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1 Introduction

Component-based transfer path analysis (TPA) is an approach that
uses blocked forces to simulate the vibration levels in new or
modified products even before a prototype has been assembled.
Blocked forces are the forces that one would obtain if the active com-
ponent is measured against a rigid boundary [1], and hence, it is
denoted as “blocked forces.” They have gained popularity in TPA
over the last few years because they are characteristic of only an
active component such as an electric motor or compressor. Blocked
forces can predict the responses on any receiving structure, like an
electric vehicle. Predictions are computed by multiplying the
blocked forces with the corresponding assembly’s frequency response
function (FRF) matrix.

In practice, it can be challenging to guarantee a rigid boundary
condition in measurements, so the in situ method has been devel-
oped [2]. This method allows inversely calculating blocked forces
in fully assembled structures, such as test benches or vehicles,
with nonrigid boundary conditions. The in situ blocked force
method has gained popularity in recent years and was standardized
in ISO 20270:2019.

Although the in situ approach works well from a theoretical per-
spective, in real-life applications, the engineer is often faced with
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X-DoF: Automatic Degree-of-
Freedom Subset Selection
for Inverse Blocked Force
Characterization

Selecting the proper set of degrees-of-freedom (DoFs) is essential in inverse blocked force
calculation. Including too many degrees-of-freedom in the computation can lead to overfit-
ting, resulting in inaccurate force estimations and poor prediction quality. The discrepancy
arises from errors within the dataset, such as measurement noise or other artifacts. This
article presents a solution to the overfitting problem, introducing the X-DoF procedure
to automatically identify the relevant subset of blocked force degrees-of-freedom. Its effec-
tiveness is showed through numerical and experimental validation and compared against
regularization techniques. [DOI: 10.1115/1.4067081]

Keywords: active vibration and noise control, dynamics, structural acoustics, system

the problem of choosing the correct interface model. The predictive
quality suffers from too few and too many degrees-of-freedom
(DoFs) at the interface.

The dynamics are not sufficiently described if too few or incor-
rect DoF are selected. Alternatively, choosing too many DoFs can
cause the so-called overfitting. Overfitting often manifests itself in
too high or nonphysical force estimates. A manual deselection of
DoF can be performed to reduce or circumvent overfitting. But
this process of trial and error quickly becomes a tedious task as
the number of possible subsets rises exponentially by 2" with m
being the total number of blocked force DoF. In addition, the
blocked force computation is performed for each frequency sepa-
rately, and one often finds that different DoFs are active in
various frequency ranges of interest.

This article proposes an approach, denoted X-DoF, to automati-
cally select the relevant subset of blocked force DoF. X-DoF allows
gaining insight into the interface dynamics at play and mitigates
the risk of overfitting. The proposed procedure increases accuracy
and does not require additional user input or validation measure-
ments. This makes the in situ method efficient and less prone to
errors caused by engineering practices, understanding, and taste.
As such, in situ blocked force estimates using X-DoF result in a
considerable gain in time efficiency and robustness. In addition,
one might add more DoF to the interface without the risk of over-
fitting measurement noise.

The subsequent sections first provide the theory of the in situ
blocked force method in the realm of component TPA. Fitting a
polynomial equation is used to illustrate the effects of overfitting
and regularization, which is common practice in TPA. The article
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continues with an overview of the X-DoF procedure and concludes
with real-life examples.

2 Theory of the Component Transfer Path Analysis
Method

Component-based TPA comprises several techniques to charac-
terize vibration sources with equivalent or often called blocked
forces. The methods study the vibration propagation in the
product up to the relevant passive side responses like, for vehicle
development, microphones at the driver’s ears. The basic outline
of the methodology is presented here. For a more extensive expla-
nation, the authors refer the reader to Ref. [1] or alternatively,
including use cases, in Refs. [3,4].

Figure 1 shows an arbitrary system consisting of two subsystems.
Subsystem A is denoted the “active component” as it contains an
often immeasurable vibration source. Subsystem B is denoted the
“passive component” as it does not contain vibration sources and
merely experiences the vibration introduced by the active compo-
nent through their interfaces.

The derivation of the component-based TPA method starts with
the equations of motion of the assembled system FRF, shown in
Fig. 1, in a block diagonal form:

A A A A
u Y, YL . . f .
A A

u) Yy Yh o ) ) g

B |~ B B I )
u, . . Y; Y . g

B B B
u; . . Y5 Y3

where g5 and g5 are vectors with the interface forces acting between
the active subsystem A (denoted with a superscript) and passive
subsystem B. Capital Y denotes receptance (e.g., FRF) matrices,
u denotes displacements, and f denotes externally applied forces.
Subscripts 1-3 denote different collections of DoF for the respective
vector and matrix entities:

o |—Internal: All DoFs on or in the active component that apply
(most often) immeasurable forces.

o 2—Interface: All DoFs at the interface between the active and
passive sides.

o 3—Target: The DoF collection on the passive side of which
the responses due to the active component excitation are of
interest.

