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Abstract

Personalized course-recommendation systems can help students make better academic choices and
improve learning outcomes. Matrix factorization (MF) is a well-established and effective approach
for this task, producing accurate recommendations from historical student–course performance data.
However, the deployment of MF-based recommenders is hindered by privacy and regulatory risks,
particularly when sensitive student records are processed by third-party or centralized systems. In
the privacy-preserving setting, MF models exhibit reduced accuracy: when combined with differential
privacy, accuracy is fundamentally degraded by the added noise, while existing cryptography-based
approaches omit bias terms, resulting in a measurable accuracy gap with their plaintext equivalents.

This thesis enhances a Homomorphic-Encryption-based recommendation protocol to support biased
Matrix Factorization through two additions: data centering and vector augmentation. These modifica-
tions maintain the security guarantees of the original protocol under the semi-honest adversary model
while enabling the model to incorporate user and item biases. Evaluated in the plaintext domain on
the MovieLens-100k dataset, the enhanced model achieved a test RMSE of 0.9213, a notable im-
provement over the baseline’s 0.9507, and reached the baseline’s best RMSE with only 15 training
iterations instead of 145. Beyond accuracy and efficiency, separating bias terms from the student–
course interaction extends the system from a simple grade predictor into a tool for academic discov-
ery, allowing for recommendations that consider inherent compatibility, not solely predicted grades.
Although demonstrated in a course-recommendation setting, the approach is applicable to any privacy-
preserving recommender system, offering reduced computational costs and narrowing the accuracy
gap with non-private methods.
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1
Introduction

The transition from secondary to higher education is a critical point in a student’s life. The courses
they choose at this stage can define their academic journey and shape their future career prospects [1].
Choosing the right courses from brief descriptions, among different specializations and peer sugges-
tions, is a daunting task. Poor course choices can lead to a cascade of negative outcomes, including
student demotivation, course withdrawals, extended study periods, and, in some cases, dropping out
of university altogether [2]. These consequences represent not only a significant loss of time and mon-
etary resources for the individual student, but also reflect a systemic inefficiency within educational
institutions, resulting in the misallocation of staff and funding. The traditional course advising, such as
one-on-one meetings with a study advisor, offers personalization, however, it is often time-consuming
and difficult to scale, leaving many students inadequately supported [3].

1.1. Course Recommendation Systems and Student Privacy
As higher education increasingly embraces digitalization, accelerated by the global shift to remote and
hybrid learning, universities are collecting unprecedented amounts of student data [4]. This data holds
the promise of revolutionizing student support through automated, personalized course recommenda-
tion systems. However, this vast collection of sensitive information creates a high-risk environment.
Student data - containing grades, academic performance history, high school records, and even demo-
graphic information - is deeply personal [5]. Universities often outsource the development and hosting
of these digital services to third-party vendors, creating a landscape where data security is not guaran-
teed [6]. This was infamously demonstrated by Edmodo, an educational data technology provider that
used children’s personal data for advertising without explicit consent [7].

Furthermore, this sensitive information can be leaked through data breaches or hacked by malicious
actors. Documented cases show the scope of this harm: in one instance, a single student was able
to download and publicly share an unprotected file from a university server, exposing the personal
details and grades of 5,962 other students [8]. In a more tragic case, criminals, who had purchased a
student’s stolen university application data used it to impersonate education officials. After successfully
scamming the student out of her entire tuition savings, the acute stress and despair from the fraud
triggered a fatal cardiac arrest [9]. Even with the best intentions, a service provider remains a critical
point of vulnerability; the data can be exposed through unintentional leaks or be repurposed should the
company be acquired by an entity with conflicting data protection guidelines [10].

This highlights the urgent need for course recommendation systems that protect student privacy by
design, not merely by policy [11] - instead of relying on the service provider to keep the information se-
cure, the system itself should be architecturally incapable of exposing raw student data. This imperative
leads to the central research question of this thesis:

1



1.2. Selecting an Algorithmic Foundation 2

Research Question

How can we design a course recommendation system that protects student privacy by keeping
their grades hidden from the service provider and any other third parties, while still providing accu-
rate and personalized recommendations?

1.2. Selecting an Algorithmic Foundation
To answer this question, we must first select an appropriate algorithmic foundation. A review of course
recommendation systems by Guruge, Kadel, and Halder [12] identifies three dominant course recom-
mendation approaches: Content-based, Collaborative Filtering, and Knowledge-Based.

Of these, Knowledge-Based (KB) systems pose a serious ethical problem. These systems operate
by reasoning over a knowledge base of explicit rules. While some rules are benign, such as ”students
interested in programming should take Python,” the core issue arises when incorporating student demo-
graphic information. From a purely predictive standpoint, this approach can seem deceptively powerful.
Indeed, multiple studies have shown correlations between demographics and academic pathways. For
instance, Charles and Bradley [13] demonstrated that the enrollment in various courses is influenced
by gender. Furthermore, Carnevale and Strohl [14] showed that socioeconomic status, often linked
to race and income, can correlate with performance and persistence in certain demanding academic
programs. In a KB system these statistical patterns could be easily turned into rules, potentially increas-
ing the raw accuracy of its recommendations. However, this is precisely where the ethical danger lies.
Using such data risks reinforcing societal biases and promoting systemic discrimination. For example,
by observing that students from low-income backgrounds have historically enrolled less in advanced
mathematics, the system might actively steer new students from similar backgrounds away from these
courses, regardless of their individual academic potential. This creates a deterministic feedback loop
that perpetuates inequality, making KB systems ethically unfit for our purposes.

Content-based recommendations, another common approach, also present significant limitations for
our purpose. These systems suggest courses based on item features, recommending courses similar
to those a student has already taken or rated highly. For instance, if a student has succeeded in
”Introduction to Java,” a content-based model would recommend ”Advanced Java” or ”Object-Oriented
Programming.” The drawbacks of this approach are as follows: first, they require existing preference
data to function, making them ineffective for new students. Second, and more importantly, they fail to
utilize the rich, historical performance data available across the entire student body. By focusing only
on an individual’s past, they miss the opportunity to learn from the successes and failures of thousands
of other students. This narrow focus also means they struggle to recommend novel or diverse options,
effectively trapping students in an ‘echo chamber’ of their initial interests and limiting their academic
exploration.

In contrast to the limitations of the aforementioned approaches, Collaborative Filtering (CF) emerges
as the most promising paradigm for our purposes. It can sidestep the ethical dilemmas of Knowledge-
Based systems by purely operating on the obtained final grades rather than sensitive demographic
information. Recommendations are therefore based on demonstrated academic merit, not on precon-
ceived notions of what a student ’should’ study. Furthermore, it overcomes the narrow ’echo chamber’
of Content-Based methods by leveraging the ’wisdom of the crowd’ - the collective academic histories
of the entire student body. This allows the system to identify non-obvious yet successful academic
pathways by finding students with similar performance profiles, offering a richer and more personal-
ized form of guidance. Nevertheless, a critical challenge for CF is a ’cold start’ problem - meaning that
first-year students lack prior data in the system to obtain useful, personalized recommendations for
their initial courses. To overcome this, we can incorporate high school academic records. Research by
Danilowicz-Gösele, Lerche, Meya, et al. [15] has shown that high school GPA is among the best pre-
dictors of university success; we hypothesize that incorporating the full subject grade distribution, not
just the average, could provide an even richer data source for initializing the recommendation model.
The advantages and disadvantages of each major approach discussed are summarized in Table 1.1.

With a strategy to address new students, the next critical decision lies in selecting the specific CF im-
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Table 1.1: Overview of pros and cons of major recommendation system approaches.

Knowledge-Based (KB) Systems
Pros Cons

• Transparent decision rules
• Can encode domain knowledge

• High ethical risk from demographic
bias

• Can reinforce societal inequality

Content-Based Systems
Pros Cons

• Personalized to student’s interests
• Avoids demographic data

• Echo chamber effect
• Ignores wider student data

Collaborative Filtering (CF)
Pros Cons

• Avoids demographics
• Leverages collective information
• More diverse recommendations

• Cold start problem

plementation. The field is broadly divided into two families: neighborhood-based and model-based
methods. Neighborhood-based approaches operate on a principle of direct similarity, recommending
courses that have been successful for a small group of ’neighboring’ students with the most similar
academic histories. In contrast, model-based methods attempt to learn the underlying latent factors —
the hidden characteristics of both students and courses — that explain the observed performance data.
While neighborhood methods are intuitive, model-based approaches have proven to be more power-
ful in uncovering complex patterns in student performance data. Work by Thanh-Nhan, Nguyen, and
Thai-Nghe [16] demonstrates that a model-based approach, specifically Matrix Factorization (MF), sig-
nificantly outperforms neighborhood methods in terms of recommendation accuracy and computational
performance. They further identify biased Matrix Factorization as the superior variant. This improved
approach explicitly models the global mean and biases - systematic tendencies observed in the data.
For instance, some students might consistently achieve higher grades than others (represented as user
bias). Similarly, some courses are intrinsically harder than others (represented as item bias). By isolat-
ing these systematic tendencies, the core model can focus on the more nuanced interactions, leading
to more accurate predictions [17]. Therefore, we select biased Matrix Factorization as the algorithmic
core of our system.

1.3. Towards Private and Accurate Recommendations
Having chosen our engine, the next challenge is to make it private. This introduces a fundamental
tension between three competing goals: Accuracy, Privacy, and Computational Complexity. Data
anonymization, a common first step, has been proven insufficient; as Narayanan and Shmatikov [18]
notoriously demonstrated, individuals can be re-identified in anonymized datasets with minimal auxiliary
information. A more robust technique is Differential Privacy (DP), which adds controlled noise to data
or model outputs to provide formal privacy guarantees [19]. However, DP introduces an inherent trade-
off: stronger privacy requires more noise, which degrades the accuracy of the recommendations [20].
Federated Learning (FL) offers a complementary approach where, instead of sending raw data to a
central server, each user trains a local model and only submits model updates (e.g., gradients) for
aggregation [21]. While this reduces data exposure, Li, Ding, Zhang, et al. [22] have shown that model
updates in MF can still be used to reconstruct user input data, meaning FL often requires DP to be truly
secure, thereby reintroducing the accuracy-privacy trade-off.

Cryptographic methods, particularly those using homomorphic encryption (HE), offer a way to resolve
this tension. HE allows for computations to be performed directly on encrypted data, enabling strong
privacy guarantees without sacrificing model accuracy. Protocols developed by Nikolaenko, Ioannidis,
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Weinsberg, et al. [23], later optimized with data-packing techniques by Kim, Kim, Koo, et al. [24], have
demonstrated the feasibility of fully cryptographic matrix factorization. While these methods introduce
substantial computational complexity, they are unique in their ability to provide privacy without compro-
mising the quality of the result. This guarantee of privacy without sacrificing recommendation accuracy
is the reason for our inclusion of HE as the preferred encryption method within the proposed algorithm.

1.4. Contributions
To answer our research question, this thesis puts forward a novel system that combines homomorphic
encryption with biased Matrix Factorization, thereby addressing a critical gap in the research: the ab-
sence of privacy-preserving matrix factorization algorithms that incorporate user, item, and global mean
biases. This is not a minor omission. In the non-private recommender systems literature, these bias
terms are widely used to account for individual user (student) or item (course) variations independent
of their interactions, allowing the MF model to pay closer attention to the more nuanced user-item in-
teraction. Furthermore, our preliminary experiments indicate that these terms also lead to significantly
faster model convergence during training. The primary technical goal of this thesis is to integrate these
crucial components into a private MF protocol. This approach creates a more accurate system, closing
the performance gap between private and non-private recommenders. Moreover, the methodology we
develop for incorporating these biases is designed to be efficient and could serve as a blueprint for
future privacy-preserving matrix factorization algorithms.

This thesis makes the following contributions:

• Systematization and Formalization of a Foundational Protocol: We present a thorough ex-
planation of the privacy-preserving matrix factorization protocol by Kim, Kim, Koo, et al. [24]. Our
work resolves ambiguities and formalizes underspecified components from the original publica-
tion, yielding the first rigorous and complete algorithmic description required for implementation
and further extensions.

• Proposal of a Novel Improvement and Adaptation: We architect a complete course recom-
mendation system based on this algorithm and propose a novel improvement by integrating user,
item, and global mean biases into the cryptographic model. This extension is designed to signifi-
cantly increase recommendation accuracy and improve computational performance during model
training.

• Empirical Validation and Performance Analysis: We conduct a two-part evaluation. First, we
provide a theoretical analysis of our method’s modest computational overhead, which, as we
later show, is far outweighed by the accuracy improvements. Second, we conduct empirical
experiments in the plaintext domain to validate the improvements. By comparing a standard
(plaintext) matrix factorization algorithm with and without bias terms, we empirically validate the
necessity of our approach. Since our chosen cryptographic protocol does not introduce noise,
we argue that these plaintext performance results carry over directly to the cryptographic domain.
This analysis shows that critical accuracy improvements are achieved with negligible additional
complexity, thus validating the practicality and effectiveness of our proposed system.

1.5. Outline
The remainder of this thesis is structured as follows. Chapter 2 introduces the technical preliminaries
of recommender systems and cryptographic primitives. Chapter 3 reviews related work. Chapter 4
provides a detailed analysis of the baseline protocol by Kim et al. In Chapter 5, we present our core
contribution: the design of our Privacy-Preserving Course Recommender System, detailing both its
adaptation for this specific use case and our novel improvements to incorporate biases. Chapter 6,
details the experiments and evaluation of our system’s security and performance. Finally, Chapter 7
discusses the implications of our findings and outlines directions for future work.



2
Technical Background

The previous chapter motivated the use of biased Matrix Factorization and homomorphic encryption,
which serve as the foundation of this thesis. This chapter provides the necessary technical background
on these two topics.

2.1. Recommender Systems
Recommender systems are computational tools designed to combat information overload by predicting
a user’s preference for items within some catalog. They provide personalized suggestions by analyzing
past user-item interactions or item attributes. This work focuses on the dominant paradigm known as
Collaborative Filtering, which leverages historical user behavior to generate recommendations.

2.1.1. Collaborative Filtering Recommender Systems
Collaborative Filtering (CF) is a paradigm of recommendation that operates on a single, powerful as-
sumption: users who have rated items similarly in the past are likely to give similar ratings in the future.
The system begins with a set of known ratings, where user i has given a rating rij to item j. The goal
is to analyze these known ratings to recommend items that the user hasn’t rated but would likely have
a high preference for.

Unlike content-based methods that analyze item characteristics, CF relies entirely on the user-item
interaction data. Within CF, two main families of algorithms exist:

• Neighborhood-based methods are memory-based techniques that make predictions by identi-
fying similar entities. In user-based approaches, predictions for a user are generated by finding
a ”neighborhood” of other users with similar rating histories and recommending items they have
liked. In item-based approaches, the similarity is calculated between items instead of users, and
predictions are made by suggesting items that are similarly rated to those a user has already
rated highly.

• Model-based methods use known ratings to learn a mathematical model that represents the
underlying latent structure of the data. This model is then used to make predictions.

Model-based approaches, and specifically Matrix Factorization, have been shown to be effective at
capturing the complex patterns in sparse user-item data and often yield superior accuracy [25]. The
remainder of this section will focus on this technique.

2.1.2. Matrix Factorization Models
Matrix Factorization is a model-based, pointwise recommender system. The term ”pointwise” means
that the system functions by estimating a potential rating for each user-item pair individually. Based
on these estimations, it can then present each user with a ranked list of items they are most likely to
prefer.

The model works under the assumption that user preferences and item attributes can be described by

5
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unobserved, or latent ”profiles.” Each user i is associated with a profile vector ui ∈ Rd, and each item
j with a profile vector vj ∈ Rd. The hyperparameter d defines the dimensionality of this latent space.
The model then assumes that user i’s rating for an item j can be estimated by the interaction between
their respective profiles, which is modeled as the inner product of their vectors:

r̂ij = uT
i vj . (2.1)

The goal of Matrix Factorization is to learn the optimal profile vectors for all users and items given
the set of existing ratings. This is achieved by finding the profiles that make the predicted ratings r̂ij
as close as possible to the known ratings rij . This task is formulated as an optimization problem that
minimizes the sum of squared errors between predictions and actual ratings. To prevent the model from
overfitting to the training data, ℓ2 regularization terms are added, which penalize large profile vectors.

