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Kinetic-equation approach to diffusive superconducting hybrid devices
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We present calculations of the temperature-dependent electrostatic and chemical potential distributions in
disordered normal metal-superconductor structures. We show that they differ appreciably in the presence of a
superconducting terminal and propose an experiment to measure these two different potential distributions. We
also compute the resistance change in these structures due to a recently proposed mechanism which causes a
finite effect at zero temperature. The relative resistance change due to this effect is of the order of the
interaction parameter in the normal metal. Finally a detailed calculation of the resistance change due to the
temperature dependence of Andreev reflection in diffusive systems is presented. We find that the maximal
magnitude due to this thermal effect is in general much larger than the magnitude of the interaction effect.
[S0163-182696)08521-9

[. INTRODUCTION localization effect, since the latter was predicted to show a
phase dependence with a fundamental periodrdf° To
Mesoscopic structures in which normal metal wires orthis day, resistance oscillations withh periodicity remain
semiconductors are attached to superconductors have ranobserved.
ceived a fair amount of attention in the past few years. In Recently we proposed a mechanism which provides a
particular devices known as Andreev interferometers, irphase-dependent resistivity in a diffusive conductor at zero
which two superconducting terminals with different macro-temperaturé’ This scheme takes into account the fact that
scopic phases are present, have been in the focus of interete electron-electron interaction induces a weak pair poten-
The conductance of these structures, in which electrons artéhl in the normal metal. As a result, Andreev reflection oc-
holes undergo multiple Andreev reflection depends on theurs in the entire structure, rather than only atkh& inter-
phase difference of the connected superconductors, hence tfezes. This results in a phase-dependent resistance change
name Andreev interferometry. which is proportional to the interaction parametelin the
Since the prediction of Andreev reflectioiihe theory of normal metal and can be of either sign, depending on the
charge transport througiN-S junctions has been well sign of A. Although the experiment of Ref. 15 could be
established™ However, the practical implications of this explained in terms of the proximity effect theory and the
phenomenon for the sophisticated nanostructures that caesults were shown to be caused by the finite temperature at
nowadays be realized are not always clear. The reason favhich the experiments were perform&dt would be chal-
this is the coherent nature of multiple Andreev reflectionlenging to observe the resistance oscillations predicted in
which determines the physical behavior of these deviceRef. 17. This would also be of practical interest since it
These technological developments resulted in the current revould provide the means to directly measure the interaction
vival of the topic in mesoscopic physics. parameter in the normal metal. However, in addition to the
In the last few years a large number of Andreev interfer-fact that electron-hole coherence influences the resistance, it
ometers have been studied both theoreticalfy and also manifests itself in a nontrivial distribution of the elec-
experimentally:>~*° Particularly the experiment of Ref. 15 trostatic and chemical potentials in the structure as we will
motivated the research presented here. In this experiment, tisow below.
resistance of a cross shaped diffusive normal metal was mea- The remainder of this paper is organized as follows. In
sured. The two branches of the cross perpendicular to th8ec. Il we briefly discuss the influence of phase coherence on
current path were in contact with a large superconductingransport properties and potential distributions in small dif-
loop. The phase difference between the superconducting eridsive structures. Section Il contains the theoretical founda-
points of the loop could be controlled by a small currenttion of our calculations. We first review the relevant tech-
through the loop or, alternatively, by applying a magneticniques of the Keldysh formalism for diffusive
field. The resistance of the structure oscillated honharmonisuperconductors and then derive the equations for the Green
cally as a function of the phase difference by about 10% ofunctions and distribution functions which determine the
the normal state resistance. These results were unexpectelbctric transport properties of the system. The next three
because in the conventional theory of the proximity effect, insections are devoted to several applications of the theory. We
which electron-electron interactions in the normal metal redirst calculate the temperature-dependent electrostatic and
gion are disregarded, the zero-voltage, zero-temperature rehemical potential distributions in a simple one-dimensional
sistance of a diffusive metal is predicted to be phasestructure in Sec. IV. A second application is presented in
independent®!’ Furthermore, the large amplitude and the Sec. V, where we calculate the resistance change at zero
observed Zr periodicity ruled out the possibility of a weak temperature due to the induced pair potential in the normal
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metal region for two experimentally relevant geometries. Voltage
The third and last application is discussed in Sec. VI. There probe
we focus our attention on the influence of a finite tempera-
ture on the resistance in these structures. Some of the results
in Secs. V and VI were published in a preliminary form in
Ref. 17. However, here we additionally give a detailed de- >< Diffusive wire

scription of the performed calculations. We summarize our 1 \

conclusions in Sec. VII.
Il. COHERENCE EFFECTS IN ULTRASMALL Cap‘;i)ﬁ“ce
DISORDERED STRUCTURES a) P