Let us first determine the system response due to the internal
excitation force and then derive the alternative formulation using
blocked forces. To determine the system response, we combine
lines 2 and 3 from equation (1) to express displacement compatibil-
ity (uj =uj), yielding:

Yot + Y58 =Y5e) 2)

By substituting the force equilibrium (g5 = —g&), for the coupled
system, one finds:

2 = (Y5 + Y5) ' Y5 ) 3)

Fig. 1 Source identification problem with the active component
A and the passive component B
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Combining with line 4 from Eq. (1), we find the passive side
responses as a function of the interface forces or internal forces
from the active subsystem as follows:

uf =Y5,e8 = [Y5,(Y5, + Y5,) 'Y, I} “

It can be verified [1] that the expression within the brackets [..] is
equivalent to Yg’f , and hence, Eq. (4) can also be written as follows:

uf = Y45} 3)

The excitation force f; is typically immeasurable and the inter-
face force g5 is influenced, see Eq. (3), by the passive side’s dynam-
ics. Equation (5), therefore, is not a proper way to characterize the
source independent from its passive side. To derive an independent
source characterization, let us therefore focus on finding externally
applied forces in the form:

llg = Y?g f2 (6)

where f;, represents a set of blocked forces, yet to be determined,
that yield responses u? that are equivalent to the original excitation
by the internal force f’]“. Analog to the simplification of Eqgs. (4) and
(5), one can rewrite Eq. (6) in subsystem dynamics as follows:

_1
u; =Y5(Y), + Y5) Y5t @)

By combining Egs. (7) and (4), one finds blocked forces acting on
the component interface as follows:

f2=(Y4)" Yaf ®)

Note that the derivation of f; is independent of the passive side’s
dynamics and, hence, is determined by the active system’s dynam-
ics only. As f? is, however, difficult or impossible to measure in
practice, Eq. (8) is of little practical value so far. Combining
Eq. (82 with line 2 from Eq. (1), after premultiplication with
(Yg’z)_ , one finds a much more practical formulation:

£,=(Y4) u)+gb ©)

Equation (9) shows that the blocked forces, replacing the
internal forces f!, can be derived directly from a measurement
of the interface forces and displacements in the assembled
configuration. Based on Eq. (9), one can distinguish two special
cases:

o g8 =0. In this case, as no interface forces act between the
active and passive side, the active source is dismounted from
the passive side. The blocked forces are found from the inter-
face motion and the properties of the active component only.
This special case, also referred to as the free velocity
method, is described in ISO 9611.

o uj =0. This case corresponds to a rigid boundary condition as
the interface does not experience any motion. The measured
interface forces are equal to the blocked forces themselves
now, i.e., forces measured at the interface while the active
component is fixed on a rigid test bench.

Equation (9) still requires impractical measurement of interface
forces. A further simplification is possible by substitution of
Eq. (1), line 3, into Eq. (9):

fy= (Ygz)_lug + (legz)_lulz9 (10)

%Classical TPA methods like the direct force, mount stiffness, and matrix inverse
method use Eq. (4) (uf = Y%,g%) directly to characterize the active component excita-
tion using interface force g5 and the assembled system response u from the passive
subsystem FRF. In practice, it requires dismounting the active component from the
assembly.

Transactions of the ASME
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which, as dynamic stiffness matrices may be simply added, is
equivalent to:

-1
f=(Y) w (11)
Equation (11) shows a quite remarkable result, namely:

The blocked forces, characterizing the active component’s excitation
independent from the passive side’s dynamics, can be determined in
situ directly and do not require dismounting the active component
[from the assembly or measurement on a rigid bench.

FRF measurements on the interface itself are, in practice, also dif-
ficult to achieve. Therefore, the force DoFs from an impact hammer
test are transformed to obtain a description at the interface, for
example, using the virtual point transformation [5]. Instead of
using response DoF at the interface, one can estimate f, using a dif-
ferent set of indicator DoF on the passive side. See Fig. 2 where a
collection of DoF by set number 4 is introduced.

Measuring responses for set 4 yields a characterization FRF
matrix Y’}f that is preferably overdetermined [6,7]. Thereafter,
one can estimate the blocked forces from an operational measure-
ment, analogous to the classic matrix inverse method [1]:

£, = (Y25) "y (12)

Equation (12) describes the in situ blocked force characterization,
which was standardized in 1S020270:2019. Notice, however,
compared to the classic matrix inverse method, that the FRF data
are determined on the assembled system AB and not on the
passive side B only. Furthermore, f, represents a true source char-
acterization of the active component, independent of the passive
side it is connected to.

