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Rochus, who helped me start up quickly and has always been a helpful collaborator.

However they were not the only persons helping me, many within the Engineering
Dynamics group and the larger PME department were very helpful either for the nec-
essary distraction or the content, but mainly for both. Therefore I would like to thank
you all for a wonderful time here at TU Delft. I cannot name you all, but I would
like to name some of you specially: Alexander, Bert, Caspar, Chris, Clemens, Corinne,
Daniel, Edwin, Hamed, Hans, Laura, Matt, Matthijs, Nico, Paul, Paul, Paulo, Saputra,
Sven and Wijnand.

Finally, I would like to especially thank Golara, who made life pleasant, even during
those stages where I had to actually write this thesis.

Stephan Hannot



x Preface



Abstract

The ever increasing miniaturization trend sparked the development of very small mech-
anisms, used as sensors or actuators. These devices are created using the same fabrica-
tion technologies as integrated circuits and are called microstysmes or Micro-Electro-
Mechanical-Systems (MEMS). Because the characteristic dimension of these microsys-
tems is in the order of micrometers the physical forces behave differently for microsys-
tems than for traditional macro systems. One of the most important effects of this
different behavior is the electro-mechanical coupling: electrostatic forces are able to
move and deform parts at those scales.

The simplest version of an electro-mechanically coupled device is a parallel plate
capacitor of which one of the plates can move. The value of the potential differ-
ence between the plates determines the electrostatic force on the moving plate. This
force depends non-linearly on the value of the applied potential difference and the dis-
placement of the moving plate. This electro-mechanical coupling is used for several
applications, such as accelerometers and micro-switches.

However proper designing requires proper modeling. There are essentially two types
of models: system level models and physical level models. System level models use
simplified relations to build small models, for instance the behavior of a complex design
is assumed to be equal to a parallel plate model, for which only some global parameter
such as a spring stiffness have to be determined. Physical level models use partial
differential equation on complicated domains to describe the physics of the device.
Therefore they can be much more accurate, but the solution of the equations is much
more difficult than those of a system level model and often requires the discretization
of the partial differential equations. This discretization can be performed using the
finite element method, but other methods are feasible as well.

The goal of this work is to build a framework for accurately modeling an electro-
mechanical problem, which includes an estimate of the uncertainty of the computed
values due to material uncertainties. Therefore this work focuses on improving the
physical level models and their solution procedures instead of system level models.

When a physical level model is build this can be done in two ways. The first option
is to use two different codes for the mechanical and the electrostatic models and couple
them on an ad hoc basis. This limits flexibility, but the usage of optimal models for
the separate problems is enabled. In this work that strategy is called co-simulation.
The second option is to build both models in the same code using matching meshes.
This allows for the computation of tangent and sensitivity information, which greatly
increases flexibility. This option is called coupled simulation within this work.

Once a model is created the result is a set of non-linear equations that have to be
solved. If the model has been obtained using co-simulation each problem, mechanically
or electric, can only be solved separately and iteration between the different codes
is necessary, which results in a staggered solution procedure. However if a coupled
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simulation model is used there is also another solution strategy available: solving all
equations together in a monolithic manner.

One of the main characteristics of an electro-mechanically coupled microsystem is
the pull-in voltage. The pull-in voltage is the highest voltage that can be applied to
microsystem, for which the response of the system will be a stable and bounded dis-
placement. If a higher voltage is applied the response will be unstable and unbounded,
which will result in contact between the moving and fixed parts of such a device. This
contact can be desirable or highly undesirable, in both cases the prediction of this value
is very important.

This pull-in value can be defined statically or dynamically. In the static case
the pull-in value is the highest voltage for which the static equilibrium is stable and
bounded. In the dynamic case it is the highest voltage, applied as a step, for which
the transient step response is bounded.

In the static case the equilibrium curve has to be computed to be able to determine
pull-in. The optimal approach to find the curve for both structurally linear elastic as
well as non-linear elastic problems is determined in this work. The optimal method
uses an arc-length constraint on the displacement and the applied charge instead of the
voltage to pass the pull-in singularity. Monolithic approaches are better for mechani-
cally non-linear problems and staggered approaches for mechanically linear problems.
Also the first and second order sensitivities of the pull-in voltage to material param-
eter variations are determined, which allows for the stochastic analysis of this pull-in
voltage. Both uncertainty and reliability analyses are performed.

Dynamically the pull-in voltage is determined using a trial and error approach. For
the dynamic pull-in value a first order sensitivity analysis is derived as well, which is
used for a stochastic analysis.

Other often used properties of electro-mechanical microsystems are their eigenfre-
quencies which depend on the equilibrium displacement and applied potential. This
has for instance been used for the development of tunable resonators. This voltage de-
pendency of the frequency can be simulated as well. A staggered approach is compared
with a monolithic approach for computing the coupled eigenfrequencies.

Squeeze film damping is that damping that occurs when two parallel plates are mov-
ing towards each other or away from each other. In that case air is squeezed out of or
sucked into the gap between the plates, which removes energy from the system. A finite
element model for this squeeze film damping is derived which is coupled with either
transient or eigenfrequency simulations of coupled electro-mechanical devices. Also
the uncertainty analysis due to material property variations is developed for damped
frequencies.

The squeeze film model is based on Reynolds equation which neglects inertia terms
within the fluid, an assumption which is investigated. It is found that inertia effects
are not really relevant for MEMS applications. The solution of such a squeeze film
model can be simplified by assuming that the gas behaves incompressible. The validity
of this assumption is investigated as well, where it is concluded that only for very low
pressures compressibility becomes important.

Because of gas rarefaction, gas molecules do not behave as a continuum at very small
scales or pressures, the equations have to be adapted, this adaptation was obtained
from literature. A measure for rarefaction is the Knudsen number, which is high for
rarefied gases. Using the adaptation from literature the squeeze film equation is shown
to be useful for Knudsen number up to 600.
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When a dynamic model is big, transient analyses become computationally very
expensive. Therefore an approach to reduce the coupled equations is developed. The
mechanical part is reduced with a classical modal truncation approach, but the electric
force cannot be reduced with such ease. Therefore several approaches are developed to
reduce this part. For most applications an approach where the electric force depends
quadratically on the generalized displacement is advised. The quadratic dependency
was obtained by using a Taylor expansion of the electric force. Only when dynamic pull-
in has to be computed another approach is advised: the piecewise quadratic Taylor
approach. The reduction approaches are enhanced by deriving a reduction of the
squeeze film damping model as well.

All solution approaches mentioned above are cast into a framework that a designer
can use to select the optimal modeling approach for a certain electro-mechanically
coupled problem.
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Samenvatting

De almaar toenemende miniaturisatie trend heeft er ook voor gezorgd dat er hele kleine
mechanismen zijn ontwikkeld die als sensoren en actuatoren worden gebruikt. Deze ma-
chientjes worden gemaakt met de zelfde technieken als gëıntegreerde circuits en worden
microsystemen (Engels: Microsystems of MEMS) genoemd. Omdat de karakteristieke
dimensie van deze apparaten zich in de orde van grote van een micrometer bevindt
gedragen de krachten op een dergelijk apparaat zich anders dan voor grotere syste-
men. Een van de belangrijker gevolgen van dit andere gedrag is de elektromechanische
koppeling: elektrostatische krachten kunnen op deze schalen onderdelen vervormen of
verplaatsen.

De simpelste versie van een elektromechanisch gekoppeld apparaat is een paral-
lelle plaat condensator waarvan een van de platen kan bewegen. De waarde van de
aangebrachte spanning over de condensator bepaalt de elektrostatische kracht op de
bewegende plaat. Deze kracht hangt niet lineair af van die spanning en de verplaatsing
van de bewegende plaat. Deze elektromechanische koppeling wordt voor verscheidene
toepassingen gebruikt, bijvoorbeeld voor versnellingssensoren en microschakelaars.

Echter goed ontwerpen vraagt om goed modelleren. Er bestaan twee soorten mo-
dellen: systeemlaag modellen en fysicalaag modellen. Systeemlaag modellen gebruiken
versimpelde vergelijkingen om kleine modellen te maken, er wordt bijvoorbeeld veron-
dersteld dat het gedrag van een complex ontwerp gelijk is aan dat van een parallelle
plaat condensator. Daarentegen gebruiken fysicalaag modellen partiële differentiaal
vergelijkingen over het gehele domein van het ontwerp om het gedrag te beschrijven.
Hierdoor kunnen zij met een grotere nauwkeurigheid het gedrag beschrijven, maar de
oplossing van die vergelijkingen kost meer moeite. Zo moeten de differentiaal vergelij-
kingen discreet gemaakt worden met bijvoorbeeld de eindige elementen methoden om
de oplosbare niet lineaire vergelijkingen te verkrijgen.

Het maken van een raamwerk voor het accuraat modelleren van een elektromecha-
nisch probleem, waarbij de kwantificatie van de onzekerheden door materiaal variaties
hoort is het doel van dit proefschrift. Daarvoor richt dit werk zich op het verbeteren
van fysicalaag modellen in plaats van systeemlaag modellen.

Een fysicalaag model kan op twee manieren worden gemaakt. De eerste mogelijk-
heid is om twee modellen in twee verschillende codes te ontwikkelen en deze op een ad
hoc wijze te koppelen. Dit beperkt de flexibiliteit, maar hierbij is het wel mogelijk om
de optimale modellen voor de verschillende deelproblemen te gebruiken. Deze methode
wordt hier co-simulatie genoemd. De andere optie is om twee modellen in dezelfde code
the maken, waarbij ook gebruik wordt gemaakt van dezelfde rekengrid. Hierbij is het
mogelijk afgeleide informatie en gevoeligheden te bepalen. Deze methode wordt hier
gekoppelde simulatie genoemd.

Als er een model is gemaakt levert dit een set niet lineaire vergelijkingen op die
opgelost moeten worden. Als het model met de co-simulatie methode gemaakt is
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kunnen de mechanische en elektrische sets vergelijkingen alleen apart opgelost worden,
waardoor een iteratie tussen de modellen nodig is, wat een getrapte methode wordt
genoemd. Echter als een gekoppelde methode wordt gebruikt kunnen de vergelijkingen
ook tegelijk opgelost worden op een monolithische manier.

Een van de belangrijkste eigenschappen van een elektromechanisch gekoppeld mi-
crosysteem is het intrek voltage (Engels: pull-in voltage). Het intrek voltage is het
hoogste voltage dat op het systeem gezet kan worden waarvoor de responsie nog steeds
stabiel en begrensd is. Als een hoger voltage wordt toegepast zal de responsie onstabiel
en onbegrensd zijn wat tot een contact tussen de twee elektroden van het systeem kan
leiden. Dit kan gewenst of zeer ongewenst zijn, in beide gevallen is de voorspelling van
deze waarde zeer belangrijk.

Dit intrek voltage kan zowel statisch als dynamisch gedefinieerd worden. In het sta-
tische geval is het intrek voltage het hoogste voltage waarvoor het statische evenwicht
stabiel en begrensd is. In het dynamische geval is het het hoogste voltage dat met
een stap aangebracht wordt en een stabiele en onbegrensde tijdsafhankelijke responsie
oplevert.

Statisch zal eerst de kracht-verplaatsingscurve moeten worden berekend om het
intrek voltage te kunnen berekenen. De optimale manier om deze curve te berekenen is
bepaald voor zowel lineair elastische als niet lineair elastische problemen. De optimale
methode maakt gebruik van een hoek-lengte beperking op de aangebrachte lading en
de verplaatsing om de intrek singulariteit te passeren. Monolithische methoden zijn
beter geschikt voor niet lineair elastische problemen en getrapte methoden voor lineair
elastische problemen. Ook de eerste en tweede orde gevoeligheden van dit intrek voltage
voor veranderingen van materiaal eigenschappen is bepaald. Met deze gevoeligheden
wordt een onzekerheids- en betrouwbaarheidsanalyse uitgevoerd.

Dynamisch moet het intrek voltage met een proefondervindelijk proces worden be-
paald. Voor het dynamisch intrek voltage is de eerste orde gevoeligheid ook bepaald,
waarmee een stochastische analyse is uitgevoerd.

Een andere eigenschap van elektromechanische apparaten die vaak gebruikt wordt
is hun eigenfrequentie die afhankelijk is van de evenwichtspositie en het voltage. Deze
afhankelijkheid wordt bijvoorbeeld gebruikt door afstembare resonatoren en kan ook
gesimuleerd worden. Een getrapte en een monolithische methode om deze frequenties
te berekenen wordt vergeleken.

Samengeperste laag demping (Engels: squeeze film damping) is die demping die
plaatsvindt als twee parallelle platen naar elkaar of van elkaar bewegen. Dan wordt
lucht tussen de platen uit geperst of juist ertussen gezogen, wat energie uit het systeem
haalt. Een eindige elementen model voor deze demping is ontwikkeld, dat gekoppeld
wordt met het elektromechanische model. Hiermee kunnen zowel tijdsafhankelijk ge-
drag evenals gedempte frequenties worden bepaald. Ook de gevoeligheden van deze
gedempte frequenties zijn bepaald.

Het samengeperste laag model is gebaseerd op de Reynolds vergelijking, welke de
traagheids termen verwaarloost. Deze aanname is onderzocht en het is geconcludeerd
dat deze aanname voor microsystemen meestal gedaan mag worden. De oplossing van
een dergelijk model kan versimpeld worden door aan te nemen dat het gas zich niet
comprimeerbaar gedraagt. Ook de geldigheid van deze aanname is onderzocht, hieruit
bleek dat alleen voor lage drukken deze aanname problemen oplevert.

Door gasverdunning gedraagt een gas zich op hele kleine schalen of drukken niet
meer als een continuüm. Daardoor moeten de vergelijkingen op deze schalen worden
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aangepast, dat gedaan wordt met een methode uit de literatuur. Het is aangetoond dat
deze methode geldig is tot aan Knudsen getallen van ongeveer 600. Een hoog Knudsen
getal vertelt dat een gas erg verdund is.

Als een dynamisch model erg groot is duurt de tijdsafhankelijke analyse erg lang.
Daarom wordt een methode ontwikkeld om de modellen te reduceren. Voor het mecha-
nisch gedeelte wordt de klassieke modale afknotting methode gebruikt (Engels: modal
truncation). Deze kan echter niet voor het elektrostatische gedeelte gebruikt worden,
daarom zijn verschillende methoden ontwikkeld. Voor de meeste toepassingen is een
methode waarbij de elektrische kracht kwadratisch van de verplaatsing afhangt aan-
bevolen. Deze kwadratische afhankelijkheid is gebaseerd op een Taylor benadering.
Alleen als het dynamisch intrek getal moet worden berekend zal een andere methode
moeten worden gebruikt: de stuksgewijs kwadratische Taylor benadering. De reduc-
tiemethode is ook uitgebreid met een gereduceerd model voor de demping.

Alle methoden zijn samengevoegd in een raamwerk. Dit raamwerk moet een ont-
werper de mogelijkheid geven om een optimale modelleermethode te vinden voor een
bepaald elektromechanisch model.
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Chapter 1

Introduction

Humans, or at least a certain kind of them, have always been striving to make the most
beautiful things. Often the most beautiful meant the biggest: the biggest pyramid,
church or skyscraper. The Dutch national pride de nachtwacht is a very large tableau
as well. However there has always been a reverse current of artists that favored the
small. They liked the restriction of size that required them to use a different artistic
expression. Consider for instance the small paintings called miniatures that formed
the first letter of a chapter in ancient and medieval ‘illuminated’ manuscripts. See for
such a decorated letter A figure 1.1.

Engineers have the same preoccupations. Spanning big gorges with big bridges or
building the largest plane has fascinated countless engineers. However, often it was
clear that smaller devices are more elegant and energy efficient. The smallest became
the goal. One of the first fields to benefit from miniaturization was the electronics field,
yielding the microchip. Design followed suit: elegant small laptops could be build with
the small electronic devices. And they became popular and similarly the small modern
mobile phones became popular.

In the last quarter of the 20th century it was discovered that the production tech-
niques used to build smaller and smaller electronics, could be efficiently used to build
mechanical, or in other words moving, structures as well. These small mechanical sys-
tems became known quickly known as microsystems in Europe and as MEMS in the
USA.

1.1 Microsystems or MEMS

Microsystems or Micro–Electro–Mechanical Systems (MEMS) are small (micrometer
size) machines usually built by lithographic technologies originally developed for mi-
crochips. MEMS are designed to integrate sensing and actuation (and even data pro-
cessing) on a single chip, therefore they often include moving and deforming parts.
Currently microsystem technologies are used for a wide variety of purposes such as:
read/write heads in hard-disk drives, ink-jet print heads, Digital Light Processing
(DLP) chips in video projection systems and several types of sensors for pressure,
flow, acceleration or biological elements [64, 120, 115, 128, 35].

Especially the use of acceleration sensors is rapidly increasing. In the beginning
they were only used for sensing whether a car was decelerating too fast, which is useful
information for airbags. At the moment one of the most imaginative applications is
in the controller for Nintendo’s Wii game computer [37]. In this controller several
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Figure 1.1: A late 14th century miniature showing the birth of John the Baptist painted
by Niccolò da Bologna.

MEMS accelerometers are used to detect how the controller is positioned and in which
direction it is moving. When a gamer is playing computerized tennis the controller can
detect if the gamer is moving his hand like a real tennis player would do when hitting
a ball.

Another modern application of MEMS accelerometers is Apple’s iPhone [39]. The
accelerometers are used to detect how the iPhone is held by the user. This determines
which of the four edges of the screen is directed upwards, thus how the image on the
screen should be rotated for optimal viewing.

1.2 Multiphysical and electro-mechanical coupling

Due to their very small size, the dominant driving forces for microsystems differ from
the ones in the macro–world. For instance gravitational forces are negligible with
respect to the elastic, adhesive and electrostatic forces at these scales [139]. These
scaling effects may cause a strong coupling between different physical domains. For
instance small silicon devices can be heated by an electric current relatively fast and
they will cool down rapidly by conduction to the surrounding parts. Devices can
be heated and cooled several times per second. Due to the thermal expansion of
the material this effect can be used to actuate a device at frequencies that are high
compared to macroscopic systems [59, 60, 70].

Another coupling that becomes useful at small scales is the coupling between struc-
tural displacement and electrostatic forces. At small scales electrostatic forces are big
enough to actuate devices. These forces cause the type of coupling on which this thesis
focuses: electro-mechanical coupling.

The basic physical principle of electromechanically actuated microsystems is illus-
trated in fig. 1.2. Once a potential difference between a moving (or deformable) elec-
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Figure 1.2: Electromechanical coupling

trode and a fixed electrode is applied a charge difference is created. Coulomb forces
between the charges will make the flexible electrode deform. This effect depends non-
linearly on the shape of the electrode and the deformation itself, because the charge
will concentrate near the point where the gap between the electrodes is smallest, which
causes even higher Coulomb forces at this point [4].

Two examples of MEMS that utilize the electromechanical coupling are micro
switches and comb drives. Micro switches are the oldest type of microsystems. They
are similar to magnetic relay switches, but the magnetic actuation is replaced by elec-
trostatic actuation, which is made possible by the very small dimensions [142, 84]. The
first ones to build a microswitch was Nathanson et.al. in 1967 [89]. Closely related to
these devices is the micro mirror used in optics, which is basically a large switch with
a reflecting surface. A picture of a small micro bridge that can be used as micro switch
is given in fig. 1.3.

The comb drive is an array of small fingers which can be used to maximize the
electrostatic force or capacitance between a moving and a fixed set of fingers while still
allowing a large displacement of the moving set. The first one was introduced by [125].
Their main use at the moment is in the accelerometers mentioned above. A picture is
shown in fig. 1.4.

Because there are already some good reviews on the history and design of elec-
tromechanical MEMS such a review is not presented here. Rather, a very short survey
of those reviews is given in this paragraph. One is referred to chapter 2 of [85] for an
overview of MEMS resonators and sensors. The first chapters of [106] present a general
introduction to electromechanical MEMS and the range in which the electrostatic as-
sumption is valid. An introduction to switches can be found in [103]. A general review
on the structural dynamics of MEMS, including the modeling of electromechanical
microsystems, can be found in [80].

Modeling this electro-mechanic coupling is particularly challenging because the re-
sulting equations are non-linear and the physics are strongly coupled. Therefore proper
models are essential for a designer of microsystems. Improving those models is the goal
of this thesis. Which should increase the capability of a designer to predict the behavior
of MEMS, therefore his or hers effective usage of the capabilities of the electromechan-
ical interaction.
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Figure 1.3: Micro bridge, repro-
duced from [106]

Figure 1.4: Comb drive (Delft Uni-
versity design used for teaching)

1.3 Modeling electromechanical coupling

1.3.1 Types of modeling

Because the designer needs to globally understand the physical effects that are occur-
ring during MEMS operation he needs to model. Also if a designer wants to know how
a design will behave before he makes an expensive prototype he needs to model. There
are many different approaches to model electro-mechanical coupling. But following
[118] two different modeling types are distinguished: system level models and physical
level models.

System level models are small models often yielding a small number of ordinary
differential equations (ODE) that can be solved within milliseconds. There often is
the possibility to use closed form solutions or cheap numerical simulations. Frequently
they utilize a simplified geometry of the microsystem. A common approach is to use
some parallel plate type capacitor assumption for the electric field coupled with very
simple beam models for the mechanics [83, 42]. The advantage of these type models
is that they are computationally very cheap and capture a lot of the typical behavior,
however they are not very accurate for prediction of precise values. Hence these types
of models are useful for the first goal of the designer: understanding the physical effects
that are happening. This enables him to make a conceptual design.

However if a designer is really close to designing the actual prototype, he needs
accurate values, as well as detailed models of physical phenomena and proper estimates
of the accuracy of his models. In other words he needs physical level models that utilize
the full 2D/3D partial differential equations (PDE) that describe the physics. These
approaches often use the Finite Element Method (FEM) to discretize and solve the
PDE’s, but other approaches to solve PDE’s are used as well [87].

Physical models can also be used to generate system level models [15]. This requires
that computations with physical level models are used to make a reduced order model,
hence this type of modeling is often called reduced order modeling, however also the
term macro modeling is used [118].

This thesis focuses on physical level modeling. These models can be used for an
accurate quantitative prediction of MEMS motions, because they use the complete
geometry of a device. Of course this comes at a price: they are computationally
expensive.
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The purpose of this work is to select and develop these physical level models and
their solution procedures to such an extent that a more or less complete modeling
framework can be distilled from them. With this framework a designer should be able
to chose the proper physical level modeling and solution procedure given the problem
that the designer wants to solve.

1.3.2 Challenges in the physical level modeling

One of the aspects of electro-mechanical coupling is that there are two physical fields
involved, an electric field and a mechanic field. Therefore a model has to be able to
model both fields and there interaction. For the formulation of the interaction the
model of the surface that defines interface between mechanical and electrical domain
is crucial. In line with Pauli’s quote ‘God created bulk but the Devil created surface’,
this interface relation can make or break a model. Therefore the formulation of the
interaction is one of the focus points of this thesis.

This also means that the efficient solution of the electromechanical problem becomes
difficult [119]. This thesis tries to find strategies for the solution of the highly non-
linear electromechanical equations. This non-linearity also causes that statically there
is a maximum allowable actuation voltage. The computation of this point requires
advanced solution strategies and this thesis tries to determine which are best and how
to improve them. The main novelty in this thesis is the combination of charge loading
with efficient arc length methods as well as deriving the arc length method for staggered
formulations.

The fact that this limit point is very crucial in operation also means that the
characterization of the uncertainty of this value is very important. To perform a
perturbation based stochastic Finite Element Method design sensitivities are required
[49], which are discussed in this thesis. The main challenge here is to derive second
order sensitivities of pull-in which have not been reported in MEMS literature before,
in contrast with first order sensitivities [78].

The efficient modeling of coupled dynamics and time integration is always challeng-
ing. This thesis treats the efficient modeling of transient electromechanical behavior as
well as squeeze film damping, including all non-linear effects. Of course vibration fre-
quencies are very relevant since these microsystems are used for resonating accelerom-
eters as well. This thesis therefore has an extra interest in linearizing the equations
and computing the frequencies, Q-factors and their uncertainties. Damping is based
on squeeze film modeling which has been used before (e.g. [11]). However especially
the full nonlinear Reynolds equation that is used here has not been used in literature
before nor the combination of a fully deformable structure with electric and squeeze
film finite element models. Also the the derivations of dynamic pull-in sensitivities
and stochastic properties have not been reported before as well as the computation of
frequency sensitivities while remaining on the pull-in curve.

Another important usage of FEM models is the reliable creation of macro models
or reduced order models [119, 133]. Therefore a novel method to extract reduced order
models that captures the non-linearity in displacement as well as applied potential is
developed based on the principle of modal truncation.
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1.4 Layout of this thesis

The purpose of the research is to develop reliable modeling tools for electro-mechanical
coupling, that are based on modeling the full displacement and electric fields. So no
special attention is given to lumped models.

This document is separated in four parts.

• Part I focuses on general electro-mechanical modeling. One of the first chal-
lenges is the reliable computation of electrostatic forces from the solution of an
electrostatic field. This is the main focus of the chapter on electrostatic mod-
eling: chapter 2. Chapter 3 discusses the continuum equations describing the
electromechanical coupling and some issues about the formulation, discretization
and solution of these equations. A short example concludes part I.

• Often a lot of the behavior of the device can be estimated from the static equilib-
rium behavior. Therefore part II focuses on quasi-static simulations. An inter-
esting quasi-static aspect of electrostatic MEMS is the pull-in phenomenon and
the load-displacement curve. It is not trivial to exactly find the pull-in point or
the load-displacement curve beyond the pull-in point with coupled FEM mod-
els. Numerical procedures to find these curves are developed and evaluated in
chapter 5. In chapter 6 a numerical approach to obtain the design sensitivity of
this pull-in voltage is presented, which is used to perform a stochastic analysis
to estimate the uncertainty of the pull-in voltage in chapter 7.

• The extension to dynamic simulation is made in part III. First undamped mod-
eling is treated in chapter 8: transient as well as eigenfrequency modeling. Also
the dynamic version of the pull-in limit is defined in this chapter. In the ninth
chapter the stochastic properties of dynamic pull-in are derived. In chapter 10
a plate model of a micro switch is used to discuss the modeling of dynamics in-
cluding damping. A FEM model of the Reynolds equation is derived and used
to describe squeeze film damping due to a gas. The stochastic properties of the
damped frequencies are investigated a chapter later. The last chapter of this part
is filled with the goal of developing reduced order dynamic models from the very
big damped electromechanical models.

• The fourth part combines the static and dynamic analyses with the general views
presented in part I. In chapter 13 the components are cast into a general physical
level modeling framework, which is the main goal of this thesis. Chapter 14
finishes part IV with the conclusions and recommendations.

Parts of this thesis have in been published in the following publications: [57, 52,
55, 54, 53, 56, 58].

1.5 Notation and units

Finally some remarks about the notations used in this thesis. Bold symbols represent
vectors or matrices depending on the context, normal symbols represent scalars. With
a differentiation of a vector by a vector:

a =
∂f

∂b
,
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the Jacobian derivative is indicated:

aij =
∂fi

∂bj
.

If a scalar is differentiated by vector

a =
∂f

∂b
,

that indicates:

aj =
∂f

∂bj
.

If index notation is used in general also Einstein’s summation convention is used,
meaning that if an index occurs twice this indicates a sum:

cik = aijbjk,

means:

cik =
n∑

j=1

aijbjk.

The exception on this is with the manipulation of eigenvalues and eigenvectors. In that
case the context should make clear if sums are used or not.

A dot above a symbol, bold or not, indicates a total time derivative of that property:

u̇ =
du

dt
, (1.1)

so if u is a displacement u̇ is an absolute velocity. Similarly:

ü =
d2u

dt2
, (1.2)

giving an absolute acceleration if u is a displacement.
If no specific statement about the units is made in the text SI-units are used.
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Electro-mechanical modeling





Chapter 2

Modeling electrostatics and
electrostatic forces

2.1 Introduction

The electrostatic forces that deform the microsystems depend on the electric field.
Therefore it is important to model this electric field accurately. This thesis is mainly
written from and for the mechanical engineering point of view, not the electric engineer-
ing one. Therefore a thorough treatment of this electrostatic modeling is considered
a requirement. But also the computation of the force resulting from this electric field
needed to couple electrics with mechanics is not trivial, hence this chapter might also
be useful for the interested electrical engineer.

The basic equations of electrostatics are introduced in the first section. To be able
to evaluate the numerical modeling techniques an analytical benchmark solution can be
very useful. Therefore an analytical modeling technique that can only be applied on a
limited range of geometries is discussed and applied on a benchmark geometry in section
2.3. After those two sections the finite element discretizations of the electrostatic
equations is discussed for 2D as well as 3D problems, including the precautions that
should be taken when electrostatic forces are computed.

2.2 Basic electrostatics

The starting point for any Electromagnetic analysis is given by Maxwell’s equations, a
set of time dependant differential equations describing the electric and magnetic fields
and their interaction1. However when the geometry of the electric domain is small
enough and the speed by which it changes is low enough, the electromagnetic problem
can be assumed to be electrostatic. In that case the electric problem is solved as if it
has reached a steady state configuration that is only a function of the geometry of the
domain.

1The main source for the complete section is [48].
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2.2.1 The electrostatic equation

The fundamental electrostatic law is Coulombs law, which describes the experimental
relation for the force between charges Q1 and Q2:

F =
Q1Q2

4πεr2
r̂, (2.1)

where ε is the permittivity, r is the distance between the charges and r̂ is the unit
vector pointing from charge Q1 to charge Q2. Coulomb’s law is used to define the
electric field E generated by a point charge at a distance r as:

E =
Q

4πεr2
r̂. (2.2)

This equation can be generalized to Gauss’s law, which states that the electric flux
through any surface is proportional to the charge enclosed by that surface:∮

εE · dA =

∫
ρdV, (2.3)

where ρ is the charge density within the enclosed volume. In differential form Gauss’s
law can be written as:

∇ · εE = ρ. (2.4)

When an electrostatic potential φ caused by a point charge is defined as:

φ =
Q

4πεr
, (2.5)

the electric field can be defined as:

E = −∇φ, (2.6)

which can be used to simplify the vector differential equation (2.4) to a scalar differ-
ential equation, sometimes known as the electrostatic equation:

−∇ · (ε∇φ) = ρ (2.7)

If is assumed that ε is not a function of location but constant, this equation simplifies
even further to:

− ε∇2φ = ρ, (2.8)

which is a form of Poisson’s equation. When there is no unpaired charge in the elec-
trostatic domain, as in a vacuum or in air, ρ equals zero, therefore the electrostatic
equation reduces to Laplace’s equation:

ε∇2φ = 0, (2.9)

All these equation’s are valid when the electric domain consist of so called dielectrics
which have finite values of electric permittivity , making it nearly impossible for charges
to move through the dielectric. In air or vacuum, when equation (2.9) can be used,
there are no charges at all within the domain, the only charges are at the boundaries.

In MEMS-simulation, normally there are only two kinds of boundaries: ideal con-
ductors and ideal insulators. Ideal conductors are materials in which charges can freely



2.2 Basic electrostatics 13

move without doing work, in other words they have an infinite permittivity, therefore
the electric field within a conductor is zero and all charge is at the surface. At the
surface the tangential component of the electric field will always be zero because the
freely moving charges will level any potential differences. The field in perpendicular
direction can have a value due to the charges at interface. Hence ideally conducting
interfaces with dielectrics are commonly modeled as equipotential surfaces, where the
problem is only solved on the dielectric domain. These boundary conditions are also
known as Dirichlet boundary conditions.

Ideal insulators are materials which do not have charges at the boundary, there-
fore their contact with the electrostatic domain is normally modeled as a zero charge
boundary condition, which means according to Gauss’ law that the electric field normal
to the surface must be zero (∂φ/∂n = 0, a Neumann boundary condition).

2.2.2 Electrostatic forces

The electrostatic or Coulomb forces generated by an electric field are of vital importance
for MEMS. Microsystems are often made from conducting materials, therefore the
computation of electrostatic forces on conductor surfaces is elaborated below.

If there are several different charges in a space the force on a single charge is the
vector sum of the forces resultant from the other charges, thus for charge Q1

2:

F es =
1

4πε

Q1Qn

r2
n

r̂n n �= 1. (2.10)

By Coulomb’s law the electric field at the location of a point charge is given by the
following equation:

F es = Q1E. (2.11)

Thus the electric field at that point is:

E =
1

4πε

Qn

r2
n

r̂n n �= 1. (2.12)

In general a MEMS structure consists of several conductors and dielectrics sur-
rounded by air or a vacuum. There are no charges within the dielectrics, but a lot or
free charges within the conductor. However when a potential is applied on a conduc-
tor, all the charges within the conductor will move infinitely fast to the surface of the
conductor. There they pile up because the charges can not ’jump’ into the air, but
remain at the surface. Thus the only charges are at the boundary of conductors, hence
the only forces are at those boundaries.

As a consequence of the assumption that the charges can move infinitely fast
through the conductor, it is assumed that when there is a tangential electric field
between two points at the surface, the charges will move infinitely fast to a state were
this tangential electric field at the boundary of the conductor is zero everywhere. How-
ever the electric field outside the conductor and normal to the surface is not zero per
definition, since the surface charge allows for a jump of the electric field in the normal
direction.

2Einstein’s summation convention is used throughout this document
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Figure 2.1: A charge q on the interface between conductor (top) and dielectric (bot-
tom).

The electric field jump can be calculated using Gauss’s law on the surface of the
boundary. The charge in the equation is replaced by the surface charge, thus Coulomb
per square meters: ∮

surface

E · dA =

∫
1

ε
qdAs, (2.13)

with q the surface charge density and As the Area. Thus for an infinitesimal surface
the jump in electric field becomes:

Eoutside − Ewithin =
1

ε
qn̂, (2.14)

with n̂ the unit normal vector. Thus, when applying (2.13) to the boundary of an
infinite conductor a zero electric field remains within the conductor domain:

E = Eoutside − Einside = Eoutside, (2.15)

yielding:

E =
1

ε
qn̂. (2.16)

This defined the charge at the interface, now this charge has to be used to compute
the force. A charge on such an interface between conductor and dielectric is shown in
figure 2.1. The first configuration on the left-hand side shows the electric field, which
is zero inside the conductor and non-zero outside the conductor. This electric field E
is a superposition of the symmetric field induced by the charge itself (Eq in the middle
configuration) and the external electric field (Eex on the right-hand side). This gives
the following equations for the different fields:

E = Eex + Eq, (2.17)

0 = Eex − Eq. (2.18)

from which it follows that Eex = 1
2
E.

The electric force on force Q1 computed with equation (2.11) required the electric
field induced by all other charges, but not the field induced by charge Q1 itself. Hence
when equation (2.11) is used to compute the force on an interface charge one has to
use the definition:

F es =

∫
qEexdAs =

∫
1

2
qEdAs. (2.19)
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The charge computed by equation (2.16) is substituted into equation (2.11):

F es =

∫
1

2
qEdAs =

∫
ε|E|2

2
dAsn̂. (2.20)

Thus the electrostatic pressure is:

fes =
ε|E|2

2
n̂, (2.21)

which can be used in numerical and analytical models.

2.2.3 Maxwell stress tensor

An alternative method to derive the electric forces is by starting with the Maxwell
stress tensor as is often done in literature. The Maxwell stress tensor gives the inter-
action between electric and magnetic fields and mechanical momentum. In essence the
Maxwell tensor is derived in a very similar method as the force above, thus it will be
logical that when applying the Maxwell tensor, this provides the same force.

Disregarding the magnetic aspects, the Maxwell stress tensor T for a purely elec-
trostatic problem is defined as:

T = ε∇φ∇φT − 1

2
ε∇φT∇φI. (2.22)

which in 2D can be written as:

T =

[
Txx Txy

Tyx Tyy

]
= ε

[
1
2
E2

x − 1
2
E2

y ExEy

ExEy
1
2
E2

y − 1
2
E2

x

]
, (2.23)

where Ei = − ∂φ
∂xi

is the electric field in the xi-direction, ε is the electric permittivity
and Tij are the components of the stress tensor.

Similar to mechanical stresses, the electrostatic force density in the electrostatic
area Ω is then ∇ · T [48] so that the force exerted by that area on its surroundings is:

f e = −
∫

Ω

∇ · T dV (2.24)

However this volume integral is rarely used directly because it requires the second
spatial derivatives of the electric potential φ. Therefore traditionally Gauss’ theorem
is used to find the electric force as an integral over the contour Γ of Ω:

f e = −
∫

Ω

∇ · T dV =

∫
Γ

T · ndS, (2.25)

where n is the inner normal to the boundaries of the electric domain Ω, thus the outer
normal of the surrounding structure.

On the boundary of a conductor the electric potential is constant. Thus the electric
field on a conductor will always be perpendicular to the surface and equation (2.25)
reduces to [48]:

f e =

∫
Γ

1

2
ε|∇φ|2ndS =

∫
Γ

1

2
ε|E|2ndS, (2.26)

which is exactly the same definition of electrostatic forces as before (2.21).
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2.3 Analytical modeling

In this section the analytical solution for electrostatic problems is discussed. Specific
attention is given to an electrostatic corner problem. The main analytical solution
strategy that will be used is the conformal transformation approach. The used reference
for these conformal transformations is [16], in which there is a lengthy discussion about
conjugate functions and conformal mappings. One of those mappings was used to
model the corner. Other references that use conformal transformations to calculate
electrostatic forces are [129, 20], where the conformal transformations are used to build
simple low DOF combdrive models. The conformal transformations are in those cases
not used to model the exact geometry but to approximate the geometry better than
parallel plate assumptions.

2.3.1 A simple 1D problem

However another benchmark is investigated first: a very simple 1D problem. In figure
2.2 such a model of micro resonator in 1D is given. In the air gap the electrostatic
problem is described by Laplace’s equation, which reduces to the following equation in
1D:

ε
∂2φ

∂ξ2
= 0, (2.27)

where φ is the electrostatic potential, ξ is the spatial coordinate and ε the electric
permittivity. The domain on which this differential equation has to be solved is ξ =
[0, x], with boundary conditions: φ = V at ξ = x and φ = 0 at ξ = 0. The solution to
this boundary value problem is:

φ =
V

x
ξ, (2.28)

and the electric field is per definition:

E = −∂φ
∂ξ

= −V
x
. (2.29)

Thus the electrostatic force on the plates is:

Fes =
1

2
εE2 =

1

2
ε
V 2

x2
. (2.30)

This basic derivation of the electrostatic force between a parallel plate capacitor can
be found in many sources, e.g. [108].

2.3.2 Conjugate functions

For more complex (2D) problems closed form solutions are very difficult to obtain.
One method that is still able to find closed form solutions is the conformal mapping
approach, however it can only be applied for a limited number of geometries. To
understand conformal transformations one needs to understand conjugate or complex
functions, which will be introduced in this section first. Thereafter it is shown that
regular complex functions form a set of solution to Laplace’s equation in 2D. Finally
is shown that the real and imaginary parts of a regular complex function satisfy the
Cauchy-Riemann equations.
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Figure 2.2: 1D parallel plate capacitor

Conjugate functions and Laplace’s equation

Let there be the complex variables z and t.

z = x+ iy, (2.31)

t = u+ iv. (2.32)

Assume that t is a continuous regular function (a function of which both its first and
second derivative are unique) of z:

t = F (z). (2.33)

Thus the derivative of t with x is:

∂t

∂x
=
∂F (z)

∂z

∂z

∂x
, (2.34)

since ∂z
∂x

= 1, the derivative of t with x must be:

∂t

∂x
=
∂F (z)

∂z
. (2.35)

Differentiating again with respect to x:

∂2t

∂x2
=
∂2F (z)

∂z2
. (2.36)

Similar with respect to y:
∂t

∂y
=
∂F (z)

∂z

∂z

∂y
, (2.37)

except here ∂z
∂y

= i, hence the derivative of t with respect to y is:

∂t

∂y
= i

∂F (z)

∂z
, (2.38)

since i2 = −1 the second derivative is:

∂2t

∂y2
= −∂

2F (z)

∂z2
. (2.39)
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Combining equations (2.36) and (2.39) yields:

∂2t

∂x2
+
∂2t

∂y2
= 0, (2.40)

which is Laplace’s equation, therefore any regular function of a complex variable obeys
Laplace’s equation.

Equation (2.40) can also be split in two parts, by using the real and imaginary
parts of t. First:

∂2t

∂x2
=
∂2u

∂x2
+ i

∂2v

∂x2
,

∂2t

∂y2
=
∂2u

∂y2
+ i

∂2v

∂y2
.

(2.41)

Since both the real and imaginary part of (2.40) must be zero:

∂2u

∂x2
+
∂2u

∂y2
= 0,

∂2v

∂x2
+
∂2v

∂y2
= 0.

(2.42)

Hence also the real and imaginary parts of any regular complex function satisfy Laplace’s
equation.

Cauchy-Riemann equations

To show that the real and imaginary parts of t satisfy the Cauchy-Riemann equations,
equation (2.32) is differentiated with respect to x, yielding:

∂t

∂x
=
∂u

∂x
+ i

∂v

∂x
, (2.43)

therefore, using equation (2.35):

∂F (z)

∂z
=
∂u

∂x
+ i

∂v

∂x
, (2.44)

and similarly using (2.38):

i
∂F (z)

∂z
=
∂u

∂y
+ i

∂v

∂y
. (2.45)

Combining equations (2.44) and (2.45) to eliminate ∂F (z)
∂z

results in:

i
∂u

∂x
− ∂v

∂x
=
∂u

∂y
+ i

∂v

∂y
. (2.46)

Using the fact that on both sides of the equation the real and the imaginary parts must
be equal:

∂u

∂x
=
∂v

∂y
, (2.47)

∂v

∂x
= −∂u

∂y
. (2.48)

These are the Cauchy-Riemann equations, which are satisfied by the real and imaginary
parts of any regular function of a complex variable.
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The potential function as a complex function

Because a constant real or imaginary part of t indicates a constant value of u and v
that situation corresponds to two families of curves in the z plane: u(x, y) = constant
and v(x, y) = constant. Assume that u = u0 and v = v0 define one curve each, which
intersect at point z = z0. Since u is constant along the curve u = u0 the slope is zero
in the t-plane:

∂u

∂x
∂x+

∂u

∂y
∂y = 0, (2.49)

thus at the intersection point z0, to calculate the slope of the curve u = u0 in the
z-plane: (

∂y

∂x

)
z0

=

(
−

∂u
∂x
∂u
∂y

)
z0

. (2.50)

The same for v = v0: (
∂y

∂x

)
z0

=

(
−

∂v
∂x
∂v
∂y

)
z0

, (2.51)

hence the product of the slopes is, in combination with the Cauchy-Riemann equation:(
∂u
∂x
∂u
∂y

)
z0

·
(

∂v
∂x
∂v
∂y

)
z0

= −1. (2.52)

Since the product equals −1 the two curves must intersect at right angles in the
z plane3. Because functions of constant u intersect functions of constant v at right
angles in the t−plane conjugate functions define orthogonal families.

Potential and stream functions (electric stream lines or electric flux lines are lines
defined by a constant value of the stream function and point in the direction of the elec-
tric field) have to satisfy Laplace’s equation and have to be orthogonal. Since conjugate
functions are both, they can be used to describe potential and stream functions.

Therefore let the potential φ and the stream value ψ describe a field in the (x, y)
plane:

ψ = f1(x, y) = f1(z),
φ = f2(x, y) = f2(z),

(2.53)

if they are represented as a conjugate function:

w(z) = f1(z) + if2(z),
w = ψ + iφ.

(2.54)

This function is called the complex potential function.
To see a possible usage for this equation assume a potential field on the t plane:

w = kt,
ψ + iφ = ku+ kiv.

(2.55)

This field corresponds to the uniform potential field φ = kv. Thus for instance the
field between a grounded conductor at the line v = 0 and a conductor kept at φ = kπ
at the line v = π. Both conductors have an infinite length.

3Consider two perpendicular curves: one at an angle of 45o and one at 135o. The firs one has a
slope of 1, the second one of -1, the product is -1. This argument can be extended to a general angle
α, yielding tan(α) · tan(90o − α) = − tan(α) · cot(α) = −1.
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2.3.3 Conformal transformations

Above it was shown that conjugate functions describe solutions of the Laplace equation.
Also it was shown that the uniform field can be described by such a function. A
uniform field describes the parallel plate capacitor, for which the electric forces are
easily computed. Therefore it would be nice if one could map a more difficult two
conductor system back onto such a parallel plate field.

The conformal transformation is such a mapping and a well known method to find
the analytical solution to Laplacian fields. It is used in many applications as in magnetic
fields, heat conduction and fluid flow or off coarse electrostatics. The method is able
to easily yield expressions for the potential gradient and capacitance. The limiting
factors are the boundary shapes that have to be followed cannot be too complex of
shape and the boundary conditions have to be equipotential (ideal conductors) or have
to coincide with the stream lines (zero charge boundaries)

In general conformal transformations can be described by the regular function
(2.56).

z = f(t) = x(u, v) + iy(u, v). (2.56)

This equation defines a variable z = x+ iy as a function of another variable t = u+ iv.
A particular value of t can be seen as a point in the Argand diagram, which has on the
horizontal axis the real units and the vertical axis the imaginary units. With equation
(2.56) a corresponding point in the Argand diagram of z can be found. Also curves
from point t1 to point t2 can be mapped into curves for corresponding z1 into z2.

The Transformations are known as conformal because the angle at which two curves
intersect in the t plane remains the same when both curves are mapped onto the z plane,
with the exception of singular points.

Example: Logarithmic transformation

The logarithmic transformation is a common transformation used to build more com-
plex transformations. Furthermore it is used to describe the potential field in the next
section.

v

u

2π

t-plane z-plane

v = 0

v = 2π

v = 3
2
π

v = 1
2
π

v = π
0

x

y

Figure 2.3: Logarithmic transformation.

Consider the transformation in figure 2.3. This transformation can be described by
the field:

t = log(z). (2.57)
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To see that this equation describes the shown transformation, the transformation is
inverted:

et = z, (2.58)

or when real and imaginary parts are considered separately:

eu cos(v) = x,
eu sin(v) = y.

(2.59)

Hence, combining the equations above gives:√
x2 + y2 = eu, (2.60)

which states that the line in the z plane corresponding to a constant u is a circle with
radius eu. Another combination of equations (2.59) provides:

arctan(
y

x
) = v. (2.61)

Which states that when v is constant the lines through the origin have slope tan(v) in
the z plane.

Let’s remember the uniform field:

w = kt. (2.62)

When the z plane is defined by equation (2.57), this field can be written as:

w = k log(z). (2.63)

This fields corresponds to the conductor with boundary condition φ = kπ on the x-
axis for x = 〈−∞, 0〉 and φ = 0 on the x-axis for x = 〈0,∞〉. This seems like a
very strange field, but will be useful when two opposite conductors in a relatively
complicated geometry are mapped onto the same axis of a reference problem. This will
be used in section 2.3.4.

2.3.4 Corners and corner singularities

In this section conformal transformations are used to calculate the electric field and
force in the neighborhood of a sharp corner. First the general transformation of the
corner problem will be discussed, which will be used for a specific corner that can also
be simulated with numerical methods will be treated.

During these discussions it will become clear that corners cause geometric singular-
ities in the electrostatic problem. Therefore in the final two parts of this section some
remarks are made on the general order of singularity caused by a corner. These orders
can later be used to enhance numerical modeling.

General problem

Sometimes conformal transformations can be derived easily by hand as for instance
the transformation described in figure 2.3. However when complexity increases these
derivations can become rather tedious, therefore most text books that promote con-
formal transformations contain libraries with conformal transformations. The parallel
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Figure 2.4: Corner transformation.

corner transformation shown in figure 2.4 was originally developed to examine the
magnetic field of a rectangular salient pole in an electric motor as early as 1900.

Basically the geometry in the z plane is a polygon with three angles: an angle
of 3π/2 at point k, an angle of π at point m and another of π/2 at point n. This
long polygon can be mapped onto the u axis of the t plane. One boundary will be
mapped onto the positive x-axis and the other onto the negative x-axis. The origin of
the t plane will then correspond to point m. The objectives of the transformation are
summarized in table 2.1.

point z plane t plane
l z = p+ ig t = −1
m z = i∞ t = 0
n z = 0 t = a

Table 2.1: Objections for the transformation.

When looking in the transformation library of [16] for transformations that satisfy
these demands, the following transformation is found:

z =
2g

π

[
p

g
arctan

ps

g
+

1

2
log

(
1 + s

1 − s

)]
, (2.64)

where:

s2 =
t−
(

g
p

)2

t+ 1
. (2.65)

The Jacobian of this transformation is:

∂z

∂t
=

g

πt

√
t+ 1

t− a
, (2.66)

where:

a =

(
g

p

)2

. (2.67)

Example: Reference problem

The reference problem corresponds to the situation where p = 1 and g = 1, thus a = 1.
Here the gap is equal on both sides of the corner. Hence the transformation (2.64)
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reduces to:

z(t) =
2

π
arctan

(√
t− 1

t+ 1

)
+

1

π
log

⎛
⎝1 +

√
t−1
t+1

1 −
√

t−1
t+1

⎞
⎠ . (2.68)

The Jacobian for this transformation is:

∂z

∂t
=

1

πt

√
t+ 1

t− 1
. (2.69)

It is not possible to calculate t as a function of z, but it is possible for a specific value
of z to calculate the corresponding value of t.

In the problem a unit potential is applied on the boundary of the inner corner, thus
on boundary m− k− q. On the other boundary m− n− q a zero potential is applied.

It has been mentioned that this transformation maps boundary m − n − q on the
positive x-axis and boundary m − k − q on the negative x-axis of the t plane. This
means that in the t plane on the positive part of the x-axis has a zero potential and on
the negative part a unit potential. In section 2.3.3 it was shown that the field in the t
plane corresponding to this situation can be written as:

w =
1

π
log(t), (2.70)

which has the following first derivative with respect to t:

∂w

∂t
=

1

πt
. (2.71)

As just has been said it is not possible to derive an analytical function t = f(z),
but by using t as a parameter in a parametric plot, it is possible to create a contour
plot of the potential w on the z plane. Contour plots give constant potential lines,
thus constant v lines. From section 2.3.3 it is known that in the t plane these are
straight lines through the origin. For each point on such a line the complete u − v
coordinate can be calculated and for a certain t both the corresponding z coordinate
and the potential w can be calculated and used to build the contour plot of w in figure
2.5.

Using equations (2.35) and (2.38) in combination with the definition of w: w =
ψ + iφ, with φ the electrostatic potential and ψ the stream function, it can be said
that:

∂w

∂z
=
∂w

∂x
=
∂ψ

∂x
+ i

∂φ

∂x
, (2.72)

and:

i
∂w

∂z
=
∂w

∂y
=
∂ψ

∂y
+ i

∂φ

∂y
. (2.73)

The Cauchy-Riemann equations tell that:

∂φ

∂y
=
∂ψ

∂x
. (2.74)

The electric field E = iEx + Ey on the z plane is:

E = −i∂φ
∂x

− ∂φ

∂y
= −i∂φ

∂x
− ∂ψ

∂x
= −∂w

∂z
. (2.75)
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Figure 2.5: Contour plot of the electrostatic po-
tential near the corner.

The transformation has to be compensated for:

E = −∂w
∂z

= −∂w
∂t

∂t

∂z
, (2.76)

thus, when combining with equations (2.71) and (2.69) this yields the following electric
field in the z plane:

E = −
√
t− 1

t+ 1
. (2.77)

Equation (2.70) shows that at the singular point k, thus at t = −1 the potential is a
bounded function, however the electric field in equation (2.77) is infinite at t = −1.

To compute the electrostatic pressure fes = ifx + fy the relation (2.21) is used:

fes =
1

2
ε0(iE

2
x + E2

y), (2.78)

where ε0 is the electric permittivity in the gap. This results in a very long equation
when calculated completely. But when using symmetry it is easy to see that the force
on the horizontal boundary in vertical direction should be equal in value to the force in
horizontal direction on the vertical boundary of the corner. On the horizontal boundary
the electric field has only a component in y direction, thus E = Ey. Therefore only for
this boundary the pressure can be written as:

fes =
1

2
ε0E

2. (2.79)

Substituting of equation (2.77) into the equation above gives:

fes =
1

2
ε0
t− 1

t+ 1
. (2.80)

From this equation can be seen that the pressure has a singular point near the corner
at the point k where t = −1. At this point the pressure will reach an infinite value.
The force distribution shown in figure 2.6 was derived using this equation.
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Figure 2.6: Electric force distribution on horizon-
tal corner boundary.

However the value of interest is the pressure integrated over part of the boundary
near the corner to be able to compare this analytical solution of the force with finite
element computations. It is chosen to integrate the force over a unit length of the
boundary near the corner, thus from z = 1 + i to z = 1 + 2i:

Fes =
1

2
ε0

∫ 1+2i

1+i

E2dz, (2.81)

which after transforming the variable of integration and the range of integration gives:

Fes =
1

2
ε0

∫ −1

t=−54.66

E2∂z

∂t
dt,

Fes =
1

2
ε0

∫ −1

t=−54.66

1

π

(t− 1)
√

t+1
t−1

(t+ 1)t
dt.

(2.82)

It is clear that the integrant still reaches a singular point, but of the order 1/
√
t+ 1

near t = −1. This should yield a finite value after integration. And so it did:

Fes = iFx + Fy = 0i− 0.9942ε0, (2.83)

which is a downward directed force on the horizontal boundary of the corner.

Order of singularity for a conducting corner

Above, it was shown that an exterior corner in an electric domain creates a singularity.
It would be interesting to have a measure of the order of this singularity for general
corners.

An appropriate conformal transformation has to be chosen. It can be shown [16]
that a straight electrode is mapped to an electrode with a single corner of an angle θ
by the transformation:

z = tθ/π, (2.84)
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which gives a corner surrounded by the infinitely expanding field as shown in figure
2.7. It is assumed that locally, all sharp corners cause a potential distribution that
looks like this distribution. The inverse relation of (2.84) t = zπ/θ, substituted in the

t-plane z-plane

u

v

m

∞∞
x

y

θ

Figure 2.7: Exterior corner transformation for θ = 3π/2.

complex potential w = φbt, yields:

w = φbz
π/θ. (2.85)

This means that in the t-plane φ is zero at the conductor and equal to φb at a distance
of 1 from that conductor in the v-direction. When this equation is rewritten in polar
form (z = reiϕ), the following complex potential distribution is found:

w = φb r
π/θeiϕπ/θ. (2.86)

Since it was seen that the electric potential is the imaginary part of the complex
potential function, the potential is equal to (using the Euler formula):

φ = φb r
π/θ sin(ϕπ/θ), (2.87)

and the electric field with this potential distribution will be:

Er = −∂φ
∂r

= −π
θ
φb r

(π/θ−1) sin(ϕπ/θ) = −π
θ
φb r

k sin(ϕπ/θ). (2.88)

The order of singularity k = (π/θ− 1) will always be bigger than -0.5, because θ must
be smaller than 2π. Thus the singularity cannot become worse than a 1/

√
r singularity.

If θ is smaller than π, (π/θ− 1) is bigger than 0, therefore such a corner will not show
a singularity, the opposite is true. The electric field will be zero at such a corner.
However when θ becomes bigger that π, thus the conductor starts pointing into the
dielectric, k = (π/θ − 1) becomes smaller than zero, therefore the electric field will
become unbounded at r = 0. For a right angle (Θ = 3

2
π) the order k will be −1

3
.

This distribution can also be obtained by solving Laplace’s equation in polar coor-
dinates using separation of variables [66], but for the sake of continuity and simplicity
in this document, the conformal transformation approach was chosen.
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Order of singularity for a dielectric corner

A geometric singularity occurs not only when the sharp corner is part of a conductor,
but also when the corner is part of the interface between two dielectrics. That case is
sketched in figure 2.8, where θ is the interior angle of the corner. It is assumed that ε1

is the higher dielectric constant. The derivation in this section is based on [5].

ε1

ε2

ϕ

r

θ
E

Figure 2.8: Dielectric corner.

To be able to solve the problem it is assumed that the overall electric field is
directed parallel to the line of symmetry. When ϕ = 0 or ϕ = π, then ∂φ/∂ϕ =
0 due to this symmetry. Furthermore across the interface the potential φ must be
continuous. Because the electric equation (2.8) must hold across the interface, the
electric displacement in the direction normal to the interface Dn = ε(∂φ/∂ϕ) must be
continuous across the interface as well.

The solution in both regions have to satisfy the 2D Laplace equation in polar
coordinates (r, ψ):

1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂ϕ2
= 0. (2.89)

Therefore it is assumed that the solution in each dielectric region is similar to the
solution found in the previous section (2.87). However, that solution assumed that it
was potentials that were applied on the boundary of the corner, where in this problem
it is as if there are two corners for which the fluxes are defined on the boundaries, also
the flux must locally be perpendicular to the horizontal axis. Therefore the horizontal
axis must be a stream line, thus the stream function bust be constant on that axis.

In the previous discussions the complex potential was defined as w = ψ + i φ with
ψ the stream function and φ the electric potential. If only for this problem it is defined
as w = φ + i ψ, the complex potential (eq. (2.86) for the corner with imposed fluxes
can be written as:

w = ψb r
π/θeiϕπ/θ. (2.90)

The figure of interest is however still the electric potential, in this case the real part of
the complex potential, which using Euler’s formula is equal to:

φ = φb r
π/θ cos(ϕπ/θ). (2.91)
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Hence on the domain 0 � ψ � π it is assumed that the electric potential can be
written as: {

φ = Arp cos(pϕ), 0 � ϕ � θ,
φ = B rp cos(p (π − θ)), θ � ϕ � π,

(2.92)

where A and B constants. When the interface conditions are applied this gives (first
continuous potential, then continuous electric displacement):{

Arp cos(pθ) = B rp cos(p(π − θ)),
−ε1Ar

pp cos(pθ) = ε2B rpp cos(p(π − θ)).
(2.93)

Eliminating A and B from the equations gives:

ε1 cos(p(π − θ)) sin(pθ) = −ε2 sin(p(π − θ)) cos(pθ). (2.94)

After rearrangement (2.94) can be written as:

sin(pπ) +

(
ε1 − ε2

ε1 + ε2

)
sin(p(2θ − π)) = 0, (2.95)

which can be used to find p. There will be infinitely many solutions to this equation,
but negative solutions are not of interest, since infinite potentials do not represent a
physical solution. The smallest positive solution for p represents the physical solution.
When θ is bigger than π/2, the smallest p is bigger than 1, thus the order of singularity
of the electric field k = p− 1 will be bigger than 0, thus as with the conductor corner
there will be no singularity4. However when θ is smaller than π/2 the solutions of p
will be smaller than 1, showing a singularity.

To see how this singularity compares to the conductor singularity, the order was
determined for the specific corner angle of θ = π/4 for different values of ε1. It is
assumed that the lower dielectric value equals the vacuum permittivity (ε2 = ε0). The
results are shown in figure 2.9. It clear that when ε1 = ε2 = ε0 → ε1/ε0 = 1, the
order of singularity equals 1, hence the singularity does not exist. Furthermore when
ε1 → ∞ then p→ 2

3
, thus k approaches k = −1

3
and therefore the solution for the ideal

conductor singularity.

2.4 Finite Element Method in 2D

In the previous section the singularity was investigated that enters Laplace’s equation
when there are polygonal boundaries with Dirichlet boundary conditions. In other
words: that singularity that appears when the boundary of the domain has sharp cor-
ners. The direct motive for this investigation was the electrostatic field and the forces
that this electrostatic field exerts on conducting bodies. Within microsystem appli-
cations these forces are of vital importance and the geometry of such a microsystem
normally has a lot of corners.

In the past a lot of research has been done on the influence of such a singularity on
the convergence of the FEM solution of Laplace’s equation [141, 9]. However, the main

4When comparing the results, note that the angle θ was defined differently with the conduct-
ing corner. Also remember that Er = −∂φ

∂r = − ∂
∂r (Arpcos(ϕp)), which can be written as:

Er = pArp−1cos(pϕ) or: Er = pArkcos(pϕ).
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Figure 2.9: Order of singularity for a straight cor-
ner (θ = π/4, ε2 = ε0).

concern of those investigations was to limit the error of the singularity to the region
close to the singular point and to estimate the value of the error.

Though, when the electrostatic force is the main interest, a converged potential
field is not sufficient. It was shown before and in literature that the electric force on
a conductor is a simple function of the electric field at the exterior boundary of that
conductor [48]. To get correct force values with that force function also the electric
field must have converged, also at the singular point, where at an infinitesimal region
an infinite pressure will appear.

One method to overcome this problem is to use the principle of virtual work to
derive the nodal forces instead of the standard force function [108]. In this document
the derivation of forces based on the principle of virtual work is called the variational
approach. Another option to solve the problem of singularity is to use specific elements
and shape functions as proposed in [81, 82]. In this text these elements are investigated
and compared to the standard approach and the variational approach. But first the
FEM discretization of the electrostatic problem is recapitulated.

