainly governed by the operative state and the topology. In this context, we diverge
from the purely topological approaches, and take an extended-topological approach in
the analysis and planning of power grids: We model the underlying topology of power
grids as simple or weighted graphs (according to the characteristics of the transmission
lines), and we take the electric power as the physical quantity that flows through the net-
work according to the power flow equations. Such an approach makes it possible both
to assess the interdependencies between the components of power grids, and to investi-
gate the emergent behaviours of a power grid (such as cascading failures) while obeying
the main assumptions of power grids.

This thesis addresses the challenges of power grids with an interdisciplinary ap-
proach and extends the state of the art in the applications of network science on power
grids. The main contributions of each chapter are as follows:

Chapter 2 expresses the linearised DC power flow equations in power grids in terms
of graph-related matrices. This result opens the door to the direction in analysing power
grids by an extended-topological approach, which includes the fundamentals of a power
grid, such as the flow allocation according to Kirchhoff’s laws and the effect of transmis-
sion line reactances. The chapter further derives the expressions for the sensitivities of
link flows to link removals and additions. These results can be used to support decision
makers in deciding which lines or flow capacities to upgrade, how to prepare for contin-
gencies and how to choose the location of a new line.

Chapter 3 presents two different graph models for power grids as simple and
weighted graphs. Based on the weighted graph model for power grids, this chapter ex-
tends the traditional centrality metrics, i.e., degree, closeness, betweenness and eigen-
vector centrality, by including the flow behaviour in power grids. Via case studies, we
show that targeted node attacks based on those traditional and extended centralities are
extremely effective to destruct the power grids. Thus, the methodology and results of
this chapter can assist the grid operators with analysing the current vulnerability of their
network to targeted attacks and with taking necessary measures by protecting the im-
portant nodes in their networks.

Chapter 4 investigates the power transmission in various graphs and aims to under-
stand the impact of power transmission on the magnitude of link flows, node voltages
and active power losses in power grids. Many other criteria related to the performance
of power grids, such as the effect of flow capacities of links, the operation under single
line failure contingencies and the ease of the control over the network, as well as the
underlying topology, are discussed in this chapter, which could assist in planning for a
topological transformation and network expansion in power grids.

Chapter 5 develops models to predict how cascading failures in power grids evolve
using both the nonlinear AC and linearised DC power flow equations. This section con-
tributes the related field of cascading failures that considers a topological perspective
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where, once a network element fails, the neighbouring elements also fail. Moreover, the
models presented in this chapter could help to identify the vulnerable parts of power
grid not only under N −1 contingencies but also the consequent N −k contingencies.

Chapter 6 presents a methodology to plan for the wind power integration into power
grids. The two-fold approach in this chapter, i.e., first identifying the potential wind
farm locations from an investors point of view and then selecting the locations under
the constraints from power grids, provides a more realistic perspective on the wind farm
placement problem. The metrics that capture the promising wind power potential and
the constructed optimization formulation facilitate the planning for renewable energy
integration and could be used by transmission system operators as a medium- or long-
term planning tool.

7.2. DIRECTIONS FOR FUTURE WORK
The developed concepts in the previous chapters and their results open doors to possible
future research directions:

Chapter 2 uses the weighted Laplacian and its pseudo-inverse to express the lin-
earised DC power flow equations in power grids. However, a weighted Laplacian can
describe many other processes, that are linear –or could be linearised– to the network
topology such as water flow networks, mechanical or thermal systems. It would be an
interesting research direction to apply the similar concepts such as effective graph resis-
tance to those other types of networks.

Chapter 3 shows that the power grids are vulnerable to targeted attacks. What to do
after the targeted attacks is an attractive direction for future work. Given that the effects
of the attacks are temporary (i.e., network components are not permanently damaged),
how to optimally (in terms of cost, time etc.) restore the network back to the initial con-
ditions?

Chapter 4 investigates the steady-state operation of power grids under given deter-
ministic generation and demand profiles. It would be a challenge to analyse the perfor-
mance indicators of power grids and decide on the ‘optimal’ topology under probabilis-
tic generation and demand profiles.

Chapter 5 proposes models to simulate the evolution of cascading failures in power
grids initiated by single- or double-line failures. This work can be extended to analyse
the effects of different sets and patterns of line and/or substation outages or generation
and/or demand changes, for instance during the case of natural disasters.

Chapter 6 proposes a long-term wind power integration plan under the constraints
from power grids. It would be possible to turn the integration plan into a multi-objective
optimization problem, and decide on feasible network investments which can welcome
more wind farm integration at a certain locations. In addition, for other near-future chal-
lenges, such as the placing the electric vehicle charging stations, can one apply a similar
methodology?
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larımı sunmak istiyorum. Eniştem Robert de Korte’ye özet kısmını Hollandaca’ya çe-
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Delft, 2018



CURRICULUM VITÆ

Hale Çetinay was born in Ankara, Turkey on 14 March 1988. She completed her Bach-
elor’s degree at Middle East Technical University, Ankara in June 2011 in the Electrical
and Electronics Engineering. She continued her studies at Middle East Technical Uni-
versity and received her Master’s degree in the Electrical and Electronics Engineering in
May 2014.

During the last semester of her Bachelor studies, she worked as a part-time re-
searcher in the Power Systems Analysing and Planning group of the Scientific and Tech-
nological Research Council of Turkey (TÜBİTAK), Ankara, where she continued work-
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