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A Linear Method for Shape Reconstruction based
on the Generalized Multiple Measurement Vectors
Model

Shilong Sun, Bert Jan Kooij, Alexander G. Yarovoy, Fellow, IEEE, and Tian Jin, Member, IEEE

Abstract—In this paper, a novel linear method for shape
reconstruction is proposed based on the generalized multiple
measurement vectors (GMMYV) model. Finite difference fre-
quency domain (FDFD) is applied to discretized Maxwell’s
equations, and the contrast sources are solved iteratively by
exploiting the joint sparsity as a regularized constraint. Cross
validation (CV) technique is used to terminate the iterations, such
that the required estimation of the noise level is circumvented.
The validity is demonstrated with an excitation of transverse
magnetic (TM) experimental data, and it is observed that, in the
aspect of focusing performance, the GMMV-based linear method
outperforms the extensively used linear sampling method (LSM).

Index Terms—Cross validation (CV), finite difference fre-
quency domain (FDFD), generalized multiple measurement vec-
tors (GMMY), joint sparsity, linear sampling method (LSM),
transverse magnetic (TM).

I. INTRODUCTION

NVERSE electromagnetic (EM) scattering is a procedure

of recovering the characteristics of unknown objects using
the scattered fields probed at a number of positions. In many
real applications, such as geophysical survey [1], [2], [3], [4],
it is of great importance to retrieve the geometrical features
of a system of unknown targets.

For solving this problem, a wealth of reconstruction meth-
ods have been proposed over the recent decades. Due to their
high efficiency, the linear focusing methods have been exten-
sively used in real applications, among which are Kirchhoff
migration [5], back-projection method [6], time-reversal (TR)
technique [7], [8], [9], [10], [11], [12], [13], [14], [15], and
so forth. However, as is well known the imaging resolutions
of the linear focusing algorithms are bound by the diffraction
limit [16]. As a variant of TR technique, time-reversal multiple
signal classification (TR MUSIC) [17], [18], [19], [20] is
capable to achieve a resolution that can be much finer than
the diffraction limit by exploiting the orthogonality of the
signal and noise sub-spaces. Linear Sampling Method (LSM)
[21], [22] is a non-iterative inversion technique of finding an
indicator function for each position in the region of interest
(ROJ) by first defining a far-field (or near-field [23]) mapping
operator, and then solving a linear system of equations. LSM
has been proven to be effective for impenetrable scatterers, and
in some cases, also applicable for dielectric scatterers [24]. As
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a matter of fact, LSM can also be reinterpreted, apart from very
peculiar cases, as a “synthetic focusing” problem [25], and
more interestingly, an extension of the MUSIC algorithm [26].
There is another group of iterative surface-based inversion
methods, which first parametrize the shape of the scatterer,
then optimize the parameters by minimizing a cost functional
iteratively [27]. The drawbacks of these methods are obvious.
Firstly, they require a priori information about the position
and the quantity of the scatterers. More research on this point
can be found in [28], [29]. Secondly, it is intractable to deal
with complicated non-convex objects. Quantitative inversion
methods, such as contrast source inversion (CSI) [30], [31],
[32], [33] and (Distorted) Born iterative methods (BIM and
DBIM) [34], [35], [36], [37], can also be used for shape
reconstruction. However, it is very time consuming due to the
fact that the forward scattering problem needs to be solved in
every iteration.

