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1 INTRODUCTION

Abstract

With the increase of online education, a good
description of learning resources has become
vital for educational resource sharing and
reuse. Resource description has been under
the spotlight in recent years. Educational plat-
forms can benefit from good resource organ-
isation and description, thereby providing a
higher quality of services and attracting more
learners to use their systems. Furthermore,
well-described resources with metadata, pro-
mote content sharing and re-use.

This work starts with an extensive litera-
ture research on metadata generation tech-
niques and breaks the findings down to meta-
data types. A detailed taxonomy of metadata
types, based on this research, is provided. The
taxonomy takes into account properties com-
mon to these types. Second, this work analyzes
the state-of-the-art metadata collection tech-
niques in literature and real-world educational
content repositories including a showcase with
the TUDelft library, in order to estimate the
gap of metadata employment in the field of ed-
ucation. Following the results of this research
and based on the observation that similar steps
are often performed together, a set of easy-to-
follow and generic enough design patters for
generating metadata was identified. These de-
sign patterns aim at assisting content authors
or data professionals with filling in metadata
and thereafter, allowing for feature develop-
ment or improvement in the respective plat-
forms. The patterns for metadata extraction
are based on the identified taxonomy of meta-
data. Finally, semantic metadata is extracted
as proof of concept for two of the proposed pat-
terns. A satisfactory to a high-quality result
was achieved, showing that the patterns are in-
tuitive and the data extracted with them, can
be potentially used to describe the respective
Educational Resource (ER) by adding the ex-
tracted information to its metadata.

1 INTRODUCTION

In the last decade, we have witnessed an
increased use of massive open online course
(MOOC) platforms for online education and a
substantial amount of digital resources being pro-
duced for them. These platforms are gaining pop-
ularity as many of the most renowned universities
in the world provide courses on them, ensuring
high-quality education and allowing for easy on-
line access to resources anytime anywhere in the

world. The presence of numerous educational re-
sources (ER) comes forth with a challenge for dis-
covery, sharing and re-use of the ERs and makes
solving this challenge a goal for many researchers
and practitioners. Having proper ER description
is accompanied by a potential for enhanced data
quality, time-saving and a reduction of repeatedly
created identical content.

In this work, both the ”ER” and ”LR” terms
will be used interchangeably, standing for ”educa-
tional resource” and ”learning resource”, respec-
tively.

ERs are created by highly skilled professionals
such as academics and business experts. Meta-
data plays an important role in describing ERs
and makes them machine-understandable and es-
pecially findable. Without meaningful metadata,
the platforms storing resources, are simply repos-
itories with resources that people out of the orga-
nization can hardly find and use.

Much attention has been drawn to establishing
metadata standards, however, the practice has
shown that learning resources often lack even the
fundamentals of valuable metadata [1].

This work investigates possibilities to assist
practitioners in the metadata generation of their
learning resources and subsequently, allow plat-
forms to improve services and resource quality,
findability and re-use. To get an insight of the
best approaches for metadata collection and gen-
eration, numerous scientific papers from the last
fifteen years from important conferences were
evaluated, such as LA-CCI1, ICALT2, WWW3,
ISWC4. Practitioners are also part of the cur-
rent research, in particular several MOOC plat-
forms were investigated and poor metadata cov-
erage was confirmed. This was further reaffirmed
by discussions with TU Delft university’s library.
In general, two metadata standards are suggested
by most researchers and adopted in most plat-
forms. However those standards are not adopted
completely as the ER metadata is adjusted in an
ad-hoc manner, i.e. based on their needs. All
findings related to this matter, are further dis-
cussed in detail in sec.(3).

1http://la-cci.org/
2http://www.guide2research.com/conference/icalt-

2018
3https://www.w3.org/Conferences/Overview-

WWW.html
4http://swsa.semanticweb.org/content/international-

semantic-web-conference-iswc
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2 RELATED WORK

As a result of the extensive literature and
MOOC platform analysis of the current state-
of-the-art techniques for educational metadata
(sec.3) and based on common properties of meta-
data elements, metadata is first split into types.
Next, a metadata type taxonomy is proposed, see
sec.(3.1.1). Following, generic patterns for meta-
data generation and collection were abstracted.
Design patterns, as known in software engineer-
ing, aim to provide solutions to commonly seen
problems in such a way that they can also be mod-
ified in case of future requirement changes. Fol-
lowing this and other guidelines [2][3] in design-
ing patterns for solving particular problems, eight
patterns have been proposed for generating meta-
data, based on evidence in literature and practice.
The proposed patterns are abstract enough to en-
sure wide application and at the same time are
able to extract a certain type of metadata in a
way that eases the ER authors and data profes-
sionals. Having the taxonomy in mind, one can
easily figure out what data they need and follow
one of the proposed design patterns. The pat-
terns aim to encourage ER authors and data pro-
fessionals to fill in the necessary data by following
a readily accessible set of steps.

Following discussions with the library of Delft
University of technology, their requirements were
evaluated and semantic metadata was extracted
applying two of the proposed patterns.

The experiments intent to show that by follow-
ing the decision tree that is provided in section
(4), the user gets a realistic expectation of the
process for extracting certain types of metadata,
including the effort involved and the predicted
quality of the results.

Summarising, this thesis work contributes to
solving some issues like inconsistency and incom-
pleteness [4] of metadata within the educational
domain as follows:

1. Extensive analysis in literature and among
practitioners regarding State-Of-the-Art
(SoA) techniques for educational metadata
generation.

2. Identifying gaps between research and
practice in terms of metadata completeness
and implemented metadata standards.

3. Support practitioners to extract or collect
metadata by helping them understand the
type of data they need, via a metadata
type taxonomy.

4. Support practitioners to extract the neces-
sary metadata type by proposing design
patterns for every type of metadata dis-
cussed in this work.

5. Demonstrate the potential benefit of
the patterns by applying two of them to ex-
tract a specific metadata type according to
the needs of the TU Delft library which con-
tributed with real user input.

The rest of the thesis is organized as follows:
Section (2) is about related work from the recent
years, dedicated to metadata generation. Section
(3) discusses state-of-the-art techniques to obtain
metadata by comparing literature with industry
practises and discussing the gaps between them
by splitting data into types and proposing a
metadata type taxonomy. Section (4) is the
core of the paper, together with the previous
section where the proposed design patterns are
first discussed in detail based on the metadata
taxonomy. Their efficiency is illustrated by con-
ducting experiments in section (5). Section (5)
also describes an example practical setup, aimed
towards illustrating proof of concept for semantic
metadata extraction via the proposed patterns.
Section (6) discusses the results from section
(5). Finally, in section (7), conclusions derived
from the experiments, and finally, limitations
and future work are overviewed in relation to the
topic of this thesis work.

2 RELATED WORK

2.1 Educational metadata standards

The growing number of educational content
poses a challenge in finding the resources with
highest quality. A key component to enable find-
ability and extra functionality related to the ERs,
is their metadata. Metadata is necessary for ma-
chines to process human-understandable content.
It has many applications and functions, for ex-
ample, when describing resource relationships, or
providing more semantic information about the
content of the resource. Lack of unified schema
design of educational metadata causes issues such
as difficult access to resources, content manage-
ment issues and sharing issues. Generally, there
are several approved schema standards that are
used to build upon, but not a single one that
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2 RELATED WORK 2.2 Metadata generation

is enforced to all ERs. The Learning Object
Metadata (LOM) [5], a joint work between the
Learning Technology Standardization Committee
(IEEE) and IMS [6] (full schema in appendix
{A}), Dublin Core (DC)5 metadata, are the base
standards for educational metadata. In addition
to them, several application profiles (AP), such as
ARIADNE [7] and SCORM6 are commonly dis-
cussed. An application profile is a modification of
a certain standard by adding and/or removing el-
ements to/from it. Dublin Core is a general pur-
pose and widespread standard for multiple dis-
ciplines such as fine arts [8]. DC ensures basic
metadata presence. A number of authors have
recognized DC as a standard also in the educa-
tional domain [9] [10] [11]. None of the elements
(also called fields) of DC are mandatory, however,
upon adoption, the administrator can set certain
elements as optional, conditional or mandatory.
Elements being optional allows for freedom when
using the standard, however, on the other hand, it
limits the possibility of consistent and complete
metadata collection which is the purpose of us-
ing a metadata standard to index educational re-
sources. Similarly, all LOM data elements are also
optional. The difference between the two schemas
is that DC contains a set of 15 elements spread
into 3 classes: ”Content”, ”Intellectual property”
and ”Instance” and has no hierarchy. To the con-
trary, LOM has 96 elements in 9 classes and is
organized into a hierarchical structure. A de-
tailed discussion of a survey from 2012 providing
the whole picture of LOM standard utilization, is
further discussed in section (3.3). Further on, ele-
ments of LOM and DC standards as well as some
extra elements are considered when performing
analysis on real MOOC platforms.

2.2 Metadata generation

Find-ability and re-use are the ultimate goals
for this thesis work. To achieve them, it is nec-
essary that each and every resource in an edu-
cational system is accompanied by high quality
metadata. Obtaining this data, however, is not
a straightforward process and depends to a large
extent on human contribution.

Most often, the burden of metadata comple-
tion falls on the author or publisher of the re-
source. The manual approach, while it can help

5http://dublincore.org/
6https://scorm.com/scorm-explained/

with scalability, is infeasible. While each author
may have no more than several resources to de-
scribe with metadata, the metadata elements per
resource can easily reach hundreds. This explains
why it may be infeasible for the author to spend
time on it.

Assuming that the element set per resource is
not very big and the author can handle it, the
simplest and most adopted way to fill in data for
an element is by selecting a value from a list of
pre-defined options, known as controlled vocabu-
lary. This approach, however, limits the author
and sometimes doesn’t fit their needs. There-
upon, free text is an option too, yet, one that
introduces a lot of noise and mistakes such as mis-
spelled words.

Therefore, in the early 2000’s researchers at-
tempted to automate metadata generation in or-
der to ease the work of the authors and practition-
ers. Automation is helpful because it allows for
more data to be processed at once, mitigates the
risk of human error and the produced output can
be used by practitioners to implement services or
improved the existing ones. Motelet et al.[12] pro-
pose automatic generation of some LOM elements
such as ”Semantic density”, on the basis of graph
building. The authors also suggest that the simul-
taneous editing of the same element in multiple
ERs makes more sense than editing each resource
separately. Motelet et al. believe that it is best
to suggest an automatically extracted value for a
given element, but keep the human involvement
in the whole process.

On the other hand, in the early 2000s, Hatala
et al.[13] also propose a final value to the author,
but to extract this value, they look at their data
from three perspectives: (1) individual record as
is; (2) an assembly of records with a hierarchical
structure which a particular record belongs to,
and (3) a repository of metadata for the record.
They prove their assumption that in a hierarchi-
cal structure some elements can inherit part of
the metadata from their parent resource or based
on the context of the used surrounding resources.
Therefore by combining inheritance, aggregation,
content based similarity and connecting ontolo-
gies and special logical rules, it is possible to
achieve high quality results in smart metadata
generation. However, the main limitation of their
work is that their approach does not reduce the
amount of work for the author. To solve this,
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3 STATE-OF-THE-ART

they plan to assign weights to each value in the
final list and this way, to compute the final value
automatically in order to reduce the workload for
the author.

