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We present calculations of the temperature-dependent electrostatic and chemical potential distributions in
disordered normal metal-superconductor structures. We show that they differ appreciably in the presence of a
superconducting terminal and propose an experiment to measure these two different potential distributions. We
also compute the resistance change in these structures due to a recently proposed mechanism which causes a
finite effect at zero temperature. The relative resistance change due to this effect is of the order of the
interaction parameter in the normal metal. Finally a detailed calculation of the resistance change due to the
temperature dependence of Andreev reflection in diffusive systems is presented. We find that the maximal
magnitude due to this thermal effect is in general much larger than the magnitude of the interaction effect.
@S0163-1829~96!08521-9#

I. INTRODUCTION

Mesoscopic structures in which normal metal wires or
semiconductors are attached to superconductors have re-
ceived a fair amount of attention in the past few years. In
particular devices known as Andreev interferometers, in
which two superconducting terminals with different macro-
scopic phases are present, have been in the focus of interest.
The conductance of these structures, in which electrons and
holes undergo multiple Andreev reflection depends on the
phase difference of the connected superconductors, hence the
name Andreev interferometry.

Since the prediction of Andreev reflection,1 the theory of
charge transport throughN-S junctions has been well
established.2–4 However, the practical implications of this
phenomenon for the sophisticated nanostructures that can
nowadays be realized are not always clear. The reason for
this is the coherent nature of multiple Andreev reflection
which determines the physical behavior of these devices.
These technological developments resulted in the current re-
vival of the topic in mesoscopic physics.

In the last few years a large number of Andreev interfer-
ometers have been studied both theoretically5–11 and
experimentally.12–15 Particularly the experiment of Ref. 15
motivated the research presented here. In this experiment, the
resistance of a cross shaped diffusive normal metal was mea-
sured. The two branches of the cross perpendicular to the
current path were in contact with a large superconducting
loop. The phase difference between the superconducting end
points of the loop could be controlled by a small current
through the loop or, alternatively, by applying a magnetic
field. The resistance of the structure oscillated nonharmoni-
cally as a function of the phase difference by about 10% of
the normal state resistance. These results were unexpected
because in the conventional theory of the proximity effect, in
which electron-electron interactions in the normal metal re-
gion are disregarded, the zero-voltage, zero-temperature re-
sistance of a diffusive metal is predicted to be phase
independent.16,17 Furthermore, the large amplitude and the
observed 2p periodicity ruled out the possibility of a weak

localization effect, since the latter was predicted to show a
phase dependence with a fundamental period ofp.18,19 To
this day, resistance oscillations withp periodicity remain
unobserved.

Recently we proposed a mechanism which provides a
phase-dependent resistivity in a diffusive conductor at zero
temperature.17 This scheme takes into account the fact that
the electron-electron interaction induces a weak pair poten-
tial in the normal metal. As a result, Andreev reflection oc-
curs in the entire structure, rather than only at theN-S inter-
faces. This results in a phase-dependent resistance change
which is proportional to the interaction parameterl in the
normal metal and can be of either sign, depending on the
sign of l. Although the experiment of Ref. 15 could be
explained in terms of the proximity effect theory and the
results were shown to be caused by the finite temperature at
which the experiments were performed,17 it would be chal-
lenging to observe the resistance oscillations predicted in
Ref. 17. This would also be of practical interest since it
would provide the means to directly measure the interaction
parameter in the normal metal. However, in addition to the
fact that electron-hole coherence influences the resistance, it
also manifests itself in a nontrivial distribution of the elec-
trostatic and chemical potentials in the structure as we will
show below.

The remainder of this paper is organized as follows. In
Sec. II we briefly discuss the influence of phase coherence on
transport properties and potential distributions in small dif-
fusive structures. Section III contains the theoretical founda-
tion of our calculations. We first review the relevant tech-
niques of the Keldysh formalism for diffusive
superconductors and then derive the equations for the Green
functions and distribution functions which determine the
electric transport properties of the system. The next three
sections are devoted to several applications of the theory. We
first calculate the temperature-dependent electrostatic and
chemical potential distributions in a simple one-dimensional
structure in Sec. IV. A second application is presented in
Sec. V, where we calculate the resistance change at zero
temperature due to the induced pair potential in the normal
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metal region for two experimentally relevant geometries.
The third and last application is discussed in Sec. VI. There
we focus our attention on the influence of a finite tempera-
ture on the resistance in these structures. Some of the results
in Secs. V and VI were published in a preliminary form in
Ref. 17. However, here we additionally give a detailed de-
scription of the performed calculations. We summarize our
conclusions in Sec. VII.

II. COHERENCE EFFECTS IN ULTRASMALL
DISORDERED STRUCTURES

Owing to the advance in nanofabrication techniques over
the past years, the fabrication of hybrid metallic supercon-
ducting structures with a characteristic size of a few microns
or less has nowadays become possible. If these small struc-
tures are at a sufficiently low temperature, the quasiparticles
in the metal can no longer penetrate into the superconductor
due to the large superconducting gap. As a result, the lowest-
order process that determines the resistance of the system is
Andreev reflection, in which an electron is reflected as a hole
or, alternatively, in which an electron pair enters the super-
conductor. This reflection causes electrons and holes in the
diffusive metal to be phase coherent over distances of the
order ofj5AD /T@ l , whereD5 1

3vFl is the diffusion con-
stant andl is the elastic mean free path.

