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Notation

Coordinates

n vehicle number veh.
t time s
x space (distance) m

Variables

q flow veh./s
s spacing m/veh.
stot (total) effective spacing m/PCE
v speed (velocity) m/s
vM space-mean speed m/s
vH harmonic mean speed m/s
vL (local) arithmetic mean speed m/s
ηu passenger car equivalent (PCE) value of ve-

hicle class u
-

k density veh./m
ktot (total) effective density PCE/m
D traffic demand veh./s
S traffic supply veh./s
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Parameters

ht minumum time headway (excluding vehicle
length)

s

T minumum time headway (including vehicle
length)

s

hx minumum space headway (excluding vehi-
cle length)

m
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length)

m
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Statistical symbols
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Chapter 1

Introduction

The first chapter of this thesis introduces the scope of this thesis and highlights the main
contributions of this research. After briefly discussing advanced model-based decision
support systems in Dynamic Traffic Management (DTM), it emphasizes one of the
three tasks within the management decision loop: traffic state estimation. Then, the
role and the requirements of state estimation systems in relation to DTM are explained.
An introduction to the different components of model-based traffic state estimation is
also presented. The scope and main focus of this research is thereafter discussed, after
which we address the contributions and relevance of this research. Finally, the outline
of the thesis is presented.
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1.1 Background

Road traffic plays a major role in the daily life of human beings. It represents a signif-
icant percentage of people and goods transport services in most countries in the world,
and consequently contributes to economic growth and social progression. However, it
has also led to a number of undesirable side effects, such as accidents, pollution and
congestion. For most commuters, congestion has become the rule rather than the ex-
ception. In general, congestion can be explained by a mismatch between supply (e.g.,
infrastructure capacities) and demand (e.g., traffic flows, travel activities). One of the
potential solutions to alleviate congestion is to bridge this mismatch in road networks
by developing and designing so-called Intelligent Transportation Systems (ITS). These
systems constitute a collection of solutions to balance traffic supply and demand, di-
rectly and indirectly influencing the whole transportation network. In addition, traffic
managers (such as governments, traffic management centres) play a leading role in
Dynamic Traffic Management (DTM) by implementing such ITS systems effectively.
One of the main purposes of DTM is to alleviate traffic jams. DTM requires real-time
and reliable ITS systems to support its performance. DTM has been applied around
the world successfully and has impacted society in a positive way. (Transportation-
Research-Board, 2000; Rijkswaterstaat, 2003; Louis et al., 2006)

1.2 Traffic state estimation

As a first step, the success of DTM depends on accurate, timely and reliable traffic
monitoring. The surveillance of traffic in a network entails the measurement of typi-
cal network characteristics of traffic (e.g., flows, speeds), and the derivation of various
network-related quantities, such as predicted travel times, lengths of queues, space-
mean speed, and density. This procedure can be seen as a state estimation process,
which is embedded in the network-wide control loop. This control loop can be further
facilitated by advanced model-based decision support systems (DSSs). In the context
of DTM, advanced model-based DSSs allow traffic managers to assess different traf-
fic control and information provision scenarios in real time. Figure 1.1 schematically
outlines such an ideal model-based DSS, which generally performs three closely in-
tertwined tasks. These tasks are (i) traffic state estimation, in which data from various
traffic sensors (loops, cameras, probe vehicle reports, etc.) and traffic flow models are
used to reconstruct a network-wide picture of the traffic state (e.g., in terms of traffic
densities and/or speeds). These can in turn be used as a basis for (ii) traffic state pre-
diction and (iii) (the optimization of) traffic control measures (e.g., algorithms to com-
pute settings of measures, such as speed-limit control, or ramp metering, etc.). The
heterogeneity of traffic data from different sensors/detectors makes state estimation a
complex and challenging task. As a foundation, reliable and accurate state estimation
promotes the efficiency and safety of the whole traffic system. In this thesis, the fo-
cus is on the development for the first of these tasks, that is, traffic state estimation.
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Figure 1.1: Schematic representation of an ideal model-based decision support system.

Therefore, the main question of this research boils down to: how to provide reliable
and accurate traffic state information in real time for DTM?: specifically, how to
develop efficient and accurate model-based traffic state estimation approaches for real-
time DTM. This question will be investigated thereafter, where traffic flow models that
describe traffic flow physics are incorporated.

Model-based traffic state estimation consists of three components: a dynamic traffic
model, an observation model, and an assimilation technique. To compute and predict
state variables (e.g., density k, speed v or spacing s), dynamic traffic flow models (see
Section 1.3) are used . So-called observation models (e.g., the fundamental diagrams,
see Section 1.5) are used to compute and predict, from these state variables, the ex-
pected observations from sensors. Finally, a data-assimilation technique (Section 1.4)
is needed to estimate the most probable traffic state using both the model predictions
and the actual sensor observations. Different choices with respect to these three el-
ements have led to different state estimation approaches. In the following sections,
a brief discussion of previous research and the available choices is presented. It is
followed by a distinct provision of our research choice (main research scope), which
offers a new perspective and opportunities for high-quality state estimation. Chapter 2
will further specify the design choices for traffic state estimation in both the literature
and this thesis.
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1.3 Dynamic traffic flow models

As the first component in state estimation, dynamic traffic flow models are formu-
lated to describe various traffic phenomena. Existing traffic models serve to compute
and predict the evolution of traffic state variables. These state variables consist of
(but are not limited to) traffic density (number of vehicles per unit of road length),
traffic flow (number of vehicles per unit of time passing a fixed point), traffic speed
(space-mean speed of collections of individual vehicles), and vehicle spacing (aver-
age distance headway between two successive vehicles). Examples of macroscopic
traffic flow models include first-order traffic models, such as the Lighthill-Whitham
and Richards (LWR) model (Lighthill & Whitham, 1955; Richards, 1956) and the cell
transmission type model (as a special case of the LWR model) (Daganzo, 1994, 1995a)
(all referred to as LWR or kinematic wave models further below), and second-order
traffic models, such as Payne-type (Payne, 1971) and METANET models (Papageor-
giou et al., 1990). Apart from this classic traffic flow modelling, there are some other
traffic models used in traffic state estimation, describing basic/empirical relations be-
tween traffic variables. For instance, the so-called “MARCOM” model used to esti-
mate density is developed by Davis & Kang (1994), a two-level speed and flow linear
model is presented by Cheng et al. (2006) to assimilate cell-phone data, and a linear
model is used to estimate speed by Byon et al. (2010). Although these models are
different in format, they all attempt to formulate the same traffic phenomena.

In this research, the choice of the process model is the first-order traffic flow model.
This model is adequate to reproduce the fundamental phenomena observed in traffic
(Daganzo, 1994, 1995b,c, 2002b; Lebacque, 1996; Newell, 1993; Van Wageningen-
Kessels et al., 2011a); these are conservation of vehicles, traffic anisotropy, the onset
and dissolution of congestion at bottlenecks and the fact that disturbances propagate
over space and time in different directions as a function of the prevailing state (con-
gested or not) (Lighthill & Whitham, 1955; Richards, 1956). Although a number of
phenomena are not well or fully represented in the first-order model (Helbing, 2001;
Kerner, 2009), most of which are related to the capacity drop and to traffic instabil-
ity, there are still strong arguments as to why the LWR model is a valid choice for
the purpose of state estimation. First of all, there is no undisputed alternative model
that is able to reproduce these phenomena under all circumstances. Secondly, there is
the principle of parsimony. The first-order model contains less parameters than more
involved alternatives; it is a model that is mathematically tractable, that can be solved
analytically, and that provides the analyst straightforward tools to switch between two
different coordinate formulations - the usefulness of which will become clear in the
subsequent discussion. Note that the concept and results in this research are not only
limited to the first-order traffic flow model but also can be extended to more involved
(high-order and/or other gas-kinetic-based) macroscopic models.

Traffic flow can be analysed with respect to three two-dimensional coordinate sys-
tems: space-vehicle number coordinates, space-time coordinates, and vehicle number-
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time coordinates (Leclercq & Bécarie, 2012; Laval & Leclercq, 2013). The latter two
are also known as Eulerian and Lagrangian coordinates, respectively. In this thesis,
we restrict the discussion and comparison to the Eulerian and Lagrangian coordinate
systems. Eulerian (space-time) coordinates are fixed in space; Lagrangian (vehicle
number-time) coordinates move with the traffic. Commonly, both process and observa-
tion models are formulated in Eulerian coordinates. In such a formulation, traffic flow
is described by state variables over consecutive spatially-fixed road segments. Recent
studies by Leclercq et al. (2007); Van Wageningen-Kessels et al. (2009b, 2010a); Van
Wageningen-Kessels (2013) show that the LWR model can be formulated and solved
more efficiently and accurately in Lagrangian coordinates than in Eulerian coordinates.
In such a new coordinate system, traffic flow is divided into vehicle platoons, by which
state variables are formulated. The new traffic formulation and its simpler numerical
scheme are supposed to yield benefits for state estimation. So far, none of previous
research has focused on a Lagrangian form of state estimation. Therefore, we have
been motivated to investigate this opportunity.

Another interesting and important perspective in traffic flow modelling is to consider
driver and vehicle heterogeneity, which has received considerable attention recently in
the research literature (Hoogendoorn & Bovy, 1999; Daganzo, 2002a; Wong & Wong,
2002; Ngoduy & Liu, 2007; Logghe & Immers, 2008; Van Lint et al., 2008b). As
a simple example, the distinction can be made between the flows in different lanes
(fast or slow vehicle lanes, dedicated lanes etc.) or between the flows from differ-
ent origins to different destinations or between the flows in different vehicle-classes
(trucks, buses, passenger-cars, and high-occupancy vehicles). By considering such
heterogeneities in traffic modelling, not only are these models able to describe traffic
flow more accurately, but also the control applications for such models can be made
more elaborate. Very little previous research has implemented traffic heterogeneity
into traffic state estimation. In this research, by considering one aspect of those het-
erogeneities, vehicle-user classification is addressed in the traffic formulation for state
estimation.

To sum up, the main innovation of this work is to put forward an improved state estima-
tion approach formulated in Lagrangian coordinates, providing vehicle-specific (also
referred to as multi-class in this thesis) traffic state estimates.

1.4 Data assimilation

A farther component in state estimation is data assimilation, discussed in this section.
Applications of data assimilation arise in many fields, such as aerospace, weather fore-
casting, hydrology, as well as traffic systems. It proceeds by analysis cycles. In each
cycle, observations of the current available state of a system are combined with the
predictions from a system (process) model to produce “the best” estimate of the cur-
rent state of the system. Essentially, each cycle tries to balance the uncertainty in the
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data and in the forecast. A variety of such data-assimilation techniques have been de-
veloped, such as: the Kalman Filter (KF) (Kalman, 1960), rooted in the state-space
formulation of linear dynamic systems, that provides a recursive solution to the linear
optimal filtering problem. However, most models in the real world are nonlinear, and
KF can be extended through a linearisation procedure, resulting in an Extended Kalman
Filter (EKF) (Jazwinsky, 1970). The basic idea of EKF is to linearise the state-space
system model and apply the linear KF procedure. Contrary to the EKF, the Unscented
Kalman Filter (UKF) (Julier & Uhlmann, 1997) does not require a first-order lineari-
sation of the nonlinear system. Instead, it computes the Gaussian error variables by
using a deterministic sampling approach. Similarly, the Ensemble Kalman Filter (En-
sKF) (Evensen, 2007) uses a Monte Carlo or ensemble integration method instead of
a linearisation procedure. All these methods assume Gaussian error terms to repre-
sent the uncertainty in both model predictions and observations. However, the Particle
Filter (PF) (Gordon et al., 1993; Doucet et al., 2001) relaxes the Gaussian assump-
tion within a Monte Carlo framework. There are also many other data-assimilation
techniques available, which are not listed here.

As an essential component in traffic state estimation, (recursive) data-assimilation
methods aim to make an optimal estimate of the traffic system state at each time step,
which start from the current estimate, predict the future state and then correct it based
on new observations. Previous research on traffic state estimation adopts the Kalman
Filter technique and/or its advanced variants. Some popular examples are given by
Wang & Papageorgiou (2005); Van Lint et al. (2008a); Ngoduy (2008); Work et al.
(2008); Herrera et al. (2010). In this thesis, to validate a Lagrangian and multiple-
user perspective as well as to fulfill the real-time requirement, a relatively-simple and
real-time applicable technique, the EKF, is selected for data assimilation. The detailed
reasons for this choice are provided in Chapter 2.

As an answer to the main question in Section 1.2, this thesis concentrates on a model-
based multi-class state estimation approach in Lagrangian coordinates, based on the
EKF technique. The detailed specification and its research motivation will be explained
in the following chapters.

1.5 Observation models and empirical data

In the state estimation procedure, observation models deal with the data collected from
sensors. In the current road network, empirical (raw) traffic data are collected mainly
from road-side traffic sensors (see the right-upper box in Figure 1.1). Local sensors
on cross sections, such as inductive loops, radars and cameras, measure local traffic
quantities, such as aggregated traffic counts and spot speeds. These types of devices
are classified as Eulerian sensors and the related measurements as Eulerian sensing
data, which are related to Eulerian coordinates. Increasingly, data from probe vehicles
and mobile phones (Herrera et al., 2010) have also become available, providing posi-
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tion and speed information of individual vehicles/travellers. These provide Lagrangian
sensors and Lagrangian sensing data.

A Lagrangian formulation of traffic flow provides a natural set of observation equations
to deal with such Lagrangian sensing data. The challenge however then lies in incor-
porating Eulerian-type data. Moreover, these various data sources in both Eulerian and
Lagrangian types are typically different in formats and semantics. In a state estimation
procedure, observation models are needed to predict and compute the expected traffic
measurement data in different formats from system-state variables. Therefore, corre-
sponding Lagrangian observation models that are used to analyse various types of data
sources will be developed in this thesis.

There is another important aspect of this problem area, related to the (quality and us-
age of) empirical data. First of all, unreliable measurements and disturbances are an
unavoidable part of the raw data from traffic sensors. For instance in the Netherlands,
5-10% on average of the available data from the dual loop system (named MoniCa
data) are missing or otherwise deemed unreliable (Van Lint & Hoogendoorn, 2009).
Although data-assimilation methods can balance the uncertainty/noise in the observa-
tion data and in the model forecast, observations with strongly-biased and unreliable
features are meaningless and useless to efficient state estimation. Secondly, multi-class
traffic state estimation requires class-specific observations as input, which are not di-
rectly available from most traffic sensors. Moreover, all the three components in traffic
state estimation require predefined parameters, which can be derived from empirical
data. Thus, pre-processing work (see the outgoing arrow from the “sensor” box in
Figure 1.1), such as data cleaning and preparation, and model-parameter generation,
should be included to achieve a high quality state estimation procedure. Two exam-
ples related to the first two problems are presented in this thesis. One aims to correct
biased information inherited in dual-loop systems, and the other tries to infer more
(class-specific) information than those from direct observations.

1.6 Research contributions and relevance

This thesis focuses on traffic state estimation research. New approaches for estimating
traffic state information are developed, and application issues have also been consid-
ered. In the following discussion, the main contributions of this research are high-
lighted, and distinctions are made between purely scientific contributions and practical
contributions.

1.6.1 Scientific contributions

Our main theoretical and methodological contributions are listed below. These are
related to developing new approaches for traffic state estimation, synthesising the state-
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of-the-art in traffic state estimation, and addressing new methods for pre-processing
observation-data.

• A Lagrangian formulation of the traffic state estimation problem
This thesis (Chapter 3 and 4) presents new methods for state estimation, by taking a
“Lagrangian” perspective. This means that the traffic system models used in state esti-
mation are formulated in Lagrangian (moving observer) coordinates instead of the tra-
ditional Eulerian (spatially-fixed) coordinates. Under a Lagrangian traffic formulation,
some problems in Eulerian coordinates (e.g., the mode-switching problem) are over-
come, and the Lagrangian type of sensing data (such as probe vehicle data, cell-phone
data) are naturally incorporated into state estimation. In addition, the corresponding
observation models in Lagrangian coordinates dealing with both the Eulerian and La-
grangian sensing data are developed. To assemble a state estimator, a real-time appli-
cable technique, EKF, is used for data assimilation. This study (Section 3.6, 5.3, and
5.4) reveals that the Lagrangian state estimator is significantly more accurate and offers
computational (it is more efficient) and theoretical benefits over the Eulerian approach.

• Development of a multi-class state estimation approach
In this work, a multi-class traffic state estimator has been developed (Chapter 4). This
is done by equipping a Lagrangian first-order traffic flow model with a distinction be-
tween different vehicle classes (such as cars, trucks, and buses). Experiments (Sections
5.5 and 5.6) show that such a multi-class Lagrangian state estimator, based on an EKF
framework, succeeds in providing class-specific state estimates on traffic networks.

• New insights into the existing continuum multi-class traffic flow model
Two modelling and discretisation choices for Lagrangian multi-class traffic flow mod-
els are discussed and compared in Section 4.2, which are respectively the “Piggy-back”
model and the “Multi-pipe” model. The process model used in our Lagrangian state
estimator applies a “Piggy-back” formulation, due to its suitability for on-line traffic
state estimation.

• Generalisation of state estimation to a network-wide level
This work (Sections 3.3, 4.3, 5.4, and 5.6) shows that Lagrangian state estimation
is scalable to a network level by implementing node models to account for network
discontinuities.

• New insights into the characteristics of model-based state estimation
During the development and analysis of our state estimation method, new insights are
gained regarding the mechanism of each component in model-based state estimation.
For instance, the reasons for the improvement in including multi-class features in state
estimation, are identified; how the traffic formulation affects the performance of state
estimation is addressed.

• A new taxonomy of the state-of-the-art and the state-of-the-practice in traffic state
estimation
This thesis (Chapter 2) proposes a new perspective to classify state estimation research,
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with respect to two different coordinate systems that allow different mathematical for-
mulations. Along the line of this classification, it provides a comprehensive discussion
on the state-of-the-art in traffic state estimation and its applications. A large number of
previous studies are reviewed in terms of traffic dynamics models, observation models
and the data-assimilation methods used in state estimation.

• New methods for data pre-processing and estimation preparation
Preparation is needed to apply the state estimation process in the real world. New
techniques for data cleaning and pre-processing are developed to overcome the short-
comings of raw data (Chapter 6). A speed-bias correction algorithm is presented to
deal with inaccurate (biased) aggregated-speed input. Multi-class and multi-lane flow
estimation aims to infer additional information from existing loop data for its subse-
quent use.

1.6.2 Practical contributions

Four main practical contributions have been identified, along with their significance to
society.

• Improvement of traffic state estimation for real-time traffic network management
In general, technologies and models for real-time traffic network management are for-
mulated in the conventional Eulerian coordinate system. This research provides a new
Lagrangian formulated multi-class state estimator for network applications. Due to the
fact that it leads to faster computation and more accurate results, it can be implemented
in a real-time context and thus promotes practical model-based decision support sys-
tems in traffic networks.

• New framework to incorporate GPS-type data
The Lagrangian formulation is based on the perspective of moving observers. There-
fore, Lagrangian state estimation provides an ideal framework for the assimilation of
data from those moving observers, such as mobile phone tracking data, GPS equipped
probe vehicles, etc..

• Implication for in-car state estimation applications
Meanwhile, this state estimation method sheds some light on in-car localised informa-
tion (state estimation) systems. Individual vehicles or vehicle platoons can be treated
as independent state estimation units, and concepts in this thesis can be used in vehicle-
wise cooperative systems.

• Providing practitioners with smart tools to tackle the problems with empirical data
The data-processing techniques that we develop can be used to solve several practical
problems. The speed-bias correction overcomes the speed-bias problems in empirical
data. A multi-linear regression approach is used to estimate multi-class and multi-
lane counts from aggregate data formats. These algorithms provide practitioners with
simple but effective and efficient tools to process empirical data.
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Figure 1.2: Outline of the thesis.

1.7 Outline of this thesis

The outline of this thesis is presented schematically in Figure 1.2 and discussed in
more detail in this section. This thesis consists of seven chapters.

Chapter 2 first sets up a novel classification framework for traffic state estimation re-
search with respect to two different (Eulerian and Lagrangian) observation coordi-
nate systems. Under this framework, previous studies are classified into the related
categories. Thereafter, research gaps and motivation are distinguished and proposed
within the new taxonomy. The main methodological contribution, bridging these gaps,
is elaborated further in Chapters 3 and 4. Furthermore, the applications related to the
new method are addressed in Chapters 5 and 6. To make a distinction within this
framework, the work that has previously been done relating to the Eulerian classifica-
tion is presented as a comparable “dashed-block” to Chapters 3 to 6, as illustrated in
Figure 1.2.

Chapter 3 presents the Lagrangian state estimation approach based on a mixed-class
formulation. For the purposes of comparison, each of the three components in state
estimation is elaborated for both the Lagrangian and Eulerian approaches. Their rel-
ative advantages and challenges are discussed. In addition, discontinuity modelling
in Lagrangian coordinates is addressed for the extension of these techniques to traffic
network modelling.

In Chapter 4, a multi-user perspective is considered in the Lagrangian state estimation
approach. New applications and interpretations of the existing multi-class traffic flow
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models are addressed for multi-class state estimation. The related observation models
for class-specific data and node models, at a multi-class level, are developed.

In Chapter 5, the mixed-class Lagrangian state estimation model developed in Chapter
3 is tested in both synthetic and real-world data environments. In the former, FOSIM
(Dijker, 2012), a microscopic simulation environment, is used to provide ground truth
data to validate the Lagrangian approach at both the link level and the network level.
In the latter case, the mixed-class Lagrangian approach is compared with its Eulerian
counterpart based on empirical data taken from a British motorway. The multi-class
Lagrangian state estimation, as presented in Chapter 4, is first verified with diverse
class-specific data sources in the computational environment, and is then tested on a
real freeway network (the Dutch A15) on the basis of diverse empirical data sources
(aggregate loop data, individual vehicle data, trajectory data). Finally, the main find-
ings are interpreted and summarised.

Chapter 6 deals with model applications in the real world. Before implementing a
traffic state estimation procedure, preparations regarding raw data cleaning, model pa-
rameter and input generation are necessary. Methods and algorithms are developed to
provide estimation inputs with accuracy. With this purpose, two examples of dealing
with raw data are shown, which tackle the speed-bias problem and class-specific data
inputs, respectively. These examples are based on two edited versions of published
articles (Yuan et al., 2010, 2012. In Press).

The main conclusions are drawn in Chapter 7. Furthermore, the research implications
for state estimation studies are highlighted, reviewing the main contributions of this
research from both methodological and practical perspectives. We end the thesis by
discussing a number of possible future research directions.
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Chapter 2

The state-of-the-art in traffic state
estimation

This chapter reviews the state-of-the-art in traffic state estimation. First of all, we es-
tablish a novel classification framework for model-based state estimation research with
regards to the two different (Eulerian and Lagrangian) coordinate systems. This tax-
onomy allows the identification of potentially beneficial research angles. Both mixed-
class and multi-class traffic descriptions/modelling are distinguished. A discussion
of previous research efforts in this domain are then presented within this taxonomy.
Different modelling choices are distinguished in terms of traffic process models, ob-
servation models and assimilation techniques used in model-based state estimation.
The literature review addresses all the important aspects of the state estimation ar-
chitecture, in order to make clear to the readers which design choices and trade-offs
one needs to make in state estimation. Furthermore, gaps are identified in the proposed
classification framework: whereupon, the motivation for a multi-class Lagrangian state
estimation is provided accordingly.
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2.1 Introduction

This thesis focuses on the estimation of traffic states, which aims to provide reliable
and accurate traffic state information for real-time dynamic traffic management. The
essence of traffic state estimation is to reproduce traffic conditions based on available
traffic data. One class of available estimation methods does not make use of traffic
flow dynamics, but relies on basic statistics and interpolation. These are referred to
as data-driven methods. Another class of estimation methods relies on dynamic traffic
flow models. These are referred to as model-based methods. The focus of this thesis is
on the latter because it potentially provides better results than the former class.

First of all, the basic concept of model-based traffic state estimation is addressed. As
mentioned in Chapter 1, model-based state estimation usually encompasses three com-
ponents: (often nonlinear) dynamic traffic flow (or process) models, observation mod-
els and data-assimilation techniques. The first two components constitute the (macro-
scopic) traffic system models used in state estimation. These system models describe
the underlying traffic dynamics and the relations between system states and obser-
vations. Based on system models, data assimilation methods (the third component)
estimate the most probable traffic states. There are many data-assimilation techniques,
ranging from simple techniques to more sophisticated algorithms. For instance, a sim-
ple Newtonian relaxation (nudging) method (Anthes, 1974) relaxes system models to-
wards observations, meaning observation models are not required in performing data
assimilation. The Kalman filtering method (Kalman, 1960) provides solutions to the
optimal filtering problem: the best state estimates, in a recursive fashion. It is rooted in
a (linear) system featuring process and observation models. As the test bed, this thesis
chooses existing recursive data-assimilation techniques. This type of technique itera-
tively reuses one or more of the outputs as the input. This feedback typically results
in either exponentially growing, decaying, or sinusoidal signal output components. In
the field of transportation research, it indicates that the estimation errors by a recursive
assimilation technique tend to get smaller and smaller over time.

Macroscopic (nonlinear) traffic system models can be generally cast in a discrete state-
space form, which makes them suitable for recursive data-assimilation techniques.
Here, it is assumed that traffic system models consist of both dynamic process models
and observation models. Generally, these models can be formulated as follows:

zτ+1 = f (zτ ,dτ)+wτ (process model)
yτ = h(zτ ,dτ)+uτ (observation model).

(2.1)

Here, the process model f (.) is a discrete equation (e.g., the conservation of vehicles
equation) describing the evolution of the system state (e.g., vehicle density k, spacing
s), and h(.) is a static relationship that relates observations to the system state (e.g.,
the fundamental diagrams relating average flow q and speed v to density k). Note that
in equations (2.1), the subscript τ depicts discrete time instants. Henceforth, the state
vector zτ typically denotes a vector of average densities (and/or speeds, spacing) on
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Figure 2.1: Schematic procedure of the prediction-correction data-assimilation meth-
od.

road segments (or vehicle platoons) over small time periods [τ,τ +1) or (τ−1,τ], yτ

is a vector of observations (e.g., speeds, flows, vehicle spacing, headways, etc.) from
fixed or vehicle-based sensors, and dτ is a vector of model inputs, including all dis-
turbances and parameters (e.g., traffic demands, capacity constraints, link capacities,
critical speeds and densities). The two white noise terms wτ and uτ in (2.1) represent
errors in the process and observation models, respectively. The first term may stem
from errors in the model input and parameters, and/or model mis-specification (e.g.,
many models necessarily simplify certain physical aspects and thus may cause errors).
The error term in the observation model reflects the combined effect of modelling er-
rors and observation errors (e.g., miscounts, equipment failure, etc.).

Based on the state-space model, recursive data-assimilation techniques aim to make
an optimal estimate of the system state zτ given all observations yτ until the current
time instant. To this end, these methods use an intuitive predictor-corrector structure,
as shown in Figure 2.1. For each discrete time step, first a prediction of the system
states z−τ is made on the basis of the process model and the previous available esti-
mate. Next in the correction step, this prior estimate z−τ is corrected with an optimal
weighting Factor (such as the Kalman gain matrix) proportional to the distance (errors
Eτ ) between the available sensor data (yτ ) and the predictions made by the observa-
tion model. The optimal weighting factor is determined in terms of minimising state
estimation errors. This procedure iteratively provides state estimates at each time step.

In the following, we first present a new classification framework for model-based state
estimation research. Previous research efforts are examined under the framework,
which leads to the conclusion that there are several gaps. This motivation drives our
main research direction.
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2.2 A new classification framework for model-based
traffic state estimation research

This section presents a novel classification framework for model-based traffic state
estimation research, with respect to the embedded traffic process models (as the first
“X” dimension) and traffic observation models (as the second “Y” dimension) in dif-
ferent coordinate systems, see Table 2.1. In this taxonomy table, the mixed-class and
multi-class traffic descriptions are also identified, resulting in eight categories.

There are two selected coordinate systems as discussed in Chapter 1, in which traf-
fic flow theories can be mathematically formulated: the Eulerian coordinate system,
which is fixed in space; and the Lagrangian coordinate system, which moves with the
traffic stream. Within the first dimension, we can, therefore, classify traffic state esti-
mation research with respect to the system modelling in these two coordinate systems,
leading to the Eulerian and the Lagrangian traffic state estimation approaches. The
state estimators with Eulerian formulated traffic system (process) models are classi-
fied as Eulerian state estimators, whereas Lagrangian state estimators are embedded in
Lagrangian formulated traffic system models.

Similarly, one can divide traffic observations into two main functional categories. Lo-
cal traffic quantities such as aggregated traffic counts and spot speeds are observed at a
fixed point in space (at a cross-section). This type of traffic measurement device, such
as loop detectors, video sensors, and radar detectors, is classified as an Eulerian sen-
sor and the related observations as Eulerian sensing (observation) data. One can also
observe traffic flow characteristics moving along vehicle trajectories. These data are
referred to as Lagrangian sensing (observation) data (Herrera et al., 2010). Lagrangian
data can be obtained via GPS technology or any tracking devices providing position
and velocity of individual vehicles. Moreover, vehicles equipped with distance sensors
can even provide distance headways (spacing) between successive vehicles using in-
frared or radio technology. The two types of data and the relating observation models
feature the second dimension in the new taxonomy.

Apart from the two dimensions, different data-assimilation techniques also form the
basis for conventional classification approaches for traffic state estimation. For in-
stance, Ou (2011) presented a classification with respect to this criterion. This the-
sis considers assimilation techniques as the third “Z”dimension in the new taxonomy.
However, this dimension will not be visually presented in the “X-Y” dimension classi-
fication table. Instead, it will be discussed in Section 2.5, with a focus on “recursive”
assimilation techniques. The new classification scheme is proposed with respect to the
three components in traffic state estimation, therefore, it clarifies the design choices
and trade-offs one needs to make and face in state estimation.

It is necessary to determine how previous studies fit into the taxonomy along the three
classification dimensions. In the following three sections, we focus firstly on the dis-
tinction of traffic state estimation studies with respect to different traffic process mod-
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Table 2.1: Classification framework for model-based traffic state estimation(TSE) re-
search in terms of two mathematical formulations of process and observation models
in two coordinate systems

Y: Observations (Models)

Eulerian Sensing Lagrangian Sensing
(Loop, camera, radar) (GPS or cellphone)
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s Mixed-class Eulerian
Traffic Dynamics Model

Multi-class Eulerian
Traffic Dynamics Model

L
ag

.T
SE

Mixed-class Lagrangian
Traffic Dynamics Model

Multi-class Lagrangian
Traffic Dynamics Model

els, secondly with regards to different traffic data and observation models used in traffic
state estimation, and finally in terms of assimilation techniques.

2.3 Choices in traffic process models

Traffic system models consist of process models and observation models. Traffic state
variables in these models are traffic densities, speeds, flows and/or travel times, de-
pending on different estimation purposes. Process models describe the evolution of
these state variables. The choices of process models vary between different traffic flow
theories (e.g., first-order or higher-order traffic flow theory). Most of the traffic pro-
cess models (and the relating observation models) applied in traffic state estimation are
formulated in Eulerian coordinates. Although diverse data-assimilation methods (the
third dimension) have been used in previous studies, the traffic dynamics models used
as process models are generally either Eulerian formulated mixed-class first-order or
mixed-class second-order traffic flow models.

2.3.1 Eulerian formulated traffic process models

As one of the mixed-class first-order traffic flow models, the Lighthill-Whitham and
Richards (LWR) model (Lighthill & Whitham, 1955; Richards, 1956) or the Cell
Transmission Model (CTM, as a special case of the LWR model when the fundamental
relation between flow and density is assumed to be triangular) (Daganzo, 1994, 1995a)
have been widely used in this field. The LWR model is adequate to reproduce some
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of the basic phenomena observed in traffic (Daganzo, 1994, 1995b,c, 2002b; Newell,
1993; Lebacque, 1996; Van Wageningen-Kessels et al., 2011a). These reproduced
phenomena include conservation of vehicles, the onset and dissolution of congestion
at bottlenecks, the fact that disturbances propagate over space and time in different di-
rections as a function of the prevailing state (congested or not), and traffic anisotropy.
Sun et al. (2003); Tampère & Immers (2007); Pueboobpaphan et al. (2007); Herrera
et al. (2010); Van Hinsbergen et al. (2012) all used the LWR-type model for freeway
traffic state estimation. Recently, a speed reformulation of the LWR model has been
developed. This model describes the evolution of traffic speeds and it has been applied
to better assimilate speed observations (Work et al., 2008; Chen et al., 2011; Coric
et al., 2012). In these studies, a freeway is divided into spatially-fixed cells, in which
traffic states are described by densities or speeds. The continuous LWR model is dis-
cretised and solved by numerical schemes. Since traffic characteristics in Eulerian
coordinates might move either upstream or downstream depending on the prevailing
traffic condition (mode/regime: congested or not), the mode needs to be identified.
Mode identification can be done in several ways: 1) One can calculate the transition
flows (fluxes) between cells by a minimum supply and demand principle (e.g., the
widely applied Godunov scheme (Lebacque, 1996)), to automatically distinguish traf-
fic regimes. 2) In (Sun et al., 2003), a switching mode model (SMM) was used with
the assumption that every cell in one section only had the same mode, while the mode
was determined by the comparison of the predicted density with critical density. 3)
Tampère & Immers (2007) presented an implicit mode switching scheme for the CTM
applied in traffic state estimation. Correct mode identification is important for accurate
traffic state estimation.

