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INTRODUCTION 

Driving assistance systems such as Adaptive Cruise Control (ACC) and automated vehicles can 

contribute to mitigate traffic congestion, accidents, and levels of emissions. Automated vehicles may 

increase roadway capacity, improve traffic flow stability, and speed up the outflow from a queue (1). 

The functionalities of automated systems have been gradually introduced into the market, such as in 

the case of Adaptive Cruise Control (ACC). The ACC assists drivers in maintaining a desired speed 

and time headway, therefore influencing substantially the performance of the driving task. On-road 

studies have shown potential safety benefits of ACC systems that are inactive at low speeds when they 

are activated (2-5). In certain traffic situations, drivers may prefer to disengage ACC and resume 

manual control (6). These transitions between automation and manual driving are called control 

transitions (7) and may influence considerably traffic flow efficiency (8) and safety (9). Recently, full-

range ACC systems that can operate in dense traffic have been introduced into the market. These ACC 

systems are more likely to be active in dense traffic conditions and have a positive impact on traffic 

flow efficiency (10).  

Despite the influence of control transitions on driving behavior, most car-following and lane-

changing models currently used to evaluate the impact of ACC do not describe these transitions and 

therefore could result in misleading predictions. A few mathematical models (11-13) have proposed 

deterministic decision rules for transferring control, which do not account for variability between and 

within drivers in the decision-making process. Recently, we identified the main factors influencing 

drivers’ choice to resume manual control in a mixed logit model (14). Drivers are likely to deactivate 

full-range ACC when approaching a slower leader and to overrule the system by pressing the gas 

pedal a few seconds after it has been activated. However, this study did not quantify explicitly the 

range in which the ACC system operation is acceptable and ignored the possibility of adapting the 

ACC system settings to regulate the longitudinal control task. 

This research aims to develop a continuous-discrete choice modelling framework describing 

the underlying decision-making process of drivers with ACC. This paper focuses on control transitions 

and ACC speed regulations which are not related to lane changes (within a time window of 10 seconds 

before and 10 seconds after the action). The following research hypotheses are tested using empirical 

data: 

1. Control transition and target speed regulation choices with full-range ACC are related to the 

driver behavior characteristics (speed, distance headway and relative speed) which inform 

risk feeling and task difficulty evaluations in driver control theories (15);  

2. The range in which ACC system operation is considered acceptable differs significantly 

between drivers and is influenced significantly by driver characteristics; 

3. The ACC target speed regulation choices are related to driver characteristics and to the 

difference between the current ACC target speed and the actual speed. 

In this framework, we hypothesize that drivers choose to resume manual control or to regulate the 

ACC target speed (binary logit and regression models) if the perceived level of risk feeling and task 

difficulty falls outside the range considered acceptable to maintain the system active (ordinal probit 

model). The model was estimated using a dataset collected in an on-road experiment in which twenty-

three participants drove a research vehicle equipped with full-range ACC on a 35.5-km freeway in 

Munich during peak hours.  

 The results reveal that the perceived level of risk feeling and task difficulty is higher when 

time headways are shorter, when approaching a slower leader and when expecting vehicles cutting in. 

Everything else being equal, some drivers have a larger acceptable range with ACC and choose 

smaller ACC target speed regulations. The model can be implemented into a microscopic simulation to 

assess the effects of ACC on traffic flow accounting for control transitions and target speed 

regulations. 

 

METHODOLOGY 

Based on previous studies (14-16), we propose two levels of decision-making describing changes in 

both discrete and continuous variables in transitions to manual control with ACC (Figure 1): risk 

feeling and task difficulty evaluation (discrete choice model), and ACC system state and ACC target 

speed regulation choice (continuous-discrete choice model). At the highest level, the driver evaluates 

whether the perceived level of risk feeling and task difficulty (RFTD) falls within the range which is 
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considered acceptable to maintain the ACC active and the current ACC target speed. If the perceived 

RFTD level falls outside the acceptable range, the driver will choose to resume manual control or to 

regulate the ACC target speed maintaining the system active. The magnitude of the ACC target speed 

regulation is chosen simultaneously to the system state. 

The unobservable RFTD is modelled as a latent variable with a mean value which is a function 

of the driver behavior characteristics. The RFTD evaluation is formulated as an ordered probit model 

with random thresholds (17) that represent the minimum and the maximum risk acceptable. These 

thresholds are influenced by driver characteristics and by unobserved preferences which affect all 

choices made by individual drivers over time (driver-specific error term). Drivers who consider the 

risk feeling higher than the maximum value acceptable choose to deactivate the ACC (transition to 

Inactive) or maintain the system active and decrease the target speed. This decision is formulated as a 

binary logit model and is influenced by the functionalities of the ACC system, environmental 

conditions, and unobserved driver-specific characteristics. The ACC target speed decrement is 

formulated as a regression model in which the magnitude of the decrement is determined by driver 

behavior characteristics, the functioning of the system, and unobserved driver-specific characteristics. 

