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Abstract. In this paper we present some aspects of recent works we have been develop-
ping on preconditioning techniques for accelerating Krylov solvers that are based on low
rank corrections of a prescribed preconditioner. For SPD linear systems, we investigate
the behaviour of some techniques based on spectral approaches when the eigenelements are
only known approximately. We use the first-order perturbation theory for eigenvalues and
eigenvectors to investigate the behaviour of the spectrum of the preconditioned systems
using first order approximation. For unsymmetric linear system, we present a similar
technique suited for the solution of sequences of linear systems is described. This tech-
nique is a combination of a low rank update spectral preconditioner and a Krylov solver
that computes on the fly approximations of the eigenvectors associated with the smallest
eigenvalues. We illustrate the interest of this approach in large parallel calculations for
electromagnetic simulations. In this latter context, the solution technique enables the re-
duction of the simulation times by a factor of up to eight; these simulation times previously
exceeded several hours of computation on a modern high performance computer.

1 INTRODUCTION

It is well known that the convergence of Krylov methods for solving the linear system
often depends to a large extent on the eigenvalue distribution. In many cases, it is observed
that “removing” the smallest eigenvalues can greatly improve the convergence. Several
techniques have been proposed in the past few years that attempt to tackle this problem.
In the first part of this paper we investigate the behaviour of some of these techniques when
the eigenelements are only known approximately. We use the first-order perturbation

1



L. Giraud and S. Gratton

theory for eigenvalues and eigenvectors to investigate the behaviour of the spectrum of
the preconditioned systems using first order approximation. We illustrate the effect of the
inexactness of the eigenelements on the behaviour of the resulting preconditioner when
applied to accelerate the conjugate gradient method.

In the second part of this paper, we investigate a solution scheme suited for the solution
of large linear systems involving the same unsymmetric matrix but different right-hand
sides. Such a situation occurs in many numerical simulations in scientific and engineering
applications. We illustrate the effectivness of the approach on large real life problems
arising from electromagnetics applications.

2 On the sensitivity of some spectral preconditioners

In many problems the convergence of Krylov solvers can be significantly slowed down
by the presence of small eigenvalues in the spectrum of the matrices involved in the
solution of the linear systems. This occurs for instance when the Conjugate Gradient
(CG) method is implemented to solve linear systems arising from the discretization of
second-order elliptic problems. For symmetric positive definite (SPD) linear systems it is
well-known that the convergence of CG to solve Ax = b depends to a large extend on the
eigenvalue distribution of the coefficient matrix A. This can be illustrated by the bound
on the rate of convergence of the CG method given by

‖xk − x?‖A ≤ 2‖x0 − x?‖A

(√
κ − 1√
κ + 1

)k

, (1)

where κ = λmax(A)/λmin(A) is the spectral condition number of A, the A-norm of x is
‖x‖A =

√
xT Ax and the exact solution is x? = A−1b. This analysis leads to the idea

of improving the convergence of CG by using a preconditioner M such that the ratio
λmax(MA)/λmin(MA) is less than κ. In this paper, we are interested in spectral precon-
ditioners (and some of their variants) that exploit some information on the eigenpairs of
A. The underlying driving idea of these approaches is to capture in a low dimensional
space the modes that do not quickly converge with a first level preconditioner. In order
to be efficient and keep the dimension of the low dimensional space reasonably small,
these techniques are generally used in combination with a first level preconditioner that
does a good job of clustering most eigenvalues near to one with relatively few outliers
near the origin [6, 9, 10, 24, 35]. These spectral preconditioners can be split into two
main families depending on their effect on the spectrum. They are referred to as deflation
preconditioners [9, 13, 26] if they attempt to move a subset of eigenvalues to a positive
quantity σ; they are referred to as coarse grid preconditioners [6, 14] if they only attempt
to shift the subset close to σ. The name of those latter techniques comes from domain
decomposition and was first introduced in [5]. For this reason σ = 1 is often considered in
practice. An impressive example of the efficiency of a spectral preconditioner is provided
by the atmosphere data assimilation area [13]. In this application, nonlinear least-squares
problems with more than 107 unknowns are daily solved using a Gauss-Newton approach.
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2.1 Spectral preconditioner variants

We first consider one representative of the deflation preconditioners and one of the
coarse grid preconditioners. Let V = [v1, . . . vn] ∈ R

n×n be an eigen-basis of A and
{λi}i=1,...,n be the set of corresponding eigenvalues sorted by increasing magnitude. In
order to move {λi}i=1,...,k to σ, we define the following deflation preconditioner:

Mdef = I +

k∑

i=1

(
σ

λi
− 1)

viv
T
i

‖vi‖2
. (2)

The columns of V also form an eigen-basis of MdefA. For Vk = [v1, . . . vk], this precon-
ditioner is such that MdefAVk = σVk and MdefAw = Aw if V T

k w = 0, which shows that
Mdef moves the eigenvalues {λi}i=1,...,k to σ and leaves the rest of the spectrum unchanged.
This technique is expected to be especially efficient in the case where {λi}i=k+1,...,n are
already in the neighbourhood of σ, in which case λmax(MA)/λmin(MA) becomes close
to one. Because (1) only provides an upper-bound for the convergence rate it might be
argued that, if {λi}i=k+1,...,n are already close to σ, shifting {λi}i=1,...,k to any quantity
close to σ (and not necessarily to σ exactly) does still improve the convergence of CG. To
this end, if {λi}i=1,...,k are small we can use the coarse grid preconditioner

M coarse = I + σVk (diag(λi))
−1 V T

k , (3)

where diag(λi) denotes the diagonal matrix with entries λi. The columns of V also form
an eigen-basis of M coarseA. This preconditioner is such that M coarseAvi = (σ + λi)vi and
M coarseAw = Aw if V T

k w = 0. That is, the eigenvalues {λi}i=1,...,k are shifted to σ + λi,
while the rest of the spectrum is unchanged. This latter technique is particularly suited
when {λi}i=1,...,k are small.

In the previous paragraph the spectral transformations associated with Mdef and
M coarse rely on the facts that (λi, vi) are exact eigenpairs of a SPD matrix. This im-
plies two intensively used properties that are Avi = λivi and vT

i vj = 0 if i 6= j. We
assume now that we only have access to approximate spectral information, and denote by
(λ̃i, ṽi) the inexact eigenpairs such that the two latter properties do not necessarily hold.

We only suppose that Ṽk = [ṽ1, . . . , ṽk] is such that Ṽ T
k Ṽk and Ṽ T

k AṼk are nonsingular.
We can write the two above preconditioners in a form that does a weaker usage of the
properties of the exact eigenpairs. The inexact “deflation” preconditioner then reads

M1 = I + Ṽk

(
σ
(
Ṽ T

k AṼk

)−1

−
(
Ṽ T

k Ṽk

)−1
)

Ṽ T
k . (4)

Noticing that V T
k AVk is diagonal, we can be tempted to approximate it by the diagonal

of the Rayleigh quotients. This gives

M rayl
1 = I + Ṽk

(
σ
(
diag

(
ṽT

i Aṽi

))−1 −
(
Ṽ T

k Ṽk

)−1
)

Ṽ T
k . (5)
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Furthermore, because the diagonal elements of M1 are simply the eigenvalues, we can also
use the following preconditioner formulation

Meig
1 = I + Ṽk

(
σ
(
diag(λ̃i)ṽ

T
i ṽi

)−1

−
(
Ṽ T

k Ṽk

)−1
)

Ṽ T
k . (6)

Using the orthogonality property of the eigenvectors M1 reduces to

M rayl
1,⊥ = I +

k∑

i=1

(
σ

(
ṽT

i Aṽi

ṽT
i ṽi

)−1

− 1

)
ṽiṽ

T
i

ṽT
i ṽi

, (7)

that could also lead to consider

Meig
1,⊥ = I +

k∑

i=1

(
σ

λ̃i

− 1

)
ṽiṽ

T
i

ṽT
i ṽi

. (8)

Similarly, for the coarse grid preconditioners we consider the following variants

M+1 = I + σṼk

(
Ṽ T

k AṼk

)−1

Ṽ T
k , (9)

M rayl
+1 = I + σṼk

(
diag(ṽT

i Aṽi)
)−1

Ṽ T
k , (10)

Meig
+1 = I + σṼk

(
diag(λ̃iṽ

T
i ṽi)

)−1

Ṽ T
k . (11)

To study the performance of the above preconditioners in the presence of inexact
spectral information, we assume that the spectral information is not related to A but to
a nearby matrix A + tE, where t is a real parameter and ‖E‖ = 1. Let denote λi(t)
and vi(t) the eigenvalues and eigenvectors of A + tE. If A has only simple eigenvalues,
it can be shown [32] that the eigenvalues of A + tE are differentiable functions of t in
a neighbourhood V of t = 0. If the eigenvectors are normalized using vi(t)

T vi = 1 the
eigenvectors are also differentiable functions of t in a neighbourhood of t = 0. Note that
none of the preconditioners assume that the eigenvectors have unit length. Indeed, the
preconditioners are invariant by any nonzero scaling of the eigenvectors. Therefore the
normalization vi(t)

T vi = 1 can be assumed for the analysis without loss of generality.

