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Abstract—Computational ultrasound imaging (cUSi) offers
high-resolution 3D imaging with simpler hardware by relying on
computational power. Central to cUSi is a large model matrix that
stores all pulse-echo signals. For 3D imaging this matrix easily
surpasses 1 terabyte, hindering in-memory storage and real-time
processing. This paper presents a solution for cUSi through an
aberrating layer by introducing a virtual array concept, which
uses transfer functions to map data from the real to a virtual
array, enabling the use of conventional reconstruction techniques
like delay-and-sum (DAS). We demonstrate the mathematical
similarity of this approach to using a full model matrix and
validate it with promising imaging results.

Index Terms—Computational ultrasound, imaging, virtual ar-
ray, delay-and-sum

I. INTRODUCTION

Computational ultrasound imaging (cUSi) is a technique of
making images from indirect measurements using computa-
tionally heavy models that can translate these measurements
into images. The advantage of this technique is that it allows
for cheaper, simpler, faster and/or problem-specific imaging
devices at the expense of significant computing.

The indirect measurements allow, for example, the encoding
of spatial information unto a lower dimensional received
signal, thereby bypassing the need for Nyquist sampling the
spatial domain. Early examples of this approach include the
use of reverberant media to reduce the number of sensors
required for imaging [1], [2].

In our work we explored the use of a coded aperture
mask positioned in front of a receiver to provide the indirect
measurements of the spatial information contained in the
received echo field. This topology allowed us to perform 3D
imaging using a rotating mask in front of a single transceiver
[3], high resolution microscopy using a single transceiver
and mask with overlapping scan beams [4], and recently 4D
imaging of brain hemodynamics in mice using 64 transceivers
and a coding aperture mask [5]. We also showed that the
design of the coded aperture mask can be optimally tailored
to a specific imaging scenario [6].

At the heart of cUSi lays a computational model that
describes the pulse-echo measurements of each pixel/voxel
in the image. Typically, this is done using a large two-
dimensional matrix where each column represents one image
pixel and the number of non-zero rows for that column are

the signals attributed to that pixel. In typical cUSi systems,
these signals are attributed to the complex physical interactions
within the ‘encoding medium’ such as the reverberant cavity
or our coding mask. Because of this complexity they cannot
be deduced from simple geometrical calculations as is done
in classical array processing algorithms such as delay-and-
sum (DAS) [7]. Especially for 3D ultrasound imaging when
multiple transmissions are needed for one image, this model
matrix tends to grow uncomfortably large in terms of size and
memory even when a low number (< 100) of transceivers are
considered. Practically this means that storing this matrix in
memory on, for example, a GPU is not possible and therefore
real-time image reconstruction becomes difficult to achieve.

In this paper we explore a solution for this large model
matrix problem by mapping the received complex data unto a
regular, well-sampled virtual array that is positioned between
the homogeneous medium and the ‘encoding medium’ in
front of our transceiver. This ‘mapping’ process transforms
the original data into data as it would be measured with a
well-sampled array within the homogeneous medium. This
transformation is achieved by using a much smaller matrix
containing the transfer functions from every transceiver in
the real array to every transceiver in the virtual array. This
concept draws inspiration from earlier work by Tanter et al.
where an array of ’control points’ were considered behind an
aberrating skull [8]. After this mapping process the data can
be processed using conventional methods such as the DAS
algorithm in order to form an image which is almost identical
to the one obtained with a full model matrix. Below we
introduce this virtual array concept, we show that the method
is mathematically similar to when using a full model matrix
and provide compelling imaging results to show the validity
of the method.

II. PRELIMINARIES

A. Signal model

Consider an array of M elements and an imaging area of
N pixels. We define yi,j(t) as the measured signal at sensor
j when sensor i transmits, which can be written as

yi,j(t) =

N∑
n=1

[gi,n(t) ∗ gj,n(t)]xn. (1)
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Here xn is the intensity of the scattering at pixel n and gi,n(t)
is the Green’s function from sensor i to pixel n. Note that
in this model we make use of the reciprocity principle of
Green’s functions and ignore multiple scattering as well as
additive noise. We assume we have access to every individual
measurement yi,j(t) by activating one element at the time, i.e.,
a total of M scans is performed where every scan leads to M
received signals. This is the so-called synthetic aperture (SA)
acquisition scheme. Other schemes can be deduced from this
model.