Additionally, Cadinaels et al.[9] draw our at-
tention to the extraction of metadata from sev-
eral sources: (1) user profiling of content creators
(for elements such as author, contact informa-
tion, affiliation etc.); (2) ER management systems
with resources stored together having inheriting
element values and lastly, Learning Management
Systems (LMS) that can obtain data that pro-
vides contextual information on the usage of the
ERs in different topics and courses. For instance,
having several ERs covering a topic from ”data
science”, increases the chance a new ”Data sci-
ence” resource may inherit part of the metadata
of the existing ones.

The extraction of semantic information is of-
ten treated as a classification [14] [15], or a clus-
tering [16] [17] problem and it is approached via
machine learning (ML) models that teach a sys-
tem to find and recognize the correct information
for a certain metadata element. Furthermore, in
semantic information exaction, ontologies are uti-
lized rather frequently [15], [18], [19] for extrac-
tion of elements such as content’s topic, prereq-
uisites etc. Researchers also occasionally suggest
crowdsourcing [20] to help with ontology creation,
result evaluation, or simply to generate their own
metadata by adding their own keywords or rate
the resource in terms of quality and difficulty.

On the other hand, elements that provide tech-
nical information such as format or size, are easy
to extract directly from the ER, and a lot of
tools exist that can automate this process [21].
Tools like Data Fountains7, Dspace8, Omeka9, or
Editor-Convertor Dublin Core Metadata10 are all
tools that generate data either by scanning the
meta-tags of HTML page (if the resource is on-
line) or by harvesting metadata from the Open
Archives Initiative Protocol for Metadata Har-
vesting (OAI-PMH). Some of them like RepoM-
Man11 can also extract the title and keywords and
provide the results to the user for confirmation.

The aforementioned techniques are often seen
performed in similar forms by researchers. Sec-

7http://datafountains.ucr.edu/
8http://www.dspace.org/
9http://omeka.org/

10http://www.library.kr.ua/dc/dceditunie.html
11http://www.hull.ac.uk/esig/repomman/index.html

tion (4) presents design patterns that rest on com-
monly observed metadata extraction techniques
suggested in literature and presented in this sec-
tion.

3 STATE-OF-THE-ART

This section aims to investigate and present the
gaps between the current state-of-the-art extrac-
tion techniques in literature and among practi-
tioners in today’s MOOC platforms with regards
to specific metadata elements. The section cov-
ers metadata elements, suggested by scientists
and the functionality they would serve, if imple-
mented in MOOC platforms. This is necessary as
based on the desired functionality, each individ-
ual metadata element can have a higher or lower
value. For example, for ERs aimed at being used
in the United States, the ”language” element may
not be important, but in Belgium, for instance,
the ”language” element has a high value due to
the multi-lingual population of the country. As
a result from the analysis, a taxonomy of meta-
data types is proposed in order to mitigate the
metadata extraction process by letting practition-
ers understand and identify the different types of
metadata they need.

3.1 State-of-the-Art in Literature

The LOM standard, being a standardized
metadata schema, has received attention in a sig-
nificant number of research papers for several rea-
sons. First, it has a big number of elements de-
scribing different aspects of the Ls such as Ed-
ucational, Rights, Classification, Relation. An-
other reason for LOM’s popularity is because it
allows binding via XML and RDF which are the
main metadata languages used to describe data.
The key problem is that while it has a consid-
erable amount of elements they are not enough
to describe the needs of every system. LOM is
often insufficient to provide enough information
for purposes such as a personalized recommen-
dation [17] or modelling of learning and teaching
styles [15] as these tasks require knowledge in as-
pects such as user knowledge and performance.
These are not covered by LOM. That being said,
despite the common agreement to use LOM as a
foundation schema in education, on numerous oc-
casions practitioners need to build up on top of

4 / 39



3 STATE-OF-THE-ART 3.1 State-of-the-Art in Literature

the standard and/or eliminate the metadata ele-
ments that are not required for their system. [15],
[17], [22], [23]

The metadata elements for ER description are
selected based on the objectives of the learning
management system. Capuano et al.[22] as well
as the recent work of Miranda et al.[23] classify
the following metadata elements12 as important,
led by their goal to personalize and contextualize
learning activities:

• Language
• Domain/Concept
• File Type
• Dimension
• Learning Resource Type
• Duration
• Interactivity type*
• Interactivity level*
• Difficulty*
• Semantic Density*
• Time to learn*

The values of these elements are obtained by
automatic analysis of the technical details of the
content as well as by trying to combine learning
models, statistical analysis and ad-hoc heuristic
rules to extract element data such as ”interactiv-
ity type” and ”interactivity level” from ”MIME
type” element. For the educational elements, Mi-
randa et al. base their heuristic rules on pedagog-
ical teaching and learning principles described by
Bloom [24] and Ronsivalle [25].

Particular researchers attempt to make use of
the meaning of the data and try to describe the
resources semantically. Farhat et al. [15] use the
LOM standard as a base. By having an input
of LOM metadata as per three criteria, they out-
put semantic metadata that describes the content
of the resources. The criteria are: (1) the LOM
elements they consider, must relate to the educa-
tional content of the ER; (2) the elements must
be required in most of the LOM application pro-
files and (3) the element’s data must be filled in in
most of the application profiles. By defining the
above-mentioned requirements and incorporating
ontologies they created, they ensure extraction of
the most valuable information for the ERs. In
the end they claim high accuracy of extracted se-
mantic information for ”title”, ”description” and
”keywords”.

12LOM Educational elements are marked with *

Recent research from 2017 by Othman et al.
[26] shows that knowledge extraction is able to
improve search results by extracting metadata
from existing videos. Othman et al. do not build
their own metadata schema per se, however they
do extract technical, ”web” and descriptive meta-
data automatically from the videos. Since the
technical metadata is easy to extract automati-
cally, the focus is mostly on the descriptive data
of scenes, shots, objects etc. The web metadata
includes some elements from the LOM schema un-
der the Technical and the Descriptive categories,
therefore they can be unified into technical and
descriptive according to their function. Table (I)
shows the original elements categories as per the
author’s categorization.

Technical Web Descriptive

File name URL Scenes
Duration Views Shots
Resolution Likes Objects
Bitrate Dislikes Places
Frame count Comments Summary
Frame width Tags
Aspect Ratio Ratings
Quality

TABLE I. Metadata elements in [26]

This element choice of the authors and the suc-
cessful extraction of the information, is another
example of technical metadata extraction by us-
ing metadata extraction tools, followed by classifi-
cation and clustering machine learning techniques
to classify videos into topic categories and to ex-
tract also other parts of the descriptive metadata.

Focusing on the learning style of the MOOC
participants, it is possible to create personalized
content based on several educational LOM ele-
ments and based on the sixteen learning styles
defined by Coffield et al.[27]. In a recent study
(2017) Dorça et al.[17] investigated and proved
that it is possible to achieve personalization of
ERs by clustering, combining learning styles and
the LOM elements, listed below in order to sug-
gest only content, suitable to the student.

• Structure
• Format
• Interactivity type*
• Learning Resource type*
• Interactivity level*
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3 STATE-OF-THE-ART 3.1 State-of-the-Art in Literature

Following this element choice, it
Despite the wide usage of LOM, it is not as

widely spread, as the Dublin Core (DC) standard.
Due to its small size with very general elements, it
is much easier to implement in a system that does
not intend to have much functionality and infor-
mation about title, resource type (video, audio, doc-

ument etc.), author, subject, keywords would suf-
fice. Again, this is based on the objectives of the
system.

Catarino et al.[10] and Halpin et al. [28] focus
their work on folksonomies13 and identify new in-
teresting and important metadata elements that
are not part of the Dublin Core, but could be a
valuable addition to it. By attempting to match
existing DC elements with folksonomies, they ex-
plore new elements, that folksonomy tags did not
have a match for in the existing element set,
namely:

• Action (toRead; toPrint etc.)

• Category
• Didactic intent (overview, explanation etc.)

• Rate (veryGood, Excellent, Poor etc.)

• User name
• Utility (custom tag, e.g. teacher name, concept etc)

• Notes
• To be used in (work, university, school etc.)

Elements not having an existing match within
the element set of DC forced the authors to cre-
ate these extra elements in order to describe the
data. This approach has an advantage of being
”crowdsourced”, that is, they utilize real user in-
put into the metadata elements and prove that
DC is not sufficient to describe all aspects of the
ER.

Going further with the used standards, the
ARIADNE schema is also seen in literature,
however not as common as LOM and DC. The
ARIADNE metadata schema is a predecessor of
the LOM standard. In a cooperation between
the K.U Leuven in Belgium and the ARIADNE
project members, the so called Knowledge
Pool Management system emerged which offers
interesting means of handling metadata in terms
of elements choice [7]. Here, very interesting
semantic and educational data is included on top
of the general descriptive and technical metadata
elements. The semantic and educational elements
are listed below:

13https://en.wikipedia.org/wiki/Folksonomy

• End user type
• Document type
• Didactic context (target learners)
• Course level
• Difficulty level
• Semantic density
• Pedagogical duration
• Discipline
• Main concept
• Main concept synonyms
• Other concepts

The elements ”Didactic context”, ”Discipline”
are said to be restricted with a controlled vocab-
ulary in order to escape ambiguity especially in
the discipline case, where authors suggest that
synonyms for the main concept can be provided
in order to support more languages. Some of
the above listed elements are not part of LOM,
even though ARIADNE is its predecessor, show-
ing how the elements are selected on basis of their
usefulness and not by adopting a single standard.
This fact explains the high number of application
profiles seen in research and practice.

This aspect of the research suggests that a lot
of effort is put into extracting semantic metadata
and that this type of metadata can indeed im-
prove educational platforms from many perspec-
tives. Generally, technical elements and some of
the descriptive elements are fairly easy to extract,
however that is not the case with pedagogical and
educational data which aims to provide personal-
ization of content, similar content suggestions, to
adapt the content to the learning style of the user
etc. This is still a challenging task.

3.1.1 Towards metadata type taxonomy

Due to the wide variety of applications of meta-
data for educational resources, the knowledge
found in literature is organized and a metadata
type taxonomy was formed as a result from that.
This taxonomy divides metadata into groups
based on their type and common features. The
main two features for defining the proposed tax-
onomy, are the purpose of the metadata (e.g.
for education, administration, description), and
based on the extraction method of the meta-
data element (e.g. objective, subjective, intrinsic,
semantic). Metadata elements whose values can
be directly extracted from the resource entity, are
called ”intrinsic”, while ”semantic” elements re-
quire analysis of the content of the educational
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3 STATE-OF-THE-ART 3.2 State-of-the-Art in MOOC Platforms

resource. The taxonomy is split into these two
major feature groups based on observations in
metadata elements selection for specific purpose
and based on how researchers attempt to collect
or generate the values of these elements. The tax-
onomy aims to present a clear picture of how these
elements can be split as per their functionality or
according to the extraction method and the val-
ues they can hold. (e.g. single-option values or
arguable values).

A unifying diagram of the types of elements
with examples, based on the aforementioned fea-
tures, can be found in fig.(1).

To shed light on the diagram, ”technical” meta-
data is a functional type while ”intrinsic” meta-
data is a type based on the method of extrac-
tion. To a large extent the elements that fall into
these two categories, overlap, because technical
elements can be directly extracted from the re-
source entity (which is what ”intrinsic” means).
Most (if not all) of the technical metadata is ob-
jective, that is, the value cannot be argued. For
instance, if we have an audio file, it could either be
in .mp3 or in .wav format, but never in both .mp3
and .wav for the same resource. This makes the
meta element ”objective”. Technical metadata is
easy to extract directly from the resource entity
itself. On the other hand, ”Subjective” metadata
is the opposite - the value it holds is often based
on the opinion of people or other criteria. One
such element is Difficulty level, which falls into the
”educational” functional type, ”subjective” type
of extraction as well as ”pedagogical”, according
to the function of integrating pedagogical infor-
mation into the metadata. That is also the case
for the ”intrinsic” type.

