<]
TUDelft

Delft University of Technology

Building a Correct-by-Construction Type Checker for a Dependently Typed Core
Language

Liesnikov, Bohdan; Cockx, Jesper

DOI
10.1007/978-981-97-8943-6_4

Publication date
2025

Document Version
Final published version

Published in
Programming Languages and Systems

Citation (APA)

Liesnikov, B., & Cockx, J. (2025). Building a Correct-by-Construction Type Checker for a Dependently
Typed Core Language. In O. Kiselyov (Ed.), Programming Languages and Systems: 22nd Asian
Symposium, APLAS 2024, Kyoto, Japan, October 22-24, 2024, Proceedings (pp. 63-83). (Lecture Notes in
Computer Science (including subseries Lecture Notes in Atrtificial Intelligence and Lecture Notes in
Bioinformatics); Vol. 15194 LNCS). Springer. https://doi.org/10.1007/978-981-97-8943-6_4

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-981-97-8943-6_4
https://doi.org/10.1007/978-981-97-8943-6_4

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

®

Check for
updates

Building a Correct-by-Construction Type
Checker for a Dependently Typed Core
Language

Bohdan Liesnikov®)® and Jesper Cockx

Delft University of Technology, Delft, The Netherlands
{b.liesnikov,j.g.h.cockx}@tudelft.nl

Abstract. Dependently typed languages allow us to state a program’s
expected properties and automatically check that they are satisfied at
compile time. Yet the implementations of these languages are themselves
just software, so can we really trust them? The goal of this paper is to
develop a lightweight technique to improve their trustworthiness by giv-
ing a formal specification of the typing rules and intrinsically verifying
the type checker with respect to these rules. Concretely, we apply this
technique to a subset of Agda’s internal language, implemented in Agda.
Our development relies on erasure annotations to separate the specifi-
cation from the runtime of the type checker. We provide guidelines for
making design decisions for certified core type checkers and evaluate
trade-offs.

Keywords: Dependent types - Agda + Correct-by-Construction
Programming

1 Introduction

Developers use a variety of techniques to increase trust in the software projects
they are working on, ranging from manual testing, to static type systems and
formal specification and verification. The latter can guarantee adherence of the
software to the specification - as demonstrated by projects such as CompCert
[33], CakeML [31], seld [30], JSCert [13], and Verdi Raft [55]. The correctness of
these formal verification efforts relies on the soundness of the tools used [8,41] -
such as Coq [51], Agda [50], Idris [14,52], or Isabelle [37].

Being mere pieces of software, formal verification tools can also have bugs
and are not inherently trustworthy. To mitigate this, a common countermeasure
is to build them around a small and trusted kernel, as pioneered by LCF [28],
Coq, and Twelf [39], and later adopted in Lean, Isabelle [32], Idris, and others.
Andromeda developers [11] describe the kernel as “kept as simple as possible, and
it only supports very straightforward type-theoretic constructions which directly
correspond to applications of inference rules and admissible rules.” While this
does increase trust, they also note that “a careful code review of the nucleus will
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

O. Kiselyov (Ed.): APLAS 2024, LNCS 15194, pp. 63-83, 2024.
https://doi.org/10.1007/978-981-97-8943-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-8943-6_4&domain=pdf
http://orcid.org/0009-0000-2216-8830
http://orcid.org/0000-0003-3862-4073
https://doi.org/10.1007/978-981-97-8943-6_4

64 B. Liesnikov and J. Cockx

probably unearth some bugs, and hopefully not very many.” The same can be
said about all other proof assistants, as witnessed by critical bugs that are still
being discovered®, even if these are hard to exploit accidentally [46].

Moving beyond a trusted core, MetaCoq [44,46] proposes to formally verify
each part of the verification pipeline - from parsing to extraction. However,
for dependently typed languages this can be a herculean task, taking teams
many years to complete. MetaCoq itself began in 2014 with TemplateCoq [34]
and is still ongoing in 2023 [46]. Thus existing approaches fail at either cost-
effectiveness or strong verification assurances. We need techniques that provide
a more rigorous verification process than pure code review, yet remain scalable
and feasible for real-world sized systems.

In this paper we present a design that sits between these two extremes. We
target a dependently typed core language modelled after a subset of Agda’s
internal syntax. Concretely, we contribute the following:

— We formally specify the syntax and typing rules for a dependently typed
language with universes, dependent function types, simple datatypes, and
case expressions.

— We implement a type checker for this language that produces evidence of
well-typedness for each term it accepts.

— We demonstrate the use of erasure annotations [9,24,36,50] to ensure a clear
separation between the parts of the type checker that are needed for compu-
tation, and those only needed for its verification.

The implementation consists of four parts: a well-scoped representation of
the syntax for terms and signatures (Sect. 2, Sect. 4.1, and Sect. 5.1), a simple
environment machine for reduction (Sect. 3.3, Sect. 4.2, and Sect. 5.2), a for-
mal specification of the typing and conversion judgments (Sects. 3.1, 4.3, and
5.3), and a correct-by-construction type checker that outputs typing derivations
(Sects. 3.2, 4.4, and 5.4).

While the language we present is far from novel [10,21], the focus of this
paper is on how we formalize the syntax and typing rules, and how these choices
influence the implementation of the type checker.

We introduce our implementation gradually, starting with the simply typed
lambda calculus (STLC) in Sects. 2 and 3. In Sect. 4 we extend it to handle
dependent function types and universes. Finally, in Sect. 5 we add simple induc-
tive datatypes and defined symbols.

The source code for the paper is available at
github.com /jespercockx/agda-core/tree/aplas-2024.2
Limitations This paper is an experiment in language engineering rather than
language theory. While we provide a formal specification of the syntax and typing
rules, we refrain from proving any meta-theoretical properties. In particular, we
are not formalising a variant of MLTT but take the typing rules as the source of
truth. For the type checker we aim to strike a balance between formal guarantees

! github.com/coq/coq/blob/master/dev/doc/critical-bugs.md.
2 archived at doi.org/10.4121/6f239149-2526-42a0-8d07-d0e9d6714f7f

https://github.com/jespercockx/agda-core/tree/aplas-2024
https://github.com/coq/coq/blob/master/dev/doc/critical-bugs.md
https://doi.org/10.4121/6f239149-2526-42a0-8d07-d0e9d6714f7f

Building a Correct-by-Construction Type Checker 65

and resources requried, in particular we prove soundness of our type checker but
not completeness, as doing so would require inversion lemmas for our typing
judgments. We also do not check termination or positivity, and hence do not
ensure logical soundness.

2 Representing Well-Scoped Syntax

In this section, we present a well-scoped syntax for STLC, which relies on an
abstract interface for representing scopes and names.