In this paper, a novel linear method using generalized
multiple measurement vectors (GMMV) model [38], [39] is
proposed for solving the problem of shape reconstruction.
Specifically, as the objects are illuminated by EM waves
from various incident angles at different frequencies, the
contrast sources, i.e., the multiplication of the contrast and
the total fields, are distributed in the same region with the
objects. Therefore, the problem is consequently formulated as
a GMMYV model, and the contrast sources can be retrieved by
solving multiple systems of linear equations simultaneously. In
our method, the sum-of-norm of the contrast sources is used as
a regularization constraint to address the ill-posedness. Finite
difference frequency domain (FDFD) [40] is used to construct
the scattering operator which enables simple incorporation
of complicated background media, and the spectral projected
gradient method, referred to as SPGL1 [41], [42], is selected
to estimate the contrast sources by solving a sum-of-norm
minimization problem. Sparse scatterer imaging has been
studied in [43], in which the single measurement vector (SMV)
model was used, but the joint sparsity was not considered. The
application of joint sparsity in the field of medical imaging has
been reported in [44], which is actually a hybridization of com-
pressive sensing (CS) [45] and MUSIC based on a so-called
generalized MUSIC criterion. In the aforementioned work,
sparse targets (original or equivalently transformed) and their
sparsest solutions are considered, and the problem of defining
the best discretization grid and target number is critical for
ensuring a level of sparsity that is recoverable. Equivalence
principles have been considered in [46] for reconstructing the
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boundary of dielectric scatterers. In this paper, we use sum-
of-norm as a regularization constraint and we demonstrate a
regularized solution of the contrast sources is sufficient to
recover the spatial profile of the non-sparse targets. In this
paper, we only considered the transverse magnetic (TM) EM
scattering problem, and we verified the validity of the proposed
method with 2-D experimental data provided by the Institut
Fresnel, France [47], [48] for three distinct cases — metallic
objects, dielectric objects, and a hybrid one of both. Since the
noise level is unknown in real applications, cross validation
(CV) technique [49] is used to terminate the optimization
process. Comparison of the inverted results indicates that the
proposed method shows higher resolving ability than LSM.

The remainder of the paper is organized as follows: In
Section II, the problem statement is given. In Section III, the
proposed GMM V-based linear method is introduced in detail.
The validation of this method with experimental data is given
in Section IV. Finally, Section V ends this paper with our
conclusions.

II. PROBLEM STATEMENT

For the sake of simplicity, we consider the 2-D TM-
polarized EM scattering problem. A bounded, simply con-
nected, inhomogeneous background domain D contains un-
known objects. The domain S contains the sources and re-
ceivers. The sources are denoted by the subscript p in which
p € {1,2,3..., P}, and the receivers are denoted by the
subscript ¢ in which ¢ € {1,2,3,...,Q}. We use a right-
handed coordinate system, and the unit vector in the invariant
direction points out of the paper.

Assume the background is known to a reasonable accu-
racy beforehand, and the permeability of the background
and unknown objects is a constant, denoted by ug. The
contrast corresponding to the ¢-th frequenc%f, X, 1s defined as
Xi = € — e?g, where €; = ¢ —i0/w; and €, = £ — io%¢ Jw;
are the complex permittivity of the inversion domain with
and without the presence of the targets, respectively. Here,
¢ and € are the permittivity of the inversion domain with
and without the presence of the targets, respectively; o and
0P are the conductivity of the inversion domain with and
without the presence of the targets, respectively; w; is the
i-th angular frequency; i represents the imaginary unit. The
time factor used in this paper is exp(iw;t). For 2-D TM-
polarized scattering problems, the electric field is a scalar
and the scattering wave equation with respect to the scattered
fields can be easily derived from Maxwell’s equations, which
is given by

—V’Ey — K} B, = wlpodpi, p=12,...,P,

1
i=1,2,...,1, M

where, V? is the Laplace operator, k; = wiy/€ppio is the i-th
wavenumber, J,,; = x;Ey% is the p-th contrast source at the
i-th frequency, E5; and EY; are the scattered electric field
and the total electric field at the ¢-th frequency, respectively.
The inverse scattering problems discussed in this paper are to
retrieve the geometrical features of the scatterers from a set

of scattered field measurements.
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III. THE GMMV-BASED LINEAR METHOD
A. The GMMV Formulation

Following the vector form of the FDFD scheme in [40], we
discretize the 2-D inversion space with N grids and recast
the scattering wave equation (1) into the following matrix
formalism

sct __, 2. —
Aiep,i =W;Ipi, P=

i=1,2,...,1,

1,2,...,P,

2

where A; € CN*N is the FDFD stiffness matrix of the i-th
frequency, which is highly sparse; e5; € C and j,, € C¥
are the scattered electric field and the contrast source in the
form of a column vector, respectively. Obviously, the solution
to Eq. (2) can be obtained by inverting the stiffness matrix A,
ie., e}, = A;'w?j, ;. For the inverse scattering problems
discussed in this paper, the scattered fields are measured with
a number of receivers at specified positions, yielding the data
equations given by
yp,i:@p,ij;iv ]):1,27...,P7
. 3)
i=1,2,...,1,
where, ®,,; = M3 A} 'w; € C9*N is the sensing matrix for
the measurement y,, ;, j;i ; = WiJp,: is the normalized contrast
source proportional to the induced current iw;ugjp ;. Here,
./\/lg is a measurement matrix selecting the values of the p-th
scattered field at the positions of the receivers.