This phase coherence between electrons and holes drasti-
cally alters the physics of transport through such systems.
The most striking feature is that the electrostatic potential
and nonequilibrium chemical potential are no longer distrib-
uted linearly through the sample. The nonlinearity of the
electrostatic potential implies a nonuniform resistivity distri-
bution and consequently a nonlocal resistance of the struc-
ture. This nonlocality is a fundamental feature of the coher-
ent nature of Andreev reflection. Moreover, at finite
temperatures the transport properties of the system cease to
be distributed uniformly over all energies. Hence, a calcula-
tion of these quantities, to which the main part of this article
will be devoted, must first consider them at each energy in-
dividually and then integrate over all energies.

Another manifestation of the phase coherence in the nor-
mal metal is the difference in the distribution functions of the
electrostatic and chemical potentials. In a normal system
both would be equal, but this changes when one of the leads
is brought into the superconducting state. Whereas the
former is simply determined by the distribution of charge in
the system, the latter can only be defined for small perturba-
tions from equilibrium, i.e., when the quasiparticle energies
are much smaller than the superconducting gap. To show
how this definition comes about we consider the normal cur-
rent through a disorderedN-I -S junction. Zhou, Spivak, and
Zyuzin showed that for small quasiparticle energies« this
current can be written in the following way:20

j ~«,xN!5t$ f T~«,xS!2 f T~«,xN!%F~«,xN ,xS!, ~2.1!

wheret is the transparency of the tunnel barrier,xN andxS
denote the normal-metal side and superconducting side of
the barrier,F is some function of«, xN andxS , andf T is the
nonequilibrium distribution function. This equation shows
that at low temperatures the nonequilibrium chemical poten-
tial can be associated with the distribution function and con-

sequently that it is a measurable quantity. As will be dis-
cussed in Sec. IV, the electrostatic potential decreases faster
than linear in the vicinity of the superconductor due to the
decreased density of states near theN-S interface. In con-
trast, the chemical potential changes only a little in the pres-
ence of a superconducting terminal and consequently the ra-
tio of the electrostatic and chemical potential vanishes near
the superconductor.

A possible experimental setup to measure the difference
between the electrostatic and chemical potential is drawn in
Fig. 1. The figure shows a diffusive wire connecting two
reservoirs ~not shown! in the presence of two different
probes. The voltage probe measures the chemical and the
capacitance probe the electrostatic potential. As shown in
Fig. 1~b!, the voltage probe consists simply of a metallic lead
separated from the wire by a thin oxide layer. The latter is
indicated by the dark shaded region. The capacitance probe
is slightly more complicated. In principle one could use a
single metallic gate separated by a thick oxide layer to re-
duce tunneling from lead to wire. However, because such a
gate would not only couple capacitively to the charge in the
wire directly underneath the tip but also strongly to the sur-
roundings, we propose a slightly different method: A small
metallic island is deposited on the edge of the wire as indi-
cated in the figure. This island is weakly coupled to two
extra leads through which a current can flow. In this case the
electrostatic potential capacitively induces a charge on the
island, thus very sensitively changing the measured Coulomb
threshold. Both probes can be calibrated since they should
measure the same potentials if both reservoirs are in the nor-
mal state. If one of the reservoirs is brought into the super-
conducting state, both potentials should change. If one would
attach different probes along the wire it would be possible to
measure the potential landscapes in the wire. In Sec. IV we
will return to this subject in a more quantitative fashion, but
we will now first discuss the necessary theory.

FIG. 1. Schematic setup of an experiment to measure the elec-
trostatic and chemical potential:~a! Top view. ~b! Cross section
along the dashed line in~a!. For details, see text.
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III. METHOD

A. Kinetic equations for the distribution functions
in the dirty limit

To describe the system we use the nonequilibrium Green
function method derived by Keldysh21 and later further de-
veloped for superconductivity by Larkin and Ovchinnikov.22

Although this framework is rather formal it has one large
advantage over, e.g., the scattering approach. As was men-
tioned above the resistance of the structure is nonlocal. How-
ever, using the Keldysh technique it is possible to express
scattering processes in the structure as well as other relevant
physical quantities, like the resistance, in terms of local
Green functions in coincident points. This property of the
formalism simplifies the calculations considerably. To estab-
lish notation and to remind the reader of the basic theory we
briefly review the essential ingredients of the Keldysh for-
malism and the quasiclassical approximation for diffusive
superconductors. For more extensive reviews, we refer to,
e.g., Refs. 23 and 24.

In this formalism the Green function is given by the
(434) matrix

Ǧ5S ĜR ĜK

0 ĜAD , ~3.1!

where ĜA,ĜR, and ĜK are the advanced, retarded, and
Keldysh Green function which are (232) matrices in
Nambu space given by25

ĜA~1,18!5S GA~1,18! FA~1,18!

FA†~1,18! 2GA~18,1!
D , ~3.2!

and analogous equations forĜR and ĜK. Throughout this
article the symbol ‘‘check’’ will be used to denote (434)
matrices and ‘‘hat’’ for (232) matrices. The normal and
anomalous Green function are given by:

GR~1,18!52 iu~ t12t18!^@c~1!,c†~18!#1&, ~3.3a!