2.2 Sensitivity analysis

2.2.1 Notation

For any square matrix X ∈ Rn×n, let X i denote the n× (n− 1) matrix whose columns
are those of X excepted for the ith, that is Xi = [X(:, j)]j=1,...,n;j 6=i.
For a n×n matrix X , {λ1(X), . . . , λn(X)} are the eigenvalues of X where multiple eigen-
values are repeated. We also assume that |λ1(X)| ≤ · · · ≤ |λn(X)|. The ith eigenvalue of
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A is denoted by λi when there is no possible confusion. Let A ∈ Rn×n be a SPD matrix
where

AV = V D with V T V = I and D = diag(λi)i=1,...,n

denotes its spectral decomposition. We assume that all the eigenvalues of A are simple.

For a vector x, ‖x‖ = (
∑n

i=1 x2
i )

1/2
is the Euclidean vector norm, and ‖A‖ = max‖x‖=1 ‖Ax‖

is the spectral norm of the matrix A. The operator ◦ denotes the Hadamard product:
A ◦ B = [aijbij ] ∈ Cm×n, for A and B ∈ Cm×n. The spectral norm is submultiplicative
with respect to the Hadamard product (see [2, p. 332]): ‖A ◦ B‖ ≤ ‖A‖‖B‖.

Let Ṽ and D̃ be defined by Ṽ = [v1(t), . . . vn(t)] and D̃ = diag(λ̃i) = diag(λi(t)). For
sufficiently small t ∈ V, we have

(A + tE)Ṽ = Ṽ D̃.

Note that Ṽ (0) = V . Using the Landau little “o” notation, the first order expansion of

the eigenvalues and eigenvectors in the direction E [32], is Ṽ = V + δV (t) + o(t) where
the ith column of δV (t) is defined by

δvi(t) = tV i(λiI − Bi)
−1V T

i Evi,

and λi(t) = λi+δλi(t)+o(t), where δλi(t) = tvT
i Evi and the (n−1)×(n−1) diagonal matrix

Bi = diag(λj)j=1,...,n;j 6=i. The first order expansion of the eigenvalues of the preconditioned
matrices will be expressed in terms of the following k × k matrices W and Y defined in
function of the eigenvalues of A by their (`, s)-entry :

W`,` = 0; W`,s =
σ

λs − λ`

√
λ`

λs

for ` 6= s, (12)

Y`,` = 0; Y`,s =
σ − λs

λs − λ`

√
λ`

λs

for ` 6= s. (13)

Similarly we also introduce the k × k matrix ∆ = V T
k EVk and the diagonal matrix

J = diag

(
− σ

λ`

)

`=1,...,k

.

2.3 Sensitivity and backward errors

For all the preconditioners considered in this paper, the eigenvalues of the precondi-
tioned matrices write µi(t) = µi(0)+λi

(
(X1 + X2) ◦ ∆ + XT

1 ◦ ∆T
)
t+o(t), where the Xi

are matrices depending on selected preconditioner and the targeted eigenvalues [16]. We
summarize the various values of the matrices X1 and X2 for the different preconditioners
in Table 1. We can therefore define a condition number κi for the eigenvalue µi in the
direction of E [28] by

κi = lim
u→0

sup
0<|t|<u

|µi(t) − µi(0)|
|t| = |λi

(
(X1 + X2) ◦ ∆ + XT

1 ◦ ∆T
)
|. (14)
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Notice that κi is not the usual condition number of the eigenvalue of a matrix [19, p.
323], but the condition number of the map µi(t). Taking norms and using the submulti-
plicativity of the spectral norm with respect to the Hadamard product yields [16]

κi ≤ (2‖X1‖ + ‖X2‖), (15)

where we have used that ‖E‖ = 1. Equations (14) and (15) show that if the entries of X1

and X2 are small, the condition number of the eigenvalues µi is small. By inspecting the
equalities (12) and (13) follows that asymptotically for t → 0,

• the preconditioners M1, M+1 and M rayl
+1 are stable (i.e. X1, X2 are the zero matrix),

• the preconditioners M rayl
1 , M rayl

1,⊥ , Meig
1 and Meig

1,⊥ may present an instability if for

some (s, `), the ratio
σ

λs − λ`

√
λ`

λs

is large. In the above statement we have assumed

that λs is far from σ, which seems to be a reasonable assumption as otherwise we
would not have targeted this eigenvalue. This instability happens for instance if
some eigenvalues are clustered or small and isolated.