Table 2.1 defines the mathematical notation used in the following sections.

Table 2.1: A description of the symbols used in the model.

Symbol Description Type / Domain
n,m The number of users and items, respectively N+

M The set of user-item pairs (i, j) for which a rating is
known

⊂ {1, . . . , n} ×
{1, . . . ,m}

rij The known rating given by user i to item j R
r̂ij The predicted rating for user i on item j R
d The dimensionality of the latent feature space N+

ui The latent feature vector (profile) for user i Rd

vj The latent feature vector (profile) for item j Rd

µ The global average of all known ratings inM R
bi The bias term for user i R
bj The bias term for item j R
λ The regularization hyperparameter R+

γ The learning rate for gradient descent R+

Standard Matrix Factorization
The complete objective function L for standard Matrix Factorization is:

min
u∗,v∗

L =
∑

(i,j)∈M

(rij − uT
i vj)

2 + λ

 n∑
i=1

∥ui∥2 +
m∑
j=1

∥vj∥2
 , (2.2)

where λ is a hyperparameter controlling the strength of the regularization.

The method’s name comes from an alternative linear algebra perspective. The known ratings can be
organized into a sparse user-item matrix R ∈ Rn×m. The goal is then to find two low-rank matrices, a
user-feature matrix U ∈ Rn×d (where row i is uT

i ) and an item-feature matrix V ∈ Rm×d (where row j

is vT
j ), whose product approximatesR. The predicted rating matrix, R̂ = UVT , ’completes’ the sparse

matrix, providing a prediction for every user-item pair. This formulation is equivalent to the pointwise
model, as the entry (R̂)ij is precisely the dot product uT

i vj . This perspective is useful as it connects the
problem to the well-studied area of low-rank matrix completion, allowing for the application of tailored
algorithms and optimized computational methods.

Biased Matrix Factorization
A powerful extension to the standard model involves incorporating bias terms to account for systematic
tendencies in rating data. In the context of course recommendations, some students (users) may
generally achieve higher grades, and some courses (items) may be inherently easier. Biased Matrix
Factorization explicitly models these effects.
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The prediction rule is augmented with three bias terms:

r̂ij = µ+ bi + bj + uT
i vj . (2.3)

Here, µ is the global average rating across all {rij : (i, j) ∈ M}, bi is a user-specific bias, and bj is
an item-specific bias. The profile interaction uT

i vj now only needs to capture the user-item interaction
beyond these general effects. The corresponding objective function is updated to include these new
parameters:

min
u∗,v∗,b∗

L =
∑

(i,j)∈M

(rij − (µ+ bi + bj + uT
i vj))

2 + λ

 n∑
i=1

∥ui∥2 +
m∑
j=1

∥vj∥2 +
n∑

i=1

b2i +

m∑
j=1

b2j

 . (2.4)

2.1.3. Model Optimization via Gradient Descent
The objective function in Equation 2.4 is non-convex, meaning an optimal solution cannot be found
with a direct analytical method. Instead, iterative optimization algorithms are employed to find a locally
optimal set of parameters. While several methods exist, such as Stochastic Gradient Descent (SGD)
and Alternating Least Squares (ALS), this work utilizes Batch Gradient Descent.

In Batch Gradient Descent, the optimization proceeds in epochs, where each epoch involves a full
pass over the training setM. For each epoch, the gradient of the loss function L with respect to each
parameter is computed by summing the contributions from every known rating (i, j) ∈ M. Let the
prediction error be eij = rij − r̂ij . The partial derivatives of the loss function L are:

∂L
∂ui

=
∑

j:(i,j)∈M

−2eijvj + 2λui
∂L
∂vj

=
∑

i:(i,j)∈M

−2eijui + 2λvj (2.5)

∂L
∂bi

=
∑

j:(i,j)∈M

−2eij + 2λbi
∂L
∂bj

=
∑

i:(i,j)∈M

−2eij + 2λbj (2.6)

After computing these gradients for all parameters, they are updated simultaneously by taking a single
step in the opposite direction of the gradient, scaled by the learning rate γ. The update rules are as
follows, where the factor of 2 from the derivative is absorbed into γ for notational simplicity:

ui ← ui − γ

λui −
∑

j:(i,j)∈M

eijvj

 ∀i ∈ {1, . . . , n}, (2.7)

vj ← vj − γ

λvj −
∑

i:(i,j)∈M

eijui

 ∀j ∈ {1, . . . ,m}, (2.8)

bi ← bi − γ

λbi −
∑

j:(i,j)∈M

eij

 ∀i ∈ {1, . . . , n}, (2.9)

bj ← bj − γ

λbj −
∑

i:(i,j)∈M

eij

 ∀j ∈ {1, . . . ,m}. (2.10)

This process is repeated over multiple epochs until the parameters converge or a stopping criterion is
met.

2.1.4. Evaluation Metrics
To assess model performance, a portion of the data is held out as a test set, T . The model is trained on
the remaining data and evaluated on this unseen test set. We use two standard metrics that measure
distinct qualities of a recommender system.
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Root Mean Squared Error (RMSE)
RMSE measures the accuracy of the model’s rating predictions. It represents the standard deviation of
the prediction errors, providing a measure of the average magnitude of error. A lower RMSE indicates
higher predictive accuracy. It is defined as:

RMSE =

√√√√ 1

|T |
∑

(i,j)∈T

(rij − r̂ij)2. (2.11)

Normalized Discounted Cumulative Gain (nDCG@k)
While RMSE measures prediction accuracy, it fails to evaluate the quality of a ranked recommendation
list, which is more important in the course recommendation scenario, as a student is unlikely to consider
a course ranked far down the list. We therefore need a metric that rewards placing the most relevant
items at the top. The Normalized Discounted Cumulative Gain (nDCG) is the standard for this task.

The logic of nDCG is best understood with an example. Assume our system recommends 5 courses
(k = 5), and we know the student’s actual grades for them, which serve as the true relevance scores.

Table 2.2: An example of a recommended course list and the ground truth relevance (actual grades) used to calculate
nDCG@5.

Position (j) Recommended Course Actual Grade (relj) Ideal Ordering
1 Course C 7.0 Course A (9.5)
2 Course A 9.5 Course E (8.0)
3 Course D 4.0 Course C (7.0)
4 Course B 2.0 Course D (4.0)
5 Course E 8.0 Course B (2.0)

First, we calculate the Discounted Cumulative Gain (DCG). This metric scores the list by summing
the relevance (gain) of each item, but penalizes items based on their rank. The relevance of an item at
position j is divided by a logarithmically growing term, heavily ”discounting” items further down the list.

DCG@k =

k∑
j=1

relj
log2(j + 1)

. (2.12)

For the recommended list in Table 2.2, the DCG@5 is approximately 19.0.

However, this raw score is not easily comparable across different users. To create a fair score between
0.0 and 1.0, we normalize it. We calculate the DCG of the best possible ranking, shown as the ”Ideal
Ordering” in the table. This is the Ideal Discounted Cumulative Gain (IDCG). For the example, the
IDCG@5 is approximately 20.5. The final nDCG score is the ratio of the actual DCG to the ideal DCG:

nDCG@k =
DCG@k

IDCG@k
. (2.13)

In our example, the score is 19.0/20.5 ≈ 0.92. This means the system’s list achieved 92% of the quality
of a perfect ranking. An nDCG score of 1.0 represents the ideal ranking. As will be discussed in
Chapter 6, this metric is particularly well-suited for the course recommendation task.

2.2. Privacy-Preserving Techniques
As established in the introduction, the vast collection of sensitive student data necessitates a system
that protects privacy by design, not merely by policy. This goal requires the use of Privacy-Enhancing
Technologies (PETs), a field of techniques designed to protect personal data while still allowing for
useful computation. The European Union’s General Data Protection Regulation (GDPR) has formalized
principles like data minimization, making the application of PETs a legal and ethical imperative [26].

Broadly, PETs can be divided into two paradigms, which differ fundamentally in their approach to the in-
herent tension between privacy and utility. The first approach involves altering the data itself to obscure
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identifying information, while the second uses cryptography to shield the data, allowing for computa-
tion without ever exposing it. This section will review both approaches to build the foundation for our
selection of a privacy-preserving framework.

2.2.1. Approaches Based on Data Alteration and Noise
The most intuitive approach to data privacy is to modify the dataset before it is shared or analyzed, with
the goal of making it impossible to link records back to specific individuals. These techniques operate
on a spectrum of increasing complexity and robustness.

Themost straightforwardmethod, basic anonymization, involves stripping explicit identifiers like names
and social security numbers from a dataset. However, this was famously shown to be insufficient by
Sweeney [27], who demonstrated that 87% of the U.S. population can be uniquely identified by their
5-digit ZIP code, gender, and full date of birth (known as quasi-identifiers). To counter this, a family
of more advanced statistical techniques was developed. k-Anonymity requires that each record in a
dataset be indistinguishable from at least k−1 other records along its quasi-identifiers, typically by gen-
eralizing specific values into ranges [28]. While an improvement, k-Anonymity is vulnerable to attacks
if the sensitive attributes within an indistinguishable group lack variety. For instance, if a k-anonymous
group of patients all share the same diagnosis, an adversary knows the diagnosis of everyone in that
group. This led to further refinements like l-diversity, which mandates a minimum level of diversity for
sensitive attributes within each group [29], and t-closeness, which requires that the distribution of a
sensitive attribute within a group be close to its distribution in the overall dataset [30].

While the aforementioned methods protect against specific attack models, Differential Privacy (DP)
represents a paradigm shift by offering a formal, mathematical definition of privacy [19]. Rather than
modifying the dataset’s structure, DP is a property of a query or algorithm. It ensures that the output of
an analysis will be statistically indistinguishable whether any single individual’s data is included in the
dataset. This is achieved by injecting carefully calibrated statistical noise into the results. The level of
privacy is governed by a parameter, ϵ (epsilon); smaller values of ϵ provide stronger privacy guarantees
but require the addition of more noise. This creates a fundamental and inescapable privacy-accuracy
trade-off: stronger privacy guarantees directly lead to less accurate results, while higher accuracy can
only be achieved by weakening the privacy guarantee.

2.2.2. Cryptography-Based Approaches
An alternative paradigm resolves the privacy-accuracy trade-off by leaving the data entirely intact.
Rather than altering data or adding noise to results, cryptographic methods enable computations to
be performed directly on unchanged encrypted data. While this avoids adding statistical noise to re-
sults, it introduces a significant computational overhead, creating its own trade-off between privacy and
performance.

Encryption
The goal of any encryption scheme is to transform a readable message, known as a plaintext (denoted
bym), into an unreadable ciphertext (denoted by c). This transformation is performed by an encryption
algorithm (enc), and the reverse process is handled by a decryption algorithm (dec). The security
of these operations relies on a piece of secret information known as a key. At the core of modern
cryptography are two fundamental approaches to encryption.

The first approach, symmetric encryption, uses a single, shared secret key (denoted by k) for both
encrypting and decrypting a message. Formally, this is expressed as c = enck (m) for encryption, and
m = deck(c) for decryption. The primary advantage of this method is its computational speed. However,
its main drawback is the need for a secure channel through which all communicating parties can first
agree on the shared key k.

The second approach, asymmetric encryption (also known as public-key cryptography), was intro-
duced by Diffie and Hellman [31] to solve this key distribution problem. It uses a pair of mathematically
linked keys: a public key (pk) that can be shared openly with anyone, and a corresponding secret key
(sk) that is kept secret by its owner. The public key is used for encryption (c = encpk (m)), but only
the holder of the secret key can perform the decryption (m = decsk(c)). This eliminates the need for a
pre-shared secret, as anyone can encrypt a message for the intended recipient using their public key,
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confident that only the recipient can decrypt it.

Homomorphic Encryption
Standard encryption schemes are rigid; once data is encrypted, it cannot be meaningfully manipu-
lated. Homomorphic Encryption (HE) overcomes this limitation by enabling computation directly on
encrypted data [32]. An encryption scheme is considered homomorphic for a given operation if it is pos-
sible to process ciphertexts in a way that obtains a new ciphertext that, when decrypted, matches the
result of applying that same operation to the original plaintexts. For example, an encryption scheme
is considered additively homomorphic if for two messages m1 and m2, their sum (m1 + m2) can be
directly computed given their individual encryptions:

encpk (m1)⊕ encpk (m2) = encpk (m1 +m2) , (2.14)

where ⊕ represents the homomorphic addition operation performed on the ciphertexts.

A prominent example is the Paillier cryptosystem, whose security relies on the difficulty of factoring
large numbers [33]. Key generation involves selecting two large primes p and q, computing n = p · q as
the public modulus, and choosing a base g (commonly n+1). The public key is (n, g), while the secret
key consists of the prime factors p and q.

The Paillier cryptosystem operates on messages from the message space Zn. To encrypt a message
m < n, a random value r ∈ Z∗

n2 is chosen and the ciphertext is computed as c = gm · rn (mod n2).
Decryption computes:

m =
L(cλ mod n2)

L(gλ mod n2)
mod n (2.15)

where λ = lcm(p − 1, q − 1) is the least common multiple of (p1) and (q1), and the function L(x) is
defined as L(x) = (x1)/n.

The generalization of this concept is Fully Homomorphic Encryption (FHE), supporting both addition
and multiplication operations on encrypted data. This capability is powerful, as it enables the evaluation
of any arbitrary function on a ciphertext [34], making it theoretically possible to securely outsource any
computation to an untrusted environment.

The first fully homomorphic encryption (FHE) scheme, a significant theoretical breakthrough, was in-
troduced by Gentry in 2009 and was based on ideal lattices [34]. Despite its importance, this initial
construction proved too inefficient for practical applications. A major advancement toward practical
FHE came in 2012 with schemes founded on the Ring Learning With Errors (RLWE) problem [35]. By
operating over polynomial rings, these schemes achieved substantial efficiency gains [36].

Subsequent research has yielded several significant RLWE-based variants. The Brakerski-Gentry-
Vaikuntanathan (BGV) [37] and Brakerski/Fan-Vercauteren (BFV) [36], [38] schemes are particularly
well-suited for exact integer arithmetic. In contrast, the Cheon-Kim-Kim-Song (CKKS) scheme is opti-
mized for approximate arithmetic on real or complex numbers, making it highly effective for applications
such as machine learning [39]. More recent developments, including Torus FHE (TFHE), have focused
on further optimizing performance for specific operations like bootstrapping [40]. This ongoing research
continues to enhance the practicality of FHE for deployment in real-world systems.

Data Packing
A key challenge in using HE is that security parameters often require very large ciphertexts, regardless
of the size of the underlying message. Encrypting every 32-bit value in a separate ciphertext would
be highly inefficient. Data packing is a critical optimization that addresses this by encoding multiple
plaintext values into a single large ciphertext. In RLWE-based FHE, this is achieved through the poly-
nomial structure: the coefficients of a single plaintext polynomial (m0,m1, . . . ,mN−1) can represent
a vector of many individual messages. Homomorphic operations (like addition or multiplication) then
act on all these messages simultaneously in a SIMD (Single Instruction, Multiple Data) fashion. For
matrix factorization protocols, as demonstrated by Kim, Kim, Koo, et al. [24], this technique allows an
entire vector of user ratings or item features to be packed into one ciphertext, dramatically reducing the
number of ciphertexts and the overall computational complexity.
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2.2.3. Secure Computation Outsourcing via Data Masking
While FHE is theoretically capable of any computation, some operations remain prohibitively expensive
or complex to execute homomorphically. In such cases, a hybrid approach combining HE with a secure
interactive protocol can be employed. This allows a client to securely ”outsource” a difficult computation
to a server holding the secret key, without revealing any underlying data.