2.4.1 Finite element equations

When the finite element method is used to discretize the electrostatic differential equa-
tion on the domain in figure 2.10, this domain is separated into regions called elements
as in figure 2.11. Within each element it assumed that the potential is is a linear
function of x and y (or at least the relation φ(x, y) is a simple relation ship). If the
potential is such a linear function within the element, a piecewise linear relationship
describes the total field, if all those elements are connected. Such a piecewise linear
potential distribution is shown in figure 2.12. Furthermore it is assumed that there is
a linear relationship between the potential and the discrete values of the potential at
the corners of the element. The locations of those corners are called nodes. In that
case the continuous potential is discretized as (summation over index i):

φ(x, y) = Ni(x, y)φi, (2.96)
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Figure 2.12: A piecewise linear potential distribution.

where the φi are the discretized potential values at the corners of the element and the
Ni are the linear (or simple) relations that describes how the a unit potential at node
i propagates through an element. More information on these shape functions can be
found in appendix A.3. Equation (2.96) can be written in matrix vector notation as:

φ = Nφ. (2.97)

Appendix A.1.1 shows how this assumption applied on the electrostatic equation
(2.9) can end up in a linear matrix vector equation, that describes the relation between
the nodal potentials φ and the charges present at the location of the nodes Q:

Kφ = Q, (2.98)

where:

K =

∫
Ωe

∇NT ε∇NdΩ. (2.99)

Because there are no space charges these are zero inside the domain. On the boundary
they are zero on those places were there is a symmetry boundary condition, but not
on the nodes where there is an imposed potential.

Appendix A.1.1 also shows that after application of the boundary conditions the
remaining equation that has to be solved can be written as.

Kφφ̄φφ = −Kφ,φ̄φ̄. (2.100)
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or:

Kφφ̄φ = qext. (2.101)

Where Kφφ̄ and Kφ,φ̄ are sub matrices of K associated with free (φ) degrees of freedom
and prescribed (φ̄) DOFs and qext is the apparent charge on the free DOFs due to the
Dirichlet boundary condition.

2.4.2 Methods using Lagrangian finite elements

Lagrange type elements are the standard elements with only one potential DOF per
node. A typical Lagrange type element is shown in figure 2.13. This element has 4
nodes, therefore φ = Niφi will be a bi-linear function of the spatial coordinates ξ and
η. These elements are the simplest elements to use, because only constraints on the
potentials have to be identified, because no other DOFs are present in the model.

(-1,-1)

(-1,1) (1,1)

(1,-1)

1 2

34

ξ

η

Figure 2.13: Bilinear square element.

Traditional Maxwell stress tensor surface integral

As derived before in section 2.2.3, when the Maxwell tensor is used this yields the
following electrostatic force relation (2.26):

f e =

∫
Γ

1

2
ε|E|2ndS =

∫
Γ

1

2
ε|E|2ndS. (2.102)

The electrostatic force is thus obtained by integrating the local Maxwell surface stress
over the edge of the conductor, therefore this last form will be called the local force
approach in this document. When the structural displacements are discretized by finite
elements with shape functions N , the nodal forces originating from the Maxwell stress
on the surface are computed as

f e,nodes =

∫
Γ

1

2
εNT |∂φ

∂n
|2ndS. (2.103)

this approach is used in most commercial codes, where one normally has the possi-
bility to use higher order elements as well, such as the element in figure 2.14. In that
case the shape functions are bi-quadratic functions of ξ and η. Still each node has only
a potential DOF, hence the element is still Lagrangian.
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Figure 2.14: Quadratic square element.

Variational force calculation

Another way of computing the electrostatic force is not to resort to the Maxwell stress
tensor but rather to start from the total electric energy:

We =
1

2

∫
Ω

ε∇φ · ∇φdV. (2.104)

In that case the electrostatic forces can be obtained by computing the virtual work
related to a variation of the displacement field δu of the structure on which the forces
are acting (see for instance [108]):

f e · δu =
∂We

∂u
δu = W ′

e −We. (2.105)

Here the perturbed energy W ′
e relates to the perturbed Ω′, namely Ω deformed by the

virtual displacement δu:

W ′
e =

1

2

∫
Ω′
∇′φT ε∇′φdV ′ =

1

2

∫
Ω

∇′φT ε∇′φ
dV ′

dV
dV. (2.106)

After defining the deformation gradient tensor as

F =
∂(x + δu)

∂x
, (2.107)

the determinant in the integral of equation (2.106) can be written as

J =
dV ′

dV
= det(F ) ≈ 1 + ∇ · δu. (2.108)

Because by definition:

∇′φ = F−T∇φ ≈ (I −∇δuT )∇φ, (2.109)

where ∇δu is a tensor with components
∂δuj

∂xi
, the following approximation can be made:

∇′φT ≈ ∇φT (I −∇δu), (2.110)

Subsequently, substitution of all relevant terms into equations (2.106) and (2.105)
yields:

f e · δu =
1

2

∫
Ω

∇φT (I −∇δu)ε(I −∇δuT )∇φ(1 + ∇ · δu)dV −We, (2.111)
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Figure 2.15: FEM model of the corner.

If the higher order terms in δu are neglected this gives

f e · δu =
1

2

∫
Ω

ε∇φT∇φ(∇ · δu)dV − 1

2

∫
Ω

ε∇φT (∇δu + ∇δuT )∇φdV. (2.112)

This approach was first presented in [108], where it was shown that equation (2.112)
can be written as:

f e · δu =
1

2

∫
Ω

εET

⎡
⎣ ∂φ

∂x
0 2∂φ

∂y
−∂φ

∂x

−∂φ
∂y

2∂φ
∂x

0 ∂φ
∂y

⎤
⎦[ ∇δux

∇δuy

]
dV, (2.113)

where ∇δuj is a vector with components
∂δuj

∂xi
.

After finite element discretization the equation above becomes:

fT
e,nodes =

1

2

∫
Ω

εET

⎡
⎣ ∂φ

∂x
0 2∂φ

∂y
−∂φ

∂x

−∂φ
∂y

2∂φ
∂x

0 ∂φ
∂y

⎤
⎦BdV, (2.114)

where B is the matrix containing the derivatives of the shape functions N for the
structural displacement field:

B =

[
∂N
∂x

0
0 ∂N

∂x

]
. (2.115)

First comparison of the approaches

The variational and local force approaches will be compared with each other by com-
puting the forces for a reference problem. The FEM geometry of this reference problem
is shown in figure 2.15. It models the same problem as the analytical model. Bound-
aries 1 and 6 have a zero potential, boundaries 3 and 4 have a unit potential. The
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right-hand and bottom boundaries 2 and 5 are assumed to represent symmetry condi-
tion: Neumann conditions (∂φ/∂n = 0) are applied on them. The air gap is formed
by regions A, B and C. Region A is meshed with standard linear Lagrange elements.
Region B has infinite elements in the horizontal direction and region C has infinite
elements in the vertical direction [145]. These infinite elements map the decay of the
field as if the length of B and C would be infinitely long, as was the case for the
analytical problem.

Figure 2.16: Electric potential
around a corner.

Figure 2.17: Electric field around a
corner.

In figure 2.16 a contour plot of the electrostatic potential is given. This plot was
determined using FEM. The electric field is given in figure 2.17. It can be seen that
near the singularity the field has a maximum value.

The convergence of the electrostatic force has to be determined for both FEM
approaches. Therefore the corner is meshed with a number of square elements with
linear shape functions. This number is increased, or equivalently the element size h is
decreased. The results of this convergence analysis are given in figure 2.18. In the figure
the x-axis denotes 1/h, with h the size of an element, the y-axis denotes the absolute
value for the force in x-direction integrated over side 4 and subsequently divided by
the vacuum permittivity ε0.

It is clear from the left-hand side of picture 2.18 that at an element size of approxi-
mately 0.025 the variational solution (2.113) with a force of 0.99 ε0 has almost converged
to the analytical solution of 0.9942 ε0, whereas the local force function (2.26) has not
yet converged. The final value it has reached before computations times become too
large is 0.85 ε0. The right-hand side of figure 2.18 shows that the rate of convergence is
equal for both approaches but the variational approach starts from a better value. The
next section will investigate why the variational approach starts from a better value.

2.4.3 Maxwell stress tensor vs. variational forces

In the example of the previous section it has become clear that the local approach us-
ing the Maxwell stress tensor does not accurately approximate the electrostatic forces
in the vicinity of a corner. To better understand this, the corner problem considered
above (figure 2.15) will be reduced to its simplest discretization: a three element mesh.
Thereafter the theoretical relation between the Maxwell stress tensor and the electro-
static force obtained from the variational approach will be uncovered. At the end it



2.4 Finite Element Method in 2D 35

0 5 10 15 20

0.6

0.7

0.8

0.9

1

1.1

Number elements per meter

|F
x|

/ε

 

 

Bi−linear local force
Bi−linear variational

10
0

10
1

10
−3

10
−2

10
−1

10
0

Number elements per meter

|Δ
 F

x|
/|F

x|

Figure 2.18: Convergence for both the variational and local force approaches using
bilinear elements.

is shown that for the simplest discretization of the corner indeed both methods can
provide the same results when properly applied.

Comparison with only three elements
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Figure 2.19: Corner meshed with three ele-
ments.
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Figure 2.20: An element.

The corner problem is meshed with only 3 square elements of 1 by 1 each (figure
2.19). Each of the elements has its nodes numbered as in figure 2.20. Nodes on the
red boundary have a potential of 1 and those on the blue boundary have a potential of
0. Using linear elements the electric field in elements 2 and 3 is directly obtained from
the boundary conditions: E2

x = 0, E2
y = −1 and E3

x = 1, E3
y = 0 respectively. The

electric field in element 1 is found by writing the potential as

φ = N1φ1 +N2φ2 +N3φ3 +N4φ4 = N1 +N3 +N4, (2.116)
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where the Ni are the linear shape functions. Choosing the origin of the local reference
in the middle of the element the electric field is found to be:

E1
x = −∂φ

∂x
=

1

2
(1 − 2y), E1

y = −∂φ
∂y

= −1

2
(1 + 2x). (2.117)

As in the previous section the electrostatic force is computed on the corner in one
direction only, therefore the computed force originates from only one of the edges. Here
the force in evaluated horizontal direction, therefore this force is being generated on
the vertical side a (figure 2.19). Hence the required electrostatic forces are those on
nodes I and II (figure 2.19), as obtained after assembly of the element contributions.

Surface integral of Maxwell stress tensor

The electric field obtained from the discretization is orthogonal to the edges of the
corner, as it should be according to the equipotential condition on those boundaries.
Hence the Maxwell stress tensor (2.23) and the surface normal vectors are

T = ε

[
1
2
(E3

x)
2

0

0 −1
2
(E3

x)
2

]
=

[
1
2
ε 0
0 −1

2
ε

]
n =

[ −1
0

]
on a

T = ε

[
−1

2

(
E2

y

)2
0

0 1
2

(
E2

y

)2
]

=

[ −1
2
ε 0

0 1
2
ε

]
n =

[
0
1

]
on b

The forces in direction x obtained from the local force equation (2.103) for elements
2 and 3 on nodes I and II are:

f 2,x
e,I =

[
0
]
, f 3,x

e,I,II =
[ −1

4
ε −1

4
ε
]

(2.118)

Clearly edge b does not contribute to the horizontal force, and a summation the nodal
forces in the horizontal direction gives:

fx
e = −1

2
ε. (2.119)

The analytical solution for this problem being fx
e = −0.9942ε, it is clear that the

electrostatic forces are badly estimated.

Variational approach

When the variation force equation (2.114) is used to compute the nodal electrostatic
forces, one needs to perform a volume integral which yields the following contribution
of elements 1, 2 and 3 on nodes I and II:

f 1,x
e,I = [ −0.2083ε ] f 2,x

e,I = [ −1
4
ε ] f 3,x

e,I,II = [ −1
4
ε −1

4
ε ] (2.120)

It is noteworthy that the electrostatic force associated to element 3 is identical to the
force obtained with the local approach, but in this approach elements 1 and 2 also
contribute to the horizontal force on the corner node. The total horizontal force is:

fx
e = −0.9583ε, (2.121)

which is very close to the analytical solution of −0.9942ε.
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The Maxwell stress tensor and the variational method

Form the simple example above it is clear that the Maxwell stress tensor and the varia-
tional approach yield the same nodal forces except on corners. This seems paradoxical
since on one hand the Maxwell stress vector on the edge seems to properly represent the
physics, namely the Coulomb forces on the surface charges, whereas the variational ap-
proach yields a significantly more accurate corner force. Obviously: when the element
size decreases, both methods converge to the same solution and are thus consistent.
However one would expect a true equivalence between the Maxwell stress tensor and
the forces derived from the variational approach.

Let’s therefore consider again the forces (2.112) derived from the variational ap-
proach, namely

f e · δu =
1

2

∫
Ω

ε∇φT (∇ · δu)∇φdV − 1

2

∫
Ω

ε∇φT (∇δu + ∇δuT )∇φdV (2.112)

and transform both terms in this expression using Gauss’ theorem, giving for the first
term:

1

2

∫
Ω

ε∇φT∇φ(∇ · δu)dV =
1

2

∫
Ω

∇ · (ε∇φT∇φδu)dV −
∫

Ω

ε∇2φ∇φT δudV

=
1

2

∫
Γ

(−n)T (∇φT ε∇φ)δudS −
∫

Ω

ε∇2φ(∇φ)T δudV.(2.122)

where as before n is the inner normal pointing into to the electric domain. The second
term in (2.112) can be transformed into:

1

2

∫
Ω

ε∇φT (∇δu + ∇δuT )∇φdV =
1

2

∫
Ω

ε∇φ∇φT : (∇δu + ∇δuT )dV

=

∫
Γ

ε (−n)T∇φ∇φT δudS −
∫

Ω

εδuT∇φ∇2φdV. (2.123)

Now substitution of the two equations above into (2.112) gives:

f e · δu = −1

2

∫
Γ

nT (∇φT ε∇φ)δudS +

∫
Γ

εnT∇φ∇φT δudS

=

∫
Γ

nT T δudS, (2.124)

where:

T = ε∇φ∇φT − 1

2
ε∇φT∇φI. (2.125)

is the Maxwell stress tensor which was given by (2.2.3). The final result (2.124) proves
that computing the electrostatic forces with the Maxwell stress tensor as in (2.25) is
exactly equivalent to computing those forces with the variational principle.

So the discrepancy observed in the numerical examples between the electrostatic
forces obtained from both approaches must come from the fact that when using the
Maxwell stress tensor, one uses in practice (2.26) a surface integration over the edges
describing the physical interface between the structural and electric domain only. Im-
plicitly one thereby assumes that the edges that are fully embedded within the electric
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domain and thus not bordering a structure due not contribute to the force on that inter-
face, which seems to be consistent with the fact that physically speaking the Coulomb
forces are originating from that interface only.

Considering the exact electromechanical problem in a continuum, it is indeed cor-
rect to state that on edges that are not electro-mechanical interfaces and thus fully
in the electric domain, no electric forces will appear. This remains true after a finite
discretization for edges inside the electric domain and connected to a non-corner me-
chanical interface only: the contribution of all the elements connected to that edge
in the electric domain balances out. But when the edge inside the electric domain is
connected to a structural corner, those edges also contribute to the electric force on the
mechanical interface as illustrated in the previous simple example by equation (2.120).

Summarizing the discussion above, it can be concluded that it is fine to use the
Maxwell stress tensor in a Finite Element model but it has either to be used as a
volume force (equation (2.24)), or equivalently as surface stresses but then integrated
over all edges of the electric elements bordering the mechanical interface as in (2.25).
Integrating the contribution of the Maxwell stress tensor only over the mechanical
interface edges can lead to a significant loss of accuracy in the vicinity of corners.

Note that this observation is in fact a more general issue discussed by several
authors, for instance in the field of fluid structure interaction [46] or when computing
stress intensity factors in solid mechanics [7, 8]. From those earlier works it is clear
that evaluating interface forces by local integrals instead of considering the dual field
associated to the weak formulation can lead to a loss of accuracy. In the discussion
above the origin of this loss of accuracy for electrostatic coupling is pinpointed.

Three element model with full edge integrals

Below the equivalence between the two approaches for computing electrostatic forces
by computing the forces using the full surface integral of the Maxwell tensor on the
simple corner problem treated in section 2.4.3 is shown. In that section a discrepancy
between the forces computed by the variational approach and the Maxwell stress tensor
was found. But the Maxwell stress tensor was then only considered on the mechanical
interface, namely on the conductor edges of element 2 and 3 (figure 2.20). Here also
the contribution of elements 1, 2 and 3 to the horizontal forces through the edges in
the electric field is computed.

The contribution of element 1 to the horizontal force on the corner node is obtained
by computing the nodal forces originating from the Maxwell stress tensor on its right
and bottom edge, namely

f 1,x
I =

[∫
edges on I

T 1ndΓ

]
x

=
[

1 0
] [∫ 0.5

−0.5

T 1

[ −1
0

]
N2(x = 0.5) dy +

∫ 0.5

−0.5

T 1

[
0
1

]
N2(y = −0.5) dx

]

=
ε

8
+

−ε
3
, (2.126)

where x, y are the local element coordinates and the element field (2.117) was used to
compute T .

Similarly the complete contribution of elements 2 and 3 can be computed by adding
to the forces already computed on the conductor surface in section 2.4.3 the contribu-
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tions from the edges connected to the corner node:

f 2,x
I =

[
1 0

] [∫ 0.5

−0.5

T 2

[
1
0

]
N1(x = −0.5) dy +

∫ 0.5

−0.5

T 2

[
0
1

]
N1(y = −0.5) dx

]

=
−ε
4

+ 0, (2.127)

f 3,x
I =

[
1 0

] [∫ 0.5

−0.5

T 3

[ −1
0

]
N3(x = 0.5) dy +

∫ 0.5

−0.5

T 3

[
0
−1

]
N3(y = 0.5) dx

]

= 0 +
−ε
4
. (2.128)

Clearly elements 1 and 2 contribute to the horizontal force. Summing up all the
horizontal forces on the corner node I and the horizontal force (2.118) on the lower
node of edge a provides the total force:

fx = −0.9583ε, (2.129)

which is equal to the value computed with the variational approach and very close to
the analytical solution even for this coarse mesh.

Therefore it can be concluded that when corners form a significant part of the
geometry, it is equivalent to use the variational form (2.113), the volume integral of
the divergence of the Maxwell tensor (2.24) or the surface (edge) integral over all
boundaries attached to a corner. But the commonly used approach (2.26), where
the force is computed by considering the Maxwell stress tensor only on the electro-
mechanical interface, can significantly underestimate the electrostatic forces at the
corner.

2.4.4 Methods using special elements

In section 2.4.2 the principle of virtual work was used to overcome the inaccuracy of
force computations using Lagrange type elements without extra consideration. An-
other approach could be to use different types of elements. Elements with derivative
DOFS might prove more accurate, because they directly discretize the derivative of
the potential, the electric field, as well. If those elements work the simple local force
function (2.26) could be used to calculate the electric forces on the boundary. In [81]
several of such elements were proposed to model singularities in electrostatic FEM.

Adini elements

One of the elements that could be used is the Adini element shown in figure 2.21.
This element was originally developed to model plate bending, in which the spatial
derivatives of the deformation characterize the solution. The element has at each node
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Figure 2.21: Adini square element.

3 DOFs: φ, ∂φ
∂x
, ∂φ

∂x
. The shape functions for this elements are:

N1 = (1 − ξ)(1 − η)(1 + ξ + η − 2ξ2 − 2η2),
N2 = (ξ)(1 − η)(3ξ + η − 2ξ2 − 2η2),
N3 = (ξ)(η)(−1 + 3ξ + 3η − 2ξ2 − 2η2),
N4 = (1 − ξ)(η)(ξ + 3η − 2ξ2 − 2η2),
N5 = (1 − η)(ξ3 − 2ξ2 + ξ),
N6 = (1 − η)(ξ3 − ξ2),
N7 = η(ξ3 − ξ2),
N8 = η(ξ3 − 2ξ2 + ξ),
N9 = (1 − ξ)(η3 − 2η2 + η),
N10 = ξ(η3 − 2η2 + η),
N11 = ξ(η3 − η2),
N12 = (1 − ξ)(η3 − η2),

(2.130)

here N1 to N4 are the shape functions for the φ values, N5 to N8 for the ∂φ
∂x

values and

N9 to N12 for the ∂φ
∂y

values. To illustrate the behavior of these shape functions, they
are shown in figure 2.22. Note the similarity with beam elements.
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Figure 2.22: Adini shape functions for node 4.

When these elements are used it is not only important to define the appropriate
constraints for the potential, but also for the derivatives. For instance the tangent
derivatives at the Q = 0 boundaries have to be zero.
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Uncoupled Adini

Analytically the electric field near a singular point behaves somewhat like Green’s
function. This can be explained by the charge concentration at the corner, which
behaves like a point charge. And e.g. in [48] it is shown that the electric field near a
point charge can be described by a Green’s function. Furthermore one can say that
the potential field at a point charge can be described by a continuous function and the
electric field by a discontinuous function.

In [81] it is shown that near a singular point Adini elements smoothen the solution
too much and prove to perform even worse than Lagrangian elements. Therefore the
uncoupling of the derivatives near the singular point was proposed. Basically this
uncoupling of the DOFS means that two extra DOFS are created as shown in figure
2.23. The derivative DOF Ex at node P is split into E+x and E−x and the same is
done to DOF Ey. Next DOF E−x is only assembled into elements 1 and 3 and E+x is
only assembled into element 2. Similarly E+y is assembled into elements 1 and 2 and
E−y into element 3. However, the potential DOF at node P is assembled into all three
elements. Effectively this creates a continuous potential, but a discontinuous electric
field at point P .

+-

+

-

1 2

3 E

E

E E

Py

y

x x

Figure 2.23: Uncoupled Adini elements.

Incomplete biquadratic element

Although the uncoupled Adini element is the best performing element treated by [81],
it is rather complicated to use, because at specific points these DOFs have to be
uncoupled. For a simple model such as the reference problem, this is still doable, but
when more realistic models have to be solved, this can become a very time consuming
task. Therefore an element was considered that has the same number of DOFs as the
Adini element, but has only derivative DOFs at its midpoint nodes. This element,
known as the incomplete biquadratic element (IBQ), is shown in figure 2.24.

At nodes 1,2,3 and 4 it has only potential a DOF and at nodes 5,6,7 and 8 it has a
potential DOF and a derivative DOF, which is equal to the derivative in the direction
normal to the edge. Since there is no constraint on the derivative value at the corner
node, the solution should not be smoothed too much.
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Figure 2.24: Incomplete biquadratic element.

The shape functions for this element are listed below:

N1 = 1
4
(1 − ξ)(1 − η)(−1 − 1ξ − 1η) + 1

4
(1 − ξ2)(1 − η2)(ξ2 + η2),

N2 = 1
4
(1 + ξ)(1 − η)(−1 + 1ξ − 1η) + 1

4
(1 − ξ2)(1 − η2)(ξ2 + η2),

N3 = 1
4
(1 + ξ)(1 + η)(−1 + 1ξ + 1η) + 1

4
(1 − ξ2)(1 − η2)(ξ2 + η2),

N4 = 1
4
(1 − ξ)(1 + η)(−1 − 1ξ + 1η) + 1

4
(1 − ξ2)(1 − η2)(ξ2 + η2),

N5 = 1
2
(1 − ξ2)(1 − η) − 1

4
(1 − ξ2)(1 − η2)(2ξ2 + η),

N6 = 1
2
(1 − η2)(1 + ξ) − 1

4
(1 − ξ2)(1 − η2)(2η2 − ξ),

N7 = 1
2
(1 − ξ2)(1 + η) − 1

4
(1 − ξ2)(1 − η2)(2ξ2 − η),

N8 = 1
2
(1 − η2)(1 − ξ) − 1

4
(1 − ξ2)(1 − η2)(2η2 + ξ),

N9 = −1
4
(1 − ξ2)(1 − η2)(η2 − η),

N10 = −1
4
(1 − ξ2)(1 − η2)(ξ2 + ξ),

N11 = −1
4
(1 − ξ2)(1 − η2)(η2 + η),

N12 = −1
4
(1 − ξ2)(1 − η2)(ξ2 − ξ).

(2.131)

To illustrate the behavior of these shape functions, they are shown in figure 2.25. Just
as with the Adini elements, one should take care when applying imposed boundary
constraints.
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Figure 2.25: IBQ shape functions.

Singular elements compatible with bilinear elements

Another type of elements for singularities was proposed by Akin [3]. They were devel-
oped for simulating crack tips and were applied on electrostatics by [121]. The basic
assumption for the element is that the potential varies radially according to the relation

φ ≈ c r(π/θ), (2.132)
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if the radius r is small enough. Here θ > π is the angle of the corner, where that
angle is measured through the dielectric part of the problem. The constant c is a
proportionality constant. The derivation of this potential distribution can be found in
section 2.3.4. The electric field corresponding with this potential field is:

Er = −∂φ
∂r

= −π
θ
c r(π/θ−1). (2.133)

The shape functions P derived for this behavior are (k denotes the singular node) :

Pi =
Ni

(1 −Nk)p
, i �= k,

Pk = 1 − (1 −Nk)
(1−p),

(2.134)

where Ni is an usual bilinear shape function. The parameter p defines the asymptotic
behavior of the singularity and has to equal p = 1−π/θ for all the elements connected
to a singular node.
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Figure 2.26: ’Akin’ shape functions.

This value for p can be derived by assuming polar coordinates ρ and ϕ departing
from an origin at point k. The normal shape function Nk can then be polynomially
expanded in these coordinates (neglecting higher order terms and variation with respect
to ϕ):

Nk = 1 + a1ρ+ . . . , (2.135)

therefore:

Pk = 1 − (1 − 1 − a1ρ+ . . .)1−p = 1 − (−a1)
1−pρ1−p + . . . , (2.136)

which can be differentiated with respect to ρ:

∂Pk

∂ρ
= −(−a1)

1−pρ−p, (2.137)

which will only have the same asymptotic behavior as equation (2.133) if p = 1− π/θ.
The shape functions for an element connected to a θ = 3π/2 corner are shown

in figure 2.26. On the left a non-corner node is shown, the function looks much like
a traditional bilinear shape function. On the right a singular node is shown, which
clearly has an infinite derivative at the singular point.
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One disadvantage of this method is that the elements and singular nodes have to
be defined for each individual corner, which probably is the reason that the method
has not yet been implemented in commercial codes.

A restriction on the element is that the correct asymptotic behavior can only be
guaranteed if the non-corner shape function can be expanded as in equation (2.135),
therefore the element only works with geometric mappings characterized by a constant
Jacobian, thus (bi)linear mappings.

Comparison

In the report and article [82, 81] it is concluded that the uncoupled Adini element
and the IBQ element perform optimal, but the IBQ-element is easier to use. However
the selection criteria have all been potential values or undefined5 electric field values.
Furthermore the results are not compared with standard Lagrange type elements or
the ‘Akin’ elements. Hence it is not known how well they work.

It is difficult to combine the special elements with infinite elements. Therefore
the reference problem is changed to the configuration in figure 2.27. However the
analytical solution shown in figure 2.5 suggest that the Neumann conditions (∂φ/∂n =
0) at the Q = 0 boundaries are correct enough to compare the numerical results with
the analytical solution. Moreover when solutions obtained with standard Lagrange
elements are compared, one can conclude that electrostatic forces change only at the
fourth digit when infinite elements are added.

The problem was modeled with several meshes and the results were compared with
the results from section 2.4.2 and shown in figure 2.28.

V=1

V=0

V=0

V=1

1 m

2 m

Q=0

Q=0

a

b

Figure 2.27: Reference problem.

To explain the different convergence curve of the solution obtained with the ‘Akin’
or singular bilinear elements, the potential on the cross section a−b as defined in figure
2.27 has been plotted in figure 2.29. Here the parameter r is the distance from the
singularity at point b. The number of elements used for this cross section is 2 per meter.
It is clear that solution is closer to the real one than the solution of normal bilinear
elements, but the derivative is larger near the singularity that the analytical one. The

5It is not clear from the report or the article how and where these electric field values were defined.
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Figure 2.28: Force convergence ratios for different types of elements.

standard linear element underestimates this derivative. This can be explained by the
fact that the element assumes a certain behavior of the field within the element. That
assumption that is only valid in the neighborhood of the singularity. Therefore, if the
element is large, this assumption overestimates the effect of the singularity on the field
far from the corner.
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Figure 2.29: Potential through section a− b,
computed with 2 elements per meter.

To explain why the IBQ element provides worse results than ordinary quadratic
ones for the reference problem, the electric field through cross section a-b has been
calculated with IBQ and quadratic Lagrange elements. In figure 2.30 it can be seen
that with quadratic shape functions the element next to a singularity shows a wiggle in
the derivative. The bad thing about IBQ elements is that the bubble function, which
is needed in the element to incorporate the derivatives, enhances this wiggle.
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Figure 2.30: Electric field through section a−
b, computed with 6 elements per meter.

2.5 Finite Element Method in 3D

Until now all modeling has been in two dimensions only. However it would be inter-
esting to see how the numerical approaches hold in three dimensions, because in that
case there are more types of singularities. Not only the 2D corner, which is in 3D an
edge, yields a singularity, but also the 3D corner, where 2 or more edges join. In this
report the chosen 3D corner is the type of 3D corner that can be found on a cube.

The mesh is build up from hexahedral elements, which can be mapped onto cubes
with an isoparametric mapping. In the end the same type of matrix vector equation
as in 2D is found (see appendix A.1.2).

2.5.1 Reference problem

The reference problem is shown in figure 2.31. Only the air part of the problem is
shown from two different viewpoints. The corner of a conductor causes a bite out of
the cubic air region. Surfaces A, B and C define the surface of the conductor and are
during modeling assumed to be grounded. The surfaces on the opposite of the gap, D,
E and F are fixed at 1 volt. In this problem the three edges between surfaces A, B
and C will show an edge singularity and the corner k will create a corner singularity.

A

B

C

D

E

F

k

Figure 2.31: The 3D reference problem seen from two
different angles.
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2.5.2 Reference solution

An analytical solution for this 3D problem does not exist. However a very good approx-
imation can be made by applying the principle of virtual work on a very dense mesh.
In stead of a regular mesh of cubes, a locally refined very dense mesh of tetrahedral
elements was used to compute the reference solution. A picture of the converged mesh
is shown in figure 2.32. For comparison a typical mesh of cubes that will be used below
to compare different approaches is shown in figure 2.33. The fully converged solution
for the reference problem is |F/ε0| = 1.76.

Figure 2.32: Thetrahedral mesh
used to compute the reference so-
lution.

Figure 2.33: A typical cubical
mesh used to compare the ap-
proaches (8 elements per meter).

2.5.3 Force discretization

In section 2.4.2 two different approaches to discretize the force in 2D were discussed:
the variational approach and the local force approach. Both approaches can also be
used in 3D. The resulting forces on surface A, in the direction perpendicular to that
surface, are shown in figure 2.34. It can be seen that the variational approach converges
quite fast towards the reference solution, but the local force approach seems to have
the same difficulty as in 2D.
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Figure 2.34: Convergence curves for the 3D
model.
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2.5.4 Extension of the Akin element to 3D

In the section on 2D FEM modeling it was concluded that the only type of shape
function modifications that really improved the solution were the Akin or singular
bilinear elements. Therefore these elements will be expanded to the 3D case. However,
this is not a trivial problem, because as mentioned before in 3D there exist two types
of singularity: edges and corners.

ξ

η

ζ

1

2

Figure 2.35: A 3D hexahedral element
with singular edge in natural coordi-
nates.

The edge singularity can be tackled with relative ease. All elements connected to
a simple edge look like the element in figure 2.35, where the thick edge, connected to
nodes 1 and 2, indicates the singular edge. This problem is very similar to the 2D
corner, because the singularity only acts in the ξ and ζ direction and not in the η
direction. Therefore the same order of singularity can be applied, using the following
procedure:

Ni(ξ, η, ζ) = Li(ξ)Li(η)Li(ζ), (2.138)

where the Li(x) = 1
2
(±x+xi) indicate the classic 1 dimensional shape functions. Since

there is no singularity in the η direction, it can be left unmodified, but the other two
will have to be modified. Because nodes 1 and 2 are on the same edge that is parallel
to to the η-axis, there dependency on ξ and ζ is equivalent. Therefore the following
relation holds:

L1(ξ)L1(ζ) = L2(ξ)L2(ζ), (2.139)

which can be used to define the augmented basis functions Di as follows:

Di = Li(ξ)Li(ζ)
(1−L1(ξ)L1(ζ))p i �= 1, 2

Dk = 1 − (1 − Lk(ξ)Lk(ζ))
(1−p), k = 1, 2,

(2.140)

where just as in the 2D case p = 1/3 for an edge with a (3/2)π angle. The total set of
modified shape functions for the edge singular element becomes:

Pi(ξ, η, ζ) = Li(η)Di(ξ, ζ). (2.141)

Results on very simple 3D geometries without corners, but with edges, show that these
elements provide the desired improved convergence.
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For elements with not only an edge but also a corner singularity, the following
approach is used. The field within the element is modified as if the edge only node
creates a corner singularity:

Pi = Ni

(1−Nk)p , i �= k,

Pk = 1 − (1 −Nk)
p,

(2.142)

with p = 1/3. This approach is repeated for all the ’edge only’ nodes, to insure
continuity between this element and edge elements to which it is connected.

Next the same procedure is done for the corner node with p = 0.5475. The order
of the 3D corner singularity is extracted from [96], where the order of singularity for a
3D corner is used to improve solutions obtained with the boundary element method.
Hence essentially for the element the field is assumed to be a superposition of the
singular effects of the real 3D corner and the edge only node that is seen as a corner.

The results for the reference problem obtained using this approach are shown in
figure 2.36, where it can be seen that results improve a lot compared to the local
force only solution. The solution does not converge directly from above as in the 2D
case, but diverges from the reference solution before it converges again. This can be
explained by the fact that the used order of singularity is relatively low, simulations
with arbitrarily chosen higher orders of singularity do show a direct convergence from
above.

Another problem with the singular elements is the numerical integration of the
element matrices and forces. With these high orders of singularity the integrals become
difficult, explaining some of the poor performance.

It is clear though that all approaches do have problems. Because both the vari-
ational solution (standard and Akin type) have not yet fully converged and are still
slightly increasing before the limits of the 2GB RAM are encountered6. The local force
solution, without singular elements is not even near convergence and the singular bi-
linear enhanced local force approach is not yet completely converged either. For low
mesh densities the bilinear enhances variational approach performs poorer than the
standard variational approach, however for denser meshes the bilinear enhanced ones
starts to outperform the variational one.

2.6 Conclusions

This chapter introduced electrostatic modeling. Thereafter analytical solutions were
derived for several geometries, that would later be used in the FEM discussion. Next
the FEM modeling of electrostatics was introduced, including the difficulties that sin-
gularities provide for FEM computations of electrostatic forces.

There are some approaches available to tackle the corner singularities. The first
one based on the method of force discretization, where a variational force formulation
is used in stead of the local interface force based on the Maxwell stress tensor. The
second approach is to use special singular elements. In 2D three such special elements
were tested:

• Uncoupled Adini elements,

6The memory limit is only reached when exact solvers are used. For the reference solution with
many more degrees of freedom an iterative solver was used.
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Figure 2.36: Convergence curves for the 3D
model.

• Incomlete Bi-Quadratic elements,

• Akin elements.

Of these methods was the only viable one: the ‘Akin’ approach. However the varia-
tional approach was better than all singularity tailored approaches. Of course the two
methods, variational forces and special elements, can be combined. A combination of
this variational approach with the Akin shape functions proved to be the optimal strat-
egy, however the difference with the variational only approach is limited. Furthermore
the application of special elements requires a sophisticated corner detection algorithm.
Therefore their usage is difficult for industrial problems.

The difference between the local force approach as used by many commercial codes
and the variational force formulation was investigated more thoroughly. It was found
that, although the local force approach might be based on the Maxwell stress tensor,
it is not a proper discretization of that stress tensor. Some crucial information is
omitted by neglecting the integrals over element edges that are not part of the solid–
dielectric interface. When this information is re-inserted into the local force approach,
the Maxwell stress tensor is properly discretized. As expected, in that case the Maxwell
stress tensor approach is equivalent to the variational approach and the computed forces
are equal.

This chapter also developed a novel 3D version of the 2D Akin element tailored for
electrostatic singularities. This element was better than classical FEM, however was
outperformed by the variational formulation. Therefore in general, due to the simplicity
of the implementation and high accuracy of the results, the variational formulation is
the best approach and should be used.



Chapter 3

Electro-mechanical modeling

3.1 Introduction

The basic physical principle of electromechanically actuated microsystems is illustrated
in fig. 3.1. Once a potential difference between a moving (or deformable) electrode and
a fixed electrode is applied a charge difference is created. Coulomb forces between the
charges will make the flexible electrode deform. This effect depends non-linearly on the
shape of the electrode and the deformation itself, because the charge will concentrate
near the point where the gap between the electrodes is smallest, which causes even
higher Coulomb forces at that point [4].

Because the focus of this thesis is on physical level models, continuum equations
are required. This chapter first presents those continuum equations, which describe
the coupling. Next the numerical form of the equations will be presented in section
3.4, including a discussion on the approaches available to derive them. Section 3.5
continues with solution techniques that can be used to solve the discretized equations.
Finally in section 3.6 the implementation of the problem into a specific discretization
procedure, the finite element code, is presented.

3.2 Continuum formulation of electro-mechanical

coupling

A coupled electro-mechanical model normally consists of two domains: a structural
domain and an electrical domain. The structural domain contains all moving elec-
trodes. The electric domain in principle contains the whole model, but if it is assumed

+

-

++ ++
+ + + ++

- - - -- - - - - -

+

V = 0 V > 0 V � 0

Figure 3.1: Electromechanical coupling
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that the electrodes are ideal conductors the electrostatic equation has to be solved
only in the domain between the conductors. In that case the applied potentials on the
electrodes can be modeled as fixed potential boundary conditions (Dirichlet boundary
conditions).

Once the ideal conductor assumption has been made and it is also assumed that
there are no free charges in the electric domain the equation that describes the elec-
trostatics in the air gap is the electrostatic equation as seen in chapter 2 [48, 66]:

∂

∂xi

(
ε
∂φ

∂xi

)
= 0 , (3.1)

where ε is the electric permittivity in the gap and φ = φ(x, y, z) is the electric potential.
Einstein’s summation convention was used for i = x, y, z.

The static mechanical equilibrium equations, when assuming small deformations,
can be written as [44]:

∂

∂xi

σji + Fj = 0 , (3.2)

where σ is the mechanical stress tensor and F is the external force field which incor-
porates all applied forces. For simplicity it is assumed that the only applied forces
are the Coulomb forces due the the electrostatic field. When there are no moments
proportional to a volume, which is the case for most solid materials the stress tensor
is symmetric:

σij = σji . (3.3)

Equation (3.2) is the quasi-static mechanical equilibrium equation. If the purpose of
the modeling requires the inclusion of dynamics the inertia terms can be added [45]:

− ρüj +
∂

∂xi

σji + Fj = 0 , (3.4)

where ρ is the density of the solid part.
To compute the displacement caused by an applied load a relation between stress

σ and displacement u is required. This is done in two steps. First the strain tensor ε
is determined as a function of u and then the stress as a function of the strain. These
relations are in principle non-linear but once it is assumed that the stresses and strains
remain relatively small the relations can be assumed to be linear1, which yields the
linear relations:

σij = Cijklεkl , (3.5)

εij = 1
2

(
∂uj

∂xi
+ ∂ui

∂xj

)
, (3.6)

where C is Hooke’s tensor which has constant coefficients.
Thus the electric problem is linear and the mechanical problem is assumed to be

linear, however the coupled problem is non-linear. The non-linearity stems on one hand
from the fact that the electrostatic domain is defined by the deformed position of the
electrodes, and on the other hand from the fact that the electrostatic forces depend on

1Note that when modeling thin MEMS the non-linear mechanical equations need to be considered.
For simplicity linear mechanics is assumed but all the concepts discussed in this text can be extended
to non-linear mechanics.
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the accumulated charges on the surfaces of the electrodes. There the distributed force
follows from coulombs law (see section 2.2.2):

Fj = qEj , (3.7)

where q is the distributed charge on the surface and E is the electric field generated
by the other electrode. In the vicinity of charges on the surface of a conductor one
has to note that half of the electric field is generated by those charges themselves and
does therefore not contribute to the force. Hence, if E is the total electric field in the
domain one must use Fj = q(Ej/2) (see section 2.2.2).

According to Gauss’ law the surface charge q on a conductor can be written as a
function of the electric field at the boundary and the unit normal vector n pointing
towards the electric domain:

q = εEi ni . (3.8)

The electric potential is defined such that the electric field is (minus) the gradient of
an electric potential φ, therefore the force can be defined as a function of this potential
(see section 2.2.2):

Fj = 1
2
ε
(

∂φ
∂xi

∂φ
∂xi

)
nj (3.9)

where it has to be noted that this force is always pointing into the electric domain.
It is stressed that the non-linear coupling is caused by the non-linear dependency of
F on φ and by the dependency of the shape of the electric domain on the structural
displacements. Thus even with a linear mechanical model, electro-mechanical modeling
requires a non-linear model.

3.3 A 1 dimensional example

The consequences of this non-linear relation between structural displacements and
electrostatic forces can be explained best by a simple one-dimensional model. Such
a 1D model shows already some of the complicated non-linear behavior of the FEM
models that are addressed in the later parts of this thesis.

Figure 3.2 gives such a very simple model of a micro actuator. In an air gap, the
electrostatic problem is described by Laplace’s equation, which reduces to the following
equation in 1D:

ε
∂2φ

∂ξ2
= 0 , (3.10)

where φ is the electrostatic potential, ξ is the spatial coordinate and ε the electric
permittivity. The domain on which this differential equation has to be solved is ξ =
[0, x], x describing the position of the moving electrode. The boundary conditions are:
φ = V at ξ = x and φ = 0 at ξ = 0. The simple solution to this boundary value
problem is:

φ =
V

x
ξ . (3.11)

The electric field is then by definition:

E = −∂φ
∂ξ

= −V
x
, (3.12)
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Figure 3.2: 1D micro resonator

and the electrostatic force on the mass is:

Fes =
1

2
εE2 =

1

2
ε
V 2

x2
. (3.13)

The mechanical force applied on the electrode by the spring is

Fmech = k (x− x0) , (3.14)

with k the linear stiffness of the spring and x0 the position of the spring when it is at
its natural length.

3.3.1 Static equilibrium and pull-in

The static equilibrium equation is found by summing all applied forces:

k(x− x0) +
1

2
ε
V 2

x2
= 0 . (3.15)

Clearly to a given applied potential V corresponds an equilibrium position x and vise-
versa, hence this equation defines a relation V (x). Furthermore it can be shown that
there exists a voltage and corresponding displacement for which ∂V

∂x
= 0, thus for which

the voltage as function of displacement reaches a maximum. This maximum voltage

equals: VPI =

√
8 k x3

0

27 ε
and the corresponding gap size is: xPI = 2

3
x0. Using this

maximum voltage to normalize equation (3.15) it can be written as:(
V

VPI

)2

=
27

4

(
x0 − x

x0

)[(
x0 − x

x0

)
− 1

]2

. (3.16)

The curve V (x) defined by this equation is shown in figure 3.3.
Due to the non-linearity of this equation, there are two solutions for each applied

voltage V . For the two solutions it can be shown that the solution closest to the bottom
conductor is unstable: at this position a small perturbation of the moving electrode
will make it either return to the equilibrium position close to the undeformed position
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Figure 3.3: 1D voltage-displacement curve

or smash against the fixed electrode (the electrodes are pulled together). The other
solution is stable and can be used to perform a linearized vibration analysis. There
exists a voltage above which there exist no more static solutions, this voltage (equal
to the maximum VPI mentioned above) is called the pull-in voltage and is located at
the maximum of the curve. The solid part of the curve in figure 3.3 gives the stable
solutions, the dashed part the unstable solutions. The pull-in voltage depends on
stiffness as well as on the initial gap, however the pull-in gap only depends on the
initial gap. Of course this is only valid for a 1D model, but it is interesting to see that
for linear mechanical MEMS with very complex shapes the pull-in gap is often very
close to two thirds of the original gap.

The result in figure 3.3 also provides an indication of the real behavior of electro-
static microsystems. As mentioned the pull-in voltage is the maximum of the curve.
This means that when a voltage above this pull-in voltage is applied to the system, the
moving electrode will snap to the fixed electrode and they will stick together, possibly
short-circuiting the device. This is indicated by the arrow in figure 3.3. Since this
pull-in phenomenon is a very critical mode of operation, an important goal of MEMS
modeling is the prediction of reliable pull-in voltages and displacements [24, 33].

An important characteristic of pull-in is its similarity to limit point buckling. Limit
point buckling is defined by a maximum point of the applied force in the force-
displacement relationship for a non-linear mechanical problem [21, 127]. A simple
version of limit point buckling is presented in figure 3.4. At this buckling point the
derivative of the applied load with the generalized coordinate is zero:

∂P

∂α
= 0 , (3.17)

which is very similar to the definition of the pull-in point:

∂V

∂x
= 0 . (3.18)

There exist many numerical techniques designed to handle the specific problems of limit
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Figure 3.4: Limit point buckling of a two spring model actuated by force P [127]

point buckling. Several of those techniques can be adapted for pull-in computations as
explained in the following chapters.

3.3.2 Dynamic response

If dynamics is included, equation (3.15) is extended to:

mẍ+ k(x− x0) +
1

2
ε
V 2

x2
= 0 , (3.19)

where m is the mass of the moving part. This equation can be used to see a lot of
the typical features of MEMS-motion. A relatively complete analysis of the equation,
including dynamic pull-in and the proof that the dashed part of figure 3.3 is unstable
can be found in chapter three of [106] and a part of that work is used as an inspiration
for this section.

Eigenfrequencies

Equation (3.19) is highly non-linear, therefore no closed form solutions exist. However,
it is possible to use numerical time integration algorithms to find the motion when the
initial conditions are known. Another approach is keep V constant and to linearize the
equation around a constant equilibrium solution x = xeq + Δx, where xeq is a solution
to the static equation (3.15):

mẍeq +mΔẍ+ k(xeq + Δx− x0) +
1

2
ε

V 2

(xeq + Δx)2
= 0 , (3.20)

where mẍeq = 0, because xeq is constant. If the electrostatic term is approximated by
a Taylor series expansion the equation becomes:

mΔẍ+ kΔx+ k(xex − x0) +
1

2
ε
V 2

x2
eq

− ε
V 2

x3
eq

Δx+ h.o.t. = 0 . (3.21)

Using the fact that xeq is a solution of (3.15) and neglecting the higher order terms
gives:

mΔẍ+

(
k − ε

V 2

x3
eq

)
Δx = 0 , (3.22)

which is an ordinary second order differential equation, that is common in structural
mechanics [45]. From this equation follows that the eigenfrequency of the system is:

ω =

√
k

m
− ε

V 2

mx3
eq

. (3.23)
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From that definition can be deduced that the eigenfrequency depends on the applied
potential V . It becomes lower with increasing potential, giving rise to the creation of
tunable MEMS resonators [74, 2, 30]. One of the earliest applications of electrome-
chanical MEMS is such a microresonator [125]. Its advantage over classical quartz
resonators is that the eigenfrequency can be changed by a bias potential.

Furthermore it should be noted that if V = VPI and xeq = xPI the eigenfrequency
is zero. If V < VPI and xeq is on the stable part of the curve of figure 3.3, ω is real,
but if xeq is on the unstable part of the curve ω is imaginary, indicating instability.

This can be shown graphically by normalizing equation (3.23) by dividing it with
the purely mechanical eigenfrequency ω0 =

√
k/m and using equation (3.15) to remove

the potential V from the equation:

ω

ω0

=

√
3 − 2

[
1 −
(
x0 − x

x0

)]−1

, (3.24)

which gives the normalized frequency as a function of the normalized displacement.
This relation is plotted in figure 3.5. The normalized displacement is a function of
the normalized potential trough (3.15), providing the curve in figure (3.6). These two
curves show perfectly that the eigenfrequency is tunable and becomes zero at pull-in.
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Figure 3.5: Frequency vs. normalized
displacement.
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Figure 3.6: Frequency vs. normalized
potential.

Transient response and dynamic pull-in

Another interesting response of the model is the transient response to a voltage step.
This is one the most critical methods of applying a certain voltage to the device,
because steps can generate a large overshoots. For a voltage step from 0 to VD the
equations required to solve are:⎧⎪⎪⎨

⎪⎪⎩
mẍ = −k(x− x0) − 1

2
ε

V 2
D

x2 , t > 0,
x = 0, t = 0,
ẋ = 0, t = 0,
ẍ = 0, t = 0.

(3.25)

These equations do not have a closed form solution, but a typical time integration
algorithm such at the fourth order Runge–Kutta algorithm can be used to solve the
equations.
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Figure 3.7: A voltage step: on the top the static pull-in curve, on the bottom the
transient for a load step of VD.

If VD is relatively low, such a voltage step will give a periodic solution, because
there is no damping in the model. The amplitude of this periodic solution depends
on the applied voltage, mechanical stiffness, electric permittivity and initial gap, but
not on the mass of the movable electrode. Contrary to amplitude the period T of the
oscillation does depend on the mass.

The bottom half of figure 3.7 shows such a transient response for a voltage step
Vd = 0.9 · VPI . Note that the time axis is scaled with the period. The top half of
figure 3.7 shows the static load displacement curve. The stable static equilibrium for
this voltage is indicated with a red circle. The arrows in the middle indicate the
direction of the electro-mechanic force for this specific value of VD (the right-hand side
of eq. (3.25)). The forces change direction at the static equilibrium positions. Therefore
the transient response oscillates asymmetrically around the stable equilibrium. If there
would be damping, the position would converge to this stable equilibrium. Note that
dynamically, a stable response can have a displacement larger than the static pull-in
displacement. The static pull-in displacement is indicated by a green triangle.

But, if during the transient the displacement is larger than the unstable equilibrium:
the resulting electro-mechanical force is directed to the right and the electrode is pulled
in. For the voltage of VD = 0.9 · VPI this does not happen, nor for any voltage lower
than that. However the voltage for which the displacement just touches the unstable
equilibrium is not much higher: VD = 0.92 · VPI . The transient for this voltage is
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Figure 3.8: Dynamic pull-in for a 1D model: on the top the static pull-in curve, on the
bottom the transient for a load step equal to the dynamic pull-in value VDPI .

plotted in figure 3.8. Again the red circle shows the stable equilibrium and the red
star the unstable one. If the voltage is only a minute fraction larger than this one the
mass would move with a positive velocity into the domain on the right where the force
is directed towards the fixed electrode and the device pulls in. Therefore this voltage
can be called the dynamic pull-in voltage VDPI , which for this problem is equal to
0.92 · VPI . The dynamic pull-in displacement is equal to 0.5 times the initial gap x0.

As is written above, there exist no closed form solutions for the transient step
response, however it is possible to find an exact solution for VDPI . The derivation of
this parameter starts with the knowledge that at dynamic pull-in displacement xDPI

the acceleration is zero because it is an equilibrium point:

k(x− x0) +
1

2
ε
V 2

DPI

x2
DPI

= 0, (3.26)

Due to the conservation of energy principle, the energy during the transient must
remain constant. Thus the energy at V = VDPI , x = x0 must be equal to the energy
at V = VDPI , x = xDPI :

1

2
k(xDPI − x0)

2 − 1

2
ε
V 2

DPI

xDPI

= −1

2
ε
V 2

DPI

x0

. (3.27)
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Figure 3.9: 1D resonator with damping.

Therefore two equations with two unknowns have been defined. Simultaneously solving
(3.26) and (3.27) yields the following closed form solution for the dynamic pull-in
voltage and displacement:

VDPI =

√
kx3

0

4ε
=

3

8

√
6VPI ≈ 0.92VPI , (3.28)

xDPI =
1

2
x0. (3.29)

Thus as with static pull-in the pull-in displacement is only depending on the gap size.

3.3.3 Damping

It is very easy to include damping into this traditional 1D model. A simple viscous
damper is added to the model as shown in figure 3.9. Mathematically this damping
can be written as:

Fdamp = c · ẋ. (3.30)

Added to the total equation this gives:

mẍ+ cẋ+ k(x− x0) +
1

2
ε
V 2

x2
= 0. (3.31)

But how to find the value of c? One of the most common sources of microsystem
damping is air damping in the form of squeeze film damping [11]. At small scales air
is relatively viscous, hence the squeeze film damping can be pretty big. Squeeze film
damping is the damping caused by air being trapped and squeezed between the moving
mass and the fixed electrode. This effect is illustrated in figure 3.10. The left shows
the mass moving up and down, therefore sucking in and pushing out air at the edges.
This causes a relative pressure build up as shown on the right-hand side of the figure.

At relatively low moving mass velocities or frequencies the air has time to be sucked
in and out during the motion. This means that the compressibility of the gas is not
important. Therefore the pressure has time to build up making the damping force is
mainly proportional to the velocity of the mass. Thus compared with the undamped
case only the c value has to be added. On the other hand, when the frequency of the
oscillation is relatively high the air does not have the time to move in and out of the
gap, does not have time to flow in and out. Therefore the gas cannot be assumed to
behave incompressible and there is also a very big term that is proportional to the



3.3 A 1 dimensional example 61

pR

Figure 3.10: Squeeze film air damping: on the left the principle of damping, on the
right the pressure build up.

displacement of the moving mass, thus also the k value has to be changed. When the
acceleration of the gas is high as well, also the inertia of the fluid starts to count and
the m value has to be changed. However this effect is for MEMS often negligible [11].

How to compute the c value due to squeeze film damping can be found, amongst
others, in [11]. To give an indication on what kind of parameters influence the damping
an example from that paper will be presented: the top view of the moving mass is a
rectangular plate with length and width L. When the gas can be assumed incompress-
ible is, hence the force is assumed to be proportional to the velocity, this would give
the following approximation for the damping:

c =
0.42μL4

x3
0

, (3.32)

and for the additional stiffness kf = 0. Here μ is the viscosity of the air. Note that the
pressure is not present in this term.

When the incompressibility assumption is not valid, c becomes dependent on pres-
sure and on frequency. When the gas is very compressible c becomes almost 0 and the
addition stiffness relatively big:

kf =
pAL

2

x0

. (3.33)

To investigate the effects of damping, the equation is written in state-space form:[
ẋ
ẍ

]
=

[
ẋ

−k(x−x0)
m

− cẋ
m
− 1

2m
εV 2

x2

]
, (3.34)

which can be written as:
ẏ = f(y), (3.35)

where:

y =

[
x
ẋ

]
. (3.36)

The state space formulation can be used to find a linearized Jacobian matrix:

A =
∂f

∂y
=

[
0 1

− k
m

+ 1
m
εV 2

x3 − c
m

]
. (3.37)

The eigenvalues of this Jacobian matrix evaluated at a certain V and d say some-
thing about the free vibration around an equilibrium position. When it is assumed
that the free vibration can be described by:

y = μeλt, (3.38)
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where μ is independent of time. This can be combined with (3.37) to give:

λμeλt = Aμeλt. (3.39)

This defines the eigenvalue problem:

λμ = Aμ. (3.40)

In general the eigenvalues λ that will form a complex conjugated pair, thus the
values have a real part and an imaginary part: λ = ζ + iω. In the beginning it was
assumed that the motion could be described by:

y = μe(ζ+iω)t, (3.41)

which can be written as:
y = μeζteiωt. (3.42)

The term eiωt describes a sinusoidal motion with frequency ω. The part eζt describes
how the sinusoidal motion damps out (ζ < 0) or increases (ζ > 0) and μ gives the
relation between displacement and velocity. Of course the amplitude of the mode does
not have a physical meaning, because when s is a constant scalar, μ · s will also be a
solution to equation (3.40).

When the static equilibrium path is traced, it is possible to track the evolution of
the eigenfrequency as a function of equilibrium displacement. First it is known that
the equilibrium path is described by:

V =

√
−k(x− x0)

2x2

ε
, (3.43)

and was already plotted in figure 3.3. These equilibrium solutions can be substituted
into A, after which the eigenvalue λ can be determined.

Eigenvalues were computed with the following values: k = 1, m = 1 and c =
0.5. The results are shown in figure 3.11. It is clear that damping slows the motion
down, decreasing the frequency. A result of this effect is that the natural frequency
reaches a zero value before pull-in. From that point to the original pull-in point the
device behaves as a critically damped system. At the pull-in point the real part of
the eigenvalue becomes positive, therefore the damped system becomes unstable at the
same point as the original undamped system.

3.4 General numerical modeling

The coupled equilibrium equations (3.1) and (3.2) are partial differential equations.
To solve these equations numerically they have to be discretized. Different discretiza-
tion techniques can be applied, but the mechanical equations (3.2) are almost always
discretized with the Finite Element Method (FEM) for which an abundant body of
literature exists (e.g. [12, 28]). The electrostatic problem (3.1) is a Laplace equation.
This equation also describes other physical fields such as thermics, potential fluid flow
or membrane displacements. Therefore scientists from several application fields have
investigated the Laplace equation. Structural engineers prefer to use the Finite El-
ement Method for solving this equation, whereas engineers from the fluid mechanics
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Figure 3.11: Eigenvalue as function of equilibrium displacement.

field typically apply the Finite Volume Method (FVM) [138, 43] or Finite Difference
schemes. The Boundary Element Method (BEM) is also quite popular because it
handles infinitely extending domains in a natural manner [68].

Once such a discretization procedure has been chosen the discretized equations can
be written in the following form:

Km
uuu = f elec(u,φ, V ) , (3.44)

Kφφ(u)φ = q(u, V ) , (3.45)

where Kφφ is the electric stiffness matrix, Km
uu the mechanical stiffness matrix, φ the

set of discretized potentials (nodal potentials for a FEM model), u the set of discretized
displacements, q are applied charges (on the boundaries or in the electric domain) and
V the imposed potentials on Dirichlet boundaries. f elec are the applied electrostatic
forces obtained with eq. (3.9) or, alternatively, by formulations based on variational
calculus and total energy approaches. The latter methods to construct the electrostatic
forces are more efficient when the the structure exhibits sharp corners, as was discussed
in chapter 2. From the discretized equations (3.44) it can be seen clearly that the non-
linear electrostatic coupling originates on one hand from the fact that the electrostatic
forces applied on the structure are non-linear functions of the potential field, and on
the other by the fact that the electrostatic domain (hence the operator Kφφ) depends
on the structural response u.

After defining the internal forces and internal charges as

f int = Km
uuu , (3.46)

qint = Kφφ(u)φ , (3.47)

the coupled equilibrium equations can be written in the following monolithic form [108]:

F elec(U , V ) − F int(U) = 0 , (3.48)
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Figure 3.12: Modeling strategins

where

U =

[
u
φ

]
, (3.49)

F =

[
f
q

]
, (3.50)

There are two ways to obtain these sets of equilibrium equations: co-simulation or
fully coupled simulation.

In a co-simulation method separate structural and electric models are handled by
separate codes to solve the different physical domains and the results are communicated
between the codes at some synchronization moments during the solution procedure:
mechanical displacements are sent to the electric model to update its geometry and
electric potentials or fields are sent to the structural model to generate electrostatic
forces. This is schematically depicted in figure 3.12.a. An advantage of co-simulation
is that different discretization procedures can be used for the different domains and
established specialized software can be used for each physical domain. For instance a
structural FEM model and a separate electrostatic FEM model can be co-simulated [63,
144], but it is also common in the literature to combine a structural FEM model with
electrostatic BEM approach [4, 87, 47]. Structural FEM models coupled to electrostatic
FVM models are rare, which is surprising because structural FEM models coupled with
fluid FVM models are very common [41], even structural FVM with fluid FVM does
exist [122]. Since FVM handles singularities at corners better than FEM, coupling
FEM and FVM in electrostatics is probably an interesting aspect for future research.
One problem is that data has to be transferred between different meshes, which has
generated a body of literature in itself [40, 67, 6].

In fully coupled simulation the entire problem is handled in a single code: only one
mesh is used to model both domains as schematically explained in figure 3.12.b. In that
case all the properties of the multiphysical problem are known in a single code, which
greatly simplifies analyzing global properties such as eigenfrequencies. An advantage of
the coupled simulation is that it is much easier to obtain a linearization of the coupled
equations, which enables the creation of very efficient coupled solvers [108].
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3.5 Staggered and monolithic solution approaches

Traditionally non-linear solvers rely on successive linear iterations to find a solution
to (3.48). In this chapter the distinction will be made between solvers that solve the
coupled problem in a staggered manner and solvers that handle the different physics
in a monolithic way.

A staggered solver basically solves one physical domain at a time. Figure 3.13
presents a simple diagram for a staggered solver: at iteration k first the electrostatic
force is computed using the electric potential solution from step k − 1, next the new
displacements are computed by the mechanic solver and sent to the electric solver,
which can subsequently compute the new electrostatic potential solution. This can be
repeated until convergence. This scheme can be interpreted from a mathematical point
of view as a block Gauss-Seidel iteration and can be written as [10, 22]:

φk = K−1
φφ(uk−1)q(uk−1, V ) , (3.51)

uk = Km
uu

−1f elec(uk−1,φk, V ) . (3.52)

The algorithm is converged when the update for the displacements is smaller than a
specified tolerance (||uk − uk−1|| < tol).

f elec
k−1

uk−1

f elec
k

uk

k − 1 k k + 1

Electric solver

Mechanic solver

Figure 3.13: Staggered solution procedure

It is clear that this algorithm can be implemented when the problem when the struc-
tural and electrostatic equations are solved in separate codes, that is in co-simulation.
But obviously the staggered approach can also be used when the discretization is done
in a fully coupled simulation. An advantage of a staggered solver is that the structural
and electrostatic problems taken separately are, for many applications, linear. Also,
for each subproblem efficient specialized solvers can be used.

Monolithic solvers attempt to solve the fully coupled equations as a whole and lead
to specific solution procedures [22] (see figure 3.14). Clearly monolithic solvers need
to have access to the fully coupled model and are not appropriate for co-simulation
strategies. So far mainly FEM-FEM coupling can be found in the literature [50, 108].
The advantage of monolithic solvers is that the convergence rate tends to be faster
but, the full equilibrium equation being non-linear, the monolithic approaches are
typically using successive linearized problems and thus often require computing the
global tangent stiffness matrix K = ∂F

∂U
.