With the in situ derivation completed, the authors would like to
end with some important notes on the theoretical basis:

e The method is based on the assumption of linearity and time
invariance. Actual machines might not behave this way. In
those cases, one should try to measure the system in its oper-
ating state and perform analysis, including the additional non-
linear parameters.

e One assumes that set 4 can replace set 2 when utilizing
Eq. (12). Effectively, one needs to determine if set 4 can
truly observe the effect of set 2 correctly and sufficiently.
Wrong choices will lead to erroneous force predictions.

e Equation (12) does not depend on any particular interface
description. However, the results depend on modeling
choices for the interface description. In practice, the engineer
is confronted with the question of how many and which
DoF is needed to describe the interface. The in situ method
can easily suffer from underfitting or overfitting if poor
choices are made.

3 Quality Assessment of Blocked Force Estimates

To determine if blocked forces suffer from underfitting or over-
fitting, we introduce three levels of analysis.

=

Fig. 2 In situ blocked forces -calculated from indicator
responses u, and the characterization FRF Y42

Journal of Vibration and Acoustics

3.1 Indicator Validation. An indicator validation can reveal if
the blocked forces suffer from underfitting and is defined as follows:

w YY) (13)

Blocked forces are computed according to the in situ method with
a set of chosen indicator sensors uy to thereafter determine if the
force estimate can predict the measured responses of the indicator
sensors. This is analogous to determine the residual in least-squares
methods. By evaluating the residual at and from the chosen indica-
tor sensors, one finds if the forces can control them. If this yields
unsatisfactory fits, one is sure to either have inconsistent models,
chosen too few BF DoF, or the indicator sensors suffer from
noise issues.

3.2 Onboard Validation. The second method to determine if
one suffers from either overfitting or underfitting is the so-called
onboard validation, which is documented as a mandatory check
in ISO 20270:2019. In contrast to indicator validation, the residual
is now evaluated on (different) independent validation sensors us.
These validation sensors are part of the same test assembly to deter-
mine the blocked forces, but not part of their computation:

uy = Y5 (V45) "y (14)

If a large discrepancy is found, it may be due to underfitting or
overfitting.? The engineer should reevaluate the setup, the selected
forces, and the indicator sensors. However, we noticed that an
onboard validation can be insufficiently sensitive to observe overfit-
ting. This can be the case if the dynamics at the validation sensors
are similar to the dynamics at the indicators, e.g.,
Y4% ~ Y42, us ~ u;. In this case, an onboard validation only dis-
plays underfitting, compare Eq. (13).

3.3 Transfer Validation. Although requiring another test
setup and hence effort, a so-called transfer validation can serve as
an improved method to determine overfitting. Here, one determines
the blocked forces, for example, on a component test bench. There-
after, these forces are applied to a different setup, where the active
component is, for example, fitted to the vehicle or a different test-
bench design. By combining the two FRF and operational tests,
the transfer validation is computed as follows:

? +
il LYV as)

Here, AB denotes the original measurement configuration and
index AR denotes the modified setup or, better, the active compo-
nent mounted to a completely different passive side. Either way,
the dynamics in both configurations need to differ considerably,
ie., Yz‘f * Y’;‘f. Now, one can answer the question of whether
the blocked forces found are a proper generalization and describe
the source independent of its receiving structure. If the measured
validation responses are the same as the computed ones in the orig-
inal setup, the blocked forces are proper and unique. Mathemati-
cally, one can now verify the predictive quality of the blocked
forces outside of their “training environment.”

While the transfer validation is a good way to confirm the correct-
ness of the forces, the process is quite tedious. In general, the desire
exists to get robust blocked force estimates on the original test-
bench itself and deal with the overfitting issue directly. For that
reason, this article introduces the X-DoF approach. The next two
sections first illustrate the overfitting issue on a least-squares fit of

3An onboard validation of a response u due to an artificial excitation is less likely to
overfit noise because artificial excitations generally result in a good signal-to-noise
ratio. If the response is normalized to the input force, this test is closely related to
the interface completeness criterion (ICC) [8], which can be used to quantify
underfitting.
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a polynomial function (see Sec. 4) to solve the issue thereafter using
the X-DoF procedure (see Sec. 5).

4 The General Problem With the Current State of the
Art

While inverse problems in general and hence the in situ blocked
force characterization methods offer flexibility in the modeling
choices, this flexibility becomes a downside when too few, or too
many DoF are included.

4.1 Opverfitting Issue in Regression. An overfitted model
consists of more parameters than can be justified by the data [9].
This effect can be visualized by a least-squares fit of a polynomial
function with an increasing amount of DoF and added noise [10].
Figure 3 shows the function y = 1 + x + x* used in this article.