In Table 1 we summarize the situation where a high sensitivity of the eigenvalues is
expected. In the case where E is a real symmetric matrix, Meig

1 and Meig
1,⊥ are the same

Prec X1 X2 some cases of ill-conditioning
M1 0 0 none

M rayl
1 W 0 cluster, small

Meig
1 W J cluster, small

M rayl
1,⊥ Y 0 cluster, small

Meig
1,⊥ Y J cluster, small

M+1 0 0 none

M rayl
+1 0 0 none

Meig
+1 0 J small

Table 1: Matrices X1 and X2 for the spectral preconditioners and some cases of ill-conditioning. The

terms “cluster” and “small” refer respectively to the presence of cluster or of small isolated eigenvalues.

preconditioners, elementary calculations show that X1 ◦ ∆ + XT
1 ◦ ∆T are the same in

both cases.

2.4 Use of spectral preconditioners in CG

In this section we illustrate the effect of using the approximate eigenpairs on the con-
vergence behaviour of PCG. In that respect we consider the 685 × 685 bus685 matrix,
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denoted B685, from the Harwell-Boeing collection. We compute an Incomplete Cholesky
factorization (IC) CCT with threshold 4 · 10−1, which is our first level preconditioner
and consequently σ = 1. We apply the various spectral preconditioners to the matrix
A = C−1B685C

−T . As in the previous series of experiments, we use the eigenvectors of
the perturbed matrix A + tE to build the preconditioners. Consequently we use eigenele-
ments that have a backward error of the order of t.

The right-hand side is chosen so that the solution of Ax = b is the vector of all ones:
x = (1, . . . , 1)T , b = Ax. For the numerical experiments the initial guess is the zero vector
and we decide to stop the PCG iterations when the normalized unpreconditioned residual
is reduced by 10−9, so that the stopping criterion is independent of the preconditioner.
Even though this quantity might be a by-product of the PCG solver we explicitly compute
the unpreconditioned residual to decide when to stop the iterations.

In Table 2 we report on the number of PCG iterations for the various deflation and
coarse-grid preconditioners for t = 10−12 and t = 10−3. We vary from one to ten the
number ne of eigenelements used to build the preconditioners. The eigenvalues of A
obtained with eig are reported in Table 3. For the smallest perturbation, that is t =
10−12, all the preconditioners behave exactly the same. Because the IC preconditioner
has already clustered many of the eigenvalues close to one, moving the smallest eigenvalues
(that vary from 5.67 · 10−4 to 3.05 · 10−2 see Table 3) exactly to one or shifting them by
one leads to the same behaviour of PCG. However, when a perturbation is applied, that
is when the eigenelements are less accurately computed, some differences appear. Both
M1 and M+1 perform similarly and outperform the others. Then the various variants
that approximate the eigenvalues using Rayleigh quotients perform similarly. The worse
behaviour is observed for the variants that make use of the approximate eigenvalues.

t = 10−12

ne 1 2 3 4 5 6 7 8 9 10
All Prec 161 147 132 118 106 95 88 81 81 79

t = 10−3

ne 1 2 3 4 5 6 7 8 9 10
M1 168 154 142 129 122 114 107 104 101 98

M rayl
1 168 155 152 142 144 139 133 131 126 121

Meig
1 168 156 154 141 143 140 134 194 183 183

M rayl
1,⊥ 168 155 151 139 138 133 125 124 121 117

Meig
1,⊥ 168 156 152 140 139 133 125 184 173 171

M+1 168 154 142 129 121 114 107 104 101 98

M rayl
+1 168 155 152 139 138 133 125 124 121 117

Meig
+1 168 156 152 140 139 133 125 184 174 171

Table 2: # iterations for PCG for perturbed eigenpairs on the bus 685 matrix.
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λ1 λ2 λ3 λ4 λ5

5.67e-04 2.91e-03 3.58e-03 4.71e-03 6.19e-03

λ6 λ7 λ8 λ9 λ10

8.35e-03 1.85e-02 2.05e-02 3.04e-02 3.05e-02

Table 3: The ten smallest eigenvalues targeted by the spectral preconditioners on the bus 685 matrix.