Consider a scenario involving two parties:

• Party A (Data Owner) has the encryption of the original sensitive data x, denoted by encpk (x),
which is encrypted under the HE public key pk. Party A wants to obtain encpk (y), where y = f(x)
for some function f . Performing f homomorphically is computationally expensive.

• Party B (Computation Server): Possesses the HE secret key sk corresponding to pk, and thus
can perform decryption decsk(·). Party B has the computational resources to execute the function
f efficiently on plaintext data. Party A trusts B to execute f correctly but does not want B to learn
the value of x.

The goal of the interaction is for Party A to obtain an encryption of the result, encpk (y) (with y = f(x)),
using Party B’s ability to compute f in plaintext, while ensuring that Party B never gains knowledge of
the original data x.

The following procedure is detailed for an additive HE scheme. However, the underlying principle of
this data masking interaction is more general: it is applicable with any HE scheme provided that the
employed masking strategy ensures the target function f can be decomposed. This decomposability
allows the data owner to separate the effect of the function on the original data from its effect on the
mask (see more at item 7 - unmasking step).

1. Masking (Party A): Party A generates a secret random mask σ from an appropriate domain.
Then, using the homomorphic properties of the HE scheme, A computes a masked ciphertext

encpk (x
∗) := encpk (x)⊕ encpk (σ) = encpk (x+ σ) (2.16)

2. Send to Server (Party A → B): Party A sends the masked ciphertext encpk (x∗) to Party B.
3. Decrypt Masked Data (Party B): Party B uses its secret key sk to decrypt the received ciphertext,

obtaining
x∗ = decsk(encpk (x

∗)) = decsk(encpk (x+ σ)) = x+ σ. (2.17)

Crucially, since Party B does not know the random mask σ chosen solely by Party A, it cannot
obtain the original value x from the decrypted masked value x∗ = x+ σ.

4. Compute on Masked Data (Party B): Party B applies the desired function f to the plaintext
masked data:

y∗ := f(x∗) = f(x+ σ). (2.18)

5. Re-encrypt Result (Party B): Party B encrypts the result using the public key pk, obtaining
encpk (y

∗).
6. Send Result Back (Party B → A): Party B sends encpk (y

∗) to Party A.
7. Unmasking (Party A): Party A receives encpk (y

∗). To obtain the desired result encpk (y)—an
encryption of y = f(x)—the effect of the mask σ introduced in Step 1 needs to be removed. This
step requires that this effect in f is separable from the result of the function without knowing the
secret value x. In other words, f(x+ σ) should be decomposable as:

f(x+ σ) = f(x) + fσ, (2.19)

where fσ is a function of σ that does not depend on x, and this decomposition should be known
to Party A, meaning that they have a method to determine the value of fσ. For instance, if f
is an affine function such that f(x) = ax + b, the decomposition is straightforward: f(x + σ) =
a(x + σ) + b = (ax + b) + aσ = f(x) + fσ, where Party A can easily compute the mask’s
effect fσ = aσ since it knows both the function parameter a and its own secret mask σ. This
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decomposition is not possible for all functions. For example, a non-linear function like f(x) = x2

results in f(x+σ) = (x+σ)2 = x2+2xσ+σ2. Since Party A cannot compute the cross-term 2xσ
without knowing x, this function cannot be evaluated with this simple additive masking protocol.

Then the desired value of encpk (f(x)) can be obtained by homomorphically adding the negation
of fσ to the received encpk (y

∗):

encpk (y
∗)⊕ encpk (−fσ) = encpk (f(x+ σ))⊕ encpk (−fσ)

= encpk (f(x) + fσ)⊕ encpk (−fσ)
= encpk (f(x) + fσ − fσ)

= encpk (f(x))

= encpk (y)

(2.20)

2.2.4. Fixed-Point Arithmetic
Homomorphic encryption schemes operate on plaintext spaces of integers (e.g., ZN or polynomial
rings), whereas the matrix factorization model requires arithmetic on real numbers. To resolve this,
we use fixed-point arithmetic, which represents real numbers as scaled integers. A real number x is
encoded as x by expressing it in a binary representation, scaling it with a precision factor 2α, and taking
the floor:

x = ⌊x · 2α⌋ (2.21)

This is analogous to representing monetary values like €1.23 as 123 cents to avoid decimal points. To
recover the approximate real value, the process is reversed: x ≈ x/2α.

Arithmetic on these encoded values requires careful management of the scale. Addition and subtraction
are direct, as the scale is preserved: x±y ≈ x± y. However, multiplication and division alter the scale.

When multiplying two fixed-point numbers, their scales multiply, requiring a correction.

x · y ≈ (x · 2α) · (y · 2α) = (x · y) · 22α (2.22)

To return to the original scale of 2α, the result must be divided by the scaling factor. This is known as
rescaling.

x · y =

⌊
x · y
2α

⌋
(2.23)

This rescaling step via division inherently involves a truncation or rounding, which can introduce a small
precision error in the computation.

In contrast, division requires pre-scaling to maintain precision. To compute x/y, the numerator (x) must
be scaled by 2α before being divided by the encoded denominator (y). This ensures both the proper
scaling and the numerical accuracy of the division result.

x/y ≈
⌊
x

y
· 2α
⌋
=

⌊
(x · 2α)
y · 2α

· 2α
⌋
≈
⌊
x

y
· 2α
⌋

(2.24)

Thus, computations in the encrypted domain must carefully track and adjust the scaling factor to ensure
the correctness of the final result. The choice of α balances precision with the computational constraints
of the cryptosystem.
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Related Work

3.1. Privacy-Preserving Recommender Systems
Privacy concerns in recommender systems have become a critical research focus as these systems
increasingly rely on sensitive user data to generate personalized recommendations. Even anonymized
rating datasets can be re-identified by linking themwith auxiliary information [18], while temporal changes
in public outputs may reveal user transactions Calandrino, Kilzer, Narayanan, et al. [41]. Moreover, ma-
trix factorization (MF) representations can leak private attributes through inference on user/item vectors,
even without direct access to raw ratings Resheff, Elazar, Shahar, et al. [42]. In response, the field has
evolved from ad hoc perturbation techniques to formal differential privacy (DP), and—when the server
is untrusted—to local DP and cryptographic approaches.

3.1.1. Randomization-Based Approaches
Early work by Polat and Wenliang Du [43] proposed adding randomized noise to user ratings before
sharing them with the service. This demonstrated the fundamental utility-privacy trade-off: higher noise
protects privacy but hurts recommendation quality (shown on neighborhood-based CF). This approach
was later formalized with the introduction of differential privacy [44].

Central differential privacy (trusted server). In the central model, a trusted server collects raw
ratings and adds calibrated noise during the aggregation/learning phase. A notable study by McSherry
and Mironov [20] adapted both neighborhood (item-item) and factor (SVD-like) approaches by injecting
noise into the final covariance and weight matrices. The released statistics and models then satisfy
ε-DP (Laplace) or (ε, δ)-DP (Gaussian) under standard composition. This protects against inferences
from the published outputs while requiring trust in the server to hold raw data. This approach additionally
introduces an accuracy–privacy trade-off relative to plaintext training McSherry and Mironov [20].

Local differential privacy (untrusted server). When the server cannot be trusted, the ratings sub-
mitted by the users should be protected. Shin, Kim, Shin, et al. [45] applied local DP to MF: each user
adds noise to their contributions before the upload. Local DP strengthens the threat model but typically
incurs larger utility loss; dimensionality reduction and tailored noise partially mitigate this gap [45].

Despite these advancements in models and mechanisms, a fundamental tension persists: enhancing
privacy through the injection of noise impacts the precision of the underlying data and, consequently,
the recommendation accuracy. Therefore, the core challenge in this domain remains the effective
management of this inherent privacy-utility trade-off.

3.1.2. Federated Learning Approaches
The emergence of federated learning has introduced alternative paradigms for privacy-preserving rec-
ommender systems. Chai, Wang, Chen, et al. [46] and Ammad-ud-din, Ivannikova, Khan, et al. [47]
explored federated matrix factorization approaches where users maintain local models and only share

13
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model updates. However, [48], [49] and [50] demonstrated various attacks that could recover original
data by observing exposed model updates, requiring additional privacy protection mechanisms. Xu,
Chu, and Song [51] demonstrated that this attack could be prevented by adding differential privacy
mechanisms that protect exposed information. Although accuracy is better than simply using DP, this
approach reintroduces the privacy-utility trade-off that federated learning approaches sought to elimi-
nate.

3.1.3. Cryptography-Based Approaches
While FL reduces reliance on a central data holder, it still leaves model updates vulnerable to inference.
Cryptographic approaches instead aim to remove trust in the server entirely by ensuring that all compu-
tations occur over encrypted data. Within this field, research has generally followed two distinct tracks:
securing neighborhood-based models and securing matrix factorization models.

One major line of research has focused on applying cryptography to neighborhood-based collaborative
filtering. Foundational work by Canny [52], [53] utilized homomorphic encryption for this purpose, but
these early protocols incurred prohibitive computational and communication overhead. Erkin et al. later
introduced more efficient versions [54], [55], although they initially relied on active user participation.
A subsequent, more robust design eliminated the need for user-provider communication, albeit at the
cost of slower performance [56]. This area continues to be an active field of research, as the rela-
tive simplicity of neighborhood-based calculations makes them a practical target for newer and more
efficient cryptographic primitives.

A separate research thrust has aimed to secure matrix factorization (MF) models, which are known for
their high accuracy in non-private settings [25]. Nikolaenko et al. [23] pioneered this direction with a
protocol combining garbled circuits and homomorphic encryption. While comprehensive, its immense
computational cost made it impractical. Kim et al. [24] achieved a critical 50-fold performance increase
through innovative data packing and the use of a non-colluding crypto-service provider. However, de-
spite these improvements, the intrinsic complexity and high overhead of secure matrix factorization
have remained significant challenges, leading to less research activity in this specific area in recent
years. Furthermore, a notable research gap exists within these protocols, as to date, none incorporate
user biases or the global mean—standard components for maximizing the accuracy of their non-private
counterparts.

3.2. Privacy in the Educational Context
The deployment of data-driven systems in education introduces a unique set of challenges that go
beyond the technical implementation of recommendation algorithms. Experts have identified “data
privacy” as the most critical factor for establishing trust and quality in Learning Analytics [57].

3.2.1. The Digital Revolution in Education: A Double-Edged Sword
Modern higher education has undergone a significant digital transformation, creating a rich ecosystem
of Educational Technology (EdTech) that manages nearly every aspect of academic life [5]. This digi-
talization has opened the door for institutions to take advantage of large amounts of student data, such
as predicting academic performance [58], identifying students at risk of dropping out [59], predicting
academic behavior [60] and even detecting cheating in online assessments [61], [62].

However, this increased data collection creates a double-edged sword. The complexity of the EdTech
ecosystem, which often involves numerous third-party vendors, introduces significant security vulnera-
bilities. High-profile data breaches, such as the compromise of theMOVEit file transfer tool that affected
hundreds of schools, have exposed the sensitive personal data of countless students, including names,
dates of birth, and even Social Security numbers [63]. The consequences of such breaches can be
devastating for the individuals involved [9]. This establishes a clear and present danger that motivates
the search for more secure data-handling paradigms.

3.2.2. Privacy Harms
Reidenberg and Schaub [64] identify harms arising from excessive information collection and process-
ing, which can lead to student identification, profiling, and surveillance. Even though the technology
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might provide additional support for students, it might increase the performance-related stress if not
implemented appropriately [64].

A common defense offered by institutions is the anonymization of datasets before processing or release.
However, research has demonstrated that anonymization is an insufficient safeguard. For instance,
Yacobson, Hershkovitz, Fuhrman, et al. [65] showed that patterns in de-identified student log data
could be used to re-identify physical classes and schools with the help of publicly available information.
Similarly, Chen, Davis, Lin, et al. [66] were able to successfully re-identify 42% of learners in a dataset
by linking it with data from social media. These studies prove that simply stripping direct identifiers from
a dataset does not guarantee privacy, necessitating a move toward more robust technical protections.

3.2.3. Obligation to Know vs. The Right to Privacy
The challenge of student privacy is not merely technical but is rooted in a deep ethical conflict. On
one hand, institutions may have an obligation of knowing [67]. This perspective argues that it could
be considered unethical not to use available data to intervene and support a student who is on a likely
path to academic failure. This duty of care creates a powerful incentive to analyze student data.

On the other hand, this obligation clashes directly with fundamental principles of student privacy and
autonomy [68], [69]. The core of this conflict is captured by a series of unresolved questions regarding
data ownership, access rights, and security [70]. This is even more relevant when processing student
demographic information. Research by Paquette, Li, Baker, et al. [71] found that 15% of recent pub-
lications in educational data mining used demographic variables. While this can improve predictive
accuracy, it risks introducing and amplifying societal biases, potentially steering students away from
certain pathways based on their background rather than their individual merit.

3.2.4. Mitigation Strategies
In response to these challenges, researchers and practitioners have proposed various mitigation strate-
gies, which can be broadly categorized as policy-based and data-level interventions.

Policy-based approaches focus on establishing frameworks for trust and governance. For example,
Drachsler and Greller [72] provided an eight-point checklist for trusted Learning Analytics, while Rei-
denberg and Schaub [64] proposed policy recommendations for building privacy and accountability into
educational technologies. While essential, these frameworks are not technical guarantees; their effec-
tiveness hinges on the faithful and correct implementation by all parties, ultimately relying on a model
of trust.

Data-level interventions attempt to apply technical fixes directly to the data. Many researchers advocate
for a strict data-minimization principle [5], [73]. Others have proposed technical redaction methods to
automatically remove private information from unstructured data like forum posts [74]. The limitation
of these approaches is that they often force a direct trade-off between privacy and utility; minimizing
or redacting data inherently reduces its richness and can degrade the performance of the models that
rely on it.

3.2.5. The Need for Privacy by Design
The existing landscape of solutions reveals a critical gap. Policy-based solutions rely on trust, which
can be breached, while data-level interventions often sacrifice model accuracy for privacy. This thesis
argues that this trade-off is a limitation of the current toolkit and can be avoided. The path forward
is to embrace the principle of Privacy by Design [75], embedding privacy protections directly into the
architecture of the system itself.

This leads directly to the cryptographic approaches at the core of this thesis. By leveraging techniques
like homomorphic encryption, as explored in the work of Kim, Kim, Koo, et al. [24] and extended here,
it becomes possible to perform complex computations—such as training a matrix factorization model—
directly on encrypted data. This paradigm is fundamentally different: it does not require trusting the
service provider with raw data, nor does it require degrading the data’s integrity. It resolves the core
conflict by enabling the use of student data for their benefit while ensuring their privacy is mathematically
guaranteed, not just policy-protected.



4
Privacy-Preserving Matrix
Factorization by Kim et al.

We describe a privacy-preserving matrix factorization algorithm proposed by Kim, Kim, Koo, et al. [24].
This is a cryptography-based algorithm for performing matrix factorization while preserving user pri-
vacy. This research addressed computational bottlenecks associated with cryptographic primitives
and improves on a privacy-preserving matrix factorization algorithm proposed by Nikolaenko, Ioanni-
dis, Weinsberg, et al. [23]. The primary contributions are a novel cryptographic protocol that introduces
an additional, non-colluding party—the Crypto-Service-Provider (CSP)—and a ”Data Packing” method
that combines multiple computations into a single cryptographic operation.

The core idea of the algorithm is to allow the Recommender System (RecSys) to learn the user and
item profiles ui and vj for each user i and each item j, so that the prediction of the rating that user i
would give to item j, r̂ij can be estimated as uT

i vj . Unlike the standard matrix factorization, which is
explained in section 2.1, all computations, including user ratings and profile vectors, are performed on
encrypted data, preventing RecSys from directly accessing this information. The authors note that this
could be achieved by naively replacing every arithmetic operation in the standard matrix factorization
algorithm by its homomorphic equivalent. However, this would be very inefficient.