GA~1,18!5 iu~ t182t1!^@c~1!,c†~18!#1&, ~3.3b!

GK~1,18!52 i ^@c~1!,c†~18!#&, ~3.3c!

FR~1,18!52 iu~ t12t18!^@c~1!,c~18!#1&, ~3.3d!

FA~1,18!5 iu~ t182t1!^@c~1!,c~18!#1&, ~3.3e!

FK~1,18!5 i ^@c†~1!,c†~18!#&, ~3.3f!

wherec(1)5c(t1 ,r1) is the electron field operator.
We proceed by introducing the center-of-mass and rela-

tive coordinatesr5 1
2(r11r18) and r 85r12r18 and by Fou-

rier transforming the Green function with respect to the rela-
tive coordinate: Ǧ(r ,p)5*dr 8exp(2ipr 8)Ǧ(r1 1

2r 8,r
2 1

2r 8). We apply the quasiclassical approximation, which is
based on the fact that the Fermi energy in the system is much
larger than all other energy scales. This means that all rel-
evant physical quantities vary spatially on a length scale that
is much larger than the Fermi wavelength. In this case it is
useful to introduce the so-called quasiclassical Green func-
tion ǧ which is integrated overjp5p2/2m2m:

ǧ~r ,p̂,t1 ,t18!5
i

pE djpǦ~r ,p,t1 ,t18!. ~3.4!

Herep̂ in the left-hand side denotes the fact that the momen-
tum dependence of the quasiclassical Green function is re-
stricted to dependence on the direction ofp only. In this
approximation the magnitude of the momentum is fixed at
upu5pF . This quasiclasissical Green function satisfies the
normalization condition

E dt19ǧ~ t1 ,t19!ǧ~ t19,t18!51̌d~ t12t18!. ~3.5!

In the case of a superconductor with short elastic mean
free path, i.e., in the diffusive regime, it is feasible to expand
the Green function to first order in spherical harmonics:26

ǧ5ǧs1pǧp , pǧp!ǧs , ~3.6!

where the functionsǧs and ǧp no longer depend on the di-
rection ofp. Using the normalization condition~3.5! we find
an expression forǧp , which is then substituted back into Eq.
~3.6!. The thus obtained Green function is then averaged
over all angles ofp. In the stationary case, the Green func-
tion depends on the time differencet5t12t18 only. Per-
forming the Fourier transform with respect to this time dif-
ference, we obtain the equation of motion for the Green
function ǧ«5*dtǧs(t)exp(i«t) ~we drop the indexs from
now on!27

2D“~ ǧ«“ǧ«!1 i @Ȟ,ǧ«#1 i @Š,ǧ«#50, ~3.7a!

ǧ«
251̌, ~3.7b!

whereD5 1
3vFl is the diffusivity, l is the elastic mean free

path,Ȟ5ew1̌1«šz2Ď and Ď and šz are given by

Ď5S D̂ 0

0 D̂
D , D̂5S 0 D

2D* 0 D , ~3.8!

whereD is the pair potential in the metal and

šz5S ŝz 0

0 ŝz
D , ŝz5S 1 0

0 21D . ~3.9!

In Eq. ~3.7a! elastic non-spin-flip impurity scattering has
been taken into account in the Born approximation, causing
the presence of the elastic mean free pathl in the diffusion
constant.24 Hence, the self-energy matrixŠ in Eq. ~3.7a!,
which has the same structure as the Green function~3.1!,
takes into account processes such as spin-flip scattering and
the inelastic scattering of electrons with phonons and~mag-
netic! impurities.

The general expression for the electrostatic potentialw in
Eq. ~3.7a!, which follows from electroneutrality in the metal,
is24,20

w~x!52
1

8eE2`

`

d« Trĝ«
K~x!. ~3.10!

Throughout this article the electrostatic potential is assumed
to be time independent.
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The advanced and retarded Green functions determine the
dispersion of the quasiparticles. However, to solve a trans-
port problem we need to know how the energy spectrum is
filled by extra quasiparticles when the system is driven out of
equilibrium. This is determined by the Keldysh component
ĝK of ǧ, which can be expressed in the advanced and re-
tarded ones using two distribution functions:22–24

ĝ«
K5ĝ«

Rf̂2 f̂ ĝ«
A ~3.11a!

f̂5 f L1̂1 f Tŝz . ~3.11b!

In a spatially slowly varying electromagnetic field, the equa-
tions for the two distribution functions are~dropping colli-
sion integrals because they account for inelastic scattering
processes, and time derivatives because we seek to find sta-
tionary solutions only!

D“ Tr$“ f L~ 1̂2ĝ«
Rĝ«

A!%1D“~ f Tj «!50, ~3.12a!

D“ Tr$“ f T~ 1̂2ŝzĝ«
Rŝzĝ«

A!%1D“ f L j « ~3.12b!