To summarize we use the first-order perturbation theory for eigenvalues and eigenvec-
tors to investigate the behaviour of deflation and coarse preconditioners for SPD linear
systems. Our analysis shows a better stability of the preconditioners M1 and M+1 com-
pared to the other preconditioning variants that exploit some additional properties that
are only true for exact eigenpairs. These results show that targeting small eigenvalues
or small clusters may require a backward stable calculation of the eigenelements. An
important result of this work is that the efficiency of a spectral preconditioner should not
be assessed only using exact eigenpairs.

For a more detailed description of this work we refer to [16].

3 Incremental spectral preconditioners for sequences of linear systems

Many numerical simulations in scientific and engineering applications require the so-
lution of set of large linear systems involving the same coefficient matrix but different
right-hand sides. That is, the solution of

Ax(`) = b(`) for ` = 1, . . . , (16)

where A is a nonsingular matrix in C
n×n, and x(`) and b(`) are vectors of C

n. Such a
situation occurs for instance in some parametric studies, in the calculation of eigenvalues
using shift and invert techniques, in radar cross section for electromagnetic calculations.
Several numerical techniques can be considered to attempt to reduce the cost of solving
subsequent systems in the sequence. The approach to follow depends on the features of
the problem at hand and might consist in adapting the Krylov solver or in improving
the preconditioner. For simultaneous right-hand sides, block Krylov linear solvers [15,
25, 34] might be appropriate. For sequence of right-hand sides that do not vary much, a
straightforward idea is to use the former solution as an initial guess for the next solve. A
more sophisticated variant is the seed approach [31], that consists in choosing the initial
guess vector of the current system such that it complies with an optimum norm or an
orthogonality criterion over the Krylov spaces associated with the previous right-hand
sides. Another alternative is GCRO-DR recently proposed in [27] that further exploits
the deflating ideas presented in GMRES-E [22] or GMRES-DR [23].

Other possible complementary alternatives consist in improving a selected precondi-
tioner. In most of the situations, the linear systems are solved using an application
dependent preconditioner whose efficiency and cost are controlled by a few parameters.
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Because the preconditioner is used for all the right-hand sides, some extra effort can be
devoted to improve it. The extra work involved in its construction can sometimes be
amortized as many systems have to be solved. For instance, if an incomplete factoriza-
tion [4, 20, 30] is considered, the threshold parameter can be decreased to allow for more
fill-in in the factors, giving rise to a more efficient preconditioner but more costly to build
and to apply. Similarly, in the algebraic multigrid context we might decide to select tech-
niques that leads to better preconditioners but that have a more expensive setup phase.
Even though such an approach is certainly beneficial, the gain is often limited and other
complementary techniques can be envisaged. One possibility is to perform a spectral
update of the ad-hoc preconditioner as described for instance in [3, 7, 12].

In this section, we present a preconditioning technique that implements a spectral low
rank increment of the preconditioner after the solution of each right-hand side. From one
linear system to the next, an elementary low rank correction is added to the preconditioner
and we therefore use the terminology “incremental preconditioner”. The spectral infor-
mation required to perform the elementary update is recovered at very low computational
cost from by-products of the selected Krylov linear solver. Among the preconditioners
that can be considered to perform the elementary update [3, 7, 12], we focus in this pa-
per on the variant described in [7]. Our solution technique is expected to be efficient if
it is implemented to complement a prescribed ad-hoc and efficient preconditioner that
clusters most of the eigenvalues near one and only leaves a few outliers near the origin.
Such a situation appears in various applications and closely related spectral techniques
have been recently applied with success in elastic wave propagation or thermal convec-
tion [35], porous media flow [24], semiconductor device modeling [29] or electromagnetic
simulation [11].

3.1 Incremental spectral preconditioners formulation

Many preconditioners are able to cluster most of the eigenvalues close to one but still
leave a few close to the origin. To move these eigenvalues close to one might be possible
by tuning the parameters that control these preconditioners. However, this tuning is
often difficult and might lead to very expensive preconditioners to setup and to apply.
Furthermore, it is well known that the convergence of Krylov methods for solving the linear
system often depends to a large extent on the eigenvalue distribution. In many cases, it is
observed that “removing” the smallest eigenvalues can greatly improve the convergence.
This can be illustrated in the symmetric positive definite case by the bound on the rate
of convergence of the Conjugate Gradient method given by (1). Some arguments exist for
unsymmetric systems to mitigate the bad effect of the smallest eigenvalues on the rate of
convergence of the unsymmetric Krylov solver [3, 12, 21].