There are also other first-order traffic flow models. For instance, a MARkov COm-
partment Model (MARCOM) was developed by Davis & Kang (1994), adapted by Di
et al. (2010) to estimate arterial traffic densities. Similar to the CTM, the MARCOM
model describes traffic flows within spatially-fixed compartments (cells), as a density-
dependent birth and death process according to cell boundary flux transitions. When
a vehicle makes a transition from the upstream compartment to the downstream one,
a death occurs in the upstream compartment while correspondingly a birth happens in
the downstream one. One advantage of this model is that more possible modes (as
typical in an urban network) instead of the two modes (on freeways) can be identified.
Clearly, when applying the Eulerian formulated mixed-class first-order traffic model in
traffic state estimation, the mode-switching problem needs to be addressed and prop-
erly solved.

Second-order models include a second speed equation to account for the fact of grad-
ual vehicle acceleration/deceleration, capacity drop, traffic hysteresis, oscillatory con-
gested traffic, and so forth. They also allow to incorporate the observations of speeds
and flows which are not directly related via fundamental diagrams (non-equilibrium
states). With more elaborate descriptions of traffic flows, these models potentially
improve the performance of traffic state estimation. Therefore, they have also been
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widely used. For instance, a Payne model (Payne, 1971) was employed by Nanthawi-
chit et al. (2003) to perform real time traffic state estimation. As one of Payne-type
extensions, the METANET model (Papageorgiou et al., 1990) has been used in sev-
eral state estimation or data-assimilation related studies (Wang & Papageorgiou, 2005;
Hegyi et al., 2006; Mihaylova et al., 2012). Moreover, a second-order gas-kinetic-
based traffic model (Treiber et al., 1999) was adopted by Ngoduy (2011) as the dy-
namic system model. Boel & Mihaylova (2006) developed an second-order extension
of the CTM by adding probability distributions on the sending and receiving func-
tions. This model was then implemented to perform data assimilations in (Mihaylova
et al., 2007). Cheng et al. (2006) used a two-level second order model to perform
speed and flow estimation. Due to more complex traffic modelling (more parameters)
and highly nonlinear traffic dynamics in these second-order models compared to the
first-order models, the related state estimation requires more sophisticated assimilation
techniques. This aspect will be further elaborated in Section 2.5.

Apart from second-order extensions, some studies have additionally considered driver
and vehicle heterogeneities in Eulerian formulated traffic flow models to improve the
accuracy of the estimation. Different vehicle classes have different characteristics,
such as maximum speeds, vehicle lengths, reaction times, minimum distance head-
ways, and so forth. Multi-class models take into account this heterogeneity by dis-
tinguishing vehicle-user classes. For instance, Van Lint et al. (2008a) and Ngoduy
(2008) have implemented multi-class first-order traffic flow models to estimate class-
specific traffic states (densities) with a certain success. These models are based on the
Eulerian formulated first-order traffic flow model under the assumption that the conser-
vation law holds for each of the vehicle classes. Hoogendoorn (2001) has successfully
applied a multi-class second-order traffic flow model (Hoogendoorn, 1999) for travel
time estimation. The embedded process model distinguishes between different vehicle
classes and its formulation is based on a gas-kinetic principle. Note that, since most
of the multi-class and the second-(or higher-) order models are derived from the (Eu-
lerian) mixed-class first-order traffic flow models, the applications with these models
should also take into account mode-switching problems.

2.3.2 Lagrangian formulated traffic process models

Recent studies by Leclercq et al. (2007); Van Wageningen-Kessels (2013) show that
the LWR model formulated in Lagrangian coordinates can be solved more efficiently
and accurately than in Eulerian coordinates. In such an alternative coordinate system,
traffic flow is divided into vehicle platoons, over which state variables (spacing) are
described. The most favourable advantage is that traffic characteristics only move in
one direction, independent of the prevailing traffic conditions. Mode identification
is no longer required, and the “Godunov” scheme can in turn be simplified into an
“upwind” scheme. The simplified scheme leads to “easy” numerical discretisation,
and accurate simulation results. The new traffic formulation and its simpler numerical
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scheme are supposed to yield benefits for state estimation. Hence, the Lagrangian
formulations potentially promote accuracy of traffic state estimation, which slots into
the main objective of this research.

However, few previous studies have focused on a Lagrangian form of traffic state esti-
mation. Therefore, the characteristics of the Lagrangian traffic state estimation remain
unclear to researchers. As a first attempt, we deploy a first-order traffic flow (LWR)
model formulated in Lagrangian coordinates as the process model, to investigate the
advantages and disadvantages of the Lagrangian traffic state estimation. Although a
number of phenomena are not well or fully represented in the first-order model (Hel-
bing, 2001; Kerner, 2009), most of which are related to the capacity drop and to traffic
instability, there are still strong arguments as to why the LWR model is a valid choice
for the purpose of state estimation. First of all, there is no undisputed alternative model
that is able to reproduce the foregoing basic phenomena under all circumstances suf-
ficiently. Secondly, there is the principle of parsimony: the first-order model contains
less parameters than more involved alternatives (higher-order models); it is a model
that is mathematically tractable, that can be analytically solved, and that provides the
analyst straightforward tools to switch between two different coordinate formulations.
However, note that the concept and results in this research are not only limited to the
first-order traffic flow model but also can be extended to more involved (high-order
and/or other gas-kinetic-based) macroscopic models.

Moreover, regarding traffic flow modelling in Lagrangian coordinates, we can also con-
sider the driver and vehicle heterogeneity by applying a Lagrangian formulation of the
multi-class first-order traffic flow model. By including heterogeneities in modelling,
not only these traffic flow models are able to describe traffic flow more accurately (Bel-
lomo & Dogbe, 2011), but also the control applications for such models can be made
more elaborate (Schreiter, 2013). This type of multi-class state estimation and control
is especially valuable in areas with high truck percentages.

2.4 Choices for incorporating observation models

Similar to process models, observation models can also be formulated in both coordi-
nate systems, resulting in Eulerian and Lagrangian observation models. Traditionally
traffic observations are collected by spatially-fixed Eulerian sensors, such as loop de-
tectors, video sensors, and radar devices. They are classified as Eulerian sensing data.
These data have been the dominant information sources in the field of transportation
research for decades. Most of the studies discussed in the previous section apply only
Eulerian sensing data based on Eulerian formulated observation models when perform-
ing state estimation. In recent years, wireless communication technologies, including
GPS, cellular probe and bluetooth etc., have been increasingly used for ITS applica-
tions. These Lagrangian data have also been incorporated with Eulerian formulated
observation models for traffic state estimation.
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One of the first studies that succeeded in incorporating Lagrangian sensing data into the
traffic state estimation was done by Nanthawichit et al. (2003), where by incorporating
simulated Lagrangian data it turned out to improve estimations from the method that
use only the Eulerian data. Usually, by additionally applying the Lagrangian sensing
data, the performance of state estimation approaches can be substantially improved.
For instance, Di et al. (2010) and Byon et al. (2010) successfully incorporated both
loop and GPS data to estimate traffic states on urban arterials. Chu et al. (2005) also
showed that better freeway travel time estimation can be achieved by using both Eule-
rian and Lagrangian data.

Increasing amounts of Lagrangian sensing data appear to be available for the trans-
portation community. For example, traffic data from the Next Generation Simulation
(NGSIM) project (FHWA, 2012) and the Mobile Millennium experiment (UCBerke-
ley, 2008), have been used as observation input for several CTM-based state estimation
studies (Work et al., 2008; Herrera et al., 2010; Coric et al., 2012), yielding good re-
sults. These data are usually incorporated into an Eulerian formulated observation
model, together with other available Eulerian data within an Eulerian state estimation
framework. The main assumption in Eulerian formulated observation models is that
the Lagrangian sensing data represent conditions in a spatial-temporal fixed “cell”.
This might not be an appropriate approximation since Lagrangian sensors move with
the traffic. An intuitive question remains: can the Lagrangian sensing data be bet-
ter incorporated into a Lagrangian formulated framework? Leclercq et al. (2007);
Tchrakian & Verscheure (2011); Van Wageningen-Kessels (2013) recently present the
Lagrangian first-order traffic formulations which can be applied for better Lagrangian
sensing (GPS) data assimilation. Owing to the Lagrangian formulation, traffic flow
models and observation models are described by the relation between vehicle spacing
and speed. Assuming both the spatial location of the vehicle and the time instant of
communicating its location and speed are available, these data are directly related to
the spacing and speed (the states) of a vehicle platoon based on its spatial location at
the same moment. Therefore, Lagrangian sensing data can be naturally incorporated
into the Lagrangian formulated observation models without any further assumptions.

None of previous research has incorporated Lagrangian (and/or Eulerian) sensing data
using Lagrangian observation models into Lagrangian formulated state estimation.
Thus far, we can determine how previous studies fit into the proposed taxonomy along
the first and the second dimensions. This leads to several research gaps, as indicated
in Table 2.2. Due to the advantages of Lagrangian formulation in terms of both traf-
fic simulations and incorporating traffic data, this thesis will perform a Lagrangian-
formulated traffic state estimation research to fill these research gaps. In the next sec-
tion, we investigate how the existing research accommodates the third classification
dimension, in the context of traffic state estimation.
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Table 2.2: Classification of previous studies based on the proposed framework for
traffic state estimation research in terms of first two (X-Y) dimensions (1st and Higher
indicate methods using the 1st- and the higher-order traffic flow models, respectively.)

Y: Observations (Models)

Eulerian Sensing Lagrangian Sensing
(Loop, camera, radar) (GPS or cellphone)

Mixed-class 1st: Sun et al. (2003); Chu
et al. (2005); Tampère &

Immers (2007);
Pueboobpaphan et al. (2007);
Work et al. (2008); Herrera

et al. (2010); Di et al. (2010);
Byon et al. (2010); Chen et al.

(2011); Coric et al. (2012);
Van Hinsbergen et al. (2012)

1st: Chu et al. (2005); Work
et al. (2008); Herrera et al.

(2010); Di et al. (2010); Byon
et al. (2010); Coric et al.

(2012)
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s Eulerian Model Higher: Nanthawichit et al.
(2003); Wang &

Papageorgiou (2005); Hegyi
et al. (2006); Mihaylova et al.

(2007); Ngoduy (2011);
Mihaylova et al. (2012)

Higher: Nanthawichit et al.
(2003); Cheng et al. (2006)

Multi-class 1st: Van Lint et al. (2008a);
Ngoduy (2008)

Eulerian Model Higher: Hoogendoorn (2001)

Mixed-class
(this research) (this research)

Lagrangian Model

Multi-class
(this research) (this research)

Lagrangian Model
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2.5 Data-assimilation techniques

Previous studies based on different data-assimilation techniques (the “Z” dimension)
are discussed and reviewed in this section. We restrict the discussion on the recursive
assimilation techniques. In the following, we first briefly introduce these techniques
and then review their applications in traffic state estimation.

2.5.1 Overview of recursive assimilation techniques

There are several well-known data-assimilation methods on the basis of the recursive
structure in Figure 2.1. One of them is the Kalman Filter (KF) (Kalman, 1960; Haykin,
2001), rooted in a state-space formulation of linear dynamic systems, provides a recur-
sive solution to the linear optimal filtering problem. However, most models in the
real world are nonlinear, and there exist more advanced “relatives” to the KF to deal
with that, such as the Extended Kalman Filter (EKF) (Jazwinsky, 1970), the Unscented
Kalman Filter (UKF) (Julier & Uhlmann, 1997) and the Ensemble Kalman Filter (En-
sKF) (Evensen, 2007). The fundamental idea of EKF is to linearise the state-space
system model and apply the linear KF procedure. Contrary to the EKF, the UKF does
not require a first-order linearisation of the nonlinear system. Instead, it computes
the Gaussian error variables by using a deterministic sequential Monte Carlo sampling
approach. Similarly, the EnsKF uses Monte Carlo or ensemble integration method in-
stead of a linearisation procedure. Moreover, the Particle Filter (PF) (Gordon et al.,
1993; Doucet et al., 2001) performs state estimation also within a Monte Carlo sam-
pling framework.

The differences between the data-assimilation methods (EKF, UKF, EnsKF, and PF)
lie in their assumptions related to the process and observation models and to the error
(noise) terms. In the EKF method, it is assumed that both process and observation
models are continuously differentiable functions, which can be locally (i.e., around
the current state) approximated by a first-order Taylor-series expansion (linearisation),
and in addition that the noise terms are Gaussian and independent over time. The ben-
efit of these assumptions is that only the mean and error covariance of the traffic state
are required to be calculated to approximate an optimal estimate of the system state
using the classic KF equations. The UKF and EnsKF relax the first assumption that
system models need to be differentiable, as it does not require local linearisation to
calculate the posterior state distribution, whereas the PF additionally relaxes the Gaus-
sian assumption. One can consider the UKF and EnsKF are affiliated to the PF family
as special cases. As the derivative-free techniques, they do not require the first-order
approximation regardless if the system model is differentiable. Therefore, they have
been used in several state estimation studies combining with highly nonlinear second-
order models (Hegyi et al., 2006; Mihaylova et al., 2007; Ngoduy, 2011; Mihaylova
et al., 2012) and/or multi-class models (Ngoduy, 2008). The disadvantage of these
more advanced filters is increased computational cost since they require a significant
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number of process and observation model instances to run in parallel, whereas the EKF
is a one-shot procedure. Table 2.3 overviews the main characteristics of different as-
similation methods and the related existing applications. This table also presents the
requirements (assumptions) of filtering techniques for process and observation models.

2.5.2 Motivation for applying the EKF

There are two classical arguments for using more involved and theoretically superior
assimilation methods, instead of the EKF in traffic state estimation. These are related
to the two main assumptions in the EKF: 1) that the first-order Taylor-series expan-
sion is not a reasonable approximation for highly nonlinear process, and 2) that the
Gaussian assumption for the noise terms in both process and observation models is
invalid. Although realistic knowledge of the noise distributions is not utilised in the
EKF, previous studies (Wang & Papageorgiou, 2005; Hegyi et al., 2006; Van Lint et al.,
2008a) show that the Gaussian assumptions is not a bad choice. This first statement is
justified particularly around capacity, where due to the upwind/downwind numerical
scheme (mode-switching), the (Eulerian) traffic flow model (process model) indeed is
highly nonlinear (Mihaylova et al., 2007; Ngoduy, 2008). Therefore, the first-order
approximation for Eulerian traffic models might be invalid at transition states, and thus
it might lead to a conflict with the requirements of the EKF. As a result, the EKF
estimates around capacity point may quickly diverge from the true state since the lin-
earisation may result in corrections with the “wrong” sign (i.e., the estimator may infer
congested traffic while in reality traffic is flowing freely). It will in such a case drive
the estimated state away from the true state rather than towards the true state. One
solution to the problem is to better predict the mode (free-flowing or congested), for
example, 1) by using a superior numerical scheme (e.g.,Godunov scheme (Lebacque,
1996)), this alternative is sensitive to the critical density (speed/flow) values; 2) by us-
ing Lagrangian data (Herrera et al., 2010). However, as noted in (Herrera et al., 2010),
“Since observations are sparse in time and space, however, the mode identification is
a challenging task,” this makes traffic state estimation in Eulerian coordinates on the
basis of the EKF a cumbersome exercise.

There are, nonetheless, also strong arguments in favour of the EKF approach for traffic
state estimation. Firstly, it is computationally much more efficient than the UKF, En-
sKF and PF approaches and hence more suitable for real-time estimation in large traf-
fic networks (Wang & Papageorgiou, 2005; Van Lint et al., 2008a), particularly with
scalable cell-based methods (Van Hinsbergen et al., 2012). Secondly, although traffic
propagation may be highly nonlinear around capacity, there are both theoretical and
empirical evidences that in strictly free-flowing and strictly congested conditions the
linear approximation is quite good on average (Daganzo, 1994; Newell, 1993; Treiber
& Helbing, 2002; Van Lint & Hoogendoorn, 2009). A straightforward solution to the
mode-switching problem is to apply the Lagrangian formulation of the traffic flow
model. As discussed in Section 2.3, solving the Lagrangian kinematic wave model
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pè

re
&

Im
m

er
s

(2
00

7)
;V

an
L

in
te

ta
l.

(2
00

8a
);

V
an

H
in

sb
er

ge
n

et
al

.
(2

01
2)

H
eg

yi
et

al
.(

20
06

);
Pu

eb
oo

bp
ap

ha
n

et
al

.(
20

07
);

N
go

du
y

(2
00

8,
20

11
)

W
or

k
et

al
.(

20
08

);
C

or
ic

et
al

.
(2

01
2)

C
he

ng
et

al
.(

20
06

);
M

ih
ay

lo
va

et
al

.(
20

07
,2

01
2)

;C
he

n
et

al
.

(2
01

1)



26 Lagrangian Multi-Class Traffic State Estimation

does not require mode switching, in a sense it “reduces” the nonlinearity level. The
linearisation of the Lagrangian system model will always lead to EKF corrections with
the “correct” sign. The Lagrangian formulated traffic flow model is continuously dif-
ferentiable and thus it can be well represented by a linearised model, which entirely
accommodates one of the EKF requirements for system models (see Table 2.3). The
Lagrangian formulation can potentially improve the performance of an EKF-based
state estimation. In this thesis, the EKF is selected to validate the Lagrangian state
estimation method in a real-time context. Note that, the concept of Lagrangian for-
mulation is not restricted to the EKF technique, but can furthermore apply to other
data-assimilation techniques (e.g., UKF, EnsKF and PF).

2.6 Research direction and main challenges

In the previous sections, we have concluded that the new Lagrangian formulation
is potentially suitable and beneficial for traffic state estimation, in terms of traffic
simulations, incorporating Lagrangian sensing data, and the application of the data-
assimilation (EKF) method. This thesis aims to investigate the properties of Lagrangian
traffic state estimation, and thus to fill the four main blanks in the current traffic state
estimation research (see, Table 2.2).

This thesis will develop a model-based first-order multi-class (and mixed-class) state
estimation approach in Lagrangian coordinates, based on an EKF framework, where
both Eulerian and Lagrangian sensing data can be incorporated. Note that, the idea
of Lagrangian formulation is not restricted to first-order traffic flow model with the
EKF technique, but can furthermore apply to other data-assimilation techniques com-
bining with more involved macroscopic traffic flow models. The main challenges to
this research are twofold: first of all, appropriate Lagrangian observation models need
to be formulated to incorporate Eulerian sensing data into Lagrangian state estima-
tion; and second of all, proper modelling network discontinuities is required, because
the network essentially moves with respect to the coordinate system in the Lagrangian
formulation. These issues will be elaborated in the rest of the thesis.

2.7 Summary

This thesis aims to provide reliable and accurate traffic state estimation for real-time
dynamic traffic management. The performance of traffic state estimation can be im-
proved in several aspects. As one aspect, people can develop more advanced filtering
techniques to relax limiting methodological assumptions (e.g., linear system models,
Gaussian-errors), in order to to perform more sophisticated data assimilation. This the-
sis focuses on improving the foundation of traffic state estimation, by selecting more
appropriate traffic system models: Lagrangian formulated traffic system models, while
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maintaining those filtering assumptions (that is, Lagrangian first-order system models
can be well represented by linear models). A new classification framework is proposed
with respect to traffic process and observation models in two different coordinate sys-
tems, and with a “Z” dimension along assimilation techniques. With the taxonomy,
we cannot only characterise available filtering approaches, but also identify potentially
beneficial research angles. The identified missing gaps in the current research based
on this taxonomy indicate that there are potentially more proper traffic system mod-
els formulated in Lagrangian coordinates to solve existing problems in state estimation
for further improvement. Therefore, the multi-class Lagrangian formulated traffic state
estimation becomes the core-value of this research and it will be elaborated in the re-
maining chapters.
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Chapter 3

Model-based mixed-class state
estimation in Lagrangian coordinates

Within the classification framework presented in Chapter 2, we develop a new ap-
proach of Lagrangian traffic state estimation. In this chapter, the approach is formu-
lated at a mixed-class level. To apply this approach in real traffic networks, node
models in Lagrangian coordinates are developed for network discontinuities. For the
purpose of comparison, the corresponding Eulerian formulation is introduced in this
chapter as well. Finally, these two formulations are compared in terms of theoretical
and practical advantages. The extension of the Lagrangian formulation to a multi-class
level will be given in the next chapter.
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3.1 Introduction

The previous chapter presented a new classification framework for traffic state estima-
tion studies, which is based on the two coordinate systems (Eulerian and Lagrangian).
We have motivated why we need to develop a new Lagrangian formulation. Therefore,
this chapter presents such a traffic state estimation approach in Lagrangian coordi-
nates at a mixed-class level. Specifically, the three main components in traffic state
estimation, namely dynamic traffic models, observation models and data assimilation
techniques (the Extended Kalman Filter (EKF) in this thesis) are elaborated in both the
Eulerian and Lagrangian formulations in the following sections. Similarly, the node
models for network discontinuities in both formulations are also presented. In Section
3.6, the Eulerian and Lagrangian formulations are compared in terms of theoretical and
practical advantages.

3.2 Process models: Eulerian and Lagrangian formu-
lations of mixed-class first-order traffic model

First recall the nonlinear state-space form for macroscopic traffic system models pre-
sented in Chapter 2:

zτ+1 = f (zτ ,dτ)+wτ (process model: f (.))
yτ = h(zτ ,dτ)+uτ (observation model: h(.)).

(3.1)

Here, zτ denotes system states, yτ denotes sensor observations, and dτ depicts model
inputs. wτ and uτ are respectively the two white noise terms in the process and obser-
vation models.

3.2.1 Mixed-class Eulerian formulated process model

In most traffic applications, traffic system models (both f (.) and h(.)) are formulated
and discretised in Eulerian (space x, time t) coordinates. In this thesis, the first-order
traffic flow model (also known as the Lighthill-Whitham and Richards (LWR) model
(Lighthill & Whitham, 1955; Richards, 1956)) is employed as the process model to
describe the evolution of traffic state variables. The conventional Eulerian formulation
reads

∂k
∂ t

+
∂q
∂x

= 0, (Eulerian conservation of vehicles equation), (3.2)

q =

{
Q(k)

kv with v =V (k)
, (Eulerian fundamental diagrams: Q and V ). (3.3)

Here, k denotes vehicle density, and q denotes average flow (flux). Equation (3.2) does
not distinguish different vehicle classes. Instead, it depicts the average performance
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of traffic flows in that the change of traffic density over time should be equal to the
change of traffic flow over space.

For simulation purposes (e.g., state estimation), the continuum model needs to be dis-
cretised. This yields the following state-space equations for a single cell i (i = 1,2, ...)
of length ∆xi:

ki
τ+1 = ki

τ +
∆t
∆xi

(
qi−1→i

τ −qi→i+1
τ

)
, (3.4)

Here, τ depicts discrete time instants, and ∆t denotes the period length. There are
different (explicit) numerical schemes to calculate the numerical flux qi→i+1

τ between
cells i and i + 1 in equation (3.4). The most widely used scheme is the Godunov
(minimum supply (S) demand (D)) scheme (Lebacque, 1996), which reads

qi→i+1
τ = min

(
Di

τ ,S
i+1
τ

)
(3.5)

with

Di
τ =

{
Q
(
ki

τ

)
ki

τ < ki
C,τ

Ci
τ otherwise

(3.6)

Si+1
τ =

{
Ci+1

τ ki+1
τ < ki+1

C,τ

Q
(
ki+1

τ

)
otherwise.

(3.7)

Here, ki
C,τ denotes the critical density at which the flow reaches capacity Ci

τ in cell i.

Courant-Friedrichs-Lewy’s (CFL) condition (Courant et al., 1967) defines the stability
and convergence domain of the numerical method, which reads

∆xi ≥max
k
|∂ (Q(k))/∂k|∆t , for all i. (3.8)

This constraint ensures that the perturbations in the flow cannot travel faster than the
free-flow speed.

3.2.2 Mixed-class Lagrangian formulated process model

In this thesis, we adopt a Lagrangian formulation of traffic flow models. The contin-
uous representation of the mixed-class LWR model in Lagrangian (vehicle number n,
time t) coordinates reads (Leclercq et al., 2007)

∂ s
∂ t

+
∂v
∂n

= 0, (Lagrangian conservation equation), (3.9)

v =V ∗(s), (Lagrangian fundamental diagram: V ∗). (3.10)

Equation (3.9) states that the change in spacing s (which equals 1/k (m/veh.), i.e., the
reciprocal of density) of a platoon of vehicles over time t is equal to the change in
speed v over this platoon. This equation describes this undisputed principle. Suppose
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that there are two vehicles, driving along the road. If the first vehicle drives faster
than the second one, the spacing (or distance) between them would increase, and vice
versa. For an intuitive explanation and the mathematical details of this Lagrangian
formulation, we refer to (Van Wageningen-Kessels et al., 2009b, 2010a). Note that
the vehicle number n decreases in the driving direction and this variable is not neces-
sarily an integer. Analogous to the Eulerian case, the fundamental diagram V ∗ in La-
grangian coordinates (3.10) expresses speed v as a function of spacing s (Figure 3.1).
For instance, the fundamental diagram proposed by Smulders (1989) in Lagrangian
coordinates reads as follows:

v =V ∗(s) =

{
vfree− scri(vfree− vcri)/s, if s≥ scri,

vcri(s− sjam)/(scri− sjam), otherwise,
(3.11)

with free-flow speed represented by vfree, critical speed by vcri, critical spacing by scri,
and jam spacing by sjam, respectively. This relation is an invertible and piecewise
function.

As an essential step in some of the data-assimilation methods (e.g., the EKF, which will
be introduced in Section 3.5), it is required to conduct the first-order approximation
(linearisation) of both the process and observation models. Therefore, the embedded
fundamental relations need to be differentiable. However, there is a nondifferentiable
point in piecewise functions (as shown in Figures 3.1(a) and 3.1(b)). This problem can
be easily remedied by using a smooth approximation at the non-differentiable point
of the fundamental diagram. Alternatively, a smooth v-s relation can be used in the
model, for example, the fundamental diagram of Greenshields (1934):

v =V ∗(s) = vfree(1− sjam/s), (3.12)

or a hyperbolic function (Bando et al., 1995) (Figure 3.1(c)):

v =V ∗(s) = A tanh((s−B)/C−2)+ tanh2 (3.13)

where A, B and C are the parameters which need to be calibrated based on specific
road stretches. The Greenshields’ relation deviates from the current reality on free-
ways (unrealistic speed description in congested states, and unreasonable critical spac-
ing/density), and thus it is not used in this thesis. The latter case is not used either,
since the parameters in expression (3.13) are not directly related to physical meanings
of traffic phenomena (e.g., free-flow speed or critical speed), which is difficult to esti-
mate from empirical data. In the following, we will use a smooth version of Smulders’
fundamental diagram as illustrated in Figure 3.1(b). The precise method to fix the
nondifferentiable point will be given when calculating the Jacobian matrix in the EKF
method in Section 3.5.

In Lagrangian coordinates, traffic characteristics only move upstream (in the direction
of increasing n, opposite of the driving direction), which implies that vehicles only
react to vehicles in front of them (traffic anisotropy). The (favorable) consequence is
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Figure 3.1: Lagrangian fundamental diagrams for Daganzo (a) (Daganzo, 1994), Smul-
ders (b) (Smulders, 1989), and Smoothing (c) (Bando et al., 1995). Note that all the
fundamental relations in the Lagrangian form can be transformed into the equivalent
Eulerian relations.
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that the Godunov scheme in Lagrangian coordinates simplifies to an upwind scheme.
The process model (the sending and receiving functions are smooth) can thus be easily
linearised. For the convenience of state estimation, the process model (3.9) is discre-
tised using an upwind and explicit time-stepping scheme, as shown in equation (3.14).
More specifically, traffic flow on a freeway stretch is divided into vehicle platoons of
size ∆n with index i (i ∈ N), and time-steps τ are of size ∆t, i.e.,

si
τ+1 = si

τ −
∆t
∆ni

(V ∗(si
τ)−V ∗(si−1

τ )). (3.14)

A platoon size of one would imply a microscopic simulation (on one-lane segments).

The CFL condition for the Lagrangian model becomes

∆ni ≥max
s
|∂ (V ∗(s))/∂ s|∆t , for all i. (3.15)

This constraint ensures that the variation in vehicle number at one location within one
time step of size ∆t cannot be larger than the size of the platoon itself.

The vectorised Lagrangian mixed-class formulation for freeway stretches then reads{
sτ+1 = sτ − ∆t

∆n(vτ −vfront
τ ),

vτ = V ∗(sτ), vτ = qτ · sτ .
(3.16)

All boldface variables in equations (3.16) represent vectors of the related quantities
(e.g., sτ = [...,si

τ , ...]
T , i ∈ N), where vfront

τ denotes the speed of related successive
vehicle platoon, and qτ denotes the vectorised average flow. The above equations con-
stitute the nonlinear state-space traffic system model in Lagrangian coordinates. There
additionally exist two noise terms, respectively representing errors in the process and
observation models. In the EKF technique, the noise terms are assumed to be Gaussian
and independent over time. Therefore, independent zero-mean Gaussian noise terms
στ and rτ need to be added in Lagrangian process and observation equations to suit the
application of the EKF, yielding

sτ+1 = f (sτ ,dτ)+στ (process equation)
yτ = h(sτ ,dτ)+ rτ (observation equation).

(3.17)

3.3 Modelling network discontinuities in the Lagrangi-
an formulation

Real-time traffic management and control require state estimators that work on net-
works. To this end, traffic state estimators need to be completed with boundary condi-
tions and node models (network discontinuities). In Lagrangian coordinates, however,
implementing boundary conditions and node models is not straightforward. This is
because the coordinates are moving with the vehicles in this formulation, while the
boundaries and nodes are fixed in space. As a result, in the Lagrangian formulation
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Figure 3.2: Nodes with locally numbered links.

the network (including discontinuities) essentially moves with respect to the coordi-
nate system, which yields both modelling and computational difficulties. This section
shows how to include such discontinuities, that is, sources (on-ramps, in-flows at en-
tries) and sinks (off-ramps, out-flows at exits) in the Lagrangian formulation by means
of a node model. This node model can be seen as an extension or a supplement to
the foregoing traffic process model, which is used for the prediction step in the data-
assimilation (e.g., the EKF) method (see Section 3.5).

3.3.1 Eulerian formulated node models

The essence of the LWR model is the conservation of vehicles equation. In case of
on-ramps (merges) or off-ramps (bifurcations) on a freeway, node models are needed
to deal with in-flows from sources and out-flows into sinks. In the network description
used in our study, three node types are considered: link-to-link nodes, bifurcations and
merges (see Figure 3.2). Note that, other more complex nodes, such as crossings, are
not implemented yet. Here, we first recall traffic dynamics (fluxes) across these nodes
in Eulerian coordinates (Van Lint et al., 2008b), then develop Lagrangian node models.

In case of a link-to-link node, it is a simple interface between two network links (links
1 and 2 in figure 3.2). The flux over the node is calculated by:

q1→2 = min
(
D1,S2) . (3.18)

This implementation at the link-to-link nodes is similar to the (Godunov) numerical
scheme, which is used to calculate fluxes between two neighbouring cells, as shown
in equations (3.5, 3.6 and 3.7). In many cases, a link-to-link node (also a bifur-
cation or merge node) describes a spatial or temporal discontinuity, such as a lane
drop/expansion, curves and gradients, or a change in speed limits. Therefore, this kind
of nodes also indicates a change in fundamental relations. As a result, the fundamen-
tal relations for network links can be formulated as space and time dependent. The
demand D and supply S of each link can be determined via the related fundamental
relations.

At bifurcation nodes, turn fractions γ for both outgoing links (i.e., links 2 and 3 in
Figure 3.2) are defined, which depict the distribution of the total flow over the outgoing
links. The demand on link 1 to links 2 and 3 can be determined using these turn
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fractions:

D1→2 = γD1

D1→3 = (1− γ)D1.
(3.19)

Then we have the minimum supply-demand scheme for a bifurcation node:

q1→2 = min
(
D1→2,S2)

q1→3 = min
(
D1→3,S3) . (3.20)

Whenever the supply at one (or both) of the outgoing links is not large enough, the
corresponding excess vehicles will stay in the incoming link for the next time step.

At merge nodes, the supply of the outgoing link 3 is distributed proportional to the
number of lanes L of each incoming link (also refer to Figure 3.2):

S1→3
∗ = L1

L1+L2
S3

S2→3
∗ = L2

L1+L2
S3.

(3.21)

Note that, this is just a specific and arbitrary choice. It is possible to consider realistic
behaviours at nodes (e.g., priority and politeness) with more complicated modelling.
Thereafter, if there is any supply left, it can be used by either incoming link:

S1→3 = S1→3
∗ +max(0,S2→3

∗ −D2)

S2→3 = S2→3
∗ +max(0,S1→3

∗ −D1).
(3.22)

Similar to equation (3.20), we have the minimum supply-demand scheme for merges:

q1→2 = min
(
D1,S1→3)

q2→3 = min
(
D2,S2→3) (3.23)

Whenever the demand at one (or both) of the incoming links is larger than the assigned
supply, the corresponding excess vehicles will stay in the related incoming link for the
next time step.

3.3.2 Lagrangian formulated node models

To model sources and sinks in the Lagrangian formulation, Lagrangian node models
are developed (see also in (Van Wageningen-Kessels et al., 2011c)). This contribution
shows how sources (sinks) in Lagrangian coordinates effectively generate (remove)
vehicle platoons into (from) the flow, and as a result change the spacing of platoons
which pass the source (sink) location. This node model is based on the analytical
expression for sources and sinks in the Lagrangian formulation of the LWR model
(equation (3.24)), which is derived from its Eulerian counterpart:

∂ s
∂ t

+
∂v
∂n

=−s2
ψ(x(n), t). (3.24)
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Here, the definitions of s, v, t and n are consistent with those in equations (3.9) and
(3.10), the term ψ(x(n), t) (:= α(x(n), t)−β (x(n), t)) denotes the time and space de-
pendent combined influence from source α(x(n), t) and sink β (x(n), t), which is usu-
ally related to on-ramps or off-ramps. Note that, the source term α times the length of
the influencing platoons at on-ramps results in inflows (vehicles per time unit). Simi-
larly, from the sink term β , the related off-ramp outflows can be derived.