Owing to the advance in nanofabrication techniques over
the past years, the fabrication of hybrid metallic supercon- Island
ducting structures with a characteristic size of a few microns —
or less has nowadays become possible. If these small struc-
tures are at a sufficiently low temperature, the quasiparticles
in the metal can no longer penetrate into the superconductor
due to the large superconducting gap. As a result, the lowest- b)
order process that determines the resistance of the system is
Andreev reflection, in which an electron is reflected as a hole FIG. 1. Schematic setup of an experiment to measure the elec-
or, alternatively, in which an electron pair enters the superirostatic and chemical potentiala) Top view. (b) Cross section
conductor. This reflection causes electrons and holes in th@long the dashed line if@). For details, see text.
diffusive metal to be phase coherent over distances of the
order of é&=\ZIT>I, whereZ=%vl is the diffusion con- sequently that it is a measurable quantity. As will be dis-
stant and is the elastic mean free path. cussed in Sec. IV, the electrostatic potential decreases faster

This phase coherence between electrons and holes drasiian linear in the vicinity of the superconductor due to the
cally alters the physics of transport through such systemsjecreased density of states near M¥S interface. In con-
The most Striking feature is that the electrostatic pOtentiatrast, the chemical potentia| Changes On|y a little in the pres-
and nonequilibrium chemical potential are no longer distrib-ence of a superconducting terminal and consequently the ra-
uted linearly through the sample. The nonlinearity of thetig of the electrostatic and chemical potential vanishes near
elegtrostatlc potential implies a nonunlfO(m resistivity distri- the superconductor.
bution and consequently a nonlocal resistance of the struc- A passible experimental setup to measure the difference
ture. This nonlocality is a fundamental feature of the COherbetween the electrostatic and chemical potential is drawn in

ent nature of Andreev reflectlo_n. Moreover, at finite F(i)g' 1. The figure shows a diffusive wire connecting two
temperatures the transport properties of the system cease t . . .
reservoirs (not shown in the presence of two different

be distributed uniformly over all energies. Hence, a calcula- robes. The voltage probe measures the chemical and the
tion of these quantities, to which the main part of this article” : ge p

will be devoted, must first consider them at each energy ingapacitance probe the electrostatic potential. As shown in

dividually and then integrate over all energies. Fig. 1(b), the voltage probe consists simply of a metallic lead

Another manifestation of the phase coherence in the norgéParated from the wire by a thin oxide layer. The latter is

mal metal is the difference in the distribution functions of theindicated by the dark shaded region. The capacitance probe
electrostatic and chemical potentials. In a normal systens slightly more complicated. In principle one could use a
both would be equal, but this changes when one of the leadgngle metallic gate separated by a thick oxide layer to re-
is brought into the superconducting state. Whereas théuce tunneling from lead to wire. However, because such a
former is simply determined by the distribution of charge ingate would not only couple capacitively to the charge in the
the system, the latter can only be defined for small perturbawire directly underneath the tip but also strongly to the sur-
tions from equilibrium, i.e., when the quasiparticle energiesroundings, we propose a slightly different method: A small
are much smaller than the superconducting gap. To showetallic island is deposited on the edge of the wire as indi-
how this definition comes about we consider the normal cureated in the figure. This island is weakly coupled to two
rent through a disordereld-1-S junction. Zhou, Spivak, and extra leads through which a current can flow. In this case the
Zyuzin showed that for small quasiparticle energieshis  electrostatic potential capacitively induces a charge on the
current can be written in the following wa: island, thus very sensitively changing the measured Coulomb

. threshold. Both probes can be calibrated since they should

i(exn)=tfr(exg) = fr(e xn)IF(e.xn.Xs) (2D easure the same potentials if both reservoirs are in the nor-
wheret is the transparency of the tunnel barrigg, andxg ~ mal state. If one of the reservoirs is brought into the super-
denote the normal-metal side and superconducting side @fonducting state, both potentials should change. If one would
the barrierF is some function of, xy andxs, andf; isthe  attach different probes along the wire it would be possible to
nonequilibrium distribution function. This equation shows measure the potential landscapes in the wire. In Sec. IV we
that at low temperatures the nonequilibrium chemical potenwill return to this subject in a more gquantitative fashion, but
tial can be associated with the distribution function and conwe will now first discuss the necessary theory.
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. METHOD

R i .
r r)= r ). 4
A. Kinetic equations for the distribution functions g(r.p.ty,ty) Wf dgpG(r.p.ty,ty) 34

in the dirty limit A .
'n the dirty fimi Herep in the left-hand side denotes the fact that the momen-

To describe the system we use the nonequilibrium Greefum dependence of the quasiclassical Green function is re-
function method derived by Keldy$hand later further de- stricted to dependence on the direction pfonly. In this
veloped for superconductivity by Larkin and Ovchinnikdv. approximation the magnitude of the momentum is fixed at

Although this framework is rather formal it has one large|p|=p.. This quasiclasissical Green function satisfies the
advantage over, e.g., the scattering approach. As was mefgrmalization condition

tioned above the resistance of the structure is nonlocal. How-
ever, using the Keldysh technique it is possible to express . . v
scattering processes in the structure as well as other relevant f dtyrg(ty,ty)g(tyn,ty) =16t —t3,). (3.9
physical quantities, like the resistance, in terms of local
Green functions in coincident points. This property of the In the case of a superconductor with short elastic mean
formalism simplifies the calculations considerably. To estabfree path, i.e., in the diffusive regime, it is feasible to expand
lish notation and to remind the reader of the basic theory wehe Green function to first order in spherical harmorifts:
briefly review the essential ingredients of the Keldysh for- oL L.
malism and the quasiclassical approximation for diffusive 0=0stP0gp, PYH<Us, (3.6
superconductors. For more extensive reviews, we refer t
e.g., Refs. 23 and 24.