Using equations (3.44) and (3.45) the monolithic linearized problem can be written
as [

Kuu(u,φ) Kuφ(u,φ)
KT

uφ(u,φ) Kφφ(u)

] [
Δu
Δφ

]
=

[
Δf(u,φ, V )
Δq(u, V )

]
, (3.53)
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Figure 3.14: Monolithic solution procedure

where

Kuu = Km
uu − ∂felec(u,φ)

∂u
, (3.54)

Kuφ = −∂felec(u,φ)
∂φ

. (3.55)

It can be shown that the tangent matrix is symmetric, namely that Kφu = KT
uφ [108].

Obtaining this tangent stiffness matrix from for instance the FEM discretization can
be intricate [50, 106, 108] and solving the linearized problem (3.53) is time consuming.
Without going in further specific details it can be seen that all four sub-matrices
of K depend on the state vector U and thus need to be updated regularly in the
solution process. Hence, generally speaking one can state that monolithic approaches
exhibit good convergence rates and are robust for badly conditioned problems, but
every iteration incurs significant computational effort.

The best known monolithic approach is the basic Newton-Raphson algorithm. At
each step k the monolithic problem is linearized around the estimate U k−1 and a
correction ΔU k is computed. Starting from the force unbalance for estimate U k−1

ΔF k = F elec(U k−1, V ) − F int(U k−1) , (3.56)

an update for the unknowns is computed using the linearized equilibrium equations

ΔU k = K−1ΔF k , (3.57)

and finally the solution is updated:

U k = U k−1 + ΔU k . (3.58)

The global tangent stiffness being updated every step, the Newton-Raphson update
is optimal in the sense that quadratic convergence is guaranteed in the vicinity of
the solution. For the Gauss-Seidel iterations (i.e. the staggered solution technique)
described by (3.51, 3.52) the variation of the coupling effects is not accounted for: only
the external forces and the pure mechanical and electrostatic operators are updated.
For that reason the convergence of staggered schemes is relatively slow. As mentioned
the faster convergence of the Newton-Raphson method comes at the price of updating
the stiffness, therefore an alternative procedure can be used where the stiffness matrix
is approximated or updated only for some of the iteration steps. These methods are
known as the modified Newton and quasi-Newton-Raphson methods [28]. For some
type of problems these methods are overall computationally more efficient than the full
Newton-Raphson method even though the convergence is slower.
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3.6 FEM formulation of the electro-mechanical cou-

pling

3.6.1 Discretization of the electric domain

The discretization of the electric domain was discussed extensively in chapter 2, hence
only the 2D results are recalled here. If the electric potential field is approximated by:

φ = Ni(x, y)φi, (3.59)

where Ni are the linear shape functions and φi the nodal potentials. The electrostatic
equilibrium equation is

Kφ = Q. (3.60)

Electrostatic forces can be computed once φ is known with:

F T
es =

1

2

∫
Ω

DT

[ ∂φ
∂X

0 2 ∂φ
∂Y

− ∂φ
∂X

− ∂φ
∂Y

2 ∂φ
∂X

0 ∂φ
∂Y

]
BdΩ, (3.61)

where D is computed using the shape functions and the nodal voltages:

D = εE = ε

⎡
⎣ ∂Ni

∂x
φi

∂Ni

∂y
φi

⎤
⎦ . (3.62)

3.6.2 Discretization of the structural domain

Also the mechanical equilibrium equations as discussed in section 3.2 can be discretized
with finite elements. This procedure can be found in appendix A.2. The result is the
following equation in its classical form:

Muuü + Km
uuu = f , (3.63)

where ü are the nodal accelerations, u the nodal displacements and f is the external
force vector. The matrix Muu is the mechanical mass matrix and Km

uu is the mechanical
stiffness matrix.

In a staggered scheme the forces computed with an electrostatic FEM model are
substituted into the force vector f .

3.6.3 Electric mesh deformation

So far the implementation of an electrical model coupled with a mechanical model was
discussed. Here it became clear that the electric domain depends on the mechanical
displacements. To be able to implement this domain dependency, the electrical mesh
has to be changed when the displacement changes.

Basically two options exist to implement this mesh change: re-meshing and mesh
deformation. Re-meshing means that a complete new mesh is generated, while mesh
deformation implies that the existing mesh is deformed to cope with the changing
geometry. The advantage of mesh deformation is that this procedure can be defined
by a single equation, which allows an easy implementation of tangent matrices.
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When such a mesh deformation algorithm is implemented two displacement fields
can be defined as in figure 3.15. The mechanical displacement um is simply the dis-
placement field used before. Furthermore a mesh displacement field ue is defined, which
describes the relocation of electric nodes, due to mechanic displacements. It is easy to
state that the deformation of the electric mesh only depends on those mechanical dis-
placements that are located on the interface ui = ūe. In that case the mesh deformation
can be written mathematically as (after discretization):

g(ue,ui) = 0. (3.64)

The interface displacements form a subset of the mechanical displacements as well
ui ⊆ um.

um
ui

ue

Figure 3.15: Definition of mechanical
and mesh displacements.

Figure 3.16: A network of springs.

There exist many options for selecting a function g. The easiest option is to use
a network of linear springs to define the relationship between the mesh node displace-
ments. However many more advanced options exist, see for instance the overview in
[31]. A simple method slightly more advanced than a network of linear springs is to use
a pseudo structure, where linear elastic solid equations are solved within the electric
domain. Instead of the linear elastic equations simpler equations, such as the Laplace
equation, can be used to describe such a pseudo structure. In the end the result is that
equation (3.64) can be cast into the form:

Kueueue = −Kueūeui. (3.65)

Because ui is only a subset of um this will be written as:

Kueueue = −Kueūeum, (3.66)

where the notation is slightly abused because the matrix Kueūe changes its definition
between the two equations above, however the information contained by this matrix
does not change, therefore the same symbol is used for simplicity. This fives:

ue = −K−1
ueue

Kueūeum, (3.67)

or ue = ue(um).
Equation (3.66) combined with the mechanical and electrical equations, yields the

system: ⎧⎨
⎩

Km
uuum = f elec(ue,φ, V )

Kueueue = −Kueūeum

Kφφ(ue)φ = qelec(ue, V )
. (3.68)
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However the equation describing the mesh deformation can be condensed out of the
set to give: {

Km
uuum = f elec(ue(um),φ, V )

Kφφ(ue(um))φ = qelec(ue(um), V )
, (3.69)

where the notation is abused again because the precise definition of the function f elec

changes, however it still is the electrostatic force. The equation can be concisely written
as: {

Km
uuum = f elec(um,φ, V )

Kφφ(um)φ = qelec(um, V )
, (3.70)

which from the next section on will be written simply as:{
Km

uuu = f elec(u,φ, V )
Kφφ(u)φ = qelec(u, V )

. (3.71)

For simplicity, in all derivations presented in this thesis the system under consider-
ation is the last one. Hence the chosen mesh deformation is not explicitly considered.
Therefore once a derivative is presented, such as:

∂f elec

∂u
,

this actually means:

∂f elec

∂u
=
∂f elec

∂ue

∂ue

∂um

= −∂f
elec

∂ue

K−1
ueue

Kueūe . (3.72)

Note that if in the text the implementation or computation of a derivative with respect
to u is discussed, only the derivative with respect to ue is discussed in detail. The
extra term ∂ue

∂um
is not explicitly discussed, but implicitly assumed to be trivial.

It is important to include that term ∂ue

∂um
in the derivations because the actual

nodal potentials depend on the exact location of the nodes. Thus the tangent terms
depend on the displacement of mesh nodes due to structural displacements. Therefore
in a monolithic solution scheme the terms are very important for defining the coupling
between the fields.

It is interesting to see what happens when now also the electrics is condensed on
the mechanical equations:

Km
umum

um = f elec(ue(um),φ(ue(um), V ), V ), (3.73)

which of course should not depend on the specific mesh deformation algorithm (if the
mesh is dense enough). The force f elec should not depend on the mesh of the electric
domain, in contrast to qelec. Therefore the derivative:

∂̂f elec

∂um

� ∂f elec

∂ue

∂ue

∂um

+
∂f elec

∂φ

∂φ

∂ue

∂ue

∂um

, (3.74)

should be independent of the chosen mesh deformation algorithm. Here the hat-
derivative was defined because the partial it is not a true partial derivative and not a
true total derivative. Within this derivative the direct effects of the mesh displacement
choice on f elec within the first term should cancel the indirect effects trough the second
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term. This is a property that can be abused: a hybrid method can use a staggered al-
gorithm to compute equilibrium solutions, after which a very simple mesh deformation
algorithm, where only boundary DOFs are displaced, can be used to compute tangent
information. This reduces the complexity of this tangent computation. This tangent
information is required for certain analysis such as frequencies or sensitivities.

This differentiation required the definition of the hat-derivative ∂̂
∂um

, because after

condensation the force can be written as f elec(um, V ) and one is interested in the

partial derivative of this force: ∂̂felec(um,V )
∂um

. However if the notation of (3.73) is used,
this notation means something else, therefore one has the use a different notation.
Within this thesis that need is fulfilled by the hat notation.

3.6.4 A monolithically coupled FEM formulation

As seen above a coupled electromechanical FEM model has two types of degrees of
freedom (DOFs): mechanical nodal displacements (u) and nodal electric potentials
(φ)2. The dual quantity of the displacement is the mechanical force (f) on the node
and the dual of the electric potential is the electric charge on the node (q):

U =

[
u
φ

]
, (3.75)

F =

[
f
q

]
, (3.76)

where so called shape functions are used to approximate the real (2D) displacement
field (u, v) and potential field φ:

ux = Niuxi,
uy = Niuyi,
φ = Niφi,

(3.77)

or in matrix vector notation: [
ux

uy

]
= Nuu,

φ = Nφφ.
(3.78)

The tangent stiffness matrix K gives the relation between an increment of the
DOFs and an increment of their dual quantities:

K ΔU = ΔF , (3.79)

where K can be computed with:

K =
∂F

∂U
. (3.80)

However to determine the values in the tangent stiffness matrix for an electrome-
chanical coupled FEM model it is easier to start with the total coupled electromechan-
ical energy:

W = Wmech +Welec =

∫
Vmech

1

2
εT σdV +

∫
Velec

−1

2
DT EdV, (3.81)

2This section is based on the modeling approach developed by V. Rochus and presented in [108].
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where ε is the mechanical strain, σ is the mechanical stress, D the electric displacement
and E the electric field. The domain of integration for both energies is the complete
domain, but often the mechanical domain is limited to the deformable conductors. Only
when the dielectric is a solid material, deformations are of interest within the electric
domain. In that case this domain should be included in the domain of integration for
the mechanical energy. Similarly the electric energy is zero within (ideal) conductors,
hence the electric domain of integration is limited to the dielectric domain.

With this coupled energy the equilibrium equations can be written as (external
minus internal loads): [

f elec − f int

qelec − qint

]
= −

[
∂W
∂u
∂W
∂φ

]
= 0, (3.82)

which can be used to define the symmetric tangent stiffness matrix:

∂2W

∂U 2 ΔU = KΔU = ΔF , (3.83)

therefore the stiffness matrix can be written as:

K =

[
Kuu Kuφ

Kφu Kφφ

]
=

[
∂2W
∂u2

∂2W
∂u∂φ

∂2W
∂φ∂u

∂2W
∂φ2

]
. (3.84)

The mechanical energy does not depend on the electric potential however the electric
domain is deformed by mechanical displacements therefore the electric energy does
depend on the mechanical displacements, hence:

[
Km

uu + Ke
uu Kuφ

Kφu Kφφ

]
=

[
∂2Wmech

∂u2 + ∂2Welec

∂u2
∂2Welec

∂u∂φ
∂2Welec

∂φ∂u
∂2Welec

∂φ2

]
. (3.85)

Normally electric constitutive relationships establish a linear relation between the
electric displacement D and E the electric field: D = εE, where ε is the electric per-
mittivity. The electric field is simply defined as the gradient of the electric potential:
E = −∇φ. Therefore the electric stiffness Kφφ is constant with respect to the nodal
potentials φ. However, due to the dependency of the electric domain on the displace-
ment field, the electric stiffness does depend on u. If the displacements are assumed
to be small enough to have linear mechanics, this can be summarized as:[

Km
uu + Ke

uu(u,φ) Kuφ(u,φ)
Kφu(u,φ) Kφφ(u)

]
. (3.86)

In appendix A.2 it was shown than for linear 2D mechanics the strain within a
body can be described by:⎡

⎣ εxx

εyy

γxy

⎤
⎦ =

⎡
⎣

∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

⎤
⎦[ u

v

]
= Lu

[
u
v

]
, (3.87)

thus the approximated strain is:

ε = LuNuu = Buu. (3.88)
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Similarly the electric field is discretized by:[
Ex

Ey

]
=

[
∂
∂x
∂
∂y

]
φ = Lφφ, (3.89)

and:

E = LφNφφ = Bφφ. (3.90)

To define the coupling also the simple gradient of the displacement is required:

⎡
⎢⎢⎣

∂u
∂x
∂u
∂y
∂φ
∂x
∂φ
∂y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂
∂x

0
0 ∂

∂y
∂
∂y

0

0 ∂
∂y

⎤
⎥⎥⎦
[
u
v

]
= Lu2

[
u
v

]
, (3.91)

∇
[
u
v

]
= Lu2Nuu = Bu2u. (3.92)

With these assumptions the following relations can be established:

Km
uu =

∫
Vmech

BT
u CBudV, (3.93)

Ke
uu(u,φ) =

∫
Velec

BT
u2F2Bu2dV, (3.94)

Kuφ(u,φ) =

∫
Velec

BT
u2F 1BφdV, (3.95)

Kφu(u,φ) =

∫
Velec

BT
φF T

1 Bu2dV, (3.96)

Kφφ(u) =

∫
Velec

BT
φεBφdV, (3.97)

with:

F 1 =
(

Ex Ey Ey −Ex

−Ey Ex Ex Ey

)T

, (3.98)

and:

F 2

= − 1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

2DxEx 0 2DxEy −(DxEx+DyEy)

0 2DxEx (DxEx+DyEy) 2DyEx

2DxEy (DxEx+DyEy) 2DyEy 0

−(DxEx+DyEy) 2DyEx 0 2DyEy

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.99)

Another thing that is important to mention here is that the applied electrostatic
force:

F elec = F elec =
∂Welec

∂u
, (3.100)

can be shown to be:

F =
1

2

∫
V

Bu2F 3dV, (3.101)
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where:
F 3 =

[ −E2
x + E2

y −2ExEy −2ExEy E2
x − Ey2

]T
. (3.102)

Once such a fully coupled stiffness matrix has been computed, the discretized dy-
namic equations are:

Muuü + Km
uuu = f elec(u, V ) (3.103)

,Kφφ(u)φ = q(u, V ). (3.104)

With the coupled stiffness matrix the linearized dynamic equations can be written as:

MΔÜ + KΔU = ΔF . (3.105)

where:

M =

[
Muu 0

0 0

]
. (3.106)

This can be used to define the coupled eigenfrequency problem.

[K − ωiM ] X i = 0, (3.107)

which defines the eigenfrequencies of the coupled problem.

3.7 Summary

This chapter presented the equations required for modeling electro-mechanical cou-
pling.

A one dimensional example was used to illustrate the phenomena of electro-mechanical
modeling. For instance static and dynamic pull-in were introduced, as well as the volt-
age dependency of the eigenfrequency around static equilibriums. The computation
and characterization of those quantities is an important goal of numerical modeling of
MEMS, therefore these phenomena will be discussed in later chapters for FEM models.

After the introduction of the equations, two different approaches for obtaining them
were treated: co-simulation or fully coupled simulation. The first one being character-
ized by the combinations of two models built in two different modeling environments
and the second one by one coupled model built in one environment capable of modeling
both domains.

Thereafter, two approaches to actually solve those equations were presented: stag-
gered and monolithic. Staggered solving being the reiteration between mechanical and
electric equations, whereas monolithic methods try to solve both sets of equations in
one attempt. In practice monolithic methods can only be used when the model was de-
rived in using a fully coupled modeling approach, because monolithic methods require
fully coupled tangent matrices.

Finally the implementation of a fully coupled model into the finite element method
was recapitulated.
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Chapter 4

Detailed implementation of a test
problem

4.1 Introduction

The preliminaries of electromechanical modeling have been discussed. However, for a
general understanding and to present the notations used in the next chapters it is very
useful to look in detail to the modeling of a micro switch.

Important applications of electro-mechanically actuated microsystems are RF-MEMS
switches. An RF switch is a switch in a Radio Frequency circuit that depending on
the actuation voltage cuts off an RF line [110]. This is illustrated in figure 4.1, where
the open state of an RF-MEMS switch shown. Because the capacitance between the
top and bottom electrode is relatively small the RF wave can easily travel from RF-in
to RF-out. If the switch is closed, the moving conductor is pulled against the small
solid dielectric layer. In that case the capacitance between top and bottom electrode
becomes very high1, therefore the wave traveling from RF-in to RF-out is blocked. A
very simple model is just a beam with a dielectric gap as in figure 4.2.

It is a 2D model, therefore 3D fringe effects are neglected. First the electric part
is described, after that the mechanical part finally the implementation including the
moving mesh is discussed. This model can be extended to a very simple 3D model as
discussed in the final section of this chapter. These models will be the benchmarks
used throughout this document.

4.2 A two dimensional model

4.2.1 The electric domain

Since fringe effects are neglected the initial domain shown in figure 4.2 is very simple.
The electric domain is the blue part of the model. Only the actuated electrode at the
top can deform. The permittivity of the structure is equal to the vacuum permittivity
of: ε0 = 8.8542 · 10−12. On the sides, where there are no electrodes, the symmetry
boundary condition or zero charge condition is applied, which is a Neumann boundary
condition (∂φ

∂n
= 0).

1Remember that for a parallel plate actuator the capacitance is: C = εA
d , where C is the capaci-

tance, A is the surface of the plates and d is the gap.
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Figure 4.1: Schematic representation of an RF-MEMS switch.
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Figure 4.2: Simple beam.
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4.2.2 The mechanical domain

The mechanical domain is the gray beam in figure 4.2. It is almost as simple as the
electric domain: a beam clamped on both sides. The electrostatic pressure acts on
the bottom side of the beam, which corresponds to the top electrode of the electric
domain.

Table 4.1: Summary of the material properties.
Air gap

Property Symbol Value Units
Electric permittivity ε 8.8542 · 10−12 F/m

Structure
Property Symbol Value Units

Elasticity modulus E 1 · 105 Pa

Poisson’s ratio ν 0.33 -

4.2.3 Implementation

The FEM model has been implemented in Matlab. First the implementation of the elec-
trostatic part is discussed, next the mechanical part using volume elements, thereafter
the mechanical part using beam elements and finally the mesh deformation algorithm.

4.2.4 Electrostatics

For the electrostatic part simple bilinear quadrilateral elements were used. The electric
stiffness matrix has to be reassembled and integrated (4 Gauss-points per element) each
moment that an electric solution is required. This is because the electric part is solved
using an Eulerian formulation, which means that the moving coordinates of the mesh
change the values of the stiffness matrix. The shape functions and formulations for the
stiffness matrix can be found in section 2.4.

The used force discretization is the variational implementation (eq. 2.113).

Linear elasticity using volume elements

In 2D, the mechanical equations can be modeled in two distinct ways: by using volume
elements or by beam elements. If volume elements are used, the full geometry is meshed
by triangular or quadrilateral elements which discretize the continuum equations. In
this work bilinear quadrilateral elements were used.

The beam is assumed to be structurally linear, therefore when 2D solid elements
such as quadrilaterals are used to mesh the complete domain, there is the choice be-
tween two constitutive relations: plane strain or plane stress. The plane strain assump-
tion implies that the strain in out-of-plane direction is zero, plane stress implies that
the stress in out-of-plane direction is zero. Coarsely speaking the plane strain assump-
tion can be better used if the out-of-plane dimensions are relatively large compared to
the characteristic in-plane dimensions, the in-plane assumption should be used when
the ratio between the dimensions is the other way around. The specific formulation of
the constitutive relations can be found in appendix A.2.
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Figure 4.3: One beam element and one electrostatic element.

In the end a matrix vector equation is obtained:

Ku = F , (4.1)

The electrostatic force discretization (eq. 2.113) yields nodal forces, which can be
entered directly in the force vector.

Linear elasticity using beam elements

Classical beam elements are also an option when modeling the beam mechanics. If
beam elements are used it is assumed that the displacement profile (not amplitude) in
the direction perpendicular to the beam is known a priory. Therefore only elements
in the other direction are required. In that case the finite element method is used to
discretize the Euler-Bernoulli beam equation and not the already mentioned volume
equations. The precise implementation and derivation of those elements is discussed in
appendix A.2. Per node such an element has a displacement and a rotational degree
of freedom.

Statically the solution obtained with this method is the exact solution to Euler-
Bernoulli beam equation (see in the appendix equation (A.51)). Therefore theoretically
only 2 elements are required for modeling the beam in this chapter. However the applied
electrostatic force felec cannot be described exactly with only 2 elements, therefore more
beam elements are required.

If dynamic contributions are added to the beam equation (A.51) it is not possible
anymore to find an exact solution anymore with only two elements.

It has to be noted that beam elements have four DOFs each on the interface with
the electric domain: two displacements and two rotations, one displacement and one
rotation per node. Therefore the shape of the beam is not a straight line. This causes
the meshes to not exactly match as is shown in figure 4.3. Because the rotations are
very small it is assumed that this is not really a problem and the electric forces are
computed using a mesh that assumes a straight line between two nodes. Thereafter
the electric forces are simply applied on the displacement DOFs only.

Moving mesh

To compute the electrostatic solution for deformed configurations, the electrostatic
stiffness matrix has to be reassembled over the deformed electrical domain. Therefore
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it is crucial for any electromechanical model to deform the mesh of the electrostatic
problem to be able to follow the displacements of the structure.

This means that a mesh deformation algorithm has to be implemented. In this work
the following procedure is followed. At the initial configuration the electrostatic mesh
is not only used to obtain the electric stiffness matrix, but also to obtain an elastic
stiffness matrix. This stiffness matrix is obtained using a pseudo structure based on
an uncoupled Laplace equation: if ux are the displacements of the nodes within the
electrostatic mesh in x-direction and uy the displacements in y-direction, the following
equations are used:

∇2ux = 0, (4.2)

∇2uy = 0, (4.3)

where the boundary conditions depend on the structural displacement.

4.2.5 Some Results

The deformed shape obtained with volume elements at the unstable equilibrium point
of V = 40 and with a center node displacement of u = 6 · 10−6 is shown in figure 4.4.
The deformed shape computed with beam elements is shown in figure 4.5. The shapes
are very similar. Also it is clear that moving mesh routine deforms the electrostatic
mesh nicely.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
−5

0

5

10

15
x 10

−6

X

Y

Figure 4.4: Deformed shape computed with vol-
ume elements (pot.≈40 volts, disp. ≈ 6μ).

The load-displacement curves computed with three different types of elements are
presented in figures 4.6 and 4.7. How to compute these curves will be presented in
chapter 5. It is clear that the difference is very small. The plane strain elements are
somewhat different from the other two, which is logical because the beam elements
were derived for slender beams, which naturally undergo plane stress situation. The
plane stress and beam element results are almost equal therefore it is acceptable to use
beam elements combined with non-matching meshes.
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Figure 4.5: Deformed shape computed with beam
elements (pot.≈40 volts, disp. ≈ 6.5μ).
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Figure 4.6: Load-displacement
using several element types.
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Figure 4.7: Close up of the load-
displacement relation.

Another interesting test result is the convergence of the pull-in voltage with element
size. There is no exact solution for this problem, but it is possible to compute the pull-
in voltage with a very dense mesh (90 beam elements, 90 · 30 electrostatic elements)
and look at the convergence of the voltage when discretized with a lower number of
elements. The pull-in voltage computed with this dense mesh will be denoted by: Vref

and is equal to:

Vref = 43.78. (4.4)

The pull-in voltage was also computed with 4 other meshes that have each time n
beam elements and n · 1

3
n electrostatic elements, where n = 12, 24, 36, 48. The error is

defined as:

Errorn =
|V n

PI − Vref |
|Vref | . (4.5)

The resulting voltage convergence is shown in figure 4.8. The black line in this figure
gives the reference solution. The logarithmic relation between error and mesh density
is plotted in figure 4.9. From this figure it is clear that there is approximately an order
2 convergence of the pull-in voltage.
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Figure 4.8: Pull-in voltage as
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Figure 4.10: A microswitch and a model of a microswitch.

4.3 A three dimensional model

The next step is to introduce a 3D model. This model is the carrier model that will
be used in the chapters dealing with squeeze film damping. The model is shown in
figure 4.10 and is a model of a microswitch as shown in chapter 4. Since a microswitch
can have contact with a dielectric layer a contact model is included with a very simple
penalty method. Basically this just means that non-linear springs are added.

4.3.1 Mechanical domain

For the 2D simulations discussed until now 2D volume elements or beam elements
were used. The 2D volume elements assumed piecewise linear shape functions in both
directions, which requires a mesh of several elements in the direction perpendicular to
the beam to capture the correct behavior. Beam elements use the fact that a stress-
profile in the direction perpendicular to the beam can be assumed before simulation,
therefore requiring only elements in longitudinal direction. The 3D equivalents of beam
elements are plate elements. Because the assumptions of the stress field in the third
direction are less straightforward than for beam elements there is wide variety of plate
elements available in literature [135, 13, 146]. In this document a so called Reissner-
Mindlin plate element based on mixed interpolation of the out-of-plane displacement,
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Plate elements

Non-linear springs

Figure 4.11: 2D projection of the mechanical domain.

rotations and out-of-plane shear strain components is used [12]. In the reference the
used plate element is called the MITC4 element.

The element has 4 nodes with at each node 3 DOFs: one displacement and two
rotations. All three fields have their own independent piecewise linear interpolation
field, for which coupling is obtained trough the formulation of the element strain. An
advantage of this element is its robustness with respect to shear locking [12]. Another
advantage of this element is that the out-of-plane displacements are approximated by
linear shape functions, ensuring that the electric mesh will match perfectly with the
mechanical mesh.

The length of the plate is 45μ and the thickness of the plate is 4μ, both are the
same as for the 2D models. The width of the beam is chosen to be 30μ. Both short
edges are clamped, thus all DOFs are fixed.

In the dynamic simulations rotational inertia is neglected. Therefore the mass
matrix can be written as:

Muu =

⎡
⎣ Mw 0 0

0 M θx 0
0 0 M θy

⎤
⎦ =

⎡
⎣ Mw 0 0

0 0 0
0 0 0

⎤
⎦ , (4.6)

where Mw is the mass working on the out-of-plane displacement and M θx is the inertia
working on the rotation around the x-axis. For the mass matrix Mw the consistent
mass matrix:

Mw =

∫
ρNwNT

wdV, (4.7)

is used, where Nw are the shape functions used to the discretize the displacement.
Contact is modeled with a penalty method [12], which basically means that non-

linear springs are used to model the contact as shown in figure 4.11. They are only
active if the displacement of the corresponding node is larger that the size of the air
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Figure 4.12: 2D projection of the mesh of a part of the deformed electrostatic domain.

gap. In that case the force is given by:

fi = k2(|ui| − d)2, (4.8)

where d is the initial air gap and k2 (N/m2) is a constant that can be determined
experimentally. For this chapter k2 = 5 · 1011 was used.

The influence on the mechanical stiffness matrix is implemented as:

kii = 2 k2(|ui| − d). (4.9)

If the maximum displacement reaches the gap size the increment size of the incremental-
iterative procedure has to be reduced sharply.

4.3.2 Electrostatic domain

The electrostatic domain is meshed with linear 8 node hexahedral elements. The only
important consideration is that the mesh is deformed into the dielectric for modeling
the solid dielectric layer. If that would not have been done, the electric elements within
the air gap would have been squeezed to a zero area, which would give conditioning
problems.

Because the mesh is deformed into the dielectric layer some elements are initially
part of the air gap, but will become part of the solid dielectric material during the
simulation. This does not have to be a problem, because the electric matrices are
re-computed at each solution step, therefore the dielectric properties can be changed
at any time. The only problem is that the interface between air and dielectric can cut
trough an element as is shown in figure 4.12. If the dielectric constant of the layer is
different from air this causes a discontinuity within the element. This discontinuity
has to be accounted for and the eXtented-FEM (X-FEM) methods as presented in
[109] and [6] would be ideal candidates for modeling that discontinuity. However for
simplicity in this work the dielectric constant of the layer was chosen to be equal to
that of air.

4.3.3 Results

The load displacement curve in figure 4.13 was obtained with this model. Also the
deformed shape of the plate just before contact and when fully pulled against the
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Figure 4.13: Quasi static load displacement curve of the plate model.

dielectric were computed and are shown in figures 4.14 and 4.15. The color in these
figures indicates the magnitude of the out-of-plane displacement.

For MEMS modeling traditionally a lot of effort is put into the characterization
of the eigenfrequency as function of applied potential or displacement [89, 108]. In
chapter 5 it will be mentioned that it is easy to compute the eigenfrequencies of a
coupled electro-mechanical system near the equilibrium positions. To compute the
eigenfrequencies one has to find solutions to the eigenvalue problem:

ω2
i

[
Muu 0

0 0

] [
μu

i

μφ
i

]
−
[

Kuu Kuφ

KT
uφ Kφφ

] [
μu

i

μφ
i

]
= 0 , (4.10)

where the matrices evaluated at the equilibrium position. All matrices are symmetric,
thus simple inverse power iteration suffices to compute the eigenfrequencies. The first
eigenfrequency is only relevant up to the pull in point. It is plotted as a function of
the applied potential in figure 4.16 and as a function of the displacement in figure
4.17. As was said in chapter 3 the eigenfrequency decreases when the potential is
increased. The frequency finally becomes zero at the pull in voltage and displacement
(43V , 3.7μ). The curves are very similar to the analytically computed curves for a 1D
model in section 3.3.
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Figure 4.14: Deformation of the plate just before contact.
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Figure 4.15: Final shape of the beam when fully pulled against the dielectric.



86 Detailed implementation of a test problem

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14
x 10

6

Potential

F
re

qu
en

cy

Figure 4.16: Frequency (rad/s)
vs. applied potential (V ).

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−6

0

2

4

6

8

10

12

14
x 10

6

Displacement

F
re

qu
en

cy

Figure 4.17: Frequency (rad/s)
vs. equilibrium displacement
(m).



Part II

Quasi-static simulation





Chapter 5

Computing the Load-Displacement
curve

5.1 Introduction

The relation between the displacement and the electrical voltage displayed by MEMS
is highly non linear. A feature of that nonlinear behavior is the pull-in phenomenon,
which was introduced in the previous chapters (for a reference from literature see:
[89]1). To determine this pull-in voltage the load-displacement curve has to be known.
This chapter discusses the algorithms that can be used for computing the load-displacement
curve once a numerical model is available.

Therefore this chapter starts with an introduction to the incremental–iterative pro-
cedures that can be used to trace curves. After that section 5.3 discusses staggered
procedures and section 5.4 discusses monolithic strategies. A short overview of some
general implementation issues is presented section 5.5. Sections 5.6, 5.7 present some
finite element test cases used to evaluate the methods. Once the optimal methods have
been determined an experimental paper is used to verify if the methods can predict
actual pull-in voltages accurately in section 5.8, after which branching is presented in
sections 5.9 and 5.10. Section 5.11 completes the chapter by giving the conclusions.

5.2 Incremental–iterative algorithms

The discretized coupled equilibrium equations (3.44) and (3.48) were written in the
form:

Kφφ(u)φ = q(u, V ), (5.1)

Km
uuu = f elec(u,φ, V ), (5.2)

where for the sake of simplicity, it was assumed that the mechanical and electrostatic
problems are linear when taken separately. But the discussions in this chapter are
also applicable if the mechanical problem is non-linear. The electrostatic equation is
per definition linear with respect to the electric potentials. The computation of the
external forces on the structure (f elec) from the potential distribution (φ) can be found
in section 2.4.

1This 1967 paper by Nathanson et.al. describes the first real MEMS and already discussed most
aspects now used to characterize electro-mechanical microsystems
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Essentially the coupled equations define a total set of equations of three (vectors
of) unknowns: φ, u and V . When the static state is defined as U = [ u φ ]T the
total set of equations can be written as:

F (U , V ) = 0. (5.3)

Let’s call the number of electrical DOFs: ne and the number of mechanical DOFs:
nm. In that case the total number of equations is as: ne + nm and the total number of
unknowns is: ne +nm +1. Hence, there is one unknown more than there are equations.

This means there is not a single solution, but the equations define a curve, which
was expected and seen before. The equations are non linear to such a degree that there
does not exist a closed form solution U (V ), which would define the load displacement
curve required to characterize pull-in. Therefore iterative numerical solvers have to be
used to solve the set of non-linear equations. However these solvers can only handle
systems where the number of equations and the number of unknowns are equal. Hence
an extra equation has to be defined to create ne + nm + 1 equations. An easy extra
equation would be:

V = 1, (5.4)

or equal to any other constant value. However many other constraints are imaginable.
With such a constraint the total system of equations can be solved, however this

provides only one result for U , not a curve. Therefore, the constraint has to be changed
such that a new value for U can be found. If this is done many times, many points
on the curve are found. Those dots can be connected to form an approximation to the
curve.

For instance, if the constraint is chosen to be a fixed potential, one could for instance
start with V = 0 and solve for U (0). Then increase to V = 1 and solve for U (1). Then
increase the constraint to V = 2 and so on. One such step from a point (e. g. U (1)) to
the next (e. g. U (2)) is called an increment, which gives this type of stepping strategies
their name: incremental-iterative procedures.

The type of constraint that is chosen determines for a large part the efficiency
and applicability of the incremental-iterative algorithm. Therefore the text below will
focus on the different options that are available or can be developed and compares
them. A distinction will be made between staggered solution algorithms and monolithic
algorithms.

5.3 Staggered solution strategies

5.3.1 Block Gauss-Seidel

The basic block Gauss-Seidel algorithm assumes a simple fixed applied voltage con-
straint in combination with a staggered solution procedure. The block Gauss-Seidel
process at voltage increment V and at iteration step k can than be written as [10, 22]:

φk = K−1
φφ(uk−1)q(uk−1, V ), (5.5)

uk = Km
uu

−1f elec(uk−1,φk, V ), (5.6)

which were reported before: (3.51) and (3.52). This provides the estimate of the
equilibrium position at k, based on the static state at k−1. Making a new estimate with
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Next increment
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Start increment

φk = K−1
φφ(uk−1)q(uk−1, V )V

uk = Km
uu

−1f elec(uk−1,φk)

||uk − uk−1|| < tol?

uk

Figure 5.1: The block Gauss-Seidel algorithm.

this procedure can be repeated until convergence. The algorithm is converged when the
update for the displacements is smaller than a specified tolerance (||uk −uk−1|| < tol).
The block diagram for the procedure can be found in figure 5.1. The actuation charge
q(uk−1, V ) can be computed with equation (A.16).

This algorithm has problems with converging near the pull-in point. This can best
be shown graphically as in figure 5.2. Here it can be seen that the algorithm converges
well from A to B and from B to C, but it diverges when the total applied load above
the pull-in as shown for the step to D.

5.3.2 Block Gauss-Seidel with path following

The traditional method to overcome similar problems in limit point buckling simulation
is by using path-following techniques also known as arc-length methods [71]. These
methods go back to the early papers by E. Riks [105] and M.A. Crisfield [27]. The basic
idea is the addition of an extra constraint to the set of equations that is a function
of both U and V . The circular version of such a constraint is shown in figure 5.3.
The algorithm with this circular constraint is known as the Riks-Crisfield algorithm.
However other options are possible as well, such as the Riks-Wempner and normal flow
constraints [101].

Since these algorithms are originally developed for monolithic models, first a short
discussion about the monolithic Riks Crisfield algorithms is required. Of course the
extra constraint could by applied by simply adding one equation to the matrix equations
and solve the augmented system, but that destroys the symmetric, banded and sparse
structure of the original system of equations, therefore the original paper of Crisfield
advised a more elegant implementation. The discussion of this implementation start
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Figure 5.3: Several block iterative arc-length iterations (schematic representation).
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with the definition of the derivative of the load vector F with the load factor V :

F̂ =
∂F

∂V
, (5.7)

and the derivative of U with V :
Û = K−1F̂ . (5.8)

Subsequently it is assumed that the system is not yet in equilibrium. In that case
the total applied load on the system at iteration k can be approximated by:

F elec
k+1 = F elec

k + dVk+1F̂ , (5.9)

therefore through equation (3.53) the linear update required to approach equilibrium
is:

dU k+1 = K−1(dVk+1F̂ + F elec
k − F int

k ). (5.10)

which can be separated in:

dU k+1 = dU s + dVk+1Û , (5.11)

where:
dU s = K−1(F elec

k − F int
k ). (5.12)

During an increment the norm of the allowed displacement increment (of all DOFs,
thus structural DOFs and potential DOFs) augmented with the load increment is kept
constant:

ΔUT
k+1ΔU k+1 + ΔV 2

k+1F̂
T
F̂ = S2, (5.13)

where S is the constraint on the increment. Because S remains constant from iteration
k to k + 1 this equation can also be written as:

ΔUT
k+1ΔU k+1 + ΔV 2

k+1F̂
T
F̂ = ΔUT

k ΔU k + ΔV 2
k F̂

T
F̂ . (5.14)

The total increments are defined as:

ΔU k+1 = ΔU k + dU k+1, (5.15)

ΔVk+1 = ΔVk + dVk+1. (5.16)

Substitution of these increments and equation (5.11) into equation (5.14) yields:

a dV 2
k+1 + b dVk+1 + c = 0, (5.17)

where:

a = F̂ · F̂ + Û · Û , (5.18)

b = 2
(
ΔVk F̂ · F̂ + ΔU k · Û + Û · dU s

)
, (5.19)

c = 2ΔU k · dU s + dU s · dU s, (5.20)

which can be used to compute dVk+1 once dU s has been computed with equation
(5.12). All other terms have been computed during the previous iteration step or at
the beginning of the increment. When dVk+1 is known, dU k+1 can be computed with
equation (5.11). It is obvious that equation (5.17) has two solutions, therefore the
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correct one has to be selected. Because for electro-mechanical problems the desired
solution always has a larger displacement that the previous converged solution, it is
not difficult to select the correct solution to (5.17).

Problems arise at k = 1 since in that case ΔV1 and ΔU 1 have not yet been defined,
thus ΔV2 and ΔU 2 cannot be computed. An easy approach to solve that problem is
to define ΔV1 as the control parameter for the algorithm and to use ΔU 1 = ΔV1Û as
initial displacement step. This effectively defines S.

In a block iterative procedure it proves to be very difficult to use the full circular
constraint on all DOFs because the full tangent stiffness is not known. But it is pos-
sible to assume that the problem is purely mechanic with a very complicated external
force, that depends on the potential V and displacements u. Or in other words the
electrostatic is condensed onto the mechanics:

f elec = f elec(u, V ), (5.21)

with the extra assumption:

f̂ =
∂f elec(u, V )

∂V
≈ 1

ΔV1

(
f elec(u, V + ΔV1) − f elec(u, V )

)
. (5.22)

Theoretically it is possible to use a full circular constraint on the mechanical DOFs
only. This would mean that one only has to replace U with u in equation (5.13) to
get the staggered algorithm. However simulations showed that a linearized version of
the circular constraint condition works better in the staggered case. The linearized
constraint can be written as [28]:

ΔuT
k Δuk+1 + ΔVkΔVk+1f̂

T
f̂ = S2, (5.23)

which is a linear function of Δuk+1. After the relevant substitutions this yields the
following relation to determine dVk+1:

dVk+1 = −Δuk · dus

Δuk · Δû
, (5.24)

where:
dus = K−1

uuΔfk. (5.25)

The complete algorithm is summarized by the diagram in figure 5.4.

5.3.3 Fixed point iterations with displacement control

Another strategy to tackle the convergence problem of the Gauss-Seidel iterations is
to use displacement control: a displacement DOF is given a prescribed displacement.
Thus in stead of an constraint on V , or on both u and V simultaneously, an constraint
on one entry of u is used. Once an element of u has been constrained a block Gauss-
Seidel iteration loop is started to compute the corresponding voltage as is illustrated
in figure 5.5.

However for problems with more than one DOF this is not a trivial problem, there-
fore a relaxation scheme called DIPIE has been proposed in literature [18]. The algo-
rithm uses the quadratic dependency of f elec on the applied potential V :

f elec(V ) =
(
f elec(V = 1)

)
V 2, (5.26)
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û = K−1
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φk = K−1
φφ(uk)q(uk, V + ΔVk)

f elec(uk,φk)

dus = K−1
uu

[
felec(uk, φk) − Kuuuk

]

dVk+1 = −Δuk · dus

Δuk · û

duk+1 = Δu1 + dVk+1û

Δuk+1 = Δuk + duk+1
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||duk+1|| < tol?

uk+1

Figure 5.4: The block Gauss-Seidel with path-following algorithm.
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Figure 5.5: Several displacement iterations.

combined with the fact that at equilibrium:

f elec = f int, (5.27)

where:
f int = Km

uuu. (5.28)

If the system has an imposed displacement uk, a guess of the corresponding voltage
would be:

V 2 =
1

n

n∑
i=1

f int
i (uk)

f elec
i (uk, V = 1)

, (5.29)

where i indicates those n DOFs that have a non zero entry in the electric force vector
f elec. Once this initial guess is made an update of the mechanical force can be done:

f int (uk+1) = V 2f elec(uk, V = 1), (5.30)

which can be used to update the displacement. This can be repeated until convergence.
The convergence of the algorithm depends to a large extend on the chosen initial

deformation. The authors of the original paper suggest prescribing the displacement
ūj of the node j for which the largest displacement is expected. The initial deflection
u1 of the structure follows from a simple Dirichlet problem:

Km
uuu1 =

[
Kuu Kuū

KT
uū Kūū

] [
u
ūj

]
=

[
0
F int

j

]
= F int, (5.31)

u = −K−1
uuKuūū

j. (5.32)

For a proper convergence it is essential to keep the prescribed DOF at the same dis-
placement while updating the displacement with equation (5.30). This can be assured
by including the structural Dirichlet problem in the formulation.

A block diagram summary of the complete algorithm can be found in figure 5.6.
Effectively this algorithm uses a fixed point iteration procedure around the equilibrium
solution.



5.3 Staggered solution strategies 97

Next increment

Yes

No

Start increment

uj uk = −K−1
uuKuūū
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Figure 5.6: The DIPIE algorithm.
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5.3.4 Block Gauss-Seidel with charge control

A new approach to solve these types of problems is inspired by some motion control
strategies used for actual MEMS [88, 117]. The idea is to prescribe the total electric
charge instead of the voltage on the moving conductor. Thereafter the voltage can
be determined by a post processing step. The advantage of this method is explained
with the 1D example problem originally presented in section 3.3 and shown in figure
3.2. Thereafter the implications of charge control for multiple DOF systems will be
discussed.

In chapter 2 it was shown that Coulomb’s law implicated that the force on a 1D
charged conductor is:

Fes =
1

2
QE, (5.33)

with E the field outside the conductor, that can be written as:

E =
1

ε
Q. (5.34)

Thus the force becomes equal to:

Fes =
1

2ε
Q2, (5.35)

resulting in the equation of motion:

mẍ+ k (x− x0) +
1

2ε
Q2 = 0. (5.36)

Hence the static equilibrium equation is:

Q =
√

2εk(x0 − x). (5.37)

which is a monotonously increasing function as can be seen in figure 5.7. Hence unlike
the voltage-displacement curve it does not have an extremum and moreover it shows
less non-linear behavior. It will be easier to follow the charge-displacement curve
and extract from it the voltage-displacement curve and pull-in characteristics by post-
processing.

For more complicated structures it is not possible to simply apply the charge on
the moving structure, because the charge distribution over the structure depends on
the shape of the electric domain. However due to the assumption that electrodes are
perfect conductors it is known that the potential over the conductor is constant, which
effectively defines an equipotential constraint. Thus the charge can be applied on one
DOF of the conductor boundary only in combination with an equipotential constraint,
as will be explained below.

The electric problem can be separated in a free (φ) and a constrained (φ̄) part:[
Kφφ Kφφ̄

KT
φφ̄ K φ̄φ̄

] [
φ
φ̄

]
=

[
q
q̄

]
. (5.38)

For this problem there are three ways to implement the equipotential constraint on a
surface: using Lagrange multipliers, using a transformation matrix or using an infinite
electric permittivity. When Lagrange multipliers are used the constraint is written as:

Bφ̄ = 0, (5.39)



5.3 Staggered solution strategies 99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
Q

(x
=

0
)

x0−x
x0

Figure 5.7: 1D charge-displacement curve

where B is a nc − 1 by nc matrix, with nc the number of constrained DOFs:

B =

⎡
⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1
...

...
. . . . . . 0

0 · · · 0 1 −1

⎤
⎥⎥⎥⎦ . (5.40)

In that case the total electric problem can be written as:⎡
⎣ Kφφ Kφφ̄ 0

KT
φφ̄ K φ̄φ̄ BT

0 B 0

⎤
⎦
⎡
⎣ φ

φ̄
λ

⎤
⎦ =

⎡
⎣ q

q̄
0

⎤
⎦ , (5.41)

where the block-iterative procedure can be controlled with the partial charge on one
of the constrained DOFs q̄.

When the constraint is implemented using a transformation matrix the starting
point is the following relation:

φ̂ = 1̂V, (5.42)

where:

1̂ =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ . (5.43)

Thus the electric problem can be written as:[
Kφφ Kφφ̄1̂

1̂
T
KT

φφ̄ 1̂
T
K φ̄φ̄1̂

] [
φ̄
V

]
=

[
q

q̄total

]
, (5.44)

which can be written as:
Kφφ̃ = q̃, (5.45)
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Figure 5.8: The charge block Gauss-Seidel algorithm.

where q̄total = 1̂
T
q̄ is the total charge on the equipotential surface. This value can be

used as loading parameter in the block-iterative procedure.
The third way to model the constraint is by meshing the conductor with elements

that are given a permittivity that is much higher that the permittivity in the gap. In
that case the control charge can be applied on one of the conductor nodes. This will
not exactly constrain the potentials on the conductor, but when the used permittivity
is high enough the effect will be nearly the same.

For the computations in this document the constraint was implemented using the
transformation approach, because that results in the smallest set of equations. The
summary of this algorithm can be found in figure 5.8, which is very similar to the
voltage loaded scheme. The true difference is in the computation of φk(uk−1, q̄total).
The original voltage loaded algorithm used equation (A.16) while the charge loaded
algorithm uses equation (5.44).

There are two pitfalls when using the charge loading approach; the first one is the
so-called charge pull-in. When systems with more that one DOF are investigated,
fringe effects cause instability in the charge displacement relation as well. However,
the charge pull-in point is generally located well beyond the voltage pull-in point [117].

The second pitfall is caused by structurally non-linear problems, especially those
that show snap-trough behavior. This can simply be seen in the 1D model: if a
non-linear stiffness k = k(x) is substituted to equation (5.37), the resulting charge-
displacement relation is:

Q =
√

2εk(x)(x0 − x), (5.46)

which for some functions k(x) can show a (local) decrease in the relation between Q
and x.

When it is needed to compute the curve beyond the charge pull-in or if non-linear
snapping is expected, the charge loading method can be combined easily with arc-length
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control.

5.4 Monolithic solution strategies

5.4.1 Newton-Raphson

As has been mentioned in section 5.3 the general equilibrium equations are:

Km
uuu = f elec(u,φ, V ), (5.47)

Kφφ(u)φ = q(u, V ). (5.48)

Furthermore the static state and force vectors were defined as:

U =

[
u
φ

]
, (5.49)

F =

[
f
q

]
, (5.50)

and the coupled tangent stiffness matrix was defined by (see chapter 3):

K(U ) =
∂F

∂U
, (5.51)

which can be used to define the linearization of the equilibrium equations:

KΔU = ΔF = F elec − F int. (5.52)

The matrix K depends on the static state vector U , therefore computation of K is a
costly procedure, which is a disadvantage of all monolithic methods.

The basic monolithic solution algorithm for non-linear problems is the Newton-
Raphson algorithm. For an electro-mechanical problem it can be used as follows.
For a certain applied voltage the unbalance in the right hand-side of the equation at
iteration step k is:

ΔF k = F elec(U k−1, V ) − F int(U k−1), (5.53)

therefore, through the linearized equilibrium equations, the update for the displace-
ments is:

ΔU k = K−1ΔF k, (5.54)

which can used to find the displacement at iteration k:

U k = U k−1 + ΔU k. (5.55)

The algorithm is summarized by the diagram in figure 5.9.
The advantage of the Newton-Raphson (and other monolithic methods) can be

explained graphically. Figure 5.10 shows two type of iterations: on the left are sev-
eral block Gauss-Seidel iterations and on the right are several Newton-Raphson itera-
tions2. For the Gauss-Seidel iterations the mechanical tangent stiffness is not updated,
only the external force is updated, therefore convergence is relatively slow. For the

2It should be noted that although these drawings give a simplified view, which is not completely
correct. However the drawings do give a view that is accurate enough for illustrative purposes.



102 Computing the Load-Displacement curve

Next increment

Yes

No

Start increment

V ΔFk = Felec(Uk−1, V ) − F int(Uk−1)

ΔU k = K−1ΔF k

U k = U k−1 + ΔU k

U k

||ΔU k|| < tol?

Figure 5.9: The coupled Newton-Raphson algorithm.

Newton-Raphson iterations the full tangent is updated at each iteration step, therefore
convergence is relatively fast.

As mentioned this faster convergence comes at the price of updating the stiffness,
therefore alternative procedures have been proposed. One often used method is derived
from the Newton-Raphson. The difference is that the stiffness matrix is updated only
at the beginning of an increment and not at every iteration step. This method is
known as the the modified Newton-Raphson method [28], and is faster for some type
of problems. A different class of methods is that of the quasi-Newton methods. These
methods use the previously computed equilibriums to approximate the tangent. One
such method is the well known BFGS algorithm [94].

5.4.2 Monolithic path-following

The monolithic Riks-Crisfield method of path-following was derived in section 5.3.2 as
a starting point for the staggered path-following method. Riks-Crisfield adds a circular
constraint to the set of equations, which makes sure that not only the state vector U
is updated, but also the applied load V . The visual interpretation of monolithic Riks-
Crisfield is given in figure 5.11, which slightly differs from the monolithic arc-length
method in figure 5.3.

This resulted in the following equation for the load parameter update dV :

a dV 2
k+1 + b dVk+1 + c = 0, (5.56)
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a: Gauss-Seidel iterations. b: Newton Raphson iterations.
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Figure 5.10: The advantage of Newton-Raphson iterations.

where:

a = F̂ · F̂ + Û · Û , (5.57)

b = 2
(
ΔVkF̂ · F̂ + ΔU k · Û + Û · dU s

)
, (5.58)

c = 2ΔU k · dU s + dU s · dU s, (5.59)

where:

Û = K−1F̂ , (5.60)

and:

dU s = K−1(F elec
k − F int

k ). (5.61)

The displacement update is than:

dU k+1 = dU s + dVk+1Û . (5.62)

This method seems to be a bit over complicated to impose a constraint, because
the constraint can also be added to the original equilibrium equations (3.53). That
was actually the approach proposed by Riks in 1979 when he proposed the linearized
version of Riks-Crisfield [105]. However in that case the problem becomes asymmetric,
therefore when Crisfield proposed to use the full circular version in 1981 he also rewrote
the formulation to remove the asymmetry [27]. This required solving one extra equation
(5.60) at the beginning of each increment. But solving symmetric systems is much
faster than solving asymmetric systems and K is already factorized at that moment,
therefore the Crisfield formulation is normally used.

The remaining issue is the computation of F̂ . To compute the term ∂F
∂V

can be
started with differentiating equation (3.82):

∂

∂V
(F ) =

∂

∂V

(
F elec − F int

)
. (5.63)
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Figure 5.11: Several path following iterations

Since

F int =

[
Km

uuu
Kφφφ

]
(5.64)

does not depend directly on V , the following holds:

∂F

∂V
=
∂F elec

∂V
. (5.65)

In the formulation above only the DOFs that are not constrained were considered. On
the other hand it is possible to include those DOFs that have an applied potential:

U tot =

[
U
φ̄

]
=

[
U

1̂V

]
, (5.66)

where:

1̂ =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ , (5.67)

which will result in the following tangent stiffness:

Ktot =

[
KUU KUφ̄

KT
Uφ̄ K φ̄φ̄

]
. (5.68)

Therefore the total right hand-side can be seen as:

F = F (U , φ̄(V )), (5.69)
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and its derivative as:
∂F

∂V
=
∂F

∂φ̄

∂φ̄

∂V
=
∂F

∂φ̄
1̂, (5.70)

therefore the following must hold:

F̂ =
∂F

∂V
= −KUφ̄1̂. (5.71)

This procedure results in the full algorithm as shown in figure 5.12.

5.4.3 Monolithic charge control

These monolithic methods can be combined with charge loading as well. To show how
this can be done the problem will be split into three parts: the mechanical part u, the
unconstrained or free electric part φ and the actuated conductor part φ̄:⎡

⎣ Kuu Kuφ Kuφ̄

Kφu Kφφ Kφφ̄

K φ̄u K φ̄φ K φ̄φ̄

⎤
⎦
⎡
⎣ Δu

Δφ
Δφ̄

⎤
⎦ =

⎡
⎣ Δf

Δq
Δq̄

⎤
⎦ , (5.72)

where the grounded conductor part has been removed from the equation. As with the
staggered version the floating conductor can be removed from the equations. First it
is assumed that the update for the potentials can be written as:

Δφ̄ =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ΔV = 1̂ΔV. (5.73)

Hence the tangent stiffness matrix is defined as:⎡
⎢⎣ Kuu Kuφ Kuφ̄1̂

Kφu Kφφ Kφφ̄1̂

1̂
T
K φ̄u 1̂

T
K φ̄φ 1̂

T
K φ̄φ̄1̂

⎤
⎥⎦
⎡
⎣ Δu

Δφ
ΔV

⎤
⎦ =

⎡
⎣ Δf

Δq
Δq̄

⎤
⎦ . (5.74)

The right hand-side can be computed by:

Δf = f elec − Km
uuu, (5.75)

and:
Δq = qapl − Kφφ, (5.76)

where:

Kφ =

[
Kφφ Kφφ̄1̂

1̂
T
K φ̄φ 1̂

T
K φ̄φ̄1̂

]
, (5.77)

qapl =

⎡
⎢⎢⎢⎣

0
...
0

q̄total

⎤
⎥⎥⎥⎦ , (5.78)

φ =

[
φ
V

]
. (5.79)
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]
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2ΔUk · Û + 2Û · dU s
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dU k+1 = ΔU 1 + dVk+1Û

ΔU k+1 = ΔU k + dU k+1

ΔVk+1 = ΔVk + dVk+1

||dU k+1|| < tol?

U k+1

Figure 5.12: The monolithic Riks-Crisfield algorithm.
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The driving parameter in both the Newton-Raphson and the Riks-Crisfield scheme is
q̄total. Hence the definition of the derivative F̂ is a very simple one for this scheme:

F̂ =
∂F elec

∂q̄total
=

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ . (5.80)

5.5 General Remarks

5.5.1 Overview of the methods

An overview of the all the different methods to compute the pull-in curves that have
been presented in literature and/or discussed here is shown in figure 5.13. Green squares
indicate methods realized in literature so far, the green and white square indicates a
method which is explained in literature but never truly implemented in literature. The
yellow squares indicate methods which were implemented for the first time in this
thesis.

The figure indicates on the top how the model can be made: co-simulation or coupled
simulation and the impact that this has on the choice between staggered and monolithic
solution schemes. The terms Voltage control, Charge control and Displacement control
indicate if the voltage, the charge or the displacement is included in the constraint
used to enhance the system (5.3) to create nm + ne + 1 equations. If the method
is in the without path-following region the control parameter is the only item in the
constraint. If it is in the with path-following region, the constraint defines a relation
between the control parameter and the displacement. It does not make sense to combine
displacement as control parameter with more displacements in a constraint, hence that
part of the figure does not have a method square.

5.5.2 Controlling the convergence and continuation

Increment size control

An aspect of path-following that is common to all the algorithms is the continuation
once a converged solution for an increment has been found. At that moment the size
of the new increment has to be determined. A popular approach is Ramm’s method
[71], which defines the new step size ΔVi+1 as:

ΔVi+1 = ΔVi

√
kdesired

krealized

, (5.81)

where kdesired is the desired number of steps per iteration loop and krealized is the number
of steps that were needed for the last converged iteration loop i. Of course this method
can also be used for the displacement in the DIPIE algorithm.

An important part of the path following methods discussed here is the step size
reduction in case of convergence failure. The path-following methods should be able
to converge at any position of the curve. However if the initial increment ΔV1 is
relatively large, these methods have convergence problems even if equation (5.81) is
used to control the increment size. Therefore these algorithms are not very robust:
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Figure 5.13: Overview of the different procedures to compute the pull-in point (Green
indicates methods from literature, yellow indicates newly developed methods and the
mixed green/white square provides a non-implemented method from literature).

near pull-in they sometimes do not converge. If that happens the increment is divided
by 2: ΔV restart

1 = 1
2
ΔV original

1 and the iteration procedure is restarted.

Matrix conditioning problems

Monolithic methods suffer from a specific problem: the tangential stiffness matrix is
ill-conditioned. The mechanical contributions to the stiffness matrix is composed of
elements that are in the order of ||B||2 · |E|, where E is the Elasticity modulus. The
electric contributions are in the order of ||B||2 · |ε|, where ε is the electric permittivity
and B is the matrix with shape function derivatives. The Young’s modulus for a typical
MEMS material as polysilicon is in the order of 108 while the permittivity of air is in
the order of 10−11. It is not hard to imagine that the conditioning will be horrible.

The basic method to overcome this problem is to transform the complete matrix
equation to an equation that is better conditioned:

KU = F → K̃Ũ = F̃ . (5.82)
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The simplest method that is effective is by pre- and post-multiplying with a diagonal
scaling matrix P :

Pij =
1√|Kij|

δij, (5.83)

where δij is the Kronecker delta which is 1 if i equals j and 0 if i is unequal to j. The
transformed stiffness matrix and force vector are than:

K̃ = PKP , (5.84)

F̃ = PF . (5.85)

Once Ũ has been computed with the transformed equation (5.82), U can simply be
computed with:

U = PŨ . (5.86)

When the definition of P (5.83) is substituted into (5.84) this gives:

K̃ij =
1√|Kii|

Kij
1√|Kjj|

, (5.87)

thus every element of K is scaled by the diagonal element of its row position and
the diagonal element of its column position. Therefore the coupling terms between
mechanics and electrostatics are scaled properly as well.

Convergence criteria

There are different ways to measure the error that determines whether the solution has
converged. In the previous sections 5.3 and 5.4 the used error measure was the norm
of the update of the state vector:

ek = ||U k − U k−1||, (5.88)

which is one of the simplest possible error measures and was therefore used to explain
the algorithms. There are two problems with this error measure though. Firstly it is an
absolute error measure, therefore the strictness of the error depends on the geometry
of the problem. Normally it is better to use a relative measure. In this document a
relative measure on the force unbalance was used:

ek =
||F elec

k − F int
k ||

||F elec
k || . (5.89)

Secondly it does not really compare well, because in the staggered methods the state
vector only contains the mechanical displacements where the monolithic state vector
contains all DOFs. For convergence in a monolithic method it is important to apply
the error measure on all DOFs, but for comparison only the error on the mechanical
DOFs will be stored:

ek =
||f elec

k − f int
k ||

||f elec
k || . (5.90)
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Figure 5.14: Linear beam.

5.5.3 Pull-in detection

A final remark on pull-in detection: pull-in is characterized by a singular stiffness
matrix K. This can be detected by checking if det(K) = 03. Detection is easy because
before pull-in det(K) > 0 but beyond pull-in, within the unstable region, det(K) < 0.
Checking whether the pivots of the matrix K are all positive during the factorization
of the matrix should be enough to determine if the determinant of K is still positive,
hence it does not have to be an expensive check.

If one includes such a test after each converged iteration, the methods can easily be
enhanced with a zero finding algorithm that precisely computes the pull-in point. In
principle this is only possible if the full coupled stiffness matrix is available, therefore
only for the monolithic methods. Although hybrid methods are conceivable where a
staggered method is used to compute the equilibrium position, after which the coupling
terms are evaluated at the converged solution, than the complete tangent stiffness can
be computed for evaluation of det(K).

Of course this is also true for the computation of a linearized eigenfrequency ωi and
eigenmode μi around an equilibrium position, as defined by the eigenvalue problem:

Mμiω
2
i = K(U eq)μi. (5.91)

5.6 2D linear FEM test case

The first comparison between the approaches is done with the finite element model of
a simple beam. The geometry of the beam and the air gap below is depicted in figure
5.144. Both domains are meshed with quadrilaterals.

The structural beam is modeled with 2D solid elements under plane strain assump-
tion and with linear shape functions to approximate the displacement field [12]. The
Young’s modulus is 1 · 105GPa and the Poisson’s ratio is 0.3.

The air gap is modeled with standard electrostatic elements with linear shape func-
tions. The vacuum electric permittivity of 8.85 · 10−12F/m is used to characterize the
electric domain.

3Again this phenomena is very similar to limit point buckling.
4For more detail on the FEM implementation of this test case see chapter 4.
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Figure 5.15: Voltage displacement curve.

Figure 5.15 presents the voltage displacement curve for this beam up to a displace-
ment of 5.5μm, which is 55% of the initial air gap. The absolute displacement of the
middle node is shown.