As discussed above, node models in Eulerian coordinates are based on the minimum
demand-supply principle. The fundamental relations should also be formulated de-
pending on spatiotemporal discontinuities. These main principles can be adapted for
the node implementation in Lagrangian coordinates. However, we notice that the re-
sulting fluxes from the Eulerian node models can be used in the Eulerian process mod-
els explicitly, whereas these fluxes cannot be directly incorporated into the Lagrangian
process model (flow/flux quantities are implicit). The difficult part for the Lagrangian
implementation mainly relates to the discretisation. When implementing sources and
sinks into a Lagrangian simulation model, there are several options to choose from
the vehicle discretisation and the time discretisation. In our application, whole vehicle
groups (platoons) are only added to (or removed from) the flow at the beginning of a
new time step. As an example in Figure 3.3(a), full vehicle groups are either continued
on the main road, or added to the flow at the source location; similarly in Figure 3.3(b),
full vehicle groups are either continued on the main road, or removed from the flow
at the sink location. In terms of the time discretization, Figure 3.3(c) shows the new
conditions applying from the beginning of the next time step.

More specifically, in the on-ramp (source) case, two consecutive platoons are con-
sidered at the corresponding time step, in which the upstream one covers the related
on-ramp. This upstream platoon will be influenced by an entry platoon. The space
of this platoon will be shared with the entry platoon. While the downstream one will
not be influenced by the entry platoon, as vehicles (platoons) only react to vehicles
(platoons) which are in front of them. A similar concept applies to the off-ramp (sink)
case. When a platoon is leaving from the mainstream, the space of this platoon will be
taken by its successive platoon. This ensures there is no vacuum space between two
platoons while keeping the mainstream flow conserved.

The presented node model is straightforward for implementations and leads to plau-
sible and accurate simulation results (see (Van Wageningen-Kessels et al., 2011c)).
Additionally, it is suitable for incorporating the current available observations at nodes
(on-ramps and off-ramps). More importantly, it enables the extension to a network-
wide traffic state estimation. More advanced modelling and its discretisation over
nodes have been presented in (Van Wageningen-Kessels et al., 2011b), by consider-
ing more complex network discontinuity situations. For instance, in that contribution,
priority ratios at mergers are introduced to define the flow distribution from incoming
links. Thus, spillbacks onto the main road upstream of ramps and/or onto on-ramps
can be modelled when congestion sets in. At bifurcations, turn fractions are defined for
outgoing links, the assigned amount of traffic that cannot access to off-ramps will stay
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(a) Vehicle discretisation for merges: full vehicle groups
are added to the flow.

t

x

(b) Vehicle discretisation for bifurcations: full vehicle
groups are removed from the flow.

t

x

(c) Time discretisation: new conditions apply at the begin-
ning of the first time step after the vehicle group reached
the node.

Figure 3.3: Vehicle and time discretisation approaches in this thesis (plotted lines de-
note vehicle group trajectories).
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in the main road. In this thesis, on-ramp sources and off-ramp sinks are considered as
a simple example of network discontinuities to test the concept of network-wide state
estimation. In that, full priority is given to ramp flows.

The boundaries of traffic networks are mainly referred to as the origins and destina-
tions. The Lagrangian boundary conditions are similar to the Eulerian case, which are
based on the minimum supply-demand principle. At origin boundaries, the in-flows
should be predefined. At out-flow boundaries, either a homogeneous Von Neumann
condition or a Dirichlet condition can be applied (Van Wageningen-Kessels et al.,
2010b). The former suggests that out-flow is always possible at exit boundary: no
congestion forms at the exits. The latter is used when influence from downstream
boundaries is modeled.

In our application, the in-flow from both upstream boundaries (origins) and on-ramps,
and the out-flow to off-ramps (or turn fraction) need to be known or estimated; on
the basis of which new platoons are added and out-flow platoons are removed. The
node models effectively change the spacing of influencing platoons which pass the
source or sink location, after that the spacing of all platoons are updated based on the
process model (conservation law). Note that, the platoon size cannot be too large that
covers two discontinuity locations (e.g., one on-ramp and one off-ramp). On the other
hand, small platoon size will lead to a gain in accuracy for simulation and modelling
discontinuities, but this also results in high computation time. One has to trade off
between numerical accuracy and computational cost.

As a final remark, the proposed node models take effect mainly at the prediction step
in recursive assimilation techniques (e.g., the EKF, see Section 3.5), whereas the cor-
rection procedure of the state estimation remains the same. Therefore, traffic charac-
teristics (traffic states, errors) can be easily linearised at nodes.

3.4 Observation models for mixed-class Lagrangian for-
mulation

Observation models relate observations, collected using traffic sensors (e.g., induc-
tance loops, cameras or probe vehicles), to system state variables (i.e., vehicle spacing
in the Lagrangian formulation). As presented in Chapter 2, two main (functional) data
categories are identified, namely Eulerian sensing data and Lagrangian sensing data.
The Eulerian fundamental diagrams in equation (3.3) provide a straightforward obser-
vation model for Eulerian sensing data, and also for Lagrangian sensing data (Herrera
et al., 2010). In the former case, mixed-class flows and (harmonic) mean speeds mea-
sured by local detection equipments can be directly related to spatially-fixed discritised
cells in Eulerian coordinates. In the latter, the Lagrangian data (e.g., floating car data
(FCD)) is considered to be representative for the local traffic conditions (of correspond-
ing discretised spatial cells) around the location and time of data transmission.
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In Lagrangian coordinates, the Lagrangian fundamental diagram (see equation (3.10))
provides a natural observation model for Lagrangian sensing data (FCD). Assuming
both the spatial location of the vehicle and the time instant of communicating its lo-
cation and speed are available, these data are directly related to the spacing and speed
of a vehicle platoon based on its spatial location at the same moment. This relaxes
the assumption used in the Eulerian formulation that FCD represent conditions in a
spatial-temporal fixed “cell”. If such a probe vehicle would also transmit the detected
spacing (distance headway) between its successor and predecessor, then this piece of
data can provide a direct measurement of the system state s. The observation equation,
in that case, simplifies to an identity relation. The following equations are applied
when trajectory-based data are available, where the former one is applied to incorpo-
rate spacing observations and the latter one is for speed observations:

yτ = sobs
τ = sτ + rτ (spacing observation - linear equation)

yτ = vobs
τ = V ∗(sτ)+ rτ (speed observation).

(3.25)

Here, sobs
τ and vobs

τ respectively denote spacing and speed observations at a time instant
τ . If both observations are available, they can be incorporated at the same time by using
a combined observation equation, which reads

yτ =

[
sobs

τ

vobs
τ

]
=

[
sτ

V ∗(sτ)

]
+ rτ . (3.26)

These (combined) observation equations are further used to calculate the Jacobian ma-
trix with respect to the system state, and thus the weighting factor (see Section 3.5).
With both the weighting factor and observations, correction can be performed.

However, incorporating Eulerian sensing data in the Lagrangian formulation is not
straightforward. Consider a dual-loop detector installed at a certain cross-section. At
the end of each measurement interval ∆T (e.g., 60 s), the detector will provide aggre-
gated (mixed-class) flow qdet and speed vdet. The question is how to relate these spot
speed or flow data to the observation of the state for a particular platoon. Intuitively,
one might use flow to determine the number of vehicles (platoons) that pass the detec-
tor during one measurement interval. Then the observation speeds of those vehicles
(platoons) are equal to the detected speed. This observation model seems to be plausi-
ble, assuming traffic conditions are stationary during measurement intervals. However,
this relation can not be justified when shockwaves pass the detector. Instead, we will
propose an alternative method, where only the spot speed observations are used.

According to the kinematic wave theory, in Eulerian coordinates, the traffic charac-
teristics, e.g., flow, density and, speed, move along the road. The propagation speed
of traffic information perturbations is equal to the derivative of the fundamental (q-k)
diagram. There are two types of wave speeds, namely the congested wave speed vcong

and the free-flow wave speed vfree. In the case of a Daganzo fundamental diagram, the
wave speeds are both constant. If the prevailing traffic condition around a detector is
congested, traffic information measured by the detector will travel upstream with the
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congested wave speed (e.g., see the slanted dashed line with a slope of vcong in Figure
3.4). The same logic applies to the free-flow traffic state; the only difference is that
the travel direction is downstream. The travel distance of traffic information can be
easily calculated by the characteristic wave speed vchr multiplied by the elapsed time
∆T , yielding

Linf = vchr ·∆T (3.27)

where the characteristic wave speed vchr is either equal to vfree or vcong, depending
on the prevailing traffic condition. The distance Linf demarcates the “information in-
fluence” area of the detector (one example of the congestion case is shown in Figure
3.4(b)). Note that if there is an overlap between a congested influence area of a down-
stream detector and a free-flow influence area of an upstream detector, the congested
influencing area “overrules” the free-flow part. The reason is that vehicles are con-
strained in their driving behaviour by the lowest prevailing speed.

Based on the spatial positions (xi) of all vehicle platoons and the influence areas of a
loop detector, the platoons, of which the vehicle spacing needs to be corrected, can be
located. The assumption is that the observed speeds are equal to the harmonic mean of
each individual speed within the measurement interval ∆T . This yields

yi
τ = v j

τ,H , xi
τ ∈ L j

τ,inf (3.28)

where yi
τ denotes the (speed) observation of a platoon i at the τth interval, and xi

τ

defines the position of this platoon. v j
τ,H denotes the harmonic mean speed from a

detector j at the same interval and j is the index of detectors.

In case of a homogeneous traffic situation as shown in Figure 3.4(a), where the shock-
wave speed is equal to the congested wave speed, the equivalence of this approximation
can be easily proven. According to Edie’s definition (Edie, 1965) of traffic variables for
a space-time region, the speed at a cross-section (where the time period of space-time
region is infinitesimally small) is the harmonic mean of all individual speeds within the
interval. This harmonic mean speed is always equal to the space-mean speed within the
influence area. In this observation model, there are two key components: the character-
istic wave speeds, and the harmonic mean speed observations. Both the free-flow wave
speed and the congested wave speed are treated as constant values in our application,
since the linear approximation is reasonable (Daganzo, 1994; Newell, 1993). Alterna-
tively, these two values can be dynamically estimated in real time via image processing
techniques (Schreiter et al., 2010b) or even via the fundamental diagrams. When loop
detectors provide arithmetic mean speeds instead of harmonic mean speeds, one has
to firstly correct the raw detection speed, based on some speed-bias correction algo-
rithms, for example, in (Soriguera & Robusté, 2011) or a method proposed in Chapter
6.

As a final remark, the assumption of homogeneity (same wave speeds) does not always
hold, which implies this approximation of the observation speeds might contain errors.
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Figure 3.4: Influence area (Linf) of a detector (in congested state). The detector is
indicated by a horizontal dashed line. vcong denotes the congested wave speed. The
curved lines represent vehicle trajectories.
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Nonetheless, the proposed observation model provides a straightforward way to relate
spot speed data to the Lagrangian system state (spacing) via Lagrangian fundamental
diagrams.

3.5 Mixed-class Lagrangian traffic state estimation ba-
sed on the Extended Kalman Filter

For data assimilation, a relatively simple but online applicable technique, the Extended
Kalman Filter (EKF) is chosen to validate the concept for a Lagrangian formulation of
traffic state estimation. Note that, the Lagrangian approach can also be generalised to
be incorporated into other data-assimilation methods, such as the foregoing Unscented
Kalman Filtering (UKF) or the Particle Filtering (PF) technique.

The Extended Kalman Filter (EKF), which is rooted in the state-space formulation of
nonlinear dynamic systems, provides a recursive solution to the optimal filtering prob-
lem. The basic idea of the EKF is to linearise the state-space traffic system model and
apply the linear Kalman Filter procedure (Kalman, 1960). In a traffic system, suppose
that an observation yτ has been made at a time instant τ , the EKF state estimator uses
this observation to update the estimate of the unknown traffic state sτ , minimising the
error covariance matrix Pτ . On the basis of the state-space model (3.17), the mixed-
class EKF state estimator in Lagrangian coordinates can be formulated. Note that the
same (EKF) framework can be applied to the Eulerian formulation of the mixed-class
traffic flow model, or any other analytical traffic models in a discrete state-space form
(e.g., equation (3.1)).

Just as the standard Kalman filter, the EKF comprises two main steps: (1) a predic-
tion step (for which the nonlinear process model is used), and (2) a correction step
(for which the linearised system is used). Process models are used in the prediction
step whereas both process and observation models are used in the correction step. Ac-
cording to the classification principle in Chapter 2, the state estimators using Eulerian
formulated models (e.g., equations (3.2) and (3.3)) are classified as Eulerian state esti-
mators. Whereas Lagrangian state estimators are embedded in Lagrangian formulated
traffic system models (e.g., equations (3.9) and (3.10)).

In the prediction step, for each time step, the system state (ŝ−τ ) is predicted with the
process model. This predicted state serves as a prior state estimate, therefore, the best
estimate before using any data is given by

ŝ−τ = f (ŝτ−1,dτ−1). (3.29)

Besides a prior for the mean, a prior for the error covariance is also computed by:

P̂−τ = Fτ,τ−1P̂τ−1FT
τ,τ−1 +Qτ (3.30)
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where Qτ represents the covariance matrix associated with the Gaussian noise term στ

in equation (3.17). The Jacobian matrix

Fτ,τ−1 =
∂ f
∂ s
|s=ŝτ−1 (3.31)

is the partial derivative of f (.) with respect to the system state s, which is evaluated at
ŝτ−1.

One of the disadvantages of implementing the EKF is, that the linearisation may not
be possible when system (process) models are so complex and nondifferentiable. With
the mixed-class traffic system models in both formulations, we can still apply the EKF
for the on-line state estimation. Note that when a piecewise fundamental relation (e.g.,
equation (3.11)) is used instead of a smooth relation (e.g., equations (3.12) and (3.13)),
the derivative with respect to the state of a particular vehicle platoon at the nondiffer-
entiable point (capacity point) can also be provided by differentiation on an estimated
smooth function through this point. This function connects two discontinuous branches
and fulfills the (zero- and first-order) continuity condition. For instance, a third-order
polynomial function (v =V ∗(s) = as3+bs2+cs+d, with four deterministic paramters
a, b, c and d) can be used. Essentially this smooth function provides a made-up value at
the nondifferentiable point to make both the process and observation equations differ-
entiable so that the EKF can be implemented. Although there is some approximation
error at this point, the derivative values in the v-s relation maintain the “same” sign,
which is an advantage over the similar application to a flow-density relation (with both
positive and negative signs) in the Eulerian case.

In the correction step, the predictions of mean and covariance are corrected based on
the observations obtained by traffic sensors. The Kalman gain determines the optimal
weight put on both the model-predicted state and observation input, it is defined as

Kτ =
P̂−τ HT

τ

Hτ P̂−τ HT
τ +Rτ

(3.32)

where Rτ depicts the covariance matrix of the Gaussian noise term rτ in equation
(3.17). The Jacobian matrix

Hτ =
∂h
∂ s
|s=ŝ−τ (3.33)

is the partial derivative of the observation model h(.) with respect to the system state
s, which is evaluated at ŝ−τ . The matrices Q and R reflect the uncertainty in the pro-
cess and observation equation, and influence the weights that put on the model and
observations, respectively. The state estimate ŝτ and error covariance P̂τ are updated
as follows:

ŝτ = ŝ−τ +Kτ(yτ −h(ŝ−τ )), (3.34)

P̂τ = (I−KτHτ)P̂−τ . (3.35)
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Table 3.1: Extended Kalman Filtering algorithm (Pseudo code)

- Set τ = 0, initialise s0, P0, Q, R and other model variables.

for τ = 1 : T (for each time step)
- Prediction step
Calculate:
a prior state estimate ŝ−τ : equation (3.29)
a prior state estimate P̂−τ : equation (3.30)

- Correction step
Calculate:
Kalman gain Kτ : equation (3.32)
a posterior state estimate ŝτ : equation (3.34)
a posterior state estimate P̂τ : equation (3.35)

end

Here, I denotes the identity matrix. Equation (3.34) depicts the correction on the aver-
age spacing of each platoon based on the sensor observations. More information and
details about the EKF can be found, for example, in (Haykin, 2001).

Table 3.1 schematically illustrates the entire procedure of the EKF model-based traffic
state estimation. First, traffic system models are formulated in a state-space form. Then
all the system states (s0), error covariance (P0), and predefine model variables (e.g., Q
and R) are initialised. For each discrete time step, first a prediction of the system
states (ŝ−τ ) is made on the basis of the process model and the last available estimate
(ŝτ−1). Meanwhile, a prior estimate of error covariance (P̂−τ ) is calculated. Next in the
correction step, the prior estimate (ŝ−τ ) is corrected with the so-called Kalman gain (Kτ )
proportional to the distance between the available sensor data (yτ ) and the predictions
made by the observation model (h(ŝ−τ )). The prior error covariance (P̂−τ ), which is
used in the Kτ calculation, is again updated with this Kalman gain. This assimilation
technique will converge since the error covariance (P) tends to get smaller and smaller
over time.

Note that when Eulerian sensing data (e.g., dual-loop detection) are incorporated as ob-
servations, a fully-recursive correction timing scheme is applied in the correction step
of EKF. In this scheme, correction is performed in every prediction step (intermediate
time step) within each measurement interval. The detailed method and its advantages
can be found in (Schreiter et al., 2010a).

Due to the “non-mode-switching” (mode: congestion or free flow) numerical scheme
(upwind scheme), the implementation of the EKF in Lagrangian coordinates is more
straightforward than in the Eulerian case. In the latter case, the derivative in equation
(3.31) (which is based on equation (3.33)) depends on the mode (congested or free
flowing) of the considered cell and its up- and downstream neighboring cells, which
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implies considering eight (23) different cases (two modes at three locations). In the
Lagrangian case, the derivative (equation (3.31)) depends solely on the considered
platoon and the one downstream of it (so four cases). Thus, the upwind scheme is
computationally more efficient than the mode-switching Godunov scheme. Moreover,
this numerical scheme for the Lagrangian model also improves the data-assimilation
method, in that the linear approximation of the traffic system model near capacity is
much better than in the Eulerian model. The derivative of the Eulerian (q-k) fundamen-
tal diagram shows a sudden sign change around capacity. Due to this mode-switching
(between congestion and free flowing), the error in the Eulerian case may lead to EKF
corrections with the “wrong” sign. Whereas in the Lagrangian case an error may still
occur, but this error is guaranteed to pertain to the magnitude of the correction only.

The proposed state estimator can be applied to freeway networks. We first consider a
typical freeway stretch without on/off ramps. In contrast to spatially-fixed road seg-
ments as discretised in Eulerian Cell Transmission Model (Daganzo, 1994), the traffic
unit in Lagrangian applications is a platoon with a certain number of vehicles. The
traffic flow on freeways is divided into “platoons of vehicles” of size ∆n. At every time
interval ∆t, the spacing of vehicles in each platoon is updated based on the Lagrangian
conservation law. Then, the data-assimilation framework is applied using any available
observations.

In the Lagrangian model, the coordinates (observers) travel along with the vehicles as
they move through space. In a fixed-length road stretch, the platoons that are in the
front of the whole vehicle platoon group will pass the downstream boundary of the
road stretch (destination) after a certain time period. Hence, the states related to those
leading platoons that are beyond the destination boundary will no longer be taken into
account in the system state sτ . Furthermore, the gap between the upstream boundary
and the tail of the platoon group needs to be filled by adding new vehicle platoons.
On the basis of the (origin) inflow, new platoons can be added. At each time step of
the system evolution, the system state vector sτ as well as the related error covariance
matrix Pτ need to be adjusted with respect to the freeway geometrical constraint.

3.6 Advantages of Lagrangian formulation for traffic
state estimation

As already presented in (Leclercq et al., 2007; Van Wageningen-Kessels et al., 2009b,
2010a), the first-order traffic flow model can be formulated and solved more efficiently
and accurately in Lagrangian coordinates than in Eulerian coordinates. The simplified
“upwind” scheme leads to “easy” numerical discretisation, and accurate simulation
results.

In the proposed state estimation approach, the first-order Lagrangian traffic flow model
is used as the process model. Therefore, the advantages with numerical simulations re-
main in the state estimation process. The main challenge in the Lagrangian formulation
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is to derive a slightly more complex observation model in case of Eulerian sensing data.
Due to the “non-mode-switching” (upwind) numerical scheme, implementing the EKF
in Lagrangian coordinates is more straightforward than in Eulerian coordinates. More-
over, this numerical scheme for the Lagrangian model also promotes the application
of the data-assimilation (EKF) method, in that the linear approximation of the traffic
system model near capacity is much better than in the Eulerian model. Due to mode-
switching between congestion and free flowing, the error in the Eulerian case may lead
to EKF corrections with the “wrong” sign. In contrast in the Lagrangian case, an error
may still occur, but this error is guaranteed to pertain to the magnitude of the correction
only (no sign change). Therefore, a Lagrangian formulation of an EKF-based traffic
state estimation potentially delivers better estimation results. Chapter 5 will prove this
concept by means of several experimental studies.

3.7 Summary and discussion

In this chapter, the mixed-class Lagrangian traffic state estimation model has been de-
rived. Firstly, a state-space traffic flow model in Lagrangian coordinates is applied
as the process model to describe the evolution of traffic states, where vehicle spac-
ing is featured as the system state. Secondly, an improved (differentiable) Smulders’
fundamental relation is employed to describe the relations between traffic state vari-
ables, and applied as a natural observation model for incorporating Lagrangian sensing
data. For Eulerian sensing data, a new observation model is developed additionally,
based on the kinematic wave theory. As discussed in Chapter 2, to enable real-time
filtering for online applications, the EKF is applied since it is more efficient than the
other computational-expensive methods, such as UKF and PF. Meanwhile, it works
well with non-mode-switching traffic systems. Hence, the EKF further combines the
Lagrangian formulated traffic system model to perform state estimation, in a predictor-
corrector structure. Note that, the advantage (benefit) of the Lagrangian approach can
also apply to other data-assimilation methods. Furthermore, the newly developed node
models enable the extension of the Lagrangian traffic state estimation to a network
level. Theoretically, the Lagrangian formulation offers computational benefits for traf-
fic state estimation over the Eulerian formulation. It potentially delivers more accurate
estimation results.

In the next chapter, we will continue extending this approach to a multi-class level,
whereupon the multi-class traffic system models, observation models, and network
discontinuity node models will be discussed in detail. The model validation and appli-
cation will be done in Chapter 5.
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Chapter 4

Model-based multi-class state
estimation in Lagrangian coordinates

In the previous chapter, a mixed-class state estimator was presented in terms of the
three foregoing components. In that formulation, only one vehicle-user class was
identified. In this chapter, the Lagrangian state estimator is extended with a multi-
class distinction. Here, the methodology is firstly presented, and the model application
and experimental study are further addressed in Chapter 5.
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4.1 Introduction

In this chapter, we extend the mixed-class state estimator to the multi-class level, where
the same modelling steps are followed as the mixed-class case, namely the process
model, the observation models and the data-assimilation method. Firstly, two mod-
elling and discretisation approaches for the multi-class Lagrangian traffic flow model
are discussed. They are named as the “Piggy-back” model which is based on (only) one
coordinate system, and the “Multi-pipe” model which is based on several independent
coordinate systems for each of the vehicle classes (Section 4.2). The process model in
the Lagrangian state estimator applies the “Piggy-back” formulation. To deal with net-
work discontinuities in traffic state estimation, mixed-class node models in Lagrangian
coordinates are generalised to a multi-class level based on the “Piggy-back” formula-
tion (Section 4.3). Moreover, the Lagrangian observation models are developed (in
Section 4.4) to incorporate different data sources, which facilitate a class-specific de-
scription of traffic flow. They are further used in the EKF-based state estimation (Sec-
tion 4.5). Regarding the data assimilation, we discuss why the “Piggy-back” formula-
tion is an appropriate choice.

4.2 Multi-class Lagrangian traffic flow models: contin-
uum forms and different discretisation approaches

As the first component in the multi-class Lagrangian traffic state estimation, a La-
grangian formulation of the multi-class kinematic wave model is required as the pro-
cess model. However, the formulation and the discretisation of the Lagrangian multi-
class kinematic wave model can be done in different ways. This section focuses on
two modelling and discretisation approaches of the Lagrangian multi-class first-order
traffic flow model and discusses the related pros and cons.

4.2.1 Eulerian formulated multi-class models

Both mixed-class and multi-class traffic flow models can be formulated in either Eu-
lerian coordinates or Lagrangian coordinates. We first recall the formulation of multi-
class models in Eulerian coordinates (Van Lint et al., 2008b). It is based on the conser-
vation of vehicle equation (3.2), stating that vehicles of all classes are conserved. The
conservation equation describes that the change of traffic density k over time t should
be equal to the change of traffic flow q over space x. This equation holds for each user
class u. Additionally each user class has its class-specific fundamental diagram (Qu

or Vu), which relates the average class-specific flow (or speed) to the total (effective)
density ktot. The latter term is a weighted summation over all class-specific densities
with respect to the passenger car equivalent (PCE: η) values. The complete model
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formulation is given by

∂ku

∂ t
+

∂qu

∂x
= 0, ∀u : class-specific conservation equation, (4.1)

qu = Qu(ktot), ∀u : class-specific fundamental relation (q-k), (4.2)

vu =Vu(ktot), ∀u : class-specific fundamental relation (v-k), (4.3)

ktot = ∑u ηuku, total effective density. (4.4)

Here, the subscript u is a class-specific index. The class-specific PCE value ηu trans-
lates class-specific flows (e.g., trucks) into equivalent reference class flows (e.g., pas-
senger cars). For example, a truck occupies more space than a passenger car and thus
ηtruck > ηcar. These PCE values can be either constant or dynamically dependent on
the total effective density. In the latter case, Van Lint et al. (2008b) propose that PCE
can be dynamically calculated by

ηu =
Lu +TuVu(ktot)

Lcar +TcarVcar(ktot)
. (4.5)

Here, Lu denotes the class-specific gross stopping distance (average vehicle length),
and Tu denotes class-specific reaction time (minimum time headway), which both in-
crease for larger vehicle classes. The dynamic nature of the PCE value typically cap-
tures the ratio of the effective-occupied road lengths between one class-u vehicle and
one passenger car, taking into account the prevailing traffic conditions (by speeds).
Van Lint et al. (2008b) also propose a discretisation of this multi-class model in Eule-
rian coordinates. In fact, it is an adaptation of the minimum supply-demand method
for multi-class models, including nodes.

4.2.2 Lagrangian formulated multi-class models

“Piggy-back” formulation

Now let us discuss two formulations in Lagrangian coordinates. For different appli-
cations, the formulations of the Lagrangian multi-class kinematic wave model can be
addressed differently. In (Van Wageningen-Kessels et al., 2010a), a Lagrangian for-
mulation of the multi-class kinematic wave model has been proposed. This multi-class
derivation is partly based on the mixed-class Lagrangian conservation equation (3.9)
for the reference class, and partly based on the conservation of vehicles law for the
other classes. Each user class has its own fundamental relation (V ∗u ). The related equa-
tions are defined as follows:

Ds1

Dt
+

∂v1

∂n
= 0, conservation for class 1, (4.6)

Dsu

Dt
+

su

s1

∂vu

∂n
+

v1− vu

s1

∂ su

∂n
= 0, conservation for other classes u (6= 1), (4.7)

vu =Vu
∗(stot), ∀u : class-specific fundamental relation, (4.8)

stot =
1

∑u ηu/su
, total (effective) vehicle spacing. (4.9)
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Here, D
Dt =

∂

∂ t + v1
∂

∂x is the Lagrangian time derivative, which represents the total
change as seen by an observer that is moving with traffic flows. The average vehicle
spacing s is the reciprocal of the traffic density k. The class-specific equilibrium speed
vu is expressed as a function of the effective spacing stot, which is calculated based on
the class-specific spacing su and PCE value ηu. The class-specific PCE value is defined
similarly as the equation (4.5), taking the form:

ηu =
Lu +TuV ∗u (stot)

Lcar +TcarV ∗car(stot)
. (4.10)

Note that vehicles are numbered in the opposite driving direction. In this formulation, n
denotes the vehicle/platoon number of user-class 1, while the numbering for vehicles of
other user-classes does not have actual meanings. Since this Lagrangian formulation is
a continuum model, n can take any real value. For readability reasons, in the following
we will refer to class 1 as passenger cars and assume that there is only one other class,
namely trucks. The related analysis can be easily generalised to more classes.

For simulation applications, such as representing process models in traffic state estima-
tions and other computer implementations of the model, the continuum model needs to
be discretised and solved numerically. Based on the proposed multi-class formulation
(equations (4.6) and (4.7)), the discretisation of vehicle number is based on user-class
1 only, since the spacing of all other classes is related to class 1 through equation (4.6).
The vehicles from other user-classes are essentially travelling along with platoons of
class 1. This formulation and the related discretisation are referred to as the “Piggy-
back” method further below, since each platoon of class 1 of size ∆n carries with it
a certain number of other class vehicles while traversing over the network. Note that
the numbers of other class vehicles within each defined platoon are not necessarily the
same, depending on the relation of the spacing values between the other classes and the
class 1. Figure 4.1 illustrates the vehicle discretisation in this formulation at a time in-
stant. Since information in Lagrangian coordinates only travels in the opposite driving
direction, a straightforward upwind numerical scheme is applied to solve the equa-
tions. For the time discretisation, both implicit and explicit time-stepping schemes can
be used. The related comparison and discussion between these two methods have been
presented in (Van Wageningen-Kessels et al., 2009a). Here, an explicit time-stepping
scheme is used, because it is easy to calculate and thus suitable for online applications.

“Multi-pipe” formulation

These discretisation choices lead to the following discretised equations. Equation
(4.11) defines the state (vehicle spacing) evolution of user class 1 (cars), whereas equa-
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Figure 4.1: Vehicle discretisation at a time instant in the Piggy-back formulation (two-
class case). The rectangular cell denotes vehicle platoon.

tion (4.12) calculates the states for other user classes (e.g., trucks) on the basis thereof:

s1,
i
τ+1 = s1,

i
τ
− ∆t

∆n
(v1,

i
τ
− v1,

i−1
τ

), (4.11)

su,
i
τ+1 = su,

i
τ
− ∆t

∆n
[
su,

i
τ

s1,iτ
(vu,

i
τ
− vu,

i−1
τ

)+
v1,

i
τ
− vu,

i
τ

s1,iτ
(su,

i
τ
− su,

i−1
τ

)], u 6= 1. (4.12)

Here, i denotes the vehicle platoon index (number) of user class 1, τ denotes the current
time instant, and ∆t denotes the period length.

The second alternative method to formulate the Lagrangian multi-class model can be
directly derived from the mixed-class Lagrangian conservation equation which is based
on the variation of platoon length (see equation (3.9)). This equation holds for each
user class u. The concept for the resulting formulation is similar to the foregoing
multi-class formulation in Eulerian coordinates, reading

Dsu

Dt
+

∂vu

∂nu
= 0, ∀u : class-specific conservation equation, (4.13)

vu =Vu
∗(stot), ∀u : class-specific fundamental relation, (4.14)

stot =
1

∑u ηu/su
, total (effective) vehicle spacing. (4.15)

Here, the Lagrangian time derivative takes the form D
Dt =

∂

∂ t + vu
∂

∂x . nu denotes the
vehicle number of user class u. The conservation equation (4.13) holds for each user
class. This indicates the change of vehicle spacing over time should be equal to the
change of vehicle speed over vehicle number in each class. Each user class has its own
fundamental relation, and the total effective spacing is the link between different user
classes. The class-specific equilibrium speed (equation (4.14)) is also determined by
the effective spacing.

The main difference from the “Piggy-back” formulation is that an independent coordi-
nate system is introduced for each of the user classes. This means that vehicles from
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Figure 4.2: Vehicle discretisation at a time instant in the Multi-pipe formulation (two-
class case). i and j denote the indices respectively for class 1 (passenger cars) and
class u (trucks).

each class are clustered in platoons and numbered separately. Therefore, the platoon
size for each class ∆nu can be chosen differently, but are still subject to the constraint of
the CFL condition (Courant et al., 1967). According to the conservation law, the class-
specific platoons only react to the consecutive same-class platoons via the equilibrium
speed. This equilibrium speed, however, is as in the alternative formulation a function
of the total (effective) vehicle spacing. This formulation is referred to as a “Multi-pipe”
method further below. Figure 4.2 illustrates the related vehicle discretisation at a time
instant.

For numerical solutions, the upwind scheme and the explicit time-stepping scheme can
be applied to this formulation. This results in the following discrete equations:

su,
k
τ+1 = su,

k
τ
− ∆t

∆nu
(vu,

k
τ
− vu,

k−1
τ

),∀u, (4.16)

vu,
k
τ
=Vu

∗(stot,
k
τ
), (4.17)

stot,
k
τ
=

1
∑u ηu,kτ/su,kτ

. (4.18)

Here, k denotes the generalised vehicle platoon index (number).

The key to solving these equations lies in the fact that one needs the total effective
spacing to compute equation (4.17). Since a platoon of class u may “span” over mul-
tiple (or partial) platoons of other classes, this requires an additional step in which the
total effective vehicle spacing is calculated for all platoons of all user classes. Based
on a two-class case (refer to Figure 4.2), the calculation is exemplified as follows. We
consider a truck platoon j at a time instant τ . To simplify notation, the subscript for
time (τ) is omitted. The equivalent spacing of class 1 (passenger cars) over this truck
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platoon is given on the basis of the original definition (distance headway per vehicle):

s j
1 =

∫ xu( j)
xu( j+1) s1(n1(x)) ·∆n1(n1(x))dx∫ xu( j)

xu( j+1)∆n1(n1(x))dx
=

s j
u ·∆nu∫ xu( j)

xu( j+1)∆n1(n1(x))dx
. (4.19)

Here, the numerator of the right-hand side is the length of the truck platoon j, and the
denominator calculates the number of cars over this truck platoon. ∆n1(n1(x)) denotes
the number of passenger cars as a function of locations n1(x). Accordingly the total
effective spacing (s j

tot) over this truck platoon j can be calculated based on s j
u and s j

1
(in equation (4.19)) via equation (4.18). Similarly, one can calculate the equivalent
spacing of any class u (si

u) and thus the total effective spacing (si
tot) over a passenger

car platoon i.