In this formalism the Green function is given by the
(4% 4) matrix

Quhere the functiongls and g, no longer depend on the di-
rection ofp. Using the normalization conditiof3.5) we find
an expression fo@p, which is then substituted back into Eq.
(3.6). The thus obtained Green function is then averaged
. [GR GK over all angles op. In the stationary case, the Green func-
G:( ) (3.1)  tion depends on the time differenee=t,;—t;, only. Per-
forming the Fourier transform with respect to this time dif-
ference, we obtain the equation of motion for the Green
function g, = [d704(7)exple7) (we drop the indexs from
now on?’

0 G*

where GA,GR, and GX are the advanced, retarded, and
Keldysh Green function which are §2) matrices in
Nambu space given B

GA(l’ll) FA(l’lr) —,%V(QSVQS)-I—I[H,Qs]+l[2,és]20, (37@

FAT(1,1) —-GA(1',1)

GA(LY)= ) (3.2 .
g:=1, (3.7b

and analogous equations f@R and GK. Throughout this

article the symbol “check” will be used to denote ¥#4)

matrices and “hat” for (2<2) matrices. The normal and

where = %vv ¢l is the diffusivity,| is the elastic mean free
path,H=e@l+eo,— A andA and o, are given by

anomalous Green function are given by: _[A O . 0o A
GR(LI)=—i6(t,—t )([¥(1),4"(1)],), (3.39 :(0 A)’ :< —A* 0)’ 9
GA(l,l’)ziG(tl/—t1)<[z,/1(1),:/fT(l’)]+>, (3.3b whereA is the pair potential in the metal and
GY(L1)=—i{[¢(1).4'2"]), (3.39 ;,Z:(‘}Z 0) (}Z:<1 ° ) 3.9
0 o, 0 -1

FR(LL)=—i6(t;—ty 1),4(1)14), (3.3
(L1) (=t (D)., (330 In Eq. (3.79 elastic non-spin-flip impurity scattering has
FA(LT)=i0(t; —t 1) (1’ ' 3.3 been taken into account in the Born approximation, causing
(L1) (tr =t (1).9(1)]) (339 the presence of the elastic mean free gait the diffusion

FK(1,1)=i([¢"(1),47(1")]), (3.3  constant’ Hence, the self-energy matrX in Eq. (3.7a,
_ _ which has the same structure as the Green fundtBof,
where (1) = y(t;,r,) is the electron field operator. takes into account processes such as spin-flip scattering and

We proceed by introducing the center-of-mass and relathe inelastic scattering of electrons with phonons émeg-
tive coordinates =3(r,+r,,) andr’=r,—r,, and by Fou- netic) impurities.
rier transforming the (;areen function with respgct to the rela- The genera] expression for the electrostatic potemim
tive  coordinate: G(r,p)=/dr’exp(~ipr')G(r+3r’,r  Eq.(3.7a, which follows from electroneutrality in the metal,
—1r'). We apply the quasiclassical approximation, which isjs?420
based on the fact that the Fermi energy in the system is much
larger than all other energy scales. This means that all rel- 1 (= ~K
evant physical quantities vary spatially on a length scale that ¢(x)=-— @f_mde Trg; (x). (3.10
is much larger than the Fermi wavelength. In this case it is
useful to introduce the so-called quasiclassical Green funcFhroughout this article the electrostatic potential is assumed
tion g which is integrated ove.fp:p2/2m—,u: to be time independent.
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The advanced and retarded Green functions determine the cosd ie' ?sing

dispersion of the quasiparticles. However, to solve a trans- gﬁ?:

port problem we need to know how the energy spectrum is

filled by extra quasiparticles when the system is driven out othus ensuring thag =1 In general¢ and 6 are complex

equmbnum This is determined by the Keldysh componentand depend on energy and position. In a structure with two

g“ of g, which can be expressed in the advanced and resyperconducting terminal§” will depend on the phassif-

(3.19

—ie"%sing  —cow

tarded ones using two distribution functioffs* ferenceg, — ¢, between the two superconductors. However,
if only one superconducting reservoir is present, the resis-
o =677 -fa? (3118 (ance of the structure will not depend on the absolute phase
- A . and we can putp=0.
f=f 1+fr0,. (3.11b In the case of sufficiently small quasiparticle, thermal and
In a spatially slowly varying electromagnetic field, the equa-Thouless energies;,kgT,/L?<As, whereAs is the en-
tions for the two distribution functions ar@ropping colli- €9y gap in the superconductor, the advanced Green function

sion integrals because they account for inelastic scattering@n be written in the following wag?
processes, and time derivatives because we seek to find sta- A
tionary solutions only A -1 ( & ) (3.16

S eior—JaP | -
where § is an infinitesimally small positive humber. Using

7Y Tr{VfT(l 0,086, 0M + Ve j, (3.12n  this representation fog? it is easy to derive boundary con-
ditions for Eg. (3.14. In a normal reservoirA=0 and

IV TV (1-9RgM) )+ 2V (f1),)=0, (3.123

+2ifTr{(§R+gM AL =0, (3.129 (j§= —0,. In a superconducting terminal having phase
. A A A=|Age'® and the Green function satisfies
wherej,=Tro{gRo98—§0992}. §0=,sing+,c08p.