The data in the range of x from —1 to 0.5 is used to fit the models.
The values between 0.5 and 3 validate the models’ predictions on
unseen data. We generate a sample set of this function with 1%
of Gaussian noise to model inconsistencies of measurements. This
can be written as a system of equations:

1 x 1 x% X’; Co Vi

SRRSO | A el I (16)

I x 2 XL en yr
with xi being the polynomial function matrix with samplesi=1to r
and polynomial degree j =0 to n. y is the data at r samples with
added noise. Vector elements ¢y to ¢, represent the unknown coef-
ficients. Ideally, one should find a value of one for ¢ to ¢, and zero
for any higher-order coefficients c3 to c,. Their least-squares solu-
tion is computed via the pseudo inverse, analogous to the in situ
method (12):

c= (Xtraining)+ytraining a7

Then, the polynomial matrix containing all r samples is multi-
plied with the estimated coefficients to obtain predictions in the
training and validation regions.

X¢ =Y predicted (18)

This procedure is repeated for an increasing amount of maximum
polynomial degree n up to 5.

As can be observed in Fig. 4, the solution with the correct DoF
amount (polynomial degree 2 including a constant, a linear, and a
quadratic term) shows the best predictions of the unseen data in
the validation interval. Models with fewer and more DoF show
reduced prediction quality, illustrating the effect of both underfitting
and overfitting, respectively.

It is interesting to note that the residual within the training set
actually keeps dropping more and more with increasing DoF, see
Fig. 5. Models of higher orders yield lower residuals due to the

Validation

Training

Fig. 3 The quadratic function with added Gaussian noise is split
into a training set and a validation set
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Fig. 4 Least-squares regression of the data and prediction with
increasing polynomial degree

approximation of noise on the fitted interval compared to the true
model with polynomial degree 2.

Hence as illustrated in this example, overfitted models do yield
good predictions on the training region and fit the noise present
very well. However, the models do not transfer well to another val-
idation measurement and, therefore, have a lower predictive quality.

Besides the reduced prediction quality, performing the
least-squares regression with irrelevant DoF can negatively influ-
ence the solution’s robustness to noise. To demonstrate this
effect, the regression is repeated 200 times with randomly added
Gaussian noise of 1 %. The calculated coefficients are displayed
in Fig. 6. An x marks the true value, and the least squares estimate
has a box centerline representing the median value and the bottom
and top box edges indicating the 25th and 75th percentiles. The
black lines above and below the box represent the maximum and
minimum data values, respectively, that is not an outlier.

One finds by modeling the function correctly (constant, linear,
and quadratic terms) that the values match the true values very
well, i.e., on average, one finds the proper solution (Fig. 6, left side).

The coefficients of the regression with 6 DoF are shown on the
right side of Fig. 6. As previously observed, the predictive quality
of this overfitted model was quite poor. Here, we see that the solu-
tion is furthermore also very sensitive to only 1 % noise, as

Least-squares

— ,10.3

S N - Validatiop' =
= Trainin, 10.25 =
= I,%' <
=] /s 10.2 2
= / = o
2 3 =t
= i =
< / 10.15 4
= / ‘s
= /

= SRl 01 H

3 4
Polynomial degree

(4]

Fig. 5 Least-squares residual inside and outside the training
bounds with increasing DoF amount

Least-squares (3 DoF) Least-squares (6 DoF)
2

1t 8= e == 1-&-@-%
2 g %
= 0 = 0
2 g ]
-1 =1
2 -2
1 2 3 1 2 3 4 5 6

Polynomial term Polynomial term

Fig. 6 Least-squares solutions in the case of modeling the
correct DoF (left) and too many DoF (right)
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Fig. 7 Truncated SVD solutions when modeled with three (left),
four (middle), and five (right) singular values

illustrated by the high standard deviations and outer bands. The
solution of the relevant DoF 1-3 shows greater deviations compared
to the 3-DoF regression, and furthermore, nonzero values are fitted
in irrelevant terms 4-6.

In the realm of component-based TPA, this means that noise on
indicator sensors can lead to overfitted blocked forces when the
interface contains irrelevant DoF. This compromises the accuracy
and predictive quality of blocked forces. Only a model with the
correct set of blocked force DoF will accurately describe the mea-
sured dynamics without overfitting indicator sensor noise or other
inconsistencies.

4.2 Improving the Robustness to Noise With Matrix
Regularization. A common practice in inverse problems with test-
based data is to perform a singular value decomposition (SVD) on
the matrix to be inverted, with the idea of reducing the effect of
noise or small artifacts in the data [11,12]. In the remainder of
this section, we illustrate that this method’s effect is only limited.