2.1 Well-Scoped Syntax for STLC

Well-scoped [3,12] syntax representations capture the variable names that can
be used within a term. For STLC we define a type of terms parameterised by an
abstract scope . Since the scope parameter is marked as erased (@0), at runtime
the representation is equivalent to the plain Haskell datatype Term on the right.

data Term (@0 « : Scope name) : Set where data Term where
TVar @ (@0 z: name) — = € « TVar :: Int
— Term « => Term
TLam : (@0 2 : name) — (v: Term (z <)) TLam :: Term
— Term « -> Term
TApp : (u: Term a) — (v : Term «) TApp :: Term -> Term
— Term « -> Term

Variables (TVar) consist of an erased name together with a proof of inclusion
T € q, i.e. that x is in scope a. At runtime, this proof corresponds to a plain
de Bruijn index of type Int. The TLam constructor binds x and ensures that
the body of the lambda v is in a larger scope x <1 «, where « is the current
ambient scope.

Types in STLC are defined as a simple datatype with a base type TyNat and
a function type TyArr. Since there are no type variables, no scope is needed.

data Type : Set where
TyNat : Type
TyArr : (a b : Type) — Type

2.2 Scopes and Their Operations

To represent variables, language specifications have to choose between named
variables - which are easy for humans to read but hard to reason about - and de
Bruijn indices or other nameless representations - which are easier to formalize
but notoriously confusing to humans. Our representation combines the best of
both worlds by representing variables as an erased name together with a proof
that it is in scope, which compiles to a de Bruijn index.

While scopes could be represented as a simple list of names, we choose to
work with an abstract interface [29]. This allows us to switch to a more efficient

66 B. Liesnikov and J. Cockx

representation if needed, and be explicit about which operations on scopes we
require. This will prove to be useful later on, as we use scopes to model not just
local variables but also global definitions, which can be much more numerous.
Concretely, the interface we rely on is as follows:

— A type Scope : Set with constctors () for empty scopes, [] for singleton scopes,
and <> for the disjoint union of two scopes.

— An operator ~ for reversing the order of the variables in a scope.

— A subscope predicate _C_ : @0 Scope — Scope — Set with operations for
deciding equality of subscope witnesses and computing the smaller scope’s
complement. A membership predicate _€_ : @0 name — ©0 Scope — Set g
defined asz € a=[2]| C o,

~ A data structure All © (p : @0 name — Set) — @0 Scope — Set gtoring an

element of type p x for each name z in the scope, with a lookup operation.

The name argument to the singleton constructor [] is erased, meaning that
the names provide the extra convenience for writing Agda, but do not have any
impact on the runtime representation of scopes. We do not enforce uniqueness
of names, but the inclusions are unique and their equality is decidable.

As we will see later, certain definitions require a runtime representation of the
scope. For this purpose, we use the type Rezz a x of resurrections [24] of an erased
variable @0 x : a, which contains a non-erased value that is propositionally
equal to x. For example, we will later require a weakening function that converts
Term 3 to Term B to Term (a <> f). In terms of de Bruijn indices it needs the
size of o and Rezz Scope « is precisely that - a runtime representation of the
spine, not to the names contained within it. Generally speaking, we can resurrect
a value if we can recompute it - for example, we can resurrect the scope from
the context - see rezzScope in Sect. 3.1 for usage. This is because the context
is indexed by the scope, so the length of the context is precisely the size of the
scope, which is Rezz Scope «.

Discussion Using well-scoped syntax helps us spot mistakes in the specification
of our language - which matters since many bugs in type systems arise from
incorrect handling of variables.

Our choice to use an abstract type of names rather than a simpler type
of well-scoped de Bruijn indices is motivated by keeping our specification as
readable as possible. It also gives more informative types to syntax operations,
and rules out certain classes of errors that will be easier to miss with plain de
Bruijn indices. For example, a function of type Term (zayas) = Term (y<azas)
makes it clear that the order of the variables x and y is swapped, while the type
Term (2 + s) — Term (2 + 5) does not tell us anything about the order.

Going beyond well-scoped syntax, one might also argue in favour of well-
typed syntax, statically ruling out even more errors. However, defining well-typed
syntax for languages with type-level computation is notoriously tricky [5,6,19],
and would force us to define syntax and typing judgment in a mutually dependent
way. In addition, it would not free us from also having to define untyped syntax,
since we cannot assume the input to our type checker to be well-typed.

Building a Correct-by-Construction Type Checker 67

Finally, since the type checker expects the input to be well-scoped, we fun-
damentally rely on the parser to perform scope-checking. While in principle it is
possible to perform scope and type checking in a single pass, we choose to keep
them separate, thus gaining modularity but requiring the parser to be verified
separately, which we defer to future work.

3 Type Checking STLC

Now that we have a syntax for STLC, let us take a look at three other big pieces:
the specification of typing rules, the type checker, and the evaluator.

3.1 Typing Rules

To specify the typing rules of STLC, we need to define a type of contexts which
will store the types of variables. The type of contexts is indexed by the scope of
variables declared. We define I', = : © as syntactic sugar for CtxExtend.

data Context : @0 Scope name — Set where
CtxEmpty : Context ()
CtxExtend : Context @ — (@0 z : name) — Type — Context (z < @)

The typing judgment TyTerm (rendered as I' - u : t) is indexed by a context,
a term, and its type. Each constructor of TyTerm corresponds to a typing rule.

data TyTerm (@0 I" : Context «) : @0 Term o — @0 Type — Set where
TyTVar: (p:z € a)
— I'=TVar z p : lookupVar I z p
TyLam: I' ,z:abFu:b
— ' TLamz u : TyArra b
TyApp: I'F u: (TyArr ab)
—I'Fv:a
— I'FTAppuwv:b

For variables, the type is given by the context. A lambda has a function type,
with the body living in an extended context. Finally, application asserts the type
of the argument matches the domain of the head symbol and the result matches
the codomain.

We choose to state the rules in a declarative way since they serve as part of the
specification and should be easily understood. However, in the implementation
of the type checker below, we follow a bidirectional discipline [26,40].

3.2 Type Checking
To implement a certified type checker, we first define a simple type checking
monad with a failure capability (tcError):

TCM : Set — Set
TCM a = Either TCError a

68 B. Liesnikov and J. Cockx

Type checking function application requires conversion checking, that is -
checking whether two types are equal. Since STLC has no type-level computa-
tion, conversion is just syntactic equality, so the conversion checker returns a
proof of equality or throws an error.

refl < convert al a2
refl < convert b1 b2
return refl
convert _ _ = tcError "unequal types"

We use Agda’s do-notation for the TCM monad, which includes the ability
to pattern match on the result of a statement. Here we match the results of the
recursive calls against refl, unifying the left- and right-hand sides of the equality
for the remainder of the do-block.