The proposed taxonomy presents the first step
towards the design of metadata creation and ex-
traction patterns. The main benefit of having
such a structured taxonomy of element types, is
that the practitioners can easily figure out what
type of data their selected metadata elements
should contain and as a consequence, will be able
to approach the problem of extraction in the cor-
rect away and save themselves time and effort in
designing all this from scratch.

3.2 State-of-the-Art in MOOC Plat-
forms

An extensive analysis on metadata collected
was performed on most of the currently trend-

ing MOOC platforms: starting with TU Delft Li-
brary, next were Coursera, Lynda, edX, Udemy,
Udacity and Khan Academy. State-of-the-art in
MOOC platforms was analysed in Oct 2017 via
their own APIs where possible and via manual
analysis of their online content and the published
educational resources. To ascertain whether or
not the MOOC platforms follow a certain meta-
data standard, a personal request was sent to
their emails asking to be referred to members of
their development teams who could provide more
information on this matter. Unfortunately re-
sponse was only received from two out of seven
platforms, and none of them were able to connect
us to the party that would be able to shed light
on the matter, except for TU Delft Library. The
case of the library is discussed in detail in section
(3.2.1). In table (II) an overview of our approach
towards surveying each of the platforms, is pro-
vided.

Manual Analysis Direct
analysis via APIs contact

TUDelft Library 7 X X
edX X X 7

Udemy X 7 7

Udacity X X 7

Lynda X X 7

Coursera X 7 7

Khan Academy X X 7

Future Learn X 7 7

TABLE II. Types of Analysis on MOOC platforms

The investigation continued by splitting the
metadata according to the taxonomy presented
in sec.(3.1.1) w.r.t. the functionality of the meta-
data, e.g. ”Descriptive”, ”Educational”, ”Admin-
istrative” etc. Aiming to get an approximation of
coverage, all the elements found on the platforms
were collected in a table and put together. They
were then compared and values that are part of
the schemas for each platform were added in order
to get the coverage. It was noted that across dif-
ferent platforms, some elements hold identical in-
formation, but the elements are named differently.
For example ”MIME type” and ”resource type”
hold the same information, as well as ”affiliation”
and ”organization”, ”typical learning time” and
”Expected duration”, ”key” and ”id” and so on.
These duplicates had to be unified into a single
element for the final presentation in appx. {D} &
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Figure 1. Metadata type taxonomy with examples per type.

{E}
The result of this study is compared with the

suggested element set from the available litera-
ture. Discussions on our findings continue in de-
tail in section (3.3). Please refer to appendices
{D}, {E} and {F} for more a informative visual-
isation of our findings.

3.2.1 TU Delft Library showcase

In relation to a joint project between the Com-
puter Science faculty and the TU Delft library,
design and implementation of a federated search
engine for open educational resources (OER) was
discussed, including ideas and feature require-
ments, similar to ARIADNE’s finder tool dis-
cussed in [29].

There were several desired features for the
project, as follows:

1. Simultaneous search in multiple OER
databases

2. Internal re-ranking and minimizing the final
result into a small subset of OERs

3. Providing information on the OER such as
quality, format, license, usage,

4. Possibility to segment video materials into
parts defining each part with its intent

5. Content suggestions based on previous
searches and usage

6. Search based on one or multiple facets (meta-
data elements)

Originating in the feature analysis, the necessity
of certain metadata elements for the system were
confirmed. Some of the elements like ”quality”,
”language”, ”date”, ”DOI”, ”start time”, ”end
time”, ”resource type”/”format” and ”didactic
intent” were missing from the current ERs of the
university. These elements could be further split
according to the proposed taxonomy into techni-
cal and educational from a functionality perspec-
tive, or according to the extraction method - into
”semantic” and ”subjective”. By discussing the
metadata TU Delft currently utilises, more evi-
dence of poor metadata platform implementation
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was found, due to the fact that the library cur-
rently implements some (the most general) of the
elements of the Dublin Core schema for the ERs
they store and exploit at the moment.

Furthermore, the TU Delft library addressed an
important question with respect to the project,
namely how to collect existing metadata from
the OER databases where the resource is stored,
rather than generating it from scratch. This is
called metadata schema integration or metadata
cross walking. Even though that is not the core
topic of this work, it attempts to shed light on it
in the design patterns section (4). An additional
design pattern was included (sec. 4.9) in a more
generic manner - by outlining general approaches
of integrating metadata schemas.

Further on, this work contributes to the TU
Delft project by extracting semantic metadata for
the ”Didactic intent” in the experimental part
(sec. 5), by following the proposed design pat-
terns from section (4). Results from the experi-
ments, are further discussed in section (6).

3.3 Gaps between literature and prac-
tice

In this section, suggested elements in literature
are compared, providing results from the investi-
gation done on real MOOC platforms - presented
in sec.(3.2). The elements are matched to the
taxonomy of types, proposed in sec.(3.1.1).

Overall, regardless of the exact approach to-
wards metadata extraction, once available, the
resulting values are fed into the system in one
of the following ways:

1. Free text: by ER author at time of creation

2. Free text: by ER user at time of exploita-
tion

3. Pre-filled value: as a result from an infor-
mation extraction algorithm

4. Categorical value: by ER author at time
of creation via provided controlled vocabulary

5. Numerical value: by ER author at time of
creation

6. Averaged numerical value: based on col-
lective user input

According to a survey14 on the utilisation
of metadata standards, conducted in 2004 by
N.Friesen, the employment of educational meta-
data is not high. Overall, at most half of the
LOM elements are exploited in systems, most
of which also persist in the DC standard. The
most precise and complete one being the usage
of the ”Classification” class from the LOM stan-
dard. These statistics, as of 2018, can be con-
firmed by analysing the current most trending
MOOC platforms. It comes out that most of the
commonly utilised elements persist in the Dublin
Core element set. Following the process of our
study in sec.(3.2), the support of metadata on
different learning platforms was compared against
each other and the results were aggregated in ap-
pendix {F}. For example, if we take the cov-
erage per metadata type, only one out of 7 plat-
forms, admittedly covers user-related information
in their metadata (for learners). Generally, as
visible on fig.(4), administrative, technical and
descriptional types are covered most, albeit the
coverage is less than or around 40%.

From the investigated platforms, the most well
described ones were edX and KhanAcademy, as
visible in fig.(3) and there is room for improve-
ment for the TU Delft library, as visible in fig.(2).
This could be explained with the fact that the
main type of resources TUDelft holds, are re-
search papers in PDF format and videos in a
system, created especially for the students of
the university, while edX is a MOOC platform
with many courses and different type of resources
where findability of courses and resources is vital
for the universities that author and upload those
resources. edX maintains a balance of metadata
types, however as quantity it covers around 50%
of the elements researched in this work per type.
TU Delft, on the other hand has mainly adminis-
trative metadata for maintaining the ERs written
by professors and students.

At the same time, while the platforms provide
mostly high quality courses, there is currently
not too much functionality that would justify the
need for collecting hundreds of metadata values.
Furthermore, semantic metadata is still challeng-
ing to extract and often requires knowledge and
experience with different information extraction
techniques. Due to the fact that online education
is growing and provides good opportunities to the

14https://slideplayer.com/slide/5147365/
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Figure 2. EdX vs. TU Delft coverage per type

learners - an increasing number of universities are
switching to the so called ”flipped classroom”,
where students work on lectures in advance and
only go in class to complete exercises and to ask
questions. The approach of following all lectures
and assignments online and going to class after
that, would increase the usage and popularity of
the MOOC platforms and therefore, platform de-
velopers and owners may be better motivated to
collect detailed, consistent and informative meta-
data in order to improve their services.

Figure 3. Coverage by platform

To conclude on the metadata coverage, it can
be said that currently a big gap exists between re-
search and practice and filling it may contribute
not only to service and feature improvement, but
also to content share-ability, re-use and interop-
erability.

Figure 4. Coverage by metadata type

4 DESIGN PATTERNS FOR
METADATA EXTRACTION

This section discusses in short design pattern
principles in the domain of software engineering
and adapts the concept of design patterns to the
domain of education by aggregating commonly
seen metadata extraction or collection processes
into easy-to-digest steps for the practitioners to
follow and get the data they need in an easy-
to-follow manner. The patterns are generic de-
sign patterns that often combine both human and
computational power. They cover collecting val-
ues for the most commonly utilised metadata el-
ements as well as more complicated ones, based
on their type and allow for the reader to make an
informed decision.

4.1 Why Design Patterns?

Design patterns, mostly associated with soft-
ware engineering, present sets of syntactic nota-
tions, a set of rules on how and when to use a
pattern and advantages and disadvantages of us-
ing them. Furthermore, design patterns can be
considered as a set of micro-architectures due to
their contribution to the overall system architec-
ture. Their idea is to help developers plan the de-
sign of their system based on the problem the sys-
tem needs to address and solve. They depend on
a particular goal and offer steps towards achiev-
ing it. Similarly, in the domain of education, the
existence of such patterns would save time in the
process of metadata extraction by providing a so-
lution to practitioners that they can simply follow
instead of having them spend a lot of time trying
to figure that solution out.

According to the Gang of Four (GoF) [3] the
goal of design patterns is to help design become
more flexible, reusable, elegant and readily acces-
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sible. Patterns are abstract enough, i.e. don’t
provide too much detail, ensuring their relevance
in a wide number of situations. At the same time
they may provide a notion of problems that may
occur when applied.

In general, patterns emerge from practical ex-
perience, i.e. from studying what people have al-
ready done in real systems. Martin Fowler[30]
had the idea of gathering and modelling knowl-
edge towards design patterns creation, saying
that..

”..an idea that has been useful in one
practical context, will probably be use-
ful in others.”

During the literature research in sec.(2) and
(3), a need for such design patterns in the ed-
ucation domain was identified, due to multiple
attempts of researchers to extract identical meta-
data information with similar methods in order
to describe learning resources. Papers from con-
ferences, such as LA-CCI, ICALT, WWW, ISWC
etc., were studied and commonly occurring meth-
ods of metadata generation patterns are pin-
pointed. Generic design patterns are proposed
stepping on this research by first splitting the
metadata elements in types which allows for more
intuitive and logical pattern design.

The current work’s derived patterns attempt to
give steps towards decision making, rather than
specific implementation steps. In the following
sections of this chapter, and adhering to GoF’s
pattern components, example data that can be
collected with each pattern, is provided together
with a diagram to illustrate it as well as motiva-
tion, structural description, advantages and dis-
advantages of using the proposed pattern. With-
out using design patterns, one may miss oppor-
tunities and spend more time on trying to find a
solution to a given problem, instead of having this
solution immediately and only thinking about the
exact way of implementing it. If the user wants to
quickly find the most appropriate pattern from all
proposed ones, they need to get familiar with the
provided metadata type taxonomy and compare
the metadata elements with it and then follow
the decision tree in fig.(5) prior to checking the
patterns.