This protocol differentiates itself from this naive approach through two key innovations with the aim of
improving efficiency:

1. Data packing: instead of performing all computations independently, combining multiple variables
into the same array and performing computations on the array increases the efficiency.

2. CSP interaction with data masking: RecSys masks sensitive data before sending it to the CSP.
The CSP can then operate on this masked data in the plaintext domain, which is significantly
more efficient than performing the equivalent operations on encrypted data.

With these improvements, the authors report a speed improvement of 50 times over Nikolaenko, Ioan-
nidis, Weinsberg, et al. [23], who used Garbled Circuits [76] and Additive Homomorphic Encryption to
perform privacy-preserving matrix factorization.

4.1. Nomenclature
The protocol described in this chapter employs a range of variables, from standard matrix factorization
parameters to specialized data structures for cryptographic computation. To ensure clarity, this section
provides a systematic overview of the notation used.

4.1.1. Notational Conventions
The notation follows a set of conventions to distinguish between different forms of a variable:

16
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• Typeface: Scalars and set-related identifiers are written in a normal font (e.g., rij , M ), while
vectors are denoted by boldface letters (e.g., ui, U).

• Fixed-Point Representation (x): As cryptographic operations are performed on integers, real
numbers are converted to a fixed-point representation. A variable with a bar, such as x, denotes
the fixed-point version of the real number x. With a precision parameter α, this is defined as
x = ⌊x · 2α⌋. For brevity, the bar may be omitted where the context makes the representation
clear.

• Packed Vectors (U,V, . . . ): To optimize performance, the algorithm ”packs” multiple individual
data items (like all user profile vectors associated with the ratings inM) into single, large vectors.
These are denoted by bold, uppercase letters like U, V, Û, and V̂. Their precise structure is
detailed in section 4.2.

• Masked Variables (x∗): To securely delegate computation, RecSys masks data before sending
it to the CSP.

– A variable in a masked state is denoted with a ‘∗‘ superscript (e.g., x∗).
– The random value used for masking is generally denoted by σ.
– After the CSP performs computations on a masked variable, the term representing the effect
of the random value on the mask is denoted by fσ.

This notation represents the core principle of the data masking interaction detailed in subsec-
tion 2.2.3.

• Iteration-Dependent Variables (X(k)): The Learning Phase is an iterative process. Variables
that are updated in each iteration (or epoch) are indexed by the iteration number k in parentheses,
such as U(k), which represents the user profile matrix at the end of iteration k. The initial state
is denoted by k = 0.

• Encryption and Decryption: The general form for encryption is encpk (m), signifying the encryp-
tion of messagem with public key pk. For simplicity, the shorthands enc (·) and dec (·) are used to
denote encryption with the FHE public key and decryption with the FHE secret key, respectively.
The specific keys and functions are detailed in the table below.

• Element-Wise Multiplication (⊙): The symbol⊙ denotes the element-wise (Hadamard) product.
For two vectors a and b of the same dimension, the resulting vector c = a ⊙ b is defined by
ci = aibi.

4.1.2. Table of Variables
The following table lists all variables used in the protocol, grouped by their function.

Symbol Description Type / Domain
1. General and System Parameters

n,m The total number of users and items. N
d The dimension of the latent feature vectors. N
[n], [m] The set of indices for all users {1, . . . , n} and items

{1, . . . ,m}.
Set

M The set of user-item pairs (i, j) for which a rating exists. ⊆ [n]× [m]
M The total number of known ratings, M = |M|. N
γ The learning rate for stochastic gradient descent. R+

λ Regularization hyperparameter. R+

ωU, ωV Convergence thresholds for the sum of squared gradi-
ents of user and item profiles, respectively.

R+

α, β Bit precision parameters for fixed-point representation. α
is for ratings/profiles, β for the learning rate γ.

N

2. Cryptographic Elements
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Symbol Description Type / Domain

pkAHE, skAHE Public and secret keys for the Additive Homomorphic En-
cryption (AHE) scheme.

AHE Key Pair

pkHE, skHE Public and secret keys for the Fully Homomorphic En-
cryption (FHE) scheme.

FHE Key Pair

encpkAHE (·) , decskAHE(·) Encryption and decryption functions for AHE scheme. Function
enc (·) , dec (·) Shorthand for encpkHE (·) and encskHE (·) denoting encryp-

tion and decryption functions for FHE scheme.
Function

3. Standard Matrix Factorization Variables
rij The rating given by user i to item j. R
rij The fixed-point representation of the rating rij . Z
ui,vj Latent feature vectors for user i and item j. Rd

ui,vj Fixed-point representations of the latent vectors. Zd

r̂ij The predicted rating, computed as ⟨ui,vj⟩. R
eij The prediction error for rating (i, j), i.e.,

⟨ui(k − 1),vj(k − 1)⟩ − rij .
Z

4. Packed Data Vectors (Plaintext)

U(k) Packed user profiles: concatenation of ui(k) for all
(i, j) ∈M.

ZdM

V(k) Packed item profiles: concatenation of vj(k) for all
(i, j) ∈M.

ZdM

Û(k) Packed ”first occurrence” user profiles. Contains ui(k)
only for the first appearance of user i inM; 0d otherwise.

ZdM

V̂(k) Packed ”first occurrence” item profiles. Contains vj(k)
only for the first appearance of item j inM; 0d otherwise.

ZdM

r Packed rating vector where each d-dimensional block
corresponding to (i, j) ∈M is (−rij , 0, . . . , 0).

ZdM

E(k − 1) Packed error vector where each d-dimensional block cor-
responding to (i, j) ∈M is filled with the error eij(k− 1).

ZdM

E′(k − 1) Intermediate result in error calculation: U(k−1)⊙V(k−
1) + 2αr.

ZdM

∇′
U(k), ∇′

V(k) Packed vectors representing the scaled gradients for all
user/item profiles before aggregation.

ZdM

U′(k), V′(k) Packed vectors for the updated user/item profiles, before
aggregation and final scaling.

ZdM

∇Uagg(k), ∇Vagg(k) Aggregated gradient vectors, where all gradient contribu-
tions for a single user/item have been summed.

Zdn,Zdm

5. Masking and Unmasking Variables
σij ,σ(k − 1),σU(k), . . . General notation for random masks generated by Rec-

Sys to hide data before delegating computation to the
CSP. The subscript indicates the variable being masked.

Varies
(Z,ZdM , . . . )

fσ, fσ(k − 1), fσU
, . . . General notation for unmasking terms computed by Rec-

Sys. An fσ term is used to remove the effect of a corre-
sponding σ mask after the CSP’s computation.

Varies
(ZdM ,Zdn, . . . )

x∗ General notation for a variable x in its masked state (e.g.,
r∗). This is the form of data sent to the CSP for plaintext
computation after being additively masked with a corre-
sponding σ term.

(Domain of x)

6. Convergence Check Variables
∇2

U,∇2
V Element-wise squares of the aggregated gradient vec-

tors ∇Uagg(k) and ∇Vagg(k).
Zdn,Zdm
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Symbol Description Type / Domain
σ∇2

U
,σ∇2

V
Random vectors used to mask the squared gradients be-
fore sending to the CSP for the convergence check.

Zdn,Zdm

Σσ
U,Σσ

V Sum of the elements of a mask vector (σ∇2
U
or σ∇2

V
). Z

sU , sV Plaintext scalars sent to the CSP. Combines a conver-
gence threshold (ω) with the sum of a mask’s elements
(Σσ) for secure comparison.

Z

s′U , s
′
V Plaintext scalars computed by the CSP. Represents the

sum of all elements in a masked squared gradient vector.
Z

bU , bV Boolean flags indicating whether the convergence crite-
ria for user and item profiles have been met.

Boolean

4.2. System Model and Security Assumptions
The system consists of three types of parties: users, the recommender system (RecSys), and the
Crypto-Service Provider (CSP). The description, goals and tasks of these parties are summarized in
Table 4.2.

Table 4.2: Roles, goals and tasks of each party in the algorithm developed by Kim, Kim, Koo, et al. [24]

Party Description Goals Tasks
User i End-user who rates

items and wishes to
receive
recommendations

Obtain accurate
personalized
recommendations
while keeping the
ratings private

Encrypt and upload
ratings, receive and
decrypt the results

Recommender
System (RecSys)

Service that
orchestrates the
protocol

Produce
recommendations for
users

Receive the encrypted
ratings, run matrix
factorization with the
CSP, and return
encrypted predictions
to users

Crypto-Service
Provider (CSP)

A trusted third party
that stores
cryptographic keys

Protect secret keys
and assist RecSys
without learning raw
data

Generate and manage
cryptographic keys,
and assist RecSys by
performing specified
computations on
masked data

The adversarial model adopted in this protocol is honest-but-curious, meaning that all parties are as-
sumed to follow the protocol steps accurately, but might try to infer additional sensitive information from
the data they observe during the execution. The protocol’s goal is then to ensure that no party can gain
any valuable information from these observations.

Each party in the algorithm has a different privacy goal:

• Users wish to keep their ratings (rij) and derived profiles (ui) private from all other parties. Fur-
thermore, item profiles (vj) must also be protected. An adversary with access to item profiles
could infer a user’s preferences for certain items, especially if they possess side-channel infor-
mation about that user.

• Recommender System wishes to protect their tuning parameters from users and the CSP; these
parameters are proprietary know-how, developed using significant resources, and must be pro-
tected from competitors. Furthermore, RecSys aims to protect the user and item profiles from
unauthorized access, as their exposure could create significant attack vectors and compromise
user privacy.
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• CSP is assumed to be a public or governmental entity, therefore its main goal is to protect its
reputation. To maintain its reputation, it needs to securely store the secret keys and perform the
computations correctly on the masked data they receive.

The privacy assumption is that RecSys and CSP do not collude, meaning that they do not share any
sensitive information among themselves. The user privacy could be breached if CSP shares the secret
keys with RecSys, this would allow all user-submitted encrypted ratings to be decrypted into plaintext,
breaching the privacy goal of the users. Similarly, if RecSys were to share the values used during the
masking phase with the CSP, it would be easy to recover the original user ratings, again breaching the
user privacy goals. The authors explain that this is a realistic assumption, since in practice, the CSP
would be a public or governmental entity valuing its reputation.

4.2.1. Data Packing in Kim et al
The data structures developed for matrix factorization in Kim, Kim, Koo, et al. [24] are as follows.

First, we assume that all users and all items have some universally accepted ordering, for example,
their index in increasing order.

The setM = {(i, j) | user i rated item j} contains all the user-item index pairs for which there is a
known rating. WhileM is a set, for the purpose of defining indices and in contexts requiring a specific
sequence in this section, we will consider its elements to be arranged in a fixed canonical order: first
by user index i, and then by item index j. Thus, where order is relevant,M should be understood as
representing this specific ordered list of pairs. Let M = |M| be the total number of known ratings. In
the following definitions, ∥ denotes vector concatenation, and 0d denotes a d-dimensional zero vector.

GivenM, four different vectors are defined:

• User Profiles: U := ∥(i,j)∈Mui, where ui is the d-dimensional profile vector for user i. The
resulting vector has dimension dM .

• Item Profiles: V := ∥(i,j)∈Mvj , where vj is the d-dimensional profile vector for item j. The
resulting vector has dimension dM .

• Packed ”First Occurrence” User Profiles: Û := ∥(i,j)∈Mûi, where ûi = ui if the user index i
(from the pair (i, j) ∈ M) is encountered for the first time in the canonical ordering ofM. Other-
wise, ûi = 0d. This structure is useful for adding values, which need to be applied only once for
each unique user (more details are provided in later sections).

• Packed ”First Occurrence” Item Profiles: V̂ := ∥(i,j)∈Mv̂j , where v̂j = vj if the item index
j (from the pair (i, j) ∈ M) is encountered for the first time in the canonical ordering of M.
Otherwise, v̂j = 0d. This structure is similarly useful for item-specific values.

The packed vector of ratings is defined as follows:

• Ratings: r = ∥(i,j)∈M(−rij , 0, . . . , 0). Each rating rij is converted to fixed point representation
rij , negated, and padded with d − 1 zeros to form a d-dimensional block. These blocks are
concatenated to obtain the final vector containing all ratings r with dimension dM .

This data packing scheme from Kim, Kim, Koo, et al. [24] defines specialized vector representations
for user profiles, item profiles, and ratings used in the privacy-preserving matrix factorization algorithm.
These elements allow for efficient data management in the cryptographic protocol, increasing its com-
putational and memory efficiency.

4.3. Protocol Phases
The protocol proceeds in four distinct phases: Setup, Rating Upload, Learning, and Recommendation.

4.3.1. Setup Phase
During the setup phase, the keys and public parameters are distributed.

(1) CSP generates the keys (pkAHE, skAHE) and (pkHE, skHE). Securely stores the secret keys skAHE, skHE.
Makes the public keys pkAHE, pkHE available to RecSys and Users as needed.
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(2) RecSys determines and publishes public parameters (d, n,m, α, β). Chooses its private tuning
parameters (λ, γ) and convergence thresholds: ωU and ωV. RecSys converts its private tuning
parameters to fixed-point representation: λ with precision α, and γ with precision β.

(3) Users obtain the public key pkAHE.

4.3.2. Rating Upload Phase
In this phase, users securely submit their ratings to RecSys. RecSys, in collaboration with the CSP,
processes these submissions to obtain an FHE encryption of the packed rating vector, enc (r). Additive
Homomorphic Encryption (AHE) is used for the initial rating submission and masking, after which the
data is converted to an FHE-encrypted format suitable for the Learning Phase.

(4) r(user i
′ set)

(5) r(all rating set)∗

(6)
enc (r∗)

User i′ RecSys CSP

enc (r)

(7)

Figure 4.1: The communication flow for the Rating Upload Phase.

Explanation:

(4) Each user i′ first converts their ratings ri′j into a fixed point representation ri′j for all items j
they have rated (i.e., for which (i′, j) ∈ M). Then these ratings are encrypted using pkAHE and
placed in a set of triplets, each containing the user ID (i′), the item ID (j), and the corresponding
encrypted rating (encpkAHE (ri′j)). This set, formally

r(user i
′ set) := {(i′, j, encpkAHE (ri′j)) : (i

′, j) ∈M}, (4.1)

is then sent to RecSys.
(5) RecSys collects all encrypted user ratings. For each user-item pair (i, j) ∈ M, they generate a

random mask σij ∈ Z. This mask is encrypted with pkAHE, and added to each encrypted rating
encpkAHE (rij) using the additive property of AHE. The updated collections of triplets are then joined
into one set, formally

r(all rating set)∗ := {(i, j, encpkAHE (rij + σij)) : (i, j) ∈M}, (4.2)

which is then forwarded to the CSP.
(6) CSP receives r(all rating set)∗. They decrypt all masked ratings using the secret key skAHE, obtaining

a set of triplets {(i, j, rij + σij) : (i, j) ∈M}.

The masked ratings are sorted, negated, and combined to obtain a packed dM -dimensional vec-
tor:

r∗ := (∥(i,j∈M)(

d︷ ︸︸ ︷
−rij − σij , 0, . . . , 0)). (4.3)

This vector, containing all user ratings, is in the format that is required for the future protocol;
however, the user ratings are still masked. The array is encrypted using the public key pkHE, and
the encryption enc (r∗) is sent to RecSys, which will unmask the ratings, obtaining the encryption
of r in the next step.
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(7) RecSys must now remove the effect of its random masks σij from the encrypted vector. The
influence can be computed as:

fσ := (∥(i,j∈M)(

d︷ ︸︸ ︷
−σij , 0, . . . , 0)). (4.4)

To obtain the final packed rating vector r, fσ is negated, encrypted, and added to the received
array using the additive property of HE.

enc (r∗)⊕ enc (−fσ) (4.5)

=enc

(∥(i,j∈M)(

d︷ ︸︸ ︷
−rij − σij , 0, . . . , 0))− (∥(i,j∈M)(

d︷ ︸︸ ︷
−σij , 0, . . . , 0))

 (4.6)

=enc

(
(∥(i,j∈M)(

︷︸︸︷
−rij , 0, . . . , 0

)d

)) (4.7)

=enc (r) (4.8)

Thus, the Rating Upload phase concludes with RecSys obtaining the FHE-encrypted packed rating
vector, enc (r). Using AHE-based encryption and a collaborative masking protocol with the CSP, all
submitted ratings are now securely aggregated and formatted within this single ciphertext, ready for
the privacy-preserving computations of the Learning Phase.