In the rest of this subsection, a GMMV model [39] is
constructed and solved by exploiting the joint sparsity of the
normalized contrast sources. In doing so, the contrast sources
can be well estimated by solving a sum-of-norm minimization
problem, and consequently be used to indicate the shape of the
scatterers. To do so, we reformulate the data equations, Eq. (3),
as

Y=® - J+U (4)

where
Y =[y11 ¥21 Yyr1l Y12 ypi], (6
J =[5 5 g1 It Jil. (©

and @ - J is defined by

P .J= [4’171.7'11(:71 q’g,linC’l <I>p71j}°,’1] , (7)

and, correspondingly, ® - Y is defined as

7.y = [(I’{{lyllc,l ‘I’glylzc,l @gzy}%z] )]
Here, Y € CO*PI is the measurement data matrix, and the
columns of J € CV*PT are the multiple vectors to be solved.
U € C¥*PT represents the complex additive noises satisfying
certain probability distribution. It is worth noting that for
single frequency inverse scattering problem, if the positions
of the receivers are fixed, i.e., @11 = Py =
Eq. (4) reduces to the standard multiple measurement vectors
(MMV) model [38].

=By,
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B. Guideline of the Measurement Configuration

Although the joint sparsity is used in this paper as a
regularization constraint, an investigation on the uniqueness
condition is still of much importance for two reasons: 1) It is
of great interest to know how much we could benefit from a
joint recovery; 2) It provides us a guideline of the measurement
configuration to make the most of the joint processing.

According to the work of Chen and Huo [50] and Davies
and Eldar [51], a necessary and sufficient condition for the
measurements Y = A X to uniquely determine the row sparse
matrix X is that

< spark(A) — 1 + rank(X)

|supp(X)| 5 ,

€))

where, supp(X) denotes the index set corresponding to non-
zero rows of matrix X, |supp(X)| denotes the cardinality of
supp(X), the spark of a given matrix is defined as the smallest
number of the columns that are linearly dependent. Thereafter,
Heckel and Bolcskei have studied the GMMYV problem and
showed that having different measurement matrices can lead
to performance improvement over the standard MMV case
[39]. The above work about the uniqueness condition implies
specifically in our method that in order to make the most of the
joint processing, the column number of matrix J is supposed
to be larger than the number of measurements, i.e., P x I >
Q. Moreover, with the same measurement configuration, the
inversion performance can be further improved by exploiting
the frequency diversity even for the case of P > (). The latter
is further demonstrated in Subsection IV-A.

C. Spectral Projected Gradient LI method (SPGLI)

1) GMMYV basis pursuit denoise (BP,) problem: Suppose
the noise level is known beforehand, the approach to finding
the multiple vectors is based on solving a convex optimization
problem (referred to as GMMV (BP,) problem), which can
be written as follows

minimize k(J) subjectto ||[®-J-Y|r <&, (10)
where, & represents the noise level; x(J) is the mixed («, /3)-

norm defined as

N 1/«
BAPES (Z H‘L{Hg) )
n=1

where, J, . denotes the n-th row of J; ||| 3 is the conventional
B-norm; (-)T is the transpose operator; || - ||  is the Frobenius
norm which is equivalent to the mixed (2,2)-norm || - [|22. In
this paper, we select the mixed norm || - ||; 2 as a regularized
constraint. Although || - || 2 tends to enforce the row-sparsity
of the matrix J, sparsity is not a premise for this approach.
The key point is the utilization of the joint structure for im-
proving the focusing ability. As demonstrated in the following
experiments, this approach is able to image objects which are
not sparse by exploitation of the frequency diversity.

Y
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Sy (T)

Fig. 1. Probing the Pareto curve: the update of parameter 7.