4.2.3 Discussion and choice

So far, two modelling and (vehicle) discretisation choices of the Lagrangian multi-
class first-order traffic flow model have been presented. The main difference between
Lagrangian formulations and Eulerian formulations is that the numerical scheme for
solving traffic flow model is simplified from a mode-switching scheme (e.g., the Go-
dunov scheme) to an upwind scheme. As discussed in Section 3.6, there are several ad-
vantages in terms of numerical simulations, such as straightforward discretisation and
accurate simulations. A simulation study in (Van Wageningen-Kessels et al., 2010a)
using a Lagrangian multi-class formulation (the “Piggy-back” case) shows that the ad-
vantages with numerical simulations may also apply for the multi-class Lagrangian
model.

In the Piggy-back method, only one vehicle coordinate system is used (the so-called
reference class). On the basis of the reference class, the spacing and as a result, the
equilibrium speed of all other classes can be derived. In the Multi-pipe method, ve-
hicle coordinates are defined as many as the user classes. In this case, calculation of
the equilibrium speed requires an additional (intermediate) expression (e.g., equation
(4.19)), which calculates the effective total spacing and thus the equilibrium speed for
all classes.

The main advantage of the Piggy-back method is the higher computational efficiency
as compared to the Multi-pipe method. Due to the fact that only one coordinate sys-
tem is used based on user-class 1, the computation for the evolution of multi-class
system states is straightforward (equation (4.12)). The equilibrium speed based on the
total effective spacing can be calculated directly, since by definition the spacing of all
user classes is available on the same discretised platoons. Class 1 vehicles essentially
carry portions of other vehicle classes on their backs (hence the name). These fea-
tures are beneficial for real-time applications, for instance, traffic state estimation and
prediction. In case of implementing an EKF technique, the Piggy-back formulation
enables a relatively straightforward calculation of the Jacobian matrix (the derivative
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of equations (4.11) and (4.12) with respect to each user class spacing). Therefore, it is
possible to apply the EKF to a multi-class first-order traffic flow model in Lagrangian
coordinates. This will be further clarified in Section 4.5. In contrast, computing such
a Jacobian matrix in the Multi-pipe formulation is much more complex, due to the
additional interaction term (equation (4.19)).

Nonetheless, there is a potential trade off between the ease of implementation and the
simulation accuracy. Since the discretisation in the Piggy-back formulation is only
based on class 1, problems may arise when the density of the first-class vehicle is
small related to other classes. For example, we consider a traffic flow with 90% trucks
and just 10% passenger cars (the reference class). In that case, a platoon of cars would
carry a large number of trucks “on its back”, possibly much larger than the pre-defined
platoon size ∆n. The calculation for this number of other class vehicles is quite sensi-
tive to the spacing values. As a result, large numerical errors may be introduced, and
the total vehicle numbers of the other classes that are carried by the first-class platoons
might change rapidly. In such cases, the Multi-pipe method might be more appropriate.

In contrast to the Piggy-back method, the Multi-pipe method introduces separate coor-
dinates to different user-classes. The state evolution of each user-class is embedded in a
relative independent coordinate system with its own discretisation. It is a more intuitive
and understandable way to represent class-specific traffic. This formulation also results
in a more efficient implementation of network discontinuities, class-specific flow cal-
culations, class-specific control applications and even class-specific Origin-Destination
(O-D) estimations. More specifically, for practical applications in real road networks,
this Lagrangian multi-class model has to be completed with node models. In the Multi-
pipe formulation, the mixed-class node model in Lagrangian coordinates (presented in
Section 3.3.2) can be easily generalised (generally applied) to more classes. The main
benefit lies in the fact that the in-flow of each user class is dealt with separately. We
consider an extreme case, for example, an on-ramp where the truck percentage is very
high. Intuitively in the Piggy-back model, these trucks can only enter the flow as soon
as a class-1 platoon of size ∆n is available. In the Multi-pipe model, trucks may en-
ter as soon as ∆nu trucks are available. The Multi-pipe formulation hence provides a
more natural model for class-specific event control, such as class-specific ramp meter-
ing and speed limit control, compared to the Piggy-back model. However, there is a
disadvantage: the application of the Multi-pipe formulation in traffic state estimation
is considerably more complex than the application of the Piggy-back formulations.

In sum, the different formulations of the (discretised) Lagrangian multi-class first-order
traffic flow model have their own advantages and disadvantages. An overview is given
in table 4.1. In the Lagrangian state estimator developed in this thesis, the process
model applies a “Piggy-back” formulation, due to its suitability for on-line traffic state
estimation. For network discontinuities, the mixed-class Lagrangian node models need
to be extended and developed, to solve certain foregoing modelling difficulties with the
“Piggy-back” formulation, as given in the next section.
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Table 4.1: Comparison between two formulations of the multi-class Lagrangian model

Piggy-back Multi-pipe
formulation formulation

Real-time applications, simulation efficiency
+ -

(calculation of interconnected components)
Suitability for state estimation methods

+ -
(e.g., multi-class EKF traffic state estimation)
Suitability for incorporating network discontinuities

- +
(e.g., node models, boundary conditions)

Class-specific control and O-D estimations - +

4.3 Multi-class node model for network discontinuities

To complete the traffic system modelling at a multi-class level, this section presents a
multi-class node model in Lagrangian coordinates, which extends the mixed-class node
models developed in Section 3.3. Essentially there are two aspects in node models:

1. to reformulate fundamental relations depending on spatiotemporal discontinu-
ities at nodes (lane drop/extension, speed limits);

2. to generate (remove) vehicle platoons into (from) traffic flows, and as a result to
change the spacing of platoons which pass the source (sink) location.

The first aspect can be easily adapted by making fundamental relations time and space
dependent. Here, we focus on developing the second aspect. This multi-class node
model is developed on the basis of and also applied to the Piggy-back formulation. In
this formulation, only one vehicle coordinate system is used, in that class 1 (e.g., car
class) is treated as the reference class. Therefore, solely for the reference class, the
mixed-class node model can be easily adapted. The same discretisation choices are
applied: whole (reference) vehicle groups (platoons) are only added to (or removed
from) the flow at the beginning of a new time step.

In the Piggy-back formulation, the reference class vehicles carry portions of other
vehicle classes on their backs. The amounts are determined by the corresponding
spacing of other classes and the length of the platoon. To guarantee the conservation
of vehicles, the multi-class node model updates the spacing of other vehicle classes
based on in-flows or out-flows. We again consider a two vehicle-class Piggy-back
formulation. In case of an on-ramp node, as soon as one car (class 1) platoon of size
∆ncar (∆n) is available, the influencing car platoon and the related truck platoon at the
node can be identified at the same moment (Figure 4.3). The space of this car platoon
is shared with the entry platoon. Based on the in-flow information, the number of input
trucks can also be computed, namely as ntruck,inflow. With ntruck,inflow and the spacing
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scar, old * Δn

Inflow: Δn Cars & ntruck, inflow Trucks

scar, old

struck, old

scar, old * Δn

scar, new

struck, new

Figure 4.3: On-ramp node modelling for a two-class case.

(length) of the influencing platoon, we can further update the spacing of the influencing
truck platoon as follows. We first calculate the original size of the influencing truck
platoon by

ntruck,old =
scar,old∆n
struck,old

. (4.20)

Then, the updated spacing of the truck platoon is determined by the platoon length
divided by the total number of trucks, reading

struck,new =
scar,old∆n

ntruck,old +ntruck,inflow
. (4.21)

Similar logic can be applied to the off-ramp case. The same as the mixed-class case, if
a car platoon of size ∆n is leaving from the mainstream, the space of this car platoon
will be taken by its successive car platoon. The spacing of the influencing truck platoon
(the successive one) will be also updated according to the number of out-flow trucks
and the actual vehicle amounts in the influencing truck platoon.

However, there seems to be a limitation for the Piggy-back formulation when mod-
elling nodes. For instance, when vehicle percentages for the non-reference classes are
rather high in traffic flows, so that the reference class platoons would carry a large
number of vehicles of other classes. This seems to indicate that at nodes, large num-
ber of other vehicles (larger than ∆n) cannot enter or leave the flow until a reference
vehicle platoon of size ∆n is available. In this extreme case, we can update the spacing
for each vehicle class according to a threshold value (nthrd) separately. This value can
be chosen as an identical value for all vehicle classes (equal to the discretisation size
∆n) or set differently for each class. Once the in-flow or out-flow amount of a vehicle
(non-reference) class excesses this predefined value, the spacing of the related platoon
will be updated by the related in-flow or out-flow information. For example, we con-
sider an on-ramp case with two-class flow, in which truck demand is quite high. We
can update the spacing of the truck platoon only based on the truck in-flow, given by

struck,new =
scar∆n

ntruck,old +nthrd
. (4.22)
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Regarding boundaries, the minimum supply-demand principle can also be applied. At
origins, the class-specific in-flows should be given, which are used to determine input
(initial) spacing of each class. If no multi-class information is available, two methods
presented in Section 6.3 and Appendix A can be applied to estimate class-specific input
based on the mixed-class information. At destinations, out flows are always possible.
With the multi-class node model, we can perform a multi-class network-wide traffic
state estimation. To be specific, in the prediction step of the data assimilation, the
spacing of influencing platoons are first updated for each vehicle class via the node
model, and then the spacing of all platoons are evaluated by the multi-class process
model.

4.4 Observation models for multi-class Lagrangian for-
mulation

For the full specification of the multi-class state estimation, the multi-class traffic sys-
tems need to be completed with multi-class observation models. First of all, class-
specific observations are briefly discussed. Similar to the mixed-class case, Eulerian
sensing data (observations) and Lagrangian sensing data (observations) can be identi-
fied. To be specific, we further distinguish both types of sensing data into two categori-
sations, namely event-based or aggregate data. Eulerian sensors (dual-loops, cameras)
at fixed points can measure event-based individual vehicle passage information, in-
cluding passage time, instantaneous speed, lane number and vehicle length. Based on
the length information, vehicle classes can be distinguished. Moreover, local spacing
observations can be inferred under an assumption of the local homogeneous condition,
in which speeds of vehicles are constant in a short time period. This information can
be directly transmitted to the end-user, or first averaged locally then transmitted with
aggregate values. In principle, the end-user can obtain either class-specific individual
vehicle data or aggregate speeds and flows. In practice, although most of Eulerian sen-
sors (e.g., most of the MoniCa data systems in the Netherlands 1) only provide mixed-
class aggregate information owing to historical technical constrains, new monitoring
systems allow for remote collection of individual passages or directly provide class-
specific aggregate information (such as in parts of Italy and Germany, new MoniCa
data systems). To demonstrate the concepts in this thesis, class-specific information is
considered to be available as observations. Similarly, the Lagrangian sensors (probe
vehicles, aerial cameras, helicopter videos) can also provide either class-specific in-
dividual probe information or class-specific space-mean speed and distance headway
(spacing or density) over certain spatial distances (platoons).

In Lagrangian coordinates, the class-specific Lagrangian fundamental relation (4.8)
provides a natural observation model for Lagrangian observations. It relates speed
observations of different vehicle classes to the system state variable: spacing (total

1A Dutch loop data collection system that provides 1-min aggregate speed and flow information.
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effective spacing). If spacing observations are available, then we can also obtain an
identity observation relation for the class-specific state variables (class-specific spac-
ing). The following equations are used when Lagrangian sensing data (spacing and
speed observations) are incorporated:

yu,τ = sobs
u,τ = su,τ + rτ (spacing observation)

yu,τ = vobs
u,τ = V ∗(stot,τ(s1,τ , ...,su,τ))+ rτ (speed observation).

(4.23)

Here, sobs
u,τ and vobs

u,τ respectively denote class-specific spacing and speed observations
at a time instant τ . Analogous to the mixed-class case, to incorporate both types of
observations at the same time, a combined observation equation can be used, which
reads

yu,τ =

[
sobs

u,τ
vobs

u,τ

]
=

[
su,τ

V ∗(stot,τ)

]
+ rτ . (4.24)

Similarly, multi-class observation models are used in the correction step of data-assimi-
lation methods.

For class-specific Eulerian observations, we extend the previously developed observa-
tion model for the mixed-class Eulerian data (Section 3.4). This model is based on the
kinematic wave theory. Given class-specific spot speeds, the speed observation for a
specific vehicle (either car or truck) platoon within the influence area of a loop detec-
tor is determined by the related harmonic (space) mean speed obtained from this loop.
Then, the multi-class Lagrangian fundamental relation applies to relate system states
to spot observations. Note that, the mixed-class aggregate speeds and flows from dual-
loop monitoring systems cannot be used as class-specific inputs directly. Therefore,
an estimation procedure is developed to extract class-specific (density, speed, spacing)
information out from the aggregate data. This method requires local density and traffic
composition information. The details are illustrated in Appendix A. Table 4.2 provides
an overview of both mixed-class and multi-class observations and the corresponding
observation models in the Lagrangian formulations.

4.5 Multi-class Lagrangian traffic state estimation ba-
sed on the Extended Kalman Filter

In this section, we discuss the possibility and the modelling of Extended Kalman Filter
(EKF)-based traffic state estimation using the multi-class Lagrangian formulation.

For data assimilation, the EKF is applied. The detailed algorithm has been presented
in Section 3.5. The difference is that the EKF is now rooted in the multi-class La-
grangian traffic system models. Ngoduy (2008) argued that the EKF method might
not be a proper option for highly nonlinear traffic models, such as multi-class traffic
flow models. This is justified for the Eulerian multi-class traffic flow model (refer to
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(Van Lint et al., 2008b)) or the foregoing Multi-pipe formulation of the multi-class La-
grangian flow model. In that, the linearisation of the system models are complex and
not possible, owing to the additional interaction terms with the flux calculations in the
Eulerian multi-class formulation, and with the calculations of equivalent spacing in the
Multi-pipe model.

However, there are no such complex interactions in the Piggy-back formulation of
the multi-class traffic flow model. This enables a relatively straightforward derivation
analysis, namely the calculation of the Jacobian matrix (3.31) in the EKF. Considering
a two vehicle-class Piggy-back formulation, car class (class 1) and truck class (class
2) are identified, respectively. The system state variable s consists of a vector of the
states of the two classes, namely s = [s1,s2]

T (s1 = [...,si
1, ...]

T , s2 = [...,si
2, ...]

T , i ∈ N,
i denotes the vehicle platoon index (number) of user class 1). The evolution of the
system states for the two classes are described by discretised equations (4.11) and
(4.12). In the following, we show how the discretisation of the process model can be
used in the derivation analysis of the EKF. We reorganise the discretisations of the
two-class Piggy-back formulation, yielding

s1,
i
τ+1 = f1,

i
τ
= s1,

i
τ
− ∆t

∆n
(v1,

i
τ
− v1,

i−1
τ

), (4.25)

s2,
i
τ+1 = f2,

i
τ
= s2,

i
τ
− ∆t

∆n
[
v1,

i
τ
(s2,

i
τ
− s2,

i−1
τ

)− s2,
i
τ
v2,

i−1
τ

+ s2,
i−1
τ

v2,
i
τ

s1,iτ
]. (4.26)

Here, f1 and f2 denote the process equations of the two classes. The calculation the
Jacobian matrix in this case is equivalent to calculate the derivative of equations (4.25)
and (4.26) with respect to the spacing of each user class (s1 and s2). We notice that
in these equations the class-specific speeds v1 and v2 are as functions of total effective
spacing stot, which is further calculated based on the class-specific spacing s1 and s2

and the PCE value η1 (:= 1) and η2. During each time (calculation) step, the PCE
values are considered as constant based on the previous time step (do not update in-
termediately, since ηu also depends on v1 and v2). In this example, we only have η2.
Moreover, Smulders’ fundamental relations in Lagrangian coordinates are used, with
two free-flow speeds for each of the two classes (see Figure 4.4 and equation (3.11)).
The value at the nondifferential point in the Smulders’ fundamental relation can also
be made up by a smooth function through this point (the same method presented in
Section 3.5). By doing this, the system model is theoretically reasonable to be ap-
plied for the EKF technique. Then, the chain rules of derivatives can be applied to the
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Figure 4.4: Multi-class Lagrangian fundamental relation (Smulders’).

discretisations of the process model, yielding the following Jacobian matrix:

F =
∂ f
∂ s

=



∂ f 1
1

∂ s1
1

0 0 ∂ f 1
1

∂ s1
2

0 0
. . . . . . 0 . . . . . . 0

0 ∂ f N
1

∂ sN−1
1

∂ f N
1

∂ sN
1

0 ∂ f N
1

∂ sN−1
2

∂ f N
1

∂ sN
2

∂ f 1
2

∂ s1
1

0 0 ∂ f 1
2

∂ s1
2

0 0
. . . . . . 0 . . . . . . 0

0 ∂ f N
2

∂ sN−1
1

∂ f N
2

∂ sN
1

0 ∂ f N
2

∂ sN−1
2

∂ f N
2

∂ sN
2


(4.27)

Here, we will not present each of the elements in the Jacobian matrix F but the deriva-
tives of the class-specific speeds with respect to the class-specific spacing, which are
also used in the calculation of the Jacobian matrix H (3.33). To simplify, neither time
index τ nor platoon index i is included, the derivatives read

∂v1

∂ s1
=


scri(v1,free−v1,cri)

s12 , free-flow
v1,cri

(scri−sjam)
s2
2

(s1η2+s2)
2 , congestion

(4.28)

∂v1

∂ s2
=


scri(v1,free−v1,cri)

s22 η2, free-flow
v1,cri

(scri−sjam)
η2s2

1
(s1η2+s2)

2 , congestion
(4.29)

∂v2

∂ s1
=


scri(v2,free−v2,cri)

s12 , free-flow
v2,cri

(scri−sjam)
s2
2

(s1η2+s2)
2 , congestion

(4.30)

∂v2

∂ s2
=


scri(v2,free−v2,cri)

s22 η2, free-flow
v2,cri

(scri−sjam)
η2s2

1
(s1η2+s2)

2 . congestion
(4.31)

Here, v1,cri = v2,cri = vcri. The related analysis can be easily generalised to more classes.
These explicit expressions enable the computing of Jacobin matrices (linearisation of
the process model), and thus the standard procedure of the EKF can be applied to the
Piggy-back formulation. Within the EKF framework, at each calculation time step, the
spacing of each vehicle class is updated (predicted) based on the process model. Then,
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the prior estimate spacing is corrected with any available observations and the Kalman
gain. Here, the Kalman gain is updated with the two Jacobian matrices F and H.

To sum up, based on the Piggy-back formulation of the multi-class traffic flow model
and the related multi-class observation models, an EKF-based multi-class traffic state
estimation approach is developed. As discussed above, the advantages with numerical
simulations also remain for the multi-class Lagrangian formulation. This Lagrangian
formulation renders both process and observation models more linear, and it is more
suitable for the linear approximation and thus for the application with the EKF. We
will further test its quality in the next chapter.

4.6 Summary and discussion

This chapter has extended the Lagrangian traffic state estimation method to a multi-
class level. We apply the “Piggy-back” formulation of the multi-class Lagrangian
traffic flow model as the process model. The observation models in Lagrangian co-
ordinates have been developed for multi-class sensing data, and also summarised for
the mixed-class case. The resulting multi-class Lagrangian traffic system model is
more appropriate in the EKF-based framework compared with its Eulerian counterpart,
which enables online multi-class traffic state estimation. Meanwhile, the multi-class
node model is developed to extend the traffic system model and thus leads to network-
wide multi-class traffic state estimation. In the following chapter, the model validation
and application will be elaborated, where both multi-class and mixed-class traffic state
estimators will be tested with synthetic and real-world data at link or network levels.



Chapter 5

Lagrangian traffic state estimation for
freeway networks and case studies

In Chapter 3 and Chapter 4, we derived the mixed-class and the multi-class Lagrangian
state estimation methods, respectively. In this chapter, we validate and verify the pro-
posed methods, whereupon both of these two-level approaches are analysed and tested
in synthetic (Sections 5.2, 5.4 and 5.5) and real-world (Sections 5.3 and 5.6) data envi-
ronments. The Lagrangian state estimation method is also compared with the Eulerian
counterpart in Sections 5.3 and 5.4. The experimental results are discussed thereafter.
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Table 5.1: Overview of studied cases

Section No. 5.2 5.3 5.4 5.5 5.6
Lagrangian mixed-class X X X X
Lagrangian multi-class X X
Eulerian comparison X X

Link level X X X
Network level X X
Synthetic data X X X
Empirical data X X

5.1 Introduction

The mixed-class and multi-class Lagrangian traffic state estimation (TSE) methods
were presented in Chapter 3 and Chapter 4, respectively. Therein, the three main com-
ponents, system models, observation models and the data-assimilation method were
elaborated in the Lagrangian traffic state estimation. For applications on networks,
the corresponding node models were developed for the estimation methods. Chapter 3
also provided a qualitative comparison between the Lagrangian traffic state estimation
and its Eulerian counterpart. This chapter further studies this Lagrangian approach in
a quantitative manner.

5.1.1 Experimental setup

In this chapter, we perform several case studies to further explore the Lagrangian
state estimation method by using both synthetic and realistic traffic data. With that,
the Lagrangian state estimation method is validated and tested against different types
(sources) of data and networks, and compared with the traditional Eulerian method.
Table 5.1 presents all the studied cases in this chapter, and also specifies different as-
pects/dimensions considered in each of the cases.

5.1.2 Experimental objectives

For each case study, we define a specific experimental objective (hypothesis) as indi-
cated in table 5.2. The first case study (Section 5.2) aims to validate the mixed-class
Lagrangian state estimation on a small traffic stretch, incorporating both Eulerian and
Lagrangian sensing data. We further hypothesize that the (EKF-based) state estima-
tion works better with the Lagrangian formulation than the Eulerian formulation. To
test this, the second one (Section 5.3) compares the Lagrangian TSE method with
an Eulerian counterpart on a real motorway stretch. This comparison is additionally
extended to a network level in the third experiment (Section 5.4). In the fourth experi-
ment (Section 5.5), we intend to verify (validate) the multi-class Lagrangian estimator
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Table 5.2: Objectives of case studies on Lagrangian TSE approaches

Lagrangian Validation Comparison Comparison Application
Model - (Verification) Eulerian Mixed-class Integration

Mixed-class 5.2 5.3, 5.4
Multi-class 5.5 5.5 5.6

via a synthetic simulation, and expect that better performance of the multi-class for-
mulation over the mixed-class formulation can be achieved in terms of incorporating
class-specific traffic data and estimation accuracy. Finally (Section 5.6), the applica-
tion of the multi-class Lagrangian state estimation will be done in a real traffic network,
incorporating all the available sources of empirical observations at a network level.

5.2 Link-level validation of Lagrangian traffic state es-
timation

The first experimental study aims to validate the proposed mixed-class Lagrangian
state estimator, incorporating both Lagrangian and Eulerian sensing data (Yuan et al.,
2011a). A freeway stretch with a lane-drop (without any on-ramps or off-ramps) is
simulated in a microscopic simulation tool, which provides the ground-truth data. The
detailed configurations of the simulation are given in the following.

5.2.1 Data and test network

For validation of the traffic state estimator, any type of (synthetic or realistic) data
can be used. The microscopic simulation model “FOSIM” (Dijker, 2012) is applied
to provide synthetic traffic data. This model is developed at the Delft University of
Technology, specially designed for the detailed analysis of discontinuities in freeway
networks. All the parameters in terms of driving behaviour have been calibrated and
validated based on data from Dutch freeways. In FOSIM, any type of traffic data (in
both the Eulerian and Lagrangian sense) can be simulated based on the information of
all the individual vehicles. Moreover, the ground-truth data are available in FOSIM.
The state estimator was implemented in MATLAB 7.13.0, in which further analyses
and evaluations were conducted.

A freeway stretch as shown in Figure 5.1(a) is considered for the simulation study. It is
a road stretch of 8 km in length with three lanes and a single entrance and exit. There
is a bottleneck segment with 2 lanes in the middle, which divides the whole stretch into
three parts with lengths of 4500 m, 2000 m and 1500 m, respectively. This lane-drop
model in FOSIM is shown in Figure 5.1(b). In this network, dual-loop detectors are
located at every 500 m, which is comparable to the current monitoring situation on
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(a) Freeway stretch with a lane drop.

(b) FOSIM model of the lane-drop case.

Figure 5.1: Illustration of a lane-drop case.

Dutch freeways, collecting 1-min (harmonic1) averaged speeds and aggregate flows.
A certain number of vehicles in FOSIM, depending on the chosen penetration rate,
are treated as the floating cars. The floating car data (FCD) are obtained from the
speed and location information of these individual vehicles at a fixed time interval.
In this case, the ground-truth data (space-mean speeds, space density based on vehicle
trajectories) are regarded as reference, which are derived from FOSIM over equidistant
spatiotemporal regions of size 100 (m) x 60 (s).

5.2.2 Experimental scenarios

All the simulations are based on the same set of predefined parameters. The number
of vehicles in each platoon (∆n) is chosen uniformly as 10 vehicles per platoon. The
model-prediction time interval ∆t is 1 s, and the measurement (updating) interval ∆T
is 60 s for loop data and 1 s for FCD (this choice is too ideal but reasonable for model
validation purpose). The total simulation period is 2 h (7200 s). The fundamental
relation presented by Smulders (1989) is used, since it can describe the basic traffic
characteristics in FOSIM without any complexity in the model itself (this fundamental
relation can be easily transformed between Lagrangian coordinates and Eulerian co-
ordinates via the relation of spacing and density). The related parameters, free-flow
speed, critical speed, critical spacing and jam spacing, are estimated with FOSIM data
as 115 km/h, 85 km/h, 41 m/veh./lane and 10 m/veh./lane, respectively. Note that, if
one vehicle platoon covers a road stretch with different lanes (e.g., lane-drop area),
then the fundamental parameters of the corresponding platoon will be weighted aver-
aged, based on the length of the occupied segments.

1In reality, Dutch dual-loop detectors provide arithmetic averaged speed, while detectors in FOSIM
provide harmonic averaged speed to overcome the speed-bias problem. Please refer to Section 6.2
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Table 5.3: Experimental scenarios

No. Loop (∆T = 60 s) FCD (∆T = 1 s) Noise parameter (R)

Sce. Spacing Penetration rate High to low reliability
12 500m, 1000m,

- 22,52,202
(4 x 3) 1500m, 2000m

12
-

0.5%, 1%,
22,52,202

(4 x 3) 2%, 3%

In this section, we also focus on testing the properties of the new approach in terms
of the observation aspects, including the choice of observations (namely the choice of
observation models), and the choice of noise parameters (used in the error covariance
matrix). In the former, speed observations are used as input, both from dual-loop de-
tectors of different spacings, and from floating cars of different penetration rates. As
discussed in Section 3.5, the error covariance matrix Q in the EKF reflects the uncer-
tainty in process equations, which is, however, difficult to identify. In this study, the
matrix Q is set as a diagonal matrix with constant values of 52(m/veh.)2 along the diag-
onal and zeros on off-diagonal elements. Likewise, the measurement error covariance
matrix R is related to the uncertainty in observations and fundamental diagrams (ob-
servation models). In an EKF process, R reflects the learning rate from observations
(R ∝ 1/Learning rate). Given a fixed process covariance Q, if the uncertainty in the
observation equation is small, then R tends to be small, and thus the calculated gain
K is large. That means the learning rate from observations is high, and vice versa. In
general, an appropriate combination of Q and R is quite important for providing good
estimates. Given a fixed Q, we will study different (constant) diagonal values of R
with respect to different reliability levels of observations. Alternatively, one can make
the matrix R adaptive to the real output errors. The latter means that the diagonal value
in matrix R is updated during the filtering process, see for example Van Hinsbergen
et al. (2010). Table 5.3 overviews the simulation scenarios considered.

5.2.3 Performance criteria

To assess different scenarios, performance criteria are defined. The estimates from the
state estimator are mainly vehicle spacing s and speed v of each platoon (or density k
and speed v of each cell). First, this information is transformed into system states (q, k,
v) with the format of the reference data. Then, the estimates (u - denotes system states)
are compared with the ground truth (reference û) data in terms of root mean square
error (RMSE) and one relative error indicator, namely mean absolute percentage error
(MAPE), which gives a combined indication of the relative error and the standard
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Table 5.4: RMSE errors of all the scenarios (As the error covariance matrix Q is fixed
with the diagonal value of 52, there are three choices of the diagonal values of R: R
high reliability with 22; Equal to Q with 52; R low reliability with 202.)

RMSE Loop
k (veh/km) 500m 1000m 1500m 2000m
v (km/h) k v k v k v k v

R high reliability 22.2 12.9 25.2 13.2 25.7 14.4 27.9 14.5
Equal to Q 23.2 13.8 30.0 16.6 31.4 17.4 32.8 18.0

R low reliability 44.0 23.0 45.7 23.4 45.1 23.2 45.3 23.3

FCD
0.5% 1% 2% 3%

k v k v k v k v

R high reliability 26.1 14.8 23.6 13.1 21.8 13.0 20.4 14.2
Equal to Q 27.7 15.7 22.7 13.4 22.1 11.9 20.4 11.3

R low reliability 44.5 22.9 42.3 22.0 42.5 22.1 39.6 20.9

deviation of the percentage error. These indices are defined as:

RMSE =

√
∑(u− û)2

NN
, (5.1)

MAPE =
1

NN ∑
|u− û|

û
, (5.2)

Here, u (:= u(t)) denotes either raw-input data or corrected data, û (:= û(t)) depicts
the reference data. They are both as the functions of time (t). NN denotes the size of
the data set. The definitions of RMSE and MAPE are as the same as those in Section
6.2.4, and they are used throughout the remaining chapter.

5.2.4 Results and discussion

Quantitative results and discussion

Tables 5.4 and 5.5 respectively list the RMSE and MAPE results of the different detec-
tion combinations with respect to the choice of the observation error covariance matrix
R. Clearly, with increasing loop observations, the improvement on speed and density
estimation in terms of error performance is remarkable. Likewise, increasing FCD
penetration rate also improves the accuracy for speed and density estimation.

Amongst the same observation-data scenarios with different noise levels, better speed
and density estimates are achieved with the “high reliability” setting of observation
noise parameters (see the boldface values in the tables). The reason is that, in our
examples, reliable observation inputs (speed observations) are directly obtained from
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Table 5.5: MAPE errors of all the scenarios

MAPE Loop
(%) 500m 1000m 1500m 2000m

k v k v k v k v

R high reliability 13.7 13.9 15.9 15.4 15.4 16.5 16.8 16.8
Equal to Q 14.0 16.4 15.6 20.3 16.2 21.2 16.6 22.5

R low reliability 19.4 34.5 19.7 35.6 19.8 34.9 19.8 35.0

FCD
0.5% 1% 2% 3%

k v k v k v k v

R high reliability 16.9 17.2 14.6 14.5 13.5 14.7 12.1 14.7
Equal to Q 15.9 18.3 14.5 14.8 14.5 13.5 13.9 12.6

R low reliability 19.6 34.2 18.9 31.8 18.8 32.3 18.0 29.3

FOSIM. Therefore, observations should account for more weight over the model pre-
diction to get accurate estimates. The choice of the noise in observation models is
highly related to the quality of the observations. Appropriately tuning of this noise
parameter will lead to good results.

It can also be noticed that the relative errors (MAPE) for both speed and density esti-
mations are mostly around 15%. This indicates that there still exist phase (systematic)
errors between the reference FOSIM data and the state estimation; these errors are
mainly from the congested states. The current results can be improved, for instance,
by alternative choices of fundamental diagrams rather than the current choice with a
linear congested branch (the Smulders’ fundamental relations). Further study is needed
by using the empirical data from real traffic networks.

Qualitative results and discussion

Due to the “upwind” numerical solution scheme, implementing the EKF in the La-
grangian case is far more straightforward than in the Eulerian case, which was already
discussed in Section 3.5. As shown in Figure 5.2, the speed map (b) derived from the
Lagrangian state estimator is comparable to the reference (ground truth) speed map
(a). The starting time and dissolving time of congestion from estimation are similar
to the reference plot. The typical traffic pattern (shockwaves) is also present in the
estimation.

5.2.5 Conclusion

The mixed-class Lagrangian traffic state estimation method has been validated by a
simulation study. Several properties of the Lagrangian state estimator in terms of the
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(b) State estimation result (2% FCD case).

Figure 5.2: Comparison of speed contour plots.
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observation aspects have been studied. The experimental results demonstrate that both
the Eulerian sensing data and the Lagrangian sensing data can be incorporated with the
Lagrangian state estimation, while providing adequate results.

5.3 Comparison between Lagrangian and Eulerian ap-
proaches at a link level

The previous section has validated the mixed-class Lagrangian state estimation method
at a link level. In this section, an empirical study is performed to compare the proposed
Lagrangian state estimator with its Eulerian counterpart, based on the data from a
British motorway (Yuan et al., 2012). First, the data environment and pre-processing
are presented, followed by the description of simulation scenarios. Then, the result
interpretation and discussion are provided.