The type checker itself follows a bidirectional style, with two functions check-
Type and inferType that are defined mutually. Both functions return a typing
derivation, where inferType also returns the type of the given term, while check-
Type checks it against a specific type.

inferType :V (I" : Context @) u = TCM (X[ty € Type | (I' + u : ty))
checkType : V (I" : Context «) u (ty : Type) — TCM (I" - u : ty)

inferType ctz (TVar z p) = return (lookupVar ctz = p , TyTVar p)
inferType ctz (TLam z te) = tcError "cannot infer type of lambda"
inferType ctz (TApp v v) = do
(TyArr a b) , gtu < inferType ctz u
where _ — tcError "application head should have a function type"
gtv < checkType ctx v a
return (b, TyApp gtu gtv)

We infer types for all terms, except for a lambda. The where clause in the
clause for TApp deals with any cases that are not on the ‘happy path’ where
the result of the recursive call is a TyArr. In checking mode we type check only
lambdas and for any other term we switch modes and perform a conversion

check.
checkType ctz (TLam z v) (TyArr a b) = do

gtv < checkType (ctz , z:a) v b

return (TyLam gtv)
checkType ctz (TLam z v) _ =

tcError "lambda should have a function type"
checkType ctz u ty = do

(gtu , dgty) + inferType ctz u

refl <— convert gtu ty

return dgty

3.3 Reduction

While it is not yet necessary for the type checker, we also implement an evaluator
for terms, as we will need it for checking dependent types. It is based on a call-
by-value Krivine machine [22,43].

Building a Correct-by-Construction Type Checker 69

First, we define environments as lists of terms where each term can refer to
the previous ones. They are indexed by an initial scope o and a final scope .

EnvCons : Environment o 8 — (@0 z : name) — Term 3
— Environment a (z < §)

The state of the evaluator consists of an environment, the current term it is
focused on, and a stack of arguments it still needs to apply this term to. Both
the focus and the stack can refer to values defined in the environment.

record State (@0 « : Scope name) : Set where
constructor MkState
field
@0 {fullScope} : Scope name
env : Environment « fullScope
focus : Term fullScope
stack : List (Term fullScope)

The machine itself takes one step of reduction at a time, using the step
function. Just means that another reduction step is possible and Nothing means
that the evaluation is done.

step : (s : State a) — Maybe (State «)

step (MkState e (TVar z p) s) = case lookupEnvironment e p of A\ where
(Left _) — Nothing
(Right v) — Just (MkState e v)

step (MkState e (TApp v w) s) = Just (MkState e v (w :: s))

step (MkState e (TLam z v) (w :: 8)) =
Just (MkState (e, z +— w) v (map weakenBind s))

step (MkState e (TLam z v) []) = Nothing

Variables are looked up in the context, application arguments are pushed
to the stack, and lambdas move arguments from the stack to the environment
before continuing to evaluate the body.

We start evaluation with an empty environment and an empty stack. When
the machine halts we still have to extract the reduced term from the final state.
For this, we convert the environment to a substitution to apply it to the focus.

Substitutions Subst a 3 (syntactic sugar @ = 5 are a list-like data structure
indexed over two scopes a and [.

data Subst : (@0 « B : Scope name) — Set where
SNil : Subst 0 8
SCons : Term 8 — Subst a 8 — Subst (z < &) S

The function substTerm (not shown here) takes a substitution @ = £, and
applies it to a term in Term « to get a term in Term g.

unState : Rezz _ o — State a — Term «
unState r (MkState e v s) = substTerm (envToSubst 7 ¢€) (applys v)

70 B. Liesnikov and J. Cockx

Since step can be applied to ill-typed terms, repeated application does not
necessarily terminate. Hence to define a multi-step reduction, we use a fuel argu-
ment of type Nat that indicates a maximum number of reduction steps.

reduceState : Rezz _ o — (s : State o) — Nat — Maybe (Term «)
reduceState r s zero = Nothing
reduceState r s (suc fuel) = case (step s) of A where

(Just s7) — reduceState r s’ fuel

Nothing — Just (unState r s)

reduce : Rezz _ o — (v : Term a) — Nat — Maybe (Term «)
reduce {o = a} r v = reduceState r (makeState v)

Discussion Using substitution to extract a term from the final state duplicates
the terms present in the environment if they occur more than once in the result.
To avoid this, we could add let-expressions to our language and use them to main-
tain the environments generated by the machine. However, a naive implementa-
tion of this approach introduces let-bindings for unused terms (user-defined, as
well as generated from the machine’s state) which in practice renders it unusable.
We could remove these spurious lets with a garbage-collection-like procedure, but
such a procedure would add extra complexity, and with it extra opportunities for
bugs. So while the duplication caused by substitution is an annoying downside,
it leads to more manageable terms in the output.

An alternative to using fuel is the Delay monad [1,23]. In practice we ran into
complications when trying to implement it: using Delay as part of a monad stack
requires lifting other monads through it, which requires an altered definition to
lift through later. To define Delay as a monad transformer we also need to ensure
that m it transforms is strictly positive - either through a container encoding or
implementing a new extension of Agda.

4 Dependent Function Types and Universes

In this section, we extend STLC defined in Sect. 2 and Sect. 3 with depen-
dent function types (II-types) and a universe hierarchy, thus getting a minimal
dependently typed language.

The main change in the syntax is that types can now contain variables and
hence also have to be scoped. Type conversion also becomes more complicated,
as it needs to reduce terms.

4.1 Syntax

As types now contain terms, they are now also indexed over a scope. Concretely,
we represent types as a pair of a term together with its sort. These sorts can be
inserted by the elaborator if needed.

Building a Correct-by-Construction Type Checker 71

data Sort a where record Type av where
STyp : Nat — Sort « inductive; constructor El
field typeSort : Sort «
unType : Term «

One further change is that we wrap the argument to function application in
the Elim datatype, which will prove useful for future extensions (Sect. 5).

data Term a where
TVar : (@0 z : name) - z € a — Term «
TLam : (@0 z : name) (v : Term (z < @) — Term «
TApp : (u: Term «) (es : Elim) — Term «
TPi (@0 z : name) (u: Type &) (v : Type (z < o)) — Term «
TSort : Sort @ — Term «

data Elim a where
EArg : Term o« — Elim «
Contexts are the same as before, except with types now also being well-
scoped.

data Context : @0 Scope name — Set where
CtxEmpty : Context ()
CtxExtend : Context a« — (@0 z : name) — Type a — Context (z < &)

4.2 Reduction

Evaluation of functions is the same as for STLC. II-types and sorts do not reduce.

4.3 Typing and Conversion Rules

In this section, we extend the typing judgment with rules for II-types and sorts.
We also add a rule to convert a derivation between two types, which in turn
requires the definition of a conversion judgment.

Since the context can be considered an ‘input’ to the typing judgment, our
typing rules do not enforce well-formedness of the types in the context but
instead assume it. However, they do enforce well-formedness of the type — as
well as the term itself.