Since ACC target speed decrements are observed only when drivers choose to decrease the ACC target 

speed, a selectivity correction term is included into the regression equation to correct for the system 

state selectivity bias (18). If the actual RFTD level falls within the acceptable range, the ACC remains 

active and the target speed is not regulated. Drivers who consider the risk lower than the minimum 

value acceptable choose to overrule the system by pressing the gas pedal (transition to Active and 

accelerate) or to maintain the system active and increase the target speed. The ACC system state 

choice in low risk situations and the ACC target speed increment are formulated similarly to the 

decisions in high risk situations.  

The parameters of the ACC system state choices and of the ACC target speed regulations are 

estimated simultaneously with full information maximum likelihood methods (19). The probability of 

deactivating the ACC is given by the product of the probability of the actual level of RFTD being 

higher than the maximum value acceptable and the conditional probability of transferring to Inactive. 

The probability of decreasing the ACC target speed and selecting a certain target speed decrement is 

given by the product of the probability of the actual level of RFTD being higher than the maximum 

value acceptable, the conditional probability of decreasing the target speed, and the conditional 

probability density function of the target speed decrement. The probability of overruling the ACC 

system by pressing the gas pedal and the probability of increasing the ACC target speed and selecting 

a certain target speed increment are calculated similarly.  

The model is estimated using the software PythonBiogeme (20). The dataset comprises 23,568 

1-s observations in which the ACC system is active and a leader is detected by the radar (120 m 

range). We assume that only one decision may occur within a 1-s interval, a value similar to the mean 

reaction time between the detection of a stimulus and the application of the response available in 

literature (21). 
 

 

FIGURE 1 Model framework for driver behavior in control transitions between ACC and 

manual driving.   
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FINDINGS 

Estimation results (Tables 1-2) show that the model framework proposed contributed to explain the 

choice of resuming manual control and regulating the target speed significantly. The risk feeling and 

task difficulty are considered high when driving at short time headways, when approaching a 

considerably slower vehicle, and when expecting vehicles cutting in. Interestingly, patient and careful 

drivers (MDSI (22)) showed a smaller acceptable range with the ACC active. When the risk feeling is 

considered higher than the maximum value acceptable, drivers are more likely to deactivate the ACC 

in proximity to on-ramps and before exiting the freeway. Drivers select a larger ACC target speed 

decrement when the ACC target speed is higher than the current speed. When the risk feeling is 

considered lower than the minimum value acceptable, drivers are more likely to overrule the system 

by pressing the gas pedal a few seconds after the system has been activated. Drivers inexperienced 

with ADAS prefer smaller ACC target speed increments. Drivers who have a larger acceptable range 

with ACC active are less likely to resume manual control and choose smaller target speed regulations. 

 

CONCLUSION 

Control transitions to Inactive (deactivations) and ACC target speed decrements occurred most often 

in high risk feeling and task difficulty situations (short time headways, slower leader, and cut-ins 

expected), while control transitions to Active and accelerate (overruling actions by pressing the gas 

pedal) and target speed increments in low risk feeling and task difficulty situations (large time 

headways and faster leader). Control transitions and ACC target speed regulations can be interpreted 

as an attempt to decrease or increase the complexity of a traffic situation.  
These findings shed light on the decision-making of drivers with ACC and have important 

implications for developing new driving assistance systems which can adapt their settings based on 

different traffic situations and driver characteristics to prevent control transitions while guaranteeing 

safety and comfort. Moreover, the framework proposed can be directly implemented into a 

microscopic traffic flow simulation to analyze the impact of ACC on traffic safety and traffic flow 

efficiency at different penetration rates accounting for drivers’ interventions.  
 In this study, the sample of participants was limited (twenty-three) and was not representative 

of the driver population in terms of gender, age, employment status and experience with ADAS. 

Moreover, the findings are influenced by the characteristics of the ACC system and cannot be directly 

generalized to other types of driving assistance systems. The key implication of this study is that, to 

describe driver interaction with ACC, we need a conceptual framework that connects driver behavior 

characteristics, driver characteristics, ACC system settings, and environmental factors. Future research 

will focus on the development of the model framework describing mathematically the impact of 

control transitions on the longitudinal control task in a car-following model. The final model can be 

implemented into a microscopic traffic flow simulation to assess the effect of control transitions in 

ACC on traffic flow efficiency and safety. 

 

TABLE 1 Statistics of the continuous-discrete choice model  

Statistics  

Number of parameters associated with explanatory variables  22 

Number of constants  8 

Number of drivers  23 
Number of observations 23,568 

Constant log likelihood ℒ(𝑐) -3496 

Final log likelihood ℒ(�̂�) -3158 
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TABLE 2 Estimation results of the continuous-discrete choice model (1 variable centered on the 

mean value between drivers; ** p-value>0.10, * 0.05<p-value<0.10) 

Variable Description Parameters Estimate T-test 

Risk feeling and task difficulty evaluation    

THW30 
Time headway (front bumper to rear bumper) in s when 
the speed is higher than 30 km/h 