4.3.3. Learning Phase
The goal of the Learning Phase is to construct the user and item profiles ui and vj for each user i ∈ [n]
and item j ∈ [m]. This is achieved by starting with random profiles and iteratively refining them using
stochastic gradient descent. This phase begins with RecSys initializing, packing, and encrypting these
profiles in Step (8). The values of these profiles remain hidden (either encrypted or masked) throughout
the remainder of the Learning Phase.

After the packed vector initialization in Step (8), RecSys, in collaboration with the CSP, performs gra-
dient descent computations using homomorphic encryption and data masking. This is an iterative
process with steps (9)-(20) being repeated until the stopping criterion is met (see step (20)).

To describe the changes in the packed data vectors after each iteration, we use U(k), V(k), Û(k),
and V̂(k) representing their corresponding vectors U, V, Û, and V̂ after the k-th round, where k = 0
denotes the initial vectors generated by RecSys. Furthermore, during the Learning Phase only the
FHE keys are being used: pkHE for encryption and skHE for decryption. To maintain simplicity, we will
denote encryption as enc (·) and decryption as dec (·), rather than their more explicit forms encpkHE (·)
and decskHE(·).

(8) RecSys generates the initial profile vectors ui(0) ∈ Rd for each user i ∈ [n] and vj(0) ∈ Rd

for each item j ∈ [m]. These are sampled as random d-dimensional ℓ2-norm vectors. RecSys
converts these vectors to fixed point representation ui(0) and vj(0) accordingly, and constructs
the four initial packed vectors:

– User profiles: U(0) := ∥(i,j)∈Mui(0),
– Item profiles: V(0) := ∥(i,j)∈Mvj(0).

– Packed ”First Occurrence” User Profiles: Û(0) := ∥(i,j)∈Mûi(0), where ûi(0) = ui(0) if
the user index i (from the pair (i, j) ∈ M) is encountered for the first time in the canonical
ordering ofM. Otherwise, ûi(0) = 0d.

– Packed ”First Occurrence” Item Profiles: V̂(0) := ∥(i,j)∈Mv̂j(0), where v̂j(0) = vj(0) if
the item index j (from the pair (i, j) ∈ M) is encountered for the first time in the canonical
ordering ofM. Otherwise, v̂j(0) = 0d.

RecSys then encrypts all vectors, obtaining enc (U(0)), enc (V(0)), enc
(
Û(0)

)
, and enc

(
V̂(0)

)
.
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GradientDescent
(10)

enc (E′(k − 1)∗)

(12)
enc (E(k − 1)∗)

(15)
enc (U′(k)∗) , enc (∇′

U(k)∗) , enc (V′(k)∗) , enc (∇′
V(k)∗)

(16)
enc (U(k)∗) , enc (V(k)∗) , enc

(
Û(k)∗

)
, enc

(
V̂(k)∗

)

Stopping Criterion
Check (17)

enc (∇Uagg(k)
∗) , enc (∇Vagg(k)

∗)

(19)
enc

(
∇2

U
∗) , enc (∇2

V
∗) , sU , sV

(20)
(bU , bV )

RecSys CSP

Figure 4.2: The communication flow for a single epoch of the Learning Phase.

The subsequent steps, from (9) to (20), define a single round (epoch) of the iterative learning process.
Let k denote the current epoch number, starting from k = 1.

At the beginning of each round, RecSys holds the following FHE-encrypted data:

• The packed ratings: enc (r) (obtained from the Rating Upload Phase),
• The packed user profiles: enc (U(k − 1)),
• The packed item profiles: enc (V(k − 1)).

(9) RecSys computes the encryption of:

E′(k − 1) := U(k − 1)⊙V(k − 1) + 2αr. (4.9)

This is achieved homomorphically on the ciphertexts from epoch k − 1:

enc (E′(k − 1)) = (enc (U(k − 1))⊗ enc (V(k − 1)))⊕ (2α ⊗ enc (r)) . (4.10)

This operation effectively computes the scaled prediction errors. The inputsU(k−1) andV(k−1)
are in fixed-point representation, and the subsequent division by 2α in Step (11) corrects for the
scaling introduced by multiplying two fixed-point numbers.

(10) RecSys initiates themasking operation by samplingM random d-dimensional vectorsσ(k−1)ij ∈
Zd, resulting in the following set:

{σ(k − 1)ij : (i, j) ∈M}. (4.11)

These vectors are concatenated to obtain a dM -dimensional vector mask σ(k − 1).

σ(k − 1) := ∥(i,j)∈Mσ(k − 1)ij . (4.12)



4.3. Protocol Phases 24

Next, RecSys computes the encryption of the masked vector:

E′(k − 1)∗ := E′(k − 1) + σ(k − 1). (4.13)

This can be achieved using homomorphic addition:

enc (E′(k − 1)∗) = enc (E′(k − 1))⊕ enc (σ(k − 1)) . (4.14)

This ciphertext is then sent to the CSP.
(11) The CSP decrypts the received ciphertext obtaining E′(k− 1)∗ and applies integer division by 2α.

This division serves as the necessary rescaling step in fixed-point arithmetic after the element-
wise multiplication in Step (9). This results in:⌊

E′(k − 1)∗

2α

⌋
= U(k − 1)⊙V(k − 1) + r+

⌊
σ(k − 1)

2α

⌋
(4.15)

= ∥(i,j)∈M

(
ui(k − 1)⊙ vj(k − 1)− (rij , 0, . . . , 0) +

⌊
σ(k − 1)ij

2α

⌋)
. (4.16)

(12) Using the vector from the previous step, CSP computes a masked error term eij
∗ for each (i, j) ∈

M by summing all d elements of the vector:

eij
∗ := sum

(
ui(k − 1)⊙ vj(k − 1)− (rij , 0, . . . , 0) +

⌊
σ(k − 1)ij

2α

⌋)
. (4.17)

This resulting scalar eij∗ can be understood as a masked prediction error for a rating of item j
given by the user i. It combines the predicted rating (dot product between ui(k−1) and vj(k−1))
minus the observed rating rij , plus some masking term.

Then CSP packs these values into a dM -dimensional vector E(k − 1)∗ as follows:

E(k − 1)∗ :=

∥(i,j∈M)(

d︷ ︸︸ ︷
eij

∗, eij
∗, . . . , eij

∗)

 . (4.18)

Finally, E(k − 1)∗ is encrypted and the ciphertext enc (E(k − 1)∗) is sent to RecSys.
(13) Knowing the previously generated masking terms, RecSys computes the unmasking term:

fσ(k − 1) :=

∥(i,j∈M)(

d︷ ︸︸ ︷
f ij
σ , f ij

σ , . . . , f ij
σ )

 , (4.19)

where f ij
σ is defined as:

f ij
σ := sum

(⌊
σ(k − 1)ij

2α

⌋)
, ∀(i, j) ∈M. (4.20)

Next, RecSys removes the mask from enc (E(k − 1)∗) to obtain the encryption of the error vector:

E(k − 1) :=

(
∥(i,j∈M)(

d︷ ︸︸ ︷
eij , eij , . . . , eij)

)
, (4.21)

where eij is an error of the rating prediction. Namely,

eij = ⟨ui(k − 1),vj(k − 1)⟩ − rij . (4.22)
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This is achieved by encrypting the negation of fσ(k − 1) and adding it to enc (E(k − 1)∗) using
homomorphic addition:

enc (E(k − 1)) = enc (E(k − 1)∗)⊕ enc (−fσ(k − 1)) . (4.23)

(14) RecSys computes encryptions of packed gradient vectors:

∇′
U(k) = V(k − 1)⊙E(k − 1) + λÛ(k − 1) (4.24)

and
∇′

V(k) = U(k − 1)⊙E(k − 1) + λV̂(k − 1). (4.25)

This can be achieved using homomorphic encryption:

enc (∇′
U(k)) = (enc (V(k − 1))⊗ enc (E(k − 1)))⊕

(
λ⊗ enc

(
Û(k − 1)

))
(4.26)

and

enc (∇′
V(k)) = (enc (U(k − 1))⊗ enc (E(k − 1)))⊕

(
λ⊗ enc

(
V̂(k − 1)

))
. (4.27)

Next, RecSys computes
U′(k) := 2α+βÛ(k − 1)− γ∇′

U(k) (4.28)

and
V′(k) := 2α+βV̂(k − 1)− γ∇′

V(k). (4.29)

This can be achieved using homomorphic encryption:

enc (U′(k)) =
(
2α+β ⊗ enc

(
Û(k − 1)

))
⊕ (−γ ⊗ enc (∇′

U(k))) (4.30)

and
enc (V′(k)) =

(
2α+β ⊗ enc

(
V̂(k − 1)

))
⊕ (−γ ⊗ enc (∇′

V(k))) . (4.31)

These vectors are now one transformation away from obtaining the updated user and item profile
vectors. Recall that an update step in matrix factorization is described as:

ui(k)← ui(k − 1)− γ∇U(k) (4.32)

and
vj(k)← vj(k − 1)− γ∇V(k). (4.33)

where
∇U(k) = vj(k − 1) (rij − ⟨ui(k − 1),vj(k − 1)⟩) + λui(k − 1), (4.34)

∇V(k) = ui(k − 1) (rij − ⟨ui(k − 1),vj(k − 1)⟩) + λvj(k − 1). (4.35)

Essentially this step performs these computations, but the outcomes are packed inside the vector
that needs gathering and scattering to obtain the final values. This will be done in the next two
steps.

(15) RecSys initiates data masking by generating four sets of M random d-dimensional masking vec-
tors:

{σU(k)ij : (i, j) ∈M}, {σ∇U
(k)ij : (i, j) ∈M}, (4.36)

{σV(k)ij : (i, j) ∈M}, {σ∇V
(k)ij : (i, j) ∈M}. (4.37)
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These vectors are then concatenated to obtain four dM -dimensional vector masks:

σU(k) := ∥(i,j)∈MσU(k)ij , σ∇U
(k) := ∥(i,j)∈Mσ∇U

(k)ij , (4.38)
σV(k) := ∥(i,j)∈MσV(k)ij , σ∇V

(k) := ∥(i,j)∈Mσ∇V
(k)ij . (4.39)

RecSys then computes the encryptions of the following masked vectors:

U′(k)∗ := U′(k) + σU(k), ∇′
U(k)∗ := ∇′

U(k) + σ∇U
(k), (4.40)

V′(k)∗ := V′(k) + σV(k), ∇′
V(k)∗ := ∇′

V(k) + σ∇V
(k). (4.41)

This is achieved using homomorphic addition:

enc (U′(k)∗) = enc (U′(k))⊕ enc (σU(k)) , (4.42)
enc (∇′

U(k)∗) = enc (∇′
U(k))⊕ enc (σ∇U

(k)) , (4.43)
enc (V′(k)∗) = enc (V′(k))⊕ enc (σV(k)) , (4.44)
enc (∇′

V(k)∗) = enc (∇′
V(k))⊕ enc (σ∇V

(k)) . (4.45)

The encryption of these masked values is then sent to the CSP.
(16) CSP decrypts the received ciphertexts, obtaining four dM -dimensional vectors U′(k)∗, ∇′

U(k)∗,
V′(k)∗, and ∇′

V(k)∗.

These dM -dimensional vectors can be seen as concatenations ofM distinct d-dimensional blocks,
where each block corresponds to a unique user-item pair (i, j) fromM according to its position
in the canonical ordering.

Therefore, the packed user profile vector U′(k)∗ can be expressed as:

U′(k)∗ = ∥(i,j)∈M xij(k)
∗, (4.46)

where xij(k)
∗ is the d-dimensional block fromU′(k)∗ whose index corresponds to the location of

the tuple (i, j) inM. Note that this is possible because there are exactly M unique tuples inM.

Essentially, each block xij(k)
∗ contains an update component for user i derived from their inter-

action with item j. The specific structure of the input vectors, prepared by RecSys in Step (14),
ensures that when these components are aggregated, the previous profile values and regulariza-
tion terms are correctly applied exactly once per user.

Analogously, we can express the packed item profiles as:

V′(k)∗ = ∥(i,j)∈M yij(k)
∗ (4.47)

with d-dimensional vectors yij(k)∀(i, j) ∈M.

To obtain the updated (and still masked) profile for each user and item, CSP first aggregates
these components, obtaining u†

i (k)
∗ and v†

j(k)
∗ for all users i and items j:

– For each user i′ ∈ [n], its u†
i′(k)

∗ is obtained by summing all blocks related to this user:

u†
i′(k)

∗ :=
∑

j:(i′,j)∈M

xi′j(k)
∗. (4.48)

– Similarly, for each item j′ ∈ [m], its v†
j′(k)

∗ is obtained as follows:

v†
j′(k)

∗ :=
∑

i:(i,j′)∈M

yij′(k)
∗. (4.49)
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Next, these vectors are integer-divided by 2α+β to cancel the effects caused by fixed-point multi-
plication in step (14). Namely,

ui(k)
∗ :=

⌊
u†
i (k)

∗

2α+β

⌋
∀i ∈ [n], vj(k)

∗ :=

⌊
v†
j(k)

∗

2α+β

⌋
∀j ∈ [m]. (4.50)

With these newly-updated user and item profiles, the CSP then constructs the updated packed
profile vectors U(k)∗,V(k)∗, Û(k)∗, and V̂(k)∗. Note that these vectors are still masked. The
user and profile vectors are obtained as follows:

U(k)∗ := ∥(i,j)∈Mui(k)
∗, V(k)∗ := ∥(i,j)∈Mvj(k)

∗. (4.51)

Next, the ”First Occurrence” User and Item Profiles are constructed as follows:

Û(k)∗ := ∥(i,j)∈Mûij(k)
∗, V̂(k)∗ := ∥(i,j)∈Mv̂ij(k)

∗, (4.52)

where

ûij(k)
∗ :=


ui(k)

∗ if (i, j) is the first pair in the canonical ordering of
M that contains user i,

0d otherwise,
(4.53)

v̂ij(k)
∗ :=


vj(k)

∗ if (i, j) is the first pair in the canonical ordering of
M that contains item j,

0d otherwise.
(4.54)

The encryptions of the resulting vectors enc (U(k)∗), enc (V(k)∗), enc
(
Û(k)∗

)
and enc

(
V̂(k)∗

)
are then sent to RecSys.

(17) Alongside the profile update vectors detailed in step (16), the CSP processes the masked scaled
gradient vectors, ∇′

U(k)∗ and ∇′
V(k)∗, received from RecSys in step (15). After decrypting these

two dM -dimensional vectors, the CSP aggregates and scales these gradient components.

Similarly to expressing V′(k) and U′(k) as a concatenation of M d-dimensional vectors in step
(16), we can express the packed gradient vectors as:

∇′
U(k)∗ = ∥(i,j)∈M gU

ij (k)
∗, ∇′

V(k)∗ = ∥(i,j)∈M gV
ij (k)

∗, (4.55)

where each gU
ij (k)

∗ and gV
ij (k)

∗ is the d-dimensional block from∇′
U(k)∗ and∇′

V(k)∗ whose index
corresponds to the location of the tuple (i, j) inM.