2) Multiple GMMV Lasso (LS;) problems: Since it is
not straightforward to solve the GMMV (BP,) problem, we
consider the GMMYV (LS, ) problem formulated as [41]

minimize ||®-J -Y| 5

subject to || J||; , < 7. (12)

The GMMYV (LS. ) problem is equivalent to the GMMV (BP,,)
problem when 7 = 7;. As the exact value of 7; is not
available, a series of GMMYV (LS,) problems with different
values of 7 must be solved. Now let us first introduce the
Pareto curve defined as follows

dommv(T) = || @ - TP - Y| ., (13)
where, J* is the optimal solution to the LS, problem given
by Eq. (12). When the optimal solution Js** to the GMMV
(LS;) problem is found, 7; is updated to 7;4; by probing
the Pareto curve. The searching procedure is terminated when
¢dcmmy (T) = 7. At the mean time, 7 reaches 75.

3) Updating the parameter T: As the Pareto curve is proven
to be a non-increasing convex function, Newton iteration is
used for updating the parameter 7. Specifically, 7 is updated
by

& — dammv (1)

Ti41 =T+ oo (1) (14)
where,
: |- (2- I - V)|
Pommv (1) = — @ g Y], : (15)
Here, || - ||oc,2 is the dual norm of || - ||1,2. The searching

procedure is illustrated in Fig. 1. Unless a good estimate of
T5 can be obtained, we set 75 = 0, yielding ¢(0) = ||Y'||r and
#'(0) = |® - Y| o0.2. With Eq. (14), it holds immediately
that the next Newton iteration is

_ - |Y|F
T1

R L L 16
137 Y] s (10

We refer to [41], [42] for more details about SPGL1 and [52]
for its application in inverse scattering problems.
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D. CV-based Modified SPGLI

In real applications, the termination condition, ¢gymv(7) =
7, is not applicable, because the noise level, i.e., the parameter
0, is unknown in general. In order to deal with this problem,
we modified the SPGL1 method based on the CV technique
[49]. In doing so, the estimation of the noise level can be well
circumvented.

Specifically, we separate the original scattering matrix to
a reconstruction matrix ®,,;, € C?*Y and a CV matrix
®,;cy € COV*N with Q = Q, + Qcv. The measurement
vector ¥y, ; is also separated accordingly to a reconstruction
measurement vector y,;, € C? and a CV measurement
vector Yy, ;cy € CYV. The reconstruction residual and the
CV residual are defined as

I P
Trec = Z Z ||yp,i,7" -

i=1p=1

1/2

p,i,rjp,i”g (17)

1/2
3) . (18)

respectively. In doing so, every iteration can be viewed as
two separate parts: reconstructing the contrast sources by
SPGL1 and evaluating the outcome by the CV technique. The
CV residual curve turns to increasing when the reconstructed
signal starts to overfit the noise. The reconstructed contrast
sources are selected as the output on the criterion that its CV
residual is the least one. To find the least CV residual, we
initialize ¢ as 0 and terminate the iteration when

and

p,i,CVIpsil

I P
rey = (Z Z lypicy — @

i=1 p=1

Nlter > Nopt+AN, (19)

is satisfied, Here, Ny, is the current iteration number, and Ny
is the iteration index corresponding to the least CV residual —
the optimal solution. Namely, the CV residual is identified as
the least one if the CV residual keeps increasing monotonously
for AN iterations. In the following experimental examples, we
set AN = 30.

Once the normalized contrast sources are obtained, one can
achieve the shape of the scatterers defined as

ZZ!J il

i=1 p=1

YGMMV,n = n = 1, 2, ey N, (20)

where jp i and Yemmv,n represent the n-th element of vector
gp , and Yemmv, respectively.

IV. VALIDATION WITH EXPERIMENTAL DATA

In order to validate the proposed GMMV-based linear
method, we applied it to the experimental database provided
by the Remote Sensing and Microwave Experiments Team
at the Institut Fresnel, France, in the years of 2001 [47]
and 2005 [48]. Three different cases of dielectric scatterers,
metallic scatterers (convex and nonconvex), and a hybrid one
of both, were considered, respectively. In order to guarantee

http://dx.doi.org/10.1109/TAP.2018.2806404

the accuracy of the FDFD scheme, the inversion domain is
discretized with a grid size A? satisfying

min{\;}

A< ,
=715

1=1,2,...,1, (21)
where, \; is the wavelength of the i-th frequency.

