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Summary 
 
The main prediction engine in surface-related multiple elimination (SRME) is the multidimensional 

convolution process, where data sampling plays an essential role for accurate surface multiple 
prediction. Therefore, fully sampled sources and receivers are preferred. If especially the source 

sampling is far from ideal, the estimated multiples will suffer from the severe aliasing effect. 

Consequently, this can lead to poorly estimated primaries. Interpolation of coarsely sampled sources is 
not a trivial task and computation intensive. Dealiasing on the estimated multiples from limited 

sources might provide a potential solution. In theory, this dealiasing problem is highly non-linear, 

which suits well for deep learning (DL)-based methods. Therefore, we propose a U-Net-based 

approach to dealiase the estimated surface multiples from limited sources. Applications on two subsets 
of the field data demonstrate the effective performance of the proposed method. 
 

 



 

 
Introduction

Surface-related multiple elimination (SRME) requires two necessary steps: the multidimensional convo-
lution and adaptive subtraction (Berkhout and Verschuur, 1997; Verschuur and Berkhout, 1997). During
the first step, data sampling plays an essential role for accurate surface multiple prediction. At the re-
ceiver side sampling is usually such that interpolation can be carried out. However, also fully sampled
sources are preferred. If the source sampling is far from ideal, the estimated multiples will suffer from
the severe aliasing effect (Verschuur, 2006; Dragoset et al., 2010). Consequently, this can lead to poorly
estimated primaries. Source interpolation is usually applied to overcome the sampling issue for better
unaliased multiples (Cai et al., 2010). However, source-side interpolation is extremely challenging in
real 3D case due to the limited recorded data (around 2% of the desired data) and the huge data storage.
Regarding the aforementioned issues, dealiasing on the estimated multiples from limited sources might
provide a potential solution to the real 3D problem. In theory, this dealiasing problem is highly non-
linear, which suits well for deep learning (DL)-based methods. Therefore, we propose a convolutional
neural network (CNN)-based approach (i.e., U-Net) to dealiase the estimated surface multiples from
limited sources. Note that we currently demonstrate the proposed method on a 2D field data example,
and the 3D application will be studied in the future.

Multidimensional convolution-based multiple estimation

The multidimensional convolution for kinematic multiple estimation can be described as follows:

M̂ =−P0P, (1)

where M̂, P0 and P denote the estimated multiples, the estimated primaries and the original full wave-
field, respectively. We use P to replace P0 for initial multiple estimation. Note that depending on source
type an obliquity factor may be included (Weglein et al., 1997). This multidimensional convolution is
the most robust step in SRME under the condition that the recorded full wavefield data are fully sampled
in both source and receiver side. Otherwise, the estimated multiples will suffer from the aliasing effects.
Note that in this paper we focus on the source side sampling. Source side interpolation is usually only
feasible in the 2D case, and is very challenging in 3D. When applying multiple prediction with sparsely
sampled source creates a distinct aliasing pattern on the predicted multiples. Therefore, dealiasing on
the estimated multiples from limited sources might provide a potential solution, which requires a highly
non-linear mapping operator.

U-Net

Essentially, the seismic dealiasing task can be treated as one of the image-to-image mapping, which is
highly non-linear. The popular U-Net might be the most suitable mapping tool (or data fitting) among
all different kinds of DL neural networks. Originally designed for medical image segmentation (Ron-
neberger et al., 2015), a CNN architecture-based U-Net is very powerful in terms of image processing.
The convolutional autoencoder is its ancestor, and it consists of two parts: the encoder and the decoder
(Goodfellow et al., 2016). The encoder downsamples the image and searches for a sparse representation.
The decoder does the opposite, which includes both upsampling and back-projection. Most importantly,
there exist some extra skip connections between the mirrored layers, which can reduce the loss of useful
information and result in a more accurate reconstruction. Both encoder and decoder in this paper is fully
convolutional. Figure 1(a) demonstrates the designed architecture of our U-Net, in which the input is
the aliased multiples and the output is the dealiased multiples. More specifically, each encoder block
consist of a 2D convolution with 4 × 4 filters and 2 stride, a batch normalization and a leaky ReLU.
Correspondingly, each decoder includes a similar setup except for a 2D deconvolution. More detailed
description of the U-Net can be found in Goodfellow et al. (2016). The channel information (or filter)
is indicated by the red number on top of each block, which increases along the downsampling direction
and decreases during upsampling. The core objective function is as follows:

J =
1
N ∑

N
‖M−D(E(M̂))‖1, (2)

where M represent the target multiples with fully sampled sources and M̂ the input multiple prediction
with aliasing imprint. N indicates the total number of training data pairs, and ‖.‖1 is the L1 norm. E
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and D describe the encoding and decoding operators. The aforementioned objective function directly
explains the data fitting nature of the U-Net, i.e., minimizing the difference between the U-Net estimated
multiples and the target multiples. More specifically, the U-Net estimated multiples can be obtained via
first encoding the aliased multiples into a sparse representation, and then decoding back-projects the
sparse signals to the final estimated multiples.