4.2 Pattern: Routine Gateway

Figure 6. Routine Gateway Pattern

Data Types & Elements
Technical; Objective; Intrinsic

• Type
• Format
• Size
• Duration
• Views
• Path
• Location
• Number of pages
• Identifier / URL
• Creation date / time
• Start / End

Motivation, Positives and Negatives
The easiest to collect and most widely avail-
able metadata types, are technical and objective,
which often overlap. That is, the data can have
only one value and this value cannot be argued,
such as resource size, format etc. This type of
data is essential for resource management and is
standardized in most metadata schemas like LOM
and DC. Routine Gateway pattern on fig.(6) has
the task to guide practitioners to the best fit-
ting option by discussing advantages and disad-
vantages of each approach for objective metadata
generation.

Most commonly this information is filled in
three ways: (1) manually, either by the author
or publisher; (2) manually, by a specially hired
person or group of people (annotators) for this
purpose or (3) algorithmically or by using tools.

The author knows best their resource content
and the most intuitive way of filling this metadata
would be for the author to do it. For a small num-
ber of learning resources that would be accept-
able, however often the metadata elements can
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Figure 5. Decision tree for pattern selection (Big image available in appx. {C})

reach hundreds [31], making manual data filling
infeasible. The second approach with specially
hired team of annotators, while it may help with
scalability as more people could do more work,
is in general infeasible due to the typically large
amount of resources and metadata elements in
a system with ERs. Furthermore with the in-
crease of the content, more annotators would be
required, introducing more costs. Consequently,
approaching this problem algorithmically gains
more interest. There are multiple potential ben-
efits in incorporating computing power via algo-
rithms or available extraction tools to give au-
thors a hand with metadata completion. The high
performance of algorithms would make it possible
for teachers to concentrate on content creation
and not on metadata composition and would pre-
vent extra costs. While a fully-automatic gen-
eration of all metadata cannot be discussed at
this moment, authors can benefit from generat-

ing technical, intrinsic and objective metadata.

Requirements
Firstly, the metadata elements for which this pat-
tern can be used, must be of technical, intrinsic
or objective type. For instance, the pattern is
useful for elements such as duration, location in
the system, format etc. Following, an expert is
needed to evaluate how the data will be stored,
how important the necessary metadata elements
are and how much metadata inconsistency can
be tolerated. Often the task of manual filling of
metadata seems without direct benefit for the au-
thor, therefore they may skip filling out some of
it. For higher consistency, algorithmic approach
is preferable. A fairly common solution to this
issue is the use of metadata extraction tools such
as Omeka, DSpace etc. In the case when there
is need to collect metadata from files in multiple
different formats, it is best to use a tool which
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can recognize the ER format and automatically
collect the data instead of having an expert to im-
plement algorithmic solutions for each format sep-
arately. Algorithmic solutions are the most opti-
mal ones due to the fairly straightforward process
of extraction of technical metadata. Using tools,
however, can introduce other issues. One issue
with tools is that they are often developed to sat-
isfy specific needs of a certain practical or research
project and cannot be applied for all purposes or
metadata element extraction. That fact poten-
tially shrinks the possibilities of utilising some of
the tools. Tools like SAMGL15, requires context
knowledge about the resource, which limits the
possibilities to use it. Therefore, a special require-
ment of this pattern, is a thorough research on the
available algorithms or tools and their require-
ments, when algorithmic approach is considered.
This task needs to be performed by skilled pro-
fessionals with certain knowledge such as suitable
algorithms and available tools on the market.

Structural design description
The first step in the process of the intrinsic meta-
data extraction, is for a decision to be made for
the way metadata will be filled. When the au-
thor is going to fill it in, it should be considered
that often without direct benefit, the author may
skip filling some particular data or may add incor-
rect information. Higher budget would be needed
when a group of annotators is used.

Finally, when an algorithmic approach is used,
an expert needs to consider possibilities in terms
of algorithms or tools and a developer is required
to implement or incorporate the technique se-
lected. Commonly, there are two types of algo-
rithmic extraction of intrinsic metadata values.
Metadata harvesting, being one of them, is widely
incorporated by researchers and tools. The data
is collected by harvesting the META tags [32],
[33], [21], [34] within or attached to the learning
resource. Once harvested, the data is fed into the
respective metadata elements. The second type
of automation of the collection process, is to ap-
ply some of the information extraction algorithms
described in [35] on old or newly created learn-
ing resources. Once extraction is completed, the
value is suggested to the user, or pre-filled.

15http://hmdb.cs.kuleuven.be/amg/ Download.php

4.3 Pattern: A friend in need is a
friend indeed

Figure 7. A friend in need is a friend indeed
Pattern

Data Types & Elements
Descriptive; Subjective; Educational

• Difficulty
• Semantic Density
• Keywords
• Prerequisite Knowledge

Motivation
When taking an online course the student’s per-
ception differs from that of the teacher in regards
to a material’s difficulty level. For a teacher, a
certain topic may seem easy due to the years
of experience practising and teaching the topic,
which introduces a bias. For a student, that ma-
terial could be more difficult for various reasons
such as lack of prerequisite knowledge, lack of ef-
fort and wish to learn the topic, lack of time etc.

This pattern (fig.7) aims to help improve
the objectivity of metadata in LMS, because
it is important for the learner to get a real
unbiased idea of the quality or other aspect of
the learning resource. Some metadata elements
such as ”Interactivity level” or ”Difficulty level”
of the resource are highly subjective, therefore
collecting this information could be used by sug-
gesting values to the author, that are fed by the
learners, e.g. by incorporating human feedback
to the metadata generation process. However the
initial probable value is fed by either the author,
or by an algorithm, that can extract it from
related learning resources [12], [36]. Allowing
user feedback improves the objectivity. User
feedback on its end, could be used for example,
towards adapting learning content based on the

13 / 39



4 DESIGN PATTERNS FOR METADATA EXTRACTION 4.4 Pattern: Opinionated

learning style of the student [37].

Requirements
For this pattern to work, the initial values must
be provided by the learning resource author
or extracted algorithmically. In order to prove
useful, the pattern should be utilised only
for subjective metadata elements such as the
example ones given above. Next, a developer or
expert needs to be present who can implement
the feedback system or module and would allow
the learners to start providing feedback. Thirdly,
once in a while the author will need to amend
the values based on the suggestions or this could
be done mathematically on the basis of majority
vote or another criteria.

Structural design description
First, one needs to decide how the initial value
of a specific subjective element will be supplied.
If this is done algorithmically, an extraction al-
gorithm from relevant materials can be imple-
mented or extracted automatically based on tech-
nical parameters like size or format [38]. When
the user provides feedback on the difficulty of the
course or any other metadata subjective element,
they improve both the learning resource and its
metadata. Incorporating real user feedback is of
benefit to everyone – the user, the author, the
system and thereafter, the whole community of
people working towards high-quality education.

4.4 Pattern: Opinionated

Figure 8. Opinionated Pattern

Data Types & Elements
Subjective

• Quality
• Interactivity Level
• Keywords
• Typical learning time
• ER-specific statistical information

Motivation
Similar to the ”A friend in need” pattern in
sec.(4.3), the ”Opinionated” pattern (fig.8) incor-
porates feedback, however providing more possi-
bilities and discussing their applicability for sub-
jective metadata elements. People’s judgement
of quality about a certain educational resource or
an online course, is often based on the opinion
of others who have already followed that course.
People decide whether to download a movie or
buy a product or enrol to a MOOC based on the
average rating others have given it or by reading
reviews. Assessing the surrounding world is a nat-
ural thing, therefore it needs to be, and often is,
incorporated into the e-learning systems. Having
this data to describe a learning resource, prac-
titioners can take decisions as to whether they
need to improve the quality, whether to add a
new feature, what to improve in their courses etc.
The current pattern provides several ways to al-
low users to assess the way they see a certain ER
and to incorporate this into the metadata of that
ER.

Requirements
This pattern must be used to subjective type of
(meta)data and can be also used on some edu-
cational metadata such as Quality, Interactivity
level, keywords etc. where data necessary can
be provided in a quick way via either free text
feedback, a rating system or a controlled vocabu-
lary with specific values for the learners to choose
from.

Structural design description
To gather the necessary data for subjective or
educational meta elements, the users are pro-
vided with an opportunity to express their opin-
ion within the e-learning system or in another
form, for example with a survey or a game etc.
The results are processed, e.g. by selecting the
top N most mentioned words in the case of free
text feedback, or computing the average of all-
user-feedback and feeding that into the respective
meta element. In the case of a controlled vocab-
ulary with restricted set of options is used, the
highest voted value is updated into the meta el-
ement. This metadata elements can and should
be updated with every next vote.
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Advantages & Disadvantages
A strong point of generating data this way is that
it reflects the true opinion of the people regard-
ing a certain learning resource and this data can
be easily obtained and/or calculated as an aver-
age based on multiple votes or frequency count.
The disadvantage is that the data changes and re-
evaluated information needs to be reflected upon
in the metadata of all resources that make up the
learning resources.

4.5 Pattern: MI6

Figure 9. MI6 Pattern

Data Types & Elements
Educational; Administrative

• Author name
• Email
• Institution
• Language
• Access rights
• Age Range
• Target Audience
• Quality

Motivation
The MI6 pattern in fig.(9) can be applied to the
general elements that are required to be com-
pleted mostly by the learning resource author,
because they mainly fall into the administrative
or the educational type of metadata elements.
Such elements are author name, institution,
email address, access rights and information like
field of education, category etc. Although it
seems only natural for the author to complete
this data manually, it can be eased by providing
suggestions, or pre-filling some values with a
provided option to alter them, if they don’t relate
to the current resource. This pattern proposes
that via user profiling or via knowledge about the
resource, data can be extracted and suggested

to the user. An approach like user profiling or
knowledge about the previous content of the
same author, significantly reduces the effort of
the authors, allowing them to focus on creating
more content, rather than slowing them down
with time-consuming and tedious metadata
compilation.

Requirements
To use the pattern in its user profiling version,
it is required that specific author-related infor-
mation must be provided by the author. It could
be collected upon system sign-up or collected
with a survey, or in some other way. This data
can be then used for the purpose of describing
the user’s resources via the metadata. To use
the content knowledge and grouping versions of
the pattern, algorithm(s) should be implemented
to collect information such as author’s previous
resources, or resources, related to the current
one being described etc. This allows for relevant
information extraction and suggesting it to the
user later. For either version of the pattern, the
only requirement is to have a skilled expert at
hand, who will be able to decide what will be the
exact content-related extraction approach and to
implement it.

Structural design description
Learning resources are often grouped by topic,
author or another type of information. Based
on this grouping, or assembly, specific metadata
elements can be suggested for a newly created
learning resource. For example, assuming that
a given ER has the ”Computer Science” cate-
gory, a newly created ER stored together with the
rest of the computer science resources, will have
the same value for the “category” metadata ele-
ment. Therefore, the first step is to decide which
of the methods is the most suitable: content re-
lated, grouping or user profiling. They can be
combined together in order to increase the range
of elements that can be extracted. User profiling
is useful approach for author-related metadata.
Most authors have a certain affiliation, provide
access rights for their material, upload resources
that are in a certain language and have other
types of personal information. For that reason,
user profiling would be useful in helping to gather
the respective administrative and/or educational
metadata elements for the author. These values
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are either pre-filled or suggested and the author
would be able to select or change them, as needed.