In the frequency domain, (1) becomes

Yi,j(ω) =

N∑
n=1

Gi,n(ω)Gj,n(ω)xn. (2)

Stacking Yi,j(ω) over all M elements as y(ω) =
[Y1,1(ω), . . . , Y1,M (ω), Y2,1(ω), . . . , YM,M (ω)]T, we obtain

y(ω) = [G(ω) ◦G(ω)]x,

where ◦ is the Khatri-Rao product, x = [x1, . . . , xN ]T and
[G(ω)]i,n = Gi,n(ω).

Discretizing the ω domain in L frequencies ωl, l =
1, . . . , L, and stacking the different y(ωl) vectors into y =
[yT(ω1), . . . ,y

T(ωL)]
T, we finally obtain the full model

y = Ax, (3)

with

A =

G(ω1) ◦G(ω1)
...

G(ωL) ◦G(ωL)

 . (4)

The measurements can also be arranged in L matrices of
dimension M ×M . The matrix for frequency ωl is defined as

Y(ωl) =

 Y1,1(ωl) . . . YM,1(ωl)
...

...
Y1,M (ωl) . . . YM,M (ωl)

 . (5)

Then, the relation between each Y(ωl) and x is:

Y(ωl) = G(ωl)diag(x)GT(ωl). (6)

In this thesis, we will use the expression in (3) and the one
(6) interchangeably.

B. Image formation methods

In this section, we briefly describe the DAS technique and
discuss the main idea of model-based imaging.

The most basic beamforming method in ultrasound imaging
is DAS. The DAS estimate for pixel n is computed as

x̂n =

M∑
j=1

M∑
i=1

yi,j(t0 + τj,n + τi,n) (7)

where τi,n is equal to the time of flight from sensor i to point
n. Since the start of the acquisition may not correspond with
the peak of the transmitted pulse, the offset t0 is introduced
to correct the delays [7]. It is clear that DAS, which is based

on the geometry of the problem, only works for homogeneous
media.

Model-based imaging, on the other hand, can be applied for
both homogeneous and inhomogeneous media. In that case,
the image is basically generated by solving the system of
equations y = Ax. Focusing for instance on a least squares
cost and a two-norm regularizer, this would lead to the estimate

x̂ = (AHA+ λI)−1AHy, (8)

where λ is the regularizer weight.
To reduce the computational cost, we can also consider the

matched filter estimator:

x̂ = AHy. (9)

For homogeneous media, this matched filter estimator turns
out to be closely related to the DAS beamformer. However, it
can be used in more general settings compared to DAS.

III. VIRTUAL ARRAY

Starting from the general model, we derive the model that
will be used in the rest of the paper. This model is based on the
assumption that the inhomogeneities are limited to one layer,
situated between the sensor array and the imaging target. In
that case, we can assume a virtual array is placed just after
the layer, as depicted in Figure 1.

Fig. 1. The virtual array model: The field at a point n in the imaging domain
is derived as a function of the pressure on the virtual array, which is measured
by the transfer functions hi,j(t).

We define hi,j(t) as the Green’s function from element i
on the real array to point j on the virtual array. We further
define g̃j,n(ω) as the Green’s function from virtual element j
to pixel n. Then, the Green’s function from sensor i to pixel
n can be written as:

gi,n(t) =

V∑
j=1

hi,j(t) ∗ g̃j,n(t), (10)

where V is the size of the virtual array. Note that this equation
holds if the virtual array is Nyquist sampled and the aperture
is wide enough to capture all the waves emitted by the real
array. The matrix G(ω) from Section II can now be written
as

G(ω) = H(ω)G̃(ω), (11)
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Fig. 2. In the estimation process, we follow the order indicated by the blue
arrows. First, we assign values to p(ω) and estimate the corresponding input
u(ω). Next, we derive the real array measurements q(ω), from which we
estimate the received echoes at the virtual array z(ω).

where [H(ω)]i,j = Hi,j(ω) and [G̃(ω)]j,n = G̃j,n(ω).
Since the region below the layer is homogeneous, G̃(ω) can

be derived based on the location of the virtual array and the
imaging domain. Thus, G̃(ω) does not depend on the layer and
can possibly be inverted by simple geometry-based techniques
such as DAS. The presence of the layer only affects H(ω).