5.3.1 Data and test network

The data used in this study were obtained from the Active Traffic Management sec-
tion of the M42 motorway near Birmingham in the UK (Highway-Agency, 2011). The
motorway is equipped with dynamic speed control systems and features hard shoul-
der running in peak hours, expanding the width of the carriageway from three lanes
to four lanes in each direction. Moreover, this section has an unprecedented coverage
of inductance loop detectors, with a nominal spacing of 100m. During 2008/09, 16
consecutive detectors on the Northbound carriageway (shown in Figure 5.3) were en-
hanced so that, amongst other improvements, the full Individual Vehicle Data of all
vehicles driving through the 1-mile section were recorded (Wilson, 2011). The indi-
vidual vehicle data include the passage time, speed, lane number and length of each
vehicle as it passes each of the sites. With this high resolution, one can track most
individual vehicles through the section in most traffic conditions and thus in effect re-
construct their trajectories (Wilson, 2008). However, the reconstructed trajectory data
constitute only vehicle positions and speeds at fixed points (every 100 m). Therefore,
certain methods are needed to interpolate the estimated vehicle trajectories in-between
two detectors, based on which the FCD data samples are generated. For instance, the
piecewise constant, linear (PLSB), and quadratic speed-based trajectory methods and
the filtered inverse trajectory method could be used for this purpose (Van Lint, 2010).
Clearly, interpolation (by any method) may induce errors, but due to the resolution of
the data and the small distances between detectors, these errors will be very small. In
our experiment, the PLSB method is used to complete and smooth the vehicle trajec-
tories.

As a result of data pre-processing, “full” individual vehicle trajectories were estimated.
The ground truth data (space-mean speeds, densities) were then derived from this tra-
jectory dataset in Eulerian form over semi-equidistant spatiotemporal regions of size
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Figure 5.3: Geometry of the enhanced carriageway showing the location of inductance
loops. HS denotes the hard shoulder (emergency lane) and Active Traffic Management
(ATM) denotes hard shoulder activated during peak hours.

100 (m) x 60 (s), which were used as reference. The space-mean speeds over cells
were calculated by the harmonic average of individual speed samples. The reference
densities were calculated over spatiotemporal cells using trajectory data, under Edie’s
definition (Edie, 1965).

The study area is a straight stretch without on- and off-ramps between the ten most
downstream detectors (between detectors 7 and 16 shown in Figure 5.3) along the
enhanced carriageway (a section of approximately 1km in length). It contains an in-
flow and an out-flow boundary. A homogeneous Von Neumann out-flow condition is
applied in the process model. That means downstream congestion is not modeled in the
prediction step, but it can be reproduced in the correction step. The in-flow boundary
starts from the most upstream loop detector; thus the in-flow is known.

5.3.2 Experimental scenarios

The process models for both Eulerian and Lagrangian formulations are based on the
discretised mixed-class first-order traffic flow model, given in equations (3.4) and
(3.14), respectively. As an observation model, Smulders’ fundamental relation (3.11)
is used, since it is thus convenient to estimate the parameters from empirical data. Note
that, the Eulerian form of the observation model can be easily derived from equation
(3.11) via the relation between spacing s and density k. The related parameters are
calibrated from the detector datasets and yield for vfree, vcri, scri, sjam, respectively,
115 km/h, 80 km/h, 51 m/veh/lane and 10 m/veh/lane. To obtain statistically reliable
results, eight simulation runs for each scenario have been performed based on the em-
pirical data of eight days of October in 2008. The simulation time periods for each run
are 2 h, which are taken either from the morning peak or the afternoon peak. Within
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these periods, the ATM lane is used, and a selection of representative traffic patterns
(stop-and-go waves) occurs. Note that at the boundaries of stop-and-go waves, traf-
fic states switch frequently between two traffic conditions (free flow and congestion).
This indicates that the mode-switching problems occur frequently in these areas.

In this study, both the Eulerian (loop) measurements and the Lagrangian (floating car)
observations are considered as input into the observation model of EKF. Loop detec-
tors provide harmonic mean speed based on individual vehicle data aggregated over
60 s. The reconstructed FCDs provide instantaneous speed and location information
reporting at a certain time frequency. Three different spacings of loop detection as
well as four different penetration rates and reporting frequencies of FCD are studied
independently.

To compare, an Eulerian formulation of the LWR state space model using the same
fundamental relations is implemented in the same EKF framework. For fair compar-
ison in terms of the same level of numerical stability, the sizes of discretized unit in
two cases are determined based on the critical condition of the CFL condition. A time
step ∆t = 1 second is used; thus, the platoon size ∆n and the cell size ∆x are 2.2 (veh.)
and 32 (m), respectively. Since the Gaussian noise parameters in Q and R are difficult
to calibrate with the model and the surveyed road stretch, several combinations of val-
ues are analysed. The noise matrices Q and R are assumed to be diagonal with fixed
diagonal values. As the same (speed) observations are used, the measurement error
covariance matrices R are fixed for both the Eulerian estimation and the Lagrangian
estimation. Distinction has been made with respect to the process model noise Q,
since the filter gain (equation (3.32)) depends on the ratio of these two error parame-
ters. In this study, different combinations of error noise matrices Q with a fixed R are
tested based on a Monte-Carlo simulation. For the sake of brevity, the results of the
combination (Q : 102, R : 22) leading to the highest performance in both Eulerian and
Lagrangian state estimators are presented.

5.3.3 Results and discussion

Quantitative analyses

Table 5.6 summarises the considered scenarios and shows the averaged RMSE errors
and their relative improvement compared to the Eulerian case for each scenario. Figure
5.4 illustrates the comparison of each run between the two state estimators in terms of
the density and speed RMSE errors in scenario 1. The most important observation is
that in all cases the Lagrangian state estimator outperforms its Eulerian counterpart by
up to 24% for density and 75% for speed. In both the Lagrangian and Eulerian models,
denser loop spacing yields improvements on speed and density estimation. Likewise,
the more Lagrangian sensing data (observations) (from 5%/20s to 20%/5s) that are
available, the better accuracy that can be achieved in the estimates.
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Table 5.6: State estimation results of seven scenarios with different loop detector spac-
ing and different penetration rates and reporting frequencies of FCD

Sc
en

ar
io Eulerian state estimation Lagrangian state estimation

Data type RMSEk RMSEv RMSEk POIk RMSEv POIk

(veh/km) (km/h) (veh/km) (%) (km/h) (%)
1 200m 14.4 4.6 12.8 11.2 1.2 73.5
2 Loop 400m 15.6 5.3 14.0 10.7 2.4 55.3
3 800m 17.1 6.4 15.4 9.9 3.8 40.6
4 5%/20s 28.1 17.1 23.5 16.4 10.6 37.7
5 FCD 5%/5s 24.4 13.7 18.4 24.5 6.8 50.3
6 20%/20s 21.7 11.6 20.0 7.6 7.9 31.3
7 20%/5s 18.6 8.6 16.5 11.3 6.1 29.6

Note that: RMSE error averaged over 8 Monte Carlo simulation runs and its related Percentage

Of Improvement (POI) when compared with the Eulerian case. The POI index is calculated as

100∗ (RMSEEuler−RMSELag)/RMSEEuler. When using Lagrangian sensing data, 5 different s-

amplings (random seeds) with the same penetration rate and reporting frequency are simulated

for each day.

Figure 5.4: Error measurement comparison between two methods for each of the 8
simulation runs of scenario 1. Blue: Eulerian state estimation. Red: Lagrangian state
estimation.
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Note that the large relative improvement in speed estimation in the Lagrangian for-
mulation can be partially explained by the fact that for very low speeds (errors), the
relative difference between the RMSE results become large. Even though the error for
the Eulerian state estimate in the absolute sense is also small (see, for example, the
results in table 5.6 for scenario 1, where the relative improvement of 73.5% represents
an absolute improvement of 3.4 km/h). On the other hand, in the case where the es-
timated speeds are also used for estimating travel times (proportional to 1/speed), the
absolute errors will also be large (Van Lint, 2010).

Nonetheless, the large improvement in speed estimation provides evidence that the
Lagrangian formulation indeed improves the state estimation considerably. Although
the Eulerian and Lagrangian traffic system models in the two coordinate systems de-
scribe the same traffic situation exactly, the numerical approximation of the Lagrangian
model is more accurate than its Eulerian counterpart. Moreover, as discussed earlier,
the “non-mode-switching” discretization scheme for the Lagrangian model also im-
proves the data-assimilation method, since the linear approximation of the traffic sys-
tem model near capacity is much better than in the Eulerian model. As a result, more
accurate results are obtained in the Lagrangian formulation.

Qualitative analyses and discussion of the results

Note that a considerable error for the density estimates still exists. A reason for this
might be owing to the inaccuracy of the observation models used. In the estimation
procedure, speed observations are used to derive the “observed” system states (either
density or spacing) from the estimated fundamental relations. In the ideal case, the de-
rived state from speed should perfectly match the ground truth state. This is, however,
not the case in practice. It is well known that in congestion state, a given density can
be achieved at different speeds, indicating a set-valued congested branch in the funda-
mental diagrams (Cassidy, 1998). Therefore, a better interpretation of the fundamental
relations between traffic variables can improve estimates of system states.

The simulation also shows that the Eulerian method mis-estimates the densities and
the speeds in the first few cells. The explanation here relates to the way that the flow
observations at the in-flow boundary are used. The in-flow is used to determine the
incoming flux for the first cell in the Eulerian prediction model. The flow values are
calculated by summing the counts during measurement intervals which can introduce
errors. Moreover, an inaccurate fundamental relation (wrong capacity) might result in
a biased flux calculation. Owing to the numerical scheme in Eulerian coordinates, the
accuracy of the evolution of system states near the upstream boundary is sensitive to
the in-flow. In contrast, in the Lagrangian model, the spacing of platoons is affected
by what happens downstream, and the in-flow is used only to determine the number
of vehicle platoons which need to be added to the flow. Therefore, in the Lagrangian
estimator, the influence from the in-flow to the evolution of system states is limited
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to just the first platoons entering the system. This yields another advantage of the
Lagrangian state estimator over its Eulerian counterpart.

Finally, Figure 5.5 shows the simulation results based on the Eulerian and the La-
grangian state estimation with the Eulerian sensing data (scenario 1). In both simu-
lations, at t = 2100s, a shock (low speed) is observed by a detector located at 670m.
In the Lagrangian estimation, the shock propagation is clearly visible in the result,
whereas the shock diffuses quickly further upstream in the Eulerian case. Moreover,
the edges of vehicle platoons clearly distinguish the shock boundary, whereas a step-
wise boundary (in a resolution determined by the grid size) is present in the Eulerian
simulation. Figure 5.5 illustrates that indeed the numerical method in Lagrangian for-
mulation causes less numerical diffusion and more accurate results than the Eulerian
method. Note that more details about this issue of numerical diffusion can be found in
(Van Wageningen-Kessels et al., 2010a).

5.3.4 Conclusion

In this section, we have demonstrated that (mixed-class) Lagrangian state estimation
outperforms Eulerian state estimation at a link level. First of all, the Lagrangian for-
mulation enables more accurate and efficient simulation. Second, the Lagrangian for-
mulation of the traffic model also leads to better data assimilation. It is important to
note that the Eulerian and Lagrangian formulations are two ways to implement exactly
the same underlying (LWR) theory and that in both cases exactly the same data from
the same traffic situation were used in our experiments. The large increase in esti-
mation accuracy hence stems entirely from a more suitable formulation of the same
problem. Additionally, the simulation study with the empirical data shows that both
the Eulerian sensing data and the Lagrangian sensing data are well incorporated with
the Lagrangian state estimator and that the estimation provides better results than the
Eulerian state estimates.

The Lagrangian formulation of state estimation enables more accurate application of
the EKF method, owing to the solution to the mode-switching problem. This solu-
tion renders the estimation problem less nonlinear which results in more accurate re-
sults. This idea is not restricted to the EKF method, but can furthermore apply to other
data-assimilation techniques (e.g., EnsKF, UKF and PF), for which we expect similar
improvements as those shown therein.

5.4 Comparison between Lagrangian and Eulerian ap-
proaches at a network level

The previous section has demonstrated that the mixed-class Lagrangian state estima-
tion outperforms the related Eulerian method at a link level. However, real-time traffic
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(a) Reference spatiotemporal speed map

(b) Eulerian traffic state estimation

(c) Lagrangian traffic state estimation

Figure 5.5: Snapshots of a small region of the whole spatiotemporal speed map for
scenario 1 based on the Eulerian estimation (b) and the Lagrangian estimation (c) (Data
set: 7:30 am. - 9:30 am. 02-10-2008). The curved lines in (c) indicate trajectories of
the vehicle groups. The upper plot (a) indicates the range (white dashed box) of the
snapshots in the whole spatiotemporal reference speed map. The speeds are indicated
as colors in x-t plane (plot (a) scales to 0-120km/h, (b)&(c) scale to 0-60km/h).
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management and control require state estimators that work on networks. By imple-
menting the node models presented in Section 3.3, both Lagrangian and the Eulerian
state estimators can be extended to a network level. In this section, a simulation study
is conducted to further compare the performance of these two extensions (Yuan et al.,
2011b).

5.4.1 Data and test network

In this section, the experiment and the comparison were also based on the synthetic
data from the microscopic traffic simulator, FOSIM. As discussed previously in sec-
tion 5.2.1, we can emulate all types of existing data formats in FOSIM, such as 1-
min (harmonic) mean speeds and flows from dual-loop detectors, floating car data
(FCD) with selected penetration rates and reporting frequencies. Similar to previously,
ground-truth (reference) data derived from FOSIM were in the format of equidistant
spatiotemporal regions of size 100 (m) x 60 (s). The simulations were conducted in
the MATLAB environment.

For demonstration purpose, a typical highway stretch of about 7 km in length with a
single on-ramp and an off-ramp was simulated within a period of 1 h. There was a
bottleneck in the middle (starting from the on-ramp). FOSIM allows users to prede-
fine demand patterns, generating vehicles at origins of freeways. In our simulation,
traffic demand during each simulation period varied, so that a traffic jam emerged and
dissolved at the bottleneck.

5.4.2 Experimental scenarios

For fair comparison in terms of the same level of numerical stability, the sizes of dis-
cretised unit in two formulations are determined based on the critical condition of the
CFL conditions (equality applies in equations (3.8) and (3.15)). A time step ∆t = 1 s
is used, thus the platoon size ∆n and the cell size ∆x are 0.8 (veh.) and 32 (m), respec-
tively. Since the Gaussian noise parameters in Q and R are difficult to calibrate with
the model and the surveyed road stretch, several combinations of values are analysed.
For the sake of brevity, the results of the Q-R combination (Q : 52, R : 22) leading to the
highest performance in both Eulerian and Lagrangian state estimators are presented.

Both the Eulerian (loop) observations and the Lagrangian (floating car data - FCD)
observations are inputted into the observation models of the EKF. This indicates that
two types of data scenarios are studied independently. One uses speed observations
from loop detectors, and there are three spatial resolutions investigated, namely 500
m, 800 m and 1000 m. The other one is with the FCD (speed) data, and the penetration
rates and reporting frequencies are set respectively as 5%/30s, 5%/10s and 10%/10s.
Although the choice for FCD might be too ideal compared to a realitic scenario, it is
justified for the model demonstration purpose. In each data scenario, ten simulation
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Table 5.7: State estimation results based on two formulations (average over ten simu-
lation runs)

Sc
en

ar
io Eulerian state estimation Lagrangian state estimation

Data type RMSEk RMSEv RMSEk POIk RMSEv POIk

(veh/km) (km/h) (veh/km) (%) (km/h) (%)
1 500 m 11.3 7.8 10.6 6.1 6.8 12.5
2 Loop 800 m 12.0 9.9 11.9 0.5 9.3 5.7
3 1000m 12.8 11.9 12.4 3.0 11.3 5.3
4 5%/30s 20.4 24.0 19.4 4.9 21.4 10.8
5 FCD 5%/10s 20.4 23.8 19.0 6.8 20.4 14.2
6 10%/10s 19.9 22.4 17.2 13.5 17.9 20.0

runs with diverse traffic patterns (different random seeds or different traffic demands)
have been performed. The comparison results are shown in the following.

5.4.3 Results and discussion

Quantitative analyses

Table 5.7 shows the RMSE errors between the estimation results from the two formu-
lations and the reference data (averaged on the basis of ten runs), together with the
relative improvement (Percentage Of Improvement: POI) by the Lagrangian state es-
timation compared to the Eulerian case. Figure 5.6 illustrates the comparison of each
run between the two formulations in terms of the density and speed RMSE errors in
scenario 1 (500m apart Eulerian sensing). As Figure 5.6 indicates, in general, the La-
grangian approach provides more accurate estimates than the Eulerian method. When
Lagrangian sensing data are used, the improvement of accuracy by the Lagrangian
method is respectively up to 13% for density and 20% for speed estimates, compared
with the Eulerian method (see scenario 6). Note that, in both Lagrangian and Eulerian
approaches, the more Eulerian and/or Lagrangian observations (higher data resolu-
tions) that are available, the more accurate estimates that can be achieved.

With all the positive POI values (see the boldface values in table 5.7), the experiment
results show that the Lagrangian state estimation is systematically more accurate than
the Eulerian method. This improvement stems from a more suitable formulation of
the same problem. The numerical approach of the Lagrangian model is more accurate
than its Eulerian counterpart. The “non-model-switching” discretization scheme for
the Lagrangian model also improves the data-assimilation method. As a result, more
accurate results are obtained.

Furthermore, the simulation study proves that the proposed Lagrangian state estimator
combining with node model can provide sufficiently good traffic state estimates over
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(a) Density RMSE errors (b) Speed RMSE errors

Figure 5.6: Error comparison between two methods for each of the ten simulation runs
using Eulerian sensing data (500 m apart). Green: Eulerian state estimation. Yellow:
Lagrangian state estimation.

a typical on-ramp and off-ramp freeway stretch. In the Lagrangian formulation, the
node model takes effect mainly at the prediction step by effectively changing system
states (spacing) over nodes, whereas the correction procedure of the state estimation
remains the same. Therefore, traffic characteristics (traffic states, errors) can be easily
linearised at nodes. This implies that large scale state estimation of traffic networks
on the basis of the Lagrangian formulation becomes possible; the advantages of the
Lagrangian formulation over its Eulerian counterpart remain at a network level.

Qualitative analyses

Figure 5.7 shows a graphical representation of the simulation results. The reference
speed map from one simulation run is presented, followed by the related error com-
parison maps from the two methods. The first observation is that the node model
in Lagrangian coordinates does induce slightly larger errors than the one in Eulerian
coordinates, which is visible by the (faint but visible) grey horizontal line (see the high-
lighted block) in subfigure 5.7(c) directly downstream of the bottleneck. These errors
are barely present in the Eulerian case, see subfigure 5.7(b).

However, the largest errors occur at the upstream boundaries of congestion (see the
highlighted circles in subfigure 5.7(a)), where traffic states switch frequently between
freely flowing and congestion. Clearly, here the Eulerian method makes larger errors
than the Lagrangian method. This can be attributed to the mode-switching problem
as discussed earlier, in that the linearisation of Eulerian traffic model around those
congestion-or-not boundaries leads to errors of “wrong” sign. These errors may also be
partially due to larger numerical diffusion in the spatial dimension. In the Lagrangian
estimation method, the errors at these upstream boundaries are much smaller than the
Eulerian case.
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(c) Lagrangian speed error map (Compared with the reference)

Figure 5.7: Reference speed map with the related error maps of the speed estimates
from both Eulerian and Lagrangian approaches, taken from one simulation run for
scenario 1 (in km/h).
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5.4.4 Conclusion

This section has shown that, by incorporating node models, the Lagrangian traffic state
estimator can be extended for generic freeway stretches/networks state estimation. The
performance in the test case on the basis of synthetic data was consistently better than
its Eulerian counterpart (recall Section 5.3). These results may be due to improve-
ments in both the prediction step as well as the correction step of the EKF method. In
accordance to earlier studies, the Lagrangian formulation enables more accurate and
efficient simulation of freeway traffic and thus leads to more accurate predictions. Due
to the non-mode-switching numerical solution, the Lagrangian method essentially is a
more appropriate choice for the application in the EKF. In that linearisation of the pro-
cess model around capacity is a much better approximation in Lagrangian coordinates
than in Eulerian coordinates. In the latter case, it may lead to sign errors, and in the
former the errors pertain to the magnitude of the corrections only. In our results, this
led to improved performance, particularly at the upstream boundaries of congestion.
The gain in accuracy at the upstream boundaries coincided with a slight (smaller) loss
of accuracy at the downstream boundary (i.e., at the bottleneck itself). This implies
that the current implementation of the node model may need improvements.

5.5 Verification of multi-class Lagrangian traffic state
estimation and comparison with its mixed-class for-
mulation

The previous sections focused on testing and demonstrating the advantages of the La-
grangian traffic state estimation at a mixed-class level. The next two sections con-
centrate on the multi-class level Lagrangian state estimation. To simplify, only two
vehicle classes, namely car and truck classes, are identified from the traffic flow. At
first, this section verifies the multi-class Lagrangian traffic state estimation. First of all
to verify the proposed estimator with diverse types of observations, a simulation study
is conducted based on the synthetic data from MATLAB-based simulations. In this
study, we further explore the characteristics of the multi-class Lagrangian traffic state
estimation and its advantages over the mixed-class counterpart.

5.5.1 Data and test network

For verification purpose, the experiments were based on the synthetic data generated by
the multi-class (two distinguished vehicle classes: cars and trucks) Lagrangian process
model in the MATLAB environment. The logic is to let the multi-class Lagrangian
traffic flow model, which is also used as the process model in the state estimator,
provide ground-truth data out from the so-called reference simulation runs. The related
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parameters used in fundamental diagrams, namely free-flow speed for car class vcar free,
free-flow speed for truck class vtruck free, critical speed vcri, critical spacing scri and
jam spacing sjam, were set as, 120 km/h, 85 km/h, 80 km/h, 40 m/PCE/lane and 7
m/PCE/lane, respectively. The platoon size ∆n in these reference runs was 1 vehicle,
which implied a comparable microscopic simulation. The time step ∆t was 0.2 s, which
allowed reference runs generated vehicle trajectories with a high resolution. Based on
the information of all the “individual vehicles”, we can emulate any type of observation
data and define different experimental scenarios.

An initial condition (Riemann) problem was simulated in reference runs. At the ini-
tial instant, there was a temporary bottleneck (e.g., temporary road blockage) in the
middle of a two-lane freeway stretch of 5 km in length. This bottleneck generated con-
gestion, which was bounded by a backward forming and a backward recovery wave.
The overall simulation period of this Riemann problem was 600 s, which allowed that
the congestion emerged and eventually dissolved. Note that, in practice, data samples
from loops are averaged over 60 s, for instance in the Netherlands. However, the time
span of the simulation period (600 s) allowed only 10 observation instants. Therefore,
the measurement interval ∆T for loops was adjusted to 10 s to enable more obser-
vations. To obtain statistically-reliable results, ten reference runs with diverse truck
shares varying from 5% to 15% were conducted.

5.5.2 Experimental scenarios

For fair comparison between the mixed-class and multi-class Lagrangian state estima-
tors, the sizes for both time and vehicle discretisations were set as the same in the two
cases. The time step ∆t and the platoon size ∆n were chosen as 1 (s) and 3 (veh.),
respectively. The Gaussian noise parameters were also set as the same for the two
formulations.

Both the Eulerian (loop) observations and the Lagrangian (floating car data - FCD) ob-
servations were used. These two types of data scenarios were studied independently.
The first data scenario used speed observations from loop detectors, there were three
spatial resolutions investigated, namely 300 m, 500 m and 800 m. It provided harmonic
(space) mean of individual speed samples over the interval ∆T of 10 s (as explained
above to enable more observations). For multi-class state estimation, we further calcu-
lated class-specific mean speeds as observation input. The other one used FCD data.
To simplify matters, the reporting frequency (∆T ) was chosen uniformly as 5 s. The
penetration rates varied from 2% to 20%. It provided instataneous speeds and locations
of class-specific probe vehicles at polling intervals. We additionally assumed that the
class-specific distance headways (spacing) were available from probe vehicles. This
can be used in the multi-class Lagrangian state estimation as a direct observation of
the system state (s).

In addition, we performed a sensitivity analysis with respect to observation inputs and
model inputs. More specifically, the performance of the multi-class state estimation
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Table 5.8: Performance of mixed-class traffic state estimation with respect to different
truck shares, using loop data (300m)

Case Truck share RMSEk MAPEk RMSEv MAPEv

1 5% 2.9 3.4 2.8 1.3
2 7% 4.2 5.5 3.8 1.7
3 8% 4.6 6.3 4.0 1.8
4 9% 4.6 6.5 3.7 1.6
5 10% 5.3 7.4 4.4 2.1
6 11% 5.4 7.5 4.2 2.3
7 12% 5.7 8.1 4.4 2.7
8 13% 5.6 8.3 3.9 2.4
9 14% 6.5 9.3 4.5 2.7

10 15% 7.0 9.7 4.7 2.8

in terms of different types of errors (mainly two: noise or bias) in the input data (Y
and d, refer to Figure 6.1) was tested with three types of scenarios. First, random
errors (Gaussian noise) were added into observation inputs. Second, truck shares, as
one of the model parameters, were combined with structural errors (biases). Third,
fundamental relations were added with structural errors, by defining biased parameters
(critical/jam spacing).

5.5.3 Results and discussion

Quantitative analyses

The first experiment is to show why we benefit from a multi-class state estimation
approach instead of a mixed-class one. We therefore test the performance of a mixed-
class traffic state estimator with respect to different traffic compositions from the ten
reference runs. As illustrated in table 5.8, as the truck share increases, the level of
estimation performance decreases monotonously. In this experiment, the fundamental
diagrams are set the same as the reference runs in all cases. As a result, the change
in the traffic composition (truck share) is not captured by the mixed-class traffic state
estimation model. This explains the unsatisfied performance. In fact, traffic-mix infor-
mation can be adapted into the fundamental relations. However, there is no straight-
forward way to directly connect the information of truck share to the parameters of
fundamental diagrams. Instead, it requires complex calibration procedure. Under this
circumstance, if class-specific data are available, such as truck shares, multi-class ob-
servations, this information can be directly and more appropriately incorporated into
the multi-class traffic state estimator. Therefore, in the following experiments, the
multi-class traffic state estimator will utilise all the available class-specific information
to improve its performance.
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Tables 5.9 and 5.10 present the comparison between the mixed-class state estimation
and the multi-class state estimation using both Eulerian and Lagrangian observations.
As the first important result, the multi-class Lagrangian traffic state estimation has been
verified within this experiment. In that the estimator succeeds to employ the observa-
tion data generated by the multi-class system (process) model, to reconstruct the traffic
conditions, which are similar to the ground-truth provided by the same system model.
In both mixed-class and multi-class cases, the more observation data that are available,
the better accuracy that can be achieved in the estimates. Obviously, the multi-class
traffic state estimation systematically provides more accurate results than the mixed-
class method, with most positive values of POI. This result relies on a better utilisation
of the class-specific information. When the Eulerian sensing data are used, we notice
that the estimation errors by the multi-class model in the scenario of the sparse loop
observations (800 m) are slightly bigger than the mixed-class case. This indicates that
for multi-class state estimation, sufficient class-specific inputs should be provided to
ensure its performance, as the current model also entitles more detailed outputs com-
pared with the mixed-class case. In the case of using the Lagrangian sensing (FCD)
data in the multi-class model, the performance with speed observations is generally
better than spacing observations. This is reasonable since here all the simulations ap-
ply the same noise parameters, whereas the noise levels of observations are different.
Spacing observations usually contain sampling errors (similar to 1-min loop-flow de-
tection) and these errors are even larger in the free-flow state, while speeds are more
stable observations than spacing. So it is possible that alternative choices for the noise
parameters of spacing observations could deliver better results.

Table 5.11 presents the performance of the multi-class Lagrangian traffic state estima-
tion with different types of input errors. This is a sensitivity study with respect to dif-
ferent data inputs. The results from the so-called “normal” scenarios (using the default
parameters from one reference run: case 15 % truck share) are used as a benchmark.
This study indicates that state estimation with noisy observations (both from loops and
FCDs) can still provide adequately good estimates (compared with the normal case).
The influence of noisy observations can be eliminated in the filtering procedure by ap-
propriately defining error levels for observations. Observations with high error levels
will be put a small weight when calculations are processed.

If the input of truck shares is biased, this results in a biased class-specific inflow from
the origin. The speed and especially the spacing of the truck class are generated differ-
ently (inaccurately) from the reference run (or the normal scenario). Nonetheless, this
influence can be compensated by the correction with (speed) observations from loops
and probe vehicles. The results shows that state estimation using speed observations
provides comparable results as the normal case, under the conditions of wrong truck
shares. However, the data scenarios using spacing observations (from probe vehicles)
is rather limited compared to the other two. Somehow the correction with spacing
observations fails to correct the strong-bias in truck spacing.

The performance of the state estimation is unsatisfied with biased parameters in fun-
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Table 5.9: Performance comparison between mixed-class (a) and multi-class (b) traf-
fic state estimation, in terms of loop observations. Each value is averaged over ten
simulation runs (ten reference cases). POI denotes percentage of improvement.

Loop (∆T = 10 s)

300m 500m 800m
Observations v v v

a
RMSEk (veh/km)

5.2 6.0 6.1
b 2.9 4.5 9.0

POI (%) 44.3 24.0 -

a
MAPEk (%)

7.2 7.3 7.3
b 2.1 3.3 4.7

POI (%) 70.8 54.8 -

a
RMSEv (km/h)

4.1 5.5 6.2
b 2.9 4.1 8.3

POI (%) 28.1 24.7 -

a
MAPEv (%)

2.1 3.4 4.6
b 1.4 2.5 6.5

POI (%) 36.5 25.4 -

Table 5.10: Performance comparison between mixed-class (a) and multi-class (b) traf-
fic state estimation, in terms of FCD observations. Each value is averaged over ten
simulation runs. POI denotes percentage of improvement.

FCD (∆T = 5 s)

2% 5% 10% 20%
v s v s v s v s

a
RMSEk

4.6 4.4 4.1 4.0
b 3.6 5.4 3.3 2.5 2.3 2.4 2.2 1.8

POI (%) 20.8 - 25.9 43.1 44.7 42.5 46.0 54.0

a
MAPEk

7.0 7.0 7.0 6.8
b 2.5 4.4 1.8 2.8 1.2 2.2 0.9 1.6

POI (%) 64.9 - 73.6 60.0 83.0 68.7 86.7 76.3

a
RMSEv

3.3 2.6 2.1 1.7
b 2.7 4.5 2.7 2.1 1.6 2.0 1.5 1.6

POI (%) 16.4 - - 20.9 23.4 2.7 6.9 2.8

a
MAPEv

2.4 1.7 1.3 1.0
b 1.6 3.3 1.2 1.9 0.7 1.6 0.6 1.1

POI (%) 30.7 - 31.5 - 42.9 - 40.6 -
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damental relations. It is because fundamental (q-k or s-v) relations are used for both
the process model and the observation model, and in both the prediction step and the
correction step. Thus, the performance of the state estimation is quite sensitive to the
quality of these relations. Data-assimilation methods can correct random errors (Gaus-
sian white noise in this case) but fail to correct biased (observation and model) inputs.
They require unbiased models together with unbiased parameters to ensure satisfied
performance. Therefore, a data pre-processing step is needed to clean out biases and
structural errors for estimation inputs. This issue will be discussed in the next chapter.

Qualitative results

Figure 5.8 illustrates the performance of the two formulations in terms of the speed
estimation, from one test run. The loop detection is used in these two traffic state
estimators. Neglecting the errors generated in the warming-up period of state esti-
mation (the dark area at several initial steps), estimation errors mainly occurs at the
upstream boundary of the congestion (see subfigures 5.8(b) and 5.8(c)). Clearly, here
the multi-class method makes smaller errors than the mixed-class method. This is due
to a better description of traffic flow at this transition (free flow to congestion) area. In
that multi-class method distinguishes two vehicle classes of different flow characteris-
tics (e.g., free-flow speed), and thus better capture the change of traffic states (speed in
this figure).

The mixed-class traffic state estimator further introduces small (faint but visible) errors
near the upstream origin (in subfigure 5.8(b)). This is because that the mixed-class state
estimator fails to describe the state of inflow with diverse truck demands.

5.5.4 Conclusion

In sum, this section has verified the multi-class Lagrangian traffic state estimation
method with a synthetic data environment. The method makes proper use of diverse
types of class-specific data to provide more accurate state estimation results, compared
with the mixed-class method. The resulting class-specific traffic state estimates would
benefit class-specific control applications, such as multi-class ramp metering and speed
limit control (Deo et al., 2009), multi-class route guidance (Schreiter et al., 2012).

The sensitivity study has also suggested that traffic state estimators can handle with
random errors but fail to correct structural errors and biases in estimation input data.
This thus justifies that a preparation step in traffic state estimation is required. A reli-
able data pre-processing can potentially improve the performance of traffic state esti-
mation. This will be elaborated in the following chapter.
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Table 5.11: Performance of multi-class traffic state estimation with noise in observa-
tions and biased model inputs, for three data scenarios. Normal case: 15% truck share,
scri = 40 m/PCE/lane, sjam = 7 m/PCE/lane. Noise 1∼3: noise power 1∼3 dBW. Truck
10 %: 10 % truck share. Truck 5 %: 5 % truck share. Diff. FD. 1: scri = 38 m/PCE/lane,
sjam = 10 m/PCE/lane. Diff. FD. 2: scri = 42 m/PCE/lane, sjam = 10 m/PCE/lane.