In the remainder of this section, we provide a heuristic motivation for our incremental
preconditioning methods. In [7] a spectral low rank update (SLRU) preconditioning
technique that exploits the knowledge of the eigenvectors associated with the smallest
eigenvalues is described. The proposed preconditioners shift the corresponding eigenvalues
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close to one and numerical examples show the relevance of this approach. Let us now
briefly recall the formulations of these preconditioners as well as their spectral properties.

In the remainder of this section, we provide a heuristic motivation for our incremental
preconditioning methods. In [7] a spectral low rank update (SLRU) preconditioning
technique that exploits the knowledge of the eigenvectors associated with the smallest
eigenvalues is described. The proposed preconditioners shift the corresponding eigenvalues
close to one and numerical examples show the relevance of this approach. Let us now
briefly recall the formulations of these preconditioners as well as their spectral properties.
In particular, we derive a new proof on its spectral transformation.

Let us consider the solution of the first linear system

Ax(1) = b(1), (17)

where A is a n×n unsymmetric complex nonsingular matrix, and x(1) and b(1) are vectors of
size n. The linear system is solved using a preconditioned Krylov solver and we denote by
M the initial preconditioner. Let {λ1, · · · , λn} be the set of eigenvalues of MA where the
multiple eigenvalues are repeated. Let the columns of U be the basis of a right invariant
subspace of MA of dimension k. Suppose without loss of generality that MAU = UJk

where the eigenvalues of Jk are {λ1, · · · , λk}. Using U we can design a preconditioner
for the second linear system. The spectrum of the preconditioned matrix is given by the
proposition below.

Proposition 1 Let W be such that Ac = WAU is nonsingular, and let define

M
(2)
ISLRU = M + UA−1

c W. (18)

Then the eigenvalues of M
(2)
ISLRUA (or AM

(2)
ISLRU) are

{
η

(2)
i = λi if i > k,

η
(2)
i = 1 + λi if i ≤ k.

For a sequence of right-hand sides, we consider a repeated use of the result above.
Assume that after the solution of the first system we have x(1), {λ1, · · · , λk1

} and U (1) an
associated basis for the right invariant subspace of MA. Consequently, {λ1, · · · , λk1

} will

be shifted in M
(2)
ISLRUA. The next linear system to be solved is M

(2)
ISLRUAx(2) = M

(2)
ISLRUb(2).

Similarly after the solution of this system, we suppose that we know x(2), {λk1+1, · · · , λk2
}

and U (2) such that {λk1+1, · · · , λk2
} will be shifted in M

(3)
ISLRUA. Notice that following (18),

M
(3)
ISLRU = M

(2)
ISLRU + U (2)

(
W (2)AU (2)

)−1
W (2). Repeating this procedure until the `-th

linear system we can then update the preconditioner M
(`+1)
ISLRU such that the eigenvalues

of M
(`+1)
ISLRUA are: {

η
(`+1)
i = λi if i > k`,

η
(`+1)
i = 1 + λi if i ≤ k`.

(19)
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The preconditioner for the (` + 1)-th linear system can be written as:

M
(`+1)
ISLRU = M +

∑̀

j=1

U (j)(W (j)AU (j))−1W (j). (20)

Similar formulation and results can be established if right preconditioners are consid-
ered.

The sketch of the solution scheme for a sequence of right-hand sides in Matlab like
syntax is described in Algorithm 1, it is by no means well suited for practical implemen-

Algorithm 1 Basic scheme for a sequence of right-hand sides

1: M
(1)
ISLRU = M

2: for ` = 1, 2, . . . do

3: [x(`)]=Solve(b(`),M
(`)
ISLRU ,A)

4: [V (`)]=Right Invariant Space(AM
(`)
ISLRU )

5: M
(`+1)
ISLRU = M

(`)
ISLRU

(
I + V (`)

(
W (`)AM

(`)
ISLRUV (`)

)−1

W (`)

)

6: end for

tation. The computation of an invariant subspace is generally far more expensive than
the solution of a linear system. Furthermore, the low rank-update as performed by step 5
would generally fill the preconditioner which is unacceptable. The purpose of the next
section is to show how this algorithm can be adapted so that it is suitable to practical
implementation.