12i f TTr$~ ĝ«
R1ĝ«

A!D̂%50, ~3.12c!

where j «5Trŝz$ĝ«
R]̂ĝ«

R2ĝ«
A]̂ĝ«

A%.
To close the set of equations we finally need an equation

for the pair potential in the normal metal region. This expres-
sion forD can be derived from the self-consistency relation:

D̂~r !5
l

4i E d«$ĝ«
K~r ,p̂,t!%o-d ,

5
l

4i E d« tanhS «

2TD $ĝ«
R2ĝ«

A%o-d , ~3.13!

wherel5gN(0) is the interaction parameter,g, times the
density of states at the Fermi level,N(0). Thesubscripto-
d denotes the off-diagonal part.

This concludes the derivation of the distribution func-
tions. We now have a closed system of equations that in
principle must be solved self-consistently. In the next section
we will discuss specific circumstances that allow for a sim-
plification of the equations, enabling us to solve them pertur-
batively.

B. Approximations

In this section we discuss the assumptions and approxi-
mations that enable us to simplify the theory. We subse-
quently derive the final set of equations that we will use.

We start by noting that Eq.~3.7a! for the Green function
still contains the self-energy matrixŠ. However, because we
are only interested in the case where the phase breaking
length is much larger than the system size, it is reasonable to
disregard inelastic scattering processes and hence, we neglect
Š from now on. Eq.~3.7a! then reduces to17

D“~ ǧ«“ǧ«!2 i @Ȟ,ǧ«#50. ~3.14!

We now have equations for the diagonal componentsĝ«
A and

ĝ«
R of the Green function~3.1!.
We parametrize the advanced Green function in the fol-

lowing way:

ĝ«
A5S cosu ieifsinu

2 ie2 ifsinu 2cosu D , ~3.15!

thus ensuring thatĝ«
251̂. In generalf and u are complex

and depend on energy and position. In a structure with two
superconducting terminals,ĝ«

A will depend on the phasedif-
ferencef12f2 between the two superconductors. However,
if only one superconducting reservoir is present, the resis-
tance of the structure will not depend on the absolute phase
and we can putf50.

In the case of sufficiently small quasiparticle, thermal and
Thouless energies;«,kBT,D /L

2!DS , whereDS is the en-
ergy gap in the superconductor, the advanced Green function
can be written in the following way:22

ĝ«
A5

21

A~«2 id!22uDu2
S « D

2D* 2«
D , ~3.16!

whered is an infinitesimally small positive number. Using
this representation forĝ«

A it is easy to derive boundary con-
ditions for Eq. ~3.14!. In a normal reservoirD50 and
ĝ«
A52ŝz . In a superconducting terminal having phasef,

D5uDSueif and the Green function satisfies
ĝ«
A5ŝxsinf1ŝycosf.
It is also possible to simplify Eq.~3.12! for the distribu-

tion functions considerably: In the case of a negligible super-
current I s5* j «d« the equations for the two distribution
functions decouple, reducingf L to its equilibrium value
f L5tanh(«/2T) and leaving us with a single equation forf T
which can be cast into the form of a diffusion equation:17

“„D~«,r !“ f T~«,r !…2g~«,r ! f T~«,r !50, ~3.17!

where the first term describes diffusion of quasiparticles with
an effective diffusion coefficient

D~«,r !5
D

4
Tr$1̂2ŝzĝ«

Rŝzĝ«
A%,

5
D

8
Tr$~ ĝ«

A1ĝ2«
A† !2%, ~3.18!

that is modified by the penetrating superconductivity. Here
we have used the identityĝ«

R52ŝzĝ2«
A ŝz , which relates the

advanced and retarded Green functions. The second term de-
scribes absorption of quasiparticles in the superconducting
condensate with a coefficientg5 i /2Tr$(ĝ«

R1ĝ«
A)D̂%. In the

absence of external fieldsg is proportional to the local value
of the pair potential, since in that case we can always choose
D to be real, and we obtain

g~r ,«!52
i

2
D~r !Tr$ i ŝy~ ĝ2«

A 1ĝ«
A!%. ~3.19!

The boundary conditions for Eq.~3.17! follow from expand-
ing tanh@(«1eV)/2T# to first order inV. This determines the
boundary condition forf T . In a normal reservoir that is bi-
ased at a~small! voltageV with respect to a superconducting
lead, the distribution function isf T5(eV/2T)cosh22(«/2T).

In most theoretical approaches, see e.g., Refs. 3, 4, 10,
and 27, electron-electron interactions in the normal metal are
disregarded, leading toD,g50. However, as shown in Ref.
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17, including the effect of these interactions produces a
change in the resistance. We thus need Eq.~3.13! for D,
which after a straightforward calculation can be rewritten as

D5
l

8i E d«tanhS «

2TDTr$ i ŝy~ ĝ«
A2ĝ«

R!%. ~3.20!

We now have all the necessary ingredients to calculate the
various nonequilibrium transport properties of the system.
The next section will be devoted to two of these properties,
namely the electrostatic and chemical potential distributions.

IV. ELECTROSTATIC VERSUS CHEMICAL POTENTIAL

As a first example of the theory of Sec. III we calculate
the electrostatic and the chemical potential in the 1D wire of
Fig. 2~a!. As was shown above, the former is determined by
the distribution of electric charge in the wire. The latter de-
termines the magnitude of the current that flows through the
sample. The system consists of a diffusive normal metal wire
of lengthL attached on the left to a normal metal reservoir
and on the right to a superconducting terminal. The normal
lead is biased at a small voltageV with respect to the super-
conductor. The normal reservoir is situated atx50.