To close the set of equations we finally need an equation |t js also possible to simplify Eq3.12) for the distribu-
for the pair potential in the normal metal region. This expres+jon functions considerably: In the case of a negligible super-
sion for A can be derived from the self-consistency relation:cyrrent |s=[j.de the equations for the two distribution
functions decouple, reducing, to its equilibrium value

. A R R - . : . .
A(n)= _.J dS{gsK(r,p,T)}o-d, fL—_tanh@IZT) and !eavmg us with a S|.ngle. equation fb|r
4i which can be cast into the form of a diffusion equatién:

V(D(e,r)Vi(e,r))—y(e,r)fi(e,r)=0, (3.17

A €| R 2A
4| de tan ﬁ {gs_gs}o—dl (313)
where the first term describes diffusion of quasiparticles with
where A =gN(0) is the interaction parametey, times the an effective diffusion coefficient
density of states at the Fermi lev®&l(0). The subscripto-
d denotes the off-diagonal part.

This concludes the derivation of the distribution func-
tions. We now have a closed system of equations that in N
principle must be solved self-consistently. In the next section _ ‘Z AA L AATN2

L e . (g, +9%0)%%, (313
we will discuss specific circumstances that allow for a sim- 8
plification of the equations, enabling us to solve them pertur;
batively.

SN G
D(Sir):ZTr{l_UngO—Zga}'

that is modified by the penetratmg superconductmty Here

we have used the |dent|g)§— —ozg_gaz, which relates the

advanced and retarded Green functions. The second term de-

scribes absorption of quasiparticles in the superconducting
In this section we discuss the assumptions and approxeondensate with a coefficient=i/2Tr{(§3+d2)A}. In the

mations that enable us to simplify the theory. We subseabsence of external fieldsis proportional to the local value

quently derive the final set of equations that we will use.  of the pair potential, since in that case we can always choose
We start by noting that E(3.79 for the Green function A to be real, and we obtain

still contains the self-energy matrk However, because we

are only interested in the case where the phase breakin

length iZ much larger than the system size, it iz reasonable tg y(re)=-— —A(r)Tr{| ay(G2,+ D)} (3.19

disregard inelastic scattering processes and hence, we negle%t bound dit for E6@.17) follow f q
f E 7a th e boundary conditions for ollow from expand-
2 from now on. 0(3.79 then reduces ing tanh(e+eV)/2T] to first order inV. This determines the

IV (§,V9,)—i[H,d,]=0. (3.14  boundary condition foffy. In a normal reservoir that is bi-
ased at dsmal)) voltageV with respect to a superconducting
We now have equations for the diagonal compongfitand  lead, the distribution function i§;= (e V/2T)cosh 2(e/2T).
g of the Green functior3.1). In most theoretical approaches, see e.g., Refs. 3, 4, 10,
We parametrize the advanced Green function in the foland 27, electron-electron interactions in the normal metal are
lowing way: disregarded, leading ta,y=0. However, as shown in Ref.

B. Approximations
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FIG. 2. (a) The simplest possible system, consisting of a diffu-  FIG. 3. Electrical potential distribution in the wire of Fig(a2
sive normal metal wire of length, that is connected on the left to as a function of temperature. Going from bottom to top, the curves
a normal reservoir and to the right to a superconducting ¢meéAn correspond to values df/é=0, 1.0, 1.5, 2.0, 4.0, anc¢b. The
example of a more complicated structure. The branches I, Il, and I\femperature is proportional td.(£)2.
have lengthL’, branch Ill has length. For further details, see text.

(c) The coordinates on the branches. The origins are indicated for |n the limiting cases of low and high temperatures, the

each branch. potential can be calculated analytically:
17, including the effect of these interactions produces a X X
change in the resistance. We thus need Bql3 for A, ¢(x)=V|1-|cog 5|, T-0, (4.23
which after a straightforward calculation can be rewritten as
A € (x)=V| 1 X) 7 ek T<A (4.2b
= — i (a”—aR P(X)= — 7| 72SKpl<As. .
A BiJ datanl‘(ZT)Tr{loy(ge g.)}.  (3.20 L L

We now have all the necessary ingredients to calculate thEigure 3 shows that the potential distribution changes with
various nonequilibrium transport properties of the systemte€mperature from a nontrivial one which is influenced
The next section will be devoted to two of these propertiesStrongly by the penetrating superconductivity to the expected

namely the electrostatic and chemical potential distributionslinear dependence for high temperaturgbut  still
kgT<<Ag). This behavior is caused by the fact that the den-

sity of states vanishes in the vicinity of the superconductor.
Hence, the charge distribution which causes the electrostatic