Results

(a) (b) (c)

Figure 1 U-Net architecture (a) used in this study, and two fixed-spread fully sampled subsets from the
same 2D Nelson line. (b) Subset used for training. (c) Subset used for testing.

(a) (b) (c)

(d) (e) (f)

Figure 2 Conventional source interpolation results and their corresponding estimated multiples. (a) &
(d) Original shot and its multiples with 12.5 m source spacing. (b) & (e) Interpolated shot with 50 m
source spacing and the estimated corresponding multiples after interpolation. (c) & (f) Interpolated shot
with 100 m source spacing and the estimated corresponding multiples after interpolation.

We extract two fixed-spread fully sampled data subsets from the same 2D Nelson North Sea data. Two
subsets come from adjacent areas, which have similar geological structures. For each subset, there are
256 shots, and each shot contains 256 receivers. The time sampling is 4 ms. Figure 1 shows the stacked
sections of the aforementioned two subsets. The idea behind is that one subset (1(b)) is regarded as the
training data with fully sampled sources, while the other subset (1(c)) is considered as the test data with
limited sources. In reality, it represents that we can intensively record fully sampled sources in one area
for training the NN, and for the adjacent areas we only need to record sparse sources to reduce the cost.
The resulting aliasing effects can be resolved by the proposed DL-based approach. Note that we test two
different source spacing in this paper, i.e., 50 me and 100 m, to demonstrate the DL power on source
side dealiasing.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3 U-Net training data pair, and its performance on the test data. (a) & (e) The aliased multiples
(50 m source spacing) and its unaliased target multiples from the training data, respectively. (b) & (f)
The aliased multiples (50 m source spacing) and the DL estimated dealiased multiples from the test data,
respectively. (c) & (g) The aliased multiples (100 m source spacing) and its unaliased target multiples
from the training data, respectively. (d) & (h) The aliased multiples (100 m source spacing) and the DL
estimated dealiased multiples from the test data, respectively.

First, we display some conventional interpolation results as a comparison in Figure 2. Conventional
method interpolates the missing sources based on the low-frequency components of the data in the com-
mon offset domain. The multiples are thus estimated after the interpolation to reach the desired perfor-
mance. From both interpolation results and the corresponding multiples, it is clear that the conventional
method can provide a good interpolation performance for further multiple estimation for both 50 m and
100 m source spacing. However, some tiny details are lost along the seismic events, which cannot be
easily noticed from the shot gather displays. In contrast, all specular reflections are well interpolated.

Next, Figure 3 demonstrate the performance of the proposed DL dealiasing method. The training pair
of the aliased multiples with 50 m source spacing and the unaliased target multiples are shown in Figure
3(a) and 3(e). After the training phase, we apply the learned NN on the similar aliased test shot gather
(Figure 3(b)) from the adjacent area. The dealiased result via the DL-based approach is displayed in
Figure 3(f). We can notice that most events are well recovered and all aliased energy has been success-
fully removed. Then, we apply the same method to the training pair with 100 m source spacing as shown
in Figure 3(c) and 3(g). The learned NN is applied to the aliased test data with 100 m source spacing
in Figure 3(d). Figure 3(h) indicates the final DL-based dealising result, which removes most aliased
energy. However, some of the weak seismic events are not well recovered.

For better and clearer comparison, we provide the stacked sections for the estimated multiples in Figure
4. Figure 4(a) is considered as the benchmark multiple stacked section, which comes from the original
fully sampled sources. Figure 4(b) and 4(d) demonstrate the stacked multiple sections from the con-
ventional interpolated data. It can be seen that most specular reflections are well preserved. However,
those events become smoother than the benchmark section, in which we can observe more small scale
discontinuities. Also note that the 100 m source spacing result is much smoother than the 50 m source
spacing. In contrast, both stacked multiple sections from the DL-based dealiasing method in Figure
4(c) and 4(e) contain more small-scale information and shows a better resemblance with the benchmark
results (Figure 4(a)).
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(a) (b) (c)

(d) (e)

Figure 4 Stacked section comparison for estimated multiples from (a) the original fully sampled sources
(12.5 m source spacing), (b) & (c) the conventional interpolated data and the NN dealised data (50
m source spacing), and (d) & (e) the conventional interpolated data and the NN dealised data (100 m
source spacing).

Conclusions and outlook
We have proposed a DL-based dealising method for multiple estimation. The non-linear mapping power
of DL can successfully project the aliased multiples to its corresponding unaliased target multiples.
Applications on two subsets of the field data demonstrate the effective performance of the proposed
method. Note that we also need to compare a DL-based dealiasing with a DL-based source interpolation
method, in order to find out which approach is most suitable. However, the real potential value lies
in 3D cases, where most data are not recorded. Conventional interpolation method works well for the
relative flat geology in 2D, while it will fail under complex structures in 3D. The proposed DL-based
dealiasing framework can be straightforwardly extended to complex 3D environment, which will be our
future research. Also note that such approach will have an impact on acquisition design: to benefit from
this approach it can be decided to shoot certain areas with dense sampling for training purpose.
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