Finally, we assume that the eigenvalues {λ1, · · · , λk`
} are simple and that the columns

of V (`) are the corresponding right eigenvectors. We select W (`) =
(
V (`)

)H
as in [7, 11].

The spectral preconditioning techniques are likely to be particularly efficient if they
are implemented to complement a prescribed ad-hoc and efficient preconditioner that
only leaves a few outliers near the origin. Because our primary interest is to solve a
sequence of linear systems we would like to recover the eigen-information almost for free.
This information is either a by-product of the linear solver or can be computed at a
low computational cost from information available in the linear solver. In that context,
natural candidates among the Krylov linear solvers are those that rely on an Arnoldi
procedure and belong to the variants of GMRES. In particular, because we are looking
for the smallest eigenvalues and because for large scale computation a restart mechanism
has to be implemented, GMRES-DR(m, k) [23] appears as an suited candidate.

The GMRES-DR(m, k) method is a variant of restarted GMRES(m) that retains an
approximatively invariant subspace of dimension k between the restarts (i.e. after having
built a Krylov space of dimension m). We do not go into further details on the GMRES-
DR solution technique and refer to [23] for a detailed description.
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The GMRES-DR method exhibits nice capabilities to recover the spectral information
we are targeting with our preconditioner. We explore in the rest of this paper the numer-
ical behaviour of the combination of our incremental technique with this Krylov linear
solver. The resulting implementation of the numerical method is obtained by replacing
steps 3 and 4 of Algorithm 1 by a call to GMRES-DR where of course the preconditioner
MISLRU is kept in implicit form. That is, it is never assembled and whenever a precon-
ditioning operation is required we only have to perform matrix-vector products involving
V (`) and to solve small linear systems involving A

(`)
c .

4 Implementation in large electromagnetism applications

In electromagnetic calculations, a classic problem is to compute the currents generated
on the surface of an object illuminated by a given incident plane wave. Such calculations,
relying on the Maxwell’s equations, are required in the simulation of many industrial
processes coming from antenna design, electromagnetic compatibility, computation of
back-scattered fields, and so on. Recently the Boundary Element Method (BEM) has
been successfully used in the numerical solution of this class of problems. The formula-
tion considered in this paper is the EFIE (Electric Field Integral Equation) as it applied
to any object, without any assumption on its topological or geometrical properties. The
matrices associated with the resulting linear systems are large dense, non-Hermitian and
complex. Nowadays, problems with a few hundred thousand variables hqve to be solved
and iterative solvers appear as the only viable alternative since techniques based on mul-
tipole expansion have been developed to perform fast matrix–vector products without
forming all the entries of the dense matrices. In particular, the fast multipole method
(FMM) performs the matrix–vector product in O(n log n) floating-point operations and
can efficiently be implemented on parallel distributed platforms with some out–of–core
techniques in order to tackle huge industrial problems [33]. The industrial problem we
focus on in this section is the monostatic radar cross section calculation of an object. The
procedure consists in considering a set of waves with the same wavelength but different
incident angles that illuminate the object. For each of these waves we compute the elec-
tromagnetic field backscattered in the direction of the incident wave. This requires the
solution of one linear system per incident wave. Therefore we have to solve a sequence of
linear systems having the same coefficient matrix but different right-hand sides. In this
context it is particularly important to have a numerically efficient and easily parallelizable
preconditioner. A preconditioner suitable for implementation in a multipole framework
on parallel distributed platforms has been proposed in [1, 8]; it is based on a sparse ap-
proximate inverse using a Frobenius norm minimization with an a priori sparsity pattern
selection strategy and is denoted by MFrob. The parallel distributed code uses out-of-core
data structure, in particular all the vectors involved in the linear algebra operations are
out-of-core; for a detailed description of the other features we refer to [18, 33].