The deformed geometry of the beam and air gap at this displacement is shown in
figure 5.16. In this figure the beam is the part above the white division line and the
gap is the part below that line. The beam has a uniform color and the color in the gap
indicates the potential distribution (red is high potential, blue is low potential).

The voltage-displacement curve in figure 5.15 was computed with the charge loaded
block Gauss-Seidel procedure, but the same results were also computed with the other
approaches. Computation times are listed in table 5.1. The computations were per-
formed in Matlab on a simple desktop computer (3 GHz, 2 GB RAM). The first thing
that should be noted is that the relative error tolerance on the residual of the struc-
tural force for the DIPIE method is less strict than that for the other methods, this
is because it was not possible to make it converge to a relative error below 5 · 10−2.
The second thing to note is that the computation took the least of time with the full
Newton-Raphson algorithm, but this one and the voltage block Gauss-Seidel do not
compute the complete curve, they only compute the stable part, therefore they only
approximate the pull-in point. The fastest of the methods that actually make a reliable
estimate of pull-in is the charge loaded block Gauss-Seidel. Also noteworthy is the fact
that monolithic path-following with voltage control is faster than the block-iterative
version, but not faster than using charge control.

The second comparison between of the approaches is presented in figure 5.17, which
shows the decrease of the relative error during an iteration procedure. For clarity the
two approaches that do not compute the complete curve were left out of the figure.
These error curves were determined at an increment near the pull-in point. The reason
of the fast computation time for the charge algorithm in table 5.1 can easily be ex-
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Figure 5.16: Deformed shape of the simple beam.

Table 5.1: Computation times required to trace the path.
Method Computation Error tolerance

time (s) (relative)

Voltage block Gauss-Seidel 86 10−3

Voltage block GS with path following 277 10−3

DIPIE 296 5 · 10−2

Charge block Gauss-Seidel 76 10−3

Voltage Newton Raphson 54 10−3

Voltage monolithic path following 181 10−3

Charge Newton Raphson 82 10−3
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Figure 5.17: Error curves for the simple beam.

plained because its error curve has the steepest descent of the staggered methods. Only
the monolithic methods converge faster, but they require much more computation time
per iteration step. Therefore the overall computation time of the monolithic methods
is lower than that of the staggered charge loaded method. The computation time of
the monolithic charge Newton Raphson method does come very close to the staggered
charge method though.

The curve in figure 5.15 is good enough to characterize the voltage pull-in point in
both displacement and potential, however in section 4 there was a warning: there exists
a charge pull-in point. To show that the charge pull-in is far enough from the voltage
pull-in point the charge path-following algorithm was used to compute the curve up
to 80% of the gap. Figure 5.18 shows the total charge and applied potential, which
shows that charge pull-in is located at about 70% of the gap, while the voltage pull-in
is located at 35% of the gap. Therefore it is possible to characterize voltage pull-in
with the charge block iterative algorithm without path-following,

5.7 2D non-linear FEM test case

So far the problems could effectively be solved with staggered algorithms. However
if the mechanics becomes non-linear as well, havoc is created. Phenomena such as
mechanical snap-through might be seen. This type of behavior is not uncommon in
MEMS due to the high levels of residual stress that can occur [38, 86]. In that case
one might really need a monolithic algorithm. One very simple structure that will
experience this type of behavior is shown in figure 5.19. It is initially curved, so no
pre-stress is included.

To be able to model the snap through for this structure the structural FEM model
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Figure 5.19: Curved non-linear beam.
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Figure 5.20: Load-displacement curve for the non-linear beam.

is a geometrically non-linear one, based on the Green-Lagrange strain and the 2nd
Piola-Kirchhoff stress [12]. The voltage displacement curve computed with the charge
loaded path-following algorithm is shown in figure 5.20. The deformed shape plotted
in figure 5.21 is that shape for which the middle node displacement is about 10μ.

This curve was also computed by the two voltage path-following schemes. Theoreti-
cally it is also possible to compute it with the DIPIE method, but the slow convergence
for the simple linear beam in section 5.6 showed that this is not a good alternative.
Therefore this problem was only computed with the path-following methods. Compu-
tation times are summarized in table 5.2. These are measurements of the time taken
to compute the curve up to a displacement of 10μ.

Table 5.2: Computation times required to trace the curve.
Method Computation Error tolerance

time (s) (relative)

Voltage block GS with path following 4486 10−4

Charge block GS with path following 837 10−4

Voltage monolithic path following 1352 10−4

Charge monolithic path following 652 10−4

Again, these times can be explained by error curves. The curves in figure 5.22 are
computed at a displacement of about 4μ. They show that after the snapping point the
staggered charge algorithm converges a bit faster than the staggered voltage algorithm.
The monolithic voltage scheme converges even faster, but has the disadvantage of larger
matrix. Therefore the total computation time of the monolithic voltage method is
better than the staggered voltage scheme, but slower than the both the charge loaded
methods. The monolithic charge loaded method is the fastest of them all.
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Figure 5.21: Deformed shape of the curved non-linear beam.
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Figure 5.22: Error curves for the curved beam.
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5.8 Experimental validation

A paper from Tilmans and Legtenberg from 1994 presents pull-in measurements for a
very simple microbridge [130]. Because of its simplicity it is ideal for modeling with the
plate type model that was introduced in chapter 4, hence an ideal case for validating
the methods presented above. Above it was shown that all methods give the same
result. However they are developed to compute pull-in accurately, hence this section
tests whether the methods actually compute the correct pull-in values.

A picture of such a bridge was presented in figure 4.10. The thickness of the bridge
from the paper is 1.5μ and the gap between plate and ground plane is 1.2μ The length
of the bridge was varied. A value of Ep = 166GPa for the plate modulus was reported
in the paper. This plate modulus is defined as Ep = E/(1 − ν2), which can be used
to computed the elasticity modulus E required for the FEM model. With a Poisson’s
ratio of 0.22, this gives a Young’s modulus of 160GPa.

Initial stresses due to fabrication have to be accounted for, therefore the tensile
initial strain of ε0 = 36.8 · 10−6 in the direction along the beam that was reported in
the paper is included in the model using the geometric stiffness matrix5.

For the modeling of the mechanics of the plate a mesh of 22 elements in the length
and 14 elements in width of the plate were used. The electric mesh in the air gap con-
tained 4 elements in the direction perpendicular to the plate. In the other 2 directions
the number of elements was equal to the number of elements in the mechanical mesh.
For this mesh the pull-in results have converged below a relative error of 10−3.

Bridges of four different lengths were measured: 210μ, 310μ, 410μ and 510μ. The
results of the measurement and the simulation are listed in table 5.3 . The results show
that the simulations are pretty accurate, hence the approach is validated. However it
should be noted that the quality of the pull-in simulation depends for a large part on
the FEM implementation as discussed in the previous part of this report.

It should also be noted that the initial stress was very important. Without initial
stress the pull-in voltage was consistently lower, but also the relation between the
length and pull-in voltage was different. For longer lengths the relative error is bigger
without initial stress. Therefore just increasing the Young’s modulus to match one
pull-in voltage does not give the correct pull-in voltage for other lengths.

5.9 Branching

Until now only the computation of load displacement curves that follow a single path
have been discussed, however it is possible that the curve at some point has a bifurcation
and several branches can be found.

5When a tensile stress is pulling on a plate in the direction tangential to the plate the response
in the direction perpendicular to the plate is stiffened. This is similar to tuning a guitar string by
stretching it. The geometric stiffness matrix that describes this behavior is amongst others discussed
[100]. Crudely speaking it shows the following: Define the initial force pulling on the wire in the
tangential direction caused by the initial stress as N . The angle which the plate makes with the
horizontal is ϕ = ∂w

∂x , where w is the out of plane displacement. Hence the force in out of plane
direction is F = N ·sin(ϕ) ≈ N ·ϕ. Subsequently it is assumed that ∂w

∂x ≈ δw/L where Δw = wi −wj

is the increase of displacement within an element and L is the length of the element. Hence the
stiffness matrix contains terms ∂Fi

∂wj
= ±N

L .
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Table 5.3: Pull-in voltages for different beam lengths.
Length Measured pull-in Simulated pull-in
(μm) (V ) (V )

210 28.0 28.2
310 13.8 14.2
410 9.1 9.0
510 6.6 6.5

To illustrate this branching consider the 1D problem in figure 5.23. The total force
on this mass in upward direction is:

F = kx+
1

2
ε

V 2

(d+ x)2
− 1

2
ε

V 2

(d− x)2
, (5.92)

where d is the initial gap between mass and electrodes. The linearized stiffness for the
mass is:

klin(V, x) =
∂F

∂x
= k − ε

V 2

(d+ x)3
− ε

V 2

(d− x)3
. (5.93)
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Figure 5.23: Movable electrode that is
actuated on two sides.
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Figure 5.24: Load displacement for the
movable electrode.

Obviously the trivial equilibrium solution for F = 0 is x = 0. The stability of this
solution can be tested by checking if klin(V, 0) is positive. From this test follows that
klin changes sign at:

Vc =

√
2

2

√
kd3

ε
. (5.94)

When the applied voltage is lower than this critical voltage the solution x = 0 is
stable, when it is higher it is unstable. Moreover when it is lower, there exist two other
solutions that do not exist when the applied voltage is higher than Vc:

x = ±
√
kd2 −√

2εkdV

k
, (5.95)

which are always unstable, except for V = V c, because at that point also the displace-
ment x for these two solutions is zero and klin = 0, making it impossible to determine
stability without higher order analysis. This complicated load-displacement behavior
is summarized in figure 5.24, where dotted lines indicate unstable curves and the con-
tinuous line the stable path. It is clear that at the critical load a bifurcation occurs
from which three other paths emerge.
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Figure 5.25: Normal and side pull-in of a simple comb drive actuator.

A typical MEMS operation case where such a bifurcation can happen is side pull-in
of comb drives. Figure 5.25 shows a very simple comb drive. The red color in the
figure indicates the moving part which is actuated with a potential and the blue color
indicates the fixed and grounded part. Normally such a comb drive is actuated in
the direction of the fingers, thus the comb drive on the left hand-side of the figure is
actuated in y-direction. Therefore the comb drive will show the same type of behavior
as the classical 1D parallel plate actuator and the final position after pull-in will be
the position shown in the middle of figure 5.25. However, if the comb drive is not
designed properly, the side pull-in mode can become active and the final displacement
can become the one on the right hand-side of figure 5.25. Due to symmetry the final
deformation can also be in the negative x-direction. This bifurcation can appear if the
critical voltage of side pull-in is lower than the pull-in voltage is lower than the normal
pull-in voltage. Therefore during electromechanical modeling of MEMS, the proper
computation of branching curves can be very important.

However this is not the first time such problems occur. As normal pull-in was
very similar to limit point buckling, this side pull-in phenomenon is very similar to
a classical mechanical problem: the symmetric bifurcation that can be seen for the
inverted pendulum of figure 5.26. In that figure Ms indicates the restoring torque due
to the torsion spring. The typical bifurcation is shown in figure 5.27.

Ms = kθ − k3θ
3

θ

F

F

L

Figure 5.26: Inverted pendulum loaded
by force F .
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Figure 5.27: Load displacement rela-
tion for the inverted pendulum (k3/k =
0.3).
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This similarity suggests that it might be possible to use one of the classical strategies
to tackle branching for non-linear mechanical problems. Therefore a slightly adapted
version of an algorithm from chapter 21 of [29] will be used.

First a curve is computed with a standard path-following algorithm. This will
normally find the easiest solution to compute, therefore in the example above it would
find the x = 0 solution.

Next, the bifurcation point or singular point has to be computed, this can often
be done by starting with the solution from the standard path following approach. A
method to detect this point has been discussed in the previous section (find det(K) =
0), which is equivalent to determining whether the lowest eigenvalue of the coupled
electromechanical stiffness matrix λ is still positive:

Kμ = λμ. (5.96)

If λ equals zero, the bifurcation point is detected. Linear interpolation or some bisection
steps can be included to determine the point more accurately. The corresponding
applied charge (or voltage) and state at this critical point will be defined as Qc and
U c.

Once the eigenvalue is detected it is known that one of the equilibrium paths will
depart in the positive direction of the eigenmode μ and another one in the negative
direction. Thus a logical predictor for an arc-length method that has to follow these
equilibrium paths is:

ΔU 1 = Δlμ. (5.97)

If a monolithic charge loading algorithm is used to trace the curve, the standard
linearized arc-length constraint can be used to find the corresponding charge update
required to find equilibrium at this curve.

dQk+1 = −ΔU kdU s

ΔU kÛ
(5.98)

This Δl is a crucial parameter that determines the size of the first step and therefore
the capability of the algorithm to converge. An initial guess for Δl that works in
practice is:

Δl1 = ±|U c|
|μ| , (5.99)

where U c is the displacement at the critical point. Once the initial step has converged,
the size can be determined with the same formula as the voltage step in equation (5.81).

Because one predicts the first step of the solution with the eigenmode, it is unlikely
that the solution converges back to the unwanted part of the curve that was already
computed by the traditional path following algorithm (the x = 0 solution in the 1D
example). Once far enough away from the bifurcation point, one could switch back to
the original solution method that was used to find the first part of the curve.

The monolithic charge control algorithm for branching can be found in the scheme
of figure 5.28.

5.10 2D FEM with branching

The next example is not used to compare approaches, but to show that these methods
can handle branching as well. The FEM model under investigation is shown in figure
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Next increment

Yes

No

Start increment

Δl F̂ =
[

0 · · · 0 1
]T

Û = K−1F̂

ΔU 1 = Δlμ, ΔQ1 = 0

dU s = K−1
[
F elec(Uk) − F int(Uk)

]

dQk+1 = −ΔUkdUs

ΔUkÛ

dU k+1 = ΔU 1 + dQk+1Û

ΔU k+1 = ΔU k + dU k+1

ΔQk+1 = ΔQk + dQk+1

||dU k+1|| < tol?

U k+1

Figure 5.28: The simple branch switching algorithm.
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Figure 5.29: Beam actuated on two sides.

5.29. The beam is clamped on two sides and actuated with a constant potential V .
The two long sides of the air domain are grounded, the short sides are assumed to have
a zero charge boundary condition.

The beam was assumed to have an elasticity modulus of 1 · 109 Pa and a Poisson’s
ratio of 0.33. The permittivity of the electric air is assumed to be equal to the vacuum
permittivity.

The curve was computed with a hybrid method: staggered charge loading for the
incremental iterations combined with monolithic stiffness matrix evaluation for eigen-
value/eigenmode computation. The resulting curves are shown in figures 5.30 and
5.31.
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Figure 5.30: Potential-displacement
curve for beam.
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Figure 5.31: Charge-displacement
curve for beam.

The ’displacement= 0’ solution was computed by just following the solution with
the staggered charge loaded algorithm. After that the singular point and eigenmode
were determined, which could be used to start the two loops (Δl1 = ±|U c|/|μ|) to
compute the two paths that diverge from the ’displacement= 0’ solution.

Figures 5.32 until 5.34 show deformed shapes and meshes at points A, B and C as
defined in figure 5.30. The color indicates the potential, where the maximum potential
is mentioned in the caption of the figures.
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Figure 5.32: Deformed shape at A, where V = 1.4 · 104.

5.11 Conclusions

A short review of approaches to compute the pull-in curves for electrostatically actuated
microsystems was presented. The methods could be characterized by two character-
istics: the extra constraint on the system needed to make the system solvable and
whether the algorithm was a staggered one or a monolithic one.

There are basically five choices for the constraint:

• Prescribe the applied voltage,

• Prescribe a relation between applied voltage and displacement,

• Prescribe the applied charge,

• Prescribe a relation between applied charge and displacement,

• Prescribe an applied displacement.

The option to prescribe charge had not been reported in literature for numerical simu-
lations, but has been used for control purposes. Of the possible choices the best option
is to prescribe a relation between applied charge and displacement by using the charge
loaded Riks-Crisfield algorithm.

To be able to make a comparison between staggered and monolithic approaches,
the arc-length (Riks-Crisfield) constraint, needed to prescribe a relation between either
voltage or charge and displacement, had to be adapted for staggered usage. Once this
had been implemented the conclusion could be drawn is that for problems that are
mechanically linear the staggered approach is faster, but that for mechanically non-
linear problems, where a dip in the charge displacement curve occurs, the monolithic
method is faster.

It was shown that the approach with a constraint on charge and displacement was
best. However it was not shown which type of constraint work best: the Riks constraint,
the Crisfield constraint or even the normal flow algorithm. A study in that direction
is recommended for future work.

Finally it was shown that branching can be added to these solution algorithms
easily.



124 Computing the Load-Displacement curve

−2 −1 0 1 2 3 4 5 6

x 10
−5

−2

−1

0

1

2
x 10

−5

X

Y

Figure 5.33: Deformed shape at B, where V = 1.45 · 104.
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Figure 5.34: Deformed shape at C, where V = 1.4 · 104V .



Chapter 6

Sensitivity of the pull-in voltage

6.1 Introduction

So far the static responses of structures were computed. However during the design
period of a microsystem the parameters of the design are not yet chosen. This means
that it is interesting to know how the result varies with parameter variations.

Of course it is possible to approximate the sensitivities of global parameters by
finite differences, but that is expensive and not robust, therefore this chapter will
discuss analytic sensitivities. Therefore the derivation is more difficult, but the result
more robust.

This chapter attempts to explain how the sensitivity of the pull-in voltage to a
perturbation of structural parameters for a coupled electromechanical FEM model
can be computed. For that reason it is really necessary to have read section 3.6.4
where the creation of a fully coupled FEM model was discussed. This coupled FEM
formulation will be used in section 6.2 to derive the sensitivity of the pull-in voltage
to a perturbation of a structural mechanic parameter. Section 6.3 shows a new semi-
analytical method to compute the second order sensitivity of the pull-in voltage. Second
order sensitivities are required for second order stochastic analyses, but are also useful
to estimate the accuracy of the first order sensitivities. Finally in section 6.4 a FEM
example is used to test the method.

6.2 Sensitivity of the pull-in voltage

In this section the sensitivity of the pull in voltage to parameter variations will be
derived.1 The derivation is limited to structural parameters such as: the Young’s
modulus, Poisson’s ratio or beam/plate element thicknesses.

It is known that at pull-in the tangent stiffness matrix is singular, therefore the
tangent to the load displacement curve is zero at pull-in, as is illustrated graphically
in figure 6.1. This causes the lowest eigenvalue of the stiffness matrix (λ1) to be zero
at pull-in:

K(UPI , VPI)μ1 = λ1μ1 = 0. (6.1)

The starting point for the derivation of the sensitivity of the pull-in voltage to
a perturbation of a structural parameter p is the definition of the electro mechanic

1This section is inspired by the derivation of the sensitivity of the structural buckling load to
parameter variations presented amongst others in [32, 95].
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Figure 6.1: Pull curves for different elasticity-moduli.

energy. The goal is to see how the pull-in voltage changes when p changes (3.81):

W = Wmech +Welec = W (U , p, V ), (6.2)

the equilibrium equations are in that case defined as:

− ∂W

∂U
= F elec − F int = 0. (6.3)

Because equilibrium has to be satisfied for a model with a perturbed parameter of
p = p+ Δp as well, it is imposed that the derivative of the equilibrium equations with
respect to the Young’s modulus has to be zero as well. So it will be assumed that U (p)
and V (p) are functions of p:

d

dp

(
∂W (U(p), V (p), p)

∂U

)
=
∂2W

∂U 2

dU

dp
+

∂2W

∂U∂V

dV

dp
+

∂2W

∂U∂p
= 0. (6.4)

Because the tangent stiffness is defined as

∂2W

∂U 2 = K, (6.5)

and only the mechanical energy within the internal force depends on p:

∂2W

∂U∂p
= − ∂

∂p

(
F elec − F int

)
=

∂

∂p

(
F int

)
=

∂

∂p

[
Km

uuu
Kφφφ

]
=

[ ∂Km
uu

∂p
0

0 0

]
U =

∂K

∂p
U , (6.6)

equation (6.4) can be simplified as:

d

dp

(
∂W

∂U

)
= K

dU

dp
+

∂2W

∂U∂V

dV

dp
+
∂K

∂p
U = 0. (6.7)
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6.2.1 Matrix sensitivity to mechanical parameters

For structural parameters the term ∂K
∂p

can be derived rather straightforward. If p is

the Young’s modulus it follows from equations (3.93-3.97) that the only entry of p is
found in the Hooke’s matrix C in equation (3.93), therefore the derivative is:

∂K

∂p
=

[ ∂Km
uu

∂p
0

0 0

]
, (6.8)

where:
∂Km

uu

∂p
=

∫
V

BT
u

∂C

∂E
BudV. (6.9)

In the case of linear plane strain, the derivative of the Hooke’s matrix is:

∂

∂E

⎛
⎝ E

(1 + ν)(1 − 2ν)

⎡
⎣ 1 − ν ν 0

ν 1 − ν 0
0 0 1−2ν

2

⎤
⎦
⎞
⎠ =

1

(1 + ν)(1 − 2ν)

⎡
⎣ 1 − ν ν 0

ν 1 − ν 0
0 0 1−2ν

2

⎤
⎦ . (6.10)

Also the other possible structural parameters enter the stiffness matrix trough Km
uu,

therefore the computations are very similar. These matrix derivatives can also be
computed by finite differences, yielding semi-analytical approaches.

Energy derivative with the applied potential

The remaining terms in (6.7) are not trivially computed. Let’s start with equation
(3.82) to derive the term ∂2W

∂U∂V
:

∂

∂V

(
∂W

∂U

)
=

∂

∂V

(
F elec − F int

)
= 0. (6.11)

Since:

F int =

[
Km

uuu
Kφφφ

]
, (6.12)

which does not depend directly on V , the following holds:

∂

∂V

(
∂W

∂U

)
=
∂F elec

∂V
. (6.13)

In the derivation above only the DOFs that are not constrained were considered:
U was only filled with the unconstrained displacements and nodal potentials. Hence
not with the boundary potentials that have a zero or V value. It is possible to include
those DOFs (φ̄) in the derivation:

U tot =

[
U
φ̄

]
=

[
U

1̂V

]
, (6.14)

where:

1̂ =

⎡
⎢⎣

1
...
1

⎤
⎥⎦ . (6.15)
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This will result in the following tangent stiffness definition:

Ktot =

⎡
⎣ Kuu Kuφ Kuφ̄

Kφu Kφφ Kφφ̄

K φ̄u K φ̄φ K φ̄φ̄

⎤
⎦ , (6.16)

which allows for the definition of:

KUφ̄ =
[

KT
φ̄u KT

φ̄φ

]T
. (6.17)

In that case the total energy can be seen as:

W = W (U , φ̄(V ), p), (6.18)

and the energy derivative with U and V as:

∂

∂V

(
∂W

∂U

)
=

∂2W

∂U∂φ̄

∂φ̄

∂V
=

∂2W

∂U∂φ̄

⎡
⎢⎣

1
...
1

⎤
⎥⎦ . (6.19)

It is clear from equation (6.17) that:

∂

∂φ̄

(
F elec

)
=

∂2W

∂U∂φ̄
= −KUφ̄ (6.20)

therefore:
∂

∂V

(
∂W

∂U

)
= −KUφ̄1̂. (6.21)

Finding the pull-in sensitivity by removing the displacement sensitivity

Thus equation (6.4) can be written as:

d

dp

(
∂W

∂U

)
= K

dU

dp
− KUφ̄

⎡
⎢⎣

1
...
1

⎤
⎥⎦ dV
dp

+
∂K

∂p
U = 0, (6.22)

in which all terms are known once the pull-in point has been computed except dV
dp

and dU
dp

. Since the main interested is dV
dp

the complete equation is premultiplied with
the transpose of the first eigenvector μ1. At pull in Kμ1 = 0 and because K is
symmetric also μT

1 K = 0. If equation (6.22) is premultiplied with the pull-in mode
the K ∂U

∂p
term is removed. The resulting equation describes the relation for the voltage

sensitivity such that the perturbed solution is still a pull-in point:

− μT
1 KUφ̄1̂

dV

dp

∣∣∣∣
PI

+ μT
1

∂K

∂p
U |PI = 0, (6.23)

which yields the sensitivity of the pull-in voltage to a variation of the parameter p:

dV

dp

∣∣∣∣
PI

=
μT

1
∂K
∂p

U |PI

μT
1 KUφ̄1̂

. (6.24)
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Because the parameter p is a structural parameter only the mechanical part of K
depends on p, hence the derivative of K times U is simply the derivative of the internal
force vector. Therefore it is possible to write the above equation as:

dV

dp

∣∣∣∣
PI

=
−μT

1
∂F int

∂p

μT
1

∂Felec

∂V

, (6.25)

which is very similar to the traditional definition of sensitivity of the limit point buck-
ling load [32, 95] and equal to the pull-in sensitivity computed in [78].

Computing the pull-in displacement sensitivity

If dU
dp

needs to be computed it can be computed with equation (6.22) in which all terms

are known once dV
dp

∣∣∣
PI

is known:

dU

dp

∣∣∣∣
PI

= −K−1

(
−KUφ̄1̂

dV

dp

∣∣∣∣
PI

+
∂K

∂p
U |PI

)
. (6.26)

Although K is singular, the right-hand side of the equation above is forced to be
orthogonal to μ1 by equation (6.23), therefore a solution should exist.

The problem is that for any constant c the derivative dU
dp

∣∣∣
PI

= dU
dp

∣∣∣
PI

+ cμ1 will

satisfy equation (6.22). A more robust approach in this case is to use a semi-analytical

approach and compute dU
dp

∣∣∣
PI

by finite differences:

dU

dp

∣∣∣∣
PI

≈ ΔU

Δp

∣∣∣∣
V =constant

+
ΔU

ΔV

∣∣∣∣
p=constant

dV

dp

∣∣∣∣
PI

. (6.27)

This requires two more incremental steps to compute the two extra points required
for the finite differences, causing extra computation time. However since no new pull-in
point has to be computed a very expensive zero finding algorithm is not needed. When
dU
dp

∣∣∣
PI

is approximated by finite differences directly, two actual pull-in points have to

be computed hence it is more expensive.

6.3 Second order sensitivity of the pull-in voltage

The next step is to compute the second order sensitivity of the pull-in voltage to the
parameter p:

d2V

dp2

∣∣∣∣
PI

. (6.28)

The simplest approach is to differentiate equation (6.24) with p:

d2V

dp2

∣∣∣∣
PI

=
μT KUφ̄1̂ · d

dp

(
μT

1
∂K
∂p

U
)

(
μT

1 KUφ̄1̂
)2 −

d
dp

(
KUφ̄1̂

)
μT

1
∂K
∂p

U(
μT

1 KUφ̄1̂
)2 . (6.29)

Basically there are two unknown terms in this equation:

A =
d

dp

(
μT

1

∂K

∂p
U

)
, (6.30)
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and:

B =
d

dp

(
μT

1 KUφ̄1̂
)
. (6.31)

Working out A

If the first term A is worked out, one finds (remember that K = K(U , p, V )):

A =
dμT

1

dp

∂K

∂p
U + μT

1

[
∂K

∂p
+

∂2K

∂p∂U
U

]
dU

dp

+ μT
1

∂2K

∂p2
U + μT

1

∂2K

∂V ∂p

dV

dp
U

∣∣∣∣
PI

. (6.32)

Some of the terms in the equation above can be eliminated because they are zero:

∂2K

∂V ∂p
= 0, (6.33)

because ∂K
∂p

only depends on Km
uu which does not depend on the applied voltage V , as

was shown in section 6.2. The same section showed that for a linear elastic material
model ∂K

∂p
does not depend on U , hence:

∂2K

∂U∂p
= 0, (6.34)

and if the parameter p is the Young’s modulus also

∂2K

∂p2
= 0, (6.35)

however for other mechanical parameters, this is not the case. When for instance
the sensitivity to variations of the beam thickness h is determined, the term ∂K

∂h
does

depend on beam thickness h, though computation of ∂2K
∂h2 is not too difficult in that

case. Therefore equation (6.32) will be written as:

A =
dμT

1

dp

∂K

∂p
U + μT

1

∂K

∂p

dU

dp
+ μT

1

∂2K

∂p2
U . (6.36)

where the computation of μ
dp

will be discussed later.

Working out B

The second term B can be written as:

B =
dμT

1

dp
KUφ̄1̂ + μT

1

∂KUφ̄

∂U

dU

dp
1̂ + μT

1

∂KUφ̄

∂V

∂V

∂p
1̂

∣∣∣∣
PI

+ μT
1

∂KUφ̄

∂p
1̂. (6.37)

One term can be removed from this equation. Since there are no imposed non-zero
displacements in the problem KUφ̄ does not contain any terms that are part of Km

uu,
hence:

∂KUφ̄

∂p
= 0, (6.38)



6.3 Second order sensitivity of the pull-in voltage 131

which reduces equation (6.37) to:

B =

(
dμT

1

dp
KUφ̄ + μT

1

∂KUφ̄

∂U

dU

dp
+ μT

1

∂KUφ̄

∂V

∂V

∂p

)∣∣∣∣
PI

1̂. (6.39)

Basically most terms in the equations above are known or already computed during

the computation of dV
dp

∣∣∣
PI

. The only remaining unknowns are:
∂KUφ̄

∂V
,

∂KUφ̄

∂U
and

dμT
1

dp
.

6.3.1 Matrix sensitivity with the potential

The computation of
∂KUφ̄

∂V
is not difficult, since the boundary potential is only explicitly

present in Ke
uu and Kuφ. Therefore the derivative of these matrices with respect to φ̄

can be found easily.

6.3.2 Matrix sensitivity with the total state vector

The computation of
∂KUφ̄

∂U
is more difficult, but this derivation can be split into a

derivation with u and a derivation with φ. Determining
∂KUφ̄

∂φ
is straightforward,

because the constituent sub–matrices of KUφ̄ depend directly on φ.

Determining
∂KUφ̄

∂u
is slightly more difficult. Note that in the mechanically linear

case Km
uu does not depend on u, but the other matrices (Ke

uu, Kuφ and Kφφ) depend
on u trough the shape functions that depend on the position of the electric nodes.
However, only the structural displacements of the interface ui have an influence on the
position of the electric nodes. Moreover a change in position of the internal nodes of
the electric domain should have no influence on the electric solution, theoretically only
the boundary nodes determine the solution. Therefore:

∂KUφ̄

∂u
=
∂KUφ̄

∂xi

∂xi

∂ui

. (6.40)

The interface positions are simply the initial interface positions plus the structural
displacements:

xi = x0
i + ui, (6.41)

thus:
∂xi

∂ui

= 1, (6.42)

and:
∂KUφ̄

∂u
=
∂KUφ̄

∂xi

, (6.43)

which can be differentiated analytically with relative ease.

6.3.3 Sensitivity of the pull-in mode

The last term required for B that has to be computed is dμ1

dp
. An important character-

istic of an eigenvalue is that the following equation always holds: [45, 93]:

(K − λiI) μi = 0, (6.44)
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hence:
d

dp
((K − λiI) μi) = 0, (6.45)

which gives:

(K − λiI)
dμi

dp
= −

(
dK

dp
− dλi

dp
I

)
μi. (6.46)

It is known that K is symmetric and real, therefore

μT
i ((K − λiI) = 0 (6.47)

as well. In other words, there is no distinction between a left and a right eigenvector.
Furthermore, since the sensitivity of μi while remaining on pull-in is of interest, the
eigenvalue λi must remain zero, hence the sensitivity dλi

dp
must be 0. Therefore (6.46)

simplifies to:

(K − λiI)
dμi

dp
= −

(
dK

dp

)
μi, (6.48)

which is rank deficient, but the equations are consistent, since the right-hand side of
the equation is orthogonal to the eigenvector. It is possible to write dμi

dp
as:

dμi

dp
=

n∑
r=1

γrμr, (6.49)

which after substitution into equation (6.48) gives:

γr = −
μT

r

((
dK
dp

)
μi

)
(λr − λi)

. (6.50)

It is obvious that this equation cannot be used to determine γi because the denominator
is zero for r = i. The sum can therefore only be written as:

dμi

dp
=
∑
r �=i

γrμr + γiμi = V i + γiμi. (6.51)

The coefficient γi can be determined by explicitly stating that the eigenmode is nor-
malized (μT

i μi = 1). Differentiating this normalization constraint gives:

d

dp

(
μT

i μi = 1
)
. (6.52)

2μT
i

dμi

dp
= 0. (6.53)

If equation (6.51) is substituted into equation (6.53) the result can be used to determine
γi:

γi = −μT
i V i. (6.54)

This procedure is rather expensive because all eigenvectors have to be known, which
is nearly impossible for large systems. In 1976 Nelson proposed an alternative method
which does not require the computation of all eigenvectors [93]. He showed that by
removing one DOF from the rank n − 1 system (6.48) it is possible to compute the
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non-homogeneous part of the solution V i without the need to compute all eigenvectors.
When starting with:

(K − λiI)
dμI

dp
= R, (6.55)

where R denotes the right-hand side of equation (6.48), it is possible to remove the
equation k: ⎡

⎣ (K − λiI)11 0 K13

0 1 0
K31 0 (K − λiI)33

⎤
⎦ =

⎡
⎣ V 1

Vk

V 3

⎤
⎦ =

⎡
⎣ R1

0
R3

⎤
⎦ . (6.56)

This gives the proper vector V for determination of the derivative of μi only if the kth

value of μi is not zero.

Total matrix derivative with a parameter

To be able to determine the derivative of the eigenmode the total derivative of the
stiffness matrix K with p has to be known. The derivative of the stiffness matrix with
p can be written as:

dK

dp
=

(
∂K

∂p
+
∂K

∂U

dU

dp
+
∂K

∂V

dV

dp

)∣∣∣∣
PI

, (6.57)

in which the only unknowns are: ∂K
∂U

and ∂K
∂V

which can be computed as has been
explained above for the computation of the derivatives of KUφ̄. Therefore all unknowns

to compute A and B, hence d2V
dp2 can be computed. Because the derivative of the state

vector with p: dU
dp

was determined with a semi-analytical method, this derivation of
d2V
dp2 does not give an analytical, but a semi-analytical sensitivity.

Second order sensitivities with multiple parameters

When it is assumed that there are multiple parameters pi, there is no longer a single
sensitivity. In that case the second order sensitivity becomes a Hessian matrix:

H =

[
d2V

dpidpj

]
. (6.58)

6.4 2D FEM test case

The sensitivities of a 2D FEM model will be discussed in this section. The computed
analytical sensitivities will be compared with finite difference approximations. First
the electric part of the simple model is described, thereafter the mechanical part and
finally the results are discussed.

6.4.1 The electric domain

The initial domain shown in figure 6.2 is very simple.2 The electric domain is the
blue gap under the beam. Only the actuated electrode at the top can deform. The

2For more detail about this test case see chapter 4.
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Figure 6.2: Simple beam.

permittivity of the structure is equal to the vacuum permittivity of: ε0 = 8.8541·10−12.
On the sides, where there are no electrodes, the symmetry boundary condition or zero
charge condition is applied.

6.4.2 The mechanical domain

The mechanical domain is the gray beam shown in figure 6.2 is almost as simple as the
electric domain. It is a beam clamped on both sides. The electrostatic pressure acts
on the bottom side of the beam, which corresponds to the top electrode of the electric
domain. The mechanical domain is modeled with beam elements.

Table 6.1: Summary of the material properties.
Air gap

Property Symbol Value Units
Electric permittivity ε 8.8541 · 10−12 F/m

Structure
Property Symbol Value Units

Elasticity modulus E 1 · 105 Pa

Beam thickness h0 4 · 10−6 m

6.4.3 Results

In this section the sensitivities for parameter variations where all element parameters
change together will be computed and validated first. Secondly the sensitivities for
individual element changes will be computed and validated.

Constant beam properties

Once the pull-in voltage and the corresponding displacement have been determined,
the value of the sensitivity of the pull-in voltage to perturbations of the thickness can
be computed numerically with the approach presented in section 6.2:

dV

dh

∣∣∣∣
PI

= 1.6462 · 107 V/m. (6.59)
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Figure 6.3: Convergence of the finite difference approximation to the analytical solution
for the first order sensitivity.

Another way to compute the sensitivity is by a finite difference approximation.
The pull-in voltage is computed for a model where h = h0 + 1

2
Δh and one where

h = h0 − 1
2
Δh , in that case the approximation of the sensitivity is:

dV

dh

∣∣∣∣
PI

≈ VPI(h = h0 + 1
2
Δh) − VPI(h = h0 − 1

2
Δh)

Δh
. (6.60)

The approximation with a perturbation of Δh = 4 · 10−8m is:

ΔV

Δh

∣∣∣∣
PI

= 1.6462 · 107 V/m, (6.61)

which is equal to the approach of section 6.2, indicating that this approach is a correct
method to compute the sensitivity. This is confirmed by the result in figure 6.3 which
shows that the finite difference result converges to the analytical solution when the
thickness increment decreases. It converges from above until the increment is smaller
than 4% of the original thickness. At that point errors due to the tolerances on the
pull-in determination start dominating the accuracy. This tolerance cannot be set to
tight due to time limitations.

Using the same approach an accuracy estimate of the second order sensitivity can be
made. Once the pull-in voltage and the corresponding displacement have been deter-
mined, the value of the second order sensitivity of the pull-in voltage to perturbations
of the thickness can be computed numerically with the approach presented in section
6.3:

d2V

dh2

∣∣∣∣
PI

= 2.0537 · 1012 V/m2. (6.62)
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Figure 6.4: Convergence of the finite difference approximation to the semi-analytical
solution for the second order sensitivity.

The approximation with finite difference is computed as follows: the pull-in voltage is
computed for a model where h = h0 + 1

2
Δh one where h = h0 − 1

2
Δh and one where

h = h0, next the approximation of the second order sensitivity is derived with:

d2V

dh2

∣∣∣∣
PI

≈ VPI(h = h0 + 1
2
Δh) − 2VPI(h = h0) + VPI(h = h0 − 1

2
Δh)

(1
2
Δh)2

. (6.63)

The approximation with a perturbation of 0.02 · 105 Pa is:

Δ2V

Δh2

∣∣∣∣
PI

= 2.0577 · 1012 V/m2, (6.64)

The match is slightly worse than the match for the first order sensitivity. But that can
be explained by the fact that finite difference computation converges a bit slower, but
also by the fact that ∂2VPI

∂h2 was computed semi -analytically. The convergence of the
finite difference approximation to the semi-analytical solution is illustrated in figure
6.4.

The results above were computed with a 6 by 18 mesh, thus 18 beam elements and
108 electrostatic elements. Using a 4 by 12 mesh the results are:

dV

dh

∣∣∣∣
PI

= 1.6519 · 107 V/m, (6.65)

and
d2V

dh2

∣∣∣∣
PI

= 2.0618 · 1012 V/m2, (6.66)

therefore the mesh was already converged. And from this point onwards a 4 by 12
mesh is used. Note that for this mesh pull-in is 44.05V .
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For the same mesh also the sensitivities with respect to the elasticity modulus can
be determined:

dV

dE

∣∣∣∣
PI

= 2.20 · 10−4 V/Pa, (6.67)

and:
d2V

dE2

∣∣∣∣
PI

= −1.10 · 10−9 V/Pa2, (6.68)

These values are completely different and incomparable due the fact that the units
are completely different. A better way of comparing both sensitivities is by looking at
the logarithmic sensitivity:

d log(V )

d log(p)

∣∣∣∣
PI

=
p

V

dV

dp

∣∣∣∣
PI

, (6.69)

If this value is bigger than 1 the response is sensitive to that parameter, if the value
is smaller than one, the response is not sensitive. For the Young’s modulus and the
thickness these values are:

d log(V )

d log(h)

∣∣∣∣
PI

= 1.5, (6.70)

and
d log(V )

d log(E)

∣∣∣∣
PI

= 0.5. (6.71)

Therefore the pull-in voltage is more sensitive to thickness variations.

Distributed beam properties

If not only the sensitivity with respect to the global thickness is of interest, but also
the sensitivities with respect to individual element thicknesses, these can be computed.
In that case the gradient will be defined as:

∂V

∂hi

∣∣∣∣
PI

, (6.72)

and the Hessian as:
∂2V

∂hi∂hj

∣∣∣∣
PI

. (6.73)

These are computed with the 12 by 4 element mesh for the electrostatics and the 12
element mesh for the beam. Hence the Hessian (6.73) is a 12 by 12 matrix and the
gradient (6.72) a vector with 12 elements.

The gradient can also be computed with finite differences, which is computationally
expensive. Figure 6.5 gives the gradients with finite differences and the analytical
method. They compare very well, actually no difference is seen. The black line giving
the finite difference solution is behind the dashed red line that gives the analytical
solution. What is clear from this figure is that the beam is very sensitive to thickness
variations on those points were the beam undergoes a large bending strain, thus at the
points with the highest bending stresses. This seems to comply with intuition.

Another test is to projecting the gradient and the Hessian on the following uniform
perturbation mode:

T = [ti], (6.74)
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Figure 6.5: Gradient computed with the analytical method and with finite differences.

where:
ti = 1. (6.75)

So T is a column of ones. In that case we know that if we project the gradient on this
uniform perturbation mode we should find the derivative of the pull in voltage with
respect to the uniform perturbation of the thickness:

dV

dh

∣∣∣∣
PI

= T T ∂V

∂h

∣∣∣∣
PI

= ti
∂V

∂hi

∣∣∣∣
PI

. (6.76)

Similarly:
d2VPI

dh2

∣∣∣∣
PI

= T T ∂
2V

∂h2 T

∣∣∣∣
PI

= ti
∂V

∂hi∂hj

tj

∣∣∣∣
PI

. (6.77)

In both cases the algorithm provides the correct values.

6.5 Conclusions

An analytical approach has been presented to compute the sensitivity of the pull-in
voltage to variations of structural parameters for numerical models. With this approach
it is possible to compute the sensitivity without having to compute the pull-in curve
twice, such as with finite difference approximations. Also the sensitivity to variations
of the electric permittivity can be determined using this approach.

A semi-analytical approach has been presented for second order sensitivities. With
this approach it is possible to compute the second order sensitivity without having to
compute the pull-in curve three times, as required with finite difference approximations.
However it does need two extra incremental steps to find a proper approximation of
the pull-in state vector sensitivity.

It was shown that the approach yields the same results as finite difference approx-
imations for a simple FEM model.



Chapter 7

Stochastic analysis of pull-in

7.1 Introduction

So far all geometry and material parameters were known or at least assumed to be
known. In MEMS design that is rarely the case. Thicknesses regularly depend on
processing and can be different for each wafer or even for each individual device on the
wafer or within a device. Similarly the Young’s modulus is an uncertain value at these
scales. These variations are rather random. Hence the response of the device is often
random.1

Suppose that one can estimate the statistical properties of the thickness variations
due to processing. In that case it would be useful to predict the statistical distribution
of the pull-in voltage. Of course one can just generate a lot of different random thick-
nesses with the correct statistical distribution, compute the pull-in voltage for each
of them and analyze the data set. However this Monte Carlo simulation is extremely
expensive.

A sensitivity analysis was performed in the previous chapter. With this sensitiv-
ity analysis more efficient methods are available for estimating the pull-in statistics:
Stochastic Finite Element Methods [49, 116]. In this chapter these methods will be used
to estimate the statistical properties of pull-in. First random variables and Stochastic
FEM will be introduced, after which the techniques will be applied to the microbridge
model.

7.2 Random numbers and Stochastic FEM

7.2.1 Random variables

Stochastic FEM starts with the assumption that some properties are random. In this
work random numbers are indicated by a tilde, thus parameter p̃ is random and p is a
specific realization of that parameter.

Normally a random variable is characterized by its probability distribution function
Fp(p) that gives the probability that p̃ ≤ p. Similarly the probability density function
fp(p) gives the probability that p̃ is in the interval [p, p + dp]. Hence the distribution

1This chapter is the result of a collaboration with C. Verhoosel.
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and density are related by:

Fp(p) =

∫ p

−∞
fp(p̃)dp̃. (7.1)

These functions fully describe the random variable but are often very difficult to
obtain. Easier variables to work with are the mean, which is the expectation of a
variable:

μp = E[p̃] =

∫ ∞

−∞
pfp(p)dp, (7.2)

and the variance, which is the expectation of the square of the deviation of p̃ from the
mean value:

Σpp = E[(p̃− μp)
2] = V ar[p̃] =

∫ ∞

−∞
(p− μp)

2fp(p)dp. (7.3)

The variance has a different dimension from the mean, therefore it is sometimes con-
venient to use the standard deviation:

σp =
√

Σpp. (7.4)

A non-dimensional measure of the deviation is the coefficient of variation:

Vp =
σp

μp

. (7.5)

Often there is more than one random variable within a model. In that case there is
another important characterization required: the statistical dependency of one variable
on the other, the covariance:

Σpipj
=

∫ ∞

−∞

∫ ∞

−∞
(pi − μpi

)(pj − μpj
)fpipj

(pi, pj)dpidpj. (7.6)

Often the mean and (co)variances provide enough information to study the prop-
agation of statistical properties through the FEM models. However if it is required
to assume a specific distribution for p̃ it is assumed that the input distribution is a
normal (or Gaussian) distribution. In that case the probability density function is:

fp(p) = μp + σp
1√
2π
e

(
−p2

2

)
. (7.7)

The probability density function of a normal distribution with μp = 0 and σp = 1
is shown in figure 7.1. The normal distribution assumes that most realizations are
centered around the mean, which has frequently been seen in nature.

When a random field is used it is assumed that the parameter of interest is a function
of location: p̃ = p̃(x). Of course in a FEM setting this field has to be discretized. In
this work the Midpoint method will be used for random field discretizaton. In that case
it is assumed that within an element the parameter is uniform and equal to the value
at the center of the element. This means that there are n different random parameters
p̃j, which can be written as a vector p̃. It is assumed that all elements have the same
μpj

= μp and σpj
= σp. However, also the dependency of the elements on each other

has to be decided. Of coarse this has to be in line with experience. But care has to
be taken, because when it is assumed that all p̃j are totally unrelated, the problem
becomes mesh dependent. Therefore it is assumed that:

Σpipj
= σ2

pe

(
− (xi−xj)2

l2c

)
, (7.8)
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Figure 7.1: Normal distribution

where lc is a correlation length, which can be determined from experiments or literature.
Basically a random field discretization is required when the device on the wafer is

big compared to the wafer size. In that case properties tend to vary within the device.

7.2.2 Uncertainty analysis

To estimate the propagation of the uncertainty of a parameter p̃ to a certain output
property, the perturbation technique is used. Let’s assume that this output variable of
interest is w(p). In that case the Taylor expansion of w with respect to the expectation
of p̃ is in matrix vector notation:

w(p) = w(μp) +
∂w

∂p
(p − μp) +

1

2
(p − μp)

T ∂
2w

∂p2
(p − μp) + . . . . (7.9)

However for the next step index notation will be more convenient:

w(p) = w(μp) +
∂w

∂pi

(pi − μpi) +
1

2
(pi − μpi)(pj − μpj)

∂2w

∂pi∂pj

+ . . . , (7.10)

When higher order terms are neglected the expectation of w(p) or μw can be written
as:

μw = E

[
w(μp) +

∂w

∂pi

(pi − μpi) +
1

2
(pi − μpi)(pj − μpj)

∂2w

∂pi∂pj

]
=

w(μp) +
1

2
Σpipj

∂2w

∂pi∂pj

, (7.11)

due to the fact that the expectation of (pi −μpi) is zero and that of (pi −μpi)(pj −μpj)
is Σij. Similarly the variance of w̃ is:

Σww = E[(w(p̃) − μw)2] =
∂w

∂pi

Σpipj

∂w

∂pj

. (7.12)



142 Stochastic analysis of pull-in

The connection between logarithmic sensitivities and uncertainty analysis

The usefulness of logarithmic sensitivities to compare sensitivities for different param-
eters can be explained from a stochastic point of view. Consider the 1D version of
equation (7.12):

σ2
w =

(
∂w

∂p

)2

σ2
p, (7.13)

and remember that the coefficient of variation was defined as:

Vw =
σw

μw

. (7.14)

This means that (7.13) can be written as:

V 2
wμ

2
w =

(
∂w

∂p

)2

V 2
p μ

2
p, (7.15)

which defines the coefficient of variation as:

Vw =
μp

μw

∂w

∂p
Vp. (7.16)

If the second order effect on the output mean is neglected this can be written as:

Vw =
μp

μw

∂w

∂p
Vp =

∂ log(w)

∂ log(p)
Vp, (7.17)

Hence the uncertainty analysis explains why the logarithmic sensitivity as defined in
the previous chapter is such a good method to compare sensitivities to very different
variables. Basically a logarithmic sensitivity gives the linearized relation between the
non-dimensional input and output uncertainties.

7.2.3 Reliability analysis

The approach above can be used to compute the output uncertainty based on an input
uncertainty. But it does not provide an accurate measure of the chance of failure.
However, a perturbation based approach can be used to determine that measure as
well.

Often design fails if w̃ is bigger or smaller than a critical value wc. In that case w̃
should not exceed wc. If a limit state function is defined:

g̃ = wc − w̃, (7.18)

the chance on failure can be defined as:

Pr[g̃ > 0]. (7.19)

Only 1 random variable

It is assumed that p̃ can be written as:

p̃ = μp + σpz̃, (7.20)
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where z̃ is the standard normal distribution (μz = 0, σz = 1). Further more zc is
defined as:

wc = w(zc). (7.21)

In that case the chance on failure is:

Pr[z̃ < zc] = fp(zc) =

∫ zc

−∞

1√
2π
e

(
−z2

2

)
dz (7.22)

where equation (7.7) was used. Therefore only the value zc has to be computed, also
known as the design point.

A Newton algorithm seems to be best for that in 1D. Therefore an initial z0 is
chosen, which is used to compute the initial estimate of the output w0(z0). This can
be used to compute the update for the Newton procedure using:

Δzk = (wc − wk−1)
∂z

∂w

∣∣∣∣
zk−1

, (7.23)

where: (
∂z

∂w

)−1

=
∂w

∂p

∂p

∂z
=
∂w

∂p
σp. (7.24)

Multiple random variables

When there are multiple variables present in the model, as is the case for a discretized
random field, it is assumed that that:

p̃ = μp + Gz̃, (7.25)

where G is a transformation matrix which is related to the covariance by:

GGT = Σpp. (7.26)

When this equation is written in terms of the columns of G, gi, it becomes:

Σpp = GGT = gig
T
i , (7.27)

where it should be noted that Einstein’s summation convention is used throughout the
document. To compute the gi the problem is rewritten as the following eigenvalue
problem, where the λi are the eigenvalues of Σpp:

Σppgi = λigi, (7.28)

gT
i gi = λi. (7.29)

In these two equations no summation over double indexes should be performed.
The Newton algorithm cannot be used for multiple random variables because g̃ =

wc − w̃ = 0 does not define enough equations to solve for the design point. However
for multiple random variables it is still assumed that:

g̃ = wc − w̃, (7.30)

but g̃ linearized around the most critical point zc. This most critical point is that
realization z for which g(z) = 0 and the norm ‖z‖ reaches a minimum. Therefore it
the most likely realization of the many realizations that satisfy g(z) = 0.
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The used linearization is:
ḡ = αizi + β. (7.31)

where ‖α‖ = 1. Thus once zc is computed, this provides β = −‖zc‖ and:

Pr[ḡ < 0] =

∫ β

−∞

1√
2π
e

(
−x2

2

)
dx. (7.32)

Therefore the only remaining problem is the computation of zc. This is more
difficult than in the 1D case, hence in the reference used throughout this chapter
[49] it is recommended to use the Hasofer-Lind-Rackwitz-Fiessler algorithm. This is a
standard algorithm for constrained optimization, which can be used because finding the
most likely realization under certain conditions is essentially an optimization problem.
The goal is to optimize: {

minimize ‖z‖
with constraint ḡ(z) = 0

. (7.33)

This can be done by starting with a guess z0:

zT
k =

∂gk−1

∂z
zk−1 − gk−1∥∥∥∂gk−1

∂z

∥∥∥2

∂gk−1

∂z
, (7.34)

where the derivative of g is defined as follows:

∂g

∂z
= −∂w

∂z
= −∂w

∂p

∂p

∂z
, (7.35)

where:
∂p

∂z
= G. (7.36)

The shape of zc provides some extra information. As mentioned it gives the most
critical perturbation of p, thus it gives the most likely failure mode. Therefore elements
with a high zc should be handled with care.

7.3 Uniform microbridge

This section will treat the uniform bridge as shown in figure 7.2. It is meshed with 4
by 12 elements (12 beam elements, 48 electrostatic elements). The material properties
are those in table 7.1. It is assumed that Ẽ or h̃ can be stochastic, but are uniform
within the beam.

7.3.1 Uncertainty analysis

Young’s modulus

The sensitivities of the pull-in voltage with respect to the elasticity modulus are:

∂VPI

∂E
= 2.20 · 10−4 V/Pa, (7.37)
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Figure 7.2: Simple beam.

Table 7.1: Summary of the material properties.
Air gap

Property Symbol Value Units
Electric permittivity ε 8.8541 · 10−12 F/m

Structure
Property Symbol Value Units

Elasticity modulus μE 1 · 105 Pa

Beam thickness μh 4 · 10−6 m

and:
∂2VPI

∂E2
= −1.10 · 10−9 V/Pa2, (7.38)

The elasticity modulus is assumed to have a mean value of μE = 1 · 105 Pa and a
coefficient of variation of VE = 0.1, which gives a standard deviation of σE = 1 ·104 Pa.

Using the second order perturbation method the mean of the pull-in voltage would
be:

μVPI
= VPI(μE) +

1

2
σ2

E

∂2VPI

∂E2
(μE) = 44.05 − 0.05 = 44.0V. (7.39)

Notice the small influence of the second order term.
Using the first order perturbation method the standard deviations is computed:

σVPI
=

√(
∂VPI

∂E
(μE)

)2

σ2
E = 2.20V. (7.40)

Therefore the coefficient of variation is:

VVPI
=
σVPI

μVPI

= 0.05, (7.41)

hence the device filters some of the statistical variation in the elasticity modulus.
The same values can also be estimated by a crude Monte Carlo simulation. The

most expensive part of the perturbation technique is the pull-in point determination,
which takes about 90% of the time. A Monte Carlo simulation starts with creating a
sample of N different Young’s moduli. This sample is constructed such that the mean



146 Stochastic analysis of pull-in

of this sample is equal to 1 · 105 and the standard deviation 1 · 104. Subsequently there
are N different pull-in voltages computed. And the mean and standard deviation of
this set are determined. Hence the computation time is in the order of N times longer
than the perturbation based computation.
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Figure 7.3: Convergence of the mean
with sample size (random elasticity).
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dard deviation with sample size (ran-
dom elasticity).

The convergence rate of the mean value and standard deviation with respect to
sample size is shown in figures 7.3 and 7.4. From this figure it is clear that the values
have not converged for a sample ofN = 1000. Consider the computation time! However
it is possible to conclude that the first three significant digits of the values are:

μVPI
= 43.9V, (7.42)

σVPI
= 2.10V, (7.43)

VVPI
= 0.0478. (7.44)

Hence the perturbation approach is very accurate. The second order approach improves
the already accurate first order approach slightly.

Thickness

The sensitivities of the pull-in voltage with respect to the thickness are:

∂VPI

∂h
= 1.6519 · 107 V/m, (7.45)

and:
∂2VPI

∂h2
= 2.0618 · 1012 V/m2, (7.46)

The thickness is assumed to have a mean value of μh = 4 · 10−6 and a coefficient of
variation of Vh = 0.1, which gives a standard deviation of σh = 4 · 10−7.

Using the second order perturbation method the mean of the pull-in voltage will
be:

μVPI
= VPI(μh) +

1

2
σ2

h

∂2VPI

∂h2
(μh) = 44.05 + 0.16 = 44.22V. (7.47)

Notice the influence of the second order term. It is still very small, but bigger than
the influence of the second order term for the elasticity modulus computations. This
is logical, because the stiffness matrix depends linearly on the elasticity modulus and
cubically on the thickness.
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Using the first order perturbation method the standard deviations is computed:

σVPI
=

√(
∂VPI

∂h
(μh)

)2

σ2
h = 6.61V, (7.48)

thus the coefficient of variation is:

VVPI
=
σVPI

μVPI

= 0.15, (7.49)

hence the device amplifies some of the statistical variation in the thickness. Therefore
the device amplifies thickness variations and decreases elasticity variation. This is
consistent with the logarithmic sensitivity analysis in the previous chapter.

These numbers were validated with a Monte Carlo simulation as well. This time the
sample size was much bigger N = 18750, providing the following statistical moments:

μVPI
= 44.29V, (7.50)

σVPI
= 6.64V, (7.51)

VVPI
= 0.15. (7.52)

The results are very close to the perturbation approach. From figures 7.5 and 7.6 it
can be seen that the mean and standard deviation have converged well.
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Figure 7.5: Convergence of the mean
with sample size (random thickness).
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Figure 7.6: Convergence of the stan-
dard deviation with sample size (ran-
dom thickness).

7.3.2 Reliability analysis

For such a electro-mechanically coupled device there are basically two operation op-
tions: (a) it is designed to operate within the stable region or (b) it is designed to
switch at a certain potential. In case a the device fails if the pull-in voltage is to low,
in case b the device fails if the pull-in voltage is to high. In this section the probability
that pull-in voltage is lower than 41 (case a) and that it is higher than 46.5 (case b)
will be investigated.

Young’s modulus

For case a the 1000 realizations Monte Carlo approach gave a failure chance of:

Pr[VPI < 41] = 0.088, (7.53)
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which was easily computed: divide the number of realizations that gave a voltage below
the critical voltage by the total sample size. With the sensitivity based approach, which
required 4 function and derivative evaluations only, the chance was:

Pr[VPI < 41] = 0.091, (7.54)

which is rather close. Note that with 1000 realizations, the Monte Carlo analysis is not
very accurate as can be seen from figure 7.7.
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Figure 7.7: Convergence of the failure
chance with sample size (case a, ran-
dom elasticity).
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Figure 7.8: Convergence of the failure
chance with sample size (case b, ran-
dom elastictiy).

For case b the 1000 realizations Monte Carlo approach gave a failure chance of:

Pr[VPI > 46.5] = 0.1060. (7.55)

The sensitivity based approach, which again required 4 function and derivative evalu-
ations, the chance was:

Pr[VPI > 46.5] = 0.1266, (7.56)

which is less good. This is explained by the small number of Monte Carlo attempts.

Thickness

For case a the 18750 sample size Monte Carlo approach gave a failure chance of:

Pr[VPI < 41] = 0.317. (7.57)

With the sensitivity based approach which only required 4 function and derivative
evaluations the chance was:

Pr[VPI < 41] = 0.320, (7.58)

which is rather close. Here with the 17500 sample size it is safe to assume that the
Monte Carlo method has converged.

Similarly for case b Monte Carlo approach gave a failure chance of:

Pr[VPI > 46.5] = 0.366. (7.59)



7.4 Random field discretization 149

The sensitivity based approach the chance was:

Pr[VPI > 46.5] = 0.357, (7.60)

which required 4 function evaluations. The match between the numbers is good. The
quality of the Monte Carlo analyses can be estimated from the convergences in figures
7.9 and 7.10, which due to the large number of realizations shows a much better
convergence than the elasticity computations. This also explains the better validation
of the thickness failure chance compared with the elasticity computation.
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Figure 7.9: Convergence of the failure
chance with sample size (case a, ran-
dom thickness).
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Figure 7.10: Convergence of the failure
chance with sample size (case b, ran-
dom thickness).

7.4 Random field discretization

For a lot of MEMS type applications the randomness cannot be assumed to be uniform
within a device. Grain sizes can be in the order of the characteristic length of the device,
hence young’s modulus variations can be very big within the device. Therefore, often
the properties have to be described by a random field. In that case the correlation
length of the field depends on the grain sizes and their distribution.

7.4.1 Uncertainty analysis

Young’s modulus

The random properties of Ẽ are: μE = 1 · 105m, σE = 1 · 104m and VE = 0.1. The
correlation length is one third of the beam length: 15 · 10−6m.

Using the perturbation approach this yields:

μVPI
= VPI(μh) +

1

2
ΣEiEj

∂2VPI

∂Ei∂Ej

= 44.05 − 0.056 = 44.00V, (7.61)

for the mean value and for the standard deviation the perturbation approach yields:

σVPI
=

√
∂VPI

∂Ei

Σhihj

∂VPI

∂Ej

= 1.44V, (7.62)

hence the coefficient of variation is:

VVPI
= 0.033. (7.63)
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A Monte Carlo simulation with 4638 random evaluations gave the following statis-
tical properties:

μVPI
= 43.98V, (7.64)

σVPI
= 1.44V, (7.65)

VVPI
= 0.033. (7.66)

These numbers are really close. From figure 7.11 it can be seen that the mean value,
as computed with the Monte Carlo simulation, has definitely converged to 44.0 if one
is interested in 3 significant digits. The standard deviation that is presented in figure
7.12 is less well converged, but seems to be within the bandwidth 1.4 - 1.5.
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Figure 7.11: Convergence of the
mean with sample size (random
elasticity field).
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Figure 7.12: Convergence of the
standard deviation with sample
size (random elasticity field).

Thickness

The perturbation approach was also performed for variations in the thickness. The
used random properties of h̃ are: μh = 4 · 10−6m, σh = 4 · 10−7m and Vh = 0.1. The
used correlation length is one third of the beam length as well: 15 · 10−6m.