Using Eq. ~3.11! for the Keldysh component and Eq.
~3.15! for the Green function we obtain

w~x!5
1

eE0
`

d« f T~x,«!cos„u~x,«!…. ~4.1!

In Fig. 3 we have calculated the potential distribution in the
normal metal for different values ofL/j, i.e., for different
temperatures.

In the limiting cases of low and high temperatures, the
potential can be calculated analytically:

w~x!5VS 12
x

L D cosS px

2L D , T→0, ~4.2a!

w~x!5VS 12
x

L D , D

L2
!kBT!DS . ~4.2b!

Figure 3 shows that the potential distribution changes with
temperature from a nontrivial one which is influenced
strongly by the penetrating superconductivity to the expected
linear dependence for high temperatures~but still
kBT!DS). This behavior is caused by the fact that the den-
sity of states vanishes in the vicinity of the superconductor.
Hence, the charge distribution which causes the electrostatic
potential also vanishes in this region. The most important
consequence of the nonlinear voltage distribution across the
sample is the fact that the resistance at a certain point is no
longer local, but depends on the distribution of resistivity in
the entire structure. This is a direct consequence of the co-
herent nature of Andreev reflection as was discussed above.

The chemical potential, which is simply proportional to
the energy integrated distribution function, is much less sen-
sitive to changes in temperature. The zero and high tempera-
ture distributions are the same and are given by

m0~x!5VS 12
x

L D . ~4.3!

In Fig. 4 we have plotted the deviation of the chemical po-
tential from this zero temperature solution. First of all we
note that the change is very small. The maximum change at
first increases rapidly with increasing temperature. However,
beyond a certain temperature,L/j'4, the maximum starts

FIG. 2. ~a! The simplest possible system, consisting of a diffu-
sive normal metal wire of lengthL, that is connected on the left to
a normal reservoir and to the right to a superconducting one.~b! An
example of a more complicated structure. The branches I, II, and IV
have lengthL8, branch III has lengthL. For further details, see text.
~c! The coordinates on the branches. The origins are indicated for
each branch.

FIG. 3. Electrical potential distribution in the wire of Fig. 2~a!
as a function of temperature. Going from bottom to top, the curves
correspond to values ofL/j50, 1.0, 1.5, 2.0, 4.0, and̀ . The
temperature is proportional to (L/j)2.
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decreasing slowly. For high temperatures, the solution re-
turns to the linear distribution. Thus we see that the electro-
static and chemical potential are only equal in the case of
high temperatures, when both reduce to the trivial linear de-
pendence that is also exhibited in the case of two normal
terminals.

To indicate more clearly the difference between electro-
static and chemical potential, we have plotted the ratio of the
two for different temperatures in Fig. 5. The electrostatic and
chemical potential differ most at low temperatures and near
the superconductor. However, in the vicinity of the normal
reservoir they are almost equal and the extent into the wire at
which they are equal increases at higher temperatures. In the
high-temperature limit they both reduce to the same linear
distribution, as was shown above.

V. THE INTERACTION EFFECT

A. The resistance of a 1D wire

In this section we calculate the resistance change at zero
temperature due to the penetration of the pair potential into
the normal metal region. We first consider the wire of Fig.
2~a! and then address more general geometries. In order to
simplify the equations later on, the superconducting end of
the wire is now located atx50 and the normal end at
x5L.

We first solve Eq.~3.14! for ĝA numerically to zeroth
order inD andw:

D“~ ĝ«
A
“ĝ«

A!2 i«@ŝz ,ĝ«
A#50, ~5.1!

wherew50 ~zero voltage limit! andD has been disregarded
since it is small in the normal metal region because of its
proportionality to the interaction parameterl. We then solve
Eq. ~3.17! to first order in g. At zero temperature,
D(«,x)5D , and we write f T5 f 01 f 1 with f 1! f 0 . Then
f 05c(«)x/L and f 195(g/D) f 0 , with c(«)5(eV/
4T)cosh22(«/2T). Using the fact that *0

L f 18(x8)dx850
( f 1(0)5 f 1(L)50) we find

f 08~L !5
c~«!

L
, ~5.2a!

f 18~L !5
c~«!

DL2E0
L

x2g~x!dx. ~5.2b!

The current in a normal piece of metal is proportional to the
local gradient off . Since everywhere in the diffusive wire
there is an induced pair potential it is not possible to calcu-
late the current in this way somewhere in the middle of the
wire. We must calculate it at the normal reservoir, where the
pair potential is forced to vanish. The current flowing out of
the normal reservoir~and hence the conductanceG of the
system! is therefore proportional tof 8(L). Noting that
dR/R52dG/G we obtain for the relative resistance change:

dR

R
52

f 18~L !

f 08~L !
52

1

DLE0
L

dxx2g~x!, ~5.3!

whereg is given by

g~x!52D~x!sin„u~«50,x!…. ~5.4!