𝜆𝑇𝐻𝑊30 -0.0607 -3.01  

RelSpeed 
Relative speed (i.e., leader speed – subject vehicle 
speed) in km/h 

𝜆𝑅𝑒𝑙𝑆𝑝𝑒𝑒𝑑 -0.0299 -10.98  

RelAcc 
Relative acceleration (i.e., leader acceleration – subject 
vehicle acceleration) in m/s

2
 

𝜆𝑅𝑒𝑙𝐴𝑐𝑐 -0.291 -6.59  

AntCutIn3 
Number of vehicles that will cut in in the following three 

seconds 
𝜆𝐴𝑛𝑡𝐶𝑢𝑡𝐼𝑛3 0.452 5.65  

- Constant lowest acceptable risk with ACC active 𝜇𝐿 0.485 13.04  

- Constant highest acceptable risk with ACC active 𝜇𝐻 0.654 15.85  

TimeAct  Time after the ACC has been activated in s 𝜏𝑇𝑖𝑚𝑒𝐴𝑐𝑡
𝐿  0.0849 11.12  

TimeAct  Time after the ACC has been activated in s 𝜏𝑇𝑖𝑚𝑒𝐴𝑐𝑡
𝐻  0.0546 6.22  

PatCar 
Score on the driving-style factor ‘Patient and careful’

1
 

(MDSI (22)) 
𝜏𝑃𝑎𝑡𝐶𝑎𝑟
𝐿,𝐻

 -0.0849 -3.68  

𝜗𝑛 Individual specific error term 𝛾𝐿,𝐻 0.0347 3.26  

ACC system state choice    

- Alternative specific constant 𝛼𝐴𝐴𝑐 0.257 0.70 ** 

- Alternative specific constant 𝛼𝐼 -1.59 -4.55  

TimeAct  Time after the ACC has been activated in s 𝛽𝑇𝑖𝑚𝑒𝐴𝑐𝑡
𝐴𝐴𝑐  -0.569 -6.24  

DiffTarSpeed 
Difference between the target speed set in the ACC and 
the speed of the subject vehicle in km/h 

𝛽𝐷𝑖𝑓𝑓𝑇𝑎𝑟𝑆𝑝𝑒𝑒𝑑
𝐼  -0.0161 -1.69 * 

DiffTarSpeed 
Difference between the target speed set in the ACC and 
the speed of the subject vehicle in km/h 

𝛽𝐷𝑖𝑓𝑓𝑇𝑎𝑟𝑆𝑝𝑒𝑒𝑑
𝐴𝐴𝑐  0.0375 4.99  

Acc Acceleration of the subject vehicle in m/s
2
  𝛽𝐴𝑐𝑐

𝐴𝐴𝑐 -2.00 -4.07  

RelAcc 
Relative acceleration (i.e., leader acceleration – subject 
vehicle acceleration) in m/s

2
 

𝛽𝑅𝑒𝑙𝐴𝑐𝑐
𝐼  -1.16 -3.14  

OnRamp 

Binary variable equal to 1 when the drivers are in the 

mainline close to an on-ramp, or between two ramps 
closer than 600 m (23) 

𝛽𝑂𝑛𝑅𝑎𝑚𝑝
𝐼  1.34 3.23  

Exit 
Binary variable equal to 1 when the distance to the 
closest exit is shorter than 1600 m (first exit sign) 

𝛽𝐸𝑥𝑖𝑡
𝐼  3.41 4.77  

𝜗𝑛 Individual specific error term 𝛾𝐴𝐴𝑐,𝐼  -0.825 -3.84  

ACC target speed regulation choice     

- Mean ACC target speed increase  𝜂𝑇𝑆+ 2.82 20.18  

- Mean ACC target speed decrease 𝜂𝑇𝑆− 1.91 8.24  

DiffTarSpeed 
Difference between the target speed set in the ACC and 
the speed of the subject vehicle in km/h 

𝜉𝐷𝑖𝑓𝑓𝑇𝑎𝑟𝑆𝑝𝑒𝑒𝑑
𝑇𝑆−  0.0230 4.49  

RelSpeed 
Relative speed (i.e., leader speed – subject vehicle 
speed) in km/h 

𝜉𝑅𝑒𝑙𝑆𝑝𝑒𝑒𝑑
𝑇𝑆−  -0.0295 -2.35  

NoviceADAS 
Binary variable equal to 1 when the driver is 
inexperienced with ADAS 

𝜉𝑁𝑜𝑣𝑖𝑐𝑒𝐴𝐷𝐴𝑆
𝑇𝑆+  -0.549 -4.05  

𝐶𝑇𝑆+ Selectivity correction term in low risk situations 𝜑𝑇𝑆+ 0.480 4.07  

𝐶𝑇𝑆− Selectivity correction term in high risk situations 𝜑𝑇𝑆− 0.0346 0.17 ** 

𝜗𝑛 Individual specific error term 𝛾𝑇𝑆 -0.437 -4.81  

𝜐𝑛
𝑇𝑆+(𝑡) Observation specific error term 𝜔𝑇𝑆+ 0.679 19.00  

𝜐𝑛
𝑇𝑆−(𝑡) Observation specific error term 𝜔𝑇𝑆− 1.08 15.40  
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