Advantages & Disadvantages
Having to manually fill a lot of information in-
troduces inconsistency, errors and completeness
issues. Therefore, once author information is
present in the system, it can be utilised and
used to help the work of the author and improve
their productivity. However the usefulness of this
metadata depends on the veracity of the data
provided by the author. A disadvantage is that
the author-related data is not present in the first
place. A possibility exists that the author pro-
vided information may change with time.

4.6 Pattern: Semantic Deep

Figure 10. Semantic Deep Pattern

Data Types & Elements
Semantic

• Prerequisite Knowledge
• Topic

Motivation
To allow for higher quality of the extracted
semantic information, many researchers propose
using ontologies [39] [19] [40] [41]. Ontologies
comprise the knowledge of one or multiple
domains by introducing their relationships in a
computer-understandable way. Ontologies, how-
ever, are not only limited to domain knowledge,
but can also express the structure of a resource
management system providing aid to extract
useful semantic information based on criteria
like resource relatedness, location etc. Using this
information, metadata can be significantly en-
riched. With the Semantic Deep pattern (fig.10),
many potential advanced functionalities could
be introduced or improved, such as prerequisite
knowledge suggestion, or organizing ERs into

semantically annotated LR sets and delivering
them to learners on demand or based on their
learning style [42].

Requirements
First and foremost, a suitable ontology is re-
quired depending on the functionality for which
the metadata is being extracted. Secondly, a
textual representation of the learning resource
is necessary, e.g. video subtitles, lecture notes
etc. When none of the available ontologies
fits the needs of the user, creating an ontology
needs to be considered. Ontology creation is
a time-consuming task, however in the long
term it is very useful. Commonly, the do-
main specific ontologies are lightweight and
are upgraded in the process of exploitation by
experts by adjusting them according to their
needs. Lightweight ontology means it is less
expressive and covers less knowledge in terms of
e.g. concepts and their relationships as opposed
to ”heavyweight” ones. Next, when ontology
creation is considered, a team of experts needs
to be available or, alternatively, this task can be
handled by crowd-sourcing. When the ontology
is to be produced by experts, tools such as
Protégé16, Fluent Editor17 and NeOn Toolkit18

can be utilised for the process. In the end, an
ontology will be available in some of the standard
ontology languages like RDF. On the other hand,
exploiting the notion of human-computation for
the sake of solving complex problems that require
more than computer power, makes crowdsourcing
an excellent approach towards ontology creation.
Picking the right pool of people for the task is
essential as this can significantly decrease the
amount of time spent on the task and increase
quality. The people used for the crowd-sourcing
task can be motivated by the right incentive,
such as monetary [43] or non-monetary award,
like common goal.

Further on, once the ontology is available, a
skilled expert is required to select how to extract
the data with the aid of the ontology, in other
words, to select the extraction algorithm and a
developer should implement it. To summarise, for
this pattern the most important thing is a suit-
able ontology and expert to select an algorithm

16https://protege.stanford.edu/
17http://www.cognitum.eu/semantics/FluentEditor/
18http://neon-toolkit.org/
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for extracting the metadata as well as a developer
who will be able to implement this and make the
most out of the ontology and the algorithm, com-
bined together.

Structural design description
This pattern can be utilised from the beginning,
with the ontology creation, when no ontology
fits the needs for the specific project, or can be
directly applied in combination with a selected
algorithm. Due to the fact that often ontologies
lack specificity for a particular domain, creating
a new one is often necessary. When the essence
of the necessary ontology allows it, and the
task is crowd-sourced, the crowds can produce
a bigger ontology, but with uncertain quality.
That, on its end would need to be proof-checked
by the (domain) experts to ensure or improve the
quality. Finally, the output values are suggested
to the user or pre-filled

Advantages & Disadvantages
Regrettably, the available ontologies are often
not specific enough or do not cover some domains
at all. Therefore, experts often need to take
part in the creation of new ontologies for specific
domains. This is costly and for a high-quality
ontology, that requires specific experience or
knowledge, a high budget will be required and it
would cost more time and effort. On the other
hand, sometimes a general purpose ontology can
be utilised, which yields average quality results
with less costs and effort. [13]

4.7 Pattern: SMRT D@ta

Figure 11. SMRT D@ta Pattern

Data Types & Elements
Semantic

• Prerequisite Knowledge
• Topic
• Subtopic
• Concept
• Didactic intent

• Keywords

Motivation
Semantic metadata extraction can rarely avoid
human involvement, because it needs to be ex-
amined at content level. This is due to the fact
that learning resources often have different struc-
ture and specifics such as video subtitles that
contain the speech of the narrator, together with
the specific time it occurs. Another example are
slides with titles and bullet points. This makes
it necessary for an expert to analyse the infor-
mation on a subset of the resources in order to
find commonalities among the resources and to
suggest extraction rules for the whole resource
collection. The use of inference rules for meta-
data extraction is commonly seen in literature
[13], [14], [23], [44]. That is, a set of a logi-
cal formulas which take premises, analyse their
syntax, and return a conclusion. Therefore, this
pattern relies on human-crafted rules as it at-
tempts to make the metadata extraction process
more easily applicable without the need to under-
stand and implement complex machine learning
algorithms. Some researchers use layout models
for extracting information [44], however these are
not universally applicable and as such, are error-
prone. Therefore, this method is suitable for in-
dividual collections and can hardly be applied to
learning resources of different types without ini-
tial analysis. Nonetheless, adopting the current
pattern in fig.(11), utilising inference rules can
promise good results on the individual ER collec-
tions when analysis is done carefully and can save
time to practitioners with semantic metadata ex-
traction.

Requirements
The main requirements for this pattern to be ap-
plicable is to have a subset of the resources, whose
content needs to be analysed and to have skilled
expert who will be able to do the analysis and
hand-craft the rules that will be used for the ex-
traction process. It is crucial for the right expert
to take on this task in order to create accurate
inference or heuristic rules. Moreover, the pat-
tern doesn’t require the resource dataset to be
huge, it can be small to middle size and should
be manually annotated. Depending on the re-
quired skill the manual annotation task, it can
be outsourced to a pool of people or performed
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4 DESIGN PATTERNS FOR METADATA EXTRACTION 4.8 Pattern: SMRT LRN

by experts at hand. Crowdsourcing it would not
only reduce costs, but could also drastically de-
crease task completion time because of the large
number of human power used in the process. The
produced data is used to evaluate the result of the
rule-based extraction. Additionally, there must
be an expert available who can consider the data
pre-processing steps prior to rule implementation,
such as stop-words removal, punctuation removal,
stemming, lemmatisation, part of speech tagging
etc. This could also be the developer that would
later implement the rules. To summarise, the re-
quirements include: (1) human expert to hand-
craft rules based on content analysis of the ERs;
(2) skilled developer to implement the rules; (3)
a group of people (crowdsourcing or experts) to
manually annotate the initial dataset for the eval-
uation stage later.

Structural design description
The structuring of the pattern starts with the ex-
pert who analyses the content and extracts the
commonalities between the resource files under
the form of hand-crafted rules. Such rules can
be formed on, for example, term co-occurrence,
grammar commonalities, structure of the content
etc. and allow for extracting information based
on these specifications. Next, the rules are imple-
mented by a skilled developer and tested against
the dataset which was initially annotated manu-
ally by people involving either crowd-sourcing or
experts. When the quality of the automatically
extracted information is not satisfactory, the im-
plemented rules are re-evaluated.

Advantages & Disadvantages
This pattern requires generally no deep techni-
cal skills for the rule-crafting person and saves
time by not having to implement complicated al-
gorithms. However the major disadvantage of the
pattern is that it is hard to standardise the rules
created for a specific collection to be applicable to
resource sets that differ in format, structure, lan-
guage, topic etc. However, the approach allows
for achieving high quality when the rules have
been paid enough attention and have been cre-
ated and implemented correctly.

Having domain experts manually annotate the
dataset can be more costly and can be an ineffi-
cient use of their time, since this is often a task
which doesn’t require specific domain knowledge.

Therefore the task can often be performed by a
non-expert unless required otherwise. In cases
when specific knowledge is necessary, crowdsourc-
ing can help by outlining certain requirements for
the pool of people, such as specific education, or
experience in the field for X number of years. Nat-
urally, this will increase the costs, but will also
provide a greater likelihood of an increase in qual-
ity. When no specific knowledge is required, using
crowdsourcing with unspecialised pool of people
can be much more effective, faster and less costly.

4.8 Pattern: SMRT LRN

Figure 12. SMRT LRN Pattern

Data Types & Elements
Semantic

Motivation
Machine learning (ML) is widely utilised in a
variety of different tasks, metadata extraction
being one of them. Their popularity is growing
beause they can be ”trained” and based on
known values, they can project the output of
unseen data. Their popularity growth increases
also the quality of the extracted information
as more work is focused towards improving the
performance of different ML algorithms. The
current pattern (fig.12) is focused on metadata
extraction with ML models. To some extent,
this pattern can be considered a special case
of the SMRT D@ta pattern, sec.(4.7). These
algorithm’s performance is typically evaluated
with a number of metrics such as accuracy,
precision, recall etc. giving the user possibility to
see the impact immediately and to improve their
model, if needed. This can potentially lead to
really useful information being extracted and fed
into the metadata of the learning resources via
ML approaches such as classification, clustering,
regression etc.
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Requirements
There are several requirements for this pattern
to work successfully. First, the algorithms can
hardly be understood by everyone, therefore a
professional is required who has the respective
knowledge in computer science. This person will
be able to select the most suitable algorithm,
depending on the task and data that is to be
extracted. Then, either the same expert or a
developer or data scientist can implement the
selected ML model. Another crucial point to
consider is the fact that The supervised and
reinforcement ML algorithms require Test and
Train data sets. The quality of the output data
depends on the quality of the train dataset.
Furthermore, ML algorithms perform better with
bigger sized training data. Creating this data
is a tedious and time-consuming task to create.
However it is required for the ML models. Some
datasets exist that can be used, but if no suitable
one is available, it has to be created. This is
often done by crowd-sourcing in cases when
no specific knowledge is required. Outsourcing
to a big group of people saves time and effort.
Similarly to SMRT D@TA, is specific skills are
necessary, a crowd can be selected such that
they have the necessary skills, which will also
increase costs. Alternatively, this can be also
performed by domain experts at hand. From the
reliable “train” dataset, some algorithms, like
reinforcement ones would ”learn” and improve.

Structural design description
First, the “train” data is generated by crowd-
sourcing or domain experts. A suitable algorithm
is selected for the specific task. Often, the expert
or developer needs to consider pre-processing the
data with techniques discussed in SMRT D@TA
pattern in order to improve the performance of
the algorithm. To apply the algorithm there may
be other requirements such as feature selection,
normalization etc. The model is trained and
predicts the outcome for the required data
feature. This way data values for semantic
metadata elements can be predicted. At this
stage, when using reinforcement ML algorithm
the correct data is fed back as part of the train
set to further improve the algorithm and is also
fed into the metadata element.

Advantages & Disadvantages
The cost of using domain experts to create the
train set for a machine learning algorithm may
be high. However, it would deliver significantly
higher quality, especially in case this task cannot
be achieved by anyone else than experts with
specific knowledge. In some situations crowd
sourcing could be incorporated, but like in
the previous pattern, quality would vary from
domain to domain.

4.9 Pattern: Meta-walk

Figure 13. Meta-walk Pattern

Data Types & Elements
All

Motivation
Having a way to map the metadata of the learn-
ing resources in different LMS, would be very
useful feature for the user who wants to annotate
their own educational materials. This may save a
lot of time and especially effort towards thinking
about extracting solutions from scratch or via the
patterns in this work. The metadata mapping
issue is out of the scope of this work in general,
yet, short summary of some available approaches
is provided in the Meta-walk pattern (fig.13) and
discussed in this subsection.