Thus the relative resistance change is proportional to the in-
teraction parameterl and its sign depends on the sign of
l. Here we use the convention thatl is positive for attrac-
tive effective interactions in the metal. Furthermore, the re-
sistance change depends sensitively on the precise geometry
of the structure, as will be shown in more detail in the next
section. A measurement of this resistance change would al-
low one to directly measurel. Calculating the relative resis-
tance change for the wire of Fig. 2~a! gives

dR

R
521.38l, ~5.5!

independent ofD andL. For silver, the estimated value of
the interaction parameter isl510.04 ~Ref. 28!, and there-

FIG. 4. Change in the chemical potential for the wire of Fig.
2~a! relative to the~linear! zero temperature distribution as a func-
tion of temperature. The labels near the curves indicate the value of
L/j.

FIG. 5. The ratio of electrostatic and chemical potential as a
function of temperature. Going from bottom to top, the curves cor-
respond to values ofL/j50, 1.0, 1.5, 2.0, and 4.0.
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fore the resistance of a silver wire in contact with a super-
conductor is reduced by 5.5% with respect to its normal state
value.

B. Generalization to arbitrary geometries

The results obtained above are readily generalized for ar-
bitrary structures containing a number of normal reservoirs,
two superconducting ones and a number of diffusive wires
connecting them. To illustrate how the resistance change for
such systems is calculated we consider the geometry shown
in Fig. 2~b!. This is a structure similar to the one we used
recently17 to model the experimental setup of Ref. 15. In the
experiment a current was applied along the path indicated by
the arrow going from normal leadN1 to normal leadN2 . The
voltage was measured between the opposite normal reser-
voirs N3 andN4 . The superconductors have a phase differ-
encef. In principle Eqs.~3.14! and~3.17! should be solved
in each branch of the structure and the solutions matched in
every nodal point. However, it is possible to reduce this ge-
ometry to a one-dimensional one due to the symmetry of the
geometry: The voltage andf T distributions are antisymmet-
ric with respect to the lineS12S2 in Fig. 2~b! whereasD and
the Green functionĝ« are symmetric. This allows us to con-
sider only the three elementary branches I, III, and IV in the
calculation ofĝ« .

For the calculation of the resistance change we need only
consider the branches I and II, each having a lengthL8, and
III which has a lengthL. As depicted in Fig. 2~c! we use
coordinatesx, y, andz to denote the position on branch I, II,
and III, respectively. with the origins as indicated. The
zeroth-order solution of Eq.~3.17! is

f 05H L1L82x ~ I!,

L ~ II !,

z ~ III !.

~5.6!

Integratingf 195(g/D) f 0 in each branch gives

f 1855
c11E

0

x

dx8~L1L82x8!
g~x8!

D
~ I!,

c21E
0

y

dy8L
g~y8!

D
~ II !,

c31E
0

z

dz8z8
g~z8!

D
~ III !.

~5.7!

Here the integration constantc150 because the current in
point x50 is fixed andc250 because there is no current in
branch II. Note that the situation here is different from the
one in Sec. V A. There we calculated the change in current at
fixed voltage whereas in this case we calculate the voltage
change at fixed current. Consequently the resistance change
is now given bydR/R5dV/V5 f 1(B)/ f 0(B). In the nodal
point A we havef 18(x5L8)1 f 18(y5L8)1 f 18(z5L)50 and
this gives

c31E
0

L

dz
zg~z!

D
1E

0

L8
dy

Lg~y!

D
1E

0

L8
dx

~L1L82x!g~x!

D

50. ~5.8!

The distribution functionf 1 in point A is now given by

f 1~A!5c3E
0

L

dz1E
0

L

dzE
0

z

dz8
z8g~z8!

D

5c3L1E
0

L

dz
Lz2z2

D
g~z!. ~5.9!

Analogously we find forf 1(B):

f 1~B!5 f 1~A!2E
0

L8
dyE

0

y

dy8
Ly8g~y8!

D

5 f 1~A!2E
0

L8
dy

y22LL8

D
g~y!. ~5.10!

Using Eq.~5.8! to eliminate the first two terms in expression
~5.9! for f 1(A) we calculate the resistance change:

dR

R
5E

0

L8
dyS y2L 2L2L8Dg~y!

D
2E

0

L

dz
z2g~z!

DL

2E
0

L8
dx

~L1L82x!g~x!

D
. ~5.11!

The relative resistance change depends on the phase differ-
encef between the superconductors throughg, which in its
turn depends onf via the boundary conditions imposed on
ĝ« . Note that although branch IV does not enter the calcu-
lation of the resistance change, its length does influence the
Green function, henceg, and thus also the resistance of the
structure.

Before discussing the results of a calculation for an ex-
perimentally relevant geometry, it is instructive to look at the
~slightly unrealistic! case of constantg to investigate the
qualitative behavior of the system. In this case the resistance
change reduces to

dR

R
5

gL2

D
S 13a32

3

2
a222a2

1

3D with a5
L8

L
~5.12!

which shows that, sinceg;lD /L2 , the relative resistance
change is proportional to the interaction parameter and inde-
pendent of the absolute values ofL, L8, andD . Only the
ratio of L andL8 is important. In this simple case the largest
effect would be obtained fora53.56. We can get an idea
how sensitive the resistance change is to the details of the
geometry by comparing the cross structure (L850) with the
structure in whichL85L. It is easily calculated that the re-
sistance change is higher in the latter case by a factor of 10.5,
showing that a relatively small change in geometry causes a
major modification of the resistance change. In a realistic
computation the modification due to these side branches is
not so dramatic, but is still about a factor 3.