As a first example of the theory of Sec. Ill we calculate potential also vanishes in this region. The most important
the electrostatic and the chemical potential in the 1D wire oftonsequence of the nonlinear voltage distribution across the
Fig. 2(a). As was shown above, the former is determined bysample is the fact that the resistance at a certain point is no
the distribution of electric charge in the wire. The latter de-longer local, but depends on the distribution of resistivity in
termines the magnitude of the current that flows through thé¢he entire structure. This is a direct consequence of the co-
sample. The system consists of a diffusive normal metal wirdnerent nature of Andreev reflection as was discussed above.
of lengthL attached on the left to a normal metal reservoir The chemical potential, which is simply proportional to
and on the right to a superconducting terminal. The normathe energy integrated distribution function, is much less sen-
lead is biased at a small voltayewith respect to the super- sitive to changes in temperature. The zero and high tempera-
conductor. The normal reservoir is situatedxatO. ture distributions are the same and are given by

Using Eg. (3.11) for the Keldysh component and Eq.
(3.15 for the Green function we obtain

IV. ELECTROSTATIC VERSUS CHEMICAL POTENTIAL

X
,uo(x)zv(l— L 4.3
1 o
¢(x)= EJO defr(x,e)coq6(x,8)). (4.9 |n Fig. 4 we have plotted the deviation of the chemical po-
tential from this zero temperature solution. First of all we
In Fig. 3 we have calculated the potential distribution in thenote that the change is very small. The maximum change at
normal metal for different values df/¢, i.e., for different  first increases rapidly with increasing temperature. However,
temperatures. beyond a certain temperature/é~4, the maximum starts
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0.01 ' : ' : ' : . : . V. THE INTERACTION EFFECT
| ] A. The resistance of a 1D wire
0.0 / ; % In this section we calculate the resistance change at zero
0.00 temperature due to the penetration of the pair potential into
(VL 0 the normal metal region. We first consider the wire of Fig.
0 : 2(a) and then address more general geometries. In order to
001 - . simplify the equations later on, the superconducting end of
15 the wire is now located ak=0 and the normal end at
] x=L.
002 L = i We first solve Eq.(3.14 for §* numerically to zeroth
4.0 order inA and ¢:
6.0 |
SO I s T FR oIV (G2Vay) —is[d,,8,1=0, (5.1
00 0.2 o4 00 08 1.0 wherep =0 (zero voltage limit andA has been disregarded

since it is small in the normal metal region because of its
FIG. 4. Change in the chemical potential for the wire of Fig. proportionality tQ the interact.ion parameter We then solve
2(a) relative to the(linean zero temperature distribution as a func- Ed- (3.1 to first order in y. At zero temperature,
tion of temperature. The labels near the curves indicate the value & (€,X) =%, and we writef+=fo+f; with f;<f,. Then
L/&. fo=c(e)x/L and fi=(y/Df,, with c(e)=(eV/
4T)cosh %(e/2T). Using the fact thatfgfi(x’)dx’zo

decreasing slowly. For high temperatures, the solution re(fl(o):fl(L):o) we find

turns to the linear distribution. Thus we see that the electro- c(z)
static and chemical potential are only equal in the case of fo(L)= T (5.2a
high temperatures, when both reduce to the trivial linear de-
pendence that is also exhibited in the case of two normal o(e) (L
H &

terminals. . fl(L)=—=| X*y(x)dx. (5.2b

To indicate more clearly the difference between electro- 7L )o
static anq chemical potential, we have plotted the ratio'of thel’he current in a normal piece of metal is proportional to the
two for different temperatures in Fig. 5. The electrostatic anqocal gradient off. Since everywhere in the diffusive wire

chemical potential differ most a_t low te_m_pe_zratures and "®Yhere is an induced pair potential it is not possible to calcu-
the sup_erconductor. However, in the vicinity (_)f the nor_mallate the current in this way somewhere in the middle of the
reservoir they are almost equal and the extent into the wire gfire \we must calculate it at the normal reservoir, where the
which they are equal increases at higher temperatures. In theyir hotential is forced to vanish. The current flowing out of
h!gh_—temperature limit they both reduce to the same lineafhe normal reservoitand hence the conductanGe of the
distribution, as was shown above. system is therefore proportional tof’(L). Noting that
SR/R= — 6G/G we obtain for the relative resistance change:

SR fi(L) 1 [t

wherey is given by

y(X)=2A(X)sin(f(e=0x)). (5.9

Thus the relative resistance change is proportional to the in-
teraction parametex and its sign depends on the sign of

\. Here we use the convention thatis positive for attrac-

tive effective interactions in the metal. Furthermore, the re-
sistance change depends sensitively on the precise geometry
of the structure, as will be shown in more detail in the next
section. A measurement of this resistance change would al-
low one to directly measure. Calculating the relative resis-
tance change for the wire of Fig(& gives

L

0.0 . 1 . i \ 1 . 1 .
0.0 0.2 0.4 0.6 0.8 1.0
x/L oR
E = - 138\, (55)

FIG. 5. The ratio of electrostatic and chemical potential as a ) _ )
function of temperature. Going from bottom to top, the curves corindependent of~ andL. For silver, the estimated value of
respond to values df/¢=0, 1.0, 1.5, 2.0, and 4.0. the interaction parameter }s= + 0.04 (Ref. 28, and there-
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fore the resistance of a silver wire in contact with a super-The distribution functiorf, in point A is now given by
conductor is reduced by 5.5% with respect to its normal state