The need to map metadata from several plat-
forms, emerges from the fact that metadata ele-
ments and values are not uniform across all edu-
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cational platforms. For example, in one platform
the metadata element holding the ER format can
be called ”format” and in another it can be called
”MIME type”, but both contain value of ”PDF”.
This makes the resources and their metadata less
interoperable. Therefore, it is a good idea (sec.
3.2.1) to match schemas and extract information
rather than generating new instances. However
this is not a very trivial problem. Several meth-
ods are reported [45] in the literature to address
it: (1) While it may seem like a natural and
easy thing to do, often this is approached in a
naive way by an expert who manually matches
the schemas. This practice is infeasible, slow
and inefficient, for the reason that schemas can
also be very large. For the educational domain,
as previously discussed, there are several stan-
dard schemas and multiple application profiles.
More often the issue is approached algorithmi-
cally by (2) treating XML schema matching as a
tree-editing problem [46] [47] and matching them
bottom-up based on similarity measures. This
method often involves usage of ontologies in the
process of deciding which elements are e.g. par-
ent, sibling or child of the others. (3) Further-
more, the matching could be looked at as a graph
[48], matching elements based on proximity. (4)
The fourth suggested approach [47] is not to com-
pare the schemas, but the semantic similarity [49]
of the metadata and thus, decide which elements
match from both schemas.

Requirements
For the manual and algorithmic approaches to
succeed, the schema should be available as an
XML structure, and this condition is generally
satisfied. Furthermore, an expert is required
with certain knowledge about working with XML
schemas. Manual method with an expert is most
commonly performed, but requires an expert with
good knowledge of the standards and types of
information that should be stored in the meta-
data as well as common knowledge which ele-
ments may overlap and hold equal information
across schemas.

Advantages & Disadvantages
Approaching the schema integration issue with
the tree-editing or graph methods may introduce
high cost time and budget-wise, especially if the
XML schema is large. Manual approach, on the

other hand could be error-prone, if the expert is
not very familiar with the schema. Furthermore,
manual matching can be very time consuming.

5 EXPERIMENTAL WORK

In this section a proof of concept is provided
aiming towards semantic metadata extraction via
the proposed design patterns in the previous sec-
tion. By following the SMRT D@Ta (sec. 4.7)
and the SMRT LRN (sec. 4.8) patterns, two clas-
sification approaches are applied in equal dataset.
Following the provided workflow by the patterns,
it is demonstrated that the patterns are high-level
enough to give guidance to the user, but keep
the human involvement into the in-depth decision
making process on exact implementation algo-
rithms. Therefore, one can achieve results saving
himself time by not having to consider the com-
plete solution to extraction process, but rather
taking only the high-impact decisions.

5.1 Reasoning & class selection

Towards extracting semantic metadata in help
of the TU Delft library project (see sec. 3.2.1),
the current subsection provides reasoning about
the exact metadata element to be extracted in the
experiments, namely ”Didactic intent”.

”Didactic intent” identifies the intent of the
teacher in every moment of the lecture. For in-
stance, it marks where in the learning resource
the lecturer provides a concept explanation, an
example or a practical advice. Five such ”intent”
classes have been selected for the algorithmic clas-
sification of the data. These classes are identified
based on the pedagogical taxonomy, specified by
Bloom [24] and the Six Facets of Understand-
ing by Wiggins [50]. The choice of the classes
is further based on the annotation taxonomy of
Bonifazi et al. [51], which grounds on the RST
structure theory [52] and justifies the usefulness
of the selected classes: Concept Description, Con-
cept Mention, Example, Summary and Applica-
tion. Table III presents the classes, the corre-
sponding labels, used for classification later in the
experiments and the meaning of each class.

Classifying learning resources in this way
demonstrates each step from the patterns and
provides proof of concept regarding the main con-
tribution of this work, namely the design pat-
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terns.

LABEL CLASS DESCRIPTION

CD ConceptDecription

Explanation of the
Main concept(s) of
the learning resource
(LR)

CM ConceptMention

Concept or other re-
lated to the ER term
mentioned but not
overviewed in depth
right after

SM Summary

Summary of what
has been done so far,
or in this lecture or
what will be done
next time. Usu-
ally at the beginning
and/or end of the
ER.

AP Application
Practical advise for
the concept

EX Example

Concept example.
Could be of the
main or sub-concept

NL No Label No suitable category

TABLE III. Categories for the data labelling
for the ”Didactic intent” meta element

5.2 Data collection

The dataset was created by crawling MOOC
videos and extracting their video scripts (video
subtitles). Video scripts from 11 online
courses from the Coursera MOOC platform, were
crawled. Under the assumption that for the pur-
pose of the task, it is not necessary for the MOOC
selection to fall under only one domain, the
dataset contains video scripts from the Computer
Science, Physics, Maths, Robotics and spacecraft
domains. The total number of files is 556, which
split by meaningful sentences, makes a consider-
ably big dataset with 38482 sentences. Addition-
ally, the selection of the data was based on the as-
sumption that because the data consists of videos,
and the video subtitles are extracted from these
videos, the dataset practically consists of spoken
language text. To that end, it is assumed that
the data does not differ a lot in terms of lingual
specifications, like for example, scientific papers

and news articles have their own vocabulary and
style of writing. Moreover, the selected classes in
table III allow for this choice of courses as they
are not domain specific, but rather general and
aimed at the intent of the lecturer in the video,
and not the topic per se.

The course choice from the Coursera MOOC
platform, fell on:

• Data management
• Digital media
• Embedded operating systems
• Interactive computer graphics
• Introduction to MongoDB
• IoT Connectivity
• Logic introduction
• Mobile robots
• Particle physics
• Spacecraft dynamics
• Calculus

Considering that the data consists of spoken
language, naturally it needed a careful analy-
sis and pre-processing. The data pre-processing
steps vary per pattern, however the final data was
composed of a total of 38482 sentences in 556 files,
ready for analysis. The detailed pre-processing
steps follow in each of the pattern subsections.

Both of the patterns applied required ground
truth for the evaluation and/or training steps.
This ground truth is a smaller subset of manu-
ally labelled files by human experts. Due to the
large amount of files and sentences, this was im-
possible to perform and therefore, the number of
files was reduced further to one fifth of the ini-
tial amount of files, ensuring the same propor-
tion of files as in the original course in order to
provide objectivity and valid training data to the
”SMRT LRN” algorithm. The resulting scaled-
down dataset consisted of 111 video scripts with
a total of 8960 sentences (fig.14). These 8960 sen-
tences had some irrelevant sentences which were
removed, thus the difference between the total
and relevant sentence count. The final dataset
consists of 8378 sentences, on the basis of which
the final metrics were calculated.

Figure 14. Sentence count after reduction
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Finally, the reduced dataset is suitable to use
for both of the patterns, followed in the next two
sub-sections, namely SMRT D@TA and SMRT
LRN, because SMRT D@TA applies rule-based
classification which generally does not require a
huge dataset, however the dataset is also big
enough to train a classifier in the SMRT LRN
pattern. Therefore, the dataset covers the pre-
requisites of both design patterns.

5.3 Methodology

This section describes in detail the decisions
taken in the process of extracting semantic infor-
mation by following the high-level steps from the
design patterns applicable for this task. The sec-
tion is a showcase of the full process involved in
data extraction, by adopting the patterns, includ-
ing details on condition matching for the patterns
as well as in-depth details in the process of extrac-
tion itself, such as data pre-processing, algorithm
selection, results, evaluation etc. The in-depth
decisions, while not explicitly, are an inseparable
part of the overall extraction process, covered by
the patterns.

5.3.1 Application of pattern: SMRT
D@ta

Selecting the correct pattern is crucial as the
details of the particular implementation require
time. The decision tree in fig.(5) allowed for
the use of the SMRT D@TA pattern for the
”Didactic intent” element due to the require-
ment of at least average quality solution, com-
plemented by the availability of a human expert
willing to spend more time than average on the
analysis and implementation steps. The possibil-
ity of low budget was preferable, but not required.

The specifics of the first design pattern say that
the use of the smaller subset of the MOOC data is
sufficient as a huge dataset is not required. The
pre-processing step is not explicitly required by
the pattern, but is required to perform in general
when data extraction is performed as it improves
the quality of the final result. Therefore, the first
step of the pattern is the techniques like natu-
ral language processing and then inference and
grammar rules in order to fit the data in one of
the selected classes.

As the patterns are generic, for the purpose of
this experiment, the steps of the pattern were bro-

ken down into sub-steps, specific for the current
experiment. They are shown in fig.(15). Accord-
ing to pattern, step 1 involves the use of domain
experts in the initial data analysis process. In this
experiment, it was required for raw data struc-
ture analysis and decisions on the pre-processing
steps. The data was first pre-processed via natu-
ral language processing techniques that are part
of the NLTK package of Python, including partial
stop-words removal, partial punctuation removal,
sentence splitting etc. Furthermore, expressions
that do not contribute contextually to the ex-
traction process, such as mathematical formulas
and numbers, were replaced with place holders
like ”OMITTED” and ”NUMBER”, so that the
reader would have an idea of the context with-
out uninformative facts. The place holders also
serve to reduce the chances of errors in the classi-
fication process. Finally, all the text was made in
lower-case, so that any further techniques applied
would not be case-sensitive. The reason why stop-
word and punctuation removal were only partial,
is that certain stop words, for example ”in”, ”to”,
”if”, help classify the sentences. The comma was
necessary for the classification of a sentence as
an ”Example”, because often the lecturer would
provide a list of comma-separated values as ex-
amples.

Next, the resulting data was provided to two
human annotators both with technical back-
ground. The background was not important as
the labelling task was to be performed from a
learner’s perspective. Along with the target files,
the annotators received an instructional file. The
instructional file explained the structure of the
textual data and based on the initial analysis by
an expert, the file contained information about
commonly occurring locations of specific classes,
such as ”Summary” which is commonly seen at
the beginning or end of the script file. More-
over, the instructions provided labelled examples
and terms typical for a sentence to be labelled
with one of the five classes. The accuracy of
this human-annotated dataset was checked by ex-
tracting a small subset of the data and giving it
to an odd number of different annotators to label
too. Taking the majority vote and comparing it
to the originally labelled data, led to an accuracy
score of the manual labelling, which is discussed
in the results section (6). The final dataset of
8378 sentences was used as ground-truth for the
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Figure 15. Conceptual view of the Didactic intent extraction process with SMRT D@TA

rule-based algorithm for classification in step 4 of
the pattern.

Next up, towards step 2 of the pattern appli-
cation, an interesting idea of facet-dictionary for
scientific publications [53] was adopted and a vo-
cabulary of discriminative terms, defining every
class, was formalized. The identified terms were
n-grams, mostly mono-, bi- and tri-grams. The
list of n-grams is available in appx.{9}.

As opposed to the case of scientific papers19,
lists of specific expressions were not found online
for spoken language texts. As a consequence, they
had to be created manually by human experts
(the same experts who labelled the ground truth
data). As a result from the analysis that followed
the process of vocabulary construction, several is-
sues were identified, making this task extremely
challenging:

1. The vocabulary used in spoken language dif-
fers a lot from any other kind of written lan-
guage, e.g. articles, research papers, study
books etc.