We have also processed the same data by LSM for compar-
ison. Since the background of the experiments is free space
and only TM wave is considered, the LSM method consists
in solving the integral equation of the indicator function

gi(xs, ;) at the i-th frequency

wj
/ Ei(@r, @) gi(@s, @)da, = L0 HY (<kil|es — @0 l2),

(22)
where, E;(x,,x;) is the scattered field probed at x, corre-
sponding to the transmitter at x; and the ¢-th frequency. Here,
x is the sampling point in the inversion domain, Hél)(') is
the Hankel function of the first kind, k; is the wavenumber of
the i-th frequency. Eq. (22) can be reformulated as a set of
systems of linear equations

= fi,msa

where, F; is the measurement data matrix, g; ., is the in-
dicator function of the sampling point x; in the form of a
column vector, f; »_ is the right side of Eq. (22) in the form
of a column vector, the index ¢ represents the i-th frequency.
Following the same approach of solving Eq. (23) in [25], [53],
the indicator function g; 5. is sought to be

D 2
Z( Si,d ) ’ud ,fz:c5

d=

Figi,ms ’L: 1,2,...,[, (23)

1gi.a. I ; (24)

where, s; 4 represents the singular value of matrix F; cor-
responding to the singular vector ug; (-) is the conjugate
transpose operator; D = min{P, Q}; a; = 0.01 x mgx{si,d}.
The shape of the scatterers is defined by

1

7LSM($S) = || MFE|[2° (25)

where, [|ghF||? is a multi-frequency modified indicator defined
as the average of the normalized modified ones computed at

each frequency [54]

(26)

lgi . ||
loz Izmax (lgi.I?)
x5 €
It is worth mentioning that both the normalized contrast
sources and the indicator functions are proportional to the
amplitude of the electric field. According to the definitions
in Eq. (20) and Eq. (25), vgmmv and -y sm are proportional
and inversely proportional to the power of electric fields,
respectively. Therefore, the dB scaling shown in the following
examples is defined as follows
0
max{'y}) '

YdB = 10 x loglo < (27)
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Fig. 2. Measurement configuration of the data-sets: rwodielTM_Sf,
rectTM_dece, and uTM_shaped. Blue: emitter; Green: reconstruction mea-
surements; Red: CV measurements.
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Fig. 3. Normalized reconstruction residual curve and CV residual curve in
Example 1, Subsection IV-A. (a) Reconstruction with single frequency at 4
GHz; (b) Reconstruction with multiple frequencies at 2 GHz, 4 GHz, 6 GHz,
and 8 GHz.

A. Dielectric Scatterers

1) Example 1: In the first example, we consider the
twodielTM_8f data-set provided in the first opus of the Institut
Fresnels database [47]. The targets consist of two identical cir-
cular cylinders, which are shown in Fig. 4 (a). All the cylinders
have radius of 1.5 cm and relative permittivity 3 & 0.3. The
emitter is placed at a fixed position on the circular rail, while
a receiver is rotating around the center point of the vertical
cylindrical target. The targets rotated from 0° to 350° in steps
of 10° with a radius of 720 £ 3 mm, and the receiver rotated
from 60° to 300° in steps of 5° with a radius of 760 £ 3 mm.

/mm

z/mm
o
88588838
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—~
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60 60
-25 -25
-50 0 50 -50 0 50
y/mm y/mm
(b) (©

z/mm

-25
-50 0 50 -50 0 50

y/mm y/mm

) (e

Fig. 4. Scatterer geometry and its reconstructed shapes for Example 1 in
Subsection IV-A: Scatterer geometry (a); The scatterer shape reconstructed
by GMMYV (b) and LSM (c) by processing the 4GHz data; The scatterer
shape reconstructed by GMMYV (d) and LSM (e) by processing the multiple
frequency data at 2 GHz, 4 GHz, 6 GHz, and 8 GHz.