With the perturbation approach the mean pull-in voltage is computed to be:

μVPI
= VPI(μh) +

1

2
Σhihj

∂2VPI

∂hi∂hj

= 44.05 + 0.16 = 44.21V, (7.67)

and the standard deviation:

σVPI
=

√
∂VPI

∂hi

Σhihj

∂VPI

∂hj

= 4.3V, (7.68)

hence the corresponding coefficient of variation is:

VVPI
= 0.097. (7.69)

A Monte Carlo simulation with 7500 random evaluations gave:

μVPI
= 43.87V, (7.70)

σVPI
= 4.29V, (7.71)

VVPI
= 0.098. (7.72)
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The convergence of this Monte Carlo simulation is shown in figures 7.13 and 7.14. The
Monte Carlo approach seems to have converged. Standard deviation and coefficient of
variation are accurate, however the second order mean is not that accurate.
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Figure 7.13: Convergence of the mean
with sample size (random thickness
field).
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Figure 7.14: Convergence of the stan-
dard deviation with sample size (ran-
dom thickness field).

7.4.2 Reliability analysis

Young’s modulus

When the failure chance for the two cases is determined with the sensitivity based
approach, this yields for case a:

Pr[VPI < 41] = 0.0202, (7.73)

which required only 5 function evaluations to obtain with the HL-RF algorithm. For
case b the failure chance is:

Pr[VPI > 46.5] = 0.0397, (7.74)

also requiring 5 function evaluations.
The 4638 realizations Monte Carlo simulation of which the convergence is shown in

figures 7.15 and 7.16, gave:
Pr[VPI < 41] = 0.023, (7.75)

and
Pr[VPI > 46.5] = 0.040. (7.76)

The numbers are really close, validating the

Thickness

Also a reliability analysis for thickness variations was done for case a as well as case
b. Using the perturbation based approach the chance that the pull in voltage is lower
than 41 (case a) i:

Pr[VPI < 41] = 0.2367, (7.77)

which required only 4 function evaluations to obtain with the HL-RF algorithm.
The distribution of the zc gives the failure mode, which is that realization z that

gives the minimum deviation from the mean values such that a device is created that
fails. The thickness distribution for this failure mode is shown in figure 7.17.
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Figure 7.15: Convergence of the
failure chance with sample size
(case a, random elasticity field).
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Figure 7.16: Convergence of the failure
chance with sample size (case b, ran-
dom elasticity field).

For case b the chance of failure computed with the sensitivity based reliability
method was:

Pr[VPI > 46.5] = 0.2865. (7.78)

The corresponding failure mode is shown in figure 7.18. The mode is the inverse of
the mode for case a. It would be expected that the failure mode is very similar to the
sensitivity shape that was presented in figure 6.5, however from the simulation it is
clear that the large correlation length makes the solution smoother.

A 7500 sample size Monte Carlo simulation gave the following numbers:

Pr[VPI < 41] = 0.248, (7.79)

and
Pr[VPI > 46.5] = 0.270. (7.80)

The difference between the Monte Carlo and the perturbation approach is really small.
Figures 7.19 and 7.20 show clearly that the Monte Carlo simulation is converged.

In figure 7.17 it was seen that the deviation from the mean thickness (4 · 10−6) was
biggest in the middle of the beam. Sensitivity analysis suggested that near the clamp
there should be a big influence as well, however the correlation length smoothes out
this influence. Therefore the correlation length was decreased to one fifth of the beam
length (9μ) and the sensitivity based reliability computation was performed again.
This lowered the failure chance to:

Pr[VPI < 41] = 0.1967, (7.81)

and provided the failure mode of figure 7.21, which clearly shows that the influence
near the clamps becomes more dominant.

7.5 A uniform beam with realistic numbers

So far the used material and geometry properties in this chapter were not really realis-
tic. However an estimate of the mean and variance of the elasticity modulus of polysil-
icon for several fabrication procedures has been made [25]. For a specific polysilicon
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Figure 7.17: Failure mode for case a.
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Figure 7.18: Failure mode for case b.
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Figure 7.19: Convergence of the failure
chance with sample size (case a, ran-
dom thickness field).
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Figure 7.20: Convergence of the failure
chance with sample size (case b, ran-
dom thickness field).
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Figure 7.21: Failure mode for case b.

production method2 an elasticity modulus of 164 GPa with a standard deviation of 7
GPa was reported. This can be used for modeling a device that is assumed to have a
uniform but random elasticity modulus.

7.5.1 Model

The device under consideration is a plate clamped on both sides with a air gap between
the plate and a conducting electrode. The characteristics of this plate model are
introduced in section 4.3, but the material properties are different. The used properties
in this chapter are realistic and listed in table 7.2. The plate was meshed with 25 by
10 mechanical elements. The electric gap was meshed with 25 by 10 by 8 elements.

2The Multi-user MEMS Processes or MUMPs
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Table 7.2: Summary of the material properties.
Air gap

Property Symbol Value Units
Gap size g 2 · 10−6 m

Electric permittivity ε 8.8541 · 10−12 F/m

Structure
Property Symbol Value Units
Length L 250 · 10−6 m

Width w 30 · 10−6 m

Beam thickness h0 1 · 10−6 m

Elasticity modulus E 164 · 109 Pa

Poisson’s ratio ν 0.22 −
Density ρ 2330 kg/m3

7.5.2 Pull-in and its sensitivity

The load-displacement curve up to pull-in can be found in figure 7.22. The static
pull-in voltage for this beam is 21.39 volts. The model can be used to compute the
sensitivity as discussed in chapters 6 which is:

∂V

∂E

∣∣∣∣
PI

= 6.47 · 10−11 V/Pa, (7.82)

which was confirmed by a global finite difference computation (ΔE = 10GPa):

ΔV

ΔE

∣∣∣∣
PI

= 6.40 · 10−11 V/Pa. (7.83)

The second order sensitivity is:

∂2V

∂E2

∣∣∣∣
PI

= −1.98 · 10−22 V/Pa2, (7.84)

which is validated by:
ΔV

ΔE2

∣∣∣∣
PI

= −2.04 · 10−22 V/Pa2, (7.85)

7.5.3 Uncertainty and reliability

Using the sensitivities the mean of the pull-in voltage can be computed:

μVPI
= 21.39 − 4.9 · 10−3 = 21.38V, (7.86)

hence the second order effect is very small for this elasticity with a low standard
deviation. The standard deviation of pull-in is:

σVPI
= 0.45V, (7.87)

Let’s assume that the device does not meet its specifications if the pull-in is below
19.13. This failure criterion is not 6 standard deviations away as the popular Six
Sigma business management strategy prescribes, but it is 5 standard deviations from
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Figure 7.22: Potential vs. displacement.

the mean. Therefore the failure chance will still be really small [126]. If pull-in would be
normally distributed as well, the failure chance would be Pr[VPI < 19.13] = 2.87 ·10−7.
However if the perturbation based algorithm is used the failure chance increases to
Pr[VPI < 19.13] = 2.35·10−6, showing that even if the elasticity is distributed normally,
pull-in is not distributed normally3. It would still be a pretty safe design though.

7.6 Conclusions

This chapter provides a very short introduction to stochastic FEM. After this intro-
duction stochastic FEM was applied on the pull-in problem for the propagation of
thickness and elasticity randomness. Both the uncertainty as well as the reliability of
the device was treated.

These methods were applied for two scenarios: when the device is small, thus giving
uniform statistical properties and when the device is big, giving statistical properties
that are random fields. For each scenario two cases were inspected: a the device is
designed to operate below pull-in, hence it fails if the pull-in voltage is too low and b
the device is designed to switch, thus it fails if the pull-in is too high.

For all situations it was shown that sensitivity based approaches could compare
very well with crude Monte Carlo simulations. After the validation, the method was
used to compute the uncertainty of pull-in for a realistic device. This showed that for
realistic elasticity distributions the second order stochastic FEM approach is not really
required.

3This failure chance would be extremely hard to validate with Monte Carlo sampling, because your
sample would need more than 106 realizations.
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Dynamic simulation





Chapter 8

Undamped modeling

8.1 Introduction

This chapter is first chapter within the dynamic simulation part. Before only static
simulation issues were presented. The only exception was a short discussion of coupled
eigenfrequencies in chapter 3. However a lot of models above were applicable for
modeling micro switches and logically one of the major aspects of these switches is
their switching behavior. This switching behavior is characterized by the trajectory
and response time of switching motion.

Another dynamic aspect, resonance frequencies, is of vital importance to the oper-
ation of sensors and resonators, hence frequency modeling is of vital importance. This
chapter first discusses frequency modeling and thereafter discusses transient simula-
tions. Finally the methods are evaluated by solving an example.

Just to refresh memory, the discretized form of the coupled electromechanical sys-
tem as derived in chapter 3 (eq:3.103) is repeated below:

Muuü + Km
uuu = f elec(u,φ, V ), (8.1)

Kφφ(u)φ = q(u, V ). (8.2)

8.2 Undamped eigenfrequency modeling

As mentioned the eigenfrequencies were first presented in chapter 3. The frequencies
ωi around a equilibrium are found by solving the linearized eigenvalue problem (3.107):[

K − ω2
i M
]
X i = 0, (8.3)

which can be written as:

ω2
i

[
Muu 0

0 0

] [
xu

i

xφ
i

]
−
[

Kuu Kuφ

KT
uφ Kφφ

] [
xu

i

xφ
i

]
= 0 . (8.4)

Because the electric field is static, it does not have terms proportional to accelerations,
hence the electrostatic equation can be condensed out of the system to give:

ω2
i Muux

u
i −
(
Kuu − KuφK

−1
φφKT

uφ

)
xu

i = 0 , (8.5)

which essentially is the same as:

ω2
i Muux

u
i −
(

Km
uu −

∂f elec

∂u

)
xu

i = 0 , (8.6)
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8.2.1 Staggered method

If only a co-simulation model is available, the tangent matrices are not available. There-
fore equation (8.4) or (8.5) cannot be fully obtained. However it is possible to make
an accurate estimate of the frequencies.

This estimation starts with the purely mechanical problem:

Muuü + Km
uuu = f ext , (8.7)

which is almost equal to the mechanical equation in the coupled set of equation (3.103).
However the external force is not depending on other DOFs in this case. The linear
eigenfrequencies are obtained by the assumption that the time derivative of the external
force is zero, therefore the external force will only create a bias displacement and can
be omitted from the equation. Therefore the eigenfrequencies ωj and eigenmodes xj

follow from the solution to homogeneous equation. Furthermore it is assumed that the
non-constant part of the displacement is harmonic and can be written as:

u = xj e
iωjt, (8.8)

ü = i2ω2
j xj e

iωjt = −ω2
j xj e

iωjt. (8.9)

Substitution of this u and ü into the equation of motion plus the assumption of zero
external force defines the eigenvalue problem:

− ω2
j Muuxj + Km

uuxj = 0 , (8.10)

which can be used to compute the linear eigenfrequencies and modes. Of these eigen-
frequencies only the lowest few are of practical interest. For instance a tunable mi-
croresonator normally operates near it lowest eigenfrequency.

However for an electromechanically coupled problem the external force f elec de-
pends on u:

Muuü + Km
uuu = f elec(u, V ) . (8.11)

In a staggered model, this effect is not incorporated in the mechanical stiffness matrix,
therefore not in the eigenfrequencies. In literature there exists a method to compute the
influence of this dependency on the eigenfrequency [75]. The idea starts with projection
of the nonlinear equation on the lowest mechanical eigenmode x1. In that case it is
assumed that the displacement vector around an equilibrium can be approximated by
u = ueq + x1 Δu. When the non linear equation of motion is projected on the first
eigenmode one finds

xT
1 Muux1Δü+ xT

1 Km
uux1Δu+ xT

1 Km
uuueq = xT

1 f elec(ueq + x1Δu, V ) . (8.12)

Since at equilibrium
Km

uuueq = f elec(ueq, V ) , (8.13)

one can also write

xT
1 Muux1Δü+ xT

1 Km
uux1Δu = xT

1

(
f elec(ueq + x1 Δu, V ) − f elec(ueq, V )

)
, (8.14)

which reduces the set of equations to a single differential equation:

mrΔü+ krΔu = Δfr(ueq,x1 Δu, V ) , (8.15)
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where mr is the modal mass, kr the modal stiffness and fr the modal participation of
the force.

Subsequently an estimate of the coupled eigenfrequency can be found by:

ω =

√
kr

mr

− 1

mr

∂Δfr

∂Δu
. (8.16)

where the term
∂Δfr

∂Δu

can be obtained by a finite difference approximation. Of course this method only works
properly if the electric forces do not change the modeshape too much.

Monolithic method

Monolithically the computation is straightforward. One just has to solve equation
8.4. Because the full electromechanical coupling is accounted for in this equation the
correct eigenfrequencies and modeshapes will be found. The only problem is that the
inertia matrix is singular, hence there are infinite eigenfrequencies. However, as stated
above, the static DOFs can be condensed out, which yields equation (8.5), that defines
an eigenvalue problem that can be solved exactly like the purely mechanic eigenvalue
problem.

8.3 Transient modeling and dynamic pull-in

Not only frequencies are interesting, also the non linear response over time of a device
for a certain applied potential can be very useful. Therefore the equations of mo-
tion have to be integrated over time. Using the results from such a time integration
procedure, displacement as a function of time, the dynamic version of pull-in will be
defined.

8.3.1 Time integration

When performing time integration, there is a choice between explicit and implicit in-
tegration. Explicit schemes use the displacement and velocity at the beginning of a
time step to estimate the behavior during the time step. Classic examples are the
forward Euler scheme and the Runge-Kutta schemes. Therefore the dynamic equilib-
rium equations will not be satisfied at the end of the time step. On the other hand,
implicit schemes require the dynamic equilibrium to be satisfied at the end of the time
step. Therefore they need to solve a system of (non-)linear equations for each time
step, hence they are computationally more expensive. However they are more stable,
therefore bigger time steps are allowed when implicit algorithms are used. Classic ex-
amples are the backward Euler and the Newmark schemes. For more information on
this matter see for instance [45].

A non linear implicit time integration algorithm for the coupled equations can be
derived based on the trapezoidal rule [12]. First the nonlinear dynamic equilibrium
equations have to be written in a form that can be solved by an iterative procedure:

Muuü
t+Δt
k + K̂Δuk = f elec

(
ut+Δt

k−1

)− Km
uuu

t+Δt
k−1 , (8.17)
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ut+Δt
k = ut+Δt

k−1 + Δuk. (8.18)

where K̂ is the Schur complement of the Kφφ block of K:

K̂ =
∂f

∂u
= Kuu − KuvK

−1
φφKT

uφ. (8.19)

The Schur complement is required, because during the time integration the electric
equations are condensed out of the monolithic equations. Note that the time t + Δt
indicates that this equation has to be satisfied at the end of the time step

The trapezoidal rule assumption states that the displacements and velocities at the
end of the time step are defined as:

ut+Δt = u +
Δt

2

(
u̇t + u̇t+Δt

)
(8.20)

u̇t+Δt = u̇ +
Δt

2

(
üt + üt+Δt

)
. (8.21)

Combining equations (8.18) to (8.21) yields:

üt+Δt
k =

4

Δt2
(
ut+Δt

k−1 − ut + Δuk

)− 4

Δt
u̇t − üt, (8.22)

which can be substituted in (8.17) to give:

[
K̂ +

4

Δt2
Muu

]
Δuk = f elec

(
ut+Δt

k−1

)− Km
uuu

t+Δt
k−1 −

Muu

(
4

Δt2
(
ut+Δt

k−1 − ut
)− 4

Δt
u̇t − üt

)
, (8.23)

which provides the equation that can be used to compute Δuk. The algorithm is
converged when this Δuk is small enough. The time integration algorithm is summa-
rized in figure 8.1. To keep the notation simple, in that scheme the right-hand side of
equation (8.23) is denoted by:

Δf
(
ut+Δt

k−1 , u̇
t+Δt
k−1

)
= f elec

(
ut+Δt

k−1

)
− Km

uuu
t+Δt
k−1 − Muu

(
4

Δt2
(
ut+Δt

k−1 − ut
)− 4

Δt
u̇t − üt

)
. (8.24)

8.3.2 Dynamic pull-in

Pull-in is defined as the maximum point of the quasi-static load-displacement relation.
However, dynamically the response can become unbounded at lower voltages, calling
for the definition of a dynamic pull-in.

A way of defining dynamic pull-in could be: The lowest voltage VDPI for which,
when it is applied as a step from zero to VDPI , the displacement response is unbounded.
This means that if the device is pulled down after the voltage is applied as a step,
the voltage step was above the dynamic pull-in. This is the definition that was used
in [36, 107]. This dynamic pull-in voltage is in general lower than the static pull-in
voltage (see also chapter 3).
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Figure 8.1: Nonlinear implicit time integration algorithm.
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Another relevant and competing definition is: that applied AC voltage in combi-
nation with a DC voltage: V = VDC + VAC · sin(Ωt) that gives an unstable response.
Here Ω is the frequency of the alternating part of the drive voltage. This definition is
used in [62, 92]. This definition is especially relevant if the drive frequency Ω is near
a mechanical resonance frequency of the device. Most devices avoid those frequencies
or keep the alternating part VAC really low. Furthermore each DC voltage has a corre-
sponding AC pull-in voltage, hence this definition is rather ambiguous. Also, in a FEM
setting these values are hard to compute, therefore in this work the first definition will
be used.

Automated search

Dynamic pull-in can be computed automatically for finite element models. The first
step to do is determine the static pull-in voltage. Then one has to start a bisection
algorithm between 0 and static pull-in.

The way to detect if the current voltage estimate is below or above dynamic pull-in
is by time integrating the equations of motion for about two oscillations.

Without damping the transition is pretty sharp, thus when the applied voltage is
above dynamic pull-in the displacement will become bigger than the gap-size within
two oscillations. In that case the search algorithm can stop because the applied voltage
is determined to be above pull-in.

The algorithm can be stopped when the error is considered small enough. Note that
bisection algorithms often converge slowly, hence this computation can become pretty
expensive. However gradient information is not available, furthermore the answer to the
question: above pull in? is either true or false, and cannot be written as a continuous
function. Therefore one is limited to the bisection algorithm.

8.4 The two dimensional model

8.4.1 Eigenfrequencies

These algorithms were tested on the model of a simple beam that was also used in the
previous chapters. The load displacement relation and deformed shape are recapitu-
lated in figures 8.2 and 8.3.

The used density is 5×103 kg/m3. The first and third purely mechanical eigenmodes
of the beam are shown in figures 8.4 and 8.5. After the computation of each static
solution shown in figure 8.2 the first and second eigenfrequency and eigenmode around
this static solution were determined. The first eigenmode is very similar to the shape
of the static deflection shown in figure 8.3, thus the mode shape will not be changed
very much by the electric field. Therefore it is expected that the staggered method
will be accurate for the first eigenfrequency. The second mode shape is more complex.
The electrostatic load might affect the mode shape, thus the eigenfrequency. This will
affect the accuracy of the results obtained with the staggered method, but not with
the monolithic method.

The curves for the first eigenfrequency, shown in figure 8.6, confirm that the stag-
gered method computes the same curve as the monolithic method. It also shows that
the frequency goes to zero at the pull-in point, similarly to what is found for limit
point buckling. Both methods compute the same curve, however the curve obtained
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with the staggered method is less smooth. A disadvantage of the staggered method
is that the accuracy depends heavily on the size of the generalized displacement step
that is used for the finite difference approximation.

The curves for the second eigenfrequency are shown in figure 8.7. As expected the
curves are very similar, but there is a small discrepancy due the very large displace-
ments above static pull-in at which these frequencies are obtained. Therefore the mode
induces more influence of the electrostatic forces on the mode shape. It is interesting
to note that the second eigenvalue is not zero at pull-in, which is the case for all the
higher modes.

8.4.2 Transient results and dynamic pull-in

If the transient solution due to a step of 10 volts is obtained, the result is that of figure
8.8. The solid black line gives the static solution and it is clear that it oscillates nicely
around the static solution.

The automated dynamic pull-in algorithm gave a voltage of 40.62 volts when a
relative error tolerance of 1 · 10−3 is used. Figure 8.9 gives some step responses. It
is clear that the frequency of the oscillation varies greatly for the curves, which is
consistent with the linearized eigenfrequency curve. Above the pull-in the response is
really unstable. Figure 8.10 shows how sensitive the undamped system is. A voltage of
40.6 gives a stable result and a voltage of 40.7 gives a result that within one oscillation
snaps to the fixed electrode. Note that the maximum displacement that is reached
during some of the stable transients is much bigger than the pull-in displacement of
about 3.5μm. The static pull-in voltage was about 43.8V , thus the dynamic pull-in is
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Figure 8.6: First eigenfrequency as a function of applied potential

approximately 7% lower than the static pull-in.

8.5 Experimental validation of the frequency com-

putations

In chapter 5 a 1994 paper of Tilmans and Legtenberg that presents pull-in measure-
ments was used for experimental validation [130]. That paper also presents electro-
mechanical frequency measurements. For those measurements a very simple micro-
bridge is used which is ideal for a computation with the plate type model that was
introduced in chapter 4.

The thickness of the plate is 1.5μ, the gap between plate and ground plane is 1.2μ
and the width is 100μ (distance from free to free edge). Amongst others a bridge
of length 210μ was used (distance from clamped to clamped edge). For the material
properties a value of E = 160GPa for the elasticity modulus, ρ = 2300 kg/m for the
density of silicon and ν = 0.22 for Poisson’s ratio is used. Since it was concluded in
section 5.8 that the initial strain is important the initial strain of ε = 36.8 · 10−6 is
included here as well.

For the modeling of the mechanics of the plate a mesh of 22 elements in the length
and 14 elements in the width of the plate is used. A convergence study like the one
that was performed in chapter 4 for the pull-in voltage, shows that this mesh provides
a relative accuracy better than 1 · 10−3 for the first frequency. The electric mesh in
the air gap contained 4 elements in the direction perpendicular to the plate. In the
other 2 directions the number of elements was equal to the number of elements in the
mechanical mesh.

In the reference paper a pull-in voltage of 27.95 was reported. When this voltage is
computed with the FEM model a value of 28.3 is found, which is close enough to the
measured one. The frequency as a function of the DC bias voltage is plotted in figure
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8.11, which shows that the model nicely captures the behavior. Therefore those results
show that the coupled frequency computations are reasonably accurate.

8.6 Conclusions

The dynamic modeling of an undamped electro-mechanical problem was discussed.
The modeling was split into eigenfrequency computations and transient simulations.
Also the concept of dynamic pull-in was introduced

These algorithms were tested on a 2D model for which transient analysis were
performed. Furthermore the first coupled electro-mechanical eigenfrequency was com-
puted as a function of applied potential and the shape of this curve was found to be
similar to the 1D analytical curve in chapter 3. The eigenfrequency computations can
be done in a staggered and a monolithic way. The monolithic method is more robust.

The dynamic pull-in for the test beam was 7% lower than static pull-in.
Finally a measurement from literature allowed for an experimental validation of the

frequency computations and their decrease with applied potential.
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Chapter 9

Sensitivity based stochastic analysis
of dynamic pull-in

9.1 Introduction

In chapter 8 the dynamic pull-in voltage was introduced. It was defined similar to
[107] and [72] as: The lowest voltage VDPI for which, when it is applied with a step
from zero to VDPI , the displacement response is unbounded. Furthermore that chapter
presented a method to actually compute the dynamic pull-in value with a FEM model
in a systematic way.

But in chapter 7 it was stated that material and shape parameters for MEMS are
rarely deterministic. In general they have a stochastic nature. Therefore that chapter
focused on finding how random material parameters influence the random static pull-in
value. Of course if the material properties are random not only the static pull-in value
is random, also the dynamic pull-in value will be random. Computing the random
distribution of the dynamic pull-in value once the random distribution of the material
properties are known will be the objective of this chapter.

The same perturbation based approaches as used in chapter 7 will be used, hence
the sensitivity of the dynamic pull-in voltage with respect to parameter variations will
be required. That is the focus of the first part of this chapter. Thereafter an uncertainty
and reliability analysis will be performed.

9.2 Sensitivity of dynamic pull-in

The stated definition of dynamic pull-in is much vaguer than that of static pull-in.
For static pull-in it was known that the tangent stiffness matrix is singular, providing
a very strict definition. Because such a strict definition is not available for dynamic
pull-in a work-around will be used.

In section 3.3 it was shown for a 1D example that the static pull-in displacement
(xPI = 2

3
x0) only depended on the initial gap, not on the stiffness of the used spring.

Is it possible to say that when a geometry is chosen, the dynamic pull-in displace-
ment does not depend on mechanical properties as element stiffnesses or beam element
thicknesses?

This statement is nearly impossible to prove mathematically, but with some heuris-
tic reasoning it is possible to show that this claim is very likely to hold. Consider the
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Figure 9.1: Transient results at the dynamic pull-in voltage

beam problem used as reference in chapter 7, using exactly the same discretization:
12 beam elements and a 4 by 12 mesh for the electrostatic domain. For this beam the
dynamic pull-in voltage can be computed with the algorithm presented in section 8.3.2.
With the standard Young’s modulus of E = 1 · 105Pa it was computed to be 40.42
V (8% lower than the static pull-in of 44.05). When the Young’s modulus is lowered
to E = 0.9 · 105 dynamic pull-in decreases to 38.34V . When the transient response is
computed for both moduli just below pull-in, the results for the middle node displace-
ment are the curves in figure 9.1. The maximum displacement of both curves (different
potential, different stiffness) is equal. Thus the statement that the dynamic pull-in dis-
placement does not depend on mechanical properties such as element stiffnesses seems
to be plausible.

Note that this statement only holds for mechanical properties like the elasticity
modulus or the thickness of beam and plate elements. If the electric domain changes
in shape the pull-in displacement will change, hence this derivation will not work. Also
the addition of damping will make the pull-in displacement sensitive for parameters
that influence this damping, thus limiting the approach presented below.

When that statement is accepted, the point at which dynamic pull-in occurs can
be defined as the voltage for which:

f = min(u(V, p, t)) − uDPI = 0, (9.1)

where u is the displacement of the middle node and uDPI the stiffness invariant pull-in
displacement. The displacement u is a function of the applied voltage step V , which at
pull-in is assumed to be a function of the mechanical parameter p. The displacement
is also directly a function of p.

This defines dynamic pull-in, but the purpose of this derivation is to find how the
dynamic pull changes with a mechanical parameter p. Therefore f is differentiated
with respect to p:

df

dp
=
∂f

∂V

dV

dp
+
∂f

∂p
+
∂f

∂t

dtmin

dp
. (9.2)

where the term tmin

dp
gives the change of the time at which the minimum is reached due

to a change of parameter p. Because variation of V while remaining at pull-in is of
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interest, hence while f remains zero, this derivative is restricted to zero values:

df

dp

∣∣∣∣
DPI

=
∂f

∂V

dV

dp
+
∂f

∂p
+
∂f

∂t

dtmax

dp

∣∣∣∣
DPI

= 0, (9.3)

Furthermore when f = 0, the displacement reaches a minimum in time. Therefore f
reaches a minimum in time, therefore the derivative with respect to time, the velocity
of f , will be:

∂f

∂t
= 0, (9.4)

thus the value computed by:

dV

dp

∣∣∣∣
DPI

= −
(
∂f

∂V

)−1
∂f

∂p

∣∣∣∣∣
f=0

, (9.5)

will give the proper sensitivity.
However, this still requires the computation of the derivatives:

∂f

∂p
, (9.6)

∂f

∂V
. (9.7)

Because the assumption that f = 0 at dynamic pull-in does not have to hold to compute
the derivative of f with a general parameter, both derivatives are essentially the same:
the computation of the derivative of f with a parameter r, where r = p or r = V .
Therefore only the derivative of f with respect to a parameter r has to be derived.
Using the chain rule this derivative simplifies to:

∂f

∂r
=
∂f

∂u

∂u

∂r
=
∂u

∂r
=
∂u(t)

∂r
. (9.8)

In the following section will be shown how to compute this sensitivity of the displace-
ment with respect to a parameter.

9.2.1 Computing the displacement sensitivity

Instead of computing the derivative of the mid node displacement, the derivative of
the displacement vector will be derived. So the goal is computing:

s =
∂u(t)

∂r
. (9.9)

An efficient method of computing these sensitivities was presented in [19], but they
were derived for a state space formulation and applied on an Euler backward time
integration scheme. That approach is very similar to the method discussed in [77].
In this work that approach is derived for the non-linear Newmark time integration
algorithm.

The derivation starts with the dynamic equilibrium equation:

Muuü(r, t) = f elec (u(r, t), r) − Km
uu(r)u(r, t), (9.10)
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where the mechanical stiffness matrix can be a function of r if r is a material property
and the electric force can be a function of r = V . In short this can be written as:

Muuü(r, t) = f(u(r, t), r). (9.11)

In section 8.3 the implicit time integration scheme for this problem was derived.
This required making an initial guess for the displacement:

ut+Δt
0 = ut + Δtu̇t +

Δt2

4
üt, (9.12)

and subsequently computing the correction for the displacement by:[
K̂ +

4

Δt2
Muu

]
Δuk = f elec

(
ut+Δt

k−1

)− Km
uuu

t+Δt
k−1 −

Muu

(
4

Δt2
(
ut+Δt

k−1 − ut
)− 4

Δt
u̇t − üt

)
, (9.13)

where:

K̂ =
∂f

∂u
= Kuu − KuφK

−1
φφKT

uφ, (9.14)

where this Schur complement has to be used because the electrostatic equations are
condensed out of the electro-mechanic equations. Once the Δuk is known the update
for the displacement, velocity and accelerations will be:

ut+Δt
k = ut+Δt

k−1 + Δuk, (9.15)

üt+Δt
k =

4

Δt2
(
ut+Δt

k−1 − ut + Δuk

)− 4

Δt
u̇t − üt, (9.16)

u̇t+Δt
k = u̇t +

Δt

2

(
üt + üt+Δt

k

)
. (9.17)

After which a new Δu can be computed, which can be used to update displacement,
velocities and accelerations again. This procedure will be repeated until convergence.

In this chapter the sensitivity of the solution is required, hence let’s differentiate
(9.11) with r:

Muu
∂ü

∂r
=
∂f

∂r
+
∂f

∂u

∂u

∂r
, (9.18)

Muus̈ =
∂f

∂r
+ K̂s. (9.19)

This is a linear second order differential equation of the sensitivity s. The initial
conditions are easily evaluated. If a step voltage is applied, the initial displacement is
a zero vector, hence it does not depend on r. Therefore the initial sensitivity is zero
as well. Similarly the initial time derivative of the sensitivity is zero. Thus when the
Newmark scheme is applied, a guess for st

0 is made as:

st+Δt
0 = st + Δtṡt +

Δt2

4
s̈t, (9.20)

and due to the linearity only one update is required:

st+Δt = st+Δt
0 + Δs, (9.21)
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where Δs is computed with:

[
K̂ +

4

Δt2
Muu

]
Δs =

∂f

∂r
− K̂st+Δt

0 − Muu

(
4

Δt2
(
st+Δt

0 − st
)− 4

Δt
ṡt − s̈t

)
, (9.22)

which gives the following sensitivity velocity and acceleration:

s̈t+Δt =
4

Δt2
(
st+Δt

0 − st + Δs
)− 4

Δt
ṡt − s̈t, (9.23)

ṡt+Δt = ṡt +
Δt

2

(
s̈t + s̈t+Δt

)
. (9.24)

Note that the left hand-side of equation (9.22) contains the same matrix as equation
(9.13), thus for solving equation (9.22) the same factorized matrix as for the final
iteration of each displacement time step can be reused. Hence computing the sensitivity
is not computationally expensive. Only one extra matrix multiplication per time step
is required.

One unknown term remains is the derivative of the force f with r. When r is a
mechanical parameter p, such as the elasticity modulus this is not that difficult. As in
chapter 6 linear mechanics is assumed:

∂f

∂p
=

∂

∂p
(−Kuu(p)u) =

∂Kuu

∂p
u. (9.25)

The derivative of the stiffness matrix with a material parameter is fairly trivial and
was discussed in that chapter.

If r = V , the derivative is a little more complicated. In chapter 6 only the derivative
of F with V where F = [ f q ]T was discussed. If one would only use the mechanical
terms from that derivative, one would get the wrong result. One should start with the
original equation (6.16) mentioned in that chapter:

Ktot =

⎡
⎣ Kuu Kuφ Kuφ̄

Kφu Kφφ Kφφ̄

K φ̄u K φ̄φ K φ̄φ̄

⎤
⎦ , (9.26)

and condense out the terms for φ:

K̂tot =

[
Kuu Kuφ̄

K φ̄u K φ̄φ̄

]
−
[

KuφK
−1
φφKφu KuφK

−1
φφKφφ̄

K φ̄φK
−1
φφKφu K φ̄φK

−1
φφKφφ̄

]
(9.27)

Therefore the derivative is:

∂f

∂V
= K̂uφ̄

∂φ̄

∂V
, (9.28)

∂f

∂V
=
[
Kuφ̄ − KuφK

−1
φφKφφ̄

] ⎡⎢⎣
1
...
1

⎤
⎥⎦ . (9.29)
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Figure 9.2: Transient results of the mid node displacement and the sensitivity (V=35).

9.2.2 Example: uniform beam

The methods discussed above are tested using the test beam of chapter 7. For more
details the reader is referred back to section 7.3. To test if the method for computing
the simple displacement sensitivities (s) is correct a step response has been computed
with a voltage step of 35, well below the static (44.05V ) and dynamic (40.72V ) pull-in
values. For this voltage the sensitivity of u with V is determined using the analytical
approach. The sensitivity is also determined with global finite differences. This is done
by computing u for a step of 34.7 volts as well and defining the sensitivity as:

Δu(t)

ΔV
=
u(t)|V =35 − u(t)|V =34.7

35 − 34.7
. (9.30)

Figure 9.2 shows the transient result on top and below the sensitivity determined
analytically as well as by finite differences. Clearly the analytic sensitivity computation
is very accurate.

Figure 9.3 shows the analytic sensitivity with elasticity variation of a step response.
Here a typical beating behavior can be seen, caused by the frequency modulation due to
the parameter change. Note that only half an oscillation of this lower beating frequency
is shown.

Because the displacement sensitivities are validated by finite differences, the pull-in
sensitivity can be computed. Figure 9.4 shows the transient for V just below pull-in
and the two required displacement sensitivities. The star indicates the point where
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Figure 9.3: Transient results of the elasticity sensitivity (V=40.2).
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Figure 9.5: Convergence of the finite difference sensitivity to the analytic sensitivity.

f = u− ucr = 0 and at that point the sensitivity was computed to be:

dV

dE

∣∣∣∣
DPI

= −
(
∂f

∂V

)−1
∂f

∂E

∣∣∣∣∣
f=0

= 2.0217 · 10−4. (9.31)

Also this sensitivity can be validated by global finite differences. If the dynamic pull-
in is computed at E = 1 · 105 and E = 0.95 · 105 this gives respectively VDPI = 40.4175
and VDPI = 39.3921, yielding:

ΔV

ΔE

∣∣∣∣
DPI

= 2.0508 · 10−4. (9.32)

which is reasonably accurate.
The convergence of the finite difference sensitivity to the analytical one is shown in

figure 9.5. The reason that for very small ΔE values the error goes up is that the error
tolerance of the dynamic pull-in computation is not sufficiently small for that small
ΔE values.

It would be interesting to see how the dynamic pull-in sensitivity compares with
the static one. In section 7.3 it was shown that for this mesh the static sensitivity was:

dV

dE

∣∣∣∣
PI

= 2.20 · 10−4 V/Pa, (9.33)

which is a little higher. However because the static pull-in voltage itself is higher it
is very difficult to compare these numbers. It is better to look at the logarithmic
sensitivity, which in the static case was:

dlog(V )

dlog(E)

∣∣∣∣
PI

=
E

V

dV

dE

∣∣∣∣
PI

= 0.50. (9.34)

For the dynamic equation the logarithmic sensitivity is:

dlog(V )

dlog(E)

∣∣∣∣
DPI

=
E

V

dV

dE

∣∣∣∣
DPI

= 0.50. (9.35)
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Figure 9.6: Analytical and finite difference sensitivities to individual element elasticity
variations.

which is basically the same. It would be an interesting question if this is the case for
any geometry.

9.2.3 Example: multiple parameters

As in chapter 6 the computation is also performed for sensitivities to single element
elasticity variations. In that case the parameter of interest is:

∂V

∂Ei

∣∣∣∣
DPI

. (9.36)

Of course the values are also computed by finite differences for comparison. The
sensitivity curve is shown in figure 9.6. The finite difference sensitivities were computed
by decreasing the Young’s modulus of an element from 1 · 105 to 0.95 · 105. The
curves show some differences, but overall the match is rather good. Thus it provides a
validation of the analytic derivation.

9.2.4 Intermezzo: pull-in time sensitivity

The dynamic pull-in value sensitivity has some problems. It only holds for a limited
number of parameter variations: those that do not influence the shape of the electric
domain. Also damping is not allowed to be present. However if a fixed voltage is
applied that is well above pull-in, there is a parameter which says something about
pull-in and for which the sensitivities can be computed in any case: the dynamic pull-
in time. This will be defined as: The time it takes from applying the voltage step
to reaching contact between the deformable and fixed electrode. Contact is somewhat
difficult to model, therefore the point where the maximum displacement reaches 95%
of the gap will be used as contact displacement. Note that each applied voltage above
pull-in will provide a different pull-in time. The pull-in time provides a measurement
of the switching time for micro-switches.
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Figure 9.7: Infinitesimal part of the time displacement curve.

Computing the contact point is relatively easy. A dynamic step response until the
contact displacement is reached has to be computed. This provides the time for which
the contact displacement is reached, the velocity for which that happens as well as the
displacement sensitivity.

Studying figure 9.7 will show that these three numbers are enough. Figure 9.7
depicts an infinitesimal region around the contact condition. The blue curve shows the
displacement up = u(t, p) as a function of time. If a curve would be computed for a new
slightly changed parameter p+Δp the red curve would be found: up+Δp = u(t, p+Δp).
This red curve reaches the contact displacement is small amount of time later: Δt.
This is the change in pull-in time due to the parameter change which is the goal of this
derivation.

Using a first order approximation the displacement change can written as Δu =
∂u
∂p

Δp. Similarly the time change can be written in terms of the actual sensitivity that

is needed: Δt = ∂tc
∂p

Δp. Trigonometry shows that tan(α) = Δu
Δt

or:

∂tc
∂p

Δp =

∂u
∂p

Δp

tan(α)
(9.37)

The term −tan(α) is of course equal to the velocity vp+Δp of the perturbed curve at
contact, which can be written in terms of the unperturbed curve as:

vp+Δp = vp +
∂v

∂p
Δp. (9.38)

Substitution of the velocity into the tangent of equation (9.37) yields:

∂tc
∂p

Δp =

∂u
∂p

Δp

−vp − ∂v
∂p

Δp
, (9.39)

which can be simplified to:

∂tc
∂p

=

∂u
∂p

−vp − ∂v
∂p

Δp
. (9.40)

Taking the limit of this equation for Δp→ 0 gives the final sensitivity:

∂tc
∂p

=

∂u
∂p

−vp

, (9.41)

where:

vp =
∂u

∂t
. (9.42)
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Figure 9.8: Displacement versus time for a voltage step of 50 volts, the star indicates
the moment of contact.

The analytic derivation just presented is tested on the beam as used in the pre-
vious section. The applied load is 50 volts which gives a pull-in time of 1.430 · 10−5

seconds. The displacement versus time is shown in figure 9.8. The analytic pull-in
time sensitivity to the elasticity is:

∂tc
∂E

= 5.69 · 10−11s/Pa, (9.43)

which is validated by global finite differences:

Δtc
ΔE

= 6.00 · 10−11s/Pa, (9.44)

hence the pull-in time sensitivity can be computed by the method presented above.

9.3 Uncertainty analysis

When the beam is considered homogeneous the uncertainty analysis is quite straight-
forward. Since second order sensitivities are a bit too complicated for dynamic pull-in,
only a first order perturbation based uncertainty analysis is performed [49]. Perturba-
tion based approaches have been used on dynamical problems before [77], the novelty
of this chapter are the pull-in sensitivities and the pull-in application. It is assumed
that the stochastic parameter of interest p̃ is normally distributed and has a mean
value μp and standard deviation σp.

Using the same reasoning as presented in section 7.2 this gives for the mean value:

μVDPI
= VDPI(μE), (9.45)

and for the standard deviation:

σVDPI
=

√(
dV

dE

)2

σ2
p. (9.46)
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9.3.1 Example

These formulas will be used to find the stochastic properties of the reference problem,
for which the elasticity is assumed to be a random property. The statistical distribution
of Ẽ is the same as in section 7.3: the elasticity modulus is assumed to have a mean
value of μE = 1 · 105 Pa and a coefficient of variation of VE = 0.1, which gives a
standard deviation of σE = 1 · 104 Pa.

The perturbation based uncertainty analysis gives for the mean value:

μVDPI
= 40.42, (9.47)

and for the standard deviation:
σVDPI

= 2.02, (9.48)

giving a coefficient of variation.
VVDPI

= 0.05. (9.49)

The non dimensional coefficient of variation is exactly the same as the static one (just
as the logarithmic sensitivity).

Of course also this dynamic analyses requires Monte Carlo validation. Hence a
sample of 13352 realizations was used for this validation and gave a mean value of:

μVDPI
= 40.38, (9.50)

and a standard deviation of:
σVDPI

= 2.03, (9.51)

which is pretty close to the perturbation SFEM approach. Therefore it seems that the
unavailable second order reliability analysis is not necessary. The convergence of the
Monte Carlo approach is shown in figures 9.9 and 9.10, respectively for the mean value
and the standard deviation.
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Figure 9.9: Convergence of the mean
with sample size.
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Figure 9.10: Convergence of the stan-
dard deviation with sample size.

9.4 Reliability analysis

A 1D reliability analysis is not difficult. The failure criteria from chapter 7 will be
used: a device fails if the pull-in voltage is lower or higher than some critical value Vc.
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This leads to the definition of the design point: the most likely value of p̃ that will
result in a device that has a pull-in voltage equal to the critical value:

Vc = VDPI(pc). (9.52)

When it is subsequently assumed that the stochastic parameter p̃ is normally dis-
tributed:

p̃ = μp + σpz̃, (9.53)

the design point can be written as a critical deviation zc from the average parameter
value μp.

In that case the failure chance is the chance that z̃ < zc:

Pr[z̃ < zc] = fp(zc) =

∫ zc

−∞

1√
2π
e

(
−z2

2

)
dz (9.54)

The design point can be computed with a Newton iteration. Choose z0, compute
VDPI,0(z0) and start the following iteration procedure:

Δzk = (Vc − VDPI,k−1)
∂z

∂V

∣∣∣∣
zk−1

, (9.55)

where: (
∂z

∂V

)−1

=
∂V

∂p

∂p

∂z
=
∂V

∂p
σp. (9.56)

9.4.1 Example

This reliability approach was tested using the reference beam. For the static problem
it was decided that the failure criterion would be: VPI < 41. However the mean of the
dynamic pull-in is already below that value and the failure chance would be really big.
Therefore the dynamic failure criterion is set to be VDPI < 38, hence Vc = 38. This
gives the following failure chance:

Pr[VDPI < 38] = 0.123. (9.57)

This result can also be validated by crude Monte Carlo, which gives:

Pr[VDPI < 38] = 0.119. (9.58)

The number is really close to the perturbation result, therefore validating the pertur-
bation approach. Figure 9.11 shows that the Monte Carlo simulation has converged to
a band between 0.115 and 0.125.

9.5 A uniform beam with realistic numbers

The model is the same one as used for static pull-in in section 7.5. Therefore all
mechanical parameters are the same and most importantly, the stochastic parameter
is the elasticity modulus of silicon which has the following random properties: mean
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Figure 9.11: Convergence of the failure chance with sample size.

164 GPa and standard deviation 7 GPa. This gave a deterministic dynamic pull-in
voltage of 19.47. The analytic first order sensitivity is:

∂V

∂E

∣∣∣∣
DPI

= 5.94 · 10−11 V ·m2/N. (9.59)

which is validated with the following finite difference sensitivity:

∂V

∂E

∣∣∣∣
DPI

= 5.86 · 10−11 V ·m2/N. (9.60)

Since second order sensitivities are very difficult to compute for dynamic pull-in the
uncertainty analysis is limited to a first order one. Hence the mean of the expected
pull-in will be the deterministic one:

μVDPI
= 19.47V, (9.61)

and the standard deviation will be:

σVDPI
= 0.42V. (9.62)

The same failure criterion is used as for the static computations: the device fails if
the pull-in is below 19.13 volts. To reach a 19.13 dynamic pull-in the elasticity must
be 158GPa, therefore the failure chance is Pr[VPI < 19.13] = 0.209. This is a really
big failure chance, hence if the resonator is likely to experience step loads, dynamic
pull-in can be critical.

9.6 Conclusions and recommendations

In this chapter a method for the analytic estimation of dynamic pull-in sensitivities was
derived. This method was validated by global finite difference computations. Those
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sensitivities were used for a perturbation based stochastic FEM analysis of dynamic
pull-in. The numerical experiments showed that the perturbation based method could
be validated by expensive Monte Carlo simulations.

The sensitivity computation also showed that for a simple mechanically linear beam
the logarithmic sensitivities of static and dynamic pull-in were equal, thus those sensi-
tivities could be derived from each other. However this does not seem likely to hold for
non-linear mechanics, because dynamic pull-in occurs at a much higher displacement.

Furthermore the uncertainty analysis showed that due to the equal logarithmic
sensitivities, the coefficients of variation of dynamic and static pull-in were equal.
This makes the statistical moments of dynamic and static pull-in related. However the
same caution to generalize this statement for any geometry or mechanical model should
be used as with the sensitivity computation. Results from the reliability analysis of
dynamic pull-in cannot be computed directly from the static computation.

The computation can be generalized to a random field discretization of the element
elasticity moduli.

However there is a big limit. The pull-in displacement is not allowed to change due
to the parameter variations, hence only parameters, which do not really change the
shape of the domain, can be analyzed. The exact limitations of this assumption should
be investigated within future work as well as the options to circumvent the used pull-in
criterion. Due to this limitation it will be more useful for some problems to investigate
the pull-in time. Therefore the pull-in time sensitivity was computed and validated as
well.
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Chapter 10

Damped modeling

10.1 Introduction

Micro switches operate in general not in a vacuum. Hence their motion is heavily
influenced by air damping. For proper prediction this air damping has to be included
in the modeling strategy.

The motion of the switch (figure 10.1) is mainly in the direction perpendicular to
the plate, therefore if the ratio between gap-height and gap-width is relatively small
(< 3) the damping is dominated by squeeze film damping and not by traditional air
drag forces [11]. Squeeze film damping can be modeled with the Reynolds equation
very effectively [136]. This squeeze film damping dominates the damping of all MEMS
that move mainly in the out-of-plane direction.

The Reynolds equation is a 2D equation that is based on the assumption that the
air-pressure does not vary in the direction perpendicular to the plate and that the
inertia effects in the gas are negligible compared to the viscous effects. To model the
squeeze film behavior of a micro bridge, a 2D model similar to a plate FEM model
is required to describe the damping. Therefore if a coupled electro-mechanical-fluidic
model is needed, this will be combined with a 3D electrostatic model to give a 3D
model as in figure 10.1.

In this chapter the inclusion of damping based on the Reynolds equation is discussed
as well as the development of a numerical solution strategy. The linearization around
an equilibrium equation is derived to be able to compute damped eigenfrequencies.
Thereafter the validity of the Reynolds equation for MEMS modeling is investigated.

Ground

electrode

Dielectric layer

Top electrode

Figure 10.1: A microswitch and a model of a microswitch.
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Finally the equations are tested using examples and experiments from literature.

10.2 Damping model

10.2.1 Reynolds equation

Squeeze film damping can be simulated with Reynolds equation [11]. When the motion
is purely in the out-of-plane direction, as with the model under investigation the form
of the Reynolds equation can be derived quite easily. The derivation is based on [134].
A cross section of the gap is shown in figure 10.2. When laminar flow is assumed, the
equilibrium of force on the infinitesimal region in x-direction can be written as:

(p+ Δp) dydz + τdxdy = p dydz + (τ + Δτ) dxdy, (10.1)

where dy is the size of the infinitesimal element in the third dimension, τ represents
the viscous shear stress and p represents the pressure. It is clear that inertia effects are
neglected in this equation, because it is assumed that that inertia forces are negligible
compared to viscous forces! Normally this can be done when the Reynolds number is
relatively small (R << 1)[11]:

R =
ωρh2

μ
. (10.2)

For air, the density is about 1.2kg/m3 and the viscosity is about 18 · 10−6 Pa · s. Thus
with a gap of about 1μm the Reynolds number is:

R ≈ ω5 · 10−8, (10.3)

therefore in that case the equation would be valid for oscillations up to several MHz.
For an infinitesimal element Δp and Δτ can be written as:

Δp =
∂p

∂x
dx. (10.4)

Δτ =
∂τ

∂z
dz. (10.5)

Hence equation (10.1) can be written as:(
p+

∂p

∂x
dx

)
dydz + τdxdy = p dydz +

(
τ +

∂τ

∂z
dz

)
dxdy, (10.6)

which reduces to:
∂p

∂x
=
∂τ

∂z
. (10.7)

When it is assumed that the fluid is Newtonian, the relation between the shear
stress and the strain rate is linear:

τ = μ
∂u

∂z
. (10.8)

this relation can be substituted into (10.7). If the viscosity μ is assumed to be constant
in the z direction this yields:

∂p

∂x
= μ

∂2u

∂z2
, (10.9)
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dx

dz
p+ Δp

τ + Δτ

p hu

τ

Figure 10.2: Infinitesimal fluid region in the air gap.

which can be integrated with respect to z:

∂p

∂x
z = μ

∂u

∂z
+ C1, (10.10)

and once more:
∂p

∂x

z2

2
= μu+ C1z + C2. (10.11)

Using the no-slip boundary conditions:

u(z = 0) = 0, (10.12)

u(z = h) = 0, (10.13)

this gives the following velocity profile in x-direction:

u =
1

2μ

∂p

∂x
(z2 − hz). (10.14)

This describes the so called Poisseuille flow velocity profile, which is illustrated in figure
10.2 as well.

When it is assumed that the density is constant in the z-direction, the mass flow
parallel to the plates in x-direction can be written as:

ṁx = ρ

∫ h

0

u(z)dz = − h3

12μ

∂p

∂x
. (10.15)

Similarly the mass flow in y-direction is:

ṁy = ρ

∫ h

0

v(z)dz = − h3

12μ

∂p

∂y
. (10.16)

The continuity equation states that:

∂ṁx

∂x
+
∂ṁy

∂y
+
∂(ρh)

∂t
= 0, (10.17)

which basically states that the increase in the amount of mass within an infinitesimal
element of the cross-section must equal to the outflow minus the inflow of mass.
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Substitution of ṁx and ṁy into the continuity equation gives the Reynolds equation
that can be used to simulate the fluid domain (remember the Einstein summation
convention) [140]:

∂ (hρ)

∂t
=

∂

∂xi

(
ρ
h3

12μ

∂p

∂xi

)
, (10.18)

where h is the gap-height, ρ is the density, p the total pressure and μ the viscosity of
the fluid.

When it is assumed that, at the small dimensions MEMS operate at, temperature
variations are negligible, the density is proportional to the pressure, hence equation
(10.18) can be written as [14]:

h
∂p

∂t
+ p

∂h

∂t
=

∂

∂xi

(
p
h3

12μ

∂p

∂xi

)
. (10.19)

10.2.2 Rarefied gas effects

At very low pressures or at very small length scales the fluid does not behave as a
proper continuum anymore, this is called the rarefied gas effect.

The Knudsen number is a measure for the rarefaction of a gas and defined as:

Kn =
λ

L
, (10.20)

where λ is the mean free path of the molecules in the gas and L is the characteristic
length of the system under consideration. The characteristic length L is chosen to be
equal to the gap height h. The mean free path is the average distance which a molecule
travels before in collides with another molecule. When the Knudsen number is close to
zero, the characteristic dimension is much bigger than the mean free path, therefore the
gas behaves as a continuum, however when it is near one, the continuum assumption
does not hold anymore and the gas behaves as a discrete set of molecules or particles.
If that effect is to be modeled rigorously one should rely on modeling techniques from
statistical mechanics such as ‘Direct Monte Carlo’ simulations [98], which is outside
the scope of this thesis,

However it also possible to estimate the effect by measurements and incorporate
it into continuum models such as the Reynolds equation [136, 137]. The advantage is
that continuum methods are in general computationally much cheaper than the particle
based modeling techniques. Of course they are inaccurate outside their validity range,
which is smaller than that of discrete methods.

The method proposed in [136] to model the rarefied gas effect is to make the viscosity
μ a function of the local Knudsen number. This Knudsen number dependent viscosity
relation was determined experimentally.

However the Knudsen number, as stated above, depends on variables that are not
constant: the mean free path and the local gap height. The mean free path depends
on the local pressure. Therefore, to compute the Knudsen number, following [14], the
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assumption is made that the mean free path can be defined by1:

λ =
λ0p0

p
, (10.21)

where λ0 is the mean free path at pressure p0. The function that can then be used to
define the effective viscosity is:

μ =
μ0

1 + 9.638Kn1.159
, (10.22)

where μ0 is the normal viscosity at p0.
Note that for high pressures such as atmospheric pressure (≈ 105Pa) and relatively

large gaps (10μ) the Knudsen number is smaller that 1
100

, hence the viscosity has to be
multiplied by a number between 0.96 and 1 to correct for rarefaction. This is a pretty
small change.

10.2.3 Boundary conditions

The final definitions that are required to define the problem are the boundary con-
ditions. There are two types of boundary conditions in a simple fluid problem. On
the part of the boundary where the fluid is in direct contact with the environment the
pressure equals the ambient pressure pA:

p(x, y) = pA. (10.23)

On the part of boundary where the boundary is a wall of solid material the flow of gas
through the wall must be zero, in other words the pressure gradient in the direction
perpendicular to the wall is zero:

∂p

∂x
nx +

∂p

∂y
ny = 0, (10.24)

where nx and ny are the respectively the x and y components of the normal vector to
the boundary.

One problem with Reynolds equation is that it cannot handle zero gaps. if h = 0
the equation becomes singular. Therefore it assumed that the surface of the dielectric
is that rough that there is always some gas between the electrodes.

10.2.4 Incompressibility and the squeeze number

To estimate the effect of certain terms in equation (10.19), the equation will be lin-
earized around h0 and pA to:

pA

(
∂

∂xi

∂p

∂xi

)
− 12μ

h2
0

∂p

∂t
=

12μpA

h3
0

∂h

∂t
, (10.25)

1From kinetic theory it follows that the mean free path is inversely proportional to the pressure.
Furthermore when the temperature is constant, it does not depend on other variables, but only on the
difficult to estimate diameter of the gas particle and the Boltzmann constant. Therefore an effective
method to estimate the pressure dependent mean free path is to use a measured mean free path at a
certain pressure and using the inverse proportionality of the mean free path on pressure.
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where it was assumed that μ was constant as well. Thereafter it is assumed that the
oscillation frequency of the plate is ω and the characteristic length is L. Subsequent
normalization with p̃ = p

pA
, x̃i = xi

l
, h̃ = h

h0
and τ = ωt gives:

∂

∂x̃i

∂p̃

∂x̃i

− σ

(
∂p̃

∂τ
+
∂h̃

∂τ

)
= 0, (10.26)

which leads to the definition of the squeeze number σ :

σ =
12μωL2

pAh2
0

. (10.27)

When this squeeze number is large, from (10.25) it follows that pAΔh+ h0Δp = 0, or
that as Boyle’s law states it: p·V will be constant, therefore the gas is fully compressible.

However for very low squeeze numbers this relation does not hold and the gas
behaves somewhat incompressible [11]. Hence, the gas has enough time to flow out of
the film and is not fully compressed. Therefore this means that Δp

pA
<< Δh

h0
. In that

case it can be seen in equation (10.25) that the factor in front of the ∂p
∂t

term will be
very small and can be neglected:

h3
0

12μ

(
∂

∂xi

∂p

∂xi

)
=
∂h

∂t
, (10.28)

where the direct pressure dependency drops from the equation.
For this derivation the dependency on h was linearized as well, which does not

have to be the case. If the actual incompressibility condition, density ρ = constant, is
substituted directly into equation (10.18), all occurrences of this density drop from that
equation and the full non-linear incompressible Reynolds equation is found directly:

∂h

∂t
=

∂

∂xi

(
h3

12μ

∂p

∂xi

)
. (10.29)

In this case the μ was not assumed to be constant either, therefore it can be made a
function of the Knudsen number. Hence this equation is also depending non-linearly
on p for rarefied gases.

If the gas behaves incompressible it will yield forces that are proportional to the
velocity of the plate, causing a decrease of the damped frequency. However if the
gas behaves compressible there is also a big elastic component to the forces which is
proportional to displacement. These increase the damped eigenfrequency. Sometimes
this increase is that big that the damped frequency is higher than the undamped one.

There is a critical squeeze number for which the forces proportional to displacement
are equal to those proportional to the velocity. Sadly the critical squeeze number is
shape dependent. If the electrode is a rectangular plate with the length L the width b
the critical squeeze numbers is [11]:

σc = π2

(
1 +

b2

L2

)
. (10.30)

This critical squeeze number can be used to determine whether the compressibility is
important.
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10.2.5 Weak form and FEM discretization

The equations are fully defined, therefore the FEM discretization can be discussed.
Equation (10.19) will be written as:

h
∂p

∂t
+ p

∂h

∂t
− ∂

∂xi

(
p
h3

12μ

∂p

∂xi

)
= 0. (10.31)

This relation must also hold when pre-multiplied by a test function v and integrated
over the fluid domain:∫

v

[
h
∂p

∂t
+ p

∂h

∂t
− ∂

∂xi

(
p
h3

12μ

∂p

∂xi

)]
dV = 0, (10.32)

which is the so called weak form of the equation. Split into parts this becomes:∫
vh
∂p

∂t
dV +

∫
vp
∂h

∂t
dV −

∫
v
∂

∂xi

(
p
h3

12μ

∂p

∂xi

)
dV = 0, (10.33)

The last term of this equation can be integrated by parts to give:∫
v
∂

∂xi

(
p
h3

12μ

∂p

∂xi

)
dV =

∫
vp

h3

12μ

∂p

∂xi

nidS −
∫

∂v

∂xi

p
h3

12μ

∂p

∂xi

dV. (10.34)

Substitution of the Neumann boundary condition (10.24) gives:∫
v
∂

∂xi

(
p
h3

12μ

∂p

∂xi

)
dV = −

∫
∂v

∂xi

ph3

12μ

∂p

∂xi

dV, (10.35)

hence the weak form of the Reynolds equation can be written as:∫
vh
∂p

∂t
dV +

∫
vp
∂h

∂t
dV = −

∫
∂v

∂xi

ph3

12μ

∂p

∂xi

dV. (10.36)

To derive the final FEM discretized form the traditional assumption is made that
both h and p can be approximated by piecewise linear functions using the FEM shape
functions:

p = Njpj, (10.37)

h = Njhj, (10.38)

The same FEM shape functions can be used as test functions:

v = Ni. (10.39)

Substitution of p, h and v into equation (10.36) results in:∫
NihNj

∂pj

∂t
dV +

∫
Njp

∂hj

∂t
dV = −

∫
∂Ni

∂xk

ph3

12μ

∂Nj

∂xk

pjdV, (10.40)

which after some rearrangements can be written as:∫
NihNjdV

∂pj

∂t
+

∫
NipNj

∂hj

∂t
dV = −

∫
∂Ni

∂xk

ph3

12μ

∂Nj

∂xk

dV pj. (10.41)
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In matrix vector notation equation (10.41) becomes:

L(h)ṗ + R(p)ḣ = −D(p,h)p, (10.42)

where:

Lij =

∫
NihNjdV, (10.43)

Rij =

∫
NipNjdV, (10.44)

Dij =

∫
∂Ni

∂xk

ph3

12μ

∂Nj

∂xk

dV. (10.45)

There is one simplification of the formulation that can, but does not have to be
made. The idea starts with replacing some manifestations of p with pA + pR, where pA

is the ambient (thus constant) pressure and pR is the difference between local pressure
and ambient pressure. In that case the pressure distribution becomes:

p = pA +Njp
R
j . (10.46)

Substitution of this pressure into equation (10.41) yields:∫
NihNjdV

∂pR
j

∂t
+

∫
NiNjp

∂hj

∂t
dV = −

∫
∂Ni

∂xk

ph3

12μ

∂Nj

∂xk

dV pR
j , (10.47)

which does not change the matrices L, R or D but greatly simplifies the implementa-
tion of the Dirichlet boundary condition (10.23).

If the squeeze number is fairly low, the gas can be modeled as incompressible. In
that case the term h∂p

p∂t
is neglected, greatly simplifying the fluid equation:

Rḣ = −D(p,h)p, (10.48)

where also the p dependency of R drops due to the incompressibility assumption. If
the h follows from some external applied displacement this equation is quasi-static,
because it only depends on ḣ, h and p of which p is the only true fluid DOF type.
However it may be static, it still is non-linear in both p and h, due to the dependency
of D on p and h.

10.2.6 Coupling with the electro-mechanical equations

Coupling with the structural model is relatively simple. The following relations can be
used to couple the model:

hk = h0 + uk, (10.49)

ḣk = u̇k, (10.50)

where h0 is the initial gap height and uk is the structural displacement at node k that
results from the mechanical solution. The fluid force on node k of the mechanical
domain is simply defined by:

f fluid
k =

∫
Nkp

RdV, (10.51)
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where it was assumed that that only a relative pressure causes forces, because the
ambient pressure caused forces on both sides of the plate that cancel each other. The
fluid force is integrated over the complete volume of the fluid domain, because all fluid
nodes exert forces on plate nodes.

The three equations above are enough to completely define the coupling. However,
if one wants to use monolithic solvers, also the linearized coupling matrices have to be
evaluated.