Based on (11), the model in (6) can be written as:

Y(ωl) = H(ωl)G̃(ωl)diag(x)G̃T(ωl)H
T(ωl). (12)

Note that this model does not take into account that the
transducers will receive reflections from the layer and hence
might be inaccurate.

IV. FROM THE REAL TO THE VIRTUAL ARRAY

We start by defining the notation used in this section (see
Figure 2):

• Ui(ω) is the transmit field at element i of the real array,
for i = 1, ..,M

• Pj(ω) is the transmit field at element j of the virtual
array, for j = 1, .., V

• Zj(ω) represents the received echoes at element j of the
virtual array, for j = 1, ., V

• Qi(ω) represents the received echoes at element i of the
real array, for i = 1, ..,M

We furthermore stack these variables in the respective vectors
u(ω), p(ω), z(ω), and q(ω). The relations between these
vectors are p(ω) = HT(ω)u(ω) and q(ω) = H(ω)z(ω).

Our goal is to send a specific wave from the virtual array
and capture the corresponding echoes received at the virtual
array. However, since we cannot directly excite the virtual
transducers, we use the real transducers to transmit a wave
that, after propagating through the layer, generates the desired
transmit field. We first assign values to p(ω) and then proceed
to estimate the input u(ω) required to have that field. Once we
have determined this input u(ω), we obtain the measurements
at the real array for this particular input, which we have
defined as q(ω). However, to complete our task, we require
the received echoes at the virtual array z(ω). Therefore, we
need to estimate z(ω) from q(ω). These steps are depicted by
the blue arrows in Figure 2.

A. Obtaining the virtual array model

The estimation of z(ω) involves two inverse problems.
As discussed in Section II, these inverse problems can be
effectively addressed using a matched filtering approach, even
if the medium in between is not homogeneous.

Following (9) we can hence estimate u(ω) and z(ω) as

û(ω) = H∗(ω)p(ω), ẑ(ω) = HH(ω)q̂(ω). (13)

Note however that if more accurate estimates need to be
obtained, we can follow an approach similar to the regularized
inverse used in (8).

The only step that finally remains to be discussed is the step
from û(ω) to q̂(ω), which consists of transmitting the û(ω)
waves from the real array and measuring q̂(ω).

This leads to q̂(ω) = Y(ω)û(ω), with Y(ω) as defined
in (12). Combining all steps together, we obtain:

ẑ(ω) = HH(ω)Y(ω)H∗(ω)p(ω)

= HH(ω)H(ω)G̃(ω)diag(x)G̃T(ω)HT(ω)H∗(ω)p(ω).

The pressure at the virtual array when sending p(ω) from
the virtual array would be z(ω) = G̃(ω)diag(x)G̃T(ω)p(ω).
Now we clearly see that ẑ(ω) ∼ z(ω) if HH(ω)H(ω) ∼ I,
where ∼ means proportional to. In reality this is not exactly the
case though. First of all, there might be off-diagonal elements
and second, the diagonal elements could be all different.

As we mentioned earlier, the model in (12) is applicable
for a Nyquist sampled virtual array. When the real array is
also Nyquist sampled, i.e., M = V , HH(ω)H(ω) is close to
a scaled identity. However, when we start undersampling, i.e.,
M < V , we begin to violate this assumption. Still, the coding
mask helps us in this respect, since we can expect that a coding
mask leads to a smaller focal spot and hence an improved
resolution when applying time-reversal on an undersampled
array.