Based on the singular values o, the condition number « can be
calculated by the ratio of the largest to the smallest singular value:

x = Jmax (19)

Omin

The estimated solution’s signal-to-noise ratio decreases propor-
tional to the condition number of the matrix [10]. For this reason,
large condition numbers can amplify measurement noise.

One way to improve the conditioning number is to truncate the
singular value decomposition (TSVD) [13]. It is important to note
that lowering the number of singular values in the model estimation
actually reduces the DoF space, i.e., the freedom from each DoF to
approximate the measurements.® Every singular value removed
constrains the DoF from one another such that they may only
move in certain combinations that capture the most variance, but
not necessarily the relevant DoF.

To illustrate the effect, Fig. 7 shows the model fit and spread
when removing one to three singular values from the 6 DoF poly-
nomial function fit. The following can be observed:

e The model estimates become more consistent with less devia-
tion and hence a lower standard deviation. Regularization min-
imizes the effect of the noise.

e However, the median model estimates actually do start to
differ more and more from the true values that should be
found while decreasing the amount of singular values in the
model. Hence, while reducing the influence of noise, one intro-
duces bias errors.

e Once reduced to the right amount of DoF (i.e., three
singular values), the model fit is rather off and bias errors
prevail.

This trade-off shows that while reducing the model variability
can be achieved with a truncated model, the likelihood of

4Removing singular values also reduces the total energy of an FRF matrix [14].

Journal of Vibration and Acoustics

converging to the true solution actually decreases when using a
truncated SVD.

A more sophisticated way to improve the conditioning number is
the use of Tikhonov regularization [15], which modifies the singular
values according to the following equation:

tik Oi
% Tt 0
with A being the regularization parameter. Applying this technique
yields the model fit shown in Fig. 8. While improving perhaps
somewhat, it is clear that Tikhonov regularization also doesn’t
yield a proper model.

In conclusion, this section illustrates that matrix regularization
via Tikhonov and TSVD can reduce the influence of measurement
noise but at the cost of bias. For in situ blocked force calculation,
these methods are unlikely to yield better solutions compared to
modeling the system with the correct set of DoF.

5 X-DoF Procedure for Selecting the Relevant Subset of
Degree-of-Freedom

To reduce the problem of overfitting in blocked force character-
ization, one needs to select the right DoF subset of a typically over-
modeled interface. X-DoF is a procedure that does so by utilizing a
combination of sparse regression techniques and model selection
criteria. Note that this approach is not limited to the inverse
blocked force characterization and could be applied to other
inverse problems.

5.1 Best Subset Selection. Best subset selection aims to obtain
models from a subset of available DoF to describe the measure-
ments. We assume that the full characterization FRF Y4, has at
least the relevant DoF to describe the measurements u4 sufficiently.
One can validate this assumption by applying the methods in Sec. 3.
For each subset size j from O to the total number of m DoF, the
subset is identified that minimizes the least-squares residual

fz,,-=argngn lwy = Yobal, st if2lp<j  @2D)
with the zero-norm |/f; ||, counting the number of nonzero elements
of the force vector. One may solve for all possible subsets and then
select the ones that minimize the residual at each j. However, this is
not advisable for a large number of DoF because the number of pos-
sible subsets rises exponentially by 2”. To improve the computa-
tional cost, one could leverage optimization methods, stepwise
selection techniques, or the least absolute shrinkage and selection
operator [16,17]. Some of these methods are guaranteed to be
optimal and computationally expensive, and others are only asymp-
totically optimal at a lower cost.

The results in this work are obtained by performing a setpwise
selection with orthogonal least squares (OLS) [18]. An implemen-
tation of OLS can be found in Ref. [19]. At each iteration, a

A=0.01

?

(¢)

1 [@xx 1]00g 168§ 1 58?
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x
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oO—x-O
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=
Value
o

-1 4 % -1

-2 -2 -2 -2
Poly. term

TQRILOO
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Fig. 8 Solutions with Tikhonov regularization for a varying reg-
ularization parameter A
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single DoF i is added to an active set .A based on the following heu-
ristic. Of all DoF not in the active set, the DoF that minimizes the
least-squares residual is selected:

arg Il{él}‘l llus — Y3601l (22)

For a system with m =24 DoF, an exhaustive search requires
solving 2" =16777216 systems of equations. OLS reduces this
number to m+ (m — 1) + +1 =300 evaluations. The best subset
selection results in m + 1 candidate models f,;. As a next step,
the candidate solutions are scored against each other to select the
best solution within these candidates.