Typing judgments The form of the typing judgment is the same as before, apart
from the added scope argument to the type.

data TyTerm (@0 I" : Context o) : @0 Term a — @0 Type av — Set where

We omit the rule for variables since it is precisely the same as in Sect. 3.
In the rule for TLam, the name of the variable in « is x while the variable in b

is named y, so we need to rename the latter using renameTopType, which maps
Type (z < a) to Type (y < a),

72 B. Liesnikov and J. Cockx

TyLam : ', z : a b u : renameTopType 7 b TyAppE : {b: Type a}
—I'FTLam z w: El & (TPi y a b) —TtFu:a
— TyElim I"u e a b
— '+ TAppue:b

The application rule uses the auxiliary typing judgment TyElim, which checks
that the head symbol is of II-type and the argument type matches the domain.
To get the type of the application it substitutes the argument into the codomain.

data TyElim (@0 I" : Context «) :
(@0 u : Term &) (@0 e : Elim &) (@0 ¢ a : Type o) — Set where
TyArg : (unType ¢) Z TPiz a b
—I'Fv:a
— TyElim I u (EArg v) ¢ (substTopType r v b)
For computing the sort of II-types and sorts, we rely on two functions piSort
(maximum) and sucSort (successor).

TyPi . ' w:sortType k
— I, z:(Elku)F v:sortType [
— I' = TPi z (El k u) (El I v) : sortType (piSort k [)
TyType : I'F TSort k : sortType (sucSort k)
Finally, the conversion rule maps a typing derivation between convertible
types.
TyConv : I'+ u:a — (unType a) = (unType b) = I'F wu: b

Conversion rules We use an untyped conversion judgment Conv (syntactic sugar
=), since it allows us to define conversion separately from typing. Once again,
the rules themselves closely follow the literature[20, 38].

The two main conversion rules are CRedL and CRedR that allow us to reduce
the left- and right-hand side respectively. These two rules use the predicate
ReducesTo v w expressing that v reduces to w, when given sufficient fuel.

@0 ReducesTo : (v w : Term a) — Set
ReducesTo {a« = a} v w = X[(r, f) € Rezz _ a x Nat]
reduce r v f = Just w

Aside from these two rules, conversion is reflexive and respects all term con-
structors.
data Conv where
CRedL : @0 ReducesTo u u’ CApp:u=Zu — w>~w
—“u=Zvou=w — TApp v w = TApp v’ w’
For Il-types and lambdas, we need to rename the variable on one side in
order to bring both terms to the same scope.
CPi: wunType a Z unType a’ CLam : wu = renameTop r v
— unType b = renameTop r (unType b’) — TLam y v = TLam z v
— TPizab=ZTPiya’ b’

Building a Correct-by-Construction Type Checker 73

Discussion Untyped conversion allows us to simplify conversion rules, but pre-
vents us from easily adding type-directed conversion rules such as eta-expansion
and proof irrelevance. Theoretically, it would be possible to ask for a typing
derivation locally when applying these rules, but that would require conversion
to at least maintain a typing context. Moreover, implementing a type checker
that can provide these derivations would require a proof of subject reduction,
which we chose not to develop.

This problem could be circumvented by adding a typing rule that axiomatises
subject reduction. Since reduction is already part of the trusted code base, this
does not further compromise soundness. However, it would complicate any future
attempts to do metatheory.

4.4 Type Checking and Conversion Checking

Conversion-checker The conversion checker has the following interface:
convert : V I' (t ¢ : Term a) — TCM (&t = ¢)

Since checking conversion requires reduction, we extend the type checking
monad TCM with a field storing a read-only fuel value. The top-level convert
function gets this value and passes it to the auxiliary convertCheck, which
recurses on it. The function reduceTo takes this fuel and a term v and returns
the reduced term w together with a witness of type ReducesTo v w.

convertCheck : Nat — (r : Rezz _ a) = V (¢t ¢ : Term a) — TCM (¢ = q)
convertCheck zero _ _ _ = tcError "need more fuel"
convertCheck (suc fI) r ¢t ¢ = do

rgty < reduceTo r t fl

rcty < reduceTo r q fi

To compare two variables, we use decidable equality of variable indices z € a.
If the indices are equal, we match on refl to unify them so we can use CRefl.

(TVarz p (rpg), TVary q { pc)) —
CRedL rpg <$> CRedR rpc <$>
ifDec (decln p q)
(A where {{refl}} — return CRefl)
(tcError "two different variables aren’t convertible")

Other terms are checked by a recursive descent. For example, for lambdas we
check convertibility of the bodies, renaming variables as needed.

(TLam z w (rpg) , TLam y v { rpc)) —
CRedL rpg <$> CRedR rpc <$>
ClLam <$> convertCheck f (rezzBind r) u (renameTop r v)

Type checker As before, we follow a bidirectional discipline, with only TyLam
in checking mode again. When we encounter an inferrable term in a checkable
position, we use the TyConv rule to switch modes.

74 B. Liesnikov and J. Cockx

checkCoerce : VI' (t:Terma) — X[ty € Typea | 'F Lty
— (cty : Type a) — TCM (I' ¢t : cty)
checkCoerce ctz _ (ty , dty) cty =
TyConv dty <$> convert ctz (unType ty) (unType cty)
We discuss two cases for illustrative purposes, the others are similar. To type
check a lambda, we need to reduce the type before checking that it is a II.

checkType ctz (TLam z u) (El s ty) = do
let r = rezzScope ctz
fuel < tcmFuel
Type checking an application symbol relies on the auxiliary function
inferElim.

inferType ctz (TApp u €) = do
tu , gtu < inferType ctz u
a , gte < inferElim ctx u e tu
return $ a , TyAppE gtu gte
The function inferElim itself again reduces the type to a II-type and checks
the argument against its domain.

inferElim ctz u (EArg v) tu = do
let r = rezzScope ctx
fuel < tcmFuel
(TPi z at 1t) { rtp) < reduceTo r (unType tu) fuel
where _ — tcError "couldn’t reduce head type to a pi type"
gtv < checkType ctx v at
let tytype = substTopType r v rt
gc = CRedL rtp CRefl
return $ tytype , TyArg ge gtv

5 Inductive Types

In this section, we expand the language with parameterised - but not indexed
- inductive types and case-expressions. We also add globally defined symbols.
From an infrastructure point of view the main addition are a set of global scopes
- defScope for global definitions, conScope for constructor names, and fieldScope
for the fields of each constructor - and signature of global definitions (datatypes
and symbols).

5.1 Syntax

There are two new constructors added to the syntax. TDef represents a global
symbol, where the name d has to be in the global scope of definitions defScope.
TCon is a fully applied datatype constructor - it takes the name of the construc-
tor, an inclusion proof in the global scope of constructors, and a list of arguments
(represented as a substitution).