Namely, we have 49 x 36 measurement data at each frequency
when all the measurements are finished. The measurement
configuration is shown in Fig. 2, from which we can see 9 red
circles which represents the CV measurements and 40 green
ones which represents the reconstruction measurements. The
inversion domain is restricted to [—75, 75] x [—75, 75] mm?,
and the size of the discretization grids is 2.5 x 2.5 mm?.
Let us first process the single frequency data at 4 GHz by
the GMMV-based linear method and the LSM method. The
data matrix F; for the LSM is a 72 x 36 matrix in which
the data entries that are not available are replaced with zeros.
The reconstruction residual curve and the CV residual curve
are shown in Fig. 3 (a), from which we see the CV residual
decreases before the 52-nd iteration and starts to increase
thereafter. The solutions at the turning point correspond to
the optimal ones. In addition, the reconstruction residual
corresponding to the turning point gives an estimation of the
noise level & ~ 0.05||Y’|| . Fig. 4 (b) and Fig. 4 (c) show the
images achieved by the two methods at 4 GHz in a dynamic
range of [—25, 0] dB. As we can see the GMMYV image is
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Fig. 5. Measurement configuration of the data-sets: FoamDielntTM and
FoamMetExtTM. Blue: emitter; Green: reconstruction measurements; Red: CV
measurements.

10°

—— Reconstruction residual
—————— CV residua

10

Normalized residual

102

20 60

Iteration number

Fig. 6. Normalized reconstruction residual curve and CV residual curve in
Example 2, Subsection IV-A. The FoamDielntTM data at 2 GHz, 4 GHz, 6
GHz, 8 GHz, and 10 GHz are jointly processed.

more clear than the LSM image. However, there is obvious
shape distortion in the former. Note that ) = 49, P = 36
and I = 1, we have P x I < @. Recalling the guideline of
the measurement configuration discussed in Subsection III-B,
the reconstruction performance can be further improved via
exploiting the frequency diversity. It is worth mentioning that
an obvious position mismatch of the true objects and the
reconstructed result can be observed. The reason is very likely
to be the minor displacement and tilt occurred in the placement
of the objects while doing this measurement, because the same
phenomenon can be observed as well in the inverted results
reported in [55].

Now let us process the data at 2 GHz, 4 GHz, 6 GHz,
and 8 GHz, simultaneously. The residual curves are shown in
Fig. 3 (b) and the reconstructed images are shown in Fig. 4 (d)
and Fig. 4 (e). By comparison of Fig. 4 (b) and Fig. 4 (d), one
can see that the reconstruction performance of the proposed
GMM V-based linear method is improved by exploiting the
frequency diversity. One can also observe that the GMM V-
based linear method achieves lower sidelobes than LSM in
the case of dielectric scatterers.

2) Example 2: In the second example, we consider the
FoamDieIntTM data-set provided in the second opus of the
Institut Fresnels database. The targets consist of a circular
dielectric cylinder with a diameter of 30 mm embedded in
another circular dielectric cylinder with a diameter of 80

/mm
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Fig. 7. Scatterer geometry and its reconstructed shapes for the FoamDielntTM
data-set at 2 GHz, 4 GHz, 6 GHz, 8 GHz, and 10 GHz: Scatterer geometry
(a); The scatterer shape reconstructed by GMMV (b) and LSM (c).

mm. The smaller cylinder has a relative permittivity value
of ¢, = 3 £ 0.3, while the larger cylinder has a relative
permittivity value of €, = 1.45+0.15. Fig. 7 (a) shows the true
objects, and we refer to [48] for more description of the targets.
The experiment is carried out in 2005, in which the receiver
stays in the azimuthal plane (zoy) and is rotated along two-
thirds of a circle from 60° to 300° with the angular step being
1°. The source antenna stays at the fixed location (§ = 0°), and
the object is rotated to obtain different illumination incidences
from 0° to 315° with angular step of 45°. Namely, we have
241 x 8 measurements at each frequency. The distance from the
transmitter/receiver to the centre of the targets has increased
to 1.67 m. The measurement configuration is shown in Fig. 5,
in which the blue one represents the emitter, the 4 x 9 red
ones represent the CV measurements, and the green ones are
the reconstruction measurements.