5.2 Model Selection. The goal of the model selection step is to
select the candidate model that achieves generalization to unseen
data. In the polynomial example case, this would be selecting the
model of polynomial degree 2 because this minimizes the residual
on the validation data, compare Fig. 5. However, we believe that
selecting the blocked force interface model based on splitting the
data into training and validation can have several drawbacks:

e An onboard validation can not always observe overfitting,
especially when the dynamics of the characterization and pre-
diction FRF are similar, compare equation (14).

e The background noise of test benches often influences onboard
validation sensors. In addition, these sensors can not always be
included in measurement setups, e.g., in free-free conditions.

e Alternatively, one could split the indicator data uy into a train-
ing and a validation set. However, this would require placing
additional sensors to achieve sufficient overdetermination.
Adding sensors is often challenging due to limited interface
accessibility.

Instead, model selection criteria are applied, which estimate the
validation error. They are based on the training error and are
adjusted to account for overfitting. For the results in this work,
the model is selected, which minimizes the Mallow’s Cp statistic
[20]:

RSS;
Cpi="7

—n+2k (23)

with n being the number of observations in the data, k = [[f|o + 1
being the number of independent variables, and RSS being the
residual sum of squares:

RSS; = |lug — Yaofo I3 (24)

and 62 being an estimate for the variance of the error, which is often
obtained from the full model containing all DoF as RSS,, /n. Alter-
native selection criteria include the corrected Akaike information
criterion [21] or the Bayesian information criterion [22]. Note that
these model selection criteria are limited to overdetermined
systems of equations in which the RSS is generally nonzero.

5.3 Numerical Results. To validate the X-DoF procedure, the
previous regression test is repeated. The polynomial terms of degree
5 are included in the regression. The X-DoF solution shows an
improved prediction into the validation region when compared to
the least-square solution or regularization, as shown in Fig. 9.

X-DoF reduces overfitting because the validation residual does
not increase with irrelevant terms in the regression, see Fig. 10.

X-DoF yields an accurate identification of the correct terms, see
Fig. 11. The robustness to noise also increases because sparsity
improves the conditioning of the system. Solutions from X-DoF
match the results obtained via least squares if modeled with the
correct 3 DoF, compare Fig. 6. In other words, additional DoF
can be included without the overfitting risk.

In summary, this section shows that X-DoF reduces overfitting
and improves the solution’s robustness to noise by selecting the
correct subset of DoF. Solutions based on X-DoF are also more
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accurate and generalize better than those based on other methods,
such as matrix inverse, TSVD, and Tikhonov regularization. The
same benefits are expected for blocked forces calculated based on
the X-DoF procedure. This is evaluated in the following section.

6 Experimental Results

In this section, X-DoF is experimentally tested for the physicality
of the calculated blocked forces and their predictive quality in
onboard and transfer validations.

6.1 Blocked Force Degree-of-Freedom Selection. Our first
experimental test’s objective is to assess the selection of calculated
blocked force DoF from a known input on a freely suspended elec-
tric power steering with two 6-DoF virtual points (VPs), see Fig. 12.

Blocked forces are calculated from the response due to
excitation with an impact hammer (artificial excitation) scaled to
1 N. Figure 13 shows the artificial excitation pointed in the z-direc-
tion with an offset of 13 mm in the x-direction and 8 mm in the
y-direction to the right virtual point.

Assuming local rigidity, a combination of a force in the
z-direction with moments around x and y should be sufficient to

X-DoF (6 DoF) Least-squares (6 DoF)
2

1 & @ = 10-@-%
E 5 %
—= 0 e = 0
S < I
-1 -1
-2 -2
1 2 3 4 5 6 1 2 3 4 5 6

Polynomial term Polynomial term

Fig. 11 X-DoF solutions (left) and the least-squares solutions
(right) with irrelevant terms (4-6) included
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Fig. 12 Electric power steering setup with a 6-DoF virtual point
on the left and right sides
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Fig. 13 Artificial excitation at the right virtual point in the
z-direction with an offset in x- and y-directions
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Fig. 14 Subset of active blocked force DoF selected by X-DoF.
Inactive DoF are depicted in black.

block the interface for the artificial excitation. Modeling this with a
total of 12 DoF could lead to overfitting. The active subset of
blocked force DoF, automatically selected by X-DoF, is shown in
Fig. 14.

X-DoF selects the subset of relevant DoF (Tz, Rx, and Ry) at the
right virtual point. It is noteworthy that forces in Tx and Ty are also
selected at some frequencies. Inconsistencies in the experiment
might have caused this or if the artificial excitation was not per-
formed perfectly in the z-direction.

Ideally, the magnitude of the translational z force is expected to
be 1 N over the frequency range. In Fig. 15, the solution is depicted
for X-DoF, matrix inverse, TSVD, and Tikhonov regularization.