R-Q Case RMSEk MAPEk RMSEv MAPEv

Observations: Class-specific speed - Loop 300m
Normal 3.5 2.1 3.3 1.6
Noise 1 3.2 2.3 2.9 1.9
Noise 2 3.1 2.2 2.9 1.8
Noise 3 3.2 2.3 2.9 1.9

Truck 10% 3.3 2.8 3.1 1.9
Truck 5% 4.2 3.7 4.1 2.4

Diff. FD. 1 6.4 5.2 5.1 3.6
Diff. FD. 2 5.8 5.1 3.5 2.5

Observations: Class-specific speed - FCD 5s/20%
Normal 2.0 1.2 1.7 0.9
Noise 1 1.9 2.0 1.6 1.4
Noise 2 2.1 1.9 1.8 1.5
Noise 3 2.1 1.8 1.7 1.4

Truck 10% 1.8 1.2 1.7 1.0
Truck 5% 1.9 1.3 1.8 1.1

Diff. FD. 1 3.4 4.6 1.8 1.0
Diff. FD. 2 4.8 4.2 1.8 1.1

Observations: Class-specific spacing - FCD 5s/20%
Normal 2.3 1.6 1.8 1.3
Noise 1 2.5 2.0 2.0 1.6
Noise 2 2.2 1.9 1.8 1.5
Noise 3 2.8 2.1 2.0 1.7

Truck 10% 5.5 7.2 4.3 5.0
Truck 5% 5.1 6.7 5.0 5.7

Diff. FD. 1 2.3 2.0 2.8 3.4
Diff. FD. 2 3.4 4.2 7.1 9.2
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(a) Reference spatiotemporal speed map

(b) Speed error map from mixed-class Lagrangian state esti-
mation (Compared with the reference)

(c) Speed error map from multi-class Lagrangian state esti-
mation (Compared with the reference)

Figure 5.8: Reference speed map with the related error maps of the speed estimates
from both mixed-class and multi-class Lagrangian state estimations (using 300m loop
detection, truck share: 10%).
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A15R  50.53 km A15R  58.83 km

Bottleneck

Helicopter Data

Eastbound

Figure 5.9: Google map picture of the chosen A15 freeway network.

5.6 Multi-class Lagrangian traffic state estimation in a
real traffic network

The previous section has verified the multi-class Lagrangian traffic state estimator with
a synthetic Riemann problem. It showed that different types of observations can be
incorporated into the estimation process independently. In this section, we integrate
different observation data sources into the multi-class traffic state estimation by means
of the related observation models, and extend our approach to a network level by the
node models presented in Section 4.3. This case study is based on a realistic traffic
network, a part of the A15 freeway network in the Netherlands.

5.6.1 Data and test network

The data used in this experiment were obtained from a part of the east-bound carriage-
way of the Dutch freeway A15. The studied time period covered the afternoon peak
hours, from 14:00 to 20:00. The chosen road segment is about 8300 m in length, with
the milepost A15R-50.53km to A15R-58.83km as illustrated by Figure 5.9. Most of
the carriageways in this segment contains three vehicle lanes. There are high truck
percentages (higher than 20% sometimes) on the A15, since it is an important freight-
transport corridor connecting the harbour city of Rotterdam to the hinderland.

On the A15, dual-loop detectors are located at about every 500 m, providing 1-min
aggregate flow and speed profiles. The fundamental parameters were calibrated from
these data sets. During October of 2011, several selected detectors, with the mileposts
A15R-51.83km, A15R-52.48km and A15R-55.12km, additionally collected individual
vehicle data (IVD) so that class-specific data (speeds, vehicle lengths) were available.
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Figure 5.10: A15 freeway section (eastbound) modelling in MATLAB.

On 25th October 2011, a helicopter was used to collect vehicle trajectory data around
the bottleneck segment (about 500 m in length, highlighted in Figure 5.9) within the
study section during the afternoon peak (starting around 16:15). All the individual ve-
hicle trajectory data (locations, reporting time stamps, vehicle lengths) can be extracted
from video footage via image processing techniques (Knoppers et al., 2012). On the
basis of these data, we can further interpolate vehicle speeds and vehicle classes, which
can be used as detailed observation inputs (also refer to Figure 5.13). In addition, based
on the data from the helicopter, we can calibrate some class-specific model parameters,
such as driver reaction time and minimum distance headway (e.g., Tu and Lu in equa-
tion (4.10)). In principle, the ground truth data are available for the segment covered
by the helicopter camera; however, no ground truth information is available for the rest
of the road stretch.

This freeway segment contains four on-ramps and one off-ramp, one in-flow and one
out-flow boundary, as modelled in MATLAB (see Figure 5.10). The in-flow boundary
starts from a loop detector, where the in-flow can be determined. The multi-class node
models are used to deal with the network discontinuity.

5.6.2 Experimental scenarios

The purpose of this experiment is to show that the multi-class traffic state estimation
can incorporate multiple observation data sources at a network level, and explore its
related advantages. Since there are no ground truth data available on the studied A15
section (only for a small segment), this experiment addresses qualitative research.

The time step ∆t and the platoon size ∆n in the simulation were chosen as 2 (s) and
7 (veh.), respectively. This discretisation choice was assumed to provide sufficient
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Table 5.12: Experimental data scenarios on A15

Loop speed IVD speed
(class-specific)

Trajectories
(class-specific)

No. Sce. Resolution Three loops Data usage
6 500m, 1000m,

All included Included or not
(3 x 1 x 2) 1500m

accuracy for this network application. All three types of observations from the cho-
sen freeway segment (on 25th October 2011), namely aggregate loop data, IVD at
selected locations and helicopter trajectory data, were input as observations. Several
spatial resolutions of aggregate loops were investigated, namely around 500 m, 1000
m, and 1500 m apart. Table 5.12 overviews all the scenarios in this study. However,
aggregate speeds and flows from dual-loop detectors cannot be directly used as class-
specific inputs. Therefore, local truck share was assumed for each of these loops to
estimate class-specific speed (and spacing). The estimation procedure is illustrated in
Appendix A. Generally, spacing observations are also not directly available from those
spatially-fixed sensors but can be inferred under an assumption of the local homoge-
neous condition (speeds of vehicles are constant in a short time period). To demon-
strate concepts, we only used speed observations from loops, IVD and trajectory data,
and distinguished only two vehicle classes, namely cars and trucks.

5.6.3 Results and discussion

The experiment represents a qualitative analysis. As shown in Figure 5.11 with all
the speed contour plots, all three data sources are successfully incorporated into the
multi-class state estimator, providing adequate estimation results. Traffic network dis-
continuities are sufficiently modelled and simulated. One on-ramp (at 1155 m) and one
off-ramp (at 2095 m) are clearly illustrated by two horizontal regions at the locations
around 1000 m and 2000 m, respectively. The area between 4000 m and 5000 m is
related to a weaving section of four lanes (lane expansion) on the A15. In cases 1 and
2, stop-and-go waves are clearly visible in the congested area. As the detection reso-
lution decreases in cases 3 and 4, the performance is limited compared with the 500 m
detection scenario. Nonetheless, the basic traffic patterns and network discontinuities
are reflected from the results.

The only difference between case 1 and case 2 is that case 2 additionally incorporates
vehicle trajectory data as observation inputs. Comparing Figure 5.11(a) with Figure
5.11(b), it is difficult to differentiate the differences between the two cases. Therefore,
we further illustrate the difference in speed estimates between these two scenarios in
Figure 5.12. We notice that the estimate difference at certain spatiotemporal cells is
even over 100%, and this difference is starting the moment the trajectory data are avail-
able as observations. Figure 5.13(a) presents the spatiotemporal span of the collected
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(a) Case 1: 500m loop and IVD data

(b) Case 2: 500m loop, IVD and trajectory data

(c) Case 3: 1000m loop, IVD and trajectory data

(d) Case 4: 1500m loop, IVD and trajectory data

Figure 5.11: Speed estimates from the multi-class Lagrangian traffic state estimation
in four different cases. Note that the red rectangle box in (b) indicates the region of the
zooming-in snapshot in Figure 5.13(a).
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Figure 5.12: Speed estimate comparison between case 1 and case 2 (based on case 2,
in %).

trajectory data corresponding to a small region within the whole spationtemporal map
(see Figure 5.11(b)). We further zoom in to a snapshot as shown in Figure 5.13(b).
Obviously, class-specific trajectories are distinguished by different colours. These in-
dividual trajectories can be directly related to a vehicle (car or truck) platoon (discre-
tised unit in the estimation model). For instance, the space-mean speed observation for
a vehicle platoon (indicated by the black dashed box in Figure 5.13(b)) is determined
by averaging all the speed samples within its range. As indicated, trajectory data gen-
erally provide more detailed information at the collection area compared to loop data.
Hence, the estimates in case 2 (also in other cases using trajectory data) are expected
to benefit from it.

One of the main advantages of multi-class state estimation is to provide class-specific
traffic state estimates, such as speeds, densities, and flows. Figure 5.14 shows that
speed estimates for both car and truck classes are available from simulations. The
speed patterns of the two classes are similar to each other in congestion, whereas in
the free-flow state truck speeds are bounded by a maximum value of about 85 km/h.
Moreover, traffic compositions over space and time can be accordingly calculated from
class-specific densities. As a result, people might monitor the share in total flows of
each vehicle class over time at specific locations. Compared to the mixed-class raw-
speed observations (Figure 5.14(a)), multi-class estimation offers more useful infor-
mation, which is important for class-specific traffic control and management.

5.6.4 Conclusion

This section has indicated that the multi-class Lagrangian state estimation approach
provides class-specific state estimates in a real freeway network successfully, using all
types of traffic observations (in both Eulerian and Lagrangian forms, in both mixed-
class and multi-class patterns). By implementing multi-class node models, the state
estimator is extended to model network discontinuities and provides adequately good
results. It provides the foundation of information for a wide range of class-specific
applications for both researchers and practitioners alike.
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(a) Trajectory data collected from the zooming-in area in Figure 5.11(b). Blue curved lines stand
for trajectories of car class, whereas red curves lines stand for trajectories of truck class.
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(b) Zooming-in of the dark-blue rectangle area in (a): Example of incorporating trajectory (speed)
data into traffic state estimation. The black dashed box indicates one of the discretised units:
vehicle platoon.

Figure 5.13: Trajectory data collected from a helicopter and their application in traffic
state estimation.
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(a) (Mixed-class) Speed observations from loops

(b) Speed estimates for car class (case 2)

(c) Speed estimates for truck class (case 2)

Figure 5.14: Class-specific speed estimates from the multi-class Lagrangian traffic
state estimation, compared with raw speed loop data.
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Table 5.13: Overview of the conclusions for all case studies

Section No. All the hypotheses can be accepted

5.2
Validating the mixed-class Lagrangian TSE model
Well incorporating both Lagrangian and Eulerian sensing data

5.3
Lagrangian formulation of the EKF-based TSE
outperforms the Eulerian formulation at a link level

5.4
The advantages of the Lagrangian formulation succeed
to extend to a network level

5.5
Verifying the multi-class Lagrangian TSE model
Class-specific approach outperforms the mixed-class approach

5.6
Multi-class Lagrangian TSE is applicable in realistic network-wide
systems, incorporating all available empirical data sources

5.7 Summary and discussion

In this chapter, we have validated both the mixed-class and the multi-class formulations
of traffic state estimation with an EKF technique. It has been shown that both formu-
lations have certain advantages via experimental studies. These experiments cover
diverse aspects and test all the hypothesis presented in Section 5.1.2. The hypothesis
for each case study can be accepted according to the simulation results. Table 5.13
summarises all the conclusions drawn from each of the case studies. To sum up, both
the mixed-class and the multi-class formulation of traffic state estimation with an EKF
technique are validated. It illustrates how the multi-class Lagrangian traffic flow model
can also be iteratively used for such a fast data-assimilation technique (EKF). With the
newly-developed observation models, both Eulerian and the Lagrangian sensing data
are well incorporated with the Lagrangian state estimator. Meanwhile, Lagrangian
node models sufficiently extend the Lagrangian state estimator to a network level. The
experimental results demonstrates that the Lagrangian formulation of traffic state es-
timation, provides more accurate state estimates than its Eulerian counterpart. This is
due to improvements in both the prediction step and the correction step of the data-
assimilation method. In the final experiment, the multi-class Lagrangian traffic state
estimation has been successfully implemented in a real traffic network, incorporating
all available empirical data sources. This offers another efficient and reliable opportu-
nity for real-time traffic state estimation in the traffic management context.
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Chapter 6

Preparation for generic Lagrangian
multi-class state estimation systems

Previous chapters presented the main methodology and the related validation study
for Lagrangian multi-class traffic state estimation. This chapter deals with one of the
application aspects in the practical world, which is data pre-processing related to the
data inputs used in state estimation. State estimation requires model parameters and
observation samples to generate outputs. In general, every traffic simulation model
consists of three components: namely model parameters and input, models/algorithms
themselves and output. As a consequence of its basic structure, each simulation model
will process the most nonsensical of input data and produce nonsensical output. In
this chapter, we highlight the importance of the input data from sensors (Section 6.1),
presenting two exemplified methods (in Sections 6.2 and 6.3) respectively to process
and exploit the raw data for the further state estimation procedure.

This chapter is an edited version of: Yuan, Y., J.W.C. Van Lint, T. Schreiter, S.P.
Hoogendoorn, J.L.M. Vrancken (2010) Automatic speed-bias correction with flow-
density relationships, in: Proceedings of the 2010 International Conference on Net-
working, Sensing and Control (ICNSC), Chicago, pp. 1-7 (Yuan et al., 2010), and
Yuan, Y., R.E. Wilson, J.W.C. Van Lint, S.P. Hoogendoorn (2012) Estimation of multi-
class and multi-lane counts from aggregate loop detector data, Transportation Re-
search Record. In press (Yuan et al., 2012. In Press).
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Real Traffic Networks
Monitoring Systems (sensors)

State Estimation

Data pre-processing

State Estimation Models

Y(τ)

State Prediction Models

Z(τ)

Z(τ, τ+1,…, τ+T)

τ=τ+1

State Prediction

Traffic Network Control

d(τ)

d(τ)

Control optimisation

Figure 6.1: Simplified structure of a traffic control loop. Here, τ denotes the index of
the individual time interval (current time instant); T denotes the prediction time inter-
val; d and Y depict the model input (constraints and parameters) and the observation
input, respectively; Z is the model output.

6.1 Introduction

This chapter studies the data-processing and preparation problems for traffic state es-
timation. As a simplified version of Figure 1.1, Figure 6.1 illustrates a conceptual
structure of a traffic control loop, where model-based state estimation is highlighted.
Model-based traffic state estimation is an iterative process, in which at each time in-
stant it requires data from monitoring systems (sensors) to be inputted into state esti-
mation models, to generate estimation output Z for further state prediction and traffic
control. The intermediate step, data pre-processing, serves the purpose of data prepa-
ration. Here, two types of input data are distinguished: (i) observation-related data Y
which are used in observation models, and (ii) model-related inputs d which are con-
straints and parameters used in both system and observation models as well as data as-
similation methods. For successful applications of Lagrangian multi-class traffic state
estimation, bias-free and class-specific input data are required. However, these input
data are either unreliable or unavailable (directly) from traffic sensors in the practical
world.

More specifically, in many countries, traffic network monitoring is largely based on
stationary loop detectors (as Eulerian sensors). Unreliable measurements and distur-
bances are part of the raw data from these sensors. These raw data typically exhibit
both random errors (noise) and structural errors (bias). As stated in Section 5.5.4,
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although data assimilation techniques are suitable to correct the first category of er-
rors (random errors), they typically fail to correct structural errors. For example,
the extended Kalman filter (discussed in chapters 3 and 4) can balance the uncer-
tainty/random noise in the observation data and in the model forecast, by respectively
defining error levels (e.g., R and Q) for observations and system models. However,
observation data (and/or model inputs) with strong bias will lead to inaccurate state es-
timates. A natural question is that how to get rids of the structural errors in observation
data.

Moreover, traffic sensors (dual loops) generally provide only aggregate speed and flow
profiles. Certain input data for model-based traffic state estimation are not directly
available. These data consist of but not limited to parameters of fundamental dia-
grams, traffic compositions, traffic demand, boundary conditions, traffic turn fractions,
and noise levels. Previous studies have offered lots of opportunities to estimate model-
related inputs from sensors. For instance, parameters in fundamental diagrams can be
estimated from loop detectors via image processing techniques (Schreiter et al., 2010b)
and basic statistics (Cassidy, 1998; Kockelman, 1998; Dervisoglu et al., 2009). Noise
parameters (error levels) used in data assimilation methods can also be derived from
observation data based on statistical analyses (Wang & Papageorgiou, 2005; Van Hins-
bergen et al., 2010). However, to implement a multi-class state estimation (presented
in chapter 4), it additionally requires both model parameters and observations with a
class-specific distinction. Hence, inputs such as class-specific inflows and observa-
tions, truck share, multi-class parameters in fundamental relations, should be obtained
in the pre-processing step. Essentially, data pre-processing provides the state estima-
tion step with reliable observations and prior information on parameters. It bridges the
gap between (multi-class) traffic state estimation models and empirical data from the
real world.

This chapter presents two new approaches for data pre-processing, which are essential
to apply the first-order multi-class traffic state estimation in the practical world. The
first is a speed-bias correction algorithm as in Section 6.2, which typically corrects
the second category of errors (structural errors) in observation-related inputs (Y). It
corrects biased speeds inherited from dual-loop detectors, based on notions from the
first-order traffic flow theory and empirical flow-density relationships. The second
develops a procedure for estimating multi-lane multi-class counts from a variety of
standard aggregate loop data formats from around the world, as in Section 6.3. It
provides multi-class state estimation with both types of input data (d and Y). In that
the estimates at a specific location can be transformed as truck share, class-specific
inflows and observations (flows). The estimate rules can be even generalised to another
location of similar traffic and infrastructure patterns to provide class-specific input.
The estimation procedure involves the inference of multi-linear regression laws that
relate multi-lane multi-class data to standard aggregate formats. The regression laws
themselves then need to be trained with small samples of individual vehicle data on a
site-by-site basis.



104 Lagrangian Multi-Class Traffic State Estimation

6.2 Speed-bias correction

This section presents a speed-bias correction algorithm. After background introduc-
tion, we will briefly review the previously proposed methods to eliminate this bias and
derive the new method. Next we will present the setup of a simulated experiment on
the basis of which the new method with two variants are evaluated and discussed. This
section will close with conclusions and recommendations for further research.

6.2.1 Problem analysis and background

Traffic data collected by traffic sensors are critically important for many applications,
both for online purposes (traffic information, management and control) and for offline
use (travel time estimation, model calibration and validation, incident/bottleneck de-
tection and ex-post policy evaluation). Traffic speed is one traffic variable that can be
measured by many different sensors, both locally (with e.g., inductance loops and radar
technology) as well as over short or longer distances (e.g., automated vehicle identi-
fication systems or floating car data). In particular, knowledge of the speed profile
and/or the flow profile is useful to determine bottleneck locations, physical extent of
queues, travel times, turn fraction, fundamental relations, and many other parameters
used for traffic control systems. This also serves as the essential input for model-based
traffic state estimation and prediction.

In many countries, such as the US, the UK, the Netherlands, France, Germany, Spain,
and Italy etc., the traffic network monitoring is largely based on the stationary loop
detectors. Single loops (mainly implemented in the US and in the urban environment)
provide flow and occupancy information, which in turn can be used to estimate speeds
(using average vehicle length). However, these estimates are quite noisy due to unob-
served variables (e.g., vehicle length, traffic density) and measurement errors. Many
researchers have achieved better estimates of speed from single loop detectors (Dailey,
1999; Coifman, 2001; Jain & Coifman, 2005; Coifman & Kim, 2009). Additional to
flow and occupancy, dual loops also collect (average) speeds of vehicles. The Dutch
freeway network in the Netherlands, for example, is monitored by dual loops which
are located at about every 500m on the western part of the Dutch freeway network. 5-
10% on average of the available data from this dual loop system (named MoniCa data)
are missing or otherwise deemed unreliable (Van Lint & Hoogendoorn, 2009). Similar
traffic monitoring systems, which are equipped with inductance loops, can be found in
England (Highway-Agency, 2012) and in Germany (Schönhof & Helbing, 2007).

Locally measured and averaged speeds are not necessarily representative for spatial
properties of traffic streams. This is due to two reasons. First of all, a local average
speed at some cross section xi over a time period ∆T is equal to the space-mean speed
vM on a road section m (including xi) over the time period ∆T only, in case traffic
conditions are homogeneous and stationary over the section m during ∆T (which does
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not mean that all vehicles drive with the same speed). Secondly, the former holds only
in case speeds of passing vehicles are averaged harmonically, and not arithmetically
with vL = ∑vi/N, where N depicts the number of observations in the time period ∆T .
The latter average (often referred to as time-mean speed) is biased due to an over-
representation of faster vehicles in a time sample. In contrast, the harmonic mean
speed

vH =
N

N
∑

i=1

1
vi

(6.1)

essentially represents the reciprocal value of average “slowness” 1/vi, i.e., the aver-
age time per unit space each vehicle spends while passing the detector. Saving for the
error due to the assumption of homogeneous and stationary traffic, this average is an
unbiased estimator of the space-mean speed. The equivalence can be easily proven
by Edie’s definiton of traffic variables (see (Edie, 1965), also e.g., (Leutzbach, 1987)).
The relationship between space-mean speed (vM) and local arithmetic time-mean speed
(vL) can be analytically expressed by the following equation (Wardrop, 1952; Hoogen-
doorn, 2008):

vL = vM +
σ2

M
vM

(6.2)

where σ2
M denotes instantaneous space speed variance.

Firstly, the implication of equation (6.2) is that time-mean speed is always equal or
larger than space-mean speed. This is a structural difference proportional to instanta-
neous speed variance. Secondly, the effect of arithmetic time averaging cannot be “un-
done” afterwards using equation (6.2). There is no straightforward (analytical) formula
to derive space-mean speeds from time-mean speeds directly, since the bias depends
on a second unknown quantity (instantaneous space speed variance). Many empiri-
cal studies have revealed that the bias (σ2

M/vM) is significant and may result in speed
overestimation of up to 25% in congested conditions, and even larger errors in for ex-
ample travel times or densities derived/estimated from these speeds (Wardrop, 1952;
Stipdonk et al., 2008; Stipdonk & Postema, 2009; Lindveld & Thijs, 1999; Van Lint
& Van der Zijpp, 2003). A typical result from using arithmetic time averaged speeds
in estimating densities (via k = q/vL) is that the estimated traffic states {q, k} (correct
flow with biased density) do not lie on a nice semi-linear line in the congested branch
of the flow-density diagram. Instead, they scatter widely below this line, resulting in
a “P-shape” distortion of the estimated fundamental (q-k) diagram (Stipdonk et al.,
2008), where the congested phase line looks like a convex curve as the upper part of
the letter “P”. This effect has also been analytically proven in (Stipdonk & Postema,
2009). Additionally, the biased speeds may cause underestimates of route travel times
(Lindveld & Thijs, 1999; Van Lint & Van der Zijpp, 2003) and inaccurate estimation
of traffic states (e.g., densities).

Clearly, in case monitoring systems (such as the Dutch MoniCa system, the British
and the German highway monitoring systems) collect time-averaged speeds, there is
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a need for algorithms and tools, which are able to correct the inherent bias. The next
subsection will first overview the approaches proposed in literature. Naturally follow-
ing, a new algorithm is presented, based on the flow-density diagram and notions from
the traffic flow theory.

6.2.2 Overview of speed-bias correction algorithms

Based on equation (6.2), there are two ways of correcting the bias. One could consider
the bias term B = σ2

M/vM as a whole entity, that is

vM = vL−B (6.3)

where B could be a constant or some functions of quantities that are available (e.g.,
B = B(q,k,v, ...)). One can also solve vM from equation (6.2), which gives us

vM =
1
2
(vL +

√
v2

L−4σ2
M), σM ≤

1
2

vL. (6.4)

If the instantaneous space speed variance (σ2
M) is known or estimated, the space-mean

speed can be deduced accordingly. In the following, we will recall the previous re-
search within these two categories.

The simplest method to correct speed-bias is to describe the space-mean speed vM as a
function of the time-mean speed vL. Essentially with equation (6.4), we can consider
the speed variance (standard deviation) is equal to a certain percentage of the time-
mean speed, that is σM = βvL, with β in the order of 0.05-0.3 (5-30%, according to
(Lindveld & Thijs, 1999)). Lindveld & Thijs (1999) also illustrated that β is not a con-
stant, but rather a function of traffic flow and speed. This relationship is derived using
empirical data, in which the ratio of standard deviation over mean speed increases with
decreasing mean speed.

Van Lint (2004) has proposed two other methods for estimating instantaneous speed
variance in equation (6.4) on the basis of empirical individual data collected along the
A9 freeway in the Netherlands in October 1994. Figure 6.2(a) illustrates these data and
shows that there appear two distinct regimes, thus these data can be fitted by a bi-linear
function (the solid line). For low (time-mean) speeds (i.e., in congestion), speed vari-
ance appears constant (although noisy) with a mean in the order of 52(m/s)2. Above 80
km/h (i.e., in free-flow conditions), speed variance seems to steeply increase with time-
mean speeds. It is because in congestion vehicles are constrained in their choices of
speeds by another vehicle. The predominant cause of speed variation over space will
be (collective) acceleration and deceleration e.g., due to passing stop-and-go waves.
Under free-flow conditions, speed variance will logically increase due to (i) traffic het-
erogeneity (trucks versus person cars) and (ii) the fact that samples (number of vehicles
per space and time unit) will become increasingly smaller with decreasing density (and
higher speeds). Figure 6.2(b) shows a second scatter plot of instantaneous speed vari-



Chapter 6. Preparation and data pre-processing 107

(a) (b)

σ M

Bi-linear approximation
“Time series” approximation
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vL

“Local density” q/vL

Figure 6.2: (a) Scatter plot of instantaneous speed variance versus time-mean speed,
based on individual data collected at a single detector along the A9, 25/10/1994, and
the bi-linear approximation between the two quantities; (b) Scatter plot of instanta-
neous variance versus “local density” (kL = q/vL) and “time series” approximation,
both adapted from (Van Lint, 2004).

ance and “local density” kL, which is flow divided by time-mean speed (q/vL). The
second approach uses an approximation of this relationship, illustrated by the dashed
line in Figure 6.2(b). This method exploits the time-series relations between the instan-
taneous speed variance and the variance of time-mean speed (referred to as SVE-TS
(Speed Variance Estimation - Time Series) further below). Note that this procedure
contains three parameters (P is the size of consecutive time windows, kcri

L denotes the
critical local density, and γ is a scaling parameter), which need to be tuned with respect
to the site-specific characteristics. More details can be found in (Van Lint, 2004).

Recently, Soriguera & Robusté (2011) have also developed a method to estimate speed
variance based on the probabilistic theory. However, the method requires the input
of speed stratification (vehicle counts over defined speed ranges), which is commonly
available from Spanish traffic monitoring systems but not around the world. Therefore,
the application of this method is rather limited.

The methods outlined above essentially correct speed bias based on local relationships
found in the available detector data. Alternatively, one could estimate speed-bias also
on spatiotemporal relationships found in the data, using for example the fundamental
diagram, which relates average flow (a local quantity) to average density (a spatial
quantity). In (Jain & Coifman, 2005), for example speed estimates from single loops
are validated using flow-occupancy relationship. Coifman (2002) also exploits basic
traffic flow theory and spatiotemporal propagation characteristics of traffic patterns
to estimate link travel time using local dual-loop data. Although these methods do
not apply to the problem of estimating the bias in time-mean speed directly, we are
motivated for an alternative method to solve the problem.
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6.2.3 A new correction algorithm based on flow-density relations

According to the kinematic wave theory (Lighthill & Whitham, 1955; Richards, 1956),
perturbations (low speeds, high densities) propagate through a traffic stream at a speed
equal to d f/dk, with q = f (k) depicting an equilibrium relationship (the fundamen-
tal diagram) between average flow and density. This characteristic speed is typically
positive in free flow and negative in congested conditions. According to some authors
(Newell, 1993; Daganzo, 1994; Kerner & Rehborn, 1997; Windover & Cassidy, 2001;
Treiber & Helbing, 2002; Van Lint & Hoogendoorn, 2009), a simple still reasonable
approximation is to assume only two main characteristic speeds, one for congested
traffic and one for free-flowing traffic respectively. This results in a triangular flow-
density relationship (see Figure 6.4), which reads

q = f (k) =
{

vfree · k, k ≤ kcri

qcap + vcong · (k− kcri), otherwise
(6.5)

where qcap is the capacity flow, and vfree and vcong respectively depicts the character-
istic propagation speed in free-flow and congested conditions. Note that vcong is often
parameterized with vcong =−qcap/(kjam−kcri), where kjam and kcri depict the jam den-
sity and critical density respectively.

Figure 6.3 presents a typical speed contour taken from a Dutch freeway, in which those
approximate constant characteristic propagation speeds can be identified. In conges-
tion (low speeds), for example, perturbations in a traffic stream move upstream with
remarkably constant speeds, illustrated by the thick dark stop-and-go waves (low speed
areas) in Figure 6.3, which propagate upstream over the entire freeway stretch of 8 km.
Note that inside the speed waves themselves, the individual vehicle speeds are not
uniform.

Using the same detector data, one would expect these phenomena to translate into
traffic states on a straight line in the q-k diagram. As already mentioned above and
in (Stipdonk et al., 2008; Stipdonk & Postema, 2009), the straight or semi-straight
line for congested traffic is not observed when we use “local density” kL = q/vL as a
proxy for true (but unobserved) density k. Instead, in that case, we see a “P-shape”
distortion, attributed to the non-zero bias term (σ2

M/vM in equation (6.2)). We can,
however, with the assumption of a (approximately) straight congested branch of the
fundamental diagram, estimate and correct this error in density, and as a result correct
the bias in speed.

To this end, a few more conditions need to be met. First of all, if we assume that
in congestion the true traffic state {q, k} lies on a straight line with slope equal to
the propagation speed vcong, it is required to estimate this parameter. For instance, the
estimation can be based on spatiotemporal plots (Figure 6.3) via e.g., image processing
techniques (Schreiter et al., 2010b). Second, we need to assume that the measured
flows are unbiased, in which case correcting kL (= q/vL) boils down to estimating the
error in vL, which of course equals to σ2

M/vM. Figure 6.4 illustrates the basic correction
principle.
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Figure 6.3: Speed contour plot measured at the Dutch A13 freeway southbound be-
tween Delft North (km6.5) and Rotterdam Airport (km14.5) on Monday 11/6/2009
from 3:00 PM to 7:00 PM. Colors correspond to one-minute arithmetically averaged
speeds.
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Figure 6.4: Schematic of correction principle.
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1. Raw observed flow & speed 1. Congested wave speed 
[vcong] (OR default)

Speed-bias 
Corrector

2. Congested traffic data [kinput & qinput]
Based on critical density [kcri] & capacity [qcap]

Corrected speed

4. Smoothing by linear neighborhood operation

3.
conginput fit input corr input( ) ( )vk K q k K qε ε= + → = +

vcorr = qinput / kcorr

Figure 6.5: Procedure of the speed-bias correction algorithm.

The essence of this method lies in considering the bias term as a whole entity (B, refer
to equation (6.3)) to correct local time-mean speed, based on notions from the traffic
flow theory and traffic propagation characteristics. The detailed working principle is
described as below, followed by a schematic procedure shown in Figure 6.5.

• Data input (The first step presented in Figure 6.5)

The input data are obtained from the monitoring system in the pattern of spatiotemporal
(x-t) matrix. They are named as the raw observed flow qinput and speed vL. Meanwhile,
the propagation characteristic speed vcong needs to be determined as the slope of the
congested flow line used in this algorithm. This parameter can be estimated based on
the historical data (e.g., speed contour plot) or set as default (e.g., -18 km/h as used in
many applications).

• Data selection (The second step in Figure 6.5)

Based on local speed (vL) and flow (qinput) data, the density data are generated (via
kinput = qinput/vL). As the focus is on the congested traffic, the free-flow state and the
congested state need to be distinguished. In macroscopic traffic flow models, critical
density on a road segment discriminates between the free-flow and congested flow
conditions. Here, the critical density value (kcri) and/or the capacity value (qcap), which
relate to the peak of a q-k diagram, serve the same purpose. kcri and qcap values can be
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easily estimated from the input data. The data sets in terms of flow and density, which
meet the condition kinput > kcri, are categorised as congested state data.

Additionally, we need to ensure that the data selected (from congested conditions)
represent stable traffic states, that is, traffic states which are likely to lie on the (linear)
congested branch of the fundamental diagram. This implies we cannot select detector
data located downstream (“in”) a bottleneck. At those locations where congestion is
resolving, one typically notices that flows are far below capacity with large spacing
(low density) due to accelerating vehicles.

• Density-wise correction (The third step in Figure 6.5)

This step is the core of the correction algorithm. The mapping of this operation is
expressed by:

kinput = Kfit(qinput)+ ε → kcorr = Kvcong(qinput)+ ε (6.6)

where ε denotes the residual deviation of each density (kinput) scatter point away from
the fitted curve (Kfit) of the congested data, kcorr denotes the corrected density values,
Kvcong denotes the targeted congested branch.

Given the peak point (fit-origin: kcri and qcap) and congested traffic scatters (kinput and
qinput), fit function (Kfit) applies. In q-k space, fit function would fit the congested data,
regarding the peak point (kcri and qcap) as the point of origin. Density values (kinput)
are then expressed as a function Kfit of the input flow values (qinput) with residual (ε).
We then shift these scatters in congested phase part of the q-k diagram from the fitted
curve Kfit to the targeted congested characteristic line (Kvcong).

The fitted curve can be either linear or polynomial. This leads to two variations of the
correction algorithm. The linear fit function is defined as:

Kfit(qinput) = a ·qinput +b, (6.7)

with two fit coefficients (a and b). Intuitively, the polynomial fitting could describe
the feature of the “P-shape” distortion presented in (Stipdonk et al., 2008; Stipdonk
& Postema, 2009) better than the linear one. Here, a quadratic polynomial form of fit
function is considered, written as:

Kfit(qinput) = c ·q2
input +d ·qinput + e, (6.8)

with three fit coefficients (c, d and e). These two variations are referred to as Linear-fit
and Polynomial-fit respectively further below.

For the targeted congested characteristic line, if only one degree of freedom for the
congested state is considered, the Kvcong is linear featuring by congested propagation
speed (vcong), expressed by

Kvcong(qinput) =
qinput−qcap

vcong
+ kcri. (6.9)
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Note that the more degrees of freedom in the targeted characteristic line that are taken
into account to capture congestion dynamics, the more accurate correction that will be
achieved.