B. Virtual transmit schemes

So far, we have considered a single transmission from
the virtual array. However, it is possible to derive the re-
ceived echoes for multiple transmissions. We define pk(ω)
as the input for the k-th transmission. From each one, we
derive the corresponding ẑk(ω). We can write everything
in a single equation if we stack the vectors in two ma-
trices Ẑ(ω) = [ẑ1(ω) . . . ẑk(ω) . . . , ẑK(ω)] and P(ω) =
[p1(ω) . . .pk(ω) . . . ,pK(ω)]. We derive Ẑ(ω) from P(ω) as:

Ẑ(ω) = HH(ω)Y(ω)H∗(ω)P(ω). (14)

Let us now define how to set P(ω) for different transmit
schemes from the virtual array. In each transmission k, the
j-th element of the array sends a pulse that is delayed by
τj,k and has an amplitude of aj,k. We can represent this as
Pj,k(ω) = aj,ke

−iωτj,k , where Pj,k(ω) is the input for the j-th
element during the k-th transmission. The value aj,k is binary
and is set to 1 if the j-th element is active during the k-th
transmission, 0 otherwise.
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As our goal is to apply DAS at the virtual array, we focus on
transmission schemes that allow us to use DAS. Specifically,
we consider three transmission schemes: SA, single plane
wave and plane-wave compounding. We define how to set the
coefficients for these three cases:

• For an SA scan, the number of transmissions K is equal
to the number of virtual transducers V . The coefficient
aj,k is 1 for j = k, 0 otherwise. The delays τj,k are set
to zero. Then, P(ω) = I for all ω.

• For a single plane wave transmission, K = 1, aj = 1
and τj = 0 for all j. Then, P(ω) = 1 for all ω.

• In the case of plane-wave compounding, K waves at K
angles θ1, ..., θK are sent. The amplitude coefficients are
aj,k = 1 for all j, k. The delays can be easily computed
based on the array pitch, the speed of sound, and the
desired angle.

C. DAS at the virtual array

In this section, we present the proposed image formation
method, outlining all its steps. After selecting the transmit
scheme and computing the corresponding P(ω), the image is
computed as follows:

1) Compute Ẑ(ω) = HH(ω)Y(ω)H∗(ω)P(ω)
2) Perform an inverse Fourier-transform on each Ẑj,k(ω)
3) Compute each xn as x̂n =

∑
j

∑
k ẑj,k(δk,n + τ̃j,n)

The delay τ̃j,n represents the propagation time from point j
on the virtual array to pixel n, while δk,n is the time it takes
for the k-th transmit field to reach pixel n. It is different for
each kth transmission, as we send different types of waves.

V. SIMULATION RESULTS

A. Simulation settings

We tested our method on simulated data acquired with the
k-Wave toolbox [9]. We consider a grid of 1024 (depth) ×512
(width) grid points with a isotropic spacing of 90 µm and a
sampling frequency of fs = 57 MHz.

We will consider two arrays: one fully sampled and one
undersampled. For the fully sampled array we considered an
aperture size of M = 80 transceivers with a pitch of 270 µm
operating at f0 = 2.8 MHz with a B = 6 MHz bandwidth.
These parameters mimic a clinical phased array used for
transcranial and cardiac imaging. For the undersampled array
we simply average 8 transceivers signals into 1, i.e., M = 10.

A plastic coding mask was simulated using adjacent pillars
of different heights with a speed-of-sound of 2750 m/s and
a density of 940 kg/m3. The pillar width is 1 mm and the
thickness of the pillars varies randomly in the interval [2,8]
mm. The virtual array is at 10 mm depth and it has the same
aperture and pitch of the fully sampled real array.

The imaging phantom consists of scattering points (speed-
of-sound = 2050 m/s and density = 500 kg/m3) within
a homogeneous medium (speed-of-sound = 1540 m/s and
density = 997 kg/m3). For the first result we used one
scattering point and for the second result we used a grid of
points.

For each imaging scenario we simulated two SA scans: one
without and one with scattering points. Subtracting the first
simulated transceiver data from the second simulation yields
clean signals originating only from the scattering points and
without, e.g., unwanted mask reflections. In the simulation
without scattering points, additional sensors are placed at a
region-of-interest (ROI) (red rectangle in Fig. 4(A)). This
sensor data was used to make the matrices G(ω1), ..,G(ωL)
and to generate the matrix A as in (4) in order to compare
the new DAS-based results with the full model-based results.
Moreover, zero-mean white Gaussian noise is added to this
data yielding an SNR of 20 dB.