The inversion domain is restricted to [—60, 60] x [—60,
60] mm?, and the discretization grid size is 2.5 x 2.5 mm?.
Let us process the multi-frequency data at 2 GHz, 4 GHz,
6 GHz, 8 GHz, and 10 GHz simultaneously by the GMM V-
based linear method and the LSM method, respectively. The
data matrix F; for LSM is a 360 x 8 matrix in which the
data entries that are not available are replaced with zeros. The
reconstruction residual curve and the CV residual curve are
shown in Fig. 6, from which we see the CV residual decreases
during the first 62 iterations and starts to increase thereafter.
Fig. 7 (b) and Fig. 7 (c) show the reconstructed images by
the GMM V-based linear method and LSM, respectively. One
can observe that the profile of the objects is reconstructed by
the proposed method with high resolution, while in the LSM
image the objects cannot be distinguished at all.
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Fig. 8. Normalized reconstruction residual curve and the CV residual curve
in Subsection IV-B. (a) The rectangular metallic cylinder at 10 GHz, 12 GHz,
14 GHz, and 16 GHz; (b) The “U-shaped” metallic cylinder at 4 GHz, 8 GHz,
12 GHz, and 16 GHz.
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Fig. 9. Scatterer geometry and its reconstructed shapes for the rectangular
metallic cylinder obtained by processing the multiple frequency data at 10
GHz, 12 GHz, 14 GHz, and 16 GHz. : Scatterer geometry (a); The scatterer
shape reconstructed by GMMYV (b) and LSM (c).

B. Metallic Scatterers

In this subsection, we applied the proposed method to the
rectTM_dece and uTM_shaped data-sets provided in the first
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Fig. 10. Scatterer geometry and its reconstructed shapes for the “U-shaped”
metallic cylinder obtained by processing the multiple frequency data at 4
GHz, 8 GHz, 12 GHz, and 16 GHz: Scatterer geometry (a); The scatterer
shape reconstructed by GMMYV (b) and LSM (c).
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opus of the Institut Fresnels database [47], which correspond
to a convex scatterer — a rectangular metallic cylinder, and
a non-convex scatterer — a “U-shaped” metallic cylinder,
respectively. The dimensions of the rectangular cross section
are 24.5 x 12.7 mm2, while those of the “U-shaped” cylinder
are about 80 x 50 mm?2. The measurement configuration is
same with that in Subsection IV-A. More details about the
description of the targets can be found in [47].

For the rectangular cylinder, the inversion domain is re-
stricted to [—25, 25] x [15, 65] mm? and the multiple
frequency data at 10 GHz, 12 GHz, 14 GHz, and 16 GHz
are processed simultaneously. While for the larger “U-shaped”
cylinder, the inversion domain is restricted to [—70, 70] x
[—70, 70] mm? and the multiple frequency data at 4 GHz, 8
GHz, 12 GHz, and 16 GHz are processed simultaneously. The
size of the discretization grids is 1.3 x 1.3 mm?. Fig. 8 (a,b)
give the residual curves and the reconstructed images are
shown in Fig. 9 and Fig. 10, respectively, from which we
can see that the focusing performance of LSM is poor in the
rectangular cylinder case, and it is even worse in retrieving
the shape of the non-convex “U-shaped” cylinder, while the
rectangular shape and “U” shape are well reconstructed by
the proposed GMM V-based linear method, indicating that the
latter shows higher resolving ability than the former in both
the convex metallic target case and the non-convex metallic
target case.

C. Hybrid Scatterers

In this subsection, we applied the proposed method to hy-
brid scatterers consisting of a foam circular cylinder (diameter
=80 mm, €, = 1.45%+0.15) and a copper tube (diameter = 28.5
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GHz is processed.

-80
-60
-40
20

0
20 U
40
0

60

x/mm

-50

50

y/mm

(a)

-80
60 -
-40 -
-20 é -
~
0 5

20 ]

e i 20
40
60 -25

-50 0 50 -50 0 50
y/mm y/mm
(b) ©

Fig. 12. Scatterer geometry and its reconstructed shapes for the hybrid

scatterers obtained by processing the multiple frequency data at 2 GHz, 3GHz,
..., 8 GHz in Subsection IV-C: Scatterer geometry (a); The scatterer shape
reconstructed by GMMYV (b) and LSM (c).

mm, thickness = 2 mm), which was considered in the Foam-
MetExtTM data-set provided in the second opus of the Institut
Fresnels database. We refer to [48] for more description of the
targets. The measurement configuration is the same with the
one shown in Fig. 5. In contrast to the FoamDielntTM data-
set, this data-set is obtained using 18 transmitters, while other
settings are kept the same. Specifically, the source antenna
stays at the fixed location (8 = 0°), and the object is rotated
to obtain different illumination incidences from 0° to 340° in
steps of 20°.