2. Multiple ways exist to provide the same in-
formation.

3. Some words fall into more than one class.
4. Additional ways to classify sentences along-

side vocabulary are necessary in order to
achieve acceptable results of 50% or more.

19http://www.kfs.edu.eg/com/pdf/2082015294739.pdf

To elaborate further on problem #4 from the
list above, an approach from previous papers [13]
[14], was adapted for the needs of this extrac-
tion process. That is, a set of inference rules was
defined and applied to the experiment. Like dis-
cussed in sec.(4.7), such rules draw conclusions
based on pre-defined conditions. Emerging natu-
rally from the dictionary formalization, the rules
fall under step 2 from the pattern. The rules fol-
low logic similar to the following examples:

C ← d, (T1 ∈ d)∧
¬(TN1 ∈ d ∨ TN2 ∈ d ∨ . . . TNn ∈ d)

(1)

C ← d, (T1 ∈ d ∨ · · · ∨ Tn ∈ d)∧
(GT1 ∈ d ∨GT2 ∈ d)

(2)

Expression (1) classifies a document d to cat-
egory C if term T1 occurs in the document and
none of the terms, (TN1 . . . TNn) occur in the
same document, where TN defines the ”negative
terms”, e.g. the terms that must not co-exist
with the main term for the current literal. For
example, if a document (or in our context, a sen-
tence), contains the tri-gram ”in other words”
and does not contain ”should”, ”must” or ”have
to”, the document is classified as ConceptDescrip-
tion while if it does contain any of the three afore-
mentioned words, then there’s a chance that the
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sentence is, instead, an Application, i.e. practical
advice.

An interesting finding, coming from the analy-
sis of the data, is that sentences that fall into spe-
cific classes are usually discussed in a particular
English grammar tense. To illustrate expression
(2), a sentence would be classified as a Summary
if it contains the term ”summarize” or ”in other
words”, provided that the requirement of the sen-
tence being in either past or future grammar
tense, is also satisfied. Grammar Tenses are de-
noted with GT in expression (2) above. One sen-
tence can trigger more than one rule at the same
time. For example, the tri-gram ”in other words”
triggers a rule for labelling as Summary, Appli-
cation and ConceptDescription, however the sen-
tence will be classified as Application only if the
grammar tense requirement is satisfied and one
extra term from a certain set of terms co-occur
with the required tri-gram (”could”, ”should”,
”would” etc.).

A total of 21 inference rules were defined based
on the linguistic and vocabulary analysis from
step 1. The full list is available in appx.{8}.
During the process of classification with the im-
plemented rules, it was found that the algorithm
misclassified some labels in particular cases, such
as classifying a sentence as ConceptMention when
human experts classify it as Summary. This out-
put was not incorrect per se. As a matter of
fact, it correctly identified when a concept is men-
tioned for the first time. Therefore, the rules
were corrected as much as possible, as part of
step 3. However some clashes caused by multi-
rule triggering for the same sentence, could not be
avoided. To get over this issue, it was required to
have a conflict resolution strategy. This strategy
consisted of class-based rule-ordering by assign-
ing priority to every rule based on its importance
in the set of all rules. For instance, if a term
occurs for the first time in the summary of the
lecture, priority would be given to rule labelling
the sentence as Summary, because the overview /
summary only appears at the beginning or end of
the script. Then the next occurrence of the term
would be considered as ConceptMention. That
decision is based on observations that the lecturer
summarizes what the video will discuss and only
after that starts to explain the concept. The rest
of the priorities were also assigned based on obser-
vations. At times when no rule was triggered, a

default rule was implemented, assigning the same
label of the previous sentence with the idea that
often times a certain explanation of a concept or a
summary extends to more than one sentence. The
output was evaluated manually multiple times in
order to improve the algorithm.

5.3.2 Application of pattern: SMRT LRN

The second experiment, adopts the SMRT LRN
design pattern and splits it into smaller project-
specific sub-tasks as shown in (fig.16). The orig-
inally labelled data by human annotators, was
used also for experiment two due to the fact that
it had enough data to train the algorithm. How-
ever when starting with the pattern, one needs
to consider whether training data is available and
if not - how to obtain it (step 1 in fig.16). This
could be done by crowdsourcing, or by human
experts, depending on the essence of the data
and the knowledge required to complete the la-
belling work (step 2 ). From the previous exper-
iment, a conclusion can be drawn that in the
context of this work, crowdsourcing using sev-
eral people would have been the better choice.
Next, similarly to experiment one, pre-processing
was required for the classification task (step 3 ).
Due to the nature of the classification algorithm
applied, more thorough pre-processing was re-
quired. First, the text was split into appropri-
ate sentences. Second, all stop words were re-
moved as they would introduce bias to the algo-
rithm. Third, all previously added ”OMITTED”
and ”NUMBER” markers were treated as stop
words and were removed. Fourth, the sentences
were tokenized, i.e. split into words and then
tagged with a part of speech tagger. Finally, the
words were stemmed and lemmatized in order to
unify all forms of a word into a single word, e.g.
”gone”, ”going” and ”went” would be mapped to
”go”.

When focusing on algorithm selection, the task
of intent mining can be approached in several
ways (as seen in relevant literature). First, as a
text classification or text categorization problem,
applying machine learning models. Second, as
a sequential segmentation or deep learning issue
[54]. Third, as a clustering issue combined with
class-specific thesaurus [55]. The current work
approaches it as a classification problem with a
supervised machine learning model.

Having produced the training set, a probabilis-
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Figure 16. Conceptual view of the Didactic intent extraction process with SMRT LRN

tic Naive Bayes model is applied. Naive Bayes
classifier is a ”naive” model, predicting unseen
data by computing probability on the basis of
provided correct observations[56]. Because of the
dataset essence, around 6000 sentences were la-
belled as ConceptDescription, leaving the rest of
the data to be split into the other four classes,
ending up with a very unbalanced dataset. The
count of sentences per class for both experiments
in provided in fig.(17) in the Results section. This
dataset was not suitable for Naive Bayes. There-
fore, 250 observations were extracted per class
producing a balanced dataset allowing for the al-
gorithm to be trained better, because it is cru-
cial that the training data is as accurate as possi-
ble. Before training the model, Bag of Words was
used to convert the words into vectors and TF-
IDF to normalize them. After providing the data
to the classifier, it was first split into train and
test datasets in a ratio of 80 % to 20 % by ran-
domly selecting the sentences every time. Next,
the model was trained on the train set and tested
on the test set. The results were averaged on the
basis of running the model 10 times. The results
are discussed in the next section. Unlike here,
when using a supervised learning algorithm, the
correctly identified values can be fed back to the
train set and used to improve the quality of the
algorithm. This is seen in (step 4 ) in fig.(16)

The difficulty in this approach is not algorithm-
wise, but time-wise. The training phase can take

a substantial amount of time depending on the
dataset size. With an increasing dataset size for
labelling, and that data being optionally used in
next iterations to improve the algorithm, that
would mean training set size increase and sub-
sequently, will lead to a rise in time-complexity.

6 RESULTS & EVALUATION

The main idea of providing design patters to
practitioners is to ease their job and help them
implement metadata extraction patterns easily,
which, on its end would improve content findabil-
ity and re-use. Quality score above 50% for the
results, produced by following the proposed de-
sign patterns, could evaluate the patterns as use-
ful. Therefore, this section discusses the pattern
application results and evaluation, split by exper-
iments, e.g.by patterns.

The core thing for one to succeed in apply-
ing the design patterns in this work, is identifi-
cation of the right one to use, which depends on
the requirements of the pattern. To get an idea
whether the pattern identification process is in-
tuitive, three people were asked to identify what
type of data they need by giving them an example
element ”Bitrate” and asking them to find similar
elements from the metadata taxonomy in fig.(1)
and then to follow the decision tree on fig.(5) to
a specific pattern. The taxonomy includes a big
number of types of data, both from a functional
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point of view and from the point of view of extrac-
tion methodology, alongside example metadata
element for each. It would be considered useful
if a user can successfully determine the type of
an example metadata element by inspecting the
diagram. Once the user successfully identifies the
type of the given element, they need to follow
the decision tree diagram, based on their require-
ments for costs, output quality and time, willing
to spend on the task. The people, involved into
this small experiment, were able to easily identify
the type of data for ”Bitrate” and then found the
correct pattern to use further. Therefore, both
the taxonomy and the decision tree diagrams can
be applied successfully.

After conducting experiment one (sec.5.3.1),
following the SMRT D@TA pattern, the perfor-
mance of the algorithm was assessed by having
the respective precision, recall, f1 and accuracy
metrics, shown in table (IV). Since the rule-based
classification works by applying a certain set of
logical rules, created by human expert, the num-
ber of sentence occurrences per class should not
affect the final output. However assessing the re-
sults of the classification in the table, it was as-
sumed that it does partially affects the output.
The reason for this could be that the default rule
assigns the label of the previous sentence, if no
rule is triggered and since the most commonly
seen label is ”CD”, this may explain the output.
Generally, the labelled dataset of around 9000
sentences is more than enough for the human ex-
pert to draw conclusions for the logical rules, how-
ever it is hardly possible for a person to go over
all of it very carefully. Normally, a much smaller
size, e.g. half or even less than the current one,
is enough for this purpose. Here, the big respon-
sibility falls on the expert who will analyse the
data and hand-craft the rules. The classification
process that was applied on the dataset did not
result in excellent performance likely due to the
fact that the hand-crafted rules were implemented
based on conclusions drawn from a smaller subset
of the dataset, therefore it is possible that some
crucial criteria for the rules, were missed. Addi-
tionally, some sentences often trigger more than
one inference rule, causing the algorithm some-
times to select the incorrect one. The prioritiza-
tion conflict-resolution technique was able to in-
crease the results slightly. As seen in fig.(17),
results for CD have highest scores due to the

majority of the sentences being ”ConceptDescrip-
tion” while Application (AP) is seen rather rarely.
AP was also harder to distinguish for particu-
lar courses, for example Calculus. An interest-
ing finding was the indication of incorrectly cat-
egorized sentences in the ground truth data, as
a result of human annotation being error-prone.
Some of these sentences were correctly recognized
by the rule-based classification approach later.
This proves the importance of the manual anno-
tation of the ground truth dataset. This fact has
likely contributed to the final result metrics too.
With an increase of the number of human anno-
tators, the quality of the classification task can
improve significantly.

Classifier Class Prec Rec F1 Acc

Rule-based

CM 0.57 0.18 0.27 0.97
CD 0.90 0.72 0.80 0.71
AP 0.11 0.30 0.16 0.88
SM 0.30 0.44 0.35 0.89
EX 0.21 0.50 0.30 0.84

AVG 0.42 0.43 0.38 0.86

Naive Bayes

CM 0.97 0.77 0.86 –
CD 0.78 0.90 0.84 –
AP 0.87 0.83 0.85 –
SM 0.82 0.87 0.84 –
EX 0.82 0.85 0.83 –

AVG 0.85 0.84 0.84 0.84

TABLE IV. Classification metrics for Rule-
based vs. Naive Bayes

Figure 17. Label count

Since the specific classification performance
serves as a proof of concept for this work, the ac-
curacy score for the first experiment, being over
60 %, this leads us to consider the pattern SMRT
D@TA applicable in situations when a practi-
tioner has a problem of metadata extraction and
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does not know where to begin. Providing taxon-
omy and the decision tree, the user can find his
way to the SMRT D@TA pattern, provided that
he needs to extract semantic metadata. Applying
the pattern steps by customizing them to his own
specific problem, allows the user not to think for
the solution from scratch.