Building a Correct-by-Construction Type Checker 75

data Term a where
TDef : V(@0 d) — d € defScope — Term «
TCon : ¥V (@0 ¢) (cp : ¢ € conScope) — (fieldsOf ¢p) = a — Term «

We also have a new constructor ECase for Elim, representing a case expression
with a list of branches and a return type or motive [35], which can depend on
the scrutinee. As this is a constructor of Elim, the scrutinee itself is implicit.

data Elim a where
ECase : (bs : Branches a ¢s) (m : Type (z < «)) — Elim «

Each branch matches on a specific constructor c. The scopes ensure that the
term on the right-hand side can access all the arguments to the constructor.
Since scopes are extended to the left but argument lists grow to the right, the
order of the scope has to be inverted (7).

data Branch a where
BBranch : (@0 ¢ : name) (c€cons : ¢ € conScope)
(let args = fieldsOf cecons)
— Rezz _ args — Term (~ args <> «) — Branch a ¢

The type Branches « cs requires that there is one branch for each constructor
in the scope cs, thus ensuring coverage.

data Branches a: where
BsNil : Branches « ()
BsCons : Branch « ¢ — Branches « ¢s — Branches a (¢ < ¢s)

Signatures The scopes for defined symbols, constructors, and fields are collected
in a type of Globals:

record Globals : Set where
field defScope : Scope name
conScope : Scope name
fieldScope : All (A _ — Scope name) conScope

The above provides only the mames globally available, so we introduce
another record Signature that associates a definition to each name in defScope:
either a type and value for a global symbol, or a datatype declaration.

Signature : Set
Signature = All (A _ — Type () x Definition) defScope

data Definition where
FunctionDef : (funBody : Term () — Definition
DatatypeDef : (datatypeDef : Datatype) — Definition
Datatype declarations DatatypeDef store a sort dataSort, telescopes for
parameters dataParTel, and a list of constructors dataConstructors. Both the tele-
scopes and the list of constructors are also given an (erased) scope of the names
they declare.

76 B. Liesnikov and J. Cockx

field @0 dataPars : Scope name
@0 dataCons : Scope name
dataSort : Sort dataPars
dataParTel : Telescope () dataPars

dataConstructors : All (A ¢ = X (¢ € conScope)
(Constructor dataPars ¢))
dataCons
Each constructor definition stores a telescope for the types of its arguments.
Since each part of the signature is guided by scopes, there is no risk of forgetting
an argument when defining a datatype or its constructors.

record Constructor pars ¢ ¢p where
field conTelescope : Telescope pars (fieldsOf ¢p)

There are three well-formedness properties that we assume to hold:

1. From the information stored in the Datatype record we can compute its type,
which should match the type given in the Signature.

2. The names of the constructors of each datatype should be distinct.

3. The types in each conTelescope should be no larger than dataSort.

5.2 Reduction

For the evaluator, we need new rules for unfolding defined symbols and for
evaluating case expressions. For the latter, when the head symbol is reduced to
a constructor, and the top element on the stack is a case elimination, we pick
the appropriate branch, substituting the arguments into its body.

step sig (MkState e (TDef d q) s) = case getBody sig d g of X where
(Just v) — Just (MkState e (weakenGlobal v) s)
Nothing — Nothing
step sig (MkState e (TCon ¢ ¢q vs) (ECase bs _ :: s)) =
case lookupBranch bs ¢ g of A where
(Just (7, v)) — Just $ MkState (extendEnvironment (revSubst vs) e)
v
(weakenRevEl r s)
Nothing — Nothing

5.3 Typing and Conversion Rules

Conversion We define three new conversion judgments for branches, lists of
branches, and substitutions respectively.
data ConvBranch {@0 a} : (@0 b; bs : Branch o ¢cn) — Set
data ConvBranches {@0 a} : (@0 bs; bsy : Branches « ¢s) — Set
data ConvSubst ~ {@0 a} : (@0 us; uss : 8 = «) — Set
Constructors are convertible if they have the same name and convertible
arguments.

Building a Correct-by-Construction Type Checker 77

data Conv {a} where
CCon : (@0 ¢p : ¢ € conScope) {@0 us vs : fieldsOf cp = a}
— ConvSubst us vs — TCon ¢ ¢p us = TCon ¢ cp vs
Two case statements are convertible if their motives are convertible, and for
each constructor the corresponding bodies are convertible.

CECase : (bs bp : Branches « ¢s)
(ms : Type (z <)) (mp : Type (y <)

— renameTop {y = z} r (unType ms) = renameTop r (unType mp)

Global references TDef are convertible when the inclusions are equal, same
as for TVar.

Typing A defined symbol has the type indicated in the signature sig.

data TyTerm {a} I" where
TyDef : (@0 p : f € defScope)
— I' - TDef f p : weakenGlobalType (getType sig f p)

A constructor is well typed if its name ¢ belongs to a datatype d and its argu-
ments are typeable with respect to the telescope conTelescope of this constructor.
The type of the constructor is computed by the constructorType function, which
returns a type of the form TDef d dp.

TyCon: (@0 dp : d € defScope) (@0 dt : Datatype)
— (©0 ¢q : ¢ € dataCons dt)
— Q0 getDefinition sig d dp = DatatypeDef dt
— (let (ep , con) = lookupAll (dataConstructors dt) cq)
— { @0 pars : dataPars dt = a}
— { @0 us : fieldsOf ¢p = a}
— (let ds = substSort pars (dataSort dt))
— TySubst I" us (substTelescope pars (conTelescope con))
— I' = TCon ¢ ¢p us : constructorType d dp ¢ cp con ds pars us
Substitutions are typed with respect to a telescope: each term in the substi-
tution must be typeable with the corresponding type from the telescope.
A branch is well-typed if its body is well-typed with respect to a specialised
motive. The motive is specialised to the constructor, which is applied to fresh
variables from a context extended with the constructor arguments.

data TyBranch {a} I" dt ps rt where
TyBBranch : (¢€dcons : ¢ € dataCons dt)
— (let (cecons , con) = lookupAll (dataConstructors dt) c€dcons
ctel = ---; bsubst = --+)
— YV A{rf} (rhs : Term (~ fieldsOf c€cons <> a))
— TyTerm (addContextTel ctel I') rhs (substType bsubst rt)
— TyBranch I" dt ps rt (BBranch ¢ c€cons rf rhs)

Finally, the TyBranches judgment simply checks well-typedness of each
branch.

78 B. Liesnikov and J. Cockx

5.4 Type and Conversion Checker

Now that the typing rules are set, writing the type checker is mostly a mechanical
task. Thus for brevity, we omit the actual definitions in this section and instead
highlight the main challenges.

Representing type constructors Since we model type constructors as TDef we
have to extract the parameters from it manually, via reduction to a TApp and a
traversal of the eliminations in it. This is to ensure that the arguments to TDef
are well-typed with respect to the declaration in the signature. Fundamentally,
it is not a challenge, but in hindsight, having a dedicated constructor for type
constructors would have made the implementation easier.

Coverage checking During the type checking of a TCase elimination we have to
ensure that the Branches cover all constructors of the datatype. The type checker
can tell us that the branches cover a certain scope 3, we need to ensure that it
matches dataCons dt, as required by the rule. To do this, we need to compare the
run-time representation of both scopes, hence they need to be resurrected. We do
it via the function allBranches : Branchesa 8 — All (A ¢ — ¢ € conScope) 6’
and the list of all constructors coming from the dataConstructors field of dt.
Since both contain an inclusion proof € conScope associated with each ¢, we can
establish their (in-)equality. In cases like this we find it helpful to think about the
runtime representation of any decision taken, with a positive decision supported
by an erased proof.