The result of such a realistic calculation is depicted in Fig.
6 where the scaled resistance change has been plotted for the
Andreev interferometer of Fig. 2~b! with LI5LII5LIII
5LIV5L. This layout is similar to the one we used in Ref.
17 to model the experimental setup of Petrashovet al.15

There are two main differences with the previous results
for the one-dimensional wire. The first is the dependence of
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the resistance change on the phase differencef between the
superconductors with oscillation period 2p. The effect has
its largest~negative! value for zero phase difference and van-
ishes for a phase difference ofp, when superconductivity in
the current branch~branches I, II, and their mirror images! is
completely suppressed. The second difference is the magni-
tude of the effect. In the one-dimensional case this was 5.5%.
Here it is 0.9%~for silver!. Although this value is propor-
tional to the interaction parameter and strongly depends on
the length of the branches I and II, as was established above,
a more important reason in this case is that the superconduct-
ors are not in the current path. As a consequence, the pair
potential in branches I and II is smaller than in the one-
dimensional case, leading to a weaker effect. In general, the
magnitude of the interaction effect is smaller than the influ-
ence of a finite temperature on the resistance. This latter
phenomenon is the subject of the next section.

VI. THE THERMAL EFFECT

A. The temperature-dependent resistance of a 1D wire

As was shown recently by the authors,17 the experimental
results of Ref. 15 could be explained by the temperature-
dependent proximity effect. In this case no pair potential is
induced in the normal metal region by the electron-electron
interaction but coherence occurs as a result of the finite ex-
tentj5AD /T at which the superconductivity penetrates into
the normal metal. Although the implications of this effect for
complex structures are not always immediately apparent, the
mechanism itself is not new. It was already studied in the
middle seventies16 and is in fact the phenomenon of Andreev
reflection in diffusive metals. In spite of the fact that the
effect has been known for a long time, a clear physical pic-
ture is still lacking.

To describe this effect we disregard the second term in
Eq. ~3.17! but we now take into account the fact that at finite
temperatures the effective diffusion coefficient is no longer

constant but depends on energy and position:
D(«,x)5(D /8)Tr$@ ĝ«

A(x)1ĝ2«
A† (x)#2%. The diffusion coef-

ficient reduces toD for low and high energies. For energies
«'D /L2 it exhibits a maximum which is about twice as
large as the zero energy value. The temperature enters the
boundary conditions for Eq.~3.17!, but more importantly it
determines the energy window in which the quasiparticles
experience the energy dependence of the diffusion coeffi-
cient. Therefore the resistance change should vanish at both
low and high temperatures and have a minimum for quasi-
particle energies«'D /L2.

As in the previous section, we will first calculate this
effect for the one-dimensional structure of Fig. 2~a! and then
extend the treatment to more general structures, using
the geometry of Fig. 2~b! as an example. The normal lead
is now situated atx50 and the superconducting one at
x5L. The procedure is as follows. We first integrate the
diffusion equation for f T twice, which gives f T(x,«)
5a(«)*0

xD21(x8,«)dx81b(«). The integration constants
may still depend on« and are determined by the boundary
conditions f T(0,«)5(eV/2T)cosh22(«/2T) and f T(L,«)50.
This gives

f T~x,«!5
eV

2T
cosh22S «

2TD S 12
m~x,«!

m~L,«! D ~6.1!

with

m~x,«!5
1

LE0
x

D21~x8,«!dx8. ~6.2!

As before, the current flowing out of the normal contact is
proportional tof T8(0,«) and hence we obtain for the normal-
ized conductanceG/GN:

G

GN
5

1

2DTE0
`

d«m21~L,«!cosh22S «

2TD
5

j2

2L2DE0
`

d«̃m21~L,«!cosh22S «̃j2

2L2D , ~6.3!

where we have usedT5D /j2 and scaled the energy with the
Thouless energy«̃5«L2/D . Note that the cosh22(«/2T) part
of the integrand defines the energy interval in which the qua-
siparticles feel the energy dependence ofm21(L,«), as men-
tioned above. Equation~6.3! shows that the normalized con-
ductance depends on the ratioL/j;AT only ~the factor
@Dm(L,«)#21 is dimensionless and does not depend on tem-
perature!. In Fig. 7 the temperature dependence of the nor-
malized resistance,R/RN5GN/G, is plotted. As expected,
the effect vanishes atT50 and forT→`. The maximum
magnitude of the temperature effect is material independent
and in general larger than that of the interaction effect; 10%
vs 5.5% for the particular case of a silver wire. Although the
high temperature tail such as the one of Fig. 7 was already
observed in Ref. 15, the low-temperature reentrant behavior
of the resistance had, until recently,30 not yet been measured.