The X-DoF and matrix inverse solutions are closest to the analyt-
ical solution of 1 N. The TSVD is performed with six singular
values, a popular choice to model for rigid body behavior. A Tikho-
nov regularization is calculated with 1 =0.001. These regulariza-
tion techniques yield translational forces that significantly deviate
from the reference solution. The deviations can be explained
through the bias introduced by both methods, compare Sec. 4.2.

To fulfill moment equilibrium, the moments should scale with 1
N times the distance of the artificial impact from the virtual point.
The moments calculated based on X-DoF and the matrix inverse
method match the reference given by 0.008 Nm in Rx and 0.013
Nm in Ry, see Fig. 16. TSVD and Tikhonov regularization show
larger deviations.
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Fig. 15 Blocked force in Tz at the right VP
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Fig. 16 Blocked moments Rx (top) and Ry (bottom) at the
right VP

Overall, the blocked forces from the matrix inverse approach and
X-DoF match well with the analytical solution. Although X-DoF
selects a much smaller subset of forces, the results are similar to
the full inverse using all 12 DoF. Similar solutions are expected
because artificial excitations are less susceptible to overfitting due
to their high signal-to-noise ratio. Nevertheless, X-DoF demon-
strates its data-driven capabilities in selecting the correct subset of
DoF. In addition, this experiment underlines that TSVD and Tikho-
nov regularization can result in deteriorated outcomes due to bias
errors. This result should be further investigated to clarify the lim-
itations of these methods in accurately determining blocked forces.

6.2 Blocked Force Predictions. The next step is to validate
the predictive quality of blocked forces calculated using X-DoF
on three active components from the automotive industry.

6.2.1 Electric Power Steering. The first example is an electric
power steering (EPS). Unlike the previous case, the EPS is now
mounted on a test-bench, and four virtual points are used to
model the interface. See Fig. 17 for a representative setup.

Initially, an indicator validation is performed to check if the
amount of chosen DoF is sufficient to model the measured
responses, see Eq. (13) and Fig. 18.

Above 200 Hz, the indicator fit matches the measurement well.
Therefore, four 6-DoF virtual points are sufficient to “interpolate”
the data. Below 200 Hz, the fit yields unsatisfactory results. As
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wF

Fig. 17 Representative EPS setup with four VPs

this discrepancy is only found at lower frequencies, this indicates
sensor noise issue, which is plausible due to a relatively rigid test
bench design. This limits the applicability of the blocked forces
to the region above 200 Hz. A way to improve this test bench for
blocked force characterization would be to design it more flexibly.

Once the blocked forces have been computed, they are applied to
the structure to predict the acceleration at validation sensors. The
prediction is then compared with the actual measured signal
obtained at these sensors, see Eq. (14) and Fig. 19. The predictions
below 200 Hz should not be evaluated due to the noise issues pre-
viously mentioned. Above 200 Hz, the onboard validation calcu-
lated with X-DoF matches the measurement well. The prediction
based on the matrix inverse method shows signs of overfitting.
This indicates that all 24 interface-DoFs contain irrelevant DoF to
model this steering excitation.

6.2.2  Electric Drive Unit. A second test is performed on an
electric drive unit (EDU) mounted on a test bench, see Fig. 20.

The indicator validation in Fig. 21 shows a good match between
the measured data and the model fit. Therefore, the chosen amount
of DoF should contain a DoF subset to describe the measured EDU
responses for this operational condition sufficiently.

Measurement
————— Indicator fit

Acceleration Level (dB)

500 1000 1500 2000
Frequency (Hz)

o

Fig. 18 Indicator validation revealing underfitting of the model
below 200 Hz

Prediction - X-DoF
————— Prediction - Matrix Inverse
Measurement

Acceleration Level (dB)

0 500 1000 1500 2000
Frequency (Hz)

Fig. 19 Onboard validation indicating less overfitting with
X-DoF compared to the matrix inverse
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Fig. 20 Experimental test setup of an electric drive unit with
three virtual points

In the onboard validation, the X-DoF solution predicts the closest
to the reference, while the matrix inverse method deviates, compare
Fig. 22. This indicates that the system is overmodeled with 18 DoF,
and X-DoF successfully selects a proper subset.

The relevant interface description for this operating condition can
be visualized from the active subset selected by X-DoF, compare
Fig. 23.