Let us first restrict the inversion domain to [—90, 60] x
[—75, 751 mm? and discretize this domain with 2.5 x 2.5
mm? grids. The multi-frequency data at 7 frequencies, 2 GHz,
3 GHz, ..., and 8 GHz, are jointly processed. The data matrix
F; for LSM is a 360 x 18 matrix in which the data entries
that are not available are replaced with zeros. Fig. 11 gives the

http://dx.doi.org/10.1109/TAP.2018.2806404

TABLE I
RUNNING TIMES OF THE EXPERIMENTAL EXAMPLES
Data-set Frequency | caiviv s | LsM s
number
twodielTM_8f 1 2.5 0.0145
twodielTM_8f 4 12.7 0.0270
FoamDielntTM 5 3.8 0.0693
rectTM_dece 4 2.7 0.0225
uTM_shaped 4 41.0 0.0498
FoamMetExtTM 7 15.6 0.0911

normalized residual curves of the GMM V-based linear method,
and the reconstructed images by both methods are shown in
Fig. 12. As we can see both the metallic cube and the circular
foam cylinder can be well reconstructed by the GMM V-based
linear method with high resolution, but for a slight part lost in
between. In addition, one can also see from the GMMYV image
that the metallic cube obviously has larger intensity than the
foam cylinder, showing a potential ability of distinguishing
dielectric objects and metallic objects. In contrast, LSM shows
a poor focusing ability in the hybrid scatterer case, indicating
once again that the proposed GMM V-based linear method is
able to achieve higher resolution image than LSM in this case.

D. Computation Time

In this subsection, we discuss the computational complexity
of the GMMV-based linear method. Since the sensing matri-
ces can be computed (or analytically given for the experi-
ments in homogeneous backgrounds) and stored beforehand,
the GMMV-based linear method only involves a number of
matrix-vector multiplications. The codes for reconstructing the
contrast sources are written in MATLAB language. We ran the
codes on a desktop with one Intel(R) Core(TM) i5-3470 CPU
@ 3.20 GHz, and we did not use parallel computing. The
running times of the GMMV-based linear method and LSM
are listed in Table I, from which we see that, on one hand, all
the reconstructions by the GMM V-based linear method require
less than 1 minute (or even a couple of seconds for some
examples); on the other hand, LSM shows overwhelmingly
high efficiency in comparison to the GMMV-based linear
method, because singular value decomposition (SVD) in LSM
is done only once, then all of the indicator functions can be
obtained simultaneously by several matrix-matrix multiplica-
tions. However, in view of the higher resolving ability of the
proposed method, the extra computational cost is worth to pay.
It is also worth mentioning that the proposed method is faster
than the iterative shape reconstruction methods which solve
the forward scattering problem in each iteration. In addition,
parallel computing can be straightforwardly applied to the
proposed method for acceleration.

V. CONCLUSION

In this paper, a novel linear method for shape reconstruc-
tion based on the generalized multiple measurement vectors
(GMMYV) model is proposed. The sum-of-norm of the contrast
sources at multiple frequencies was used for the first time as a
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regularization constraint in solving the electromagnetic inverse
scattering problems. We applied this method to process 2-D
transverse magnetic (TM) experimental data, and the results
demonstrated that a regularized solution of the contrast sources
by the sum-of-norm constraint is sufficient to recover the
spatial profile of the non-sparse targets. Comparison results
indicated that the GMM V-based linear method outperforms
LSM in all the three cases of dielectric scatterers, convex and
non-convex metallic scatterers, and hybrid scatterers in the
shape reconstruction quality and the level of the sidelobes in
the images. In view of the resolving ability and computational
efficiency, the proposed method looks very promising in the
application to three-dimensional imaging problems. Besides,
the outcome of the GMM V-based linear method — the contrast
sources, can be directly used for quantitative imaging when the
incident fields are known with a reasonable accuracy.
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