L L z 7' y(Z
value. fl(A)=Cgf dz+j dZJ dZ’#
0 0 0 g

B. Generalization to arbitrary geometries 5
Lz—z

i

L
The results obtained above are readily generalized for ar- =c3L+J dz v(2). (5.9
bitrary structures containing a number of normal reservoirs, 0
two superconducting ones and a number of diffusive wiresznajogously we find forf(B):
connecting them. To illustrate how the resistance change for
such systems is calculated we consider the geometry shown L y Ly'y(y")
in Fig. 2b). This is a structure similar to the one we used f1(B)=f1(A)— JO dYJOdY’T
recently’ to model the experimental setup of Ref. 15. In the
experiment a current was applied along the path indicated by
the arrow going from normal ledd, to normal leadN,. The
voltage was measured between the opposite normal reser-
voirs N3 andN,. The superconductors have a phase differ-Using Eq.(5.8) to eliminate the first two terms in expression
enced. In principle Eqs(3.14 and(3.17) should be solved (5.9 for f;(A) we calculate the resistance change:
in each branch of the structure and the solutions matched in

L y?>—LL’
=f(A)— . dyTV(Y)- (5.10

every nodal point. However, it is possible to reduce this ge- R _ Jt’d y—Z—L—L’ y) fL ZZZY(Z)

ometry to a one-dimensional one due to the symmetry of the R T 9 0 Zn

geometry: The voltage anfg; distributions are antisymmet-

ric with respect to the lin&; — S, in Fig. 2(b) whereas\ and 3 JL’dX(LJF L' =X) ¥(X) (5.10

the Green function, are symmetric. This allows us to con- 0 Z ' ’

sider only the three elementary branches |, 1, and IV in the

calculation ofg, . The relative resistance change depends on the phase differ-

For the calculation of the resistance change we need oni§nce¢ between the superconductors throughwhich in its
consider the branches | and II, each having a lehdthand ~ turn depends o via the boundary conditions imposed on
Il which has a lengthL. As depicted in Fig. @) we use J.- Note that although branch IV does not enter the calcu-

coordinates, y, andz to denote the position on branch I, I, lation of the resistance change, its length does influence the
and 1ll, respectively. with the origins as indicated. The Green function, hencg, and thus also the resistance of the
zeroth-order solution of Eq3.17) is structure.
Before discussing the results of a calculation for an ex-
L+L"—x (D), perimentally relevant geometry, it is instructive to look at the
fodL () (5.6 (slightly unrealisti¢ case of constany to investigate the
0 ’ ' qualitative behavior of the system. In this case the resistance
z ). change reduces to
Integratingf] = (y/%)f, in each branch gives SR yL2[1 , 3, 1 _ L’
. - , , Y(x') F_ 7 §a Ea’ 2a § with a—r
c1+Jde(L+L —-X )7 (n, (5.12
y wy') which shows that., since~AZ/L2, th_e relative resistange
fl= cz+f dy'|_7 (I, (5.7  change is proportional to the interaction parameter and inde-
0 pendent of the absolute values lof L', and Z. Only the
z ¥z ratio ofL andL’ is important. In this simple case the largest
03+J dz'z' ——— (nr). effect would be obtained for=3.56. We can get an idea
\ 0 ) how sensitive the resistance change is to the details of the

Here the integration constast=0 because the current in geometry by comparing the cross structucé < 0) with the
pointx=0 is fixed andc,=0 because there is no current in Structure in whichL’=L. It is easily calculated that the re-
branch Il. Note that the situation here is different from thesistance change is higher in the latter case by a factor of 10.5,
one in Sec. V A. There we calculated the change in current eghowing that a relatively small change in geometry causes a
fixed voltage whereas in this case we calculate the voltaggajor modification of the resistance change. In a realistic
change at fixed current. Consequently the resistance changemputation the modification due to these side branches is
is now given bySR/R=6V/V=1,(B)/fy(B). In the nodal not so dramatic, but is still about a factor 3.

point A we havef](x=L")+f;(y=L")+f;(z=L)=0 and The result of such a realistic calculation is depicted in Fig.
this gives 6 where the scaled resistance change has been plotted for the
Andreev interferometer of Fig. (B) with L,=L, =L,
L zy(2) L’ Ly(y) L’ (L+L"—x)y(x) =L,y=L. This layout is similar to the one we used in Ref.
Cat JO dz=7—=+ | dy—7 +J ~—, 17 to model the experimental setup of Petrashbual °

There are two main differences with the previous results
=0. (5.8 for the one-dimensional wire. The first is the dependence of