For the mass matrix this is a very simple problem: there is no coupling because
there are no second derivatives in the fluid equations. Also there is no coupling between
the fluid and the electrostatic domain. Therefore the following coupling terms remain:

⎡
⎣ Muu 0 0

0 0 0
0 0 0

⎤
⎦
⎡
⎣ Δü

Δφ̈
Δp̈

⎤
⎦+

⎡
⎢⎣ −∂ffluid

∂u̇
0 −∂ffluid

∂ṗ

0 0 0
− ∂r

∂u̇
0 − ∂r

∂ṗ

⎤
⎥⎦
⎡
⎣ Δu̇

Δφ̇
Δṗ

⎤
⎦

+

⎡
⎢⎣ Kuu − ∂ffluid

∂u
Kuφ −∂ffluid

∂p

Kφu Kφφ 0
− ∂r

∂u
0 − ∂r

∂p

⎤
⎥⎦
⎡
⎣ Δu

Δφ
Δp

⎤
⎦ =

⎡
⎣ Δf

Δq
Δr

⎤
⎦ , (10.52)

where the following definitions were used:

f = f elec + f fluid − Km
uuu, (10.53)

q = qelec(V ) − Kφφ, (10.54)

r = Lṗ + Rḣ + Dp. (10.55)

The computation of Kuu, Kuφ, Kφu, Kφφ and Muu has been discussed in chapter
3. From equation (10.51) it is clear that the fluid force only depends directly on the
pressure, therefore all partial derivatives of f fluid with other variables are zero. The
derivative with the pressure is rather simple:

[Kuf ]ij =

[
−∂f

fluid

∂p

]
ij

= −
∫
NiNjdV. (10.56)

Also the derivatives of r with u̇ and ṗ are relatively simple:

− ∂r

∂u̇
= −∂r

∂ḣ
= −R, (10.57)

−∂r
∂ṗ

= −L. (10.58)

The final two derivatives are the derivatives of r with p and h. Let’s first treat the
derivative with p

Kff = −∂r
∂p

= −D − ∂D

∂p
p − ∂R

∂p
ḣ, (10.59)

which can be worked out in index notation as:

[Kff ]ij = −Dij −
∫

−∂Ni

∂xk

ph3

12μ2

∂μ

∂p

∂p

∂pj

∂Nm

∂xk

pR
m−∫

∂Ni

∂xk

h3

12μ2

∂p

∂pj

∂Nm

∂xk

pR
m dV, (10.60)
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where ∂p
∂pj

follows from equation (10.37). The derivative of r with h is:

Kfu = −∂r

∂h
= −∂D

∂h
p − ∂L

∂h
ṗ, (10.61)

which can be worked out in index notation as:

[Kfu]ij = −
∫

−∂Ni

∂xk

ph3

12μ2

∂μ

∂hj

∂Nm

∂xk

pR
m+

∂Ni

∂xk

3
ph2

12μ

∂h

∂hj

∂Nm

∂xk

pR
m +Ni

∂h

∂hj

Nmṗ
R
m dV. (10.62)

where ∂h
∂hj

follows from equation (10.38).

These last two terms Kff and Kfu look very complicated. However, when one is
interested in the linearized behavior (e.g. eigenfrequencies) around a static equilibrium
only pR and ṗR are zero. Therefore in that case the following coupling matrices can be
used:

Kff = −D, (10.63)

Kfu = 0. (10.64)

In any case the equations that can be used are given below:

⎡
⎣ Muu 0 0

0 0 0
0 0 0

⎤
⎦
⎡
⎣ Δü

Δφ̈
Δp̈

⎤
⎦+

⎡
⎣ 0 0 0

0 0 0
−R 0 −L

⎤
⎦
⎡
⎣ Δu̇

Δφ̇
Δṗ

⎤
⎦

+

⎡
⎣ Kuu Kuφ Kuf

Kφu Kφφ 0
Kfu 0 Kff

⎤
⎦
⎡
⎣ Δu

Δφ
Δp

⎤
⎦ =

⎡
⎣ Δf

Δq
Δr

⎤
⎦ , (10.65)

or:

MΔÜ + CΔU̇ + KΔU = ΔF . (10.66)

10.2.7 Inertia effects

When the Reynolds equation was derived, this started with the equilibrium of forces
(10.7):

∂p

∂x
=
∂τ

∂z
, (10.67)

in which the inertia terms were neglected. The criterion that was used to decide if these
terms can be neglected was derived by comparing inertia values for the fluid compared
to the viscosity and is called the Reynolds number. However it is dangerous to use the
Reynolds number when it is defined as:

R =
ωρh2

μ
, (10.68)

because in that case the inertia direction is the squeeze direction. But with squeeze
film damping, the highest flow directions will be in the direction tangential to the
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plate. The plate is pushing out or pumping in air at velocities that are higher than the
squeeze velocity. Therefore more investigation into the inertia terms is needed.

The additional mass flow that these inertia terms generate can be estimated by
a method presented in [123]. The derivation of that method starts with adding the
inertia terms the original equilibrium of forces:

ρ
Du

Dt
+
∂p

∂x
=
∂τ

∂z
. (10.69)

where Du
Dt

is the material derivative of the velocity u with respect to time. Due to fact
that the film thickness is small, the inertia term in equation (10.69) can be averaged:

ρ
Du

dt
≈ ρ

(
1

h

∫ h

0

Du

dt
dz

)
, (10.70)

which can be substituted into (10.69)(
1

h

∫ h

0

Du

dt
dz

)
+
∂p

∂x
=
∂τ

∂z
. (10.71)

Substitution of the Newtonian fluid (10.8) constitutive relation:

τ = μ
∂u

∂z
. (10.72)

gives: (
1

h

∫ h

0

Du

dt
dz

)
+
∂p

∂x
= μ

∂2u

∂z2
. (10.73)

Integrating the complete equation from 0 to h and applying the no slip boundary
conditions gives:

u =
z2 − zh

2μ

(
ρ

h

∫ h

0

Du

Dt
dz +

∂p

∂x

)
, (10.74)

Thus the mass flow becomes:

ṁx =

(
−h3ρ

12μ

∂p

∂x

)
+

(
−h

2ρ2

12μ

∫ h

0

Du

Dt
dz

)
. (10.75)

The extra term is rather complex. If this term is introduced into the continuity equation
(10.17) this would give a difficult non-linear equation. It can be solved as shown by
the original reference, however here it will be used differently. The equation will not be
solved, but it will be used to derive an estimator of the error introduced by neglecting
inertia terms.

This requires the computation of the pressure field over time with the original
Reynolds equation, giving the mass flow as:

ṁn
x = −h3ρ

12μ

∂p

∂x
. (10.76)

When it is assumed that the velocity profile does not change, this gives

Du

dt
=

1

2μ
(z2 − hz)

∂

∂x

(
Dp

dt

)
, (10.77)



198 Damped modeling

which is substituted into the inertia term of the mass flow, yielding (remember the
summation convention):

ṁi
x =

h5ρ2

144μ

∂

∂x

(
∂p

∂t
+
∂p

∂xi

∂p

∂xi

)
. (10.78)

Within a finite element context, where p = pjNj and ∂p
∂t

= ṗjNj the convective
terms in this equation can be written as:

∂p

∂xi

∂p

∂xi

=

(
∂Nj

∂xi

pj

)(
∂Nk

∂xk

pj

)
, (10.79)

which due to the linearity of the shape functions Nj, will be piecewise constant in the
spatial directions, hence:

∂

∂x

(
∂p

∂xi

∂p

∂xi

)
= 0 (10.80)

within each element. This greatly simplifies the material derivative at an integration
point to:

ṁi
x =

h5ρ2

144μ

(
∂Nj

∂x
ṗj

)
. (10.81)

Subsequently a measure of the error made by neglecting the inertia effects is:

ε =
|ṁi|
|ṁn| . (10.82)

10.3 Time integration

To actually solve the transient behavior of the Reynolds equation coupled with the
electro-mechanical model time integration is required. For 3D models the total num-
ber of unknowns rapidly increases and for this type of moderately non-linear equations
implicit time-integration techniques are ideal. A characteristic of implicit time inte-
gration is that for each time step a system of equations has to be solved (see chapter
8).

In the previous section it was seen that the monolithically coupled equations are
asymmetric. Therefore, when a monolithic implementation is used the total system
that has to be solved each time step will be asymmetric and solving a symmetric
system is computationally expensive. Thus it is better to split the two problems and
use a staggered approach. This will also prevent scaling problems.

In that case the mechanical equation of motion can be written as:

Muuü + Km
uuu = f elec(V,u) + f fluid(p). (10.83)

When the term corresponding to the mechanical stiffness is written as fm = Km
uuu

and the right-hand side term of the equation as f elec, this equation equals:

Muuü = f elec − fm. (10.84)



10.3 Time integration 199

{
{
{

......

t t+ Δt

k = 1

k = 2

k = n

Electro-mechanic solve

Electro-mechanic solve

Electro-mechanic solve

Fluidic solve

Fluidic solve

Fluidic solve

Figure 10.3: Some iterations for the incompressible fluid algorithm.

10.3.1 Time integration for an incompressible fluid

A time-integration algorithm for the incompressible case will be developed first, based
on the trapezoidal rule. In that case it is known that:

f fluid = f fluid(u, u̇), (10.85)

because:
p = p(u, u̇), (10.86)

as can be seen in equation (10.48).
Because for the pressure this is a quasi-static relation, it is very easy to recompute

the fluid force after each electromechanical iteration step. Hence the fluid problem will
be condensed onto the mechanical problem as was done for the electrostatic problem in
chapter 8. Therefore the iteration procedure will be the one visualized in figure 10.3.

To write down the actual implementation the nonlinear dynamic equilibrium equa-
tions have to be written in a form that is solvable by an iterative procedure:

Muuü
t+Δt
k + Km

uuΔuk = f elec
(
ut+Δt

k−1

)
+ f fluid

(
ut+Δt

k−1 , u̇
t+Δt
k−1

)− Km
uuu

t+Δt
k−1 , (10.87)

which used the following iteration assumption:

ut+Δt
k = ut+Δt

k−1 + Δuk. (10.88)

The trapezoidal rule assumption states that the displacements and velocities at the
end of the time step are defined as follows [12]:

ut+Δt = u +
Δt

2

(
u̇t + u̇t+Δt

)
(10.89)

u̇t+Δt = u̇ +
Δt

2

(
üt + üt+Δt

)
. (10.90)

Combining equations (10.88) to (10.90) yields:

üt+Δt
k =

4

Δt2
(
ut+Δt

k−1 − ut + Δuk

)− 4

Δt
u̇t − üt, (10.91)
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Figure 10.4: Integration algorithm for an incompressible fluid.

which can be substituted in (10.87) to give:

[
Km

uu +
4

Δt2
Muu

]
Δuk =

f elec
(
ut+Δt

k−1

)
+ f fluid

(
ut+Δt

k−1 , u̇
t+Δt
k−1

)− Km
uuu

t+Δt
k−1 −

Muu

(
4

Δt2
(
ut+Δt

k−1 − ut
)− 4

Δt
u̇t − üt

)
, (10.92)

which is the equation that can be used to compute Δuk. The time integration algorithm
is summarized in figure 10.4. To keep the notation simple, the right-hand side of
equation (10.92) is written as:

Δf
(
ut+Δt

k−1 , u̇
t+Δt
k−1

)
= f elec

(
ut+Δt

k−1

)
+ f fluid

(
ut+Δt

k−1 , u̇
t+Δt
k−1

)
− Km

uuu
t+Δt
k−1 − Muu

(
4

Δt2
(
ut+Δt

k−1 − ut
)− 4

Δt
u̇t − üt

)
. (10.93)

10.3.2 Time integration for an compressible fluid

When it is not possible to assume that the gas behaves almost as an incompressible
fluid it is necessary use equation (10.42). This equation is a first order differential
equation, which has to be time integrated to provide p as a function of time. The
pressure as function of time can subsequently be used to compute the forces on the
structure.
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Figure 10.5: Some iterations for the compressible fluid algorithm.

As mentioned before, the monolithic system is asymmetric and poorly scaled.
Therefore the electromechanical and fluidic equation are integrated separately with
a staggered algorithm.

Two assumptions are made when implementing this coupling: (a), during a struc-
tural time step the fluid pressure is kept constant and (b), during a fluidic time step the
structural displacement and velocity are kept constant. These assumptions are visual-
ized in figure 10.5, where it can be seen that the fluidic iterations follow the mechanic
iterations.

Assumption (a) reduces the structural equation that has to be integrated to:

Muuü
t+Δt
k + Km

uuΔuk = f elec
(
ut+Δt

k−1

)
+ f fluid(ut) − Km

uuu
t+Δt
k−1 , (10.94)

and therefore the update of the displacement to:

[
Km

uu +
4

Δt2
Muu

]
Δuk =

f elec
(
ut+Δt

k−1

)
+ f fluid(ut) − Km

uuu
t+Δt
k−1 −

Muu

(
4

Δt2
(
ut+Δt

k−1 − ut
)− 4

Δt
u̇t − üt

)
, (10.95)
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hence the right-hand side of the structural equation is:

Δf
(
ut+Δt

k−1

)
= f elec

(
ut+Δt

k−1

)
+ f fluid(ut)

− Kuuu
t+Δt
k−1 − Muu

(
4

Δt2
(
ut+Δt

k−1 − ut
)− 4

Δt
u̇t − üt

)
. (10.96)

Assumption (b) results in a constant h and ∂h
∂t

during the fluidic time step. The
non linear equation that has to be integrated (10.42) can be written in the form:

Lṗt+Δt + Dpt+Δt + Rḣ = 0, (10.97)

which is non linear because both R and D depend on p. However when at iteration s
the equation is not satisfied yet, this equation can be used to define an error:

Δrs = Lṗt+Δt
s−1 + Dpt+Δt

s−1 + Rḣ. (10.98)

To derive the iteration and integration algorithm that integrates the non linear
equation (10.97), the trapezoidal rule will be used:

pt+Δt = pt +
Δt

2

(
ṗt + ṗt+Δt

)
, (10.99)

which can be substituted into (10.97) to give:

[
L +

Δt

2
D

]
ṗt+Δt = −D

(
pt +

Δt

2
ṗt

)
− Rḣ. (10.100)

To derive the proper ṗt+Δt a Newton-Raphson iteration will be used, hence the following
assumption is made:

ṗt+Δt
s = ṗt+Δt

s−1 + Δṗs, (10.101)

which after substitution into (10.100) provides:

[
L +

Δt

2
D

]
Δṗs = −D

(
pt +

Δt

2
ṗt

)
− Rḣ −

[
L +

Δt

2
D

]
ṗt+Δt

s−1 , (10.102)

which can be written as:

[
L +

Δt

2
D

]
Δṗs = −D

(
pt +

Δt

2

(
ṗt + ṗt+Δt

s−1

))− Rḣ − Lṗt+Δt
s−1 . (10.103)

By using the trapezoidal rule at iteration s− 1 (10.99) it is easy to show that the right
hand side of this equation is equal to Δrs. Thus equation (10.103) can be used in a
Newton Raphson scheme to compute the update for ṗt+Δt: Δṗ.

Both the structural and the fluidic time integration scheme are combined to form
the flowchart in figure 10.6.
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Figure 10.6: Compressible time integration algorithm.
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10.4 Eigenfrequencies with damping

When the eigenfrequency is determined, the homogeneous solution of the linearized
equation of motion (10.65) is searched. The homogeneous equation is:⎡
⎣ Muu 0 0

0 0 0
0 0 0

⎤
⎦
⎡
⎣ Δü

Δφ̈
Δp̈

⎤
⎦+

⎡
⎣ 0 0 0

0 0 0
−R 0 −L

⎤
⎦
⎡
⎣ Δu̇

Δφ̇
Δṗ

⎤
⎦

+

⎡
⎣ Kuu Kuφ Kuf

Kφu Kφφ 0
0 0 −D

⎤
⎦
⎡
⎣ Δu

Δφ
Δp

⎤
⎦ =

⎡
⎣ 0

0
0

⎤
⎦ . (10.104)

In chapter 3 it was shown that for the homogeneous equation of an electro-mechanical
system the electric part could be condensed out. Also for a damped electro-mechanical
system this can be done. The middle line of equation (10.104) gives a direct relation
between Δφ and Δu:

Δφ = −K−1
φφKφuΔu, (10.105)

which can be substituted in the top line of (10.104) to give:[
Muu 0

0 0

] [
Δü
Δp̈

]
+

[
0 0

−R −L

] [
Δu̇
Δṗ

]

+

[ (
Kuu − KuφK

−1
φφKφu

)
Kuf

0 −D

] [
Δu
Δp

]
=

[
0
0

]
. (10.106)

This condensed equation will be written from this point on as:

M cΔÜ c + CcΔU̇ c + KcΔU c = 0. (10.107)

To compute the eigenfrequencies the solution is restricted to harmonic solutions:

U c = μje
λjt, (10.108)

U̇ c = μjλje
λjt, (10.109)

Ü c = μjλ
2
je

λjt, (10.110)

where μj and λj are complex, therefore the second order eigenvalue problem that can
be defined is:

M cλ
2
jμj + Ccλjμj + Kcμj = 0, (10.111)

which is, without further assumptions, not a standard eigenvalue problem.
However it is possible to circumvent this problem: the following trivial equation is

added to the linearized equation (10.107):

IΔU̇ c − IΔU̇ c = 0. (10.112)

In literature the mass matrix is used frequently to write down this extra constraint,
however in this case the mass matrix is singular due to the fact that the Reynolds
equation neglects inertia terms, therefore the identity matrix is used. This defines the
state space form of the monolithic equation:[

Cc M c

I 0

] [
ΔU̇ c

ΔÜ c

]
+

[
Kc 0
0 −I

] [
ΔU c

ΔU̇ c

]
=

[
0
0

]
. (10.113)
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In state space form it is possible to define the solvable eigenvalue problem:[
Cc M c

I 0

]
λj

[
μj

λjμj

]
+

[
Kc 0
0 −I

] [
μj

λjμj

]
=

[
0
0

]
, (10.114)

or:
Aλjmj + Bmj = 0. (10.115)

In general the eigenvalue λj that will be found is complex, having a real part and
an imaginary part: λj = ζj + iωj. In the beginning it was assumed that the motion
could be described by:

U c = μje
(ζj+iωj)t, (10.116)

which can be written as:
U c = μje

ζjteiωjt. (10.117)

The term eiωjt describes a sinusoidal motion with frequency ωi. The part eζjt describes
how the sinusoidal motion damps out (ζj < 0) or explodes (ζj > 0) and μj gives the
shape of the mode. Of course the amplitude of the mode does not have a physical
meaning, because when c is a constant scalar, μj · c will also be a solution to equation
(10.113).

10.5 Numerical results

The theoretical aspects of squeeze film damping were treated above. First a damping
model based on the Reynolds equation was presented including the implementation of
this model into a finite element model. The use of the incompressible gas assumption
was discussed as well as the influence of neglecting the inertia terms. Thereafter the
time integration of the electro-mechanical-fluidic model was treated before the compu-
tation of coupled eigenfrequencies were discussed. The next step will be to investigate
the models by looking at some numerical test cases.

Therefore a microbridge plate model as shown in section 4.3 is enhanced by a
squeeze film mesh. The used geometry and material properties are realistic. The
geometry is expressed by the following numbers: length of the plate = 250μm, plate
width = 30μm, plate thickness = 1.4μm and the gap between the electrodes is 3μm.
The material properties were approximately those of polysilicon: a Young’s modulus
of 160GPa, a density of 2330 kg/m3 and a Poisson’s ratio of 0.28. These numbers give
a static pull-in voltage of VPI = 64.7 and the pull-in curve shown in figure 10.7.

The gas is assumed to be air at an atmospheric pressure of pA = 1 · 105 Pa unless
stated otherwise. Air has a viscosity of 18.27 · 10−6Pa · s and a mean free path of
64nm. Because 1 micron of the dielectric gap is filled with a solid dielectric that has
the same electric permittivity as air, the squeeze film gap is only 2 microns wide.

10.5.1 Transient simulation

Step response

The first test of the formulation is a simple step response with a voltage well below
pull-in: VD = 30. As expected the transient response of the middle node, shown in
figure 10.8, shows a nice damped oscillation. Figure 10.9 shows the deformed shape
during an instant of the first downward part of the motion. The color indicates the
pressure at that time.
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Figure 10.7: Pull-in curve.

Pull-in transient

For a pull-in transient some contact assumptions have to be made. Non linear springs
are used to model the mechanical contact between the fixed plate and the dielectric.
It is assumed that, due to roughness of the plate, there is still a little bit of air left
between the plates when they are in contact. This is used to prevent the equations
from braking down if h = 0.

The following load procedure is applied to the beam:

VD =

{
80 t < 1.5 · 10−5,
0 t � 1 · 10−5.

(10.118)

Figure 10.10 shows the resulting transient. It is closed for a short period of time after
which the switch is released. Therefore this model shows that it is possible to simulate
the switching transient.

Compressibility assumption

Figure 10.11 shows the results of both compressible and incompressible simulations for
a step response of 20 Volts. From the results it is clear that for the used properties it
is not necessary to include compressibility.

Inertia effects

With the same mechanical parameters and for a 20V load step the relative inertia error
for each element was determined:

ε =
|ṁi|
|ṁn| . (10.119)

For each time step the maximum value of the error was determined. The highest
maximum value during the time integration was 8.4 · 10−4 while the average error was
3.9 · 10−5. Hence the effects are really small for beams in the scale of actual MEMS.
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Figure 10.8: Midnode displacement as function of time for a load step of 30V .
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Figure 10.9: Deformed shape at t = 1 · 10−6 (color = pressure, load = 30V ).

10.5.2 Eigenfrequency computations

Atmospheric pressure

Figure 10.7 showed the pull-in curve for the beam. As discussed in previous chap-
ters the frequency depends on the applied voltage, but also the damping influences
the frequency. Therefore this pull-in curve is traced and the linearized damped and
undamped frequencies around the equilibria are computed.

The top graph of figure 10.12 shows this coupled eigenfrequencies of the damped
plate as a function of the equilibrium displacement together with the eigenfrequencies of
the undamped plate. What happens is that the air damping slows down the oscillation,
which decreases the frequency. Therefore the zero frequency is reached at a lower
potential, but does that also mean that pull-in is reached at a lower potential?

This is examined by looking at the bottom half of figure 10.12. It shows the real
part of the eigenvalue (which is ζj). If the real part is negative the system is stable.
It is clear that the real part is negative until the original pull-in point. It does show
a clear change in the slope of the curve at the point where the plate reaches a zero
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Figure 10.10: Transient result during switching.

frequency. Beyond that point the mode is not a oscillatory mode, but it is a stable
mode until it reaches the point were the real part of the electro-mechanical eigenvalue
becomes zero.

Hence gas damping does not influence first order stability. However it does lower
the eigenfrequency, which causes the rule of thumb a zero eigenfrequency coincides with
the pull-in point to be invalid when damping is present.

Influence of pressure and squeeze number variations

The previous computations were done at atmospheric pressure (pA = 1 · 105 Pa). It is
known that the unloaded eigenfrequency is ω = 1.25 ·106 rad/s. With the 30μ width of
the beam this gives a squeeze factor of σ = 0.61. The same geometric properties give a
critical squeeze number of σc = 10 for a plate that is rigid. This plate is not rigid hence
the actual critical squeeze number will be different, however this critical value gives an
indication of the order of magnitude. When the pressure is lowered to pA = 1 · 104 Pa,
the squeeze factor increases to σ = 6.1 which is in the order of magnitude of σc.

To see what happens for higher squeeze numbers the eigenvalue curves were also
computed for pA = 1 · 104 Pa and pA = 1 · 103 Pa, which are presented together with
the atmospheric one in figure 10.13.

For higher applied potentials thus higher equilibrium displacements and lower fre-
quencies the squeeze number is really low again, thus incompressible behavior domi-
nates for all curves. The red pA = 1 ·104 Pa curve for instance starts with an increased
frequency due to compressible behavior, but at about 75% of the pull-in displacement
it crosses the undamped line and shows more incompressible behavior.

The damping at pA = 1 ·103 Pa (the magenta line) is so low that it is not easy to see
a difference from the undamped one. But due to the higher squeeze number of σ = 61
that line is almost up until pull-in higher than the undamped line. Only at about 95%
of pull-in, it crosses the undamped line to show more incompressible behavior.

As has been mentioned at a zero potential or displacement only the pA = 1 · 105 Pa
line shows incompressible behavior as it is the only line below the undamped one, which
is clearly shown in close up shown in figure 10.14.

The bottom part of that graph shows the close up of the real part of the eigenvalues,
which are all below zero. Indicating that although for high squeeze numbers the terms
proportional to displacement might dominate the terms proportional to velocities, those
velocity related terms will always have some influence, therefore giving a negative real
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Figure 10.11: Midnode displacement as function of time.

part of the eigenvalue and damping.

10.6 Experimental validation

The coupled electromechanical frequency modeling was already validated in sections
5.8 and 8.5, hence this section will focus on the mechanical-fluidic interaction. The
Reynolds equation as modeling strategy has been validated in literature frequently (e.g.
[90]) but this specific FEM implementation needs validation. A nice paper in literature
that measures the response of a micro bridge resonator at different pressures is a paper
by Legtenberg and Tilmans [76]. Those measurements will be used for experimental
validation. Note that this is the same device as was used by the same authors in [130],
which describes the measurements used for validation in sections 5.8 and 8.5.

For the measurements a simple micro bridge was used. The thickness of the plate is
1.5μ, the gap between plate and ground plane is 1.2μ and the width is 100μ (distance
from free to free edge). Two bridges of different lengths were used: 210μ and 310μ
(distance from clamped to clamped edge).

For the modeling of the mechanics of the plate a mesh of 22 elements in the length
and 14 elements in width of the plate were used. The electric mesh in the air gap con-
tained 4 elements in the direction perpendicular to the plate. In the other 2 directions
the number of elements was equal to the number elements in the mechanical mesh.

For the material properties a value of E = 160GPa for the elasticity modulus,
ρ = 2300 kg/m for the density of silicon and ν = 0.22 for Poisson’s ratio was used.
An initial strain of ε = 36.8 · 10−6 in the direction of the longest edge was used. Since
it appears in the paper that the experiments were done in Nitrogen, the viscosity was
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Figure 10.12: Eigenvalue vs. displacement (pA = 1 · 105 for the damped one).

chosen to be μ = 17.8 · 10−6Pa · s2. The rarefaction effects were modeled with Veijola’s
effective viscosity relation (eq. 10.22) [136]:

μ =
μ0

1 + 9.638Kn1.159
, (10.120)

where for the Knudsen number the following relation was used

Kn =
6.9 · 10−3

p · h , (10.121)

When the eigenfrequency of the 210μ long beam is computed it gives a value of
ω = 321 kHz, which is very close the value of 324 kHz measured and reported by
Legtenberg.

It is very difficult to validate the damping model by the frequency alone. Definitely
for low pressures the damping will hardly cause any frequency shift. However tran-
sient measurements are very difficult. Furthermore it is nearly impossible to excite the
resonator with a known force, thus a proper frequency response function is also impos-
sible. However one value is relatively easy to determine from the measured frequency
response, even if the input force is almost unknown: the quality factor.

The Quality factor or Q-factor gives a measure of the damping and is defined as:

Q = OscillationFrequency × StoredEnergy

PowerLoss
. (10.122)

2From the paper it is not really clear whether the measurements were done in air or nitrogen.
However the viscosity and mean free path for nitrogen and air are that close together that changing
those parameters does not change the Q-factor values.
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Figure 10.13: Eigenvalue vs. displacement (different pressures).
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Figure 10.14: Close up of figure 10.13: the eigenvalues near a zero displacement (dif-
ferent pressures).
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Experimentally this can be determined from the frequency response using for instance
the half power bandwidth method [102]. In simulation the computation is equally
simple. If the damped eigenvalue is known the Q-factor of the accompanying mode
can be computed with the following relation [102]:

Qi =

∣∣∣∣ Im(λi)

2Re(λi)

∣∣∣∣ =
∣∣∣∣ ωi

2ζi

∣∣∣∣ . (10.123)
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Figure 10.15: Q-factor of the 210 μ
beams a function of pressure.
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Figure 10.16: Q-factor of the 310 μ
beams a function of pressure.

The measured and simulated Q-factors for the two beam lengths are presented in
figures 10.15 and 10.16 as a function of the ambient pressure. From the figures it is
clear that for higher pressures, although lower than atmospheric pressure, the model
works very well. This can even better be seen in the zoom-in presented in figures 10.17
and 10.18. However from these result there seems to be a point somewhere around a
pressure of 1 Pa where the equations do not hold anymore. This can be explained by
the assumption that at these low pressures particle based theories are required or that
thermo-mechanical damping becomes crucial at this point.
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Figure 10.17: High pressure Q-factors
of the 210 μ beams a function of pres-
sure.
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Figure 10.18: High pressure Q-factors
of the 310 μ beam as a function of pres-
sure.

To be able to pinpoint the end of the validity range of the squeeze film equation
the same results were plotted as a function of the Knudsen number in figures 10.19 and
10.20. From those figures follows that Reynold’s equation with rarefaction correction
fails near a Knudsen number of about 600.



10.7 Conclusions 213

10
2

10
4

10
6

10
4

10
6

Knudsen number

Q
−

fa
ct

or

 

 

FEM model
Measurement of Legtenberg et.al.

Figure 10.19: Q-factors of the 210 μ
beam as a function of Kn.
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Figure 10.20: Q-factors of the 310 μ
beam as a function of Kn.

10.6.1 Intermezzo: thermoelastic damping

There is a very simple method to estimate the Q factor of a vibrating plate or beam
due to thermoelastic damping. Thermoelastic damping is the loss of energy due to
the irreversible heating of a vibrating structure. The simplest model is Zener’s model,
which provides the following relation for the thermoelastic Q-factor [79]:

Q−1 =
Eα2T0

Cp

ωτ

1 + ω2τ 2
, (10.124)

where α = 2.5·10−6 1/K is the thermoelastic expansion coefficient of silicon, T0 = 300K
the temperature, Cp = 711 J/kg/K the specific heat capacity of silicon and τ the
relaxation time:

τ =
h2Cp

κπ2
, (10.125)

where κ = 170W/m ·K the thermal conductivity. For the 210 beam this equation gives
Q = 1.2 · 106 and for the 310 beam this gives Q = 2.4 · 106. Comparing these Q-factors
with the figures 10.19 and 10.20 shows that this would mean that above a Knudsen
number of 105, one does not need to include gas damping since it would be dominated
by thermoelastic damping.

Furthermore there are anchor losses that need to be included in the modeling if one
would like to go to Knudsen numbers above 600 [99]. Therefore the range of Knudsen
numbers that are not covered by this squeeze film model is even smaller. Hence the
range where particle based methods have something to add for predictive modeling is
very small, while their computational cost is immense.

10.7 Conclusions

First the squeeze film damping model was introduced. It is based on Reynolds equation,
which assumes that the fluid is viscous, hence the inertia effects in the fluid were
neglected. To test this assumption an error measure was developed. Rarefied gas
effects are included trough an effective viscosity that is a function of the Knudsen
number. This function is experimentally approximated in literature [136]. The weak
form of the non-linear Reynolds equation was derived and the coupling terms with the
electro-mechanical equations were determined.

Thereafter numerical solution algorithms were discussed. A non-linear implicit time
integration algorithm based on the trapezoidal rule was developed for incompressible
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gas and one for compressible gas. Also the most efficient way to write the linearized
equations for the computation of the damped eigenmodes was derived.

Finally the results were presented. The transient results showed that for the mate-
rial properties in this chapter the incompressible gas assumption is valid. Furthermore
the frequency analysis showed that the squeeze number for the undeformed configura-
tion provides an accurate estimator of the validity of the incompressibility assumption.
An deformed equilibrium displacement however, can cause the validity range to be
different compared to the estimate for the undeformed squeeze number. Because the
critical squeeze number is only defined for simple geometries it does require extra re-
search to find out what the exact limitations for this assumption are and when the
compressible gas assumption has to be used.

The transient results also showed that this method can be used to determine switch-
ing behavior. Though, one important limitation of the method is that it was assumed
that when the plate is in contact with the dielectric layer there is still some air in the
gap (this is not completely unrealistic because in reality there is surface roughness,
preventing full contact).

The coupled electro-mechanical-fluidic eigenfrequency computations showed that
for high pressures the gas damping does lower the coupled eigenfrequency, therefore
the zero eigenfrequency is reached at lower potential. But the real part of the eigenmode
is still negative in the part between zero imaginary part and electro-mechanical pull-in,
thus electro-mechanical-fluidic pull-in is not reached at a zero frequency, but at a zero
real part of the eigenvalue. This point coincides with electro-mechanical pull-in.

Finally the model was compared with measurements from literature to estimate the
quality of the modeling strategy. The model showed to be accurate up to a Knudsen
number of around 600.



Chapter 11

Sensitivity and stochastic analysis
of damped frequencies

11.1 Introduction

Eigenfrequencies and Q-factors are important properties for MEMS that use resonance
during their operation [73, 69]. Therefore the sensitivity and uncertainty of these values
are crucial for the designer.

Most of these devices operate in near vacuum. Hence damping might be neglected,
in which case eigenvalue sensitivities will be quite trivial. Moreover if the damping in
vacuum has to be determined accurately, one finds that the damping is mainly caused
by thermoelastic damping [34, 91], which is not within the scope of this thesis.

But there are also quite some resonators operating under higher pressure, for in-
stance mass sensors that use the frequency shift due to added mass for measuring.
Those sensors use a chemical reaction to attach a material to the resonator. This
changes the mass of the resonator, therefore the frequency. It is clear that in this
case the damped frequency sensitivity is of vital importance. The Q-factor is also a
measure of the amount of damping, hence it can be very useful to know its sensitivity
for non-resonator applications as well.

The sensitivity computation for damped frequencies and Q-factors is less trivial
and will be partly based on the derivation for thermoelastic Q-factor sensitivities pre-
sented in [111]. Although for most purposes, such as optimization and first order
stochastic analysis first order sensitivities are sufficient, also second order sensitivities
are discussed. After the derivation of the sensitivities they are used for a stochastic
analysis.

11.2 Undamped frequency sensitivity

The equation under consideration is equation (8.5), which can be written as1:

ω2Muux − K̂x = 0, (11.1)

where K̂ is the mechanical stiffness including the Schur complement that results from
condensing the electrostatic terms out of the coupled equation.

1Note that for simplicity indices that indicate the number of the eigenvalue have been dropped.
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The sensitivity can be derived by differentiating the complete eigensolution equation
with respect to a parameter p [45]:(

ω2∂Muu

∂p
− ∂K̂

∂p

)
x +

∂ω2

∂p
Muux +

(
ω2Muu − K̂

) ∂x
∂p

= 0. (11.2)

This equation is pre-multiplied with the transpose of x. Due to fact that left and right
eigenvectors are equal for this problem, one can use (11.1) to drop the term related to
the derivative of the eigenvector from the equation2. Subsequent rearrangement gives:

∂ω2

∂p
= −

xT
(
ω2 ∂Muu

∂p
− ∂K̂

∂p

)
x

xT Muux
, (11.3)

which provides the sensitivity of the square of the eigenfrequency. The eigenvalue
sensitivity follows from the chain rule:

∂ω

∂p
=

1

2ω

∂ω2

∂p
. (11.4)

The computation of the undamped eigenfrequency sensitivity is really cheap. Once
the eigenvalue and mode have been computed, no more matrix factorizations are re-
quired. Only the matrix derivatives have to be computed to find the eigenvalue sensi-
tivity.

11.3 Damped eigenvalue sensitivities

11.3.1 First order sensitivity

For the damped situation it is a little bit more difficult, therefore the approach as
presented in [111] is followed. The equation that defines the eigenvalue is (10.111):

M cλ
2μ + Ccλμ + Kcμ = 0, (11.5)

where μ contains the mechanical and pressure DOF’s. Electric DOFs are condensed
out of the equation as indicated by the c subscript, for clarity this subscript will be
dropped from now on. To solve this equation it is written in state space form:[

C M
I 0

]
λ

[
μ
λμ

]
+

[
K 0
0 −I

] [
μ
λμ

]
=

[
0
0

]
, (11.6)

or:

Aλm + Bm = 0, (11.7)

Where C, K, A and B are non-symmetric.
The non-symmetric forms will cause the left and right eigenvalue problem to have

different eigenvector solutions. In other words the solution to:

nT Aλ+ nT B = 0, (11.8)

2This trick was also used in the derivation of the pull-in sensitivity in section 6.2.
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will give the same eigenvalue set as equation (11.7) but a different eigenvector set when
AT �= A and/or BT �= B.

If one computes the left eigenvector n one could use the approach as used in the
previous section for undamped problems, however that is somewhat expensive. A
cheaper option is using equation (11.5). First compute m and λ using the normal
method. If the left eigenvector ν is defined by:

n =

[
ν
λν

]
, (11.9)

it can be computed by:
νT
(
Mλ2 + Cλ+ K

)
= 0, (11.10)

in which when the already computed λ is entered to form a new eigenvalue problem
for which a zero eigenvalue is found that has as corresponding eigenvector the wanted
one.

Once ν is computed the sensitivity follows from deriving (11.5) with p:(
Mλ2 + Cλ+ K

) ∂μ
∂p

= − (2λM + C) μ
∂λ

∂p
−
(
∂M

∂p
λ2 +

∂C

∂p
λ+

∂K

∂p

)
μ, (11.11)

which basically is one equation for two unknowns. But it can be pre-multiplied with
ν to remove the left-hand side of the equation above to give:

∂λ

∂p
= −

νT
(

∂M
∂p
λ2 + ∂C

∂p
λ+ ∂K

∂p

)
μ

νT (2λM + C) μ
. (11.12)

However, a more efficient option is available, because this computation still re-
quires the computation of two different eigenvectors. Following [111] and [26] the right
eigenvector is normalized as follows:

μT (2λMC) μ = 1, (11.13)

This normalization can be differentiated with respect to p:

∂μ

∂p
(2λM + C) μ + μT (2λM + C)

∂μ

∂p
+ 2μT Mμ

∂λ

∂p
=

− μT

(
2λ
∂M

∂p
+
∂C

∂p

)
μ, (11.14)

which can slightly be rewritten to yield:

μT
(
2λM + C + 2λMT + CT

) ∂μ
∂p

+ 2μT Mμ
∂λ

∂p
=

− μT

(
2λ
∂M

∂p
+
∂C

∂p

)
μ. (11.15)

This defines one extra equation for the two unknowns of equation (11.11), hence both
equations can be combined to give:[

Mλ2 + Cλ+ K (2λM + C) μ
μT
(
2λM + C + 2λMT + CT

)
2μT Mμ

][ ∂μ
∂p
∂λ
∂p

]
=

−
⎡
⎣
(

∂M
∂p
λ2 + ∂C

∂p
λ+ ∂K

∂p

)
μ

μT
(
2λ∂M

∂p
+ ∂C

∂p

)
μ

⎤
⎦ , (11.16)
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which gives with only one extra unknown the proper eigenvalue and eigenvector deriva-
tive.

The eigenvalue λ is known to be complex and is found in complex conjugate pairs:
λ = ζ ± iω. When numerical algorithms are used it is not known if λ = ζ + iω or
λ = ζ − iω is found. The derivation above gives the correct eigenvalue sensitivity,
however if one is interested in the frequency one should note that the frequency is
defined as:

ω = |Im(λ)|, (11.17)

which will have the following frequency derivative:

∂ω

∂p
=

Im(λ)

|Im(λ)|Im
(
∂λ

∂p

)
. (11.18)

11.3.2 Second order sensitivities

As previously discussed, often first order sensitivities provide enough sensitivity infor-
mation. However for second order perturbation approaches this is not the case and
second order sensitivities are required. Therefore second order sensitivities of the eigen-
value and Q-factor will be derived below. The second order sensitivity of the undamped
frequency is not derived separately, because it can be seen as limit case for C = 0.
Again the method is valid for any system that can be written in second order form.

The most elegant method to compute first order sensitivities was the method that
resulted in equation (11.16). The same idea can also be used to derive second order
sensitivities. When equations (11.11) and (11.13) are differentiated twice first with ps

and subsequently with pt, the result can be rearranged to give the following matrix
vector equation, which can be used to compute the components of the Hessian [111]:

[
Mλ2 + Cλ+ K (2λM + C) μ

μT
(
2λM + C + 2λMT + CT

)
2μT Mμ

][ ∂2μ
∂ps∂pt

∂2λ
∂ps∂pt

]
=

−
[

Rμ

Rλ

]
, (11.19)

where:

Rμ =

(
∂M

∂ps

λ2 +
∂C

∂ps

λ+
∂K

∂ps

)
∂μ

∂pt

+

(
∂M

∂pt

λ2 +
∂C

∂pt

λ+
∂K

∂pt

)
∂μ

∂ps

+

(2λM + C)
∂μ

∂ps

∂λ

∂pt

+ (2λM + C)
∂μ

∂pt

∂λ

∂ps

+

(
2λ
∂M

∂ps

+
∂C

∂ps

)
μ
∂λ

∂pt

+(
2λ
∂M

∂pt

+
∂C

∂pt

)
μ
∂λ

∂ps

+ 2Mμ
∂λ

∂ps

∂λ

∂pt

+(
∂2M

∂ps∂pt

λ2 +
∂2C

∂ps∂pt

λ+
∂2K

∂ps∂pt

)
μ, (11.20)



11.4 Q-factor sensitivities 219

and:

Rλ =
∂μT

∂ps

(
2λM + C + 2λMT + CT

) ∂μT

∂pt

+

μT

(
2λ
∂M

∂ps

+
∂C

∂ps

+ 2λ
∂MT

∂ps

+
∂CT

∂ps

)
∂μ

∂pt

+

2
∂μ

∂ps

(
M + MT

)
μ
∂λ

∂pt

+ 2
∂μ

∂pt

(
M + MT

)
μ
∂λ

∂ps

+ 2μT ∂M

∂ps

μ
∂λ

∂pt

+

2μT ∂M

∂pt

μ
∂λ

∂ps

+ μT

(
2λ

∂2M

∂ps∂pt

+
∂2C

∂ps∂pt

)
μ. (11.21)

11.4 Q-factor sensitivities

The Quality-factor or Q-factor is the frequency times the power stored in a oscillation
divided by the power loss during the oscillation. In section 10.6 this Q-factor was
presented and shown to be defined as:

Q =

∣∣∣∣ Im(λ)

2Re(λ)

∣∣∣∣ = ω

2ζ
. (11.22)

The Q-factor is a frequently used measure of resonator performance. The higher the
value, the lower the damping, thus a high Q-factor means a sharp resonance peak. This
is desired for resonators in electronic circuits.

11.4.1 First order sensitivity

The derivative of Q with a parameter follows from the chain rule and is:

∂Q

∂p
=

Im(λ)

Re(λ)

∣∣∣∣Re(λ)

Im(λ)

∣∣∣∣ 12
Im(∂λ

∂p
)Im(λ) − Im(λ)Re(∂λ

∂p
)

Im(λ)2
. (11.23)

For which all variables are known once the eigenvalue sensitivities have been deter-
mined. Note that the first two fractions follow from the definition of the derivative of
an absolute function:

∂|y|
∂x

=
y

|y|
∂y

∂x
. (11.24)

11.4.2 Second order sensitivity

The second order sensitivity is computed by differentiating equation (11.23) one more
time.

∂2Q

∂ps∂pt

=
Im(λ)

Re(λ)

∣∣∣∣Re(λ)

Im(λ)

∣∣∣∣ 1

2Re(λ)3

(
Im

(
∂2λ

∂ps∂pt

)
Re(λ)2−

Im

(
∂λ

∂ps

)
Re

(
∂λ

∂pt

)
Re(λ) − Im

(
∂λ

∂pt

)
Re

(
∂λ

∂ps

)
Re(λ)−

Re(λ)Re

(
∂2λ

∂ps∂pt

)
Im(λ) + 2Re

(
∂λ

∂pt

)
Re

(
∂λ

∂ps

)
Im(λ)

)
. (11.25)
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Note again that all procedures discussed here work for any symmetric or non-
symmetric problem that is written in second order formulation. The only things that
are problem specific are the matrix sensitivities, which will be discussed in the next
section.

11.5 Matrix sensitivities

The first thing that has to be made clear is that the two of the three matrices (mass,
damping and stiffness) depend on the linearization point. Therefore they depend on the
equilibrium solution, hence on the current displacement and potential. In other words
for material parameters that influence the equilibrium point this has to be considered.
For parameters such as the Young’s modulus or plate thickness the equilibrium point
depends on those parameters, hence the stiffness matrix derivative can be written as:

dK

dp
=
∂K

∂p
+
∂K

∂U

dU

dp

∣∣∣∣
eq

. (11.26)

The second term is pretty difficult to compute for non-zero voltages and will be dis-
cussed below.

11.5.1 Remaining on equilibrium

The computation of the last term of equation (11.26) is simplified by the fact that
the linearization pressure is always zero, because the pressure DOFs are the pressures
relative to the ambient pressure. This relative pressure is zero because at equilibrium
the velocity of the structural part is zero. Thus for the computation of the derivative
of U only the electromechanical terms are relevant U = [ u φ ]. Hence in the
two equations below only the electromechanical part of the stiffness matrix (Kem) is
considered.

For the nonlinear static problem, the static state derivative can be written as [32]:

dF

dp
=
∂F

∂p
+
∂F

∂U

dU

dp
, (11.27)

substitution of the definition of the stiffness matrix (Kem = − ∂F
∂U

) yields:

dU

dp
= K−1

em

∂F

∂p

∣∣∣∣
eq

, (11.28)

If the parameter p equals the elasticity modulus E, the derivative on the right-hand
side is:

∂F

∂p
=
∂F

∂E
= −

[
∂Kuu

∂E
0

0 0

]
U , (11.29)

which was discussed in chapter 6.
Note that for an applied voltage of zero, the equilibrium solution is zero and there-

fore does not depend on any parameters. Thus if V = 0:

∂U

∂p
= 0. (11.30)
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11.5.2 Matrix derivative with the static state vector

The computation of ∂K
∂U

is rather tedious, however has been discussed in chapter 6 as
well. Basically this derivation can be split into a derivation with u and a derivation
with φ. Determining ∂K

∂φ
is straightforward, determining ∂K

∂u
is slightly more difficult.

Note that in the mechanically linear case Km
uu does not depend on u, but the other

matrices (Ke
uu, Kuφ and Kφφ) depend on u trough the shape functions that depend

on the position of the electric nodes. The precise implementation of those derivatives
with the nodal positions has been presented in section 6.3.2.

Although the fluid does not influence the equilibrium position, the equilibrium
position does influence the Reynolds equation. Therefore the fluidic matrices Kff and
Cff do depend on U . Because they depend on U trough the gap size term in their
matrix definition, the derivatives of those matrices are similar to derivatives of the
structural stiffness matrix with the plate element thicknesses. Hence these derivatives
are relatively straightforward. The mass matrix M never depends on U .

11.5.3 Second order matrix derivative

The second order sensitivity of matrices requires the second order derivative of the
equilibrium force vector F :

dF

dp
=
∂2F

∂U 2

dU

dp

dU

dp
+ 2

∂2F

∂U∂p

dU

dp
+
∂F

∂U

d2U

dp2
+
∂2F

∂p2
, (11.31)

which gives using the same reasoning as used for equation (11.28):

d2U

dp2
= −Kem

(
∂2F

∂p2
− 2

∂Kem

∂p

dU

dp
− ∂Kem

∂U

dU

dp

dU

dp

)
. (11.32)

For a derivative with E it is known that the second order partial derivative of the
equilibrium force F with E is zero because the first order derivative is not depending
on E, however if the sensitivity with thickness variations would be computed this term
would be important.

The second order derivative of the equilibrium displacement U can be used to
compute:

d2K

dp2
=
∂2K

∂p2
+

∂2K

∂p∂U

dU

dp
+
∂K

∂U

d2U

dp2
+
∂2K

∂U 2

dU

dp

dU

dp
. (11.33)

The second order derivative of K with state vector is zero due to the linear relation
between shape function and state variables. The cross derivative with U and p is
zero due to the fact that the mechanical stiffness does not depend on the displacement
(linear mechanics). The second order derivative of K with p is zero only for the Young’s
modulus, if the thickness would be the parameter of interest this would not be the case.
Therefore equation (11.33) for elasticity sensitivities reduces to:

d2K

dE2
=
∂K

∂U

d2U

dE2
. (11.34)

11.5.4 Individual matrix sensitivities

The matrix sensitivities for parameters related to the structural domain have already
been discussed in chapter 6, except for mass matrix sensitivities. However those are
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quite trivial if the so called consistent mass matrix is used:

M =

∫
ρNNTdV, (11.35)

where N is a matrix containing the shape functions. In that case:

∂M

∂ρ
=

∫
NNTdV, (11.36)

and
∂2M

∂ρ2
= 0. (11.37)

Also sensitivities to perturbations of the fluid properties are very important but it
is often possible to derive the matrices in a similar fashion as shown above for the mass
matrix.

11.6 Stochastic FEM

Once the sensitivities are known a stochastic analysis follows nearly the same procedure
as described in section 7.2, hence this will not be repeated here. The only difference is
that in this case the failure criteria are different, which need careful consideration as
will be elaborated in the example below.

11.7 Example

The reference problem on which the methods are tested is the plate with realistic
numbers as used in sections 7.5 and 9.5 for static and dynamic pull-in stochastics. All
material and geometry properties are the same as in those two sections. Since those
two sections did not include damping the properties of the squeeze film in between the
plate are shown in table 11.1.

Table 11.1: Squeeze film properties.
Property Symbol Value Units
Gap size g 2 · 10−6 m

Ambient pressure PA 1 · 105 Pa/m2

Viscosity μ 18.27 · 10−6 Pa · s
Mean free path λ0 94 · 10−9 m

The deterministic results around the static equilibrium solution are obtained with
techniques discussed in previous chapters. The results: the damped and undamped
frequency and eigenvalues, are presented in figure 11.1.

11.7.1 Sensitivities around the non-actuated equilibrium

The first sensitivities that are computed are those at the initial position, hence at
U = 0. The undamped frequency ωu, damped eigenfrequency ωd = |Im(λ)| and
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Figure 11.1: Eigenvalue vs. displacement.

quality factor Q are:

ωu = 8.7838 · 105 rad/s, (11.38)

ωd = 8.0958 · 105 rad/s, (11.39)

Q = 1.0797. (11.40)

It is clear from the small Q-factor that damping must be high. The frequency is lowered
by adding damping. Hence the added damping effect dominates the added stiffness
for the used material and geometry properties. In other words: for these properties
incompressible effects dominate compressible effects.

The sensitivities to elasticity modulus and density variations have been computed
and are shown in table 11.2. The results show that adding damping increases the
sensitivity to both stiffness and mass variations a little bit.

The sensitivities were also computed with global finite differences. Those results
show that the analytical method, which is computationally much cheaper, gives almost
the same results as the finite difference computations. Therefore the finite difference
computations validate analytical sensitivity computations.

The sensitivity of the frequencies not only indicates the vulnerability of the resonant
frequency to fabrication uncertainties, but also the sensitivity to intentional mass and
stiffness variations. Therefore frequency sensitivities can for instance be used to mea-
sure the amount of vapor in a gas flow [128]. For a proper design of such a sensor both
the sensitivities to mass variations and stiffness variations are important [124, 112].
In that case the second order sensitivities can be used to do a first order uncertainty
analysis of the sensor sensitivity.

11.7.2 Sensitivity around actuated equilibriums

Table 11.3 shows analytical and finite difference sensitivities for a nonzero potential.
For an actuated potential mass sensitivities should be no problem at all, because only
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Table 11.2: Sensitivities for a linearization with an applied potential V = 0.
Sensitivity Analytical Finite Difference (ΔE = 10 · 109) Units

∂ωu
∂E 2.6780 · 10−6 2.6384 · 10−6 m2/N · s
∂ωd
∂E 2.9989 · 10−6 2.9453 · 10−6 m2/N · s
∂Q
∂E 4.0090 · 10−12 3.9379 · 10−12 m2/N

∂2ωd
∂E2 −1.1111 · 10−17 −1.1130 · 10−17 m4/N2 · s2

∂2Q
∂E2 −1.4749 · 10−23 −1.4774 · 10−23 m4/N2

Sensitivity Analytical Finite Difference (Δρ = 10) Units
∂ωu
∂ρ −188.5 −187.3 m3/kg · s
∂ωd
∂ρ −141.0 −140.4 m3/kg · s
∂Q
∂ρ 2.89744 · 10−4 2.8896 · 10−4 m3/kg

∂2ωd
∂ρ2 0.0667 0.0667 m6/kg2 · s2

∂2Q
∂ρ2 −7.7986 · 10−8 −7.7990 · 10−8 m6/kg2

Sensitivity Analytical Finite Difference (Δp = 1 · 103) Units
∂ωd
∂p −0.3760 −0.3730 1/Pa · s
∂Q
∂p −2.1932 · 10−6 −2.1697 · 10−6 1/Pa

∂2ωd
∂p2 5.5025 · 10−6 5.9278 · 10−6 1/Pa2 · s2

∂2Q
∂p2 4.3897 · 10−11 4.7670 · 10−11 1/Pa2

the mass matrix depends on the density, but the mass matrix does not depend on any
other variables.

The stiffness sensitivities are more complicated for nonzero potential situations
because both damping and stiffness matrices do depend on the displacement. This
equilibrium displacement depends on the stiffness, therefore extra terms have to be
included within the sensitivity computation as is discussed in section 11.5.1. If these
terms are not included the first and second order sensitivity of the damped frequency
with E would respectively be: 3.85 · 10−6 and −2.32 · 10−17. The finite difference
computations in table 11.3 clearly show that those are wrong and the extra terms are
really required. The second order sensitivities are less accurate, though better than
without extra terms. This could be due to the convergence of the finite difference
computation.

11.7.3 Stochastic analysis

Damped frequency variations caused by elasticity variatons

The uncertainty of the damped eigenfrequency due to Young’s modulus variations is
estimated. The mean value for the Young’s modulus is the previously used 164GPa and
the standard deviation is the previously used 7GPa. The sensitivity based stochastic
FEM gives an average value of:

μωd
= 8.0958 · 105 − 1

2
1.1111 · 10−17 · (7 · 109)2 = 8.0931 · 105 rad/s, (11.41)

and gives a standard deviation of:

σωd
=
√

(2.9989 · 10−6)2 · (7 · 109)2 = 2.0992 · 104 rad/s. (11.42)
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Table 11.3: Sensitivities for a linearization with an applied potential V = 15.
Sensitivity Analytical Finite Difference (ΔE = 1 · 109) Units

∂ωu
∂E 3.1714 · 10−6 3.1633 · 10−6 m2/N · s
∂ωd
∂E 4.9664 · 10−6 4.8827 · 10−6 m2/N · s
∂Q
∂E 6.5653 · 10−12 6.3787 · 10−12 m2/N

∂2ωd
∂E2 −4.6818 · 10−17 −6.1063 · 10−17 m4/N2 · s2

∂2Q
∂E2 −2.3132 · 10−23 −5.9576 · 10−23 m4/N2

Sensitivity Analytical Finite Difference (Δρ = 10) Units
∂ωu
∂ρ −169.1 −170.2 m3/kg · s
∂ωd
∂ρ −57.90 −58.20 m3/kg · s
∂Q
∂ρ 2.3256 · 10−4 2.3172 · 10−4 m3/kg

∂2ωd
∂ρ2 −0.0314 −0.0314 m6/kg2 · s2

∂2Q
∂ρ2 −8.4542 · 10−8 −8.4547 · 10−8 m6/kg2

Both values can be confirmed with a 10000 sample size Monte Carlo analysis that
gives:

μωd
= 8.0933 · 105 rad/s, (11.43)

and:
σωd

= 2.0104 · 104 rad/s. (11.44)

Both values are really close and the second order term used in the computation of the
SFEM mean value improves the result, though the improvement is very limited, due to
the accuracy of the first order result. Hence for a stochastic analysis the second order
sensitivity is not very useful.

Frequencies are often very important characteristics for resonators and accelerome-
ters. In the case of accelerometers air damping is often present, therefore investigating
the damped eigenfrequency is important. If the frequency is deviating too far from
the specifications the device cannot function properly. This provides a usable failure
criterion. Especially if the frequency is too low this is problematic. If it is too high
one can tune it by pre-loading the sensor using electrostatic actuation. Therefore it is
assumed that the device fails if:

ωd < 7.7 · 105 rad/s. (11.45)

When the failure chance is computed with the stochastic FEM method this gives a
design point of E = 151GPa and failure chance of:

Pr[ωd < 7.7 · 105] = 0.0329, (11.46)

or about 3%. The Monte Carlo simulation gives:

Pr[ωd < 7.7 · 105] = 0.0331, (11.47)

therefore the reliability analysis is confirmed by the Monte Carlo simulation.

Q-factor variations caused by pressure variations

The last example to test the method is focused on the uncertainty caused by variations
of the ambient pressure. For instance [76] mentioned that the sealing pressure of a



226 Sensitivity and stochastic analysis of damped frequencies

MEMS resonator package is very difficult to control. Therefore it is assumed that the
operating pressure for the resonator above has a mean value of p = 1 · 105 Pa with a
standard deviation of p = 1 · 104 Pa. The relationship between the viscosity and the
pressure dependent Knudsen number was included in this analysis. The perturbation
based FEM gives the following uncertainty for the Q-factor:

μQ = 1.0797 + 0.0022 = 1.0819, (11.48)

and the stochastic FEM yields a standard deviation of:

σQ = 0.0219. (11.49)

These values are validated by a very expensive 20000 sample size Monte Carlo
analysis that provides a mean value of:

μQ = 1.0821, (11.50)

and a standard deviation of:
σQ = 0.0231. (11.51)

The standard deviation is really low. Hence the pressure variation does not seem to
have a big influence. This seems strange because in section 10.6 a simulation, confirmed
by experiments, showed a high sensitivity of the Q-factor to pressure variations. How-
ever it can be explained: the simulation for this example uses a pressure of 1 · 105 Pa,
which in combination with the gap-size will give a Knudsen number of 0.03. Since this
number is well below one, the gas is not rarefied, hence the effective viscosity is locally
not a function of the pressure, therefore overall the sensitivity to pressure variations
is low. This is in contrast to the simulations of section 10.6 which were done in the
rarefied regime. That the transition from rarefied to continuum flow shows a change
from pressure dependent to pressure independent results has also been confirmed by
experiments in literature [17].

The Q-factor is a measure for damping. For microswichtes the damping determines
the switching time. When it is assumed that the device is slower than its specifications
when the Q-factor is above 1.15, this defines a failure criterion. The FEM model
predicts that the design point will in that case be a pressure of 7.616 · 104 Pa which
will give a failure chance of:

Pr[Q > 1.15] = 0.0086, (11.52)

which was validated by the Monte Carlo simulation:

Pr[Q > 1.15] = 0.0095. (11.53)

11.8 Conclusions

This chapter first showed the computation of eigenvalue and Q-factor sensitivities.
Thereafter the matrix sensitivities, while remaining on electromechanical equilibrium,
were derived. Those sensitivities were used to perform a perturbation based stochastic
analysis consisting of uncertainty and reliability computations using a reference bridge.

An attempt was made to validate all results by either finite difference or Monte
Carlo simulations. This showed that if a parameter does not change the equilibrium
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position all sensitivities can be validated by finite differences. Such parameters are
fluid and mass properties, but also all properties at a zero volt actuation voltage. Also
all stochastic properties were validated for this type of parameters by the Monte Carlo
simulation.

If the parameter does change the equilibrium position, such as the Young’s modulus,
the first order sensitivity could be validated by finite differences, but not the second
order sensitivity. This second order sensitivity was in the right order of magnitude
though.
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Chapter 12

Model reduction for electro
mechanically actuated systems

12.1 Introduction

Time integrating the non-linear electro mechanical equations is a very time consuming
business. However due to the fact that MEMS are often used in combination with a
large electrical circuit their interaction with this electric circuit is essential and this
interaction should be simulated. The time dependent behavior of circuits is often ana-
lyzed with low DOF non linear differential equation solvers such as Spice or Simulink.
If a computationally expensive FEM model is included in such a loop this destroys the
analytical capability of the circuit designer who is using the simulation tool to design
a circuit in which the MEMS is only a small building block. Therefore it is important
to create low DOF models from these big physical level models [118].

Note that for circuit analysis normally only a input/output model is enough. How-
ever, another purposes of model reduction is a detailed transient analysis of the model,
while would be to expensive with the full model. In that case the reduced model should
be large enough to capture mechanical stresses and similar results with a sufficient ac-
curacy.

The art of generating models with a low number of DOFs from larger FEM mod-
els that still behave almost in the same manner as the larger models is called model
reduction (e.g. [45]). Due to the nonlinear and multi-physical nature of the problem,
model reduction for MEMS is not trivial. This chapter will start with the linear modal
projection method, the starting point for the derivation of non linear reduced models
based on a larger coupled FEM model addressed later in the chapter.

The first section introduces the very basics of modal truncation methods and there
it is explained why they are used for model reduction in this chapter. It also explains
the challenges for simulating electro–mechanically coupled microsystems as well as a
possible simplification, which removes one challenge. The second section is concerned
with step responses (the actuation voltage is applied with a step). The time dependency
of the electric field is rather simple after application of a step; a characteristic that will
be abused. In section 12.4 the reduction of the electric field itself is extended to enable
time dependent applied voltages. Finally a reduction approach for the squeeze film
damping model is developed in section 12.6.
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12.2 Modal truncation and the remaining challenges

12.2.1 Modal truncation of the coupled equations

Once more the full non-linear equations under consideration are:

Muuü + Km
uuu = f elec(u,φ, V ) (12.1)

Kφφ(u)φ = q(u, V ). (12.2)

The electric problem is static and at each instant in time depends directly on the
mechanical domain. Furthermore the shape of the coupled modes in in general only
really altered by the electrics close to pull-in. Therefore it seems logical to start with
reducing the mechanics and project the electrics on the mechanical behavior.