In the sequel, we investigate the behaviour of our incremental solution scheme on large
real industrial applications. The test geometries are shown in Figure 1. They consist of a
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wing with a hole referred to as Cetaf, a civil aircraft and an air intake referred to as Cobra.
The Cetaf is a classic test problem in the computational electromagnetics community; the
other two have been kindly provided to us by EADS–CCR. In all the experiments, we con-

X
Y

Z

(a) Cetaf (b) Civil aircraft

X

Y

Z

(c) Cobra

Figure 1: Various geometries used in the numerical experiments

sider a right preconditioner and the threshold for the stopping criterion is set to 10−3 on
the scaled residual ||r||

||b||
. This tolerance is accurate for engineering purposes, as it enables

the correct construction of the radar cross section of the object. The runs have been per-
formed in single precision on a four-way SMP (Symmetric Multi-Processors) HP-Compaq
Alpha cluster. Each node consists of four DEC Alpha processors (EV 6, 1.3 GFlops peak)
that share 2 GB of memory. On that computer, the temporary disk space that can be
used by the out-of-core solver is around 189 GB. For the experiments we consider a radar
cross section that is a angular section of width 30o discretized every degree so that we
end up with a sequence of 31 right-hand sides. In Figure 2, we display for the largest
problems of each geometry, the number of iterations with and without the incremental
preconditioner on the sequence of right-hand sides. It can be seen that the incremental
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preconditioner enables us to significantly reduce the number of iterations. For the solu-
tion of the last right-hand side of the sequence, the reduction in GMRES-DR iterations
is equal to about 33 for the Aircraft discretized with 94 704 degrees of freedom (dof),
about 4.5 for the Cetaf with 264 159 dof and greater than 7.5 for the Cobra with 179 460
dof. In Table 4, we give more details on these numerical experiments. In that table,
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Figure 2: Number of GMRES-DR iterations with MFrob and MISLRU for the different incident angles

for each geometry. The sampling for the illuminating wave is one degree.

“# Proc” denotes the number of processors, “(m, k)” denote the restart and the number
of harmonic Ritz vectors of the GMRES-DR solver, “# M.V” is the cumulated number
of matrix-vector products and “Elap. time” is the parallel elapsed time to perform the
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complete simulation. Finally, “p” denotes the total number of eigenvalues shifted by the
incremental preconditioner. We mention that the selection of the number of processors
used was mainly governed by the memory constraint and batch queue management im-
plemented on our computing platform; it has not influence on the numerical behaviour of
the algorithm. We can see that the incremental mechanism enables not only a significant
reduction of the number of iterations but also a noticeable decrease of the elapsed time.

Geometry Size # Proc (m, k) MFrob MISLRU

# M.V Elap. time # M.V p Elap. time
Aircraft 23 676 8 (200,50) 20 613 12h 15m 2 688 246 1h 30m
Aircraft 94 704 31 (200,50) 66 411 2d 21h 9 801 686 10h
Cetaf 86 256 31 (150,30) 23 047 14h 30m 6 558 462 4h 30m
Cetaf 134 775 31 (150,30) 22 254 23h 20m 9 098 577 10h
Cetaf 264 159 31 (150,30) 30 804 2d 08h 13 921 770 1d 3h
Cobra 60 695 8 (100,20) 9 672 8h 30m 2 092 200 2h
Cobra 179 460 31 (100,20) 13 418 14h 3 876 365 4h

Table 4: Cost for monostatic calculations.

The gain in time ranges from two to eight depending on the problem and is almost
proportional to the reduction in the total number of iterations. This can be explained
by the fact that the cost of a matrix-vector product is quite high and the relative cost
of our preconditioner remains low even for large p; consequently any reduction in the
number of iterations translates to a reduction in the computational time. We notice
that this property is not necessarily true for sparse linear systems, where the cost of
the incremental preconditioner might dominate even for small values of p so that the
preconditioner might not be effective if it does not significantly reduce the number of
iterations.

The proposed technique is a combination of a low rank update spectral preconditioner
and a Krylov solver that recovers at run time approximations to the eigenvectors asso-
ciated with the smallest eigenvalues, namely GMRES-DR in our case. It shows a clear
interest in large parallel calculations for electromagnetic simulations. For more details on
this work we refer to [17].

5 CONCLUSIONS

We use first-order perturbation theory for eigenvalues and eigenvectors to investigate
the behaviour of deflation and coarse preconditioners for SPD linear systems. Our anal-
ysis shows a better stability of the preconditioners M1 and M+1 compared to the other
preconditioning variants that exploit some additional properties that are only true for
exact eigenpairs. An important result of this work is that the efficiency of a spectral
preconditioner should not be assessed only using exact eigenpairs. In practice these pre-
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conditioners may be built using approximate information. Such a situtation occurs for
instance when a sequence of linear systems have to be solved. On unsymmetric problems
we show how such a solution technique can be implemented and we illustrate its efficiency
on large industrial electromagnetics examples.
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