B. Result for single point phantom

We consider the data for the single point simulation and
we derive the echoes at the virtual array for a plane wave
transmission. For this transmission, the received echoes form
a parabola in the space-time domain. Our goal is to retrieve
this parabolic shape with our method.

Fig. 3. Transmitting a plane wave through the coding mask (A) is possible
by transmitting the waveforms in (B), which will form a plane wave at the
virtual array (C). From the received echoes at the real array (D), we derive
the echoes at the virtual array (E). The data in (E) is used to reconstruct the
image in (F) using DAS

First, we derive the input needed to obtain a plane wave
transmission on the virtual array as û(ω) = H∗(ω)1. The time
domain representation is shown in Figure 3(B). The transmit
field at the virtual array is p̂(ω) = HT(ω)H∗(ω)1. The time
domain is shown in Figure 3(C).

The echoes at the real array when sending û(ω) are com-
puted as q̂(ω) = Y(ω)û(ω). The time domain representation
is shown in Figure 3(D). Here, we see aberrations on a
wavefront which should be parabolic considering a point
source in a homogeneous medium. To make them parabolic,
we compute ẑ(ω) = HH(ω)q(ω), shown in Figure 3(E).
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Finally, an image is reconstructed using the data ẑ(ω) and a
DAS implementation. The image envelope signal is computed
using a Hilbert transform and log compressed for visualisation
purposes.

C. Results for grid phantom

For the grid phantom, we now compare the proposed
method with the full model-based matched filter as shown
in (9). We generate the model matrix A for the points within
the ROI and apply matched filtering on the array data. The
resulting image is displayed in Figure 4(B). Our method shown
in Figure 4(C) performs similarly.

Fig. 4. (A) Set-up for k-Wave simulations with a real array (black line),
coding mask (yellow) and virtual array (blue line) and ROI (red rectangle)
used for comparing matched filter reconstruction with model matrix (B) and
the proposed method (C).

Finally, we apply the method on the undersampled array
data. From the data measured at an array consisting of M = 10
transceivers, we derive the measurements at a virtual array
consisting of V = 80 elements. The imaging resulting from
applying DAS on the measurements is shown in Figure 5.
Clearly, the mask is crucial here.

Fig. 5. Grid point reconstruction using a spatially undersampled array (a)
without coding mask and (b) with coding mask.

VI. DISCUSSION AND CONCLUSION

Our study presents an alternative solution to the image
reconstruction challenge in computational ultrasound imaging
(cUSi), moving away from the large model matrix towards

a virtual array concept behind an aberrating medium. This
method employs transfer functions to reformat data for com-
patibility with traditional reconstruction methods such as DAS,
which are fast and have small memory requirements.

We established the mathematical validity of this method and
demonstrated its effectiveness with imaging results. Figure 3
highlights the processing steps of the proposed method with
a virtual plane wave transmission and the reception of virtual
hyperbolas which were not perfect possibly due to distortive
effects like attenuation and refraction by the mask.

Figure 4 underscored that even a basic DAS implementa-
tion could closely emulate full matrix reconstruction results,
minimizing the need for extensive model matrices. Despite
the reduced size of matrix H, its practical implementation on
hardware like GPUs needs more exploration. Moreover, the
relationship between the number of virtual transmissions and
image quality is another area for future study. Figure 5 shows
that in the case of a spatially undersampled array, an aberrating
coding mask is needed to regain spatial focusing at the expense
of SNR. While we focused on a virtual array behind an
aberrating layer, this method could apply to any encoding
medium, provided the imaging medium is homogeneous.

In essence, our paper provides a method that may simplify
cUSi implementation by replacing large storage-demanding
model matrices with a virtual array approach. This strategy
opens up the possibility of more efficient hardware utilization,
particularly in contexts where unknown aberrators, such as
the human skull, complicate imaging. Our approach could
promote broader adoption of cUSi and serve as a valuable tool
for future research in imaging through all kinds of unknown
aberrators.
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