To obtain an aggregated masked gradient for each user, the CSP performs the following. For
each user i′ ∈ [n], it sums all d-dimensional blocks gU

i′j(k)
∗ related to this user:

∇u†
i′(k)

∗ :=
∑

j:(i′,j)∈M

gU
i′j(k)

∗. (4.56)

This sum ∇u†
i′(k)

∗ represents the total 2α-scaled masked gradient for user i. To correct the
scaling, an integer division by 2α is applied:

∇ui′(k)
∗ :=

⌊
∇u†

i′(k)
∗

2α

⌋
. (4.57)

A similar process is followed for item gradients. For each item j′ ∈ [m], the CSP sums the relevant
blocks gV

ij′(k)
∗:

∇v†
j′(k)

∗ :=
∑

i:(i,j′)∈M

gV
ij′(k)

∗, (4.58)
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and then scales the result:

∇vj′(k)
∗ :=

⌊
∇v†

j′(k)
∗

2α

⌋
. (4.59)

TheCSP then concatenates all these aggregated vectors to obtain two packed vectors: ∇Uagg(k)
∗,

which contains all user gradients, and ∇Vagg(k)
∗, containing all item gradients.

∇Uagg(k)
∗ := ∥i∈[n]∇ui(k)

∗, (4.60)
∇Vagg(k)

∗ := ∥j∈[m]∇vj(k)
∗. (4.61)

Finally, the CSP encrypts these two aggregated, scaled, and still-masked gradient vectors, ob-
taining enc (∇Uagg(k)

∗) and enc (∇Vagg(k)
∗). These ciphertexts are sent to RecSys. RecSys will

subsequently unmask these vectors and use them for checking the convergence of the learning
algorithm.

(18) In this step, RecSys unmasks the encryptions of the received vectors: enc (U(k)∗), enc (V(k)∗),
enc

(
Û(k)∗

)
, enc

(
V̂(k)∗

)
, enc (∇Uagg(k)

∗), and enc (∇Vagg(k)
∗) . The unmasking terms are

computed based on the random masks σU(k), σV(k), σ∇U
(k), and σ∇V

(k) that RecSys gen-
erated in Step (15). Recall that each of these dM -dimensional masks is a concatenation of M
d-dimensional blocks; for instance, σU(k) = ∥(i,j)∈MσU(k)ij .

First, RecSys constructs intermediate scaled aggregated mask vectors. These vectors capture
the effect of gathering and scaling by 2α performed by the CSP:

(∆σU(k))i :=

 1

2α+β

 ∑
j′:(i,j′)∈M

σU(k)ij′

 ∀i ∈ [n], (4.62)

(∆σV(k))j :=

 1

2α+β

 ∑
i′:(i′,j)∈M

σV(k)i′j

 ∀j ∈ [m], (4.63)

(∆σ∇U(k))i :=

 1

2α

 ∑
j′:(i,j′)∈M

σ∇U
(k)ij′

 ∀i ∈ [n], (4.64)

(∆σ∇V(k))j :=

 1

2α

 ∑
i′:(i′,j)∈M

σ∇V
(k)i′j

 ∀j ∈ [m]. (4.65)

Using these intermediate scaled aggregated mask vectors, RecSys constructs the six final un-
masking terms:

fσU
(k) := ∥(i,j)∈M(∆σU(k))i, fσV

(k) := ∥(i,j)∈M(∆σV(k))j , (4.66)
fσ∇U

(k) := ∥i∈[n](∆σ∇U(k))i, fσ∇V
(k) := ∥j∈[m](∆σ∇V(k))j , (4.67)

fσÛ
(k) := ∥(i,j)∈MbÛ,ij(k), fσV̂

(k) := ∥(i,j)∈MbV̂,ij(k), (4.68)

where

bÛ,ij(k) :=


(∆σU(k))i

if (i, j) is the first pair in the canonical ordering of
M that contains user i,

0d otherwise,
(4.69)

and

bV̂,ij(k) :=


(∆σV(k))j

if (i, j) is the first pair in the canonical ordering of
M that contains item j,

0d otherwise.
(4.70)
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RecSys then encrypts the negation of each of these unmasking terms and uses the additive ho-
momorphic property of the FHE scheme to subtract them. This step removes the influence of the
masks, up to the small precision errors introduced by the ‘floor‘ operations, yielding encryptions
of the updated profile vectors:

enc (U(k)) = enc (U(k)∗)⊕ enc (−fσU
(k)) , (4.71)

enc (V(k)) = enc (V(k)∗)⊕ enc (−fσV
(k)) , (4.72)

enc
(
Û(k)

)
= enc

(
Û(k)∗

)
⊕ enc

(
−fσÛ

(k)
)
, (4.73)

enc
(
V̂(k)

)
= enc

(
V̂(k)∗

)
⊕ enc

(
−fσV̂

(k)
)
, (4.74)

enc (∇Uagg(k)) = enc (∇Uagg(k)
∗)⊕ enc (−fσ∇U

(k)) , (4.75)
enc (∇Vagg(k)) = enc (∇Vagg(k)

∗)⊕ enc (−fσ∇V
(k)) . (4.76)

These resulting unmasked encrypted vectors enc (U(k)), enc (V(k)), enc
(
Û(k)

)
, and enc

(
V̂(k)

)
represent the updated profiles after epoch k. The unmasked encrypted aggregated gradients
enc (∇Uagg(k)) and enc (∇Vagg(k)) are used by RecSys to check for convergence in Steps (19)
and (20).

(19) Using the encrypted aggregated gradients from Step (18), RecSys determines convergence by
ensuring the squared Euclidean norm of ∇Uagg(k) is below its threshold ωU, and the squared
Euclidean norm of enc (∇Vagg(k)) is below its threshold ωV.

RecSys obtains the element-wise squares of the aggregated gradient vectors. Let ∇2
U and ∇2

V

represent these vectors of squared components:

∇2
U := ∇Uagg(k)⊙∇Uagg(k), (4.77)

∇2
V := ∇Vagg(k)⊙∇Vagg(k). (4.78)

Next, RecSys generates two random mask vectors, σ∇2
U
∈ Zdn and σ∇2

V
∈ Zdm, initiating the

masking procedure. RecSys then computes the masked versions of the squared gradient com-
ponent vectors:

∇2
U

∗ := ∇2
U + σ∇2

U
, (4.79)

∇2
V

∗ := ∇2
V + σ∇2

V
. (4.80)

This is achieved homomorphically:

enc
(
∇2

U
∗) = (enc (∇Uagg(k))⊗ enc (∇Uagg(k)))⊕ enc

(
σ∇2

U

)
, (4.81)

enc
(
∇2

V
∗) = (enc (∇Vagg(k))⊗ enc (∇Vagg(k)))⊕ enc

(
σ∇2

V

)
. (4.82)

RecSys also computes the sum of the elements for each mask vector:

Σσ
U =

dn∑
p=1

(σ∇2
U
)p, and Σσ

V =

dm∑
p=1

(σ∇2
V
)p. (4.83)

Then, it prepares the comparison values for the CSP:

sU = ωU +Σσ
U, and sV = ωV +Σσ

V. (4.84)

RecSys sends the ciphertexts enc
(
∇2

U
∗), enc (∇2

V
∗) and the plaintext scalars sU and sV to the

CSP.
(20) The CSP receives enc

(
∇2

U
∗), enc (∇2

V
∗), sU and sV from RecSys. First, the CSP decrypts the

received ciphertexts to obtain the plaintext masked vectors of squared gradient components:

∇2
U

∗ = dec
(
enc

(
∇2

U
∗)) , (4.85)

∇2
V

∗ = dec
(
enc

(
∇2

V
∗)) . (4.86)
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Next, CSP computes the sum of all elements for each of these plaintext masked vectors:

s′U =

dn∑
p=1

(∇2
U

∗)p, and s′V =

dm∑
p=1

(∇2
V

∗)p. (4.87)

Note that s′U = (
∑dn

p=1(∇Uagg(k) ⊙ ∇Uagg(k))p) + Σσ
U, which is effectively ∥∇Uagg(k)∥2 + Σσ

U.
The CSP then performs the comparisons sU ≥ s′U and sV ≥ s′V . These checks determine if
∥∇Uagg(k)∥22 ≤ ωU and ∥∇Vagg(k)∥2 ≤ ωV, respectively. Let bU = (sU ≥ s′U ) and bV = (sV ≥
s′V ) be the boolean outcomes. The CSP sends the boolean pair (bU , bV ) back to RecSys. If
both bU and bV are true, the algorithm is considered to have converged, and RecSys proceeds to
the Recommendation Phase. Otherwise, RecSys increments the epoch counter k ← k + 1 and
returns to Step (9) to perform another learning iteration.



5
Design of a Privacy-Preserving Course

Recommendation System

The previous chapter described a privacy-preserving matrix factorization protocol based on the work
of Kim et al. We now pivot from the abstract cryptographic mechanism to a concrete application: a
privacy-preserving course recommendation system for higher education. This adaptation presents us
with two main challenges. The first challenge involves the contextual adaptation of this algorithm: we
define the motivations of the involved parties and design the implementation of the protocol within the
university setting.

The second challenge is to address the gap in the research: existing encryption-based private matrix
factorization algorithms, including the protocol by Kim et al., do not incorporate baseline predictors
(biases) into their models. While this omission simplifies the explanation of an already complex cryp-
tographic mechanism, it significantly reduces the system’s practical use, leaving private systems less
accurate than their non-private matrix factorization counterparts. Integrating these biases, though trivial
in plaintext, presents a substantial challenge in the cryptographic domain, as it requires careful protocol
adjustments to preserve formal privacy guarantees.

We introduce a technique of data centering and vector augmentation that allows for the full integration
of the global mean, student-specific, and course-specific biases into the cryptographic protocol. Our
method achieves this without requiring large structural changes to the underlying algorithm, thereby
preserving the protocol’s formal security guarantees.

This chapter directly addresses the research question by detailing the design of our system and for-
malizing the system model for course recommendations. We then present our novel bias integration
method, and detail its implementation within the protocol. The result is a blueprint for a system that is
not only private by design, but also contextually relevant and able to achieve the same accuracy as
its non-private counterpart. Furthermore, by cleanly separating systemic biases from the core interac-
tion model, our design allows us to use these interactions to provide more nuanced recommendations
moving beyond mere grade predictions and encouraging academic discovery.

5.1. System Model and Problem Formulation
Our course recommendation system is based on the collaborative filtering approach. Recall the setup
of typical collaborative filtering recommender systems: Users provide explicit ratings for items. Then,
based on these ratings, the system estimates the ratings that the user would give to the items they
haven’t yet rated. A few items with the best estimated scores are then recommended to each user.

The course recommendation problem is solved by modeling students as ’users’ and courses as ’items’,
with the goal of finding a set of courses that can be recommended to each student. Rather than re-
lying on explicit student ratings of courses, which are often sparse and require active solicitation, our
model leverages a more objective data source already available within educational institutions: final

31
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course grades. This method assumes that these grades are an indication of students’ success in each
particular course. The same approach has been used by Cakmak [77] and Thanh-Nhan, Nguyen, and
Thai-Nghe [16] in their course recommendation systems. This design choice ensures that recommen-
dations are based on demonstrated academic performance and merit, aligning the system’s output with
key educational objectives, which include not only predicting academic performance but also helping
students discover areas of personal aptitude.

A central challenge in this domain is the ’cold start’ problem, where the system cannot generate per-
sonalized recommendations for new students who lack a history of course grades. To address this,
the model incorporates students’ pre-university academic records. Each course that the student took
in high school can be included as an item in the recommender system, with its obtained grade used
as the rating. This ensures that all students have some kind of initial information for the first course
recommendations. An example of how the input of such a system would look is shown in Figure 5.1.

 

Grading matrix 
Pre-university courses University courses 
Course 1 Course 2 Course 3 Course 4  Course 5 

St
ud

en
t 

Student 1 9 6 8 7 ? 
Student 2 5 7 ? 3 6 
Student 3 6 5 5 ? 9 
Student 4 10 7 10 7 6 
Student 5 10 6 8 ? ? 
Student 6 6 8 ? ? ? 

Figure 5.1: An illustrative input grading matrix for the matrix factorization-based course recommendation system. Each row
corresponds to a specific student, and each column represents a course. The matrix is populated with students’ final grades
(ranging from 0 to 10). Both pre-university (high school) and university records are included. The entries marked with a
question mark (’?’) represent the unknown grades for courses a student has not yet taken; these are the values the

recommendation system is designed to predict.

5.1.1. Parties and Architecture
The system architecture adopts the two-server model from Kim, Kim, Koo, et al. [24], which operates
under two key security assumptions:

• Honest-but-curious threat model, where each party correctly follows the protocol but may at-
tempt to infer sensitive information from the data it processes,

• Non-collusion assumption, meaning the two core servers are trusted not to combine their infor-
mation to compromise privacy.

The system involves the following parties:

• The Student (User): The data subject, who chooses to provide their academic history (grades)
to receive personalized course recommendations. The student’s primary goal is to obtain useful
guidance while ensuring their sensitive grade data remains protected.

• The University (Data Controller): As the service coordinator, the university aims to improve
student outcomes, reduce dropout rates, and optimize resource allocation. It is ethically and
legally bound to protect student privacy, recognizing that doing so builds the trust necessary for
wider adoption and more effective outcomes. With student consent, the university utilizes its
securely stored student records to provide the recommendations.

• Educational Technology Provider (Recommender System): The entity that executes the rec-
ommendation algorithm. This service manages the encrypted model parameters (the profiles
and biases) and orchestrates the overall protocol flow. It operates independently of the Crypto
Service Provider and never has access to unencrypted student grades or the profiles used for
recommendation.

• The Crypto Service Provider (CSP): A trusted server, operated by a neutral third party (e.g., a
governmental institute), ensuring its independence. This server generates the cryptographic keys,
distributes the public keys and locally stores the secret keys without revealing them to anyone. It
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participates in the algorithm during data masking operations and never has access to any private
information.

The interaction between these parties follows the privacy-preserving matrix factorization protocol ex-
plained in Chapter 4. The main difference in this educational context is that the grades (ratings) are
submitted by the university instead of involving each student separately.

5.2. The Imperative of Bias Terms in Matrix Factorization
A pure matrix factorization model, where r̂ij = uT

i vj , while mathematically elegant, is suboptimal for
real-world recommendation tasks. Seminal work from the Netflix Prize competition showed that simple,
systemic tendencies explain a significant portion of the variance in ratings data. These tendencies,
or biases, include users who consistently give high ratings and items that are generally rated poorly.
While a pure matrix factorization model could implicitly learn these effects, it is more effective to model
them explicitly. This allows the latent factors to focus on the more nuanced user-item interactions [25].
This leads to the widely-used biased Matrix Factorization model, formulated as:

r̂ij = µ+ bi + bj + uT
i vj . (5.1)

In the context of course recommendations, these terms have clear and powerful interpretations that
capture fundamental academic dynamics:

• µ (Global Mean): The average grade across all students in all courses at the university. This
serves as the baseline academic performance.

• bj (Item Bias / Course Bias): The intrinsic difficulty or grading tendency of a specific course. A
notoriously challenging course would naturally have a strong negative bias (bj < 0), while a
course known for lenient grading would have a positive bias (bj > 0).

• bi (User Bias / Student Bias): The general academic standing or aptitude of a student, indepen-
dent of specific subjects. A student who consistently achieves high marks across their curriculum
will have a positive bias (bi > 0), whereas one who generally receives lower grades will have a
negative bias (bi < 0).

During the learning phase, the global mean µ is treated as a fixed, pre-computed value. In contrast, the
student and course biases, bi and bj , are treated as learnable parameters, just like the latent factors
ui and vj . This approach provides greater model flexibility, allowing the algorithm to iteratively adjust
the biases to best capture the systemic tendencies specific to each student and course, in contrast to
using pre-determined values [25].

By explicitly modeling these baseline effects, the latent factor interaction term, uT
i vj , is freed to capture

the more subtle dynamics between the academic strengths of the student and the unique characteris-
tics of the course. Omitting these bias terms is therefore not a minor simplification, but a major limitation
of the model’s performance. Their inclusion is imperative for building a genuinely useful course recom-
mendation system.

5.3. A Novel Method for Bias Integration
Given the matrix factorization protocol that models the ratings as a simple dot product between the
users and items (i.e., rij = uT

i vj), the challenge is to adjust this algorithm so that it can compute the
full biased model (Equation 5.1). Directly adding new parameters and update rules would require a
redesign of the complex HE protocol.