53 KINETIC-EQUATION APPROACH TO DIFFUSIE . . . 14 503

constant but depends on energy and position:
D(s,x)=(@/S)Tr{[gﬁ(x)+@’fr8(x)]2}. The diffusion coef-
ficient reduces taz for low and high energies. For energies
e~ 7IL? it exhibits a maximum which is about twice as
large as the zero energy value. The temperature enters the
boundary conditions for Eq3.17), but more importantly it

determines the energy window in which the quasiparticles

0,0

-0,2

041 experience the energy dependence of the diffusion coeffi-
SR cient. Therefore the resistance change should vanish at both
IR e low and high temperatures and have a minimum for quasi-
0,6 particle energies ~ /2.
As in the previous section, we will first calculate this
effect for the one-dimensional structure of Figa)2and then
08 extend the treatment to more general structures, using
the geometry of Fig. @) as an example. The normal lead
is now situated atx=0 and the superconducting one at
10 x=L. The procedure is as follows. We first integrate the

2 T diffusion equation for f; twice, which gives f1(x,¢)
¢ =a(e) 3D }(x’,e)dx'+Db(e). The integration constants
may still depend orz and are determined by the boundary

FIG. 6. The scaled resistance change due to the interaction eE’onditionsf 0&)=(eV/2T)cosh X/2T) and f-(L £)=0
fect of the structure shown in  Fig. (B with  pic Gives 1(0,e)=( ) (e/2T) 7(L,e)=0.

L,=L, =L, =L,y=L. The magnitude of the effect is 0.9%.
eV >

the resistance change on the phase differehbetween the fr(x,e)= ﬁCOShZ(ﬁ) ( 1

superconductors with oscillation periodr2 The effect has

its largest(negative value for zero phase difference and van- with

ishes for a phase difference ef when superconductivity in

the current brancftbranches |, Il, and their mirror imageis

completely suppressed. The second difference is the magni-

tude of the effect. In the one-dimensional case this was 5.5%. ) )

Here it is 0.9%(for silver). Although this value is propor- As befqre, the current flowing out of the.normal contact is

tional to the interaction parameter and strongly depends oRroportional tof1(0.¢) and hence we obtain for the normal-

the length of the branches | and II, as was established abovized conductanc&/Gy:

a more important reason in this case is that the superconduct-

m(x,e)
m(L,e)

) (6.9

m(x,s)=HOXD-1(x',s)dx'. (6.2

ors are not in the current path._ As a consequence, the pair G — 3 fwdsm‘l(L,s)cosh‘z(i)
potential in branches | and Il is smaller than in the one- Gy 29T )o 2T
dimensional case, leading to a weaker effect. In general, the ~
magnitude of the interaction effect is smaller than the influ- g (= 1 2 s¢

9 - . : :Tf dem~*(L,e)cosh 4| |, (6.3
ence of a finite temperature on the resistance. This latter 2L2T ) 2L

henomenon is the subject of the next section. .
P ) where we have useli= /£ and scaled the energy with the

Thouless energy =%/ 7. Note that the cost(s/2T) part
VI. THE THERMAL EFFECT of the integrand defines the energy interval in which the qua-
A. The temperature-dependent resistance of a 1D wire siparticles feel the energy dependencenof'(L, &), as men-
tioned above. Equatio(6.3) shows that the normalized con-

As was shown recently by the authdfghe experimental ductance depends on the rauld§~\/f only (the factor

results of Ref. .15. could be exp!amed by the_tempera}tur_e 2m(L,&)] ! is dimensionless and does not depend on tem-
dependent proximity effect. In this case no pair potential i

) . . eraturg. In Fig. 7 the temperature dependence of the nor-
induced in the normal metal region by the electron-electro @ 9 b P

) . - alized resistanceR/Ry=G,\/G, is plotted. As expected,
interaction but coherence occurs as a result of the finite ®%he effect vanishes af=0 and forT—co. The maximum

tenté= /T at which the superconductivity penetrates into o qnitude of the temperature effect is material independent
the normal metal. Although the implications of this effect for 5, {'in general larger than that of the interaction effect; 10%
complex structures are not always immediately apparent, thes 5 5o, for the particular case of a silver wire. Although the

mechanism itself is not new. It was already studied in the,g, temperature tail such as the one of Fig. 7 was already
middle seventie§ and is in fact the phenomenon of Andreev observed in Ref. 15, the low-temperature reentrant behavior

reflection in diffusive metals. In spite of the fact that the ¢ e resistance had. until recentimot yet been measured.
effect has been known for a long time, a clear physical pic- ’ ’

ture is still lacking.

To describe this effect we disregard the second term in
Eq. (3.17 but we now take into account the fact that at finite A generalization of this theory to more complicated struc-
temperatures the effective diffusion coefficient is no longertures should take into account how a resistance measurement

B. Temperature effect in Andreev interferometers



14 504 T. H. STOOF AND YU. V. NAZAROV 53

1.00

0,0

0.98 02

0.96 04
R/Ry 5R
R__|
0.94 i
-0,6
0.92
-0.8
0.90 2 1 2 | N 1 L
0 5 10 15 20 104 i L mpl L
L