Well-scoped substitutions Since names ensure a lot of important correspondences,
working with well-scoped substitutions makes it much easier to see when a sub-
stitution can be applied to a term - or how it should be lifted to do so. It also
eliminates corner cases where we know statically that the sizes of two scopes
are the same, which is helpful during development and reduces the number of
potential bugs.

6 Related Work

Minimising the trusted computing base (TCB) of type checkers and proof check-
ers is not a new idea. It originated with de Bruijn [15], but only recently it has
become possible to formalise the specification of a real-world core language and
a few of those have been done. Below, we list related works in the order of
decreasing topic proximity.

MetaCoq [44,45] is a formalization of Coq’s core language in Coq. It origi-
nated from a formalisation by Barras [16] and a more recent metaprogramming
development known as Template Coq [7,34]. The main difference with Meta-
Coq is that we aim to develop a certified type checker with minimal metatheory,
while MetaCoq wants to be a full formalization of the Coq core. Aside from that,
we also make a few different design decisions. First, we rely on Agda’s erasure
annotations instead of the Prop universe in Coq. Second, we use a well-scoped
representation instead of plain de Bruijn indices. Third, while MetaCoq also
uses a Krivine machine for reduction but it has a separate specification of the

Building a Correct-by-Construction Type Checker 79

reduction rules, so the MetaCoq evaluator is not part of the TCB, while ours is.
Fourth, our typing judgments assume well-formedness of contexts rather than
requiring a proof of it for every rule. Fifth, we formalise only the declarative
style of typing rules, but follow MetaCoq in using a bidirectional style for the
type checker.

Adjedj et al. [4] formalise meta-theory for MLTT with II, ¥ , natural num-
bers, and an Id type. They also develop a simple complete and correct type
checker for this language. There are four big differences between our works. On
the surface, as MetaCoq, they use plain de Bruijn indices with Coq definitions
derived using AutoSubst [42,47]. On a higher lever, the variant of MLTT they
formalise uses recursors for the two induction types instead of pattern-matching.
They also formalise typed reduction, with one of the main contributions being
a reformulation of work by Abel et al.[2] to avoid induction-recursion. While
we are interested in typed reduction, the complications they run into arise from
meta-theoretical proofs. The techniques we develop are more light-weight since
we do not do meta-theory. At last, their approach does not immediately allow
extraction, while ours does, due to erasure.

Strub et al. [48] develop a self-certifying type checker for F*. This work
requires a developed metatheory of the language in Coq, which we do not have.
Many of the design decisions are similar to MetaCoq, so the differences men-
tioned there apply here too. They define reduction in terms of substitution, while
we use a Krivine machine. Finally, we argue that due to focus on readability and
simplicity, our design is overall less complicated and more compact.

Carneiro [17] develops a type checker (“external verifier”) for Lean 4 in Lean.
We believe the general direction of our works to be similar, but at the moment
the typing judgement and the type checker are independent, thus providing no
formal correctness or completeness guarantees. This aside, they make a novel
choice of using single judgement for both typing and equality, while we pick
a more conventional separate representations. Similar to Adjedj et al. [4] they
implement MLTT with typed conversion and recursors.

Other related works fall in two camps. Stitch [27] and CakeML [49] are ver-
ified type checkers for simpler type systems, so they do not face many of the
same challenges. Others formalise the specification and the metatheory - System
DC [53] does this for Dependent Haskell, Abel et al. [2] focuses on decidabil-
ity of conversion specifically, and Wieczorek and Biernacki [54] mechanise a
normalisation-by-evaluation algorithm. These works are complementary to ours,
they do meta-theory but do not develop a certified type checker, while we do
the opposite.

7 Conclusion and Future Work

This paper presents a first step towards the goal of implementing a correct by
construction type checker for a core language for Agda and moving from a trusted
computing base to a trusted theory base.

In the process, we develop a set of techniques that can be useful for design-
ing certified type checkers in general. We argue that using well-scoped syntax

80 B. Liesnikov and J. Cockx

provides invaluable guidance, while not imposing too much of a proof burden on
the developer. Using names rather than de Bruijn indices is useful for the same
reason. Finally, we propose erasure annotations as an important tool to make
the language developer more aware of the runtime behaviour of the code they
are writing.

Future work There are many potential prospects to reach feature parity with
Agda’s internal language. Practically, we would like to add a pipeline to con-
nect our existing development to Agda’s compiler. We would also like to imple-
ment some core features of Agda, like indexed inductive datatypes, which would
require a verified unification procedure, eta-equivalence, definitional irrelevance,
and universe polymorphism. We plan to add termination and positivity check-
ing, but we would like to procure certificates for these properties from Agda’s
compiler, which should simplify the implementation of the core checker.

Regarding applications, we would like to try using our embedded core lan-
guage for type-safe metaprogramming [7,25,44] to automate tedious proofs, as
well as for exchanging programs and proofs with other languages [18], enabling
collaboration between different communities.

Acknowledgments. We would like to thank Lucas Escot for his contributions to the
source code and valuable discussions. Jesper Cockx holds an NWO Veni grant on ‘A
trustworthy and extensible core language for Agda’ (VI.Veni.202.216).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Abel, A., Chapman, J.: Normalization by evaluation in the delay monad: a case
study for conduction via copatterns and sized types (2014). https://doi.org/10.
4204/EPTCS.153.4

2. Abel, A., Ohman, J., Vezzosi, A.: Decidability of conversion for type theory in
type theory. In: Proceedings of the ACM on Programming Languages 2(POPL),
23:1-23:29 (2017). https://doi.org/10.1145/3158111

3. Adams, R.: Formalized metatheory with terms represented by an indexed family
of types. In: Fillidtre, J.C., Paulin-Mohring, C., Werner, B. (eds.) Types for Proofs
and Programs. pp. 1-16. Springer, Berlin, Heidelberg (2006). https://doi.org/10.
1007/11617990_1

4. Adjedj, A., Lennon-Bertrand, M., Maillard, K., Pédrot, P.M., Pujet, L.: Martin-Lo6f
a la Coq. In: Proceedings of the 13th ACM SIGPLAN International Conference on
Certified Programs and Proofs. pp. 230-245. CPP 2024, Association for Computing
Machinery, New York, NY, USA (2024).https://doi.org/10.1145/3636501.3636951

5. Altenkirch, T., Kaposi, A.: Type theory in type theory using quotient inductive
types. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 18-29. ACM, St. Petersburg FL
USA (2016). https://doi.org/10.1145/2837614.2837638