We propose an elegant strategy that resolves this by reframing the input data and model vectors,
thereby requiring no modifications to the protocol’s core cryptographic operations. Our method con-
sists of two parts:

1. Data Centering: We introduce a cryptographic technique to center the rating data, effectively
accounting for the global mean bias µ.

2. Vector Augmentation: We incorporate the student and course biases, bi and bj , by augmenting
the student and course profile vectors, ui and vj .
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Crucially, these adjustments are performed entirely within the encrypted domain. Our solution is an
enhancement of the protocol from Chapter 4 and does not assume that any party, such as the university,
has plaintext access to the full rating set. This approach ensures that the end-to-end privacy guarantees
of the system are maintained.

5.3.1. Handling the Global Mean (µ) via Data Centering
The first bias term, the global mean µ, represents the average of all known ratings. Note that it is
possible to eliminate the need for this term by pre-computing the mean value and subtracting it from
every rating, a process known as data centering. The model would then be trained on these centered
ratings, effectively reducing the prediction formula to:

r̂ij = bi + bj + uT
i vj . (5.2)

The challenge in our encrypted protocol is that no single party has access to the plaintext ratings to
compute µ.

To overcome this challenge, we introduce a method that performs data centering on the masked data.
This is achieved by adjusting the rating upload phase of the protocol. The core idea is for the CSP to
compute the mean of the masked ratings and center the data using this value. Subsequently, RecSys
corrects for the influence of the masking noise on this computed mean. The two adjusted steps of the
original protocol are detailed below. Note that changes made to the original equations are denoted in
blue.

Learning Phase Modifications
(6) CSP receives r(all rating set)∗. They decrypt all masked ratings using the secret key skAHE, obtaining

a set of triplets {(i, j, rij + σij) : (i, j) ∈M}.

First, CSP calculates the average value of all these masked ratings, which we denote as µ∗:

µ∗ :=

∑
(i,j)∈M rij + σij

|M|
. (5.3)

This µ∗ represents the mean of the ratings combined with the mean of the random masks:

µ∗ =

∑
(rij + σij)

|M|
=

∑
rij
|M|

+

∑
σij

|M|
= µ+ fµ, (5.4)

where fµ can be seen as the unmasking term.

Themasked ratings are sorted, centered, negated, and combined to obtain a packed dM -dimensional
vector:

r∗ = (∥(i,j∈M)(

d︷ ︸︸ ︷
−(rij + σij−µ∗), 0, . . . , 0)). (5.5)

This vector, containing all centered ratings, is in the format that is required for the future protocol.
However, these ratings are still masked. The array is encrypted using the public key pkHE, and the
encryption encpkHE (r

∗) is sent to RecSys, who will unmask the ratings, obtaining the encryption
of r in the next step.

(7) RecSys must now remove the effect of its random masks σij from the encrypted vector. RecSys
computes the average of its own noise values, fµ:

fµ :=

∑
(i,j)∈M σij

|M|
. (5.6)

The influence can then be computed as:

fσ := (∥(i,j∈M)(

d︷ ︸︸ ︷
−(σij−fµ), 0, . . . , 0)). (5.7)
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To obtain the final packed and centered rating vector r, fσ is negated, encrypted, and added to
the received array using the additive property of HE.

encpkHE (r
∗)⊕ encpkHE (−fσ) (5.8)

=encpkHE

(∥(i,j∈M)(

d︷ ︸︸ ︷
−(rij + σij−µ∗), 0, . . . , 0))− (∥(i,j∈M)(

d︷ ︸︸ ︷
−(σij−fµ), 0, . . . , 0))

 (5.9)

=encpkHE

(∥(i,j∈M)(

d︷ ︸︸ ︷
−(rij−µ), 0, . . . , 0))

 (5.10)

=encpkHE (r) . (5.11)

The homomorphic addition precisely removes the mask and its influence on the mean. This
leaves the correctly centered ratings encrypted under pkHE, yielding the target vector encpkHE (r).

The remainder of the algorithm proceeds as originally designed, but now operates on the centered
rating data. During the final recommendation phase, it is not necessary to add the global mean µ back
to the predicted scores. The purpose of the system is to generate a top-N list of recommended courses,
which depends only on the relative ordering of the predicted ratings. Since subtracting a constant (µ)
from all ratings does not change this ordering, the centered predictions are sufficient.

5.3.2. Handling Biases (bi, bj) via Vector Augmentation
To integrate the student and course biases, we redefine the existing profile vectors:

1. The latent vectors are augmented from dimension d to d+ 2.
2. These augmented vectors, ũi ∈ Rd+2 (for student i) and ṽj ∈ Rd+2 (for course j), are structured

as follows:

ũi :=

ui

1
bi

 and ṽj :=

vj

bj
1

 , (5.12)

where ui and vj are the original d-dimensional latent vectors, bi and bj are the learnable scalar
bias parameters, and the ‘1‘s are fixed constants.

3. The optimization algorithm learns all components of the augmented vectors, but the constant 1s
are enforced on each iteration by having the CSP reset their values, which nullifies any gradient-
based updates to those positions.

This reframing allows the bias terms to be implicitly computed by taking the dot product of these two
augmented vectors.

Verification. The dot product of these augmented vectors, r̂ij = ũT
i ṽj , now reconstructs the desired

model for the centered data:

r̂ij =
[
uT
i 1 bi

] vj

bj
1

 = (uT
i vj) + (1 · bj) + (bi · 1) = bi + bj + uT

i vj . (5.13)

This demonstrates that our method of centering and augmentation allows the full, accurate Biased MF
model to be computed using only the dot product operation for which the cryptographic protocol was
originally designed.

This approach can be implemented by making the following adjustments to the original algorithm from
Chapter 4. The changes made to the original equations are denoted in blue.
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Setup Phase Modifications
(2) RecSys determines and publishes public parameters. The profile vector dimension is now set to

d′ = d+ 2. RecSys publishes public parameters (d′, n,m, α, β).

Next, RecSys must initialize the augmented vectors correctly, ensuring the constant ‘1‘s are in their
proper positions.

Learning Phase Modifications
(8) RecSys generates the initial profile vectors. These are now the augmented (d+ 2)-dimensional

vectors ũi(0) and ṽj(0).

For each user i ∈ [n] and item j ∈ [m], RecSys initializes:

ũi(0) :=

ui(0)
1

bi(0)

 and ṽj(0) :=

vj(0)
bj(0)
1

, (5.14)

where ui(0) ∈ Rd are initialized as random ℓ2-norm vectors. The scalars bi(0), bj(0) are set to 0.
The terms 1 are constants representing the value ’1’ in fixed-point arithmetic. These augmented
vectors are converted to fixed-point representation and then used to construct the four initial
packed vectors, which are now of dimension (d+2)M . These are then encrypted.

The most important changes occur during the iterative update steps. The CSP must enforce the con-
stant ‘1‘s, and RecSys must account for this action during unmasking.

(16) The CSP decrypts the masked update vectors, aggregates them, and applies scaling. After com-
puting the updated (but still masked) profile vectors for each user and item, the CSP must inter-
vene to enforce the constant ‘1‘s before re-packing and re-encrypting.

After computing ui(k)
∗ and vj(k)

∗, but before constructing the packed vectors, the CSP adjusts
specific elements in masked profile vectors for all i ∈ [n] and j ∈ [m]:

(ui(k)
∗)d+1 = 2α and (vj(k)

∗)d+2 = 2α. (5.15)

The value is set to 2α, which is the fixed-point representation of ‘1‘ with precision α. This operation
overwrites whatever value was computed for that component, effectively zeroing out its gradient
and resetting it to ‘1‘. The CSP then proceeds to pack these modified vectors and encrypt them
as described in the original protocol.

(18) RecSys receives the encrypted updated profiles from the CSP and must unmask them. Since
the CSP overwrote the values at the constant positions, these components are no longer masked.
Therefore, RecSys must adjust its unmasking terms to avoid removing noise that is not present
in these fixed components.

When constructing the final unmasking vectors fσU
(k) and fσV

(k), RecSys must zero out the
components corresponding to the fixed ‘1‘s. Given (∆σU(k))i and (∆σV(k))j , the masking vec-
tors generated in Step (15), RecSys modifies specific elements in these vectors for all (i, j) ∈M:

(σU(k)ij)d+1 = 0 and (σV(k)ij)d+2 = 0. (5.16)

RecSys then uses these modified aggregated masks to construct the final unmasking terms
fσU

(k), fσV
(k), fσÛ

(k), and fσV̂
(k). By zeroing out these specific entries, RecSys ensures

that no mask is subtracted from the fixed ‘1‘ components during the homomorphic unmasking
operation, preserving their integrity.

The rest of the protocol, including the convergence check, proceedswith the adjusted (d+2)-dimensional
vectors without further changes.

The proposed methods of data centering and vector augmentation allow the complete biased Matrix
Factorization model to be incorporated into the privacy-preserving protocol, thereby overcoming its ar-
chitectural limitation to simple dot-product computations. The following chapter will provide theoretical
and empirical validation of its security, accuracy, and performance.
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5.3.3. Beyond Grade Prediction: Discovering Individual Talent
The successful separation of bias terms from the core latent factor model does more than just improve
predictive accuracy; it expands the system’s purpose. Following the work of Bell and Koren [17], our
approach of incorporating bias terms during training allows the model to absorb systematic tendencies.
This ensures that the latent factors are free to model the pure, underlying user-item compatibility. Our
architecture can therefore answer two distinct questions for a student:

1. ”In which course am I most likely to achieve a high grade?”
2. ”For which course do I possess a unique, perhaps undiscovered, aptitude?”

The first question is answered by the full prediction model from Equation 5.2: r̂ij = bi+ bj +uT
i vj . This

score represents the predicted outcome, accounting for the student’s general academic standing (bi)
and the course’s baseline difficulty (bj). The second, more nuanced question is addressed by isolating
the interaction term, uT

i vj . This term is a proxy for the synergy between a student’s unique profile and
a course’s specific characteristics.

This functional separation is a direct consequence of our bias integration method. By explicitly model-
ing and learning the biases, we enable the system to generate two distinct top-N lists for each student:
one optimized for predicted performance and another for discovering personal talent. For example, a
student might be discouraged from a difficult course (with a negative bj), but a high interaction term
could reveal that they are exceptionally well-suited for it, suggesting a potential passion that would oth-
erwise be overlooked. This transforms the system from a simple grade predictor into a more nuanced
tool for personalized academic guidance.

However, while our approach successfully separates a student’s specific aptitude from general course
difficulty, it operates on data that is already influenced by student choices. Our approach cannot, by
itself, correct for the selection bias where popular courses are overrepresented in the data, a feedback
loop effect demonstrated by Mansoury, Abdollahpouri, Pechenizkiy, et al. [78]. A truly debiased rec-
ommendation for ’hidden talent’ would require causal inference methods to model the probability that
a student would select a course in the first place.



6
Analysis

Having established the design of our privacy-preserving course recommendation system in the previ-
ous chapter, this chapter turns to its evaluation. We assess the proposed system from three critical
perspectives: security, efficiency, and empirical performance.

First, in section 6.1, we provide a thorough security analysis to demonstrate that our novel modifications
do not compromise the protocol’s foundational privacy guarantees. Second, in section 6.2, we conduct
a theoretical efficiency analysis to quantify the computational and communication overhead introduced
by our enhancements. Third, in section 6.3, we present an empirical evaluation using a real-world
dataset, demonstrating the significant gains in recommendation accuracy and model convergence that
our system achieves.

Building on these results, we conclude in section 6.4 with a cost-benefit analysis, weighing the true
computational cost against the resulting accuracy. This will demonstrate that our enhancements lead
to a superior model, validating that our system is not only secure by design but also powerful and
efficient enough for practical application.

6.1. Security Guarantees
The security of our enhanced protocol is based on the same assumptions as the original protocol by
Kim et al. [24]: the honest-but-curious adversarial model and non-collusion between the Recommender
System (RecSys) and the Crypto-Service-Provider (CSP). In this model, parties follow the protocol
specification faithfully but may attempt to infer additional information from the data they observe. The
non-collusion assumption guarantees that the CSP and RecSys do not share their secret information
(cryptographic keys and masking values, respectively).

Our contributions, Data Centering and Vector Augmentation, are designed as enhancements that inte-
grate into the existing cryptographic protocol. In the following subsections, we analyze each modifica-
tion to prove that they introduce no new vulnerabilities and that the system’s original security guarantees
are preserved.

6.1.1. Security of Data Centering
Our data centering method modifies the rating upload phase to subtract the global mean µ from all rat-
ings. This is achieved through a two-step interaction: first, the CSP computes a mean on the masked
ratings and centers the data using this value. Second, RecSys homomorphically corrects for the influ-
ence of the masks on the centered data.

• CSP’s View: The CSP receives the set of masked ratings {(i, j, rij + σij)}, which is identical to
the data it would receive in the original protocol. The new operation it performs is computing the
mean of these values, which we denote as µ∗. Since all individual masks are randomly generated
and only known by RecSys, the computed value µ∗ reveals no information about the true mean
µ. Consequently, using µ∗ to center the masked ratings also leaks no information about the true

38
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centered ratings.
• RecSys’s View: RecSys receives an encrypted vector of the masked and centered ratings from
the CSP. It then computes a correction term, fσ, derived from the mean of its own secret masks.
By homomorphically subtracting this correction term, the final encrypted rating vector, enc(r′) can
be obtained. Throughout this process, RecSys only ever manipulates encrypted data. Without
the CSP’s secret key, it cannot decrypt the vector to learn the underlying grades. Therefore, no
new information is made available to RecSys.

In summary, the data centering modification reveals no new plaintext information to either party. The
security remains strictly dependent on the non-collusion assumption, which, if violated, would break
the security of the original protocol as well.

6.1.2. Security of Vector Augmentation
The vector augmentation method integrates student and course biases (bj , bj) by expanding the profile
vectors and enforcing constant values in specific positions.

• CSP’s View: The CSP’s primary new action is to overwrite specific components of the updated
(but still masked) profile vectors during the learning phase. Specifically, it sets (ui(k)

∗)d+1 = 2α

and (vj(k)
∗)d+2 = 2α. This action does not introduce a security risk. The value 2α is the public,

fixed-point representation of the constant ’1’, a part of the public model structure. The CSP
performs this overwrite on masked vectors, meaning it does not know the true values of the other
components (the latent factors and biases). Enforcing a public constant on masked data reveals
no new information.

• RecSys’s View: RecSys is aware that the protocol requires the CSP to reset certain vector com-
ponents. However, because the system uses a probabilistic encryption scheme, the resulting
ciphertexts for the constant ’1’ are computationally indistinguishable from the ciphertexts of any
other value. RecSys’s only action is to adjust its own secret unmasking terms to ensure that no
random mask is subtracted from these constant components—a procedural adjustment based
on public knowledge of the protocol, not a leakage of secret data. RecSys still only receives en-
crypted profile vectors from the CSP and cannot decrypt them to obtain any sensitive information.

In conclusion, the vector augmentation method is secure under the same assumptions as the original
protocol. The modifications do not introduce new information leakage, as they consist of procedural
adjustments performed on masked or encrypted data. This technique allows for the full biased Matrix
Factorization model to be computed within the encrypted domain without compromising the system’s
privacy guarantees.

6.2. Theoretical Efficiency Analysis
In this section, we analyze the computational and communication complexity of the original protocol
(introduced in Chapter 4) and compare it to our adapted version presented in Chapter 5. Since both
algorithms share the same asymptotic complexity in Big-O notation, such a high-level analysis is insuf-
ficient for a practical comparison. The protocol’s overall runtime is overwhelmingly dominated by its
cryptographic components; operations like homomorphic encryption and ciphertext multiplication are
several orders of magnitude more computationally expensive than simple plaintext arithmetic, making
the cost of all other steps negligible. Therefore, to provide a more precise and meaningful evaluation
of their relative efficiency, our analysis considers a detailed count of these dominant cryptographic op-
erations. Note that our analysis doesn’t include the initial setup phase which consists of generating
and distributing the variables, as its complexity will depend on the specific implementation and is a
one-time cost that is amortized over the entire learning process, making it non-dominant in practice.
The efficiency analysis is based on the following variables:

• d: the dimension of the latent profile vectors.
• M : the total number of known ratings in the datasetM.
• L: the number of available slots in a single HE ciphertext for data packing.
• n: the number of users.
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• m: the number of items.
• Kiter: the total number of iterations in the Learning Phase.
• |HE| and |AHE|: the bit-size of a single ciphertext under the FHE and AHE schemes, respec-
tively.