Modal reduction of the mechanics starts with assuming that the displacement u
can be described by a number of generalized DOFs η and there associated shapes Ψ:

u = Ψη, (12.3)

where the dimension of η is much smaller than u and Ψ is a matrix with a length
equal to the length of u and a width equal to the length of η. The columns of Ψ must
be linearly independent, therefore a good choice seems to be the first nr eigenvectors
of the following eigenvalue problem:

− ω2Muuμ + Km
uuμ = 0. (12.4)

Substituting equation (12.3) into equation (12.1) gives:

MuuΨη̈ + Km
uuΨη = f elec(Ψη,φ, V ) + r, (12.5)

a set of nu equations for only nr DOFs. The vector r is the residual caused by the
fact that part of the feasible solution space is not reachable when the reduced basis is
used. Because it is not reachable by the basis this residual must be orthogonal to the
basis: ΨT r = 0. Therefore this set of equations is projected onto the basis, Ψ:

ΨT MuuΨη̈ + ΨT Km
uuΨη = ΨT f elec(Ψη,φ, V ), (12.6)

which gives exactly nr equations of nr DOFs:

M rη̈ + Krη = ΨT f elec(Ψη,φ, V ). (12.7)

Hence modal truncation provides a reduction solution for the linear part of the problem.
However the non-linear part is not reduced. Still an electric solution has to be obtained
and the forces have to be computed at each time step, which is the key problem.
Therefore this chapter is essentially concerned with the reduction of the non-linear
part: the right-hand side of equation (12.7).

12.2.2 Laplacian mesh deformation assumption

To simplify the reduction of that right-hand side, the right hand side can be simpli-
fied. Therefore, let’s return to section 3.6.3. There it was stated that when the mesh
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Figure 12.1: Mesh deformation of a one dimensional mesh.

deformation is included within the formulation the problem can be written as (eq:
3.68)

Km
uuum = f elec(ue,φ, V ), (12.8)

Kueueue = −Kueūeum, (12.9)

Kφφ(ue)φ = qelec(ue, V ). (12.10)

where ue is the mesh displacement and um the mechanical displacement that is denoted
above by u. After condensing out the mesh deformation the system of equations can
be written as:

Km
uuum = f elec(ue(um),φ, V ), (12.11)

φ = [Kφφ(ue(um))]−1 qelec(ue(um), V ), (12.12)

where the mesh deformation is a function of the mechanical deformation.
The reduction problem would be greatly reduced if that function ue(um) would be

such that once it is substituted into equation (12.12) the effect would be that:

φ = [Kφφ(ue(um))]−1 qelec(ue(um), V ) = [Kφφ(ue(um))]−1 Kφ,φ̄(ue(um))1̂V =[
Kφφ(ue(u

0
m))
]−1

Kφ,φ̄(ue(u
0
m))1̂V = K−1

φφKφ,φ̄1̂V = φ0V, (12.13)

where:
φ0 = K−1

φφKφ,φ̄1̂ (12.14)

and 1̂ = [ 1 1 . . . 1 ]T and u0
m is the displacement in the initial configuration. Or

in other words, it would simplify the implementation if the mesh deformation equation
is chosen such that the nodal potentials do not change if the applied external voltage
does not change. In that case the mesh deforms in such a manner that, if the shape of
the electrode changes while the voltage remains constant, the nodes relocate such that
their potentials remain constant.

The 1D form of such an deformation is shown in figure 12.1, where three configu-
rations are shown, each with an applied potential of 1 volt on the top electrode and
0 volt on the bottom electrode. The problem is discretized with only two elements
and therefore three nodes. The left hand configuration shows the original undeformed
problem and the middle configuration shows how after deformation the mesh is nicely
distributed and the in-between node still has a 1

2
potential. The right hand side shows

a deformation that does not result in the desired potential distribution, because in that
case the in-between node has a 2

3
potential.
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The basic simplification assumption is the following: Using the Laplacian mesh de-
formation approach, results in a mesh displacement that satisfies the criteria mentioned
above. The Laplacian mesh deformation approach was presented in section 4.2.4 and
is repeated below:

∇2ui
m = 0, (12.15)

where ui
m is the mesh deformation in i-direction (i = x, y, z). The boundary conditions

to this Laplacian problem follow from the structural displacement. Once this mesh
deformation is used, this mesh deformation has to be considered during all derivative
computations.

Using this mesh deformation assumption the term φ0 can be written as:

φ0 = K−1
φφ(u0)q(u0, V = 1), (12.16)

where u0 is initial configuration. Remember that the potential distribution is simply:
φ = φ0V , therefore the coupled equation can be written as:

M rη̈ + Krη = ΨT f elec(Ψη,φ(V ), V ). (12.17)

12.3 Step response reduction

In this section the problem is simplified even more by looking at step responses only.
In that case the applied voltage V is zero before time t = 0 and constant but non zero
for t > 0. Since nothing happens when t < 0, it is only required to simulate for t > 0
with initial conditions equal to the equilibrium displacement for V = 0. Because V
does not change equation (12.17) for t > 0, it can be simplified to:

M rη̈ + Krη = ΨT f elec(Ψη). (12.18)

In that case three options will be developed. When the first option is used the
right-hand side is not reduced at all. For a mechanical FEM model combined with
simple parallel plate capacitor elements this approach was followed by [132]. The
second approach is using a Taylor expansion of the right-hand side with respect to the
modal displacement. The used Taylor expansions are either first or second order. For
a simple non linear beam model (non-FEM) a similar approach was presented in [23].
The last method is a combination of a second order Taylor with a variable centering
point and a first order Taylor method to estimate the error.

The methods will be tested on the FEM example also used in sections 7.5 and 9.5:
a deformable plate suspended above an air gap. The plate is 250μm long by 30μm
wide, 1μm thick and the air gap is 2 microns. The plate is meshed with a 25 by 10
mesh of plate elements giving 792 DOFs. The electric domain is meshed with 25 by 10
by 8 elements giving 2002 DOFs. The static pull-in value of this beam is about 21.4V .
More info on such a plate above air gap model can be found in chapter 4.

The reduction basis Ψ is formed from the first 6 eigenmodes of the uncoupled
mechanical problem. This means that only the first 3 symmetric modes actually con-
tribute to the motion due to the fact that this clamped-clamped beam will not show
asymmetric behavior.
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Figure 12.2: Step response of 18V for
the full force reduction
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Figure 12.3: Step response of 24V for
the full force reduction

12.3.1 Full force vector

The first option is to actually compute f elec(η) and not reduce it. Due to the linear
relation between mesh displacement and structural displacement the electric displace-
ment is described by:

ue(η) = K1
ueue

KueūeΨη = Kuerη, (12.19)

where Kuer is ne by nr sized matrix, hence not too large. When a computation of
the electric force is required during the time integration ue(η) is computed using the
relation above. The nodal voltage vector φ(V ) is constant and can be computed before
the time integration procedure is started. Hence it is possible at a certain displacement
to loop over the interface elements to compute the electric force:

f elec(ue,φ). (12.20)

This removes the need to solve both the full electric and mechanic matrix equation,
but still the expensive loop over all interface electric elements to compute the full
force vector has to be performed every time step. Hence the expected speed-up of the
computation is limited. This reduction was applied on the reference FEM problem
with the 6 mode basis, of which the results with 2 different step voltages are presented
in figures 12.2 and 12.3. The figures show that this method is highly accurate, however
the time gain is indeed limited. Remember that the full model required 2600 seconds,
this method requires about 35 seconds to generate all the matrices and about 620
seconds to compute the solution.

12.3.2 A first order Taylor expansion of the force

The force is linearized with respect to the displacement terms:

ΨT f elec ≈ ΨT f elec(u0,φ0) + ΨT ∂f
elec

∂η
η. (12.21)

which can be written as:

∂f elec

∂η
≈ ∂f elec

∂u
Ψ = Ke

uuΨ, (12.22)
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Figure 12.4: Step response of 6V for
the first order reduction
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Figure 12.5: Step response of 12V for
the first order reduction
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Figure 12.6: Step response of 18V for
the first order reduction
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Figure 12.7: Step response of 24V for
the first order reduction

where the Ke
uu has been defined in chapter 3 1.

The step responses of the reduced model are compared with the full model for
several different voltages: V = 6, 12, 18, 24V . The results are presented in figures
12.4 to 12.7.

From these figures it is clear that the response for low voltage steps is really accurate,
but for a 12 volt excitation (30% of pull-in) some inaccuracies appear and near and
above pull-in it really fails, not pulling in well above the pull-in voltage. Because
the forcing term f elec(φ) still depends nonlinearly on the applied voltage, hence in
the end this first order approach will show a kind of pull-in behavior, but for a much
higher potential than the actual pull-in voltage. The time benefit is incredible though.
For the 6 volts excitation the full model (implemented in Matlab) took about 2600
seconds on a 2GHz, 2GB desktop computer to compute the plotted 90 time steps.
The reduced model needed 31 seconds to generate the reduced matrices, after which

1This right hand side is simple due the fact that the displacement of internal nodes due to mesh
deformation was included in the derivation. Whether or not these have been included it can be shown
that ∂felec

∂η =
(
Ke

uu − KuφK−1
φφKφu

)
Ψ. If the displacement of internal nodes is included and the

Laplacian mesh deformation algorithm is used, the Schur complement −KuφK−1
φφKφu will be very

close to zero.
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Figure 12.8: Step response of 6V for
the second order reduction
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Figure 12.9: Step response of 12V for
the second order reduction

the time integration was performed in less than 0.3 seconds.

12.3.3 A second order Taylor expansion of the force

To have some accuracy approaching pull-in, but without the computational cost, the
right-hand side is approximated with a second order Taylor polynomial:

ΨT f elec = ΨT f elec(φ0) + ΨT ∂f
elec

∂η
η +

1

2
ΨT ∂

2f elec

∂η2
η2, (12.23)

where the ‘third order matrix’:
∂2f elec

∂η2
, (12.24)

is essentially a reduction of:
∂2f elec

∂u2
=
∂Ke

uu

∂u
, (12.25)

which has been evaluated in section 6.3 for the computation of the second order sensi-
tivity of the static pull-in voltage.

After evaluation the term ΨT ∂2felec

∂η2 will be a three dimensional array with dimen-
sions nr by nr by nr, which will not give a storage problem if nr � nu.

This approach was tested again for the reference FEM problem, for which the results
are presented in figure 12.8 to 12.11. The 6 and 12 volt simulations are fully accurate.
This contrasts with the 12 volt response of the first order approach, which was already
somewhat inaccurate. The 18 volt is not accurate anymore, but the 24 volt simulation
shows that the pull-in voltage computed with this method is smaller than 24 volts (the
actual value is 21.4) .

The impact on the computation time is really positive. It took about 60 seconds
to generate all matrices but the time integration lasted less than 0.4 second.

12.3.4 A piecewise quadratic Taylor approach

Above it was seen that the first order Taylor approximation works until 6 volts and
the second order until 12 volts. However both methods had problems with the 18 volt
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Figure 12.10: Step response of 18V for
the second order reduction
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Figure 12.11: Step response of 24V for
the second order reduction

load and could not provide an accurate estimation of dynamic pull-in. The problem is
the limited region in which the Taylor approximation is accurate.

However, there is no rule that says that the same center point for the Taylor ap-
proach has to be used for the complete simulation. If the error could be measured
a point at which the accuracy of the second order Taylor approximation is no longer
sufficient called ηc could be computed. Subsequently the new derivatives ∂f

∂η
and ∂2f

∂η3

could be evaluated at ηc and from that point on the force would be computed with:

f elec = f(u0 + Ψηc,φ0)|ηc
+
∂f

∂η

∣∣∣∣
ηc

(η − ηc) +
1

2

∂2f

∂η2

∣∣∣∣
ηc

(η − ηc)
2, (12.26)

until the error becomes too big again. This procedure could be repeated several times.
The remaining problem is the determination of the error ε. An easy method is to

compare a solution obtained with the first order method η1 with one obtained with
the second order method η2:

ε =
|η2| − |η1|

|η2|
. (12.27)

This is an accurate estimate of the error made by the first order approach and it is
assumed that its indication of the error made by the second order approach is good
enough.

The combination of this error estimator with updating of the Taylor center point
provides the algorithm as presented in figure 12.12. This method was used to compute
the curves in figures 12.13 and 12.14. The points where the error became too big and a
re-computation of the Taylor terms was performed are indicated. The error tolerance
for re-computation of the Taylor expansion was 1 · 10−2. It is clear that the method is
more accurate than the Taylor approaches, however there is a price to pay.

The first initialization of this model costs about 60 seconds. The reinitialization of
the Taylor terms costs about 40 seconds for the used model. This computation times
caused the total time to compute the curve of figure 12.13 to be 320+60 = 380 seconds.
The 320 seconds were mainly caused by the 8 reinitialization procedures. However
this 380 second computation time is still considerably shorter than the 700 seconds
required by the full force reduction algorithm. Furthermore the full-force computation
time is almost independent from the applied voltage step, where this method needs
less reinitialization for lower voltage step.
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Figure 12.12: The piecewise quadratic Taylor reduction approach
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Figure 12.13: Step response of 18V for
the piecewise quadratic reduction (er-
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Figure 12.15: Step response of 18V for
the piecewise quadratic reduction (er-
ror tolerance 5 · 10−2)
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Figure 12.16: Step response of 24V for
the piecewise quadratic reduction(error
tolerance 5 · 10−2)

An approach to reduce time is to change the error tolerance. This is investigated
in figures 12.15 and 12.16, which were computed with an error of 5 · 10−2. Clearly
the accuracy is less, but the 18 volt step costs only 210 seconds. The frequency of the
response is better than the normal second order Taylor method, however the amplitude
is less good.

Artificial frequencies could be created in the response due to the fact that at a
reinitialization point the force as a function of time will show a discontinuity. However,
due to the reduction only a limited number of modes and frequencies will present in
the response, therefore this does not seem to be problematic.

From figure 12.13 can also be seen that the accuracy decreases over simulation time.
Hence the first dip is accurate but the second one is less accurate. Because the first
dip is accurate and dynamic pull-in occurs when the first dip is too low, this method
is very effective for dynamic pull-in computations.

A disadvantage of this accuracy loss over time is that it creates artificial damping.
Furthermore this method is ill suited for long term simulations due to this accuracy
loss. It is also ill suited for harmonic analyses, because as can be seen in figure 12.13
the Taylor terms are computed at approximately the same displacement three times,
hence the same information is generated three times. If a harmonic analyis is done,
a sinusoidal solution is expected and this should be used to avoid recomputing the
basis at the same point. An approach to tackle that problem could be to combine this
method with the trust region approach as presented in [104].

If static modes are used in stead of dynamic modes, the static problem can be re-
duced as well using the Taylor series based approaches. However, they cannot predict
pull-in accurately, because the force in inaccurate for large displacement. Therefore
they are not very useful for static analyses. But the piecewise quadratic Taylor ap-
proach was accurate for dynamic pull-in. On the other hand: it was computationally
expensive. It would be interesting to see if the method is efficient for static problems
as well.
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12.4 Time varying applied potential

So far only step responses were studied, however a lot of the circuit type of simulations
for which model reduction is required are interested in the response as a function of
a time varying potential V = V (t). The voltage distribution φ(t) depends linearly on
V (t), therefore one way of including a time varying load is by using:

φ(t) = K−1
φφq = −K−1

φφKφφ̄

⎡
⎢⎣

1
...
1

⎤
⎥⎦V (t) = φ0V (t). (12.28)

Basically this defines φ and can be directly used in the full force reduction algorithm.
This means that the equations under consideration can be written as:

M rη̈ + Krη = ΨT f elec(η, V (t)). (12.29)

The full force approach will not change considerably when this equation is used in
stead of (12.18).

The Taylor based approach does change, as can be seen below where the full ex-
pansion of the right hand side is given:

f elec(η, V (t)) ≈ f elec(u0, V0) +
∂f

∂η

∣∣∣∣
u0,V0

η̃ +
∂f

∂V

∣∣∣∣
u0,V0

Ṽ (t)

+
1

2

∂2f

∂η2

∣∣∣∣
u0,V0

η̃2 +
∂2f

∂η∂V

∣∣∣∣
u0,V0

η̃Ṽ (t) +
1

2

∂2f

∂V 2

∣∣∣∣
u0,V0

Ṽ 2(t)

+
1

6

∂3f

∂η3

∣∣∣∣
u0,V0

η̃3 +
1

6

∂3f

∂η2∂V

∣∣∣∣
u0,V0

η̃2Ṽ (t) +
1

6

∂3f

∂η∂V 2

∣∣∣∣
u0,V0

η̃Ṽ 2(t)

+
1

6

∂3f

∂V 2

∣∣∣∣
u0,V0

Ṽ 3(t) +
1

24

∂4f

∂η4

∣∣∣∣
u0,V0

η̃4 +
1

24

∂4f

∂η3∂V

∣∣∣∣
u0,V0

η̃3Ṽ (t)

+
1

12

∂4f

∂η2∂V 2

∣∣∣∣
u0,V0

η̃2Ṽ 2(t) +
1

24

∂4f

∂η∂V 3

∣∣∣∣
u0,V0

η̃Ṽ 3(t) +
1

24

∂4f

∂V 4

∣∣∣∣
u0,V0

Ṽ 4(t), (12.30)

where:

Ṽ (t) = V (t) − V0, (12.31)

η̃ = η − η0, (12.32)

where η0 is defined by:

u0 ≈ Ψη0. (12.33)

The starting point of this Taylor expansion can be any combination of u0 and V0. Two
terms in this expansion were seen before: ∂f

∂η
, which is the linear electric stiffness and

∂2f
∂η2 , the second order derivative of the force.

The trivial full force algorithm will first be tested below. Thereafter several variants
of the Taylor based approach will be developed and tested. The difference between the
Taylor variants will be the number of included terms and the combination of u0 and
V0.
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Figure 12.17: Sinusoidal response of 6V
for the full force reduction
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Figure 12.18: Sinusoidal response of
12V for the full force reduction

12.4.1 Full force algorithm

The full force algorithm (12.20) for time varying loads is not more complicated than the
one for step responses, because instead of a constant φ(V ) a time varying φ(V (t)) =
φ0V (t) can be used in the algorithm. Of course the time benefits will be limited. The
method is tested with the FEM model used before. The applied load is:

V (t) = V0 · sin(Ωt), (12.34)

where a V0 of 6 and 12 is used and Ω is chosen to be half the lowest mechanical resonance
frequency. For a better understanding of the graphs: this means that Ω = 4.4·105 rad/s
and the period of the excitation T = 1.43 · 10−5 seconds. The resulting curves are
shown in figures 12.17 and 12.18. Clearly this method is extremely accurate, and also
extremely versatile, any signal V (t) can be inserted into the model without problems.
The full model simulations took each about 5 and a quarter hours to compute where
the reduced models took only 30 minutes to compute. A big reduction, though it still
takes a rather long time.

12.4.2 Force reduction

Because the full force reduction still requires a considerable amount of time another
way of finding f elec(u0, V ) is necessary, because computing f elec(u0) every time that
V (t) changes can become expensive for complicated loading voltages. Therefore the
following relation will be used, which uses the first two voltage derivatives of the Taylor
expansion (12.30):

f elec(u0,φ(V (t)), V (t)) =
∂f

∂V

∣∣∣∣
V =0

V (t) +
1

2

∂2f

∂V 2

∣∣∣∣
V =0

V 2(t), (12.35)

Chapter 9 showed that the first derivative can be computed with:

∂f

∂V
=
[
Kuφ̄ − KuφK

−1
φφKφφ̄

] ⎡⎢⎣
1
...
1

⎤
⎥⎦ . (12.36)



12.4 Time varying applied potential 241

The second derivative can be computed by using2 :

∂̂2f(η,φ(V ), V )

∂V 2
=

∂2f

∂V 2

∣∣∣∣
φ=const

+
∂2f

∂φ∂V

∣∣∣∣
V =const

∂φ

∂V
, (12.37)

which requires derivatives of the matrices used in (12.36) with φ and φ̄ which have
been discussed in section 6.3.

It can be shown that around V = 0 the first derivative is zero, simplifying equation
(12.35) to3:

f elec(t,u0) =
1

2

∂2f

∂V 2

∣∣∣∣
V =0

V 2(t), (12.38)

After projection onto the reduction basis, this only requires an nr long vector to store.
This provides the exact relation for computing the zero displacement force as a

function of the applied voltage4. However reducing the electrostatic forcing term is not
as simple as stating:

ΨT f elec(V,η) = ΨT f elec(φ, V ) + ΨT ∂f
elec

∂η
η

∣∣∣∣
V =0

+ h.o.t., (12.39)

because the term ∂felec

∂η
is highly dependent on V and even more problematic: it is

zero when V = 0. Evaluating this term at each time step is of course impossible,
therefore another approach is needed. The next two subsections will investigate two
such approaches: finding the behavior around an equilibrium in section 12.4.3 and
derivative based nonlinear behavior in section 12.4.4.

12.4.3 Approach for biased sinusoidal loads

Often electromechanical systems such as resonators have a specific mode of operation:
the load is a constant bias load around which a relatively small oscillating driving
voltage is used:

V (t) = VDC + VAC(t), (12.40)

where:
VAC � VDC . (12.41)

In that case it is assumed that the motion can be described as a small motion
around the equilibrium displacement ueq, which is the static displacement that results
from the VDC load defined as:

f elec(VDC ,ueq) − Km
uuueq = 0. (12.42)

This allows the displacement to be written as:

u = ueq + Ψη̃, (12.43)

2The hat notation was defined in section 3.6.3. It defines the derivative of f with a parameter,
which is present as one of the three arguments of the equation as well as indirectly through one of the
other arguments.

3This can be shown for a 1D problem very easy. In that case felec = 1
2εV 2

x2
0
, for which ∂felec

∂V = ε V
x2
0

which is zero for V = 0. The second derivative is: ∂2felec

∂V 2 = ε 1
x2
0
, which is not zero if V = 0.

4Again easily shown for a 1D problem:12 · ∂2felec

∂V 2 · V 2 = 1
2εV 2

x2
0
, which is the exact force.
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and the acceleration as:
ü = Ψ¨̃η. (12.44)

The modal basis Ψ is constructed used the uncoupled modes.
The next step is to assume that if VAC � VDC , the derivative of forces with dis-

placement only depends on the static part of the voltage:

∂f elec(V )

∂η̃
≈ ∂f elec(VDC)

∂η̃
, (12.45)

which has to be evaluated at the equilibrium displacement for maximum accuracy. If
only this first order displacement sensitivity is used for determining the right-hand side
and the equilibrium condition (12.42) is used, one finds the following relation (linear
in η̃, but non linear in VAC(t)):

M r
¨̃η + Krη̃ = ΨT

(
1

2

∂2f

∂V 2

∣∣∣∣
ueq

V 2
AC +

∂f elec

∂η̃

∣∣∣∣
VDC ,ueq

η̃

)
, (12.46)

This first order displacement approach has already been used before (e.g. [131]) and
has been implemented in commercial FEM codes.

However, because this equation already requires a non linear time integration al-
gorithm, it can be expanded with the second order displacement term without sig-
nificantly increasing the integration time. This increases the applicability to a large
extend. The following relation gives the reduced model including this second order
term:

M r
¨̃η + Krη̃ = ΨT

(
1

2

∂2f

∂V 2

∣∣∣∣
V =0,ueq

(
V 2 − V 2

DC

)
+

∂f elec

∂η

∣∣∣∣
VDC ,ueq

η̃ +
1

2

∂2f elec

∂η2

∣∣∣∣
VDC ,ueq

η̃2

)
, (12.47)

where the term (V 2 − V 2
DC) follows from the fact that the mechanical force should be

Kr(ηeq + η̃), however the constant term Krηeq has been removed from the left-hand
side of the equation. Therefore, through the the bias equilibrium condition:

1

2

∂2f

∂V 2

∣∣∣∣
V =0,ueq

V 2
DC = ΨT f elec(ueq, VDC) = Krηeq, (12.48)

the term:
1

2

∂2f

∂V 2

∣∣∣∣
V =0,ueq

V 2
DC ,

has to be removed on the right-hand side.
These two approaches are tested with the FEM model and the following load:

V (t) = 15 + VAC · sin(Ωt), (12.49)

where Ω is half the lowest mechanical resonance frequency (thus an excitation period of
1.43 ·10−5 s). The results are shown in figure 12.19 and 12.20 for VAC = 1 and VAC = 2
respectively. These alternating actuation voltages are not much smaller than the bias
component, but definitely smaller. The term linear (first order) or non linear (second
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Figure 12.19: Response of V = 15 + 1 ·
sin(Ωt) for the two reduction methods
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Figure 12.20: Response of V = 15 + 2 ·
sin(Ωt) for the two reduction methods

order) in the figures indicates the linearity of the force with respect to displacement.
They are both non-linear with respect to the applied potential.

The results show that both methods are pretty accurate for the 1 Volt AC load,
thought the quadratic one is a little more accurate. For the 2 volt AC part both
methods are clearly more off, although the non linear one is a little less wrong. The
computation time required to solve the full non linear static problem to find equilibrium
and determine the reduced matrices is about 140 seconds for the linear one and 165
seconds for the quadratic one. Time integration requires about 0.5 seconds for both
approaches. The full model required 3.5 hours for the total time integration. From the
figure it is clear that the error made by the reduction hardly reduced by the addition
of a second order term. It will be shown later that this error is mainly due to the
dependency of the derivatives (∂f

∂u
, ∂2f

∂u2 ) on the applied potential V .

12.4.4 Approach for random loads

When the DC plus AC assumption cannot be made another approach should be used.
Let’s assume that the applied voltage is V (t). In that case the right-hand side can be
written as:

f elec(u, V ) =
1

2

∂2f elec(u)

∂V 2

∣∣∣∣
V =0

V 2. (12.50)

If the initial displacement is substituted into this equation and the resulting term used
to approximate the force, one finds a force reduction which is constant with respect to
displacement:

f elec(u, V ) =
1

2

∂2f elec(u)

∂V 2

∣∣∣∣
V =0,u=0

V 2. (12.51)

which assumes that the non-linearity can described by the quadratic relation between
applied voltage and zero displacement force only. Adding Taylor terms leads to the
first order force approximation:

f elec(u, V ) =
1

2

∂2f elec

∂V 2

∣∣∣∣
V =0,u=0

V 2 +
1

2

∂3f elec

∂V 2∂u

∣∣∣∣
V =0,u=0

V 2u, (12.52)
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and one could go one step further and make the force second order in u:

f elec(u, V ) ≈ 1

2

∂2f elec

∂V 2

∣∣∣∣
V =0,u=0

V 2+

1

2

∂3f elec

∂V 2∂u

∣∣∣∣
V =0,u=0

V 2u +
1

4

∂4f elec

∂V 2∂u2

∣∣∣∣
V =0,u=0

V 2u2. (12.53)

The last equation includes all the terms of the Taylor expansion (12.30) as presented
before that are non-zero when it is expanded around a zero voltage.

These three force equations define three Taylor approach based reduction strategies.
The standard one, which is sometimes implemented in commercial FEM codes, is
defined by (12.51). It provides a constant relation between force and displacement.
However, this thesis proposes to use the linear displacement correction (12.52) or the
non linear correction (12.53) for more accuracy when the applied voltage is high.

The derivatives are determined by starting with the elemental definitions of ∂felec

∂u

and ∂2felec

∂u2 that have been discussed before and differentiating them5. If a is one of
those two matrices its derivative with V should be computed with the hat-derivative
as defined before:

∂̂a

∂V
=

∂a

∂V
+
∂a

∂φ

∂φ

∂V
. (12.54)

This hat-definition is required due to the dependency of a(u,φ(V ), V ) on φ(V ), V and
u. The second hat-derivative is defined as:

∂̂2a

∂V 2
=

∂2a

∂V 2
+ 2

∂2a

∂φ∂V

∂φ

∂V
+
∂a

∂φ

∂2φ

∂V 2
, (12.55)

which due to the linear dependency of φ on V reduces to:

∂̂2a

∂V 2
=

∂2a

∂V 2
+ 2

∂2a

∂φ∂V

∂φ

∂V
. (12.56)

The three approaches are tested on the FEM example using the following applied
voltage:

V (t) = 12 · sin(Ωt), (12.57)

with Ω half the mechanical eigenfrequency. The results are shown in figures 12.21
and 12.22. The load amplitude of 12V is about 60% of pull-in. Clearly the constant
approach result is really wrong, but the first order one (linear in u) is not far off and
the second order one (non-linear in u) is really accurate.

The first order approach required 61 seconds to generate matrices and about 0.4
seconds to compute the solution. The second order method required 110 seconds to
generate the matrices and 1.2 seconds to solve. Remember that the full model required
more than 5 hours.

5If it impossible to use this approach due to the unavailability of matrix derivatives or laziness in
programming, which is not a bad habit, the following principle can be used. It is known that for the
electrostatic force and its derivatives with displacement, here generally called a: 1

2
∂2a
∂V 2 V 2 = a(V ) and

∂2a
∂V 2 , is not a function of V , hence ∂2a

∂V 2 V 2 = 2a(1). This can be used to compute all second order
derivatives with the applied voltage as well.
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Figure 12.21: Response of V = 12 ·
sin(Ωt) for the two reduction methods
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Figure 12.22: Close up of figure 12.21

An important note to make is that the step voltage algorithms (12.21) and (12.23)
are limit cases of the general approaches (12.52) and (12.53) due to the exact relations:

∂f elec(V )

∂u
=

1

2

∂3f elec

∂V 2∂u
V 2, (12.58)

∂2f elec(V )

∂u2
=

1

2

∂4f elec

∂V 2∂u2
V 2. (12.59)

Therefore if a general approach has been programmed no need for a special step voltage
algorithm is required.

Small oscillations around a bias voltage

As mentioned before, small oscillations around a bias form an important benchmark for
reduction methods. Therefore the general approach is compared with the specialized
approach of section 12.4.3. The applied load is the most difficult one of those that were
used to test the biased approaches:

V (t) = 15 + 3 · sin(Ωt), (12.60)

where Ω is half the mechanical eigenfrequency.
The only thing required for the general approach is computing the static equilibrium

ueq and use the following definition:

ueq ≈ Ψηeq, (12.61)

to compute the equilibrium ηeq, which is the required initial condition for the time
integration.

For both methods (biased and general) the version that is second order with respect
to the displacement is used. Thus (12.47) for the biased version and (12.53) for the
general version. Figure 12.23 shows the results. The general approach is even better
than the biased version, proving the versatility of the approach. Note that the bias
voltage VDC = 15 is about 75% of the pull-in voltage.

However if one is really interested in accurate simulations around a bias, noth-
ing prevents the usage of the equilibrium displacement as center point of the Taylor
expansion:

u = ueq + Ψη̃, (12.62)
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Figure 12.23: Response of V = 15 + 3 · sin(Ωt) for the biased reduction approach of
section 12.4.3 and the general reduction approach of section 12.4.4

which leads of the definition of the reduced system as:

M r
¨̃η + Krη̃ = ΨT

(
1

2

∂2f

∂V 2

∣∣∣∣
V =0,ueq

(V 2 − V 2
DC)+

1

2

∂3f elec

∂V 2∂η

∣∣∣∣
V =0,ueq

V 2η̃ +
1

4

∂4f elec

∂V 2∂η2

∣∣∣∣
V =0,ueq

V 2η̃2

)
, (12.63)

which gives all the non-zero terms of the Taylor expansion around u0 = ueq and V0 = 0.
The term (V 2 − V 2

DC) has been explained in section 12.4.3.
When this method is applied on the bias problem V = 15 + 3 · sin(Ωt) the result of

figure 12.24 is obtained. It clearly has a spot on accuracy. Because there was a very
large eccentricity from the bias of 3 volt, or 20% of the bias voltage, it can be said that
this approach works even if VAC is approaching the order of magnitude of VDC .

12.5 Which modes to use?

So far only purely mechanical modes were used to fill the reduction basis Ψ. However
in chapter 8 it was shown that electrostatics can change the coupled mode shape. So
would it be better to use the coupled modes?

ω2
i Muuxi −

(
Kuu − KuvK

−1
φφKT

uφ

)
xi = 0 , (12.64)

evaluated around the zero geometry.
This idea is tested on the slightly modified plate geometry of which the side view is

shown in figure 12.25. This electric geometry will cause an asymmetric electric force,
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Figure 12.24: Response of V = 15 + 3 · sin(Ωt) the general reduction approach of
section 12.4.4 determined around the biased displacement ueq

Figure 12.25: Side view of an asymmetrically actuated plate
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Figure 12.26: Step response of the
asymmetric plate at 17.5 volt
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Figure 12.27: Close up of figure
12.26
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Figure 12.28: Response with 4 modes to a 17.5 volt step

therefore a change of the mode shape. The step response is computed for 17.5 Volts
which is about 60% of the 32.6V pull-in voltage. The full model response is shown
as well as the reduced curves computed with only one mode in the basis. The used
reduction algorithm was the second order in η force reduction approach (12.23).

The coupled mode does better than the uncoupled one. Therefore for more compli-
cated geometries this might be a better alternative than uncoupled modes. However
for this simple geometry using only 4 either mechanical or coupled modes in the basis
gives a fully accurate result as shown in figure 12.28.

12.6 Including squeeze film damping

Squeeze film damping is very important for a large range of MEMS devices. Therefore
its modeling has received ample attention in this work so far and will continue to receive
that attention in the remainder of this chapter.

In chapter 10 it was stated that the Reynolds equation describing the fluid can be
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written as:
L(u)ṗ + D(p,u)p = −R(p)u̇, (12.65)

where p is the pressure in the fluid and the matrices R, L and D are non constant
matrices following from the discretization of the partial differential equation. The force
on the structure was defined as:

f p = Kupp. (12.66)

Equation (12.65) can be linearized, which is often done for MEMS that experience
a displacement that is relatively small compared to the gap. Hence this assumption is
dubious for large step responses. But it will hold very well for oscillations around a
DC bias and small step responses. This linearized version is simply:

L(u0)ṗ + D(p0,u0)p = −R(p0)u̇, (12.67)

where a zero subscript indicates an initial or equilibrium state of a variable.
In chapter 10 it was mentioned that the equation describing damping can be simpli-

fied to neglect compressibility if the squeeze number is small. Therefore this section will
first discuss the relatively simple reduction of incompressible damping before moving
on towards compressible damping. Finally a reduced model including the non linear
effects is derived for incompressible flow.

12.6.1 Incompressible fluid flow

The linearized incompressible fluid equation is:

Ru̇ + D(p0,u0)p = 0. (12.68)

where D depends on p0 through the Knudsen number dependent viscosity. From this
equation follows that:

p = −D−1Ru̇, (12.69)

hence the fluid force is:

f p = −KupD
−1Ru̇ = −Cp

uuu̇, (12.70)

which is essentially a linear damping force as characterized by a linear damping matrix.
Using this linear damping matrix the equations of motion become:

Muuü + Cp
uuu̇ + Km

uuu = f elec(u,φ), (12.71)

which are reduced as follows:

ΨT MuuΨη̈ + ΨT Cp
uuΨη̇ + ΨT Km

uuΨη = ΨT f elec(Ψη,φ). (12.72)

The approach is tested for the 6 and 12 volt step responses. For these two responses
the ‘electric forces that are quadratic in u’ approach is still really accurate for the
electrostatics, hence only the damping part of the reduction is tested, not the already
discussed electrostatics. For larger voltages the linearization assumption for the fluid
equation does not hold, hence it is not really relevant to test the capability of this
damping approach for those voltages. The test model is again the symmetric plate
used before. The gas in the gap is air at approximately atmospheric pressure. Thus
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Figure 12.29: Damped step response of
6 volts
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Figure 12.30: Damped step response of
12 volts

the ambient pressure is PA = 1 · 105 Pa, the viscosity is μ = 18.27 · 10−6 Pa · s and the
mean free path is 64nm.

The results for these two steps are the subjects of figures 12.29 and 12.30 that
show a very good reduced model accuracy when capturing damping. Again the time
integration time was in the order of 0.3 seconds for the reduced model, compared to
about 1 and a half hours for the full model.

12.6.2 Compressible fluid flow

When the incompressibility assumption can not be made, the fluid effects cannot be
modeled using a simple damping matrix. The full fluid equations (12.65) have to
be reduced. This discussion on compressible model reduction will be limited to the
linearized fluid equations (12.67). Again modal truncation will be chosen as the basic
principle, thus the pressure will be reduced by assuming that:

p = Γξ, (12.73)

where ξ are the reduced pressures and Γ is the modal basis. A simple approach would
be to use the first nr modes of the eigenvalue problem:

Lνλ = −Dν, (12.74)

where λ is the eigenvalue and ν the eigenvector.
With this definition and the original reduction for the mechanics, the reduced sys-

tem of equations becomes:

ΨT MuuΨη̈ + ΨT Km
uuΨη = ΨT KupΓξ + ΨT f elec(Ψη,φ), (12.75)

ΓT LΓξ̇ + ΓT DΓξ = −ΓRΨη̇, (12.76)

which can be written as:

M rη̈ + Krη = Kp
rξ + ΨT f elec(Ψη,φ), (12.77)

Lrξ̇ + Drξ = −Rrη̇, (12.78)

and integrated by a time integration algorithm of choice. This can be done either
staggered or monolithically.
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Figure 12.31: Incompressible and
compressible full model solution for
a 12 volt step
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Figure 12.32: Incompressible
damped step response of 12 volts

The method is tested using the same reference problem as the incompressible one.
First the full model solution for the full model with a 12 volt step is obtained. This
result is compared with the incompressible solution in figure 12.31. It shows that the
compressible equations have some added stiffness effect, which is not present in the
incompressible model. This results in a slightly higher frequency of the compressible
response compared to the incompressible response as seen in the figure 12.31. It is
important check if there is a difference between the compressible and incompressible
results, as small as it is, otherwise this test case cannot be used to properly test an
incompressible algorithm.

Figure 12.32 shows the reduced result obtained using 6 mechanical modes in Ψ and
6 fluid modes in Γ compared with the full model result. Clearly the reduced model
is capable of capturing the incompressible response. Due to the linearity of the fluid
equations, the time for the integration did not really increase compared to reduction
without fluid (below 0.4 seconds). However the generation time increased because the
fluid modes have to be computed.

The modal basis

So far only solutions to the eigenvalue problem (12.74) were used as fluid basis. However
if one zooms in on part of picture 12.32 one sees the red curve of figure 12.33, which is
somewhat off the proper solution.

However the reduction basis is not restricted to solutions to that eigenvalue problem
(12.74). For the fluid problem one knows what the right hand side of (12.67) can be:

Ru̇ = RΨη, (12.79)

hence if μ is one of the (electro)-mechanical modes used to fill Ψ it seems logical to
fill part of Γ with projections of these mechanical modes:

νp = D−1Rμ. (12.80)

If the total number of vectors in the basis Γ is kept constant and equal to 6, but
only 4 of those vectors are purely fluid modes and the other 2 are the projections of the
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Figure 12.33: Close up of the curve in figure 12.32 including the curve with projected
fluid modes. The term 4 + 2 means four pure fluid modes plus two projected modes
and the term 6 means six fluid modes only.
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Figure 12.34: Response with 10 mechanical modes and either 10 purely fluid modes or
6 purely fluid modes and 4 projected fluid modes (close up)

2 mechanical modes that correspond to the 2 lowest eigenfrequencies the blue curve in
figure 12.33 is obtained. It seems to be slightly better than the red curve, but it is not
a decisive victory.

However if the total number of mechanical modes is increased from 6 to 10 and the
total number of modes in the fluid basis to 10 as well; then there is a clear difference
between using 10 pure fluid modes and 6 fluid modes combined with 4 projected modes.
This can be seen in figure 12.34 where the blue curve of the ‘6+4’ reduction is clearly
more accurate than the red curve created using fluid modes only.

12.6.3 Adding nonlinearity to the fluid equations

So far the damping was assumed to be linear, thus for the incompressible model it was
assumed that:

p = −D−1(p0,u0)Ru̇, (12.81)

however, the actual incompressible relation is:

p = −D−1(p,u)Ru̇, (12.82)

which has to be solved iteratively, because D depends on p. The matrix D depends
only on p through the Knudsen number dependent viscosity. If the pressure is high
enough, that dependency drops, and the equation is only non-linear in u. Therefore
the equation is linearized with respect to p:

p = −D−1(p0,u)Ru̇, (12.83)
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Figure 12.35: Linearized and non linear damped step responses computed with full
incompressible models

Hence for each instant in time at which the pressure force needs to be calculated during
the time integration this equation is linear in p and depends on the actual displacement
at that time. Thus one could write this as:

f p = −KupD
−1(u)Ru̇ = −Cp

uu(u)u̇, (12.84)

The definition of D was given by equation (10.45) as:

Dij =

∫
∂Ni

∂xk

ph3

12μ

∂Nj

∂xk

dV, (12.85)

where h was defined as:
h = Nk(h0 + u)k, (12.86)

where Einstein’s summation convention was used. Hence the matrix Cp
uu depends on

h as on 1/h3.
The 12 Volts step response used before is solved including the nonlinear effects

and compared with the linearized solution in figure 12.35. Clearly the non-linearity
increases the damping. This is because a large displacement means that the damping
matrix is computed at a smaller gap size, since the damping matrix is inversely propor-
tional to the gap size cubed, a smaller gap gives a larger damping. Therefore damping
increases for big displacements. This effect is not present in the linear model, hence
the linear model experiences less damping.

Taylor expansion of the damping matrix

Two methods will be developed to reduce this non linearity. The first one is the
computationally cheapest one based on a Taylor expansion of Cp

uu. For a simple finite
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Figure 12.36: Non-linearly damped
step response of 6 volts
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Figure 12.37: Non-linearly damped
step response of 12 volts

difference based beam model this was done before in [23]. The dependency of this
damping matrix on the gap will be linearized as:

Cp
uu = Cp

uu(h0) +
∂Cp

uu

∂u

∣∣∣∣
u=0

u. (12.87)

From the definition of the damping matrix (12.70) follows:

∂Cp
uu

∂ui

= −KupD
−1∂D

∂ui

D−1R. (12.88)

which after projection on the basis results in a nr by nr by nr array.
The derivative of D follows from (12.85):

∂Dij

∂us

=

∫
∂Ni

∂xk

3ph2

12μ

∂Nj

∂xk

NsdV, (12.89)

where:
∂h

∂us

=
∂Nl(h0 + u)l

∂uk

= Ns, (12.90)

was used.
The responses obtained using this damping matrix that depends linearly on the

displacement are shown in figures 12.36 and 12.37, which shows that for the 6 and
12 volts steps, this method is really accurate. So in principle up to the point where
the voltage reduction using quadratic displacement dependency of the electric force is
accurate, this method is accurate as well. Time integration of this reduced responses
only required 0.3 seconds after a 64 second matrix generation time, where the full
model required more than an hour.

Fully non-linear damping matrix

More accuracy can be required. For instance when the full force reduction is used,
hence the electric force computation is really accurate, therefore the reduced modal is
used for large displacements6. In that case a different approach can be used.

6Or if a non FEM based electric model is used which allows really fast computation of the electric
force for simple geometries
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The reduced non-linear damping matrix can be written as:

Cr = ΨT KupD
−1(u)RΨ. (12.91)

Furthermore it is assumed that the fluid can be reduced with a modal basis as well:

p = Γξ, (12.92)

which can be used to reduce the squeeze film equation (12.65). When this reduced
squeeze film equation is used to obtain the reduced damping matrix it gives:

Cr =
(
ΨT KupΓ

) (
ΓT D(u)Γ

)−1
ΓT RΨ, (12.93)

or:
Cr = KrupD

−1
r (u)Rr. (12.94)

Note that there is no term related to ṗ within this incompressible model, therefore there
is no reason to use fluid modes in the basis Γ only the projected modes as described
by equation (12.80) are used to fill Γ.

Using the definition of D:

Dij =

∫
∂Ni

∂xk

p(Nlhl)
3

12μ

∂Nj

∂xk

dV =

∫
∂Ni

∂xk

p(h0)
3

12μ

∂Nj

∂xk

dV+∫
∂Ni

∂xk

p3(h0)
2

12μ

∂Nj

∂xk

NldV ul +

∫
∂Ni

∂xk

p3(h0)

12μ

∂Nj

∂xk

N2
l dV u

2
l +∫

∂Ni

∂xk

p

12μ

∂Nj

∂xk

N3
l dV u

3
l , (12.95)

which can be written as7:

Dr = D3 + D2Ψη + D1(Ψη)2 + D0(Ψη)3, (12.96)

where D3 is a nf by nf matrix, if nf is number of modes in Γ. The other three (D2Ψ,
D1Ψ

2 and D0Ψ
3) are nf by nf by nr arrays.

When using this approach 3 such n2
fnr big arrays need to be stored, after which a

nf by nf matrix equation has to be solved to compute the damping force. Since only
projected modes are used the number of nf should be chosen equal to nr.

In principle this approach can capture the full non-linearity of the Reynolds equa-
tion with respect to u, hence it can be used until that equation is no longer valid when
h → 0.

These fully non-linear responses for the 6 and 12 voltage steps are shown in figures
12.38 and 12.39. The computation time was only 67 seconds for the generation and
less than 0.4 seconds for the time integration.

Figure 12.40 shows the step responses of this fully non linear reduction method
and the Taylor based one discussed just before. For the 6 and 12 volt responses both
reductions gave the same response. For the 18 volt step the maximum displacement is
that big that there is a difference. The maximum displacement is about 20% of the gap
for this 18 volts step. The 12 volt step only gave a maximum displacement of about
8% of the gap. Therefore it is crucial to use the full non-linear version if one expects,
or finds, a maximum displacement bigger than 10%.

7Superscripts in this equation indicate element wise powers of the matrix and vector elements.
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Figure 12.38: Fully non linearly
damped step response of 6 volts
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Figure 12.39: Fully non linear damped
step response of 12 volts
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Figure 12.40: Fully non-linear and Taylor based non-linear damping for a 18 volt step
response.
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This approach can easily be expanded to the incompressible integration. One can
just use the dependency of the reduced matrix on the mechanical modal amplitudes.
Similarly the L matrix can be expanded. These can then be used for computing the
time derivatives of the pressure.

12.7 Conclusions

This chapter was concerned with modal truncation based reduction algorithms for
electro-mechanical finite element models. The reduction of electro-mechanics was split
into step response reduction, for which the electric force in only depending on the dis-
placement and time varying reduction for which the electric force is also depending on
a time varying applied potential. It was required that the electrostatic force reduction
is applicable for any electrostatic problem, not for simple parallel plate geometries only.

For the step response problem in total four methods were discussed:

1. Full force reduction, which was adapted to coupled FEM from a non coupled
FEM method described in literature,

2. A first order Taylor approach, which has been described in literature before.

3. A second order Taylor approach, which has been described in literature for a non
FEM model.

4. A piecewise quadratic Taylor approach, newly derived in this work.

The numerical experiments showed that for finding the actual dynamic pull-in value
the piecewise quadratic approach is most efficient with respect to computation time.
However up to about 70% of the pull-in value the second order Taylor approach dis-
placement is very accurate.

For time varying potentials the distinction between the discussed methods blurs,
therefore the total list is longer:

1. Full force reduction, adapted from the same work as the full force step response
reduction approach.

2. An approach without a dependency of the force on displacement but with a
quadratic dependency of the force on the applied voltage. This method can be
found in literature and commercial FEM packages.

3. A first order Taylor approach for the displacement dependency combined with
a quadratic applied voltage relation, specially adapted for oscillations around
biases, which can be found in literature and commercial FEM as well.

4. A second order Taylor approach for displacement dependency combined with a
quadratic relation with respect to the applied voltage, adapted for biased oscil-
lation, which has not yet been found in literature.

5. A third order Taylor approach in which essentially the force depends linearly on
the displacement and newly developed in this work.

6. A fourth order Taylor approach, where the force depends quadratically on the
displacement, newly developed as well.



12.7 Conclusions 259

For the last two methods the Taylor expansion can be centered around any displace-
ment, hence also a bias displacement.

Of these methods, the most effective method is the last one, the fourth order Taylor
approach. It is computationally very cheap and accurate up to about 70% of pull-in.
As mentioned this approach can be expanded around a bias displacement as well. In
that case the 70% of pull-in limit only restricts the AC part of the applied voltage. Also
the last method was more effective than the two specially tailored bias methods for
bias problems (methods: 3 and 4). Only if one is interested in higher applied voltages
than the 70% limits, the full force reduction is best.

Finally the fluid equations were reduced for incompressible and compressible flows.
For the compressible equations this required the application of modal truncation for the
fluid DOFs as well. Here the concept of projected modes proved to be really beneficial
for accuracy. It was also shown that the extension to fully non linear fluid equations
can be made without great computational costs. This simplicity was partly due to
limitation of the squeeze film model. It is only applicable for parallel plate geometries,
which is in contrast to the presented electrostatic force reduction.

One open question that remains is if the trust region approach as presented in [104]
can be used in combination with the second order Taylor approaches and if this has an
advantage over the presented methods.
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Part IV

Combining and concluding





Chapter 13

A general modeling framework

13.1 The basic framework

In chapter 1, the introduction, it was stated that the main goal of this thesis is the
development of an integrated framework of electromechanical physical level modeling
strategies. The FEM method is such a physical level modeling method. This requires
a definition of what is considered by the term framework : a modeling framework is an
annotated diagram that shows the characteristics of the different modeling approaches
and the relationships between them. It should allow a designer to choose the required
modeling capabilities based upon the purpose of the model. For example if the designer
is interested in the pull-in voltage, this framework should provide the possible modeling
options, including advice for selecting one of those options.

In sections 3.4 and 3.5 the building of a model and the solution of the equations
were placed in a general structure. In each of the chapters that constitute parts II and
III of this thesis, an attempt was made to cast discussed algorithms into that structure.
When those attempts are combined this provides the basic framework that is presented
schematically in figure 13.1.

Once the modeler has decided that a physical level model is required, he or she
should decide what results are needed from the model and look for those results in the
bottom part of figure 13.1. The number of times that the desired result can be found
provides the number of ways to obtain that result.

The lines from the top box decide to make an electro-mechanical model to the
desired result go through numbered rhombi. Each rhombus signifies a necessary choice
that has to be made during the modeling:

1. Is a coupled simulation or co-simulation preferred?

2. Will the solution be obtained in a staggered, hybrid or monolithic manner?

3. Is the problem static or dynamic?

Below, section 13.2 will elaborate on the first choice between the simulation ap-
proaches. Subsequently section 13.3 will elaborate on the second choice between the
solution strategies. Finally section 13.4 will discuss the division between part II and
part III of this thesis: the division between statics and dynamics. Of course that
division corresponds to the third required choice, however the flexibility to choose is
limited. Essentially the desired result determines if a static computation is sufficient
or if dynamics should be included.
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Figure 13.1: Schematic representation of the relation between the methods derived and
discussed in this thesis. Yellow boxes indicate staggered solution procedures and green
boxes indicate monolithic solution procedures. The used abbreviations are: Freq. for
Frequency, Disp. for Displacement, DPI for Dynamic Pull-In and S&S for Sensitivity
and Stochastic analysis.
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One remark has to be made: the quality of the results derived in the context of this
framework stands or falls with the quality of the constituent numerical models of the
electrostatic and mechanic domains.

13.2 Selecting a simulation approach

Co-simulation was defined as the combination of two different discretization approaches,
often from different codes, to build a coupled model. Such a simulation needs the trans-
fer of data from one code to the other. This limits the ability to compute derivatives,
such as tangent matrices and design sensitivities. Therefore monolithic methods as
well as sensitivity and stochastic analyses are highly impractical for co-simulation.
Theoretically finite difference approaches could be used to derive the matrices and
sensitivities, however, due to the lack of robustness and efficiency, those are omitted
from figure 13.1. The only exception is the frequency as computed by the staggered
approach. They were not omitted because of their frequent appearance in literature
and commercial codes.

An advantage of co-simulation is that highly dedicated solvers for each physical
domain can be used, providing high accuracy. Especially if the needed mesh density
differs greatly on specific locations such as corners or if the problem is really large a
co-simulation can be the best option. However this requires the methods to transfer
data between non-matching meshes, an issue that has generated large body of literature
(e.g. [40, 67, 6]).

Coupled simulation was defined as the discretization of all fields within one code,
preferably using matching meshes. This simplifies the coupling and enables analytic
tangent matrix and sensitivity computations. Therefore the flexibility of the models
is greatly increased. A disadvantage is that the code has to be able to discretize all
physical fields.

This flexibility allows for the efficient computation of analytical design sensitivities
as derived in this work. The sensitivities enabled the efficient stochastic analyses that
were derived. With a co-simulation approach only Monte Carlo type approaches are
feasible for uncertainty quantification.

For more detail on the difference between both simulation approaches see section
3.4.

13.3 Selecting a solution strategy

The second rhombus defines the choice between the two available solution strategies:
staggered or monolithic, a distinction made in section 3.5. When a staggered proce-
dure is used, one solves the physical domains separately. For instance first the electric
equations are solved, which provide electrostatic forces. Subsequently the mechanical
equations are solved, providing displacements, after which the electric domain is de-
formed and the process starts all over again. The advantage is that relatively small
systems have to be solved, the disadvantage is slow convergence.

The alternative is a monolithic approach: combining the electric and mechanical
equations into one big system of equations, which can be solved directly. This solution
starts with the computation of the tangent matrix of the system, which can be used to
iterate the non-linear equations at once. The advantage is a fast convergence, but the
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costs are large matrices which have to be solved and scaling issues. Those scaling issues
can become especially prominent for the three field problem of squeeze film damped
electro-mechanics.

If, at rhombus number one, the choice was made to use a co-simulation model, only
the staggered solution procedure can be used. Therefore in that case the choice is not a
real choice. However for coupled simulation models, the choice is a real one. If one has
a coupled simulation model, one can choose to do everything monolithic or staggered,
however there is a third option.

Experience in chapter 5 showed that for a mechanically linear problem a staggered
procedure is often optimal for the computation of one of the basic results: the quasi-
static load-displacement computation. For a transient analysis the time step limits
accuracy, therefore the time step should be relatively small. Thus the number of non-
linear iterations needed at each time step is limited, hence also for transient analyses,
staggered procedures are often optimal. However it is well conceivable that one is
interested in more than those basic computations: accurate frequencies around static
equilibria and sensitivities. In that case a hybrid method can be used. In figure 13.1 a
hybrid method is characterized by a yellow box containing the basic solution combined
with an arrow pointing to a green box which contains the monolithic method used to
compute a result based on the staggered solution.

13.4 Statics and dynamics

As was mentioned the last choice is not a real choice. Also for some dynamic results
a static computation is required, which blurs the separation. Furthermore assuming
that something is static, means in essence that it is assumed that the inertia terms
can be neglected from the dynamic equation, making statics a limit case of dynamics.
However, literature and this work have made the clear distinction between statics and
dynamics due to the fact that the equations are different. Therefore this third choice is
included within the framework, essentially to help find the methods within this thesis.
Static methods and results are in part II of this thesis, dynamic methods and results
in part III.

The dynamic methods can be categorized even more as is shown in figure 13.2. The
first separation is between transient and frequency analysis. When a transient analysis
is performed the goal is to find the actual displacement as a function of time by solving
(integrating) the non-linear dynamic equations. When a frequency analysis is done,
it is assumed that the device moves with a displacement relative to an equilibrium
position. Furthermore it is assumed that the displacements over time remain small.
Therefore it is allowed to assume that the device will vibrate as an oscillatory system.
In that case the equations are linearized around the equilibrium system and the goal is
to find the eigenfrequencies and modes by doing an eigenvalue analysis on that system.
Such an eigenfrequency analysis is in general much cheaper than a transient analysis.
Because transient analyses are so expensive, they are often performed using a reduced
model.

The goal of a reduced model is doing transient analyses, which explains the position
of model reduction within figure 13.2. However, the reduced models discussed in this
thesis need a frequency analysis to be created. Once again a division gets blurred
somewhat.
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Figure 13.2: Categorization of the dynamic results.

The second separation is between damped and undamped models. In the undamped
case it is assumed that no energy is lost within the system, hence there is no friction.
When this assumption is not made, damping is allowed. In this work the only kind of
damping that is considered is squeeze film damping: damping due to the compression of
air between two parallel plates. Basically the addition of damping will generate forces
that are proportional to the velocity of the device, hence energy will be removed. Of
course the necessity to include damping in the model depends on the purpose and
design of the device.

13.5 Where to find the methods?

The last section of this chapter will give an overview of the location within this thesis
of the methods presented in figure 13.1.

If one is interested in the purely static load displacement relationships one has to
look for chapter 5. To estimate a pull-in value, one needs such a load-displacement
relationship, thus one is referred to chapter 5 as well. When the pull-in value is not
enough but also its sensitivity to parameter variations or the stochastic properties of
the pull-in value are needed, respectively chapters 6 and 7 should be consulted.

If also the eigenfrequencies of an electro-mechanical device are desired, it is needed
to progress to chapter 8 for undamped problems and chapter 10 for damped problems.
Both chapters are in part III. However for frequencies a static analysis from chapter
5 might be required. The sensitivity and stochastic analysis of those frequencies is
treated in chapter 11.

How to determine a transient is discussed in chapters 8 and 10 as well. If dynamic
pull-in needs to be found, one needs transient results, therefore one can find the meth-
ods to compute dynamic pull-in in chapter 8 as well. If the value is not enough, the
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Figure 13.3: Distribution of the desired results categorized in the framework (figure
13.1) over the thesis.

methods to compute the sensitivity, uncertainty and reliability properties of dynamic
pull-in can be found in chapter 9.

It is also possible that the desired number of transient analyses is really large. Or
one could be interested in creating a model that can be used in a circuit simulator.
In those cases a reduced order model is probably required and chapter 12 could be of
interest.

This distribution of the desired goals and methods to obtain those results is sum-
marized in figure 13.3. In the chapters mentioned in figure 13.3 both the monolithic
method and the staggered (if available) can be found. The conclusions about the op-
timal methods for each desired result will be summarized in the next chapter as well.
The modeling of an application using the approaches of this framework is presented in
appendix C.



Chapter 14

Conclusions and recommendations

Waarheid is net een toverbal die om
de drie seconden van kleur verandert

De mensheid zij geprezen
Arnon Grunberg

14.1 Conclusions

This thesis had one primary goal: presenting a framework for the numerical solution of
electro-mechanical problems based on physical level modeling. The developed frame-
work presents a logical oldening of the available methods for electro-mechanical model-
ing. The creation of the framework has been split into three parts: electro-mechanical
modeling, quasi-static simulation and dynamic simulation. The conclusions from those
three parts are presented below.

14.1.1 Electro-mechanical modeling

When an electrostatic model is used for electro-mechanical simulation the quality of
the model has to be assessed by the quality of the electrostatic forces it generates.
Because forces are computed using the electric field, the gradient of the electric poten-
tial, it is not enough to have a converged electric potential solution. Especially corner
singularities can cause convergence problems. Several options exist for computing the
electric forces once an electric field has been computed. After numerical experiment
and discussion, it turned out that the most efficient approach to compute the electric
force is the variational approach. All approaches using special corner elements per-
formed less or equal to the variational approach and require expensive corner detection
algorithms. The combination of special corner elements with the variational approach
does perform better than the variational approach, but the difference is that small that
it is not worth the extra effort.

Once such an electrostatic model is coupled with a mechanical model, an electro-
mechanical model is created. There are two methods to couple them: co-simulation
where two models are coupled on an ad hoc basis and fully coupled simulation where
both domains are modeled simultaneously in the same code. Co-simulation gives the
possibility to use advanced electrostatic and mechanical solvers for each domain, cou-
pled simulation gives more options to the analyst.
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If a fully coupled model is created one has the choice to solve everything in one go,
or to iterate between the electric and mechanical problem. In other words: to solve the
problem in a monolithic or a staggered manner. For co-simulation only the staggered
option is available.

14.1.2 Quasi-static modeling

Quasi-static load-displacement curves can explain much of the behavior of an electro-
mechanic device. One of the most important characteristics that can be derived from
such a load displacement relation is the pull-in voltage.

To find this load-displacement curve using a numerical algorithm an extra constraint
has to be added to the system of equations, for which there are 5 options:

1. Prescribe the applied voltage,

2. Prescribe a relation between applied voltage and displacement,

3. Prescribe the applied charge,

4. Prescribe a relation between applied charge and displacement,

5. Prescribe an applied displacement.

The second choice that can be made is if the problem is solved in a staggered or a
monolithic manner. Simulations of a reference problem showed that for linear elastic
structural problems the staggered approach with constraint number 4 worked best,
while for non-linear elastic problems the monolithic approach with constraint number
4 worked best. Some of the constraint types had not yet been published in literature
before.

It was also shown that these methods can be easily enhanced to cope with bifurca-
tions. Furthermore it was shown that pull-in as computed with this method could be
matched with experiments.

The pull-in sensitivity analysis that was performed provides analytical first order
sensitivities and newly derived semi-analytical second order sensitivities that could
be validated by finite differences. The analytical sensitivities require fewer function
evaluations and are therefore computationally cheaper. It was shown that a stochastic
analysis could be performed with these sensitivities that gives reliable results when
compared with crude Monte Carlo simulations

14.1.3 Dynamic modeling

Undamped modeling

Dynamic modeling can be split into undamped modeling and damped modeling. Sub-
sequently each of those problems can be split into transient and frequency analysis.
In this work the undamped frequency analysis was briefly discussed, staggered and
monolithic approaches were compared. The monolithic method is favored due to its
robustness. The typical decrease of the linearized frequency with applied potential was
validated by experiments.