Based on corrected density and the invariant flow values, the corrected speeds are
generated directly (via vcorr = qinput/kcorr). In fact, the correction presented here is
another form of equation (6.3):

vM = vL−
qinput(kcorr− kinput)

kcorr · kinput
(6.10)

where the bias term B is expressed as a function of the corrected density kcorr.

• Post-processing (The last step in Figure 6.5)

In some cases, samples with high-speed (e.g. larger than 120 km/h) are identified as er-
roneous. Moreover, in the speed space, the corrected speed values (vcorr) of congested
state might contain discontinuity with respect to those in free-flow state, so a linear
smoothing can be used here. The smoothing is a neighborhood operation which has
already proposed in (Treiber & Helbing, 2002; Van Lint & Hoogendoorn, 2009). The
operation for each point is conducted within a small spatiotemporal area based on the
values of its neighbouring points to overcome the discontinuity problem. Finally, the
corrected speed data are obtained.

So far the correction procedure has been presented. The next section presents a micro-
scopic simulation study to assess this algorithm.

6.2.4 Validation of the speed-bias correction algorithm

To test and validate the proposed algorithm, a simulation study is performed. The mi-
croscopic simulation model “FOSIM” (Dijker, 2012) is used for this purpose, since it
provides both (synthetic) detector data as well as ground-truth data (space mean speed).
This model is developed at the Delft University of Technology, specially designed for
the detailed analysis of discontinuities in freeway networks. It has been calibrated and
validated for the Dutch freeways in terms of driving behaviours. From FOSIM, traffic
data from any type of detectors can be simulated and obtained. Data processing and
analyses are further conducted in MATLAB (7.5.0).

Description of model and data

As mentioned above, the current monitoring system on Dutch motorways consists of
dual inductance loops located about every 500 meters, collecting 1-min average time-
mean speeds and 1-min aggregate flows. To assess the proposed algorithm, a part of the
Dutch freeway A13 (Figure 6.6(a)) is modeled in FOSIM, as shown in Figure 6.6(b).
It is a road stretch of 11.5 km in length from Delft North to Rotterdam Airport. The
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 1 
(a) Dutch Freeway A13 southbound (from Delft North to
Rotterdam Airport).

(b) FOSIM model of A13.

Figure 6.6: Illustration of a Dutch freeway A13.

simulation period is during afternoon peak hours from 14:00 to 20:00 (six hours). The
traffic volume is defined to match typical pattern of a weekday afternoon, with 10%
truck fraction. In FOSIM, we can simulate MoniCa data (time-mean speeds, aggregate
flows), within semi-equidistant spatiotemporal regions of size 500(m) x 60(s). The
ground truth data (space-mean speeds, that is, harmonic mean speed vH in equation
(6.1)) are derived from FOSIM over equidistant spatiotemporal regions of size 100(m)
x 30(s). The data are treated as reference. The raw input for the correction algorithm
is then pre-processed to match the same spatiotemporal grid (100(m) x 30(s)) as the
ground truth data.
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Definition of scenarios

Based on the speed contours from FOSIM via image processing techniques (Schreiter
et al., 2010b), a constant value of -21 km/h is estimated as the congested propaga-
tion speed vcong throughout the rest of the simulation. That indicates the processed
data are corrected to approach a straight (linear) congested phase line featuring this
value. Two variations of the new proposed method are evaluated, namely the Linear-
fit correction and the Polynomial-fit correction. To test performance, the proposed
methods are compared with one of the speed-variance estimation methods, namely the
“time series” (SVE-TS) method discussed above. To simplify matters, we will use the
default parameter settings proposed in (Van Lint, 2004) (namely P = 30, kcri

L = 0.02
veh/m/lane and γ = 0.24). These parameters are also calibrated from a Dutch freeway
(A9), which are assumed to adequately process the simulated data from FOSIM. These
three methods are cross-compared in a so-called normal-correction scenario.

Additionally, the robustness of the proposed algorithm is tested with two other scenar-
ios, namely the noisy-input and the parameter-variation scenarios. In the former, the
input data are combined with some white Gaussian noise to emulate the data condition
from traffic sensors. In the latter, the (only-one) parameter in correction vcong varies
within a small range (from -18km/h to -24km/h).

Performance criteria

To assess different scenarios, the performance criteria are selected. The raw-input
/ corrected speed data are compared with the ground truth (reference) speed data in
terms of root mean squared error (RMSE) and three relative error indicators. They are
mean percentage error (MPE) which reflects structural bias, mean absolute percentage
error (MAPE) which gives a combined indication of the relative error, and standard
deviation of the percentage error (SPE) which is an index for the variability around the
MPE. Since the bias / error mostly occurs at low speeds (congestion), these relative
error indicators are more informative than the RMSE error, which is calculated by the
absolute speed values that are relatively low in congestion. Nonetheless, RMSE error
can still provide an overview of performance on the whole data set. These indices are
defined as follows:

RMSE =

√
∑(u− û)2

NN
, (6.11)

MPE =
1

NN ∑
u− û

û
, (6.12)

MAPE =
1

NN ∑
|u− û|

û
, (6.13)

SPE = std(
u− û

û
). (6.14)

Here, u (:= u(t)) denotes either raw-input data or corrected data, û (:= û(t)) is the
reference data. They are both as the functions of time (t). NN denotes the size of the
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data set. Note that, these error indices can be generalised to any comparison between
two data sets.

6.2.5 Results and discussion

Qualitative impression

The proposed correction algorithm is tested by the synthetic data from FOSIM simu-
lation. Figure 6.7 provides a first impression of the correction effect at a cross-section
level. Specifically, subfigures 6.7(a)-(d) give a qualitative impression of how the pro-
posed algorithm works. The targeted (raw) traffic data move rightward at the congested
branch of q-k diagram. As a result, the corrected data approach closely to the ground
truth data, scattering around the congested-phase line. As discussed above, the fit
function can either be linear or polynomial, as illustrated in the subfigures (a)&(b) and
(c)&(d) respectively. Obviously, the polynomial-fit curve captures most of the feature
of the biased data, which is the foregoing “P-shape” distortion of phase diagram. This
implies good performance of correction (this complies with the following quantitative
results). Subfigures 6.7(e) and 6.7(f) present two fundamental diagrams that are calcu-
lated from typical downstream-bottleneck areas in FOSIM A13 model. The congested
states do not exist herein, only the states of queue discharging are presented as the right
(blue) part of circle area. This justifies the choice of non-correction.

Quantitative analysis of the normal correction

The performance criteria for different test scenarios / correction methods are listed
in table 6.1. The results are categorised by three test scenarios, namely the normal-
correction scenario, the noisy-input scenario and the parameter-variation scenario (the
latter two used in the robustness study). The MPE error is regarded as the most impor-
tant indicator, which reflects the structural bias. Therefore, good performance leads to
a low value of the MPE error, which indicates low structural error (speed bias).

In the normal-correction scenario, the results are provided for the three correction
methods, namely speed variance estimation method based on time-series of local mean
speed (SVE-TS), Linear-fit correction and Polynomial-fit correction. The polynomial-
fitting outperforms the other two methods, with an absolute improvement of 2% on
MPE and 1% on MAPE, compared to the raw input data, and a relative improvement
of 47% on MPE, which is quite substantial. When calculating the MPE error of a cor-
rection, the negative components can cancel out with the positive ones, while this is
not the case for MAPE. So the higher improvement on MPE than MAPE demonstrates
that, the corrected data by polynomial fitting scatter around the ground truth data (or
the reference congested phase line in q-k space) as expected. The linear fitting achieves
a similar level of performance to the polynomial correction. The improvement by the
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(a) km 2.5 in the FOSIM model (b) km 5.8 in the FOSIM model

(c) km 2.5 (d) km 5.8

(e) km 6.5 (f) km 11

Figure 6.7: Examples of speed-bias correction at a cross-section level: (a)&(b) Linear-
fit, (c)&(d) Polynomial-fit, (e)&(f) Exception for correction algorithm(downstream
bottleneck). (The two dashed lines at the congested region in each plot are the fit-
ted curves respectively for raw data and corrected data).
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Table 6.1: Error indicators for three correction methods of three test scenarios, in terms
of effectiveness and robustness (All error values accurate to two decimal places.)

Error indicators MPE(%) MAPE(%) SPE(%) RMSE(km/h)
Normal-correction scenario

Raw Input 4.95 7.56 34.78 5.81

SVE-TS Method 4.56 7.59 34.39 6.35

Linear-fit 3.26 6.72 33.79 5.60

Polynomial-fit 2.64 6.60 33.27 5.64
Noisy-input scenario (robustness)

Raw Input 5.04 8.48 35.51 6.19

SVE-TS Method 3.70 8.35 34.70 6.56

Linear-fit 4.08 8.34 35.30 6.18

Polynomial-fit 2.66 8.09 35.84 6.13
Parameter-variation scenario (robustness)

-18 2.10 7.30 33.72 5.84

Propagation -19 2.33 7.07 33.56 5.78

speed (km/h) -20 2.37 6.71 33.20 5.68

-22 2.82 6.56 33.14 5.66

(Only Polynomial-fit) -23 3.15 6.67 33.33 5.68

-24 3.30 6.59 33.36 5.62
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Table 6.2: MPE/MAPE errors in the normal-correction scenario, partitioned over five
speed (in km/h) ranges

Full speed range 0-20 20-40 40-60 60-80 >80

MPE

Raw Input 4.95 90.16 13.79 19.75 8.86 0.11

SVE-TS 4.56 83.94 13.20 19.13 8.46 -0.17

Linear-fit 3.26 75.02 6.40 14.45 7.99 0.11

Poly.-fit 2.64 42.85 2.93 13.78 8.39 0.11

MAPE

Raw Input 7.56 90.20 15.30 23.94 16.97 2.07

SVE-TS 7.59 83.99 14.85 23.60 16.90 2.29

Linear-fit 6.72 75.20 11.30 21.65 17.08 2.07

Poly.-fit 6.60 47.61 10.76 21.70 17.42 2.07

SVE-TS method on MPE is rather limited compared to the proposed correction meth-
ods. This method increases the RMSE error by 8% as a non-preferable negative effect.
The similar observations are also presented in the noisy-input scenario.

To further analyse the correction effect on the raw-input data (at congested state),
raw data samples from the normal-correction scenario are subdivided into five speed
ranges. The correction performance in terms of the MPE and MAPE errors is shown
in table 6.2. First, it is numerically demonstrated that the biases / errors are mainly de-
rived from the congested traffic since the large error values are related to low speed re-
gions. Additionally, the large values for SPE presented in table 6.1 can be accounted by
the noticeable fluctuation in the MPE (and/or MAPE) over the different speed ranges.
In “fitting” correction methods, the decrease on errors (MPE / MAPE) is mainly con-
tributed by correcting on the congested-region data (speed values lower than 60km/h).
For the SVE-TS method, the correction effects distribute over different speed ranges.

In the proposed methods, the amplitude of improvement is proportional to the direction
of speed decreasing (or density increasing as shown in Figure 6.4). Compared to the
linear-fit, the major advantage by the polynomial-fit on decreasing errors is reflected
at the low speed ranges (significantly at speed ranges of 0-20km/h and 20-40km/h).
The explanation is that traffic data at low speed region, which relates to the lower
part of congested branch in q-k diagram (see Figure 6.4), can be fit more closely by
polynomial curves, thus the correction is better.

More specifically, in the speed range of 0-20km/h, the MPE / MAPE error of the raw
input data is rather high (more than 90%). It is remarkable that the relative improve-
ment on MPE / MAPE by the polynomial-fit is still greater than 50% (42.85 versus
90.16). In the range of 20-40 km/h, the polynomial-fit even leads to a higher relative
improvement of more than 79% (2.93 versus 13.79). This is because most of input data
samples are in this speed range. However, the improvement by the new methods for the
speed range of 60-80 km/h is marginal. This can be explained as follows: at high speed
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ranges (related to the upper part of congested branch in Figure 6.4), the difference be-
tween the fitted curve and the targeted corrected line is marginal. In that the chosen
targeted correction line (as expressed by equation (6.9)) considers only one degree of
freedom. If more degrees of freedom of parameters are considered, the performance
would be better.

So far we can firmly conclude that the proposed correction algorithm is effective and
practical on reducing speed bias. The polynomial-fit method performs better than its
linear-fit counterpart and the time-series methods.

Robustness study

The results of two test scenarios for robustness study are also presented in table 6.1.
First, if the input data from traffic sensors contain noise, the errors of these data in-
crease accordingly. However, the correction algorithm is still effective, resulting in
relatively low MPE and MAPE errors. The improvement on MPE by the polynomial-
fit in this case is comparable to that in the normal-correction case. Second, as in the
new proposed algorithm, only one degree of freedom, the congested propagation speed
(vcong) is targeted. When varying this parameter within a small range, the correction
still performs well within an acceptable error range. In reality, the propagation wave
speed varies slightly depending on the accepted safe time clearance, the average ve-
hicle length, traffic composition and weather conditions (Windover & Cassidy, 2001;
Treiber & Helbing, 2002; Kerner, 2004). Therefore, the influence of this parameter
would be marginal. This algorithm is concluded to be quite robust.

Qualitative analysis

To qualitatively assess the polynomial-fit correction, detailed corrected speed profiles
are studied. Figure 6.9 shows the comparison of this correction variant, with respect
to the reference (ground truth) data and the raw-input data at three chosen time in-
stants, which are indicated with three arrows in the whole (reference) speed map of the
A13 model (see Figure 6.8). The correction (indicated by small red circles) aims to
resemble the reference data (indicated by black stars). Complying with the previous
observation (in table 6.2), there is little difference among the three speed profiles at
high speed regions (above 80 km/h). The correction algorithm works mainly for the
data set at low speed regions (below 60km/h). As highlighted by the lower part of
blue circles, the corrected speeds can represent the ground truth, while the raw-input
(arithmetic mean) speeds overestimate the real speeds.

6.2.6 Conclusions

A new effective and robust method has been proposed for correcting speed biases
caused by the common practice of arithmetic time-averaging. The simulation results
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Figure 6.8: Reference speed map from A13 FOSIM model. The arrows indicate the
chosen time instants for the speed profiles in Figure 6.9.
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Figure 6.9: Performance of polynomial-fit correction: speed vs. space plots at three
chosen time instants. The reference measurements are the target that the correction
aims to resemble.
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show that this algorithm succeeds to correct speed biases with relatively low errors
and performs better than the previous proposed method (speed-variance estimation).
The relative improvement reaches almost 50%. The robustness of this algorithm with
regards to noisy traffic data and parameter variation is verified in the study.

The concept of the speed correction is straightforward and easy to implement. The
computational speed of the correction algorithm is fast in MATLAB environment. All
these advantages are beneficial for real-time operation. If harmonic mean speeds can
be collected directly from monitoring systems at no cost, then the proposed algorithm
would have no purpose. So the potential value in this algorithm is that it provides
practitioners with an effective and efficient tool to overcome the speed-bias problem in
the empirical data.

The algorithm is developed for correcting speed data from dual loops, and it can also
be extended and applied to correct unreliable densities from single loops. The den-
sity profiles can be inferred from the occupancy information with the assumption of
average vehicle length. However, this assumption is sensitive to low traffic demand
(flow) states (at both free-flow end and congestion end refer to q-k diagram), since
the variance in average vehicle length increases as flow decreases (Coifman, 2001).
This implies the density estimation at both two ends of q-k diagram are unreliable or
inaccurate. To correct noisy densities, similar rationale can be applied. One could cor-
rect density values to approach the congested and/or the free flow phase line(s) while
keeping flow values invariant in the flow-density space.

There are some directions for further research. In the correction step, the targeted char-
acteristic curve for speed correction can be better described by adding more degrees of
freedom, besides the congestion propagation speed. Based on this proposed method,
the insight to improve travel time estimation can be further addressed.

6.3 Estimation of multi-class and multi-lane counts

In the previous section, the proposed algorithm aims to improve the quality of the first
type of input Y (see Figure 6.1). The method presented in this section additionally
deals with the second type of input d, which attempts to infer class-specific data for
multi-class traffic state estimation.

6.3.1 Problem analysis

Driver and vehicle heterogeneity is a commonly accepted fact and has received con-
siderable attention recently (Daganzo, 2002a; Van Lint et al., 2008b) in the research
literature. As a simple example, the distinction can be made between the flows in dif-
ferent lanes (fast or slow vehicle lanes, dedicated lanes etc.) or between the flows in
different vehicle-classes (trucks, buses, passenger-cars, and high-occupancy vehicles).
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This information is of great importance for realistic multi-class multi-lane vehicle gen-
eration in microscopic traffic simulation tools (e.g., VISSIM (PTV, 2010), AIMSUN
(Barceló et al., 2004) etc.), on-line lane-specific capacity and Person-Car-Equivalents
(PCE) estimation (Webster & Elefteriadou, 1999), infrastructural design/planning and
safety analysis (Transportation-Research-Board, 2000) and their consequent use in ITS
applications, such as Dynamic Traffic Management (DTM) (Louis et al., 2006). Re-
ducing congestion on motorways is one of the main objectives of DTM, for instance,
by using lane management. This can be done by reserving the use of some lanes to
specific categories of vehicles (e.g., a dedicated truck lane), prohibition of truck over-
taking, or by increasing the number of lanes, for example by hard shoulder running
in peak hours. In order to properly implement and evaluate these control interven-
tions, multi-lane and multi-class models and data are necessary. This also justifies the
presentation of a multi-class traffic state estimation method in this thesis.

The provision of multi-class and multi-lane data relies on the characteristics of traffic
monitoring systems, which in many countries are based on stationary loop detectors.
These are of two main types, namely single loops and double loops. Single loops
(implemented on US freeways and world-wide in urban networks) provide flow and
occupancy information, but speed measurements are not directly available, although
they may be indirectly estimated (Coifman, 2001). In addition to flow and occupancy,
double loops can measure vehicles’ speeds and lengths. Although the loops capture in-
dividual vehicle data, these are usually aggregated over a given time interval ∆T (usu-
ally 1-5 minutes) because of historical technical constraints on the communications
hardware. In standard operation, individual vehicle data (IVD) is usually not available
to the end-user, although some new detector systems allow for remote collection of
IVD.

The question of how to study realistic multi-class and multi-lane behaviours boils down
to how we can get class-specific and lane-specific information from the data in standard
traffic monitoring systems. The basic idea is to estimate counts of vehicles disaggre-
gated by lane and by vehicle class, over a given analysis interval T (usually T > ∆T ),
using only aggregate data available from standard inductance loop implementations.
In some countries, such as in parts of Italy and Germany, the dual-loop system already
provides a complete disaggregation of flow by lanes and (at least two) vehicle classes.
However, in most other countries, the standard aggregate loop data reports only speed,
occupancy and counts by lane, but not by class.

We let qi j denote the vehicle count in lane i and class j over a given analysis interval,
which are the variables to be estimated. Here, i= 1,2, ...,NL, and j = 1,2, ...,NC, where
NL and NC denote the numbers of lanes and classes, respectively. In all of the data that
we consider, vehicle counts are available by lane, and we let qL

i denote the observed
count of vehicles in lane i. (Here, the superscript L denotes aggregation by lane.) It
follows the constraints:

qL
i =

NC

∑
j=1

qi j, for each i = 1,2, ...,NL. (6.15)
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The main objective is to infer more count variables than those that are observed di-
rectly. The idea is to construct estimation rules which exploit equation (6.15) in
combination with the other observed aggregate quantities (such as speed and occu-
pancy). The underlying assumption is that the aggregate data might contain class-
specific and/or lane-specific information, which can be used for the inference. This can
be justified by empirical observations. The empirical flow and density values generally
scatter around the equilibrium line of fundamental (q-k) diagrams. This indicates that
a given flow value can be achieved by slightly different densities (occupancy rates),
because of different traffic compositions. More specifically, an increase in density or
occupancy without a corresponding increase in flow tends to suggest an increase in the
proportion of long vehicles (e.g., trucks and buses), and vice versa. There are certain
correlations between the class-specific (lane-specific) information and the aggregate
data. The estimation rules can be trained to capture these plausible correlations, us-
ing individual vehicle data as “ground truth”, since then all of the (typically) observed
variables and those to be estimated are available exactly. A natural question is to see
how site-specific this technique is, and how much individual vehicle data do we need
to collect when calibrating the estimation laws for a new site.

In our estimation rules, we need to take into account the full details provided in aggre-
gate loop data, and this varies subtly from country to country. For example, in the UK,
the aggregate data also reports counts disaggregated by vehicle class (but not jointly
disaggregated by lane and class) besides the lane-specific speed, occupancy and count.
In Spain, speed stratification information, giving the counts of vehicles separated by
different speed thresholds, is also available. In contrast, single loops from most coun-
tries provide only aggregate count and occupancy by lane, yet still some progress is
possible with our estimation technique.

The next section introduces the basic mathematical structure of the multi-linear regres-
sion methodology, including the error measure to evaluate its performance. Then, we
describe the “ground truth” individual vehicle data to calibrate the regression, and the
standard aggregate-data scenarios which are representative of typical loop implemen-
tations around the world. Finally, initial results and error analysis of the algorithm are
provided.

6.3.2 Methodology

This section describes the structure of the rules for estimating multi-lane multi-class
counts from standard aggregate loop data. Our study is a regression analysis from
inductive statistics, where we make inferences for the correlation between lane/class
disaggregated counts as output variables and standard aggregate data as input variables,
see e.g., (Freedman, 2005). It is well known that the regression method can provide
the forecasts/estimates and it is easy to apply. In general, the estimation rules take the
form:

yτ ≈ ŷτ = f(Xτ ,β ) (6.16)
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where τ is the index of the individual analysis time interval; yτ is the vector of Nout

(exact) output variables and ŷτ denotes the related estimates; f denotes the model (fit)
functions; Xτ is the vector of Nin input variables; and β is a vector of a Npara parame-
ters. We have experimented with various forms of nonlinear model functions but found
that they improved the fit only very marginally over linear functions of the form:

f(Xτ ,β ) = AXτ +b (6.17)

which we use throughout the remainder of this study. Here, A is an Nout x Nin matrix,
b is a vector with Nout elements, and β is a vector of Nout(Nin +1) elements, listing all
of the elements of A and b.

The fitting problem then concerns the optimal selection of the parameters β for a train-
ing set consisting of NT pairs of the form (Xτ , yτ ), which is constructed from individ-
ual vehicle data (see Sections 6.3.4 and 6.3.3). The method applied is least squares
multi-linear regression analysis, where we aim to minimise the sum E of the squared
errors/residuals between the estimates and the actual values in the data set, that is:

argmin
β

E = argmin
β

NT

∑
τ=1
||rτ ||22, with rτ = yτ − ŷτ . (6.18)

Here, rτ is an Nout-element vector of residuals between the estimates and the actual
values (ground truth) of the output variables at the τ th time interval. This is a quadratic
program which can be solved with standard computational techniques.

To assess the performance of the estimation, we use the Relative Total Count Differ-
ence (RTCD) which is the sum of absolute differences between the estimates and the
ground truth divided by the total counts of the surveyed data set, given by:

RTCD =

NT
∑

τ=1
||rτ ||1

TotalFlow
. (6.19)

Here, the term “TotalFlow” is introduced to normalise the error measures between data
sets with different total traffic demands. Note that the RTCD error is not exactly what
is minimised in the regression analysis, but provides a more intuitive measure of the
fitting performance. Later we will present this error measure both for calibration sets
(where β is chosen to minimise E), and for evaluation sets (where β is held fixed at
values determined by independent calibration sets).

Finally, in practice, the computations are simpler and have fewer degrees of freedom
than the fully general structure that we have provided here. In particular, it may seem
that there are Nout =NLNC output variables, which are the multi-lane multi-class counts
for a given analysis interval. However, constraints such as equation (6.15) imply that
these outputs are linearly dependent. As a result, the entries of β are linearly depen-
dent, and there are fewer than Nout(Nin+1) parameters to estimate. The size Nin of the
input variable vectors depends on the precise format of the aggregate loop data under
consideration, and which of its entries are used in the estimation. These details are
mapped out in Section 6.3.4.
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6.3.3 Individual vehicle data environment

Individual vehicle data (IVD) from the UK and the Netherlands are used to provide
the “ground truth” in our study. IVD data typically include passage time (τκ ), speed
(vκ ), lane number (Lκ ) and length (lκ ) of each vehicle (κ = 1,2, ...) as it passes each
detector. Note that a vehicle (κ) can generally be classified according to its length:
we let ĺ j denote the upper length limit of class j (= 1,2, ...,NC) so that ĺ j−1 < lκ < ĺ j

implies that vehicle κ belongs to class j, where ĺ0 := 0.

This IVD can be rolled-up into any aggregate-data format that we choose: to emulate
either existing data formats (see Section 6.3.4) or new ones that include the complete
disaggregation by lane and class. Consequently it can be used to learn and test the
relationship between multi-lane multi-class counts and existing aggregate formats.

The British IVD come from the Active Traffic Management (ATM) section of the mo-
torway M42 near Birmingham in the UK (Highway-Agency, 2011). This section has
an unprecedented coverage of inductive loop detectors, with a nominal spacing of
100m. During 2008/09, 16 consecutive detectors on the North-bound carriageway were
enhanced so that, amongst other improvements, the full IVD of all vehicles driving
through the one-mile section was recorded (Wilson, 2008). The motorway is equipped
with dynamic speed control systems and features hard shoulder running in peak hours,
expanding the width of the carriageway from three lanes to four lanes in each direc-
tion. Furthermore, the enhanced section includes an on-ramp. However, to simplify
matters in this initial study, we consider only periods where the dynamic control sys-
tems are turned off (since they have a complex effect on lane utilisation) and we use
the loop detectors which are furthest downstream from the ramp, in order to minimise
its influence.

The Dutch IVD come from a group of consecutive loop detectors (about 500 meters
apart) on the east-bound carriageway of freeway A15, which connects Rotterdam to
the German border. The individual vehicle data are available for the period 8-17 April
2006, basically the same format as the British data, including the passage time, speed,
lane number and length of each vehicle. In contrast to the British data, there are neither
control interventions nor peak lanes implemented on the Dutch study section on the
given period, so there is no need to discard data to simplify the analysis. The detector
located with milepost A15-88.02km is used, at which point the carriageway consists
of two lanes.

6.3.4 Aggregate data scenarios

As we have discussed, the standard inductance loop implementations in many countries
(the US, and most of the countries in Europe, e.g. the UK, the Netherlands, Spain,
France, Germany, Italy etc.) generally provide aggregate flow (qL

i ) and occupancy
(OccL

i ) by lane, in addition to aggregate speed (vL
i ) for dual-loop systems, over a given

measurement interval ∆T .
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However, the details of each implementation are slightly different and some provide
extra data in addition to that listed above. If possible, these extra data should be used in
the estimation procedure, i.e., they should be listed as additional elements in the input
variables Xτ . As examples of what might be achieved, we consider three representative
international data scenarios. Scenario 1 models UK MIDAS (Motorway Incident De-
tection and Alert System) data, where counts are disaggregated by lane and by class,
but not jointly by lane and class. Scenario 2 is the basic US (single loop) situation
where only flow and occupancy are available. Scenario 3 is a model of Spanish data,
where flow is disaggregated by speed thresholds.

Note that our approach is to emulate each of the given scenarios in the analysis that
follows. This means that we need not use real aggregate data from the UK, US, Spain
etc. Rather, we use British and Dutch individual vehicle data as described in Section
6.3.3, and create our own aggregates from it, according to the rules of the various
scenarios. Of course, our approach is thus limited in that it cannot evaluate differences
in lane utilisation behaviour between the US, Spain etc., because the underlying data
is British/Dutch. Such study remains for future work.

The details of the three scenarios are as follows.

• Scenario 1: a model of UK MIDAS data, in which, in addition to the standard
dual-loop by-lane data given above, counts are disaggregated into four vehicle classes,
where class 1 corresponds roughly to passenger cars, class 4 to heavy goods vehicles,
and classes 2,3 represent vehicles of intermediate lengths. Therefore, similar to lane
counts qL

i , we let qC
j denote counts disaggregated by class j, where the superscript C

denotes aggregation by class. Analogous to equation (6.15), we thus have

qC
j =

NL

∑
i=1

qi j, for each i = 1,2, ...,NC. (6.20)

Whereas true UK MIDAS data have NC = 4, to simplify matters here, we will group
together all vehicles that are longer than typical passenger cars (of 5.0 meters), referred
to as the “lorry” class, and work with NC = 2. This choice will apply throughout this
study for all the other scenarios too. In scenario 1, we have not used the speed and
occupancy data in the estimation procedure, so each input vector Xτ , in full, consists
of Nin = NL +NC entries, namely qL

i (i = 1,2, ...,NL) and qC
j ( j = 1,2, ...,NC), and the

output vector ŷτ consists of NLNC entries. However, as we have discussed, constraints
(6.15) and (6.20) imply that the component flows are linearly dependent, and it thus
follows that we may work with N′in = NL +NC− 1 and N′out = NLNC−NL−NC + 1,
noting that the NL +NC constraints (6.15) and (6.20) when taken together have rank
degeneracy of one. See Table 6.3.

• Scenario 2: Single loop data format - i.e., a US-type situation, where only occupancy
and flow are available, disaggregated by lane. Each input vector Xτ consists of Nin =

2NL entries, and these may not be reduced because only constraints (6.15) apply, which
in themselves are linearly independent. In full, each output vector ŷτ has Nout = NLNC
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Table 6.3: Matrix of the output variables qi j. Equation (6.15) implies constraints on the
row-sums, and equation (6.20) (for scenario 1) implies constraints on the column-sums

Count Matrix Class NC→ counts by lane
Lane q11 ... q1NC

NL ... qi j ... qL
i

↓ qNL1 ... qNLNC

counts by class qC
j

Table 6.4: The numbers of input and output variables for each of the data scenarios.
N′para denotes the minimal number of parameters that need to be estimated so that all
other quantities can be estimated from them

Data Source Nout N′out Nin N′in Npara N′para := N′out(N
′
in +1)

Scenario 1
UK 6 2 5 4 36 10
NL 4 1 4 3 20 10

Scenario 2
UK 6 3 6 6 42 21
NL 4 2 4 4 20 10

Scenario 3
UK 6 3 5 5 36 18
NL 4 2 4 4 20 10

entries, but one may exploit their linear dependence, from equation (6.15), to work
with a reduced set of N′out = NLNC−NL linearly independent output quantities.

• Scenario 3: a model of Spanish data formats - as in addition to the usual by-lane
data, a speed stratification is provided. Speed stratification means that a count qv∗ of
vehicles travelling at a speed lower than a threshold v∗ is provided. Usually, the counts
for two distinct speed thresholds are given, namely 50km/h and 100km/h (Soriguera
& Robusté, 2011). In this case, each input vector Xτ consists of NL + 2 entries (the
count for each lane and below each speed threshold), since in common with the other
scenarios, we have chosen not to use the speed data - or indeed, the occupancy data
(like scenario 1, but unlike scenario 2). The output vector ŷτ has Nout = NLNC entries,
which as for scenario 2, may be reduced to N′out = NLNC−NL linearly independent
output quantities.

All this information concerning the numbers of input and output variables for each of
the scenarios is summarised in Table 6.3 and Table 6.4. Note that, the selection of
independent output quantities does not influence the results of the fitting procedures,
because the error components of all the output variables have been incorporated in
equation (6.18).

Example: consider the case of a two-lane carriageway with two vehicle classes. There
are four unknown elements in the output “count matrix”. However, in scenario 1 (UK-
like), there are four constraints, two relating to lane counts, and two relating to class
counts. However, the rank of the constraints is three (four minus the rank degeneracy
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of one), implying that there is only one degree of freedom (four degrees of freedom
minus three linearly independent constraints) in the output variables. It is thus possible
to write all output quantities in terms of a single output quantity, e.g. q11. So how many
(scalar) parameters need to be fitted? Using the matrix notation introduced in Section
6.3.2, we have q11 = b1 +A11X1 +A12X2 +A13X3 +A14X4, with the usual indexing
notation for the elements of A and b. We use X1 = qL

1 ,X2 = qL
2 ,X3 = qC

1 ,X4 = qC
2 .

However, because X1+X2 = X3+X4, there are only three independent input quantities.
We might thus simplify matters by using the new input variables qTOT , ϕ , and ψ , with
X1 = qTOT/2+ϕ/2, X2 = qTOT/2−ϕ/2, X3 = qTOT/2+ψ/2 and X4 = qTOT/2−ψ/2.
It follows that there are only four independent parameters to be determined, which are
b1, ζ = (A11+A12+A13+A14), η = (A11−A12) and θ = (A13−A14). The other cases
may be worked out in a similar fashion, but with much more complicated algebra that
we do not present here.

6.3.5 Results

To illustrate the entire procedure, we firstly take individual vehicle data (described in
Section 6.3.3); we then roll it up into standard aggregate formats, that we call scenarios
(see Section 6.3.4); furthermore, we also roll it up into an aggregation which describes
the complete breakdown of flow by class and lane. All of these aggregates have time
resolution ∆T (=1 minute). We then aggregate the data up into larger “analysis inter-
vals”, which are of length T . In this section we choose T =10 minutes. (An analysis
of the effect of different choices of T follows in Section 6.3.6. In sum, if T is too
small, our results become swamped by statistical sampling error, whereas if T is too
large, the applicability of our technique for online traffic estimation becomes rather
limited.) We then use the aggregates over T to perform the multi-linear regression pro-
cedure described in Section 6.3.2, which relates multi-class multi-lane counts to the
standard aggregate variables. For all the scenarios, the calibration data sets are taken
from the weekdays 2nd Oct 2008 in the UK and 10th Apr 2006 in the Netherlands
(NL), respectively. For validation, other days with similar traffic patterns are tested.