Overall, fewer than the full set of 18 DoF are selected. This sug-
gests that the interface contained irrelevant DoF to model this oper-
ating condition. The improved predictive quality, as shown in the
onboard validation, suggests that this subset is a proper interface
description. Furthermore, the results are plausible because a
similar set of DoF is active for the symmetrically located VPs 1
and 2. They correspond to the left and right VPs of Fig. 20. Their
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Fig. 21 Indicator validation demonstrating sufficient DoF mod-

eling to describe the measurement
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Fig. 22 Onboard validation indicating a reduction of overfitting
with X-DoF compared to matrix inverse
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are selected by the X-DoF procedure
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Fig. 24 Representative diagram of the active component
mounted onto two passive structures

moments are mainly active in Rx, corresponding to the stiffest rota-
tional direction of the bushings. As VP3 is located at the bottom, it
shows active moments mainly in Ry, corresponding to the stiffest
rotational direction of the rubber bushing.

6.2.3 Mechatronic Component. The third test case focuses on
transferring blocked forces to another assembly. This component
comprises three virtual points with a total of 18 DoF and is
mounted in two different assemblies, compare Fig. 24.

To ensure blocked force quality, indicator, onboard, and transfer
validation are performed, as in Sec. 3.

Figure 25 shows the validation of the blocked forces at the indi-
cator sensors. For frequencies below 1000 Hz, the fit shows a good
match with the measurements. Above 1000 Hz, the fit indicates
underfitting, which could be caused by missing blocked force inter-
face DoF or sensor noise. To improve the blocked force character-
ization above 1000 Hz, one could consider using sensors with a
lower noise floor and adding additional blocked force DoF to the
interface.

As a next step, the calculated blocked forces are used to predict at
unseen validation sensors of the same assembly, see Fig. 26. The
figure’s first plot (top) indicates overfitting in the predictions with
the matrix inverse method. Above a frequency of 500 Hz, using

Measurement
————— Indicator fit

WMW VAT
o

0 1000 2000 3000 4000 5000 6000 7000
Frequency (Hz)

Acceleration Level (dB)

Fig. 25 Indicator validation showing some underfitting of the
model above 1000 Hz
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Fig.26 Onboard validation on two validation sensors indicating
that X-DoF reduces overfitting (top) and that overfitting is not
always observed (bottom)

the matrix inverse leads to significant overpredictions. The second
plot (bottom) demonstrates that overfitting can not always be
observed in onboard validations and underlines the importance of
not only relying on the onboard validation to validate the interface
description. Up to 1000 Hz, the predictions from X-DoF and the
matrix inverse approach do not significantly deviate from the mea-
surements. Above 1000 Hz, the validation sensor cannot validate
signals that predict below its noise floor.

The interface description selected by X-DoF for this operating
condition is visualized in Fig. 27.

Up to 500 Hz, approximately half of the DoF are active. This
indicates that the full matrix inverse model is overfitted in this
region. Although overfitting was not observed up to 500 Hz in the
onboard validation, a transfer validation should reveal this. As
fewer DoFs are active above 1000 Hz, the full model is likely over-
fitted, which was already observed in the first plot of the onboard
validation, see Fig. 26.

As a final step, the blocked forces are transferred and applied to a
different test assembly. The transfer predictions are then compared
against validation measurements, see Fig. 28. Such a transfer vali-
dation is a good test for overfitting because the blocked forces are
evaluated on a truly independent dataset.

0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

Fig. 27 X-DoF subset of active DoF (white)
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Fig.28 Transfer validation on two validation sensors showing a
reduction of overfitting with X-DoF

The X-DoF transfer prediction is closest to the reference mea-
surement, while the blocked forces from the matrix inverse
method yield overpredictions for the entire frequency range. This
demonstrates that overfitting was present below 500 Hz, which
was not detected in the previous onboard validation because of its
insufficient sensitivity to observe overfitting.

Opverall, the predictive capabilities of X-DoF are enhanced com-
pared to the matrix inverse method. This can be explained by the
matrix inverse approach overfitting noise when irrelevant DoFs
are included, which worsens the predictive quality of the blocked
forces. The X-DoF procedure shows promising improvements in
reducing overfitting, yielding more accurate predictions in
regimes where traditional methods might fail.

7 Conclusion

In this work, we have shown that inverse blocked force estima-
tion may suffer from overfitting. This can be caused by sensor
noise and the interface description containing too many DoFs.
The current techniques to reduce the influence of noise are inade-
quate because they introduce a bias in the solution. Such a bias
can lead to nonphysical blocked force estimates, see Sec. 6.1.
This work proposes X-DoF, a procedure to select the best subset
of DoF. It does not suffer from the same problems as can be seen
in Sec. 5.3. The reason for that is that, by only selecting the relevant
subset of DoF, overfitting is reduced. Therefore, the accuracy of the
estimated blocked forces increases and their prediction quality sig-
nificantly improves, as demonstrated in Sec. 6. The necessity for
finding the right DoF is not just about prediction accuracy, but
also deepening our understanding of the models we create. With
the X-DoF procedure, we have found a way to tailor the interface
description to the data.
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