Applying the second pattern SMRT LRN to ex-
tract the ”Didactic intent” metadata element via
a machine learning algorithm, shows that the pat-
tern can provide a less time-consuming technique
to the user. The core cause of potential issues
with inaccurate supervised learning models, is the
train dataset, such as seen in experiment (5.3.2).

To obtain a valid accuracy score of the initial
labelling process, a smaller subset of the script
files were selected and provided it to three new
annotators, unrelated to the individuals who ini-
tially labelled the dataset. They were asked to
assign labels by following the instructional file
which gives information on commonly seen loca-
tions for some classes in the script files and a list
of terms that could identify a sentence as a cer-
tain class, for example the occurrence of the term
”summarize” is very likely to indicate a sentence
that is a summary of the lecture and i mostly see
at the end of the script file. Based on the output
from this labelling the accuracy of the train set
could be assessed, that is 83.31 %.

From fig (IV), it appears that Naive Bayes per-
formed much better than the rule-classification
in terms of the balanced f1 score. Data extrac-
tion from spoken language, however, is also chal-
lenging with rule-based classification because it is
based on grammar rules and often includes slang
words. It also contains a lot of ”filler” words such
as ”well”, ”uhm”, ”okay”, ”right” etc. Having
said that, conclusion is that for data, derived from
spoken language, the pre-processing steps need
to be extensive and to consider multiple points
of view before applying an algorithm. Doing that
could potentially improve the quality of the result
in both types of extraction methods.

Nevertheless, the results from experiment two
show that it is very easy to follow the steps of the
pattern and end up with, in this case, a moderate-
to-high-quality results in case that a suitable high
quality train dataset is available at hand.

7 CONCLUSIONS & FUTURE
WORK

The number of learning resources is growing
with the increased interest in online education.
However creating more and more resources on
the same topic is not only impractical for the
authors, who spend unnecessary amount of time
on the task of creating content for their courses,
but also poses a challenge for the learner to find
high quality courses online. This work intends
to contribute into solving this problem, by help-
ing learning resources become more accessible for
sharing and re-use. This can happen if the re-
sources are accompanied by consistent and high
quality metadata. This work proposed a meta-
data type taxonomy, helping individuals figure
out the type of metadata they needs to extract.
Moreover, this work contributes with several de-
sign patterns that can ease the work of the con-
tent authors towards metadata extraction or com-
pletion and thereafter, can improve content share-
ability and re-use. Being high-level, the proposed
design patterns are easy to adapt to the needs
of the individual and help them collect the nec-
essary type of data, as classified in the proposed
taxonomy in fig.(1).

As part of a showcase with the library of TU
Delft, this thesis paper provides proof of con-
cept by extracting semantic metadata for an el-
ement called ”Didactic intent” via two of the
proposed algorithms, namely SMRT D@TA and
SMRT LRN. The most obvious finding to emerge
from the experimental part of this work, is that in
order to extract semantic metadata, one needs to
consider two important aspects: (1) the ground
truth or train data needs to be very accurate and
(2) content analysis needs to be performed very
carefully. Both of these aspects can improve or
reduce the final output quality. Overall, While
the metric scores of the implemented algorithms
can be improved, the results shows that adopting
the proposed patterns is possible and time-saving.
This is also because the patterns provide a ready-
solution, which eliminates the necessity for the
user to think about a solution from scratch. On
top of that, semantic metadata is the most chal-
lenging type of metadata to extract due to the ne-
cessity of ER content analysis, therefore assuming
the rest of the patterns are also easily applicable.

While the experiments show the applicability
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of the design patterns with an average-to-high-
quality result when extracting semantic metadata
for ”Didactic intent”, the patterns can be im-
proved further and do not claim coverage of all
possible solutions.

The proposed design patterns could be im-
proved in the future by providing commonly ap-
plied methodologies, such as specific algorithms
and thus, making them more low-level and spe-
cific to the goal, for example for content personal-
isation. Furthermore, with respect to experiment
one, the inference rules should be improved with
more in-depth linguistic analysis and by identi-
fying a way to reduce rule clashes. Additionally,
the proposed patterns can be further evaluated
by doing an empirical study among practition-
ers on real MOOC platforms and other content
management systems. Moreover, with regards to
the rule-based classification for spoken language
texts, it would be interesting to create a multi-
purpose list of commonly occurring phrases, use-
ful for future applications and to try to improve
the proposed rules in this thesis paper.
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Appendices

A LOM Standard

Figure 18. LOM standard element set
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B LOM Educational Class

Figure 19. LOM Educational class element set and per-element vocabulary values
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C PATTERN DECISION TREE

C Pattern Decision Tree

Figure 20. Decision tree on pattern use
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D Metadata element comparison in MOOC platforms part 1

Figure 21. MOOC Platform comparison Part 1
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E Metadata element comparison in MOOC platforms part 2

Figure 22. MOOC Platform comparison Part 2
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F MOOC Metadata comparison Statistics

Figure 23. MOOC Metadata comparison Statistics
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8 Inference rules

Figure 24. Inference rules implemented and tested
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9 Class vocabularies

1 c o n c e p t d e s c r d i c t = [ ’ t h i s r e s ea r ch ’ , ’ r e f e r s to ’ , ’ l a s t but not l e a s t ’ , ’ number one ’ , ’
number two ’ , ’ number three ’ , ’ drawback ’ , ’ advantages ’ , ’ d i sadvantages ’ , ’ b e n e f i t s ’ , ’
drawbacks ’ , ’ d e f i ned ’ , ’ the re are many types ’ , ’ important to understand ’ , ’ l e t \ ’ s
look at ’ , ’when we use the term ’ , ’ imagine that ’ , ’ r e f e r s to as ’ , ’ key concepts ’ , ’
t h i s i s a term ’ , ’ more s p e c i f i c a l l y ’ , ’ he lp s to ’ , ’ i s used to ’ , ’ makes i t e a s i e r to ’ ,

’ prov ide in fo rmat ion about ’ , ’when t a l k i n g about ’ , ’ c r i t i c a l to understand ’ , ’ l e t \ ’
s take a look at ’ , ’ c r u c i a l ’ , ’ can be used to ’ , ’ ensure s ’ , ’ r u l e o f thumb ’ , ’ c on s id e r ’
, ’ l a s t but not l e a s t ’ , ’ t o p i c o f t h i s ’ , ’ t o p i c o f today ’ , ’ one way to ’ , ’ another
p o s s i b i l i t y i s ’ , ’ next one i s ’ , ’ problem ’ , ’ to address ’ , ’ want to do ’ , ’ d i f f e r e n t ways
’ , ’ approach i s to ’ , ’ t r i e s to ’ , ’ t ry to ’ , ’ t o p i c i s ’ , ’ method ’ , ’ task ’ , ’ in t h i s why ’ ,
’we s p e c i f y ’ , ’ by combining ’ , ’ r e s u l t s ’ , ’ because ’ , ’ due to ’ , ’ in other words ’ , ’ in
f a c t ’ , ’ means ’ , ’ done through ’ , ’ i m p l i e s ’ , ’ i f you take ’ ]

2

3 conceptment ion d ic t = [ ’ c a l l e d ’ , ’ use the term ’ , ’ more s p e c i f i c a l l y ’ , ’ t h i s i n c l u d e s ’ , ’
a c t i v i t i e s surrounding ’ , ’ show you ’ , ’ a d d i t i o n a l l y ’ , ’ should inc lude ’ , ’ types o f ’ , ’
recommends ’ , ’ known as ’ , ’ known f o r ’ , ’ advantages to ’ , ’ d i sadvantages to ’ , ’ b e n e f i t s ’ ,
’ drawbacks ’ , ’ p lays a key r o l e ’ , ’ r e f e r s to as ’ , ’ f i r s t one i s ’ , ’we in t roduce ’ , ’
t e chn iques ’ , ’ second one i s ’ , ’ t r a d i t i o n a l ’ , ’ method ’ , ’−based ’ , ’ what \ ’ s ’ , ’ what i s ’ ,

’ says ’ ]
4

5 a p p l i c a t i o n d i c t = [ ’ bes t p r a c t i c e s ’ , ’ bes t p r a c t i c e ’ , ’ means that ’ , ’ p r a c t i c a l b e n e f i t ’ ,
’ s o r t s o f th ing s ’ , ’ good p r a c t i c e s ’ , ’ bes t to ’ , ’ you should ’ , ’ you shouldn \ ’ t ’ , ’may

f i n d that ’ , ’ can use ’ , ’ t h i s i s important ’ , ’ p a r t i c u l a r l y importnant ’ , ’ i s why ’ , ’
u s e f u l to ’ , ’ recommended that ’ , ’ c on s id e r ’ , ’ u s e f u l to ’ , ’ i n s t ead ’ , ’ t i p s ’ , ’ t i p ’ , ’
adv ice ’ , ’ adv i sed ’ , ’ encourage ’ , ’ experiment ’ , ’ exp lo r e ’ , ’ remember ’ ]

6

7 example d ic t = [ ’ example ’ , ’ the re are many ’ , ’many types ’ , ’ i n c lude ’ , ’ can see ’ , ’ hands on ’
, ’ i n c l u d e s ’ , ’ exemplar ’ , ’ prototype ’ , ’ sample ’ , ’ case ’ , ’ i l l u s t r a t i o n ’ , ’ analogy ’ , ’ l e t
\ ’ s th ink o f ’ , ’may want to ’ , ’ some o f ’ , ’ most o f ’ , ’ d i f f e r e n t types o f ’ , ’ e . g . ’ , ’ f o r
example ’ , ’ key a spec t s ’ , ’ key concepts ’ , ’ in other words ’ , ’ o f the se are ’ , ’ o f them
are ’ , ’ r a the r than ’ , ’ such as ’ , ’ pros and cons ’ , ’ a long l i s t ’ , ’ va r i ous ’ , ’ f o r
i n s t ance ’ , ’ i t \ ’ s l i k e ’ , ’ d i f f e r e n t ways ’ , ’ t r i e d to ’ , ’ i n s t ead o f ’ , ’ say ’ , ’ c h a l l e n g e ’
, ’ assume ’ ]

8

9 summary dict = [ ’ by the end o f ’ , ’ as you know ’ , ’ have a good understanding ’ , ’ w i l l begin
by ’ , ’ w i l l cover ’ , ’ we l l de lve ’ , ’ w i l l d i s c u s s ’ , ’ w i l l be ab le to ’ , ’ w i l l understand ’ ,

’ to summarize ’ , ’ summary ’ , ’ take away ’ , ’ to conc lude ’ , ’ as you know ’ , ’ int roduced ’ , ’
be aware ’ , ’we\ ’ ve looked at ’ , ’ l a s t week we d i s cu s s ed ’ , ’ d i s c u s s how to ’ , ’ w i l l
d e s c r i b e ’ , ’ the goa l ’ , ’ know that ’ , ’ s t ep ’ , ’ f i r s t ’ , ’ second ’ , ’ t h i r d ’ , ’ f i n a l l y ’ , ’ next ’
, ’ c o n s i d e t i n g ’ , ’ can see ’ , ’we\ ’ ve seen ’ , ’ l ea rned ’ , ’ r e c a l l ’ , ’ remember ’ , ’ l a s t time ’ ]

Listing 1. vocabulary terms per class
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