6. Kaposi, A.: Towards quotient inductive-inductive-recursive types. In: 29th Inter-
national Conference on Types for Proofs and Programs TYPES 2023 — Abstracts.
pp. 124-126. Valencia (Spain) (2023). https://types2023.webs.upv.es/ TYPES2023.
pdf#section.11.4

https://doi.org/10.4204/EPTCS.153.4
https://doi.org/10.4204/EPTCS.153.4
https://doi.org/10.1145/3158111
https://doi.org/10.1007/11617990_1
https://doi.org/10.1007/11617990_1
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/2837614.2837638
https://types2023.webs.upv.es/TYPES2023.pdf#section.11.4
https://types2023.webs.upv.es/TYPES2023.pdf#section.11.4

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

Building a Correct-by-Construction Type Checker 81

Anand, A., Boulier, S., Cohen, C., Sozeau, M., Tabareau, N.: Towards certi-
fied meta-programming with typed template-Coq. In: Avigad, J., Mahboubi, A.
(eds.) Interactive Theorem Proving, vol. 10895, pp. 20-39. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94821-8_2

Appel, A'W., Michael, N., Stump, A., Virga, R.: A Trustworthy proof checker.
J. Autom. Reason. 31(3), 231-260 (2003). https://doi.org/10.1023/B:JARS.
0000021013.61329.58

Atkey, R.: Syntax and semantics of quantitative type theory. In: Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 56—
65. LICS ’18, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3209108.3209189

Barendregt, H.: Introduction to generalized type systems. J. Funct. Program. 1(2),
125-154 (1991). https://doi.org/10.1017/S0956796800020025

Bauer, A., Gilbert, G., Haselwarter, P.G., Pretnar, M., Stone, C.A.:
Design and implementation of the andromeda proof assistant. In: DROPS-
IDN/v2/Document/10.4230/LIPIcs. TYPES.2016.5. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik (2018). https://doi.org/10.4230/LIPIcs. TYPES.2016.5
Bird, R.S., Paterson, R.: De Bruijn notation as a nested datatype. J. Funct. Pro-
gram. 9(1), 77-91 (1999). https://doi.org/10.1017/S0956796899003366

Bodin, M., Chargueraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene,
D., Schmitt, A., Smith, G.: A trusted mechanised JavaScript specification. In: Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 87-100. POPL ’14, Association for Computing Machin-
ery, New York, NY, USA (2014). https://doi.org/10.1145/2535838.2535876
Brady, E.: Idris, a general-purpose dependently typed programming language:
design and implementation. J. Funct. Program. 23(5), 552-593 (2013). https://
doi.org/10.1017/S095679681300018X

Bruijnde Bruijn, N.G.: The mathematical language AUTOMATH, its usage, and
some of its extensions. In: Laudet, M., Lacombe, D., Nolin, L., Schiitzenberger,
M. (eds.) Symposium on Automatic Demonstration. pp. 29-61. Springer, Berlin,
Heidelberg (1970). https://doi.org/10.1007/BFb0060623

Barras, B.: Coq en coq. Rapport de Recherche 3026, INRIA (1996)

Carneiro, M.: Lean4Lean: towards a formalized metatheory for the Lean theorem
prover (2024). https://doi.org/10.48550/arXiv.2403.14064

Cauderlier, R., Dubois, C.: FoCaLiZe and dedukti to the rescue for proof inter-
operability. In: Itp, pp. 131-147 (2017). https://doi.org/10.1007/978-3-319-66107-
09

Chapman, J.: Type Theory should eat itself. Electron. Notes Theor. Comput. Sci.
228, 21-36 (2009). https://doi.org/10.1016/j.entcs.2008.12.114

Coquand, T.: An algorithm for testing conversion in type theory. In: Logical Frame-
works, pp. 255-279. Cambridge University Press, USA (1991)

Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2), 95-120
(1988). https://doi.org/10.1016/0890-5401(88)90005-3

Curien, P.L.: An abstract framework for environment machines. Theor. Comput.
Sci. 82(2), 389-402 (1991). https://doi.org/10.1016/0304-3975(91)90230-Y
Danielsson, N.A.: Operational semantics using the partiality monad. In: Proceed-
ings of the 17th ACM SIGPLAN International Conference on Functional Program-
ming. pp. 127-138. ICFP ’12. Association for Computing Machinery, New York,
NY, USA (2012). https://doi.org/10.1145/2364527.2364546

Danielsson, N.A.: Logical properties of a modality for erasure (2019). https://www.
cse.chalmers.se/~nad/publications/danielsson-erased.pdf

https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1023/B:JARS.0000021013.61329.58
https://doi.org/10.1023/B:JARS.0000021013.61329.58
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1017/S0956796800020025
https://doi.org/10.4230/LIPIcs.TYPES.2016.5
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1007/BFb0060623
https://doi.org/10.48550/arXiv.2403.14064
https://doi.org/10.1007/978-3-319-66107-0_9
https://doi.org/10.1007/978-3-319-66107-0_9
https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1016/0304-3975(91)90230-Y
https://doi.org/10.1145/2364527.2364546
https://www.cse.chalmers.se/~nad/publications/danielsson-erased.pdf
https://www.cse.chalmers.se/~nad/publications/danielsson-erased.pdf

82

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

B. Liesnikov and J. Cockx

Devriese, D., Piessens, F.: Typed syntactic meta-programming. In: Proceedings of
the 18th ACM SIGPLAN International Conference on Functional Programming -
ICFP ’13, p. 73. ACM Press, Boston, Massachusetts, USA (2013). https://doi.org/
10.1145/2500365.2500575

Dunfield, J., Krishnaswami, N.: Bidirectional typing. ACM Comput. Surveys
54(5), 98:1-98:38 (2021). https://doi.org/10.1145/3450952

Eisenberg, R.A.: Stitch: The sound type-indexed type checker (functional pearl).
In: Proceedings of the 13th ACM SIGPLAN International Symposium on Haskell,
pp- 39-53. Haskell 2020. Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3406088.3409015

Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. Lecture Notes in
Computer Science, vol. 78. Springer, Berlin, Heidelberg (1979)

Jesper Cockx: Operations on syntax should not inspect the scope. In: Reyes,
E.H., Villanueva, A. (eds.) TYPES 2023 — Abstracts, pp. 138-140. Valencia, Spain
(2023). https://types2023.webs.upv.es/TYPES2023.pdf

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: formal verification of an OS kernel. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, pp. 207-220. SOSP
’09, Association for Computing Machinery, New York, NY, USA (2009). https://
doi.org/10.1145/1629575.1629596

Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: A verified implemen-
tation of ML. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 179-191. POPL’14, Association for
Computing Machinery, New York, NY, USA (Jan 2014) https://doi.org/10.1145/
2535838.2535841

Paulson, L.C.: Isabelle: the next 700 theorem provers. In: P. Odifreddi (ed.) Logic
and Computer Science, pp. 361-386. A.P.I.C. Studies in Data Processing, Academic
Press (1990). https://www.cl.cam.ac.uk/~Ip15/papers/Isabelle/chap700.pdf
Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107—
115 (2009). https://doi.org/10.1145/1538788.1538814