The newly developed analytic dynamic pull-in sensitivities could be used for a
stochastic analysis. The validation with crude Monte Carlo sampling showed that for
the reference problem a second order uncertainty analysis was not required.
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Damped modeling

A non-linear FEM model of the Reynolds equation was developed. When the Reynolds
equation is used to model squeeze film damping, there exist the possibility to neglect
to compressible terms in that equation. This can greatly simplify the implementation
of the time integration algorithms needed for transient analysis. When computing
damped eigenfrequencies the amount of extra work needed when compressibility is
included is less dramatic. The validity of the incompressible Reynolds equation was
tested and it was shown that the critical squeeze number for the undeformed configu-
ration gives a good indication of the validity, but a deformation of the plate changes
the validity range slightly.

Also the effect of rarefaction was introduced: when the critical dimension of the
air film becomes very small compared to the mean free path of a gas molecule the
gas cannot be modeled as a continuum anymore. Rarefaction can be measured by
considering the Knudsen number. An approach from literature was used to model the
rarefaction. This approach allowed the favorable comparison of the derived squeeze
film model to experiments from literature. Those experiments also showed that the
viscosity correction for rarefaction works up to a Knudsen number of 600.

Another conclusion of the damped modeling approach was that damping makes
one rule of thumb invalid: the eigenfrequency is zero at static pull-in. It should be
corrected to: the real part of the damped eigenvalue changes sign at static pull-in.

The coupled electro-mechanical(-fluidic) eigenfrequency is an important parameter
therefore the eigenfrequency and Q-factor sensitivities were discussed. This required
the derivation of matrix sensitivities, while remaining on electro-mechanic equilibrium.
These sensitivities were successfully used to perform a stochastic analysis, which was
validated using crude Monte Carlo sampling.

Reduced modeling

Finally the transient equations were reduced by applying modal truncation. The key
problem proved to be the reduction of the non-linear electrostatic forces, which depend
non-linearly on both the applied potential and the displacement. Because the depen-
dency on the applied potential is quadratic this could be easily reduced by applying a
second order Taylor approximation.

The dependency on the displacement is that complicated that there exist no optimal
method. However a newly developed second order Taylor approximation proved to be
very effective in reducing the computation time and is reasonably accurate up to 70%
of pull-in. If the voltage is applied with a step and one is interested in pull-in one
is advised to use the developed piecewise quadratic Taylor approach to cope with the
displacement sensitivity.

It was shown that linear and non-linear damping can be included into the reduced
model without much computational cost.

14.2 Recommendations

14.2.1 Quasi-static modeling

It was shown that the approach with a constraint on charge and displacement was the
best option to find the load-displacement curve. However there are several options to
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define a constraint on charge and displacement (e.g. circular of normal flow [101, 27,
105]). It is an open question that can be solved with relative ease by future work.

Normally the Taylor based reduction approaches are not useful for quasi-static
analyses because they cannot predict pull-in accurately. However the computationally
expensive piecewise quadratic Taylor approach was accurate for dynamic pull-in. It
would be interesting to test if it is an efficient option to compute static pull-in as well.

14.2.2 Dynamic modeling

The dynamic pull-in sensitivity could only be computed for a limited number of param-
eter variations, due to the assumption that the pull-in displacement does not change
due to the parameter change. Research is still required to pinpoint the exact limi-
tations that are induced by this assumption and whether there exists an alternative
dynamic pull-in criterion.

Furthermore it was shown that the logarithmic sensitivities of dynamic and static
pull-in were equal for the reference problem. An interesting open question is if this is
always the case.

For the damped model it was shown that the squeeze number gives a good indication
of the validity of the incompressibility assumption. However this requires knowledge
of the critical squeeze number, which is only defined for simple geometries. It does
require extra research to find out what the exact limitations of this assumption are
and when the compressible gas equation has to be used.

For the reduced model, the remaining problem is to find a reduction approach for
very large displacement that is computationally cheap. It is recommended to consider
the Trust region approach, possibly in combination with the piecewise quadratic Taylor
approach [104].



Appendix A

Summary of the classical Finite
Element equations

To be able to understand the differences between the different modeling approaches,
it is essential to understand the general finite element modeling of mechanics and
electrostatics. Therefore the modeling of electrostatics and mechanics using FEM will
be discussed briefly in this appendix. This will also provide the experienced FEM user
with a feeling for the notations used in this thesis.

A.1 Finite Element formulation of electrostatics

A.1.1 In two dimensions

The electrostatic equation, a partial differential equation (PDE) valid on an electro-
static domain (e.g. domain Ω in figure A.1), can be written in 2D as [48]:

∂

∂x

(
ε
∂φ

∂x

)
+

∂

∂y

(
ε
∂φ

∂y

)
= −ρ, (A.1)

where φ is the electric potential and ρ the charge density. In air or a vacuum this
charge density is zero, therefore the equation reduces to Laplace’s equation:

∂

∂x

(
ε
∂φ

∂x

)
+

∂

∂y

(
ε
∂φ

∂y

)
= 0. (A.2)

The boundary conditions are the potential values on the boundary and the bound-
ary charges. Thus on the part of the boundary where the potentials are applied the
boundary condition is:

φ(x, y) = φ̄, (A.3)

which is also known as a Dirichlet boundary condition. On the boundary where the
boundary charges are applied the boundary condition is:

ε
∂φ

∂x
nx + ε

∂φ

∂y
ny −Q = 0, (A.4)

with nx and ny the direction cosines of the outward normal vector. This type of
boundary condition is also known as a Neumann or natural boundary condition.
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Figure A.1: Electrostatic domain
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Figure A.2: Mesh consisting of tri-
angles and quadrilaterals.

The standard approach in Finite Element theory is to divide the domain in dif-
ferent elements as in figure A.2. Each element is connected to the other elements at
a finite number of points (called nodes, normally the corner points of the element),
subsequently it is assumed that within an element, the value φ can be written as a
linear function of the nodal values of the potential and the shape functions that only
depend on the geometry of the element:

φ = Niφi, (A.5)

where the Ni are the shape functions and φi the nodal potentials.
The next step is to multiply equation (A.2) with a test function v. If this product

is integrated over the domain it should still be zero.∫
Ω

v

[
∂

∂x

(
ε
∂φ

∂x

)
+

∂

∂y

(
ε
∂φ

∂y

)]
dΩ = 0. (A.6)

When Galerkin’s method is used one uses the shape functions as n test functions v to
define as a set of n integral equations [61]:∫

Ω

Ni

[
∂

∂x

(
ε
∂φ

∂x

)
+

∂

∂y

(
ε
∂φ

∂y

)]
dΩ = 0, (A.7)

which can be integrated by parts as follows:∫ ∫
Ωe

∇a · b dΩ =

∫
S2

a b · n̂ dS −
∫ ∫

Ωe

a∇ · b dΩ (A.8)

where a = Ni and

b = ε

[ ∂φ
∂x
∂φ
∂y

]
,

where n̂ is the outward normal vector of the domain of integration and S2 is that part of
the boundary where a Neumann boundary condition is applied. When this is method
is applied one finds:∫

S2

Ni

(
ε
∂φ

∂x
nx + ε

∂φ

∂y
ny

)
dS −

∫ ∫
Ωe

(
ε
∂Ni

∂x

∂φ

∂x
+ ε

∂Ni

∂y

∂φ

∂y

)
dxdy, (A.9)
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where the surface integral can be simplified by substituting the boundary condition
(A.4)1: ∫

S2

NiQdS −
∫ ∫

Ωe

(
ε
∂Ni

∂x

∂φ

∂x
+ ε

∂Ni

∂y

∂φ

∂y

)
dxdy. (A.10)

Substituting equation (A.5) yields:[∫ ∫
Ωe

(
ε
∂Ni

∂x

∂Nj

∂x
+ ε

∂Ni

∂y

∂Nj

∂y

)
φjdxdy

]

−
∫

S2

QNidS = 0, i = 1, 2, . . . , n, (A.11)

where Ωe is the domain spanned by the element and S2 that part boundary of the
element where a natural boundary condition is applied. Thus in matrix vector notation,
with φ a vector containing the nodal voltages, this equation can be written as:

Kφ = Q, (A.12)

where the forcing term Q is defined as:

Qi =

∫
S2

Q(x, y)NidS, (A.13)

and the matrix K is defined as:

Kij =

∫ ∫
Ωe

(
ε
∂Ni

∂x

∂Nj

∂x
+ ε

∂Ni

∂y

∂Nj

∂y

)
dxdy. (A.14)

Another way of writing the stiffness matrix often seen in literature is:

K =

∫ ∫
Ωe

ε∇NT · ∇NdΩ, (A.15)

with N a vector containing the shape functions.
Within air or a vacuum there are no space charges and the boundary values are

all specified potentials or zero charges. Therefore all degrees of freedom have either a
specified potential value or a free potential value. Hence the stiffness matrix K can be
split in several sub matrices, for free (φ) and prescribed (φ̄) degrees of freedom:[

Kφφ Kφφ̄

K φ̄φ K φ̄φ̄

] [
φ
φ̄

]
=

[
0
q̄

]
. (A.16)

If the potential is imposed on a boundary, q̄ are the reaction charges on the surface of
the conductor. Thus if the electric potential within the domain has to be calculated,
the top line of the above equation can be used:

Kφφφ = −Kφφ̄φ̄. (A.17)

When the free DOFs have been calculated the bottom line can be used to calculate
the reaction charge on the boundary:

q̄ = K φ̄φφ + K φ̄φ̄φ̄. (A.18)

1This is the so called weak form of Laplace’s equation, that can be used to find the solution :∫
Ω
∇v · ∇φ dΩ = 0, where φ is the potential solved for and v is a test function that can be anything.

Galerkin’s technique uses the shape functions that approximate the potential also as test functions.
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A.1.2 In three dimensions

In 3D the electrostatic equation can be written as.

∂

∂x

(
ε
∂φ

∂x

)
+

∂

∂y

(
ε
∂φ

∂y

)
+

∂

∂z

(
ε
∂φ

∂z

)
= ρ. (A.19)

Using the same reasoning as in 2D, the stiffness matrix can be found to be the same
expression as in 2D:

K =

∫ ∫
Ω

ε∇NT · ∇NdΩ (A.20)

with N a vector containing the shape functions.
A 3D hexahedral element can be seen in figure A.3. Just like in the 2D case, shape

functions can be defined as separable functions of the natural coordinates:

Ni(ξ, η, ζ) = Li(ξ)Li(η)Li(ζ). (A.21)

For the hexahedral element, with nodes at (ξ, η, ζ) = (±1,±1,±1), the linear shape
functions are:

Ni =
1

8
(1 + ξξi)(1 + ηηi)(1 + ζζi). (A.22)

ξ

η

ζ

Figure A.3: A 3D hexahedral element
in natural coordinates.

A.2 Finite Element formulation of structural me-

chanics

A.2.1 General 2D formulation

A short derivation of the linear version of 2D structural FEM will be provided here.2

The mechanical equilibrium equations were discussed in section 3.2 and repeated below:

− ρüj +
∂

∂xi

σji + Fj = 0 , (A.23)

2This complete section is based on the Rayleigh-Ritz method as presented in [45]
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Figure A.4: Continuum mechanical domain.

For the FEM derivation also the surface traction on the domain is important is
important. If the outward unit normal vector n has components ni the equilibrium
between external traction and the stress tensor σ can be written as:

tj = niσij, (A.24)

where tj is the surface traction in direction j.
If the derivation is restricted to the linear case the strain as function of the dis-

placement field can be written as:⎡
⎣ εxx

εyy

γxy

⎤
⎦ =

⎡
⎣

∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x

⎤
⎦[ u

v

]
= L

[
u
v

]
, (A.25)

where u and v are respectively the displacements in x and y direction and γxy = 2εxy.
The displacement field is discretized using shape functions:[

u
v

]
=

{
Niui

Nivi
= Nu. (A.26)

Thus a derivative matrix can be defined as: B = LN .
In the case of linear elasticity the stresses are related to the strains by:

σij = Cijklεkl, (A.27)

which, due to the symmetry in Cijkl, can be written as:⎡
⎣ σxx

σyy

τxy

⎤
⎦ = C(E, ν)

⎡
⎣ εxx

εyy

γxy

⎤
⎦ , (A.28)
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Using these assumptions equation (A.23) can be written as:

LT CBu + F − ρNü = 0. in V (A.29)

These equations basically say that the forces on all nodes must be zero. Equation
(A.24) becomes:

DT CBu = t on S, (A.30)

where:

DT =

[
nx 0 ny

0 ny nx

]
. (A.31)

In general it is impossible to exactly satisfy these equations, because the approxima-
tion (A.26) does not allow all possible continuum solutions. Therefore these equations
can only be satisfied as:

LT CBu + F − ρNü = rV . in V (A.32)

t − DT CBu = rs on S, (A.33)

However it possible to look at the problem from a different perspective: the goal is
to find a solution to equations (3.4) and (3.4) under a constraint put on the solution
(A.26). From this perspective the residual forces rV and rS are the reaction forces due
to the constraint.

Now it is possible to find the values of the nodal displacements u with the virtual
work principle. The principle of virtual work says that the work produced by the forces
due to any kinematically admissible virtual displacement should be zero. The residual
forces rV and rS cancel each other out for kinematically admissible displacements.
Therefore if the equations are pre-multiplied with the kinematically admissible virtual
displacement: [

δu
δv

]
= Nδu, (A.34)

summed and integrated over the mechanical domain, the principle of virtual work gives:∫
V

δuT NT LT CBu + δuT NT F − ρδuT NT Nü dV+∫
S

δuT NT
(
t − DT CBu

)
dS = 0, (A.35)

removing the arbitrary but non-zero variations δu gives:∫
V

NT LT CBu + NT F − ρNT Nü dV +

∫
S

NT
(
t − DT CBu

)
dS = 0. (A.36)

Integration by parts of the first term gives:∫
V

NT LT CBudV =

∫
S

NT DT CBudS −
∫

V

(LN)T CBudV. (A.37)

Substitution of this result into equation (A.36) yields:∫
V

BT CBdV u +

∫
V

ρuT NT NdV ü =

∫
V

NT F dV +

∫
S

NT tdS, (A.38)

which can be written as:
Muuü + Km

uuu = f . (A.39)
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The 2D implementation of one element

There are two options to model linear mechanics in the 2D case: plane strain and
plane stress. For the implementation in FEM this does not really matter, because
both formulations can be written as (A.28):⎡

⎣ σxx

σyy

τxy

⎤
⎦ = C(E, ν)

⎡
⎣ εxx

εyy

γxy

⎤
⎦ , (A.40)

where σ denotes stress, τ shear stress, ε strain and γ shear strain. The only difference
is in the exact formulation of the 3 by 3 matrix C as a function of Young’s modulus
and Poisson’s ration. The constitutive relation for linear plane strain is defined by:

C =
E

(1 + ν)(1 − 2ν)

⎡
⎣ 1 − ν ν 0

ν 1 − ν 0
0 0 1−2ν

2

⎤
⎦ , (A.41)

and for linear plane stress it is defined by:

C =
E

1 − ν2

⎡
⎣ 1 ν 0
ν 1 0
0 0 1 − ν

⎤
⎦ . (A.42)

If quadrilateral volume elements are used one such an element will be the one shown
in figure A.5. Node 1 has coordinates: (ξ, η) = (−1,−1), node 2: (ξ, η) = (1,−1), etc.
The linear shape functions for this element are the same as the electrostatic shape
functions:

N1(ξ, η) = 1
4
(ξ − 1)(η − 1),

N2(ξ, η) = −1
4
(ξ + 1)(η − 1),

N3(ξ, η) = 1
4
(ξ + 1)(η + 1),

N4(ξ, η) = −1
4
(ξ − 1)(η + 1),

(A.43)

but the matrix N is defined by:[
u
v

]
=

[
N1 · · ·N4 0

0 N1 · · ·N4

]
u, (A.44)

where:

u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1
...
u4

v1
...
v4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (A.45)

The stiffness matrix can be computed as follows:

K =

∫
Ω

BT CBdΩ, (A.46)

which can be used in the relation:

Ku = F , (A.47)
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Figure A.5: One 2D volume element.

where F is the vector containing the nodal forces.
Surface traction or body forces must be assembled using the following relations:

Fb =

∫
Ω

NT f bdΩ (A.48)

Ft =

∫
S

NT tdS, (A.49)

where t is the surface traction and f b the body force. Initial strains can be added
using:

F0 =

∫
Ω

BT Cε0dΩ. (A.50)

With the proper choice of L and N all these equations also hold in 3D. With a
more complicated L operator also geometric non-linearity can be included, without
changing the equations above.

A.2.2 Beam elements

Another possibility to model the beam is not with volume elements, but with beam
elements. Linear volume elements, such as the linear plane strain element need at least
3 to 4 elements trough the thickness of the beam to capture the stress profile in the
beam. Beam elements are specially designed to include the correct stress distribution.
Basically a different equation is discretitized:

EI
d4u

dx4
= f, (A.51)

where I is the bending moment of the beam, u the vertical displacement of the beam
perpendicular to the beam itself and f the pressure applied in the direction perpendic-
ular to beam. The bending moment I is for a beam with a rectangular cross-section
defined as:

I =
wh3

12
, (A.52)

where h is the thickness of the beam and w the width. In the plane strain formulation
an out of plane width of w = 1 was assumed and the thickness is h = 4 · 10−6, both
will be used for the beam model as well.
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Figure A.6: One beam element.

The weak form of (A.51) is:

∫
vEI

d4u

dx4
dx−

∫
vfdx = 0, (A.53)

where v(x) is a non zero test-function that can be anything. Twice integrating the first
term by parts yields: ∫

EI
d2v

dx2

d2u

dx2
dx =

∫
vfdx, (A.54)

One beam element is shown in figure A.6. The displacement u is discretized as:

u = Nu, (A.55)

with:

NT =

⎡
⎢⎢⎣

1 − 3ξ2 + 2ξ3

lξ(1 − ξ)2

ξ2(3 − 2ξ)
lξ2(ξ − 1)

⎤
⎥⎥⎦ , (A.56)

and:

u =

⎡
⎢⎢⎣
u1

θ1

u2

θ2

⎤
⎥⎥⎦ , (A.57)

where l is the length of the beam.

If the shape functions Ni are used as test-functions and substituted in stead of v,
this yields for the beam element:

K =

∫
EI

d2NT

dξ2

d2N

dξ2

dξ

l3
, (A.58)

and the applied force is:

f =

∫
Nf(x)dx, (A.59)

where f is vector containing nodal forces and nodal torques. Together this gives a
linear set of equations:

Ku = f . (A.60)
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A.3 Shape functions and natural coordinates

A.3.1 Shape functions in natural coordinates

In the previous sections all equations were derived using unspecified shape functions.
One of a few statements about these shape function was equation (A.5) that states
that the shape functions help define the potential as a function of the nodal potentials.
Similarly they helped define the displacements for the mechanical equations. It was
assumed that these shape functions are only depending on the geometry of the element.

For each nodal DOF a shape function is defined, describing the influence of the
nodal DOF on the element distribution. The shape functions approximate potential
within an element when each shape function is multiplied with a corresponding nodal
potential. The summation of these nodal potential distributions will then approximate
the potential distribution within an element. The individual shape functions therefore
have to be 1 at their corresponding nodes, but 0 on all the other nodes.

(-1,-1)

(-1,1) (1,1)

(1,-1)

1 2

34

ξ

η

Figure A.7: Bilinear square element.

In this text we will only discuss quadrilateral elements, thus only elements with 4
corners. The simplest quadrilateral element is the square bilinear Lagrange element
shown in figure A.7. The bilinear shape functions for this element are [61]:

N1(ξ, η) = 1
4
(ξ − 1)(η − 1),

N2(ξ, η) = −1
4
(ξ + 1)(η − 1),

N3(ξ, η) = 1
4
(ξ + 1)(η + 1),

N4(ξ, η) = −1
4
(ξ − 1)(η + 1).

(A.61)

To illustrate their behavior, one the shape functions of one of the nodes is shown in
figure A.8:

A.3.2 Isoparametric mapping

For rectangular elements is quite easy to write the local or natural coordinates ξ and
η as functions of the global coordinates x and y needed to perform the element in-
tegration, but when arbitrary quadrilaterals are used, this can become a tedious job,
therefore normally some kind of mapping is used, e.g. a isoparametric mapping.

When using an isoparametric mapping, one assumes that the coordinates can be
mapped using the same shape functions as the variable of interest. Thus the coordinate
within the element is a function of the corner coordinates:

x = Ni(ξ, η)xi,
y = Ni(ξ, η)yi,

(A.62)
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Figure A.8: Bilinear shape func-
tions.

which has as Jacobian of transformation:⎡
⎢⎢⎢⎣

∂

∂ξ

∂

∂η

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

∂

∂x

∂

∂y

⎤
⎥⎥⎦ = J

⎡
⎢⎢⎣

∂

∂x

∂

∂y

⎤
⎥⎥⎦ , (A.63)

therefore: ⎡
⎢⎢⎣
∂Ni

∂x

∂Ni

∂y

⎤
⎥⎥⎦ = J−1

⎡
⎢⎢⎢⎣
∂Ni

∂ξ

∂Ni

∂η

⎤
⎥⎥⎥⎦ , (A.64)

which is an easy method to define the integrands in the matrix (A.14). But to calculate
the integrals correctly the following relation has to be used:∫ ∫

f(x, y)dxdy =

∫ ∫
f(x(ξ, η), y(ξ, η)) det(J)dξdη. (A.65)
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Appendix B

Rounding corners

B.1 Introduction

In chapter 2 it was shown that the solution of the electric field becomes infinite near a
corner. It was shown that these singularities cause convergence problems for standard
FEM models. Solutions to overcome these issues were presented, however all these so-
lutions required special FEM elements or variational force computation, both currently
unavailable in most commercial FEM codes [65, 1].

A standard method to overcome these convergence problems consists in rounding
off the corners, which removes the geometric singularity [143]. Because just a geometry
is changed this can be done in any FEM code (although it can be a tedious procedure).

This approach seems very close to real life, because in reality sharp corners do not
exist. All corners are rounded off a little bit. Therefore rounding the corners might
actually be smarter than sharp corner modeling.

However it is obvious that rounded corners require dense meshes. Therefore it
might be better to model rounded corners as sharp corners with the most optimal
FEM elements if the influence of round off on the total corner force is small. This will
be investigated numerically in section B.2 and analytically in section B.3.

B.2 Finite Element Modeling

Rounding the corners works because in that case the singularity is removed, thus the
value of the charge at the corner becomes bounded, which will result in a finite force
distribution at the corner. This will ensure that the force calculation with the local
force method converges with considerable ease. This effect is illustrated in figures B.1
and B.2 where can be seen that with a rounded corner, the change for the electric field
is smoother.

However one big disadvantage of a rounded corner is related to the mesh near a
corner. To accurately mesh the curved geometry, a much higher number of elements is
required compared to the sharp corner, as shown for triangular elements in figure B.3.

Another difficulty is that the magnitude of the radius has to be chosen. In reality
sharp corners hardly ever exist, there is always some degree of a round off. However it
is nearly impossible to predict this real radius beforehand or to measure each individual
edge on a fabricated MEMS.

Thus it would be interesting to see the influence of the rounding radius on the
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Figure B.1: Electric potential
around a rounded corner.

Figure B.2: Electric field around a
rounded corner.

Figure B.3: Mesh near a sharp
and a rounded corner.

computed electrostatic force and if the solution converges to the same value as the
sharp corner when the radius is decreased. When the corner is rounded, the problem
converges to a final solution for both the variational method as the local force approach.
The corner is rounded with decreasing radii and the results are summarized in figure
B.4. The x-axis signifies the inverse radius 1/r and the y-axis the electrostatic force in
the x-direction.

In the figure it can be seen that the force converges to the same value as the
solution for the sharp corner obtained with the variational method (2.113) in figure
2.18. Furthermore it converges rather fast, at 1

5
(the corner side having a unit length)

it is within 1 percent of the analytical sharp corner solution.

B.3 Analytical modeling

The rounding effects can also be studied with the help of conformal transformations.
But transforming rounded corners is not a trivial case, therefore the geometry that is
being investigated in the section is not the reference unit corner. For a slightly differ-
ent problem however it is easier to perform the transformations, therefore a different
reference will be used in this section.

The transformations are shown in figure B.5. First the sharp transformation will be
shown, thereafter the rounded transformation will be discussed and finally their results
will be compared.
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Figure B.4: Electrostatic forces for different
rounding radii.

Sharp corner

The objectives of the transformation are summarized in table B.1.

z plane t plane
z = ig t = −1
z = −∞ t = 0
z = ∞ t = ∞
z = i∞ t = −∞

Table B.1: Objectives for the transformation.

In the transformation library of [16] the following transformation can be found:

z = − g

π

(
2
√
t+ 1 − 2 log

(√
t+ 1 + 1

)
+ log(t)

)
, (B.1)

the Jacobian of this transformation is:

∂z

∂t
=

g

πt

√
t+ 1. (B.2)

Since the origin of the t plane is at z = −∞ and one of the boundaries is given a
unit potential the electric field will be equal to:

w =
1

π
log(t). (B.3)

thus the electric field in the z plane will be:

E = −∂w
∂z

= −∂w
∂t

∂t

∂z
= − 1

g
√
t+ 1

. (B.4)
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Figure B.5: Transformations for a sharp and a rounded corner near
an infinitely long conductor.

Because the electric field has only an horizontal (imaginary) or a vertical (real)
component on the boundary equation (2.79) can be used instead of equation (2.78),
thus the electric pressure in the z plane will be:

fes =
ε0

2g2(t+ 1)
. (B.5)

Again it is clear that at t = −1 there is a singular point, which can also be seen
in figure B.6 that shows to distributed forces on the two boundaries. However when
integrated over the boundary the Jacobian has to be considered, therefore the force in
z coordinates becomes:

Fes =

∫
ε0

2πg2
√
t+ 1t

dt, (B.6)

which will remain bounded when integrated over the singular point.
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Figure B.6: Electric Force on sharp corner boundaries.

When a specific gap width of g = 1 is entered and the force is calculated from
z = −1 + i to z = i this yields the following force:

Fes = iFx + Fy = 0.3908ε0i− 0.8145ε0. (B.7)
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Rounded corner

Using the transformation library in [16], the transformation for the rounded corner can
be written as:

z = − 2g

π(
√
b+ λ

√
c)

[√
t− b−

√
b arctan

(√
t− b

b

)

+ λ

(
√
t− c−√

c arctan

(√
t− c

c

))]
, (B.8)

where b and c the t are plane coordinates as shown in figure B.5, g is the gap width
and λ is a parameter used to determine the curvature of the round off which has to be
determined by trial and error. The objectives of the transformation are summed up in
table B.2. In this table is r the rounding radius.

z plane t plane
z = ir t = b
z = −r t = c
z = −∞ t = ∞
z = −i∞ t = −∞
z = i∞ t = 0

Table B.2: Objectives for the transformation.

The Jacobian of the transformation becomes a lengthy expression but can be cal-
culated:

∂z

∂t
=

1

π(
√
b+ λ

√
c)

[
1√

t− b
(
1 + t−b

b

) − 1√
t− b

− 2λ

(
1

2
√
t− c

− 1

2
√
t− c

(
1 + t−c

c

)
)]

. (B.9)

The values for constants b, c, g and λ will substituted at this moment for the sake
of simplicity. By trial and error, the values b = 0.7, c = 3 and λ = 0.75 were found,
which give an almost circular rounding with an approximately 0.2 value of the rounding
radius.

The electric field in the t plane will be the logarithmic field, due to the position of
the origin:

w =
1

π
log(t). (B.10)

In this case the electric field at the boundary is not always parallel to one of the
coordinate axes. Therefore the more complex equation (2.78) has to be used. The
distributed force is shown in figure B.7. It is easy to see that the rounding of the
corner has removed the singularity, there are still two peaks at the beginning and
the end of round off, but these are finite peaks. At point b = (x, y) = (0, 0.19) the
distributed force is equal to F = 1.7628ε0i and at point c = (x, y) = (−0.19, 0) to
F = −0.9916ε0.
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Figure B.7: Electric Force on round corner boundaries.

The total electric force in the z plane will be, when integrated from t = 0.0403 to
t = 12.92, to get the force on the corner from z = −1 to z = i:

Fes = Fxi+ Fy = −0.7858ε0i− 0.3894ε0. (B.11)

It can be seen that this force is nearly the same as for the sharp problem. Therefore one
can conclude that it has only a marginal influence on the corner force when that corner
is rounded. When the radius is 20% of the characteristic length (the unit distance used
as integration domain), the influence on the force is less than 3%.

For the sake of completeness, a contour plot of the potential field near the sharp
corner is shown in figure B.8 and the plot of the field near a rounded corner in figure
B.9. Care has to be taken when interpreting the results, because the transformations
result in a two mirrored geometries, thus in mirrored solutions. It can be seen that on a
large scale the potential fields are very similar, explaining the low change in integrated
force. Only on close distance to the singularity the fields are very different.
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Figure B.8: Potential near a sharp cor-
ner.
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Figure B.9: Potential near a rounded
corner.

Decreasing radii

Of course it is also possible to calculate the corner forces for different corner radii. To
get a rounded corner with a certain radius, parameters a, b and λ in equation (B.9)
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can be varied. The y-direction force at different radii is shown in figure B.10. The
shown results sustain the conclusion that the force on a rounded corner converges to
the sharp corner solution when the radius is decreased.
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Figure B.10: Corner forces for different
round off radii.

B.4 Conclusions

Chapter 2 showed that the variational approach is much more suited to model sharp
corners than the local force approach. In this chapter it is shown that when the corners
are rounded the local force approach can solve the problem as well, although at the
expense of the extra elements to mesh the curve.

However the computed force does not really vary with the radius, therefore if the
corners can be modeled with sharp elements it is much more efficient to use them in
combination with the variational approach even if in reality there is a round off radius.
Therefore it is not necessary to predict or measure the real radius, saving time.
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Appendix C

A stiffness and mass sensing
cantilever

C.1 Introduction

Within the Delft University a set of micro cantilevers ha been developed [113]. A
scanning electron microscope (SEM) image of the cantilevers is presented in figure
C.1. Their main goal is to: a sense stiffness variations due to size effects of exterior
influences by pull-in measurements and b measuring mass variations due to exterior
influences by frequency measurements. However other uses could be developed as well.
Several measurements have been performed with these cantilevers, thus experimental
data is available.

Because all purposes of the cantilever benefit from a good model and there are mea-
surements available, this cantilever is an ideal test case for the finite element strategies
as presented in this thesis. More specifically the chosen modeling steps will be pre-
sented within the framework of chapter 13. Furthermore the strategies could provide
more applications or improvements to the cantilever design.

The cantilevers are created using a Silicon on Insulator (SOI) wafer. A SOI wafer
consists of a thick single crystal SI substrate with on top of it two small layers: a layer
of insulating SiO2 and a layer of single crystal Si. The cantilevers are produced by
patterning the top layer as follows: depositing a layer of photo resist on the silicon,
illuminating that layer through a mask and developing it. Subsequently a directional
etch is used to remove the silicon on the location were no cantilevers or their suspension
are required. This insures that the thickness of the cantilever is equal to the thickness
of the original layer in the SOI wafer. Thereafter an isotropic etch is used to remove
the SiO2 below the cantilevers. This makes sure that the gap below is equal to the
original thickness of the SiO2, however due to the fact that the etch rate is equal in all
directions the SiO2 near the clamp will have a special shape as shown by figures C.3
and C.4.

The first section of this chapter describes the FEM model of the cantilevers. Next
the basic stiffness and mass sensing properties of these cantilevers are described using
FEM sensitivities in section C.3. The problem with the basic cantilever is that is
very hard to measure the position of a mass attached to the cantilever. Therefore the
possibility of slightly changing the design to improve that capability is investigated in
section C.4. Of course such a sensor could also be used to sense the pressure of the
fluid around the cantilever (see chapter 10), but is it also possible to measure different
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Figure C.1: SEM image of several cantilevers.

Si

Si

SiO2

Figure C.2: Cross section of a SOI wafer.
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Figure C.3: Remainder of SiO2

after forcefully removing the Si
cantilever.

Figure C.4: Close up of fig. C.3.

Figure C.5: Simplified 3D geometry of the cantilever.

properties? This question is investigated in section C.5.

C.2 Model

Basically the beam can be modeled using the shape shown in figure C.5. The gray part
is the silicon cantilever which is clamped at the indented edge. The indentation is a
model of the SiO2 left by the isotropic etch used to release the cantilever as mentioned
in the previous paragraph.

As mentioned a lot of different cantilevers were produced so the model should be
parametric. Most of the parameters are defined in the top view as shown in figure
C.6. Only the gap and plate thickness cannot be defined in the top view, but those
are not difficult to define. Since the beams are used to measure stiffness and mass
variations the elasticity modulus and the density are non-constant parameters as well.
All constant and non-constant parameters are summarized in table C.1.

C.2.1 A 1D model

Of course a very simple model would be a simple 1D mass spring gap system. Figure
3.2 in chapter 3 showed such a 1D model and showed that the pull-in voltage was
defined as:

VPI =

√
8 k x3

0

27 ε
, (C.1)

where the difficulty is determining the stiffness k for a cantilever problem. However in
literature a method for doing that can be found [97]. According to that paper for a
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Figure C.6: Top view with parameter definition.

cantilever with distributed electrostatic load, width w, initial gap x0, thickness h and
length � = L+ u the effective stiffness is:

k =
2Êwh3

3�3
, (C.2)

where the effective Young’s modulus is:

Ê = E, (C.3)

if w ≈ h and

Ê =
1

1 − ν2
, (C.4)

if w > 5h.

C.2.2 FEM model

It is clear that such a 1D model is limited, it cannot cope with the SiO2 left by the
isotropic etch and it cannot handle malfunctions during production, therefore a FEM
model is created. The cantilever is modeled with plate elements and the electrostatic
gap with brick elements. The electrostatic mesh can deform to capture non-linearity.
The plate mesh for which the results are converged is shown in figure C.7, the dimen-
sions or the non-constant parameters are chosen arbitrarily. The electrostatic mesh is
very similar to the plate mesh because it is an extrusion of the plate mesh in the third
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Table C.1: Parameters of the cantilevers.
Constant parameters

Property Symbol Value Units
Gap size g 1.019 · 10−6 m

Electric permittivity ε 8.8541 · 10−12 F/m

Poisson’s ratio ν 0.22 −
Ambient pressure PA 1 · 105 Pa/m2

Viscosity μ 18.27 · 10−6 kg/(m · s)
Mean free path λ0 94 · 10−9 m

Non-constant parameters
Property Symbol Value Units
Length L − m

Width w − m

Beam thickness h − m

Undercut u − m

Indentation depth δ − m

Elasticity modulus E − Pa

Density ρ − kg/m3

dimension. The number of electrostatic elements in this third dimension is 4, which is
low due to the fact that the electric problem is relatively simple.

It was modeled as a coupled-simulation model in Matlab, hence all tangent en
sensitivity information can be computed. Therefore the three solution strategies from
the framework: staggered, hybrid and monolithic can be used.

C.2.3 Experimental validation

Two parameters are easily measured, pull-in and frequency. From the available sim-
ulation options provided within the framework a staggered approach is used to solve
for pull-in. The staggered approach is used because the mechanic problem is linear.
For the frequency computations a monolithic approach will be used because of its
robustness.

Pull-in

For the experimental validation a measurement is used obtained with a beam that has
thickness of 1019 nm. At that thickness size effects do not play a role so the Young’s
modulus is known to be 169GPa. The other properties for this beam are summarized
in table C.2.

The analytical model gave a pull-in value of:

V 1D
PI = 12.16V, (C.5)

Where the FEM model gave:
V FEM

PI = 15.36V. (C.6)

This is a pretty big difference, which cannot be explained by the indentation δ only.
Because if the indentation is removed the FEM pull-in becomes:

V FEM
PI = 14.63V. (C.7)



298 A stiffness and mass sensing cantilever

0 1 2 3 4 5 6 7 8

x 10
−5

−2.5

−2

−1.5

−1

−0.5

0
x 10

−5

x

y

Figure C.7: Top view of the plate mesh.

Table C.2: Parameters of the cantilever used for validation.
Non-constant parameters

Property Symbol Value Units
Length L 70 · 10−6 m

Width w 8 · 10−6 m

Beam thickness h 1.019 · 10−6 m

Undercut u 4 · 10−6 m

Indentation depth δ 3 · 10−6 m

Elasticity modulus E 169 GPa

Density ρ 2330 kg/m3

The FEM model has an actual distributed load and simulates the redistribution of
charge during loading, thus it has a different solution as the analytical one. The
measured value for pull-in is:

V meas
PI = 15.30 ± 0.01V, (C.8)

which is really close to the 15.36 of the FEM model.

Eigenfrequency

For the eigenfrequency validation a slightly different beam is used: one with a length
of 84μ in stead of 70μ. All other properties are equal to the ones in table C.2. For this
beam the frequency was measured in a high vacuum, but pull-in was not measured.
The measured first eigenfrequency was:

ωmeas = 1.201 · 106 rad/s = 191.2 kHz. (C.9)

The finite element model gives a first frequency of

ωmeas = 1.221 · 106 rad/s = 194.3 kHz, (C.10)

which is really close to the measured one. Hence the FEM model predicts the correct
values when size effects do not influence the behavior.
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C.3 Simple stiffness and mass measurement

C.3.1 Stiffness measurement

One application of these cantilevers is for measuring the size dependency of the Young’s
modulus [113]. Another is the measurement of Young’s modulus changes due to ad-
sorption of material into the cantilever [114, 112]. In both cases the pull-in voltage
is the value used for determining the elasticity. Hence the sensitivity of the pull-in
voltage is crucial during operation1.

For the beam that was used for experimental validation (L = 70μ, w = 8μ ,h =
1.019μ) this sensitivity is computed with the FEM model2:

∂V

∂E

∣∣∣∣
PI

= 45.5 · 10−3 V/GPa, (C.11)

which means that if the pull-in measurement was done with a resolution of 0.01 Volts,
the resolution of the Elasticity measurement is 0.22GPa. This does not seem to be a
very bad resolution.

The pull-in value was computed with a staggered scheme, after which the sensitivity
computation required tangent information. Therefore the total approach is a hybrid
one.

C.3.2 Frequency for mass measurement

Another goal is measuring the frequency change due to mass addition onto or adsorp-
tion into the cantilever [112]. This basically means that the effective density of the
plate changes. For the (L = 70μ, w = 8μ ,h = 1.019μ) beam the first resonance
frequency is:

ω1 = 278 kHz, (C.12)

and the sensitivity for density variations is:

∂ω

∂ρ
= −59.7Hz ·m3/kg. (C.13)

When the resolution of the frequency measurement is about 0.1 kHz, this means that
the resolution of the mass measurement is about 1.7kg/m3.

In essence this was a pure mechanic problem, hence the framework as presented
was not used.

C.3.3 Combining both measurements for accuracy

In general adsorption will cause both mass and stiffness changes [124]. Therefore both
sensitivities should be considered. For instance if due to adsorption the frequency
lowers by Δω = 3 kHz and the pull-in voltage increases by ΔVPI = 0.2V this would
mean that the adsorption had the following effect:

ΔE =

(
∂V

∂E

)−1

Δω =
(
45.5 · 10−3

)−1
0.2 = 4.4GPa, (C.14)

1Conveniently pull-in sensitivities have been discussed in chapter 6.
2All the FEM sensitivities presented in this chapter are computed using analytic derivations, none

have been calculated by finite differences.
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Figure C.8: Beam with two mass attachment points.

and from:

Δω =
∂ω

∂E
ΔE +

∂ω

∂ρ
Δρ, (C.15)

follows:

Δρ =

(
∂ω

∂ρ

)−1(
Δω − ∂ω

∂E
ΔE

)
=

(−59.7)−1 (−3000 − 824 · 4.4) = 111 kg/m3, (C.16)

where the FEM result:
∂ω

∂E
= 824Hz/GPa, (C.17)

was used. In other words for an accurate mass measurement the frequency relationship
alone could be not enough. If adsorption decreases stiffness and increases the density,
they could even cancel out and destroy the measurement principle completely.

C.4 Multiple frequency mass sensing

So far, all analyses assumed basically a 1 dimensional mode of operation. The mass
and stiffness variation were assumed to be uniform along the beam. This is perfectly
valid if the reaction targets the complete beam3. However, if one wants to use the
cantilever as a single molecule detector the point of bonding is not always known a
priori.

For a simplified analysis a 2 dimensional mode of operation is investigated. Consider
the beam in figure C.8 which has two possible attachment points for mass particles.
Let’s assume that at point 1 a mass of Δm1 has been attached after exposure and at
point 2 a mass of Δm2. How to distinguish between these mass additions?

One can measure of course not only the first but also the second eigenfrequency
before and after the attachment of mass. This gives measured eigenfrequency shifts
Δω1 and Δω2. Assuming a linear relation between eigenfrequencies and mass additions:[

Δω1

Δω2

]
=

[ ∂ω1

∂m1

∂ω1

∂m2
∂ω2

∂m1

∂ω2

∂m2

] [
Δm1

Δm2

]
, (C.18)

3If only 1 isolated point is treated with bonding material, such that adsorption or bonding only
occurs at for instance the tip, the 1D assumption is kept valid as well.
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Figure C.9: Mode shapes of the uniform beam.

gives: [
Δm1

Δm2

]
=

[ ∂ω1

∂m1

∂ω1

∂m2
∂ω2

∂m1

∂ω2

∂m2

]−1 [
Δω1

Δω2

]
. (C.19)

This is of course not limited to two frequencies but one could use as many frequencies
as one can measure. However relative frequency shifts of higher modes become very
difficult to measure at some point, hence one would like to have relatively low higher
frequencies or a high sensitivity of one mode to mass additions at a specific point.

The easiest method to change the frequency behavior of the sensor is by changing
the shape of the cantilever. Changing thickness in out of plane direction will be difficult
but it is possible. Hence this will be the approach of subsection C.4.1. Another
approach is using multiple electrodes. This is much more difficult to fabricate because a
SOI wafer as was used for the original cantilevers cannot be used anymore. However, the
potential of mass differentiation is much bigger, hence this approach will be evaluated
in subsection C.4.2.

C.4.1 Changing the cantilever shape

Equation (C.19) gives the formula to compute masses from frequency shifts. The
method is most robust if one frequency is very sensitive to one mass variation, but
very insensitive to the other mass variations. If the sensitivities for the uniform beam,
as shown in figure C.8, are computed and normalized with the first eigenfrequency of
this uniform beam (ωo

1) one finds:

1

ωo
1

[ ∂ω1

∂m1

∂ω1

∂m2
∂ω2

∂m1

∂ω2

∂m2

]
=

[ −6.6 · 10−5 −7.4 · 10−6

−3.2 · 10−4 −2.4 · 10−4

]
, (C.20)

which is what one expects when the mode shapes are considered (see figure C.9). The
tip mass m1 has a very big influence on both frequencies thus the power to dominate
the results. Hence it destroyes the robustness of the mass measurement. The second
frequency is 6.3 times the first frequency.

The goal is finding a shape where the sensitivities per row of (C.20) are well sepa-
rated. This goal seems a candidate for shape optimization [51].
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Figure C.10: Beam with two mass attachment points and varying shape.

Mechanical optimization

The optimization is limited to the mechanical domain, and reduced to optimizing a
beam like structure. The thickness of the beam elements will be optimized. The
shape distribution before optimization is shown in figure C.10. A minimum thickness
is chosen, which is combined with a volume constraint that limits to total volume of
the beam to be equal to that of the uniform beam. The optimization is summarized
as the minimization of an objective function f with respect to the shape h:⎧⎪⎨

⎪⎩
minimize f(h) =

∣∣∣∂m2

∂ω2

∂ω2

∂m1

∣∣∣
with constraints hT L = 0

h > hmin

, (C.21)

where h is the vector with element thicknesses, L the vector with element lengths and
hmin the vector with required minimum widths. For the solution of this problem there
are a wide variety of algorithms. Here the standard matlab routine fmincon will be
used4.

The purely mechanical optimization gave the shape distribution shown in figure
C.11. The optimized beam has a lower first eigenfrequency ωn

1 = 0.63ωo
1. Also the

second eigenfrequency is lower: ωn
2 = 4.8ωo

1. But the most important criteria are the
sensitivities:

1

ωo
1

[ ∂ω1

∂ω1

∂ω1

∂ω2
∂ω2

∂ω1

∂ω2

∂ω2

]
=

[ −3.8 · 10−5 −1.0 · 10−6

−1.0 · 10−4 −3.9 · 10−4

]
, (C.22)

which have better separated sensitivities. The second frequency is more sensitive to
the second mass. Also on the first row of (C.22) the values are better separated, even
though the optimization was only performed on the second row of (C.22). Therefore
this shape should be able to better sense the mass distribution between m1 and m2.

Figure C.12 shows the mode shapes of the optimized beam. Compared to the
unoptimized modeshapes (figure C.12) the first mode has relatively more displacement
near the tip mass and less near the L/2 mass. For mode two the displacement near the
L/2 mass is increased while the displacement near the tip mass is slightly decreased.

This was a purely mechanical problem, hence no need for the framework of chapter
13.

4Optimization algorithms are faster if the sensitivities of the objective function are known, in this
case they contain the second order sensitivities of the eigenfrequency. Another use of the sensitivities
discussed in chapter 11.
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Figure C.11: Optimized cantilever shape and original shape (clamped on the left side,
unsupported at the right side).
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Figure C.12: Mode shapes of the optimized beam.
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Application to the coupled model

Of course this thickness distribution is very difficult to produce, if not impossible.
Therefore the idea is to deposit some extra polysilicon on the beam from 0 to 25% of
the beam length and from 60 to 100% of the beam. The effects of this addition are
simulated with the 3D FEM coupled model as used before. The 1019 nm thick beam
with a length of 70 μm was used as reference. First the thickness was decreased to
500 nm. Next at the mentioned positions the thickness was increased to about 1.5
times the original thickness. The total volume remained more or less constant. Mass
receptors were placed at the middle of the beam (m2) and at the end of the beam (m1).
The sensitivy matrix for the original 1019 nm beam is:[ ∂ω1

∂ω1

∂ω1

∂ω2
∂ω2

∂ω1

∂ω2

∂ω2

]
=

[ −2.6 · 1018 −2.1 · 1017

−1.7 · 1019 −8.4 · 1018

]
rad/kg · s, (C.23)

where the tip mass can dominate the result (first column of the matrix). The first
frequency for the original beam is 1.74 · 106 rad/s and the second frequency is 1.14 ·
107 rad/s.

The improved beam gave saw a reduced first frequency of 8.6 · 105 rad/s and an
increased second frequency of 1.1 · 1067 rad/s. The pull-in voltage was reduced to 9.8
volts. The most relevant result, the new sensitivity matrix is:[ ∂ω1

∂ω1

∂ω1

∂ω2
∂ω2

∂ω1

∂ω2

∂ω2

]
=

[ −1.1 · 1018 −2.4 · 1016

−8.1 · 1018 −6.9 · 1018

]
rad/kg · s, (C.24)

which shows a significant improvement for the tip mass sensitivity ratio: the ratio of
sensitivities of the for the first frequency increased from 12 to 46, which is a significant
improvement. Also the ratio of the second frequency improved, it decreased from 2.5
to 1.2.

It would be interesting to see what a full optimization of the coupled problem would
yield, even though the computation cost would be immense.

C.4.2 Using multiple electrodes

Two cases are studied to test if it is possible to improve the frequency sensitivity
characteristics of a micro beam measurement device by using multiple electrodes, or in
other words: whether it is feasible to improve the sensitivity of one mode to one specific
mass. The two cases are a bridge clamped on both sides and a cantilever clamped on one
side. Realistic geometry and material properties were chosen, for both cases this was a
length of L = 70μ, thickness h = 300nm, elasticity E = 169GPa and a gap of g = 1μ.
The static equilibrium positions will be computed with a staggered scheme, because
the problem is mechanically linear. The frequencies will be computed monolithically,
because with this asymmetric actuation cases, the robustness of monolithic frequency
computation is desired. Therefore the total solution scheme will be hybrid.

Clamped-clamped beam

The geometry of the clamped beam is shown in figure C.13. The non-actuated first
and second frequency are [ωi] = [ 5.0 13.8 ]106 rad/s. Furthermore the first mode is
most sensitive to mass m2 and less but equally sensitive to both mass m1 and m3. The
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Figure C.13: Microbridge with three mass attachment points and two different actua-
tion electrodes.

second frequency is not sensitive to mass m2 at all, but equally sensitive to m1 and
m3.

Switching on both electrodes at once at about 90% of pull-in will not affect the
second frequency very much (a slight decrease) but will dramatically lower the first
frequency to ω1 = 3.3 ·106 rad/s. Also the ratio between the ∂ω1

∂m2
and ∂ω1

∂m1,3
will slightly

improve from 2.8 to 2.9, so it will not be really useful.

Switching on only electrode 1 also lowers only the first frequency significantly. But
the good thing is that both frequency 1 and 2 will become differently sensitive for mass
m3 and m1. Frequency 1 becomes 1.5 times more sensitive for m3 than for m1, while
surprisingly frequency 2 will become 1.14 times more sensitive for mass m1 than for
m3.

In general this will provide a method to distinguish between the 3 masses, which is
impossible for a non-actuated micro bridge.

Cantilever beam

The configuration for the cantilever beam is shown in figure C.14. There are 16 different
configuration for the switches connected to the electrodes. The one where all electrodes
are disconnected will be called 0000, the one were electrode one is switched on and all
others off will be called 1000, etcetera. Table C.3 lists all configurations and their pull-
in voltages. Some configurations (e.g. 1000) do not have a pull-in voltage. In those
cases the tip touches the non actuated ground electrode before pull-in is reached. In
those cases the contact voltage is listed. In the cases were the cantilever does pull-in
the contact voltage is equal to the pull-in voltage therefore it is not listed.

In the rest or 0000 position the first 6 eigenfrequencies of the cantilever are:

[ωi] =
[

0.78 4.9 14 27 45 67
]T · 106 rad/s, (C.25)
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Figure C.14: Cantilever beam with four mass attachment points and four different
actuation electrodes.

and the sensitivity matrix is:

[
∂ωi

∂mj

]
= −

⎡
⎢⎢⎢⎢⎢⎢⎣

0.075 0.035 0.009 0.003
0.47 0.002 0.24 0.15
1.3 0.37 0.00 0.02
2.6 1.1 1.3 1.1
4.2 0.67 0.00 0.00
6.4 0.04 3.2 −2.0

⎤
⎥⎥⎥⎥⎥⎥⎦

T

· 1015 rad/s. (C.26)

When looking at the sensitivity matrix there are a few things that are noticeable: the
second and sixth frequency seem to be insensible to mass m2, hence this might be
abused to very accurately sense one of the other masses by stimulating these modes.
The third frequency is insensible to both mass m3 and m4 as is the fifth frequency. For
sensing mass 3 and 4 the 2nd, 4th and 6th frequencies seem to be required.

It is uninteresting to report here the sensitivity matrices for all configurations.
Therefore just the noteworthy results will be reported below.

• Switching on electrode 2 (config. 0100) only reduces the first frequency signifi-
cantly. It will make the third frequency almost insensible to mass 3 and 4, but
slightly more sensible to mass 1 and 2. Also the first frequency becomes more
sensitive to the second mass. The ratio between second and first mass sensitivity
goes up form 0.46 to 0.52. Small improvements though.

• Switching on electrode 4 (config. 0001) slightly improves the sensitivity ratio
between mass 1 sensitivity and all other sensitivities for the first frequency.

• Configuration 1010 slightly improves the sensitivity of the fourth frequency to
mass 2, but this is hardly measurable.

• Configuration 1001 gives the best sensitivity for mass 3 compared to the tip mass
sensitivity. The ratio improves from 0.509 to 0.516.

The overall conclusion: if it is possible to measure up to the 6th frequency a can-
tilever can distinguish between the 4 masses. However electrostatic actuation does not
really improve the sensing capabilities for a cantilever.
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Table C.3: Pull-in voltages for different switching configurations of the beam actuated
with multiple electrodes.
Configuration Pull=in (V ) Contact (V )

0000 - -
1000 - 40
1100 - 10
1110 5.2 -
1111 2.8 -
1101 3.7 -
1010 6.2 -
1011 3.0 -
1001 4.1 -
0100 - 11
0110 5.3 -
0111 2.9 0
0101 3.8 -
0010 6.3 -
0011 3.1 -
0001 4.1 -

C.5 Measuring surrounding fluid and gas proper-

ties

An application of this type of cantilever sensors could be for measuring the properties of
the surrounding medium. The surrounding medium, gas or fluid, will heavily influence
the behavior at atmospheric pressure due to the squeeze film effect5. This section tries
to see if there are methods that can be used for measuring other fluid properties.

C.5.1 Using the eigenvalue characteristics

The first properties that come to mind tare two of the eigenvalue characteristics of the
lowest eigenvalue: the damped eigenfrequency and the Q-factor. Chapter 10 already
showed that these values are highly pressure dependent, but are they also sensitive for
other properties? This section will first discuss that question.

Computing frequency and Q-factor sensitivities has been discussed in chapter 11,
hence it will not be repeated here. Below it is assumed that there is no electric load.
Damped frequencies are always computed monolithically.

measuring gas properties

Fist the measurement of a gas discussed. It is assumed that gases more or less have
the same mean free path. Therefore for all gases the same Knudsen number correction
is used:

μ =
μ0

1 + 9.638Kn1.159
, (C.27)

5For more information on squeeze film damping and squeeze film modeling see chapter 10
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where for the Knudsen number the following relation was used

Kn =
6.9 · 10−3

p · g . (C.28)

For a gas at room temperature in general the viscosity is in the order of 1·10−5 Pa·s.
For air it is μA = 18.27 · 10−6 Pa · s and for nitrogen it is μN = 17.80 · 10−6 Pa · s. If
the sensor has to be used to distinguish between air and nitrogen, the resolution has
to be better than 1 · 10−7 Pa · s.

The first cantilever that was tried is the test beam as used for the validation of the
electromechanical model (length L = 70μ, thickness h = 1019nm and width w = 8μ).
For this beam the lowest damped eigenfrequency is ωd = 1.7418 · 106 rad/s and the
Q-factor is Q = 6.2. The damped eigenfrequency is slightly lower that the undamped
one: 1.7497 · 106 rad/s. The eigenfrequncy sensitivity for this beam is:

∂ω

∂μ
= 1.00 · 102 rad/Pa · s2, (C.29)

and the Q-factor sensitivity is:

∂Q

∂μ
= −0.039 1/Pa · s. (C.30)

Both values are too low to distinguish between air and nitrogen, because for a
1 · 10−7 Pa · s resolution the frequency resolution should be 1 · 11−4 or ten orders of
magnitude lower that the measured frequency and the Q-factor resolution should be
4 · 10−9, which is 10 orders of magnitude lower that the measured Q-factor. Thus the
principle cannot be used for this beam in practice.

Therefore a thinner beam with more or less the same length is modeled (length
L = 77μ, thickness h = 57nm and width w = 8μ). This beam was actually produced.
A Young’s modulus of 100GPa was used to accommodate size effects. This gave a
lowest damped eigenfrequency of ωd = 1.08 · 106 rad/s, which is 2 orders of magnitude
higher than the lowest undamped one of ωu = 5.99·104 rad/s. Hence for this really thin
beam the added stiffness effect dominates the viscous drag effect. This also resulted
in the phenomenon that the lowest damped eigenmode is not the same as the lowest
undamped one. Since the lowest lowly damped mode squeezes the air more, while the
mode that is lowest in the highly damped case transports the fluid more form one side
of the beam to other side and back. The lowest damped mode is shown in figure C.15
. For the thick h = 1019nm beam the lowest damped mode is shown in figure C.16.
Hence here the added stiffness does not dominate over the viscous drag yet.

The Q-factor for the thin beam is Q = 1.0, and the frequency and Q-factor sensi-
tivities are respectively:

∂ω

∂μ
= −1.1 · 105 rad/Pa · s2, (C.31)

and:
∂Q

∂μ
= −0.045 1/Pa · s. (C.32)

Therefore also for the thin beam using the damped eigenvalue for measuring would not
work.
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Figure C.15: Damped mode of
the h = 57nm beam.
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Figure C.16: Damped mode of
the h = 1019nm beam.

The last idea would be to measure at very low pressure, e.g. 0.1mbar of 10Pa. For
this pressure the frequency is more or less equal to the undamped one. The Q-factor
is 7.45 · 104. The frequency sensitivity goes down to about:

∂ω

∂μ
= 0.023 rad/Pa · s2, (C.33)

which is still too low.

measuring fluid properties

For all fluids it is assumed that the mean free path is that short that no Knudsen
number correction has to be used. To see if the frequency data can be used for fluid
properties is tested by the properties of water μW = 8.94 · 10−4 Pa · s. The thick beam
was used for testing the behavior.

In this case the mode is highly damped Q = 4.2, but the sensitivity is still way too
low:

∂Q

∂μ
= 3.2 · 105 1/Pa · s. (C.34)

Note that the sensitivity is inversed for the fluid. However using the Q-factor sensitivity
will not help measuring fluid properties.

C.5.2 Using static pull-in

Most fluids have a different electric permittivity. Water for instance has at room
temperature (20oC) a relative permittivity of εrW = 80. Formamide has at the same
temperature a relative permittivity of εrF = 84. The pull-in voltage is highly sensitive
to the permittivity, thus this could be used for measurements. For gases this will not
work because their permittivities do not really differ.

If the pull-in voltage for water is computed it gives VPI = 1.718 and the sensitivity
of that value to the relative permittivity is:

∂V

∂εr

∣∣∣∣
PI

= −0.0537V. (C.35)
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This means that if the pull-in voltage is measured with a 0.01V resolution, the relative
permittivity is measured with a 0.19 resolution; enough to measure the difference
between water and formamide.

Similarly one could be interested in the difference between ethanol (εrE = 24.3)
and methanol (εrM = 32.7), or drinkable and toxic alcohol. The pull-in voltage for
methanol is VPI = 2.688 and the sensitivity of that value is:

∂V

∂εr

∣∣∣∣
PI

= −0.205V, (C.36)

which gives as 0.05 resolution if the voltage resolution is 0.01V , ergo the method could
be used to distinguish between ethanol and methanol.

C.5.3 Using pull-in time

The problem with finding static pull-in and water is that static voltage can be prob-
lematic. It requires relatively long actuation times and the water could get self-ionized,
therefore conductive. Therefore an actuation principle that requires shorter actuation
times would be better. Dynamic pull-in springs to mind. Finding the actual dynamic
pull-in value has the same problems as the static one. Moreover, fluids cause critical
damping, hence no overshoot, therefore the dynamic pull-in will be equal to the static
pull-in. Therefore the proposed measurement technique is applying a voltage higher
than pull-in and measuring the pull-in time. This is a measurement that would last
short enough to prevent self-ionization problems. Determining the analytic sensitivity
of the pull-in time has been discussed in section 9.2.4.

The properties of methanol (εr = 32.7, μ = 5.9 · 10−4 at ±20oC) are used for
computing the sensitivity of the pull-in time with the dielectric permittivity. Although
it was shown above that the sensitivity for the viscosity is very small, that sensitivity
is computed as well.

To shorten the computation time, especially due to convergence issues at small
gaps, the pull-in displacement is set on 0.5 times the gap. It is assumed that this
indicative for the full pull-in time. The pull-in time curves are shown in figure C.17.
A voltage step of 3 volts was applied. This is higher than the static pull-in voltage for
both fluids.

The computed pull-in time for methanol was tMc = 2.29 · 10−5 s. The sensitivities
are:

∂tc
∂εr

= 1.19 · 10−5 s, (C.37)

and
∂tc
∂μ

= 0.0957 1/Pa. (C.38)

If the difference between ethanol (εr = 24.3, μ = 11.4 · 10−4 at ±20oC) and methanol
is the goal of the measurement, this would result in a time difference of

Δt =
∂tc
∂εr

(24.3−33.6)+
∂tc
∂μ

(11.4−5.9)·10−4 = 1.11·10−4+0.52·10−4 = 1.63·10−4 s,

(C.39)

which seams to be measurable when it is compared to the pull-in time itself. The
difference is about 5 times the methanol pull-in time.
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Figure C.17: Time-displacement curve for the cantilever submerged in different fluids,
the actuation voltage is 3V .

However due tot the big difference in permittivity and viscosity that there is between
ethanol and methanol, the linear sensitivities might not be a very good indicator. So
when the actual pull-in time of ethanol is computed it turns out to be tEc = 4.21·10−4 s,
hence a difference of Δt = 3.98 · 10−4. This is in the same order of magnitude as the
sensitivity based computations, showing that the measurement principle seems usable.

This last result was computed with time integration algorithm that is monolithic
for electromechanical problem, because the electric equations were condensed onto the
mechanic equations, while including the Schur complement. It was also monolithic in
total because the fluid was assumed incompressible, therefore the fluidics were con-
densed onto the mechanics as well. Analytic sensitivities always require a monolithic
implementation.
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• The picture of Eiffel tower on the cover, which is repeated at the beginning of part
I, was made in 1902 and was first published by Camille Flammarion (1842-1924).
Currently the copyright on this picture has expired.

• The copyright on the miniature on page 2 by Niccolò da Bologna has expired.

• The picture at the beginning of part II shows a typical hunebed as can be found
in the Netherlands. It is over 5000 years old. This picture was been made
by Gouwenaar and has been released by the photographer without copyright
restriction.

• The picture of the car at the beginning of part III was taken in 1903 and shows
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caption or the copyright is owned by the author.
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