B. Temperature effect in Andreev interferometers

A generalization of this theory to more complicated struc-
tures should take into account how a resistance measurement

FIG. 6. The scaled resistance change due to the interaction ef-
fect of the structure shown in Fig. 2~b! with
LI5LII5LIII 5LIV5L. The magnitude of the effect is 0.9%.
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is actually done. In the case of the experiment of Ref. 15 a
current was applied betweenN1 andN2 whereupon the volt-
age betweenN3 and N4 was measured~see Fig. 2!. As a
consequence, there is no current in branch II nor in its mirror
image attached to reservoirN4 . To calculate the resistance of
this complex structure we proceed as follows. We start by
noting that the current is conserved for each quasiparticle
energy«. This implies thatI I(«)1I II («)5I III («). We
now apply standard circuit theory for every quasiparticle en-
ergy ~we use the fact that due to the antisymmetry of the
voltage distribution the voltage is zero in the middle of the
structure!:

V 1~«!5I I~«!RI~«!1I III ~«!RIII ~«!, ~6.4a!

V 3~«!5I II ~«!RII ~«!1I III ~«!RIII ~«!, ~6.4b!

whereV i(«)5(Vi /2T)cosh
22(«/2T) and the indices onV

refer to the respective reservoirs and the indices onI and
R refer to the appropriate branches. The proportionality con-
stantsRI ,II ,III («) in the different branches can be deduced
from the resistance of the branches connecting two reser-
voirs:

Ri j ~«!5
f i~«!2 f j~«!

f i8~«!2 f j8~«!
, ~6.5!

where i and j label the reservoirs at which the distribution
functions are evaluated.

Using the current conservation condition, Eq.~6.4! can be
cast into the form of a matrix equationVW («)5R(«)IW («),
whereR(«) is a (232) matrix relating the voltage and
current vectors VW («)5(V 1(«),V 3(«))

T and
IW («)5„I I(«),I II («)…

T. Inverting the matrix equation and
integrating over all energies givesIW5GVW , where
VW 5(V1 ,V3)

T, IW5(I I ,I II )
T, and the conductance matrix is

given by G5(1/2)T*0
`d«R21(«)cosh22(«/2T). We now

impose the boundary condition mentioned above on the cur-

rents in branches I and II:IW5(I ,0)T. This gives a relation
betweenV1 andV3 in terms of the matrix elements ofG;
V152(G22/G21)V3 , which in turn must be used to calculate
the experimentally measured resistance of the structure:
R52V3/I52@G122(G11G22/G21)#

21. The resistance de-
pends again on the phase difference between the two super-
conducting reservoirs because of the boundary conditions
imposed on the Green function.

In Fig. 8 we have plotted the results of this calculation for
the previously used geometry of Fig. 2~b! with
LI5LII5LIV5L and LIII 52L. This particular calculation
was done for the value ofL/j53 which gave the largest
effect. Also shown are the experimental results of Ref. 15.

Again we find 2p periodic oscillations such as in Fig. 6,
but although the phase dependence looks similar there are
some distinct differences. First of all the shape of the oscil-
lations is different, especially near the minima, where the
thermal effect produces less narrow peaks than the interac-
tion effect. The amplitude of the thermal oscillations is ma-
terial independent whereas that of Fig. 6 is proportional to
the interaction parameter of the metal. Moreover, the maxi-
mal magnitude of the oscillations, 9.7% in this particular
case, are in general much larger in the thermal effect, which
makes observation of the previously discussed oscillations
more difficult.

We obtain an excellent fit with the experimental data in
Fig. 8, where the magnitude of the oscillations is about 11%.
However, a decisive check on our theory would be provided
by the observation of the temperature dependence of the re-
sistance such as the one plotted in Fig. 7 for the system
considered here. Indeed, unpublished data by the authors of
Ref. 15 also show a remarkable agreement29 with our
calculations.17 Moreover, very recently the observation of
this reentrant behavior has been claimed by an independent
experimental group.30

FIG. 7. Temperature dependence of the normalized resistance of
the structure shown in Fig. 2~a!. The temperature is proportional to
(L/j)2.

FIG. 8. Scaled resistance change due to the thermal effect of the
structure shown in Fig. 2~b! with LI5LII5LIV5L andLIII 52L for
L/j53. The magnitude of the effect is 9.7%. The squares are the
experimental data of Ref. 15.
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VII. SUMMARY

We have performed calculations of the distribution of the
electrostatic and nonequilibrium chemical potential in a one-
dimensional disordered superconducting hybrid wire. We
showed that the two behave differently as a function of tem-
perature and that they are in fact only equal in the high-
temperature limit. We have proposed an experimental setup
to measure these different potential distributions. We have
also presented a computation for this wire using a recently
developed17 mechanism, that causes the resistance of a dif-
fusive superconducting hybrid structure to change at zero
temperature. The latter is in contrast with the well-known
thermal mechanism of Andreev reflection in diffusive met-
als, where the resistance change vanishes for low tempera-
tures. In addition to this result we have given a detailed
account of the calculation performed in Ref. 17 for the ex-
perimental setup of Ref. 15. Since the relative resistance
change due to the mechanism is proportional to the interac-

tion parameter in the normal metal, observation of this effect
would allow a direct measurement of this physical quantity.
Furthermore, we have shown how to calculate the resistance
of an arbitrary Andreev interferometer using finite-
temperature proximity effect theory. Because the finite-
temperature effect generally causes a much larger resistance
change, this is the correct theory to describe an experiment
such as the one performed in Ref. 15.
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