Example continued. Let us follow through the procedure described above for the
set-up that was introduced at the end of Section 6.3.4, namely for the Dutch (2-lane)
individual vehicle data and the UK-like scenario aggregates. The regression determines
the following optimal values for the parameters in the estimation rule for q11 (the
count of cars in lane 1): b1 = 0.614, ζ := (A11 + A12 + A13 + A14) = 0.008, η :=
(A11−A12) = 0.996, θ := (A13−A14) = 0.991. Here, ζ describes the marginal effect
of the total flow on q11 - which we can see is insignificant. The interpretation is that
if the total flow is increased in equal proportion across lanes and vehicle classes, we
would expect most of the extra cars to drive in lane 2. The parameter η describes the
marginal effect on q11 with respect to the lane 1 flow minus the lane 2 flow, and the
parameter θ describes the marginal effect with respect to the car flow minus the “lorry”
flow. We can see their effects are significant: for example, the interpretation for η is
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Table 6.5: RTCD error measures for different scenarios using both British and Dutch
inputs

Calibration Validation
UK: Thu. 2nd Oct 2008 UK: Tue. 7th Oct 2008

NL: Mon. 10th Apr 2006 NL: Wed. 12th Apr 2006

Scenario 1
UK 6.44 5.79
NL 0.95 1.20

Scenario 2
UK 6.71 6.87
NL 3.69 3.68

Scenario 3
UK 9.67 9.43
NL 8.03 7.85

that if lane 1 flow alone is increased with no increase in the total flow, then half of the
extra flow in lane 1 is cars. Regression results (parameters) from other cases can be
interpreted in a similar way.

So how well does the estimation procedure work throughout a given days data? See fig-
ures 6.10 and 6.11, which respectively present time series of estimates and the ground
truth data from scenario 1 (UK-like) using the UK and Dutch data sets. In the case of
calibration (Subfigure 6.10(a) for UK-IVD and subfigure 6.11(a) for NL-IVD), all the
estimated curves lie almost exactly on top of the ground truth data (see the example
zoom in the subfigure 6.10(a)). This indicates the estimation rule works well on both
the British and the Dutch input data sets that it was calibrated with, in terms of all
the output quantities. Moreover, the calibrated estimation rules are validated by good
predictions on independent data sets corresponding to different days of the week (see
subfigures 6.10(b) and 6.11(b)).

Subfigures 6.10(c) and 6.10(d) show the RTCD errors over all the individual output
quantities, which are at the same level. The slightly larger RTCD error on q22 and q32

(“lorry” class on the fast-vehicle lanes 2 and 3) can be explained by the fact that for
relatively low lorry flow the relative count error becomes large.

Let us now analyse the quantitative performance of the method, for each of the aggre-
gate data scenarios, and for each of the input sets. See Table 6.5. The error indicators
for the calibration sets and corresponding validation sets are of the same order, in-
dicating that the method is able to estimate the flow decomposition when trained on
relatively small amounts of ground truth data.

The estimation with the UK-like scenario outperforms other scenarios in terms of
both the calibration and the validation, to a quite remarkable degree when using the
Dutch input data. (Since counts by class are provided in scenario 1, the performance
is expected to be good.) The estimation with the single-loop scenario 2 surprisingly
achieves a similar level of accuracy to scenario 1. Although class counts are not avail-
able in scenario 2, it seems the occupancy information can partially reflect the class
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(b) UK - Validation set (Tue. 7th Oct. 2008)
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Figure 6.10: Comparison of time series for estimates and ground truth data in scenario
1 using the UK data set.
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(a) NL - Calibration set (Mon. 10th Apr. 2006)

(b) NL - Validation set (Wed. 12th Apr. 2006)

Figure 6.11: Comparison of time series for estimates and ground truth data in scenario
1 using the Dutch (NL) data set.
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Table 6.6: Validation results for scenario 1 over several days using both the British and
the Dutch IVD (Note that: Weekend sets are marked with grey shading.)

Scenario 1
Calibration Validation

1 2 3 4 5 6 7 8
UK 6.44 5.07 5.91 5.79 6.29 5.93 6.56 12.08 9.19
NL 0.95 1.05 1.20 1.10 1.11 0.67 0.86 1.02 0.79

information, since a high occupancy might imply a high flow of lorries. The fitting
in the speed-stratification scenario 3 is rather limited compared to scenarios 1 and 2.
The standard speed stratification uses two speed thresholds, namely 50 and 100 km/h,
whereas the typical free flow speed of lorries is 80-90 km/h. Hence, it is possible to
assume that a different set of thresholds may help classify the flow better. Note that
the performance of scenario 3 is quite sensitive to speed limit controls, because these
typically result in a very small speed variance, so that all vehicles are counted in the
same speed bin, irrespective of their classes.

Compared to the British data set, two lanes rather than three lanes of carriageway are
distinguished in the Dutch data set. This implies that there is less complexity in the
lane utilisation behaviour. For instance, the lorry flow drives mostly in lane 1 (the
right lane) at our Dutch site (see the right half of the subfigures 6.11(a) and 6.11(b))
rather than distributed over lanes as in the British case. Intuitively, it seems that the
estimation errors would decrease accordingly and this is confirmed by the results of
each scenario using the two data sources.

Table 6.6 investigates the validation question in more details. We focus on scenario
1 calibrated on a single day of data for each of the UK and Dutch data sets, and test
against eight different validation days. The errors for all the test cases are of about
the same level (except for two UK weekend sets), which implies that the calibrated
estimation rule from one day can be applied to other days (weekdays). Similar results
can be obtained for the other scenarios. Note that, the British data sets for validation
(from 1 to 8) are respectively from Wed.1st Oct, Mon.6th Oct, Tue.7th Oct, Wed.8th
Oct, Thu.9th Oct, Fri.10th Oct, Sat.4th Oct and Sun.5th Oct (2008). The Dutch data
sets for validation are respectively from Tue.11th Apr, Wed.12th Apr, Thu.13th Apr,
Fri.14th Apr, Mon.17th Apr, Sun.9th Apr, Sat.15th Apr and Sun.16th Apr (2006).

These validation sets are taken from both weekdays and weekends, the main difference
between which is that the proportion of lorry (class 2) flow tend to be significantly
lower at weekends. According to our preliminary calculations, the proportion of lorry
flow drops from about 30% at weekdays to about 10% at weekends in the British
IVD, while in the Dutch case, this value changes from around 20% to lower than
5%. This will have a direct influence on lane utilisation. As a result, the estimation
rule calibrated from a weekday may not be applied to the weekend without further
investigation and analysis. To illustrate this, note that the UK validation sets 7 and
8, which correspond to the weekend, show a significant increase in error. In contrast,
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the weekday calibrated estimation rule works well on any day of the week (including
weekends) in the Dutch data. This result is a major surprise: it is almost certainly due
to the less complicated lane utilisation in the Dutch data, and the tendency there for
most of the lorries to drive in lane 1.

6.3.6 Error analysis

We now give a preliminary error analysis of the estimation method that we have devel-
oped. There are two main questions:

• Q1: What is the effect of varying the analysis interval T ?

• Q2: How large do the training sets need to be? For a given size of training set, what
are the error bars on the regression parameters?

To simplify the presentation, we illustrate our study by using the (UK-like) scenario 1
and training sets based on the UK IVD set from Thu. 2nd Oct 2008. In particular, we
avoid using the Dutch IVD because the lane utilisation appears too simple for this data
to yield an error analysis that is representative of more general situations.

Let us first consider Q1. Up to now, we have worked with an analysis interval of T =10
minutes. Table 6.7 shows how the RTCD error (for the calibration set) changes as
we vary T . To clarify, when we use e.g. T =30 minutes, there are only one third as
many data pairs to feed into the regression analysis as there are with T =10 minutes.
Note that the normalisation of the RTCD error by the total flow implies that there is no
inherent bias in the error measure due to the number of analysis intervals over which it
is computed.

As we might expect, the RTCD error decreases as T increases, owing to the effect of
sampling error. To clarify, even if the traffic conditions were entirely homogeneous
over the calibration set (and they are not), then in any one interval we would expect
random variations in the proportions of the multi-lane multi-class counts, which the
estimator cannot reproduce. This effect is most severe for short analysis intervals,
e.g. for T = ∆T = 1 minute. According to classical statistical theory, the sampling
error should decay like the reciprocal of the square root of the length of the sampling
interval. However, our errors decay a little more slowly, because as we increase T , we
also mix together different sorts of traffic conditions which in itself introduces error.
In practice, there will always be a play-off between the sampling error and the time
resolution, and the optimal choice of T will depend on the application in question.

Let us now address Q2. We expect that the details of lane utilisation will vary subtly
from site to site, even within the same country. Thus a limitation of our method is
that for each new site where it is applied, individual vehicle data must be collected in
order that the estimator can be calibrated. In practice, this means the installation of
extra equipment at the roadside (so-called engineers’ terminals) to capture individual
vehicle data at source. Alternatively, we may use other techniques, such as the analysis
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Table 6.7: Error indicators for scenario 1 in terms of different analysis intervals

T (minute) RTCD (%)

Scenario 1 1 15.29
UK-Calibration 5 8.03

Thu. 2nd Oct 2008 10 6.51
20 5.44
30 4.94

Table 6.8: Error indicators for scenario 1 in terms of different portions of data set

% of data set (random samples) RTCD (%)

Scenario 1 5 8.33
UK-Calibration 10 7.87

Thu. 2nd Oct 2008 25 6.71
T = 10 50 6.63

75 6.60
100 6.51

of CCTV 1 video pictures, to generate the ground truth data set. For whichever method
is used, it involves considerable expenses and inconveniences. (If it did not, then
there would be no purpose to the present study - because multi-lane multi-class counts
would then be easily accessible in an operational context, without any of the estimation
procedures that we have developed here.)

The upshot is that there is a strong practical interest in deriving an acceptable estimator
with the bare minimum of calibration data. The results derived so far each use one full
day of data. We now attempt to calibrate the estimator by using subsets of one full
day of data, see Table 6.8, where we report the RTCD when the estimator is then
evaluated over the whole of that day’s data. Because the flow characteristics vary
with time of day, we have selected the analysis intervals at random so as to give a
representative spread of lane utilisation behaviours. In that sense, the results presented
here are slightly optimistic, because in practice one may only wish to collect data for a
short contiguous period during the day, in which case the performance of the estimator
which is thus calibrated may be very poor at other times of the day. However, the
headline result is remarkable - the error is almost unchanged when we use one quarter
of the original data, and acceptable results may be derived with just 5% - that is, with
only one hour of individual vehicle data.

The second part of Q2 concerns the formal identification of error bars for the esti-
mated parameters from any given (fixed-size) calibration set. To answer this question,
we return to calibrating the parameters with one day of ground-truth data, and with the

1CCTV: Closed-Circuit TeleVision.
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Table 6.9: List of parameters and their standard deviations (in proportion to its mean)
for scenario 1 based on the UK calibration set using bootstrapping (100 samples) (T
=10, fitting for counts q11, q22)

Constant terms Linear coefficients
b1 b2 A11 A12 A13 A14 A21 A22 A23 A24

mean 1.593 4.246 0.152 -0.316 -0.371 0.461 0.115 0.540 0.408 -0.404
std. 0.488 0.557 0.034 0.031 0.055 0.051 0.032 0.034 0.055 0.052
(%) 30.6 13.1 22.2 9.8 14.8 11.1 27.8 6.2 13.4 12.8

analysis interval fixed at T =10 minutes. To analyse the statistical distributions of the
regression parameters, we should ideally have access to many days of individual vehi-
cle data when the traffic conditions were similar, and perform the calibration procedure
for each. However, because individual vehicle data are at a premium, this procedure
will usually not be possible.

The technique we thus apply is the bootstrap method (Wu, 1986) to a single day of data
which has been aggregated with T =10 minutes. In this method we randomly sample
the real data (with replacement) to generate many emulated days’ data, each of which
should be broadly characteristic of the original. The regression procedure may then
be carried out for each of the emulated days in turn. Thus the statistical properties of
the regression parameters may be computed. Results are presented in Table 6.9 for a
bootstrap giving a population of 100 emulated days. The standard deviation for each
parameter is in relatively small proportion to its mean, thus generally lending support to
the stability of the technique when calibrated over a full day of data. A more thorough
analysis with formal confidence intervals etc. remains for future work.

6.3.7 Conclusions

The study in this section has proposed a new method to estimate multi-class and multi-
lane counts from standard formats of aggregate loop detector data. We considered
three formats as typical representatives of those captured around the world, namely (i)
a UK-style format where counts are captured by class and by lane, but not jointly by
class and lane; (ii) a US-style single-loop format in which only occupancy and counts
are available (by lane); and (iii) a Spanish-style format in which counts are given by
lane, and also according to a speed stratification - meaning that counts of vehicles
in different speed bins are provided. In all cases, a simple linear regression method
was able to estimate with some success the multi-lane multi-class flows, provided the
analysis interval was taken sufficiently long (e.g. T =10 minutes) to reduce the effect
of sampling error.

Not surprisingly, the method works best on the UK-style data, because this contains the
most information. However, the minimal US-style data also yield good estimates of the
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multi-lane, multi-class counts - probably because an increase in occupancy without a
corresponding increase in flow provides information which tends to suggest an increase
in the proportion of long vehicles. The method works least well on the Spanish-style
data, although it is possible that alternative choices for the speed thresholds could de-
liver better results - this analysis remains for future work. Note that more complicated
fits than those presented here are possible - for example, the UK-style calculation could
incorporate speed and occupancy as input variables - in which case it would presum-
ably deliver even more refined results. Similarly, although our initial analyses indicated
that there was little benefit in incorporating nonlinear terms in the model functions, it is
possible that they deliver improvements for more complicated regressions than those
presented here. Throughout this study our approach has demonstrated the potential
power of this very simple regression technique, rather than to exhaustively compute all
the different ways in which it can possibly be applied.

A significant drawback of the method is that it requires the acquisition of representative
samples of initial vehicle data (IVD) for each new site in which it will be operated.
Obviously, if such IVD were continuously available at no cost, then our method would
have no purpose - because the multi-lane multi-class counts could be computed exactly
from the IVD in an ongoing operational fashion. So the potential added value in our
method is that quantities which would normally need to be computed from IVD can
instead be computed from standard aggregate loop data, albeit IVD must be collected
for a short start-up period in order to calibrate the regression parameters. Our initial
error analysis indicates that very short periods of IVD collection - perhaps as little
as one hour - would be adequate for calibration, providing they were to contain a
representative mix of the various flow regimes that will be observed at that site.

Unfortunately, one hour will not usually span a representative mix of flow regimes.
In particular, the proportion of trucks is often significantly different at nights and at
weekends, and so at the very least there must be calibration data for a range of different
time periods. Indeed, for optimal accuracy, each site should probably have a different
regression law depending on the day of week / time of day, and possibly on other
aspects of the macroscopic traffic conditions. For instance, if speed controls / lane
management are in operation, lane utilisation will usually be different, and a different
regression law may be required to capture this behaviour.

Detailed studies of (i) how best the site-dependent calibration may be performed; (ii)
of how lane utilisation varies from country to country; and (iii) of how these methods
may be incorporated in dynamic traffic management, remain for future work.

6.4 Summary

This chapter has proposed two new methods to process data from traffic sensors in the
real world, and thus can enhance their usefulness for multi-class traffic state estimation.
The experimental results show that both methods are effective, efficient and robust.
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They have a wide range of potential applications for both researchers and practitioners
alike.

All these data pre-processing methods serve the purpose of accurate and reliable traf-
fic state estimation. After the data pre-processing step, speed bias can be eliminated
from observations, class-specific inputs can be obtained for multi-class state estima-
tion. This will certainly benefit generic Lagrangian multi-class traffic state estimation
systems in reality.
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Chapter 7

Conclusions and recommendations

This last chapter synthesises the main findings of the thesis. Furthermore, the research
implications for traffic state estimation studies are highlighted in terms of both scien-
tific originality and societal relevance. The chapter ends by discussing a number of
possible future research directions.



140 Lagrangian Multi-Class Traffic State Estimation

7.1 Main findings and conclusions

This thesis has developed a Lagrangian multi-class traffic state estimation method,
which offers both computational and theoretical advantages over the conventional Eu-
lerian method, as well as providing timely, accurate and reliable class-specific traffic
information for Dynamic Traffic Management (DTM) at a network level. The data
pre-processing methods that we have developed improve both model and observation
inputs, and thus can additionally benefit real-world traffic state estimation.

In this study, the Lagrangian approach has been generalised to both mixed-class and
multi-class levels. Three components in traffic state estimation are specified: 1) The
Lagrangian mixed-class first-order traffic flow model is applied as the process model
to describe the evolution of traffic states, where vehicle spacing is used as the system
state. For the multi-class case, two modelling and discretisation choices are identified,
namely the “Multi-pipe” and “Piggy-back” formulations. Their related pros and cons
are discussed. The latter one is applied as the process model in the estimation frame-
work that follows. 2) An improved differentiable Lagrangian fundamental relation
is used to define the relations between traffic states and Lagrangian sensing observa-
tions. In addition, a new observation model for incorporating Eulerian sensing data
is developed based on notions from first-order traffic flow theory. These models are
applied for both mixed-class and multi-class methods. 3) As a real-time applicable
method, the EKF is adopted for data assimilation. Because it is more efficient than
other computational methods, it can be applied with non-mode-switching mixed-class
and multi-class traffic systems. Moreover, the newly developed node models enable
the extension of the Lagrangian traffic state estimation to a network level. A series of
experimental studies based on both synthetic and real-world data have been performed
to test and validate the proposed methods. Both Eulerian and Lagrangian sensing data
are incorporated within the Lagrangian state estimation.

Firstly, experimental studies have validated both the mixed-class and the multi-class
traffic state estimation approaches. Secondly, since more accurate estimation results
can be achieved in the experiments, the Lagrangian mixed-class traffic state estimation
has been seen to outperform its Eulerian counterpart. It also offers both theoretical
and computational benefits. This is due to improvements in both the prediction step
and the correction step of the data-assimilation method: (i) the Lagrangian formula-
tion enables more accurate and efficient simulation of freeway traffic and thus leads
to more accurate predictions; (ii) due to the non-mode-switching numerical solution,
the Lagrangian method is a more appropriate choice for the application in the EKF.
Accordingly linearisation of the process model around capacity is a much better ap-
proximation in Lagrangian coordinates than in Eulerian coordinates. In the latter case,
it may lead to sign errors, whereas in the former the errors pertain to the magnitude of
the corrections only. Therefore, this leads to improved performance particularly at the
boundaries of congestion (state transitions). Thirdly, the multi-class approach makes
proper use of diverse types of class-specific observation data, and it thus improves the
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performance of state estimation compared with the mixed-class approach. The experi-
ment that we presented on a real traffic network (the A15) demonstrates that multi-class
Lagrangian state estimation can provide accurate and reliable class-specific traffic in-
formation at a network level. This offers another efficient and reliable opportunity for
real-time traffic state estimation in traffic management.

This thesis additionally addresses the importance of data pre-processing and prepara-
tion for the application of multi-class traffic state estimation in the real world. Two
methods have been developed. The first one is a speed-bias correction algorithm. It
corrects biased speeds inherited from dual-loop detectors, based on the first-order traf-
fic flow theory and empirical flow-density relationships. The other one develops a
procedure for estimating multi-class and multi-lane traffic counts based on a variety of
standard aggregate loop data formats. It relies on the notions from inductive statistics.
We can conclude from the experimental results that both methods are quite effective,
efficient and robust.

7.2 Research implications

The Lagrangian multi-class formulations for traffic state estimation research are sci-
entifically innovative and provide practical solutions for problems which cannot be
properly addressed by existing methods. This thesis has demonstrated that the pro-
posed Lagrangian formulation is suitable and beneficial for traffic state estimation, in
terms of traffic simulations, incorporating Lagrangian data, and the application of the
data-assimilation (EKF) method. Therefore, it suggests the future employment and
investigation of the Lagrangian formulation for traffic state estimation, as a new re-
search direction. The multi-class state estimator can make proper use of class-specific
observations (e.g., multi-class loop or trajectory data) to estimate class-specific traffic
states. Therefore, the newly developed Lagrangian multi-class traffic state estimator
can be applied to promote a model-based decision support system for real-time traffic
network management.

This study has presented a novel classification framework for model-based state es-
timation research with regards to different coordinate systems (mathematical formu-
lations). This taxonomy allows the identification of potentially beneficial research
angles. The identified research gaps based on the new taxonomy have been filled and
investigated by the current study. However, this study only applies the first-order traffic
flow theory for traffic modelling and the EKF for data assimilation. This implies that
other traffic flow modelling and data-assimilation approaches can be further studied in
the framework of Lagrangian formulation, with advantages expected along the same
lines as shown in this thesis.

Traditionally, the performance of traffic state estimation can be improved by using
more advanced and sophisticated assimilation methods. This research has shown that
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its performance can alternatively be enhanced by choosing more appropriate and suit-
able traffic system models (which are used in the data-assimilation framework). First
of all, the Lagrangian formulation of the first-order traffic flow model does not re-
quire mode switching. This characteristic provides more accurate simulation results
and straightforward numerical discretisations, which is beneficial for state estimation.
Second, the Lagrangian formulation provides an ideal framework to incorporate the
data from probe vehicles and mobile phones. Therefore, these Lagrangian sensing
data can be used for assimilation to improve accuracy.

Meanwhile, the Lagrangian state estimation method sheds some light on in-car lo-
calised information (state estimation) systems. The concept in this thesis can be used
in vehicle-to-vehicle cooperative systems. Individual vehicles or vehicle platoons can
be treated as independent state estimation units, locally estimating the states of their
adjacent moving units or transmitting the states of themselves.

This thesis has also developed two new methods to pre-process data from traffic sen-
sors, with the purpose of data cleaning and data mining. These methods enable the ap-
plication of Lagrangian multi-class traffic state estimation approach in the real world.
They also have a wide range of potential applications for both researchers and practi-
tioners alike.

7.3 Future research directions

In the final section we provide some possible directions for future research. First of
all, the concept of Lagrangian formulation is not restricted to the first-order traffic flow
model with the EKF technique, but can be further applied to other data-assimilation
techniques (e.g., UKF, EnsKF, and PF) combining with other types of macroscopic
traffic flow models (e.g., second- or even higher-order traffic flow models). For in-
stance, the Lagrangian formulation can be applied to a multi-class second-order traffic
flow model within a particle filtering framework, for which we expect similar compu-
tational and theoretical improvements as those shown in this study.

Regarding multi-class traffic flow modelling and discretisation in Lagrangian coordi-
nates, this thesis presents two alternatives: 1) the “Piggy-back” formulation, where
only one vehicle coordinate system is used for the reference class; 2) the “Multi-pipe”
formulation, where separate coordinates for different vehicle classes are introduced.
The “Piggy-back” formulation is used in this study since it is suitable for the EKF
method. However, there are limitations regarding class-specific control and mod-
elling network discontinuities. To further improve state estimation for class-specific
traffic management, a “multi-pipe” model could be employed within a different data-
assimilation framework. Meanwhile, the additional computational effort should be
taken into account.

The proposed state estimation method in this study applies a global approach for the
EKF. This means the assimilation procedure operates on a global matrix containing
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all system state variables in the entire network. When the state dimension increases
with the network scale, the efficiency of this method will be limited by the required
computational effort. This problem can be solved by using a localised EKF (L-EKF)
technique (Van Hinsbergen et al., 2012). In the L-EKF, corrections are only performed
to the states of cells that have considerable error covariance with the observation cells,
indicating that operation with a global state matrix is no longer required. A Lagrangian
formulated state estimation based on the L-EKF remains for future work.

In this thesis, the concept of network-wide state estimation has been validated based
on a relatively simple example considering on-ramp sources and off-ramp sinks. More
complex situations related to network discontinuities should be taken into account into
traffic state estimation research, such as spillbacks onto the main road upstream of
ramps and/or onto on-ramps. Further work is needed to improve the current imple-
mentation of the node models, and to test and demonstrate the Lagrangian estimator
on more complex and realistic traffic networks.
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Appendix A

Estimation of class-specific
information from mixed-class data

In this section, a method is developed to extract class-specific (density, speed, spacing)
information out from the mixed-class aggregate data. The class-specific outputs can
be further used in multi-class traffic state estimators (as inflow inputs, observations).
In the following, the methodology is presented without giving the proving procedure.
Details about this method can be found in (Van Wageningen-Kessels, 2011).

A.1 Problem description

Initial data for this algorithm consist of total mixed-class densities (in veh./m) and
flow shares per class (e.g., in cars per hour/vehicles per hour). From this data, the
class-specific densities (in veh./m), speeds (in m/s) and spacing (in m/veh.) have to be
derived. We will first do this assuming only two vehicle classes. Later the method will
be extended for the general case with u user classes. In the following we will use these
symbols:

kmix total mixed-class density veh./m
ktot effective density PCE/m
ku density of class u, ∀u veh./m
su spacing of class u (su = 1/ku) m/veh.
vu speed of class u m/s
qu flow of class u veh./s
Vu(ktot) fundamental diagram for class u m/s
pu flow share of class u []
ηu PCE value of class u []
Eu(v1,vu) PCE function of class u (function of speeds) []
E∗u(ktot) PCE function of class u (function of total effective density) []
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A.2 Solution procedure for two vehicle classes

Step 1. Solve for ktot ∈ [0,ktot,max]:[
p2

p1
V1(ktot)+V2(ktot)

]
ktot−

[
p2

p1
E∗2(ktot)V1(ktot)+V2(ktot)

]
kmix = 0. (A.1)

Step 2. Use the fundamental diagram to find the speeds:

v1 =V1(ktot) and v2 =V2(ktot). (A.2)

Step 3. Find k1 and k2 by using:

k1 =
v2

p2
p1

v1 + v2
kmix and k2 = kmix− k1. (A.3)

Step 4. Find s1 and s2 based on the reciprocal relations:

s1 = 1/k1 and s2 = 1/k2. (A.4)

A.3 Solution procedure for U vehicle classes

Step 1. Solve for ktot ∈ [0,ktot,max]:

U

∑
u=1


pu [ktot−Eu(ktot)kmix]

U

∏
i=1

i 6=u

Vi(ktot)


= 0. (A.5)

Step 2. Use the fundamental diagram to find the speeds:

vu =Vu(ktot),∀u. (A.6)

Step 3. Find k1 and all other ku by using:

k1 =
p1 ∏

U
i=2 vu

∑
U
u=1

[
pu ∏

U
i=1, i6=u vi

]kmix and ku =
puv1

p1vu
k1. (A.7)

Step 4. Find su based on the reciprocal relations:

su = 1/ku,∀u. (A.8)



Summary

Road traffic is important to everybody in the world. People travel and commute every-
day. For those who travel by cars (or other types of road vehicles), traffic congestion
is a daily experience. One essential goal of traffic researchers is to reduce traffic con-
gestion and to improve the whole traffic system operation and the environment. To
achieve this goal, we have to first understand prevailing traffic situations, then per-
form pro-active traffic control and management. The estimation of traffic states in the
past, in the present and in the future plays an important role in traffic management
and control systems. This thesis focuses on the development of traffic state estimation
approaches, which provide such traffic state information.

In road networks, traffic states refer to typical quantities, such as travel times, traffic
speeds, traffic flow and density. These quantities reflect the traffic conditions. Based on
these data, we are able to find out when a traffic jam starts, or where a traffic accident
occurs.

However, it is not feasible to get the full picture of traffic states from the current mon-
itoring systems. Due to cost and technical constraints, we can only obtain spatially
and temporally discretised traffic data. These traffic data are collected mainly from
point-based sensors, such as inductive loops, radars, and cameras. Alternatively, traffic
information might be observed by probe vehicles with a selected penetration rate. In
all cases, the detected data usually contain errors and noise, which might hinder further
analyses. Based on these constraints, this thesis aims to develop a traffic state estima-
tion procedure to solve the foregoing problems and to provide accurate and complete
traffic state information. In this procedure, both traffic flow models and the available
observation data are used to estimate the most probable traffic states within a data-
assimilation framework.

Our approach is formulated using a moving observer perspective, resulting in a La-
grangian formulation of traffic state estimation. In the Lagrangian coordinate system,
coordinates move with the vehicles. The Lagrangian formulated first-order traffic flow
model is applied to describe the evolution of traffic state variables. The proposed
Lagrangian formulation of traffic state estimation offers both theoretical and computa-
tional advantages over the conventional Eulerian formation. Moreover, this approach
can capture the dynamics of multiple vehicle classes by implementing a multi-class
traffic flow model. In this thesis, data pre-processing methods are also developed to
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improve the quality of the observation inputs. Both Eulerian and Lagrangian sensing
data are incorporated into the state estimation. The online technique, known as the
Extended Kalman Filter (EKF), is applied for data assimilation: this combines traf-
fic model prediction with observation input correction. Importantly, the Lagrangian
concept is not restricted to the EKF method with the first-order traffic flow model, but
can also be applied to other data-assimilation techniques in combination with more
involved macroscopic traffic flow models. A series of experimental studies based on
both synthetic and real-world data have been performed to test the proposed methodol-
ogy. These studies have validated both the mixed-class and the multi-class traffic state
estimation methods. The results have demonstrated that the Lagrangian traffic state
estimation outperforms the Eulerian approaches in the EKF-based framework, and the
multi-class approach further improves the performance of state estimation compared
with the mixed-class case. In summary, Lagrangian multi-class state estimation can
provide accurate class-specific traffic information for class-specific control applica-
tions and traffic management.



Samenvatting

Wegverkeer is belangrijk voor iedereen ter wereld. Mensen reizen elke dag. Dege-
nen die reizen per auto (of een ander type motorvoertuig) ervaren dagelijks congestie.
Essentiële doelen van verkeersonderzoekers zijn het reduceren van verkeerscongestie,
het verbeteren van het functioneren van het gehele verkeerssysteem en het reduceren
van de effecten van dit systeem op het milieu. Om dit doel te bereiken moeten we
eerst gangbare verkeerssituaties begrijpen om vervolgens proactief verkeersregelingen
en -management toe te passen. Het schatten van verkeerstoestanden in het verleden,
het heden, en de toekomst speelt een belangrijke rol in de verkeersmanagement- en
regelingssystemen. Dit proefschrift focust op de ontwikkeling van aanpakken die deze
verkeerstoestanden schatten.

Voor wegennetwerken geldt dat verkeerstoestanden verwijzen naar typische groothe-
den als reistijd, verkeerssnelheid, verkeersstroom en dichtheid. Deze grootheden geven
verkeerscondities weer. Gebaseerd op deze data kunnen we te weten komen waar een
file start, of waar een verkeersincident gebeurt.

Het is echter niet mogelijk om het complete beeld van de verkeerstoestanden te verkrij-
gen van de huidige monitoringssystemen. Vanwege de kosten en technische beperkin-
gen kunnen we enkel in ruimte en tijd gediscretiseerde verkeersdata verkrijgen. Deze
data worden hoofdzakelijk verzameld met behulp van op een vast punt geı̈nstalleerde
sensoren, zoals inductieloops, radar, en camera’s. Verkeersinformatie kan echter ook
geobserveerd worden met behulp van meetvoertuigen die gemengd worden met het
overige verkeer gebaseerd op een geselecteerd ratio. In alle gevallen bevat de gede-
tecteerde data meestal afwijkingen en ruis, welke verdere analyse kunnen belemmeren.
Gebaseerd op deze beperkingen streeft dit proefschrift naar de ontwikkeling van een
procedure die de verkeerstoestand schat om de genoemde problemen op te lossen en
te voorzien in accurate en complete verkeerstoestandsinformatie. In deze procedure
worden zowel verkeersmodellen als beschikbare observatiedata gebruikt om de meest
waarschijnlijke verkeerstoestanden te schatten binnen een data-assimilatie kader.

Onze aanpak is geformuleerd vanuit het perspectief van een bewegende waarnemer,
resulterend in een Lagrangiaanse formulering van de schatting van de verkeerstoe-
stand. In het Lagrangiaanse coördinatensysteem bewegen de coördinaten met de voer-
tuigen mee. Het Lagrangiaans geformuleerde eerste orde verkeersstroommodel is
toegepast om de ontwikkeling van variabelen die de verkeerstoestand weergeven te



162 Lagrangian Multi-Class Traffic State Estimation

beschrijven. De voorgestelde Lagrangiaanse formulering van de schatting van de ver-
keerstoestand biedt zowel theoretische als rekenkundige voordelen ten opzichte van
de conventionele Eulerse formulering. Deze aanpak kan bovendien de dynamiek van
meerdere voertuigklassen meenemen door het implementeren van een verkeersstroom-
model met meerdere klassen. In dit proefschrift worden ook diverse data voorbe-
werkingsmethoden ontwikkeld om de kwaliteit van de observatie-input te verbeteren.
In de toestandsschatting worden zowel Eulerse als Lagrangiaanse data meegenomen.
Voor de data assimilatie wordt gebruik gemaakt van een online techniek bekend als
het Extended Kalman Filter (EKF). Deze techniek combineert de voorspelling van
systeemtoestanden gebaseerd op verkeersstroommodellen met correctie van de geob-
serveerde input. Belangrijk is dat het Lagrangiaanse concept niet beperkt is tot de EKF-
methode met het eerste orde verkeersstroommodel, maar ook toegepast kan worden op
andere data assimilatie technieken in combinatie met meer geavanceerde macrosco-
pische verkeersstroommodellen. Een serie van experimentele studies gebaseerd op
zowel synthetische als realistische data is uitgevoerd om de voorgestelde methodologie
te testen. In deze studies zijn de procedures voor het schatten van verkeerstoestanden
gevalideerd voor zowel een representatie van het verkeer met een gemengde klasse als
met meerdere klassen. Deze resultaten laten zien dat de Lagrangiaanse schatting van
de verkeerstoestand de Eulerse aanpak overtreft gegeven het op het EKF gebaseerde
kader, en dat de aanpak met meerdere klassen de prestatie van de toestandsschatting
verder verbetert vergeleken met de aanpak met een gemengde klas. Lagrangiaanse
toestandsschatting met meerdere klassen kan voorzien in accurate klasse-specifieke
verkeersinformatie voor klasse-specifieke regelingstoepassingen en verkeersmanage-
ment.

(Dutch translation provided by Olga Huibregtse)
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