T
FIG. 7. Temperature dependence of the normalized resistance of \
the structure shown in Fig.(@. The temperature is proportional to FIG. 8. Scaled resistance change due to the thermal effect of the
(L/&)2. structure shown in Fig.(®) with L,=L,=L,,=L andL,,, =2L for
L/&=3. The magnitude of the effect is 9.7%. The squares are the
is actually done. In the case of the experiment of Ref. 15 &xperimental data of Ref. 15.
current was applied betwedh, andN, whereupon the volt-
age betweerN; and N, was measuredsee Fig. 2 As a . - . .
cgnsequence,ihere is4no current in branch 1l r?or in its mirro{)entS in branches I_and IE=(1,0)". Th's_ gives a relatlt_)n
image attached to reservdil,. To calculate the resistance of etweenv, and Vs in tgrm; of the matrix elements @&;
this complex structure we proceed as follows. We start by1= ~ (G227 G21)Vs, which in turn must be used to calculate
noting that the current is conserved for each quasiparticid’® €xperimentally measured r(_ailstance of the structure:
energys. This implies that7,(s)+.7, () =7y (). We R=2Va/l=2[G1,=(G11G2J/Go)] " The resistance de-
now apply standard circuit theory for every quasiparticle en€nds again on the phase difference between the two super-
ergy (we use the fact that due to the antisymmetry of theconducting reservoirs because of the boundary conditions
voltage distribution the voltage is zero in the middle of theimposed on the Green function.
structure: In Fig. 8 we have plotted the results of this calculation for
the previously used geometry of Fig. (b2 with
71(e)=T\(e) 7 (e)+ T (e) (), (648  L,=L,=L,y=L andL,,=2L. This particular calculation
was done for the value df/¢é=3 which gave the largest
73(e)=7(e) 72 (&) + 71 (e) %y (e), (6.4  effect. Also shown are the experimental results of Ref. 15.

where 7/;(e) = (Vi/2T)cosh (&/2T) and the indices o b Aglari1n Wehfir;d erhperioddic osgillationls skuch_as_lin Frig' 6,
refer to the respective reservoirs and the indices7oand ut although the phase dependence looks similar there are

7 refer to the appropriate branches. The proportionality conS°Me distinct differences. First of all the shape of the oscil-

stants. 2 | (¢) in the different branches can be deducedlations is different, especially near the minima, where the
from the resistance of the branches connecting two reseffi€rmal effect produces less narrow peaks than the interac-

voirs: tion effect. The amplitude of the thermal oscillations is ma-
terial independent whereas that of Fig. 6 is proportional to

fi(e)—f;(e) the interaction parameter of the metal. Moreover, the maxi-
/’?ij(s):mv 6.5  mal magnitude of the oscillations, 9.7% in this particular

case, are in general much larger in the thermal effect, which
wherei andj label the reservoirs at which the distribution makes observation of the previously discussed oscillations

functions are evaluated. more difficult.

Using the current conservation condition, £6.4) can be We obtain an excellent fit with the experimental data in
cast into the form of a matrix equation(e)=.%(s).7(¢),  Fig. 8, where the magnitude of the oscillations is about 11%.
where .7(¢) is a (2X2) matrix relating the voltage and However, a decisive check on our theory would be provided
current vectors  7(e)=(74(g),75())T and DYy the observation of the temperature dependence of the re-

PNy - T : . . sistance such as the one plotted in Fig. 7 for the system
',7(8)_(,'7'(8)"'7“(8)) ' Invertlr]g the.maErlx eguatlon and considered here. Indeed, ur?published dgta by the aut%/ors of
integrating over all energies gives =GV, where  Ref 15 also show a remarkable agreerfientith our
V=(Vy,V3)T, I=(1,,1}))T, and the conductance matrix is calculations:’ Moreover, very recently the observation of
given by G=(1/2)T[gde.72"1(¢)cosh ¥&/2T). We now this reentrant behavior has been claimed by an independent
impose the boundary condition mentioned above on the curexperimental group®
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VIl. SUMMARY tion parameter in the normal metal, observation of this effect
We have performed calculations of the distribution of theWOUIOI allow a direct measurement of this physical qugntlty.
) S . o Furthermore, we have shown how to calculate the resistance
electrostatic and nonequilibrium chemical potential in a one- . . : .
: : . ; : . of an arbitrary Andreev interferometer using finite-
dimensional disordered superconducting hybrid wire. We . -
. . temperature proximity effect theory. Because the finite-
showed that the two behave differently as a function of tem- .
: ; . temperature effect generally causes a much larger resistance
perature and that they are in fact only equal in the high- o . )
temperature limit. We have proposed an experimental Setuchange, this is the correct theory to describe an experiment
. S Buch as the one performed in Ref. 15.
to measure these different potential distributions. We have
also presented a computation for this wire using a recently
developed’ mechanism, that causes the resistance of a dif-
fusive superconducting hybrid structure to change at zero
temperature. The latter is in contrast with the well-known The authors would like to thank Daniel Egte Gerrit
thermal mechanism of Andreev reflection in diffusive met-Bauer, Luuk Mur, Bart van Wees, Mark Visscher, and Henk
als, where the resistance change vanishes for low temper&toof for valuable discussions. This work is part of the re-
tures. In addition to this result we have given a detailedsearch program of the “Stichting voor Fundamenteel Onder-
account of the calculation performed in Ref. 17 for the ex-zoek der MaterigFOM),” which is financially supported by
perimental setup of Ref. 15. Since the relative resistancéhe “Nederlandse Organisatie voor Wetenschappelijk Onder-

change due to the mechanism is proportional to the interaczoek (NWO).”
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