Malecha, G.: Extensible proof engineering in intensional type theory. Ph.D. the-
sis, Harvard University, Graduate School of Arts & Sciences., Cambridge, Mas-
sachusetts (2014). http://nrs.harvard.edu/urn-3:HUL.InstRepos: 17467172
McBride, C.: Elimination with a motive. In: Callaghan, P., Luo, Z., McKinna,
J., Pollack, R., Pollack, R. (eds.) Types for Proofs and Programs, pp. 197-216.
Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45842-5_13
McBride, C.: I Got Plenty o’ Nuttin’. In: Lindley, S., McBride, C., Trinder, P.,
Sannella, D. (eds.) A List of Successes That Can Change the World: Essays Dedi-
cated to Philip Wadler on the Occasion of His 60th Birthday, pp. 207-233. Lecture
Notes in Computer Science. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-30936-1_12

Nipkow, T., Wenzel, M., Paulson, L.C., Goos, G., Hartmanis, J., Van Leeuwen,
J. (eds.): Isabelle/HOL, Lecture Notes in Computer Science, vol. 2283. Springer,
Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology and Goéteborg University,
Goteborg, Sweden (2007). https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
Pfenning, F., Schiirmann, C.: System description: Twelf—A meta-logical frame-
work for deductive systems, vol. 1632, pp. 202—206. Springer, Berlin, Heidelberg
(1999). https://doi.org/10.1007/3-540-48660-7_14

https://doi.org/10.1145/2500365.2500575
https://doi.org/10.1145/2500365.2500575
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3406088.3409015
https://types2023.webs.upv.es/TYPES2023.pdf
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://www.cl.cam.ac.uk/~lp15/papers/Isabelle/chap700.pdf
https://doi.org/10.1145/1538788.1538814
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467172
https://doi.org/10.1007/3-540-45842-5_13
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/3-540-45949-9
https://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://doi.org/10.1007/3-540-48660-7_14

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Building a Correct-by-Construction Type Checker 83

Pierce, B.C., Turner, D.N.: Local type inference. ACM Trans. Program. Lang. Syst.
22(1), 1-44 (2000). https://doi.org/10.1145/345099.345100

Pollack, R.: How to believe a machine-checked proof. In: Sambin, G., Smith, J.M.
(eds.) Twenty Five Years of Constructive Type Theory, p. 0. Oxford University
Press (Oct 1998). https://doi.org/10.1093/0s0,/9780198501275.003.0013

Schéfer, S., Tebbi, T., Smolka, G.: Autosubst: reasoning with de Bruijn terms
and parallel substitutions. In: Urban, C., Zhang, X. (eds.) Interactive Theorem
Proving. pp. 359-374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22102-1_24

Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231-264
(1997). https://doi.org/10.1017/S0956796897002712

Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster, Y., Kunze, F., Malecha, G.,
Tabareau, N., Winterhalter, T.: The MetaCoq Project. J. Autom. Reason. 64(5),
947-999 (2020). https://doi.org/10.1007/s10817-019-09540-0

Sozeau, M., Boulier, S., Forster, Y., Tabareau, N., Winterhalter, T.: Coq Coq
correct! verification of type checking and erasure for Coq, in Coq. Proceedings of
the ACM on Programming Languages 4(POPL), 1-28 (2020)https://doi.org/10.
1145/3371076

Sozeau, M., Forster, Y., Lennon-Bertrand, M., Nielsen, J.B., Tabareau, N., Win-
terhalter, T.: Correct and Complete Type Checking and Certified Erasure for Coq,
in Coq (2023). https://inria.hal.science/hal-04077552

Stark, K., Schéifer, S., Kaiser, J.: Autosubst 2: Reasoning with multi-sorted de
Bruijn terms and vector substitutions. In: Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pp. 166-180. CPP
2019. Association for Computing Machinery, New York, NY, USA (2019). https://
doi.org/10.1145/3293880.3294101

Strub, P.Y., Swamy, N., Fournet, C., Chen, J.: Self-certification: Bootstrapping
certified typecheckers in F* with Coq. ACM SIGPLAN Notices 47(1), 571-584
(Jan2012). https://doi.org/10.1145/2103621.2103723

Tan, Y.K., Owens, S., Kumar, R.: A verified type system for CakeML. In: Proceed-
ings of the 27th Symposium on the Implementation and Application of Functional
Programming Languages. pp. 1-12. IFL ’15, Association for Computing Machinery,
New York, NY, USA (2015).https://doi.org/10.1145/2897336.2897344

The Agda Development Team: Agda 2.6.4 documentation (2023). https://agda.
readthedocs.io/en/v2.6.4/

The Coq Development Team: The coq reference manual — release 8.18.0 (2023).
https://coq.inria.fr/doc/V8.18.0 /refman

The Idris Development Team: Documentation for the Idris language — version 1.3.4
(2020). http://docs.idris-lang.org/en/v1.3.4/

Weirich, S., Voizard, A., amorimde Amorim, P.H.A., Eisenberg, R.A.: A specifica-
tion for dependent types in Haskell. PACMPL 1(ICFP) (2017). https://doi.org/
10.1145/3110275

Wieczorek, P., Biernacki, D.: A Coq formalization of normalization by evaluation
for Martin-Lof type theory. In: Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs, pp. 266-279. CPP 2018.
Association for Computing Machinery, New York, NY, USA (2018). https://doi.
org/10.1145/3167091

Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.: Verdi: A framework for implementing and formally verifying distributed
systems. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 357-368. PLDI 15, Association
for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/
2737924.2737958

https://doi.org/10.1145/345099.345100
https://doi.org/10.1093/oso/9780198501275.003.0013
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1007/978-3-319-22102-1_24
https://doi.org/10.1017/S0956796897002712
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3371076
https://inria.hal.science/hal-04077552
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.1145/2103621.2103723
https://doi.org/10.1145/2897336.2897344
https://agda.readthedocs.io/en/v2.6.4/
https://agda.readthedocs.io/en/v2.6.4/
https://coq.inria.fr/doc/V8.18.0/refman
http://docs.idris-lang.org/en/v1.3.4/
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3167091
https://doi.org/10.1145/3167091
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2737924.2737958

	Building a Correct-by-Construction Type Checker for a Dependently Typed Core Language
	1 Introduction
	2 Representing Well-Scoped Syntax
	2.1 Well-Scoped Syntax for STLC
	2.2 Scopes and Their Operations

	3 Type Checking STLC
	3.1 Typing Rules
	3.2 Type Checking
	3.3 Reduction

	4 Dependent Function Types and Universes
	4.1 Syntax
	4.2 Reduction
	4.3 Typing and Conversion Rules
	4.4 Type Checking and Conversion Checking

	5 Inductive Types
	5.1 Syntax
	5.2 Reduction
	5.3 Typing and Conversion Rules
	5.4 Type and Conversion Checker

	6 Related Work
	7 Conclusion and Future Work
	References