To simplify the notation in the complexity formulas, we define the number of ciphertexts required for
the main packed vectors as α := ⌈dM/L⌉ and for both of the aggregated gradient vectors as β :=
⌈dn/L⌉+ ⌈dm/L⌉.

Computational Complexity
The following tables present the total count of cryptographic operations required by each party. We
differentiate between Additive Homomorphic Encryption (AHE), used in the upload phase, and Fully
Homomorphic Encryption (FHE), used in the learning phase, as their performance can differ signifi-
cantly. This detailed breakdown allows for a nuanced comparison and can inform the selection of op-
timal cryptographic schemes for a given implementation. Tables 6.1 and 6.2 summarize these counts.
A more detailed step-by-step derivation can be found in Table 6.4.

Table 6.1: Count of Additive Homomorphic Encryption Operations per Party.

Operation Number of AHE Operations per Party
Users (Total) RecSys CSP

Encryption M M —
Addition — M —
Decryption — — M

Table 6.2: Count of Fully Homomorphic Encryption Operations per Party.

Operation Number of FHE Operations per Party
RecSys CSP

Encryption Kiter · (10α+ 2β) + 5α Kiter · (5α+ β) + α
Decryption — Kiter · (5α+ β)
Addition Kiter · (10α+ β) + α —
Scalar Mult. Kiter · (7α) —
Multiplication Kiter · (3α+ β) —

Communication Complexity
The communication overhead is also critical for evaluating the protocol’s practicality, as it is primarily
driven by the exchange of large ciphertexts. Table 6.3 summarizes the total data transferred over the
entire execution of the protocol, assuming the learning phase runs for Kiter iterations. The costs are
broken down by communication channel.

Table 6.3: Total Communication Complexity of the Protocol.

Channel Total Data Transferred
Users→ RecSys M · |AHE|
RecSys→ CSP M · |AHE|+Kiter · (5α+ β) · |HE|+Kiter · 2 scalars
CSP→ RecSys (α+Kiter · (5α+ β)) · |HE|+Kiter · 2 booleans

Comparison with Our Adapted Algorithm
The adaptation of the protocol to include mean and individual biases, as presented in Chapter 5, pre-
serves the overall protocol structure. All cryptographic steps of the protocol remain the same; the only
modification is an increase in the dimensionality of the profile vectors from d to d+ 2 to accommodate
the bias terms.

This change has a direct and predictable impact on the efficiency. As shown in the complexity formu-
las in Tables 6.2 and 6.3, the dominant costs are driven by the number of ciphertexts, which grows
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Table 6.4: Detailed Theoretical Efficiency Analysis of the Protocol.

Phase Step Party Computational Complexity Communication Complexity

Rating
Upload

4 Users M × AHE Enc M × |AHE| to RecSys
5 RecSys M × AHE Enc,M × AHE Add M × |AHE| to CSP
6 CSP M × AHE Dec, α× HE Enc α× |HE| to RecSys
7 RecSys α× HE Enc, α× HE Add —

Learning
(1 Iteration)

8 (Init) RecSys 4α× HE Enc —
9 RecSys α× (HE Mult, HE SM, HE Add) —
10 RecSys α× (HE Enc, HE Add) α× |HE| to CSP
11 CSP α× HE Dec —
12 CSP α× HE Enc α× |HE| to RecSys
13 RecSys α× (HE Enc, HE Add) —
14 RecSys 2α× HE Mult, 6α× HE SM, 4α× HE Add —
15 RecSys 4α× (HE Enc, HE Add) 4α× |HE| to CSP
16 CSP 4α× HE Dec, (4α)× HE Enc 4α× |HE| to RecSys
17 CSP β × HE Enc β × |HE| to RecSys
18 RecSys (4α+ β)× (HE Enc, HE Add) —
19 RecSys β × (HE Mult, HE Enc, HE Add) β × |HE| and 2 scalars to CSP
20 CSP β × HE Dec 2 booleans to RecSys (negligible)

proportionally with the dimension d. By replacing d with d + 2, the computation and communication
complexities increase by at most 2/d relative to the original cost (i.e., multiplicative factor (d + 2)/d).
Given that d is typically in the range of 10-100, increasing the complexities by 2/d represents a relatively
small percentage increase.

While this adaptation introduces a slight computational burden, wewill argue in the following section that
the inclusion of bias terms significantly accelerates model convergence. This can lead to a substantial
reduction in the required number of iterations, Kiter, potentially outweighing the modest increase in
per-iteration cost and resulting in a more efficient protocol overall.

6.3. Experimental Evaluation
Our theoretical analysis established that incorporating bias terms into the cryptographic protocol in-
troduces a modest and predictable computational overhead. This section now provides the empirical
counterpart to that analysis, designed to validate a central claim of this thesis: that the inclusion of
global mean and bias terms is a critical optimization that significantly enhances recommendation accu-
racy and accelerates model convergence.

While bias terms are a standard feature in many modern matrix factorization implementations, a rig-
orous, comparative analysis of their specific impact on convergence speed and final accuracy is sur-
prisingly scarce in the literature, particularly for models optimized with batch gradient descent. This
experiment is therefore designed to fill that gap by systematically quantifying the benefits of each com-
ponent.

To isolate the impact of these architectural improvements from the complexities of the cryptographic
protocol, we conduct our evaluation in the plaintext domain. This methodology is sound because our
chosen cryptographic framework, Homomorphic Encryption (HE), performs exact computations on en-
crypted data. The HE protocol guarantees that model performance is identical in both plaintext and
encrypted settings, unlike statistical privacy methods that operate by intentionally introducing noise.
This allows us to measure the performance gains with high confidence that the results translate directly
to the privacy-preserving implementation detailed in Chapter 5.

6.3.1. Methodology
This section details the empirical methodology used to quantify the performance gains from integrating
bias terms into a matrix factorization model. We systematically compare four model variants to isolate
the contribution of each architectural component.
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Models for Comparison
To systematically isolate the effect of each component (the global mean and the individual user/item
biases), we compare the performance of four distinct matrix factorization models. These models in-
crementally build from the standard algorithm used in the baseline protocol by Kim et al. to our fully
enhanced model, allowing us to precisely measure the independent contribution of each improvement.

1. MF-Base: The standard matrix factorization model, learning only user and item latent factors
(profiles). The predicted rating r̂ij for user i and item j is modeled as:

r̂ij = uT
i vj . (6.1)

2. MF+Mean: This model incorporates the global average rating (µ) as a baseline predictor, ac-
counting for the overall rating tendency in the dataset. The prediction is:

r̂ij = µ+ uT
i vj . (6.2)

3. MF+Biases: This model incorporates user-specific biases (bi) and item-specific biases (bj). The
user bias captures a user’s tendency to give higher or lower ratings than average, while the item
bias captures an item’s tendency to receive them. The prediction is:

r̂ij = bi + bj + uT
i vj . (6.3)

4. MF+Mean+Biases: Our proposed full model, which integrates all components. This is the com-
mon and powerful variant of matrix factorization in non-private literature. The prediction formula
is:

r̂ij = µ+ bi + bj + uT
i vj . (6.4)

By comparing these four variants, we can directly measure the performance contribution of the global
mean and the user/item biases, both individually and in combination.

Dataset
Given the lack of publicly available student grade datasets, we utilize the well-established MovieLens-100k
dataset [79] as a benchmark. This dataset is a standard in the recommender systems literature and
shares key characteristics with our target domain, such as a sparse user-item interaction matrix and
explicit ratings (analogous to grades). The dataset comprises 100,000 ratings on a scale of 1 to 5, from
943 users on 1682 movies.

To ensure a robust and unbiased evaluation, the dataset was divided into training, validation, and test
sets. We employed a user-stratified random split, allocating 80% of each user’s ratings to the training
set, 10% to the validation set, and the final 10% to the test set. This methodology prevents data leakage
and provides a realistic assessment of the model’s ability to generalize to unseen data for existing users.
A fixed random seed was used for all splits to ensure reproducibility.

Evaluation Plan and Metrics
To evaluate model performance, we selected two complementary metrics, the formal definitions of
which can be found in subsection 2.1.4. While both are important, they assess different aspects of the
system’s utility.

Our primary metric for measuring the practical success of the system is Normalized Discounted Cu-
mulative Gain (nDCG@10). We prioritize this metric because it directly reflects the real-world use case
of our system. A student typically chooses from a known, limited set of available courses each semester.
In this context, the quality of the ranked list presented to them is paramount. Unlike set-based metrics
such as Precision or Recall, which are useful for open-ended content discovery, nDCG@k specifically
evaluates the crucial ordering of recommendations. It rewards the model for placing the most promising
courses at the top of the list, which is the most faithful measure of the system’s utility to the student.
We use a cutoff of k = 10 to simulate a student reviewing a ”top-10” list of suggestions.

Our second metric is Root Mean Squared Error (RMSE). While nDCG evaluates the final user-facing
output, RMSEmeasures the underlying predictive accuracy of themodel’s grade predictions and serves
a critical role during the training and optimization process.
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The roles for each metric in our evaluation plan are therefore distinct:

• RMSE is used to guide model training and assess the final predictive accuracy. We minimize the
RMSE on the validation set during hyperparameter optimization, and then use the RMSE on the
test set to measure the final model’s generalization performance.

• nDCG@10 is used to assess the final ranking quality of the optimized models. It is computed
exclusively on the held-out test set, providing a definitive measure of real-world performance.

Hyperparameter Optimization
The performance of a matrix factorization model is governed by its hyperparameters—settings that
are not learned from the data but are configured before the training process begins. The choice of
these hyperparameters critically influences both the final accuracy of the model and the efficiency of
its training.

To conduct a fair comparison, one must find the optimal hyperparameters for each of the four archi-
tectures. A search focused solely on the best achievable accuracy, however, would be insufficient.
It would fail to test our hypothesis: that the inclusion of bias terms not only improves accuracy but
also significantly accelerates model convergence. We must therefore analyze the interaction between
predictive accuracy and training efficiency.

This leads us to frame the analysis as a multi-objective optimization problem. We aim to find the set of
hyperparameters that simultaneously minimize two competing objectives:

1. Validation RMSE: The lowest Root Mean Squared Error achieved on the validation set.
2. Epochs to Converge: The number of training epochs required to reach that best validation

RMSE, representing the point of optimal performance before overfitting begins.

The solution to such a problem is not a single ”best” set of hyperparameters but a set of optimal con-
figurations known as the Pareto optimal front. Each point on this front represents a configuration that
is non-dominated, meaning no other configuration is superior on both objectives simultaneously. Ana-
lyzing this front allows us to draw robust conclusions about each model’s performance trade-offs.

To automate the discovery of this front, we employ the Optuna framework [80]. Unlike exhaustive
grid search, Optuna performs a guided search where, based on the results of past experiments, it
intelligently proposes new hyperparameter combinations to test. A single trial in this process is defined
as one complete training-and-evaluation cycle:

1. Optuna selects a new set of hyperparameters from the defined search space.
2. A model is trained from scratch using these parameters, running for a maximum of 500 epochs

with an early stopping patience of 25. This patience mechanism is effective because batch gradi-
ent descent produces a very smooth, U-shaped validation error curve, making the optimal point
unambiguous.

3. Themodel’s performance (its best Validation RMSEand the Epoch at which it occurred) is recorded
and returned to Optuna.

This process was repeated for 700 trials for each of the four models. The search space for the hyper-
parameters was defined as follows:

• Latent Factor Dimension (d): Integer from 5 to 40.
• Learning Rate (η): Log-uniform float from 1e-5 to 1e-2.
• Learning Rate for Biases (ηbias): Log-uniform float from 1e-5 to 1e-2 (for relevant models).
• Regularization Strength (λ): Log-uniform float from 1e-4 to 50.0.

6.3.2. Hyperparameter Optimization Results: Pareto Analysis
The results of the multi-objective hyperparameter optimization are visualized in Figure 6.1. This figure
plots the Pareto optimal front for each of the four model architectures. The front itself—the boundary
line on the graph—represents the set of non-dominated solutions discovered, illustrating the limit of
performance for that architecture. This line shows the best achievable trade-off between validation
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RMSE (x-axis) and the epochs required for convergence (y-axis). A front is considered superior if it is
positioned lower and to the left, representing better accuracy achieved in fewer training iterations.
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Figure 6.1: Pareto fronts for the four models, showing the trade-off between validation RMSE and epochs to converge. The
shaded areas indicate the regions where each model is not dominated by any other.

The analysis reveals a consistent performance hierarchy among the different architectures:

• MF-Base: This model serves as the performance baseline. Its front is positioned in the upper-
right, indicating it is the least effective and least efficient option. It is almost entirely dominated by
the other architectures.

• MF+Biases and MF+Mean: Adding only biases (MF+Biases) or only the global mean (MF+Mean)
both offer improvements over the baseline. The mean provides a more substantial gain, shifting
the entire front towards better accuracy and faster convergence. Adding biases primarily accel-
erates convergence without improving the best achievable RMSE.

• MF+Mean+Biases (Proposed Model): This architecture dominates all other variants. Its Pareto
front is positioned significantly lower and to the left, proving it can achieve superior RMSE values
in far fewer epochs. To illustrate the advantage: our proposed model can match the baseline’s
best validation RMSE of 0.931 in only 15 epochs, whereas the baseline required 145 epochs.
This represents a 9.7x convergence speedup. Furthermore, this architecture claims the best
overall configuration found, achieving a validation RMSE of 0.903 in 97 epochs.

This analysis not only establishes the clear superiority of the full MF+Mean+Biases architecture but also
provides a principled method for selecting the most representative models for a final evaluation. For
this purpose, we selected the best performing set of hyperparameters (based on the lowest achieved
validation RMSE) from each of the four fronts. To explicitly quantify the trade-offs, we also included a
“fast” configuration of our proposed model, chosen to match the baseline’s best accuracy in the mini-
mum number of epochs. The hyperparameters for these five selected models are detailed in Table 6.5
and are subjected to a final evaluation on the held-out test set in the following section.
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Table 6.5: Hyperparameters for the models selected for final evaluation.

Model Type Dim (d) LR (η) Bias LR (ηbias) Reg (λ) Epochs
MF-Base Best RMSE 6 0.001137 — 0.5341 145
MF+Mean+Biases Best RMSE 32 0.005590 0.002467 14.11 97
MF+Mean+Biases Fast 37 0.009100 0.003141 3.634 15
MF+Biases Best RMSE 6 0.0009946 5.722e-5 1.411e-5 168
MF+Mean Best RMSE 5 0.007174 — 4.451 123

6.3.3. Evaluation on the Test Set
The models were then subjected to a rigorous final evaluation using our two key metrics: predictive
accuracy (RMSE) and ranking quality (nDCG@10). To account for performance variations from the
random initialization of the latent factor matrices, each of the five models was trained from scratch and
evaluated on the held-out test set 20 times. The performance metrics, averaged over these runs, are
visualized in Figure 6.2. Figure 6.3 visualizes the relative improvement of each configuration over the
baseline MF-Base model.
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Figure 6.2: Final performance on the test set, averaged over 20 runs.

The results presented in the figures lead to several key conclusions about the models themselves:

• Dominant Performance of the Proposed Model: The complete MF+Mean+Biases architecture
emerges as the top-performingmodel. It achieves a Test RMSE of 0.9213, a substantial 3.09% rel-
ative improvement over the MF-Base model’s 0.9507 RMSE (Figure 6.3). Furthermore, it obtains
the highest ranking quality with an nDCG@10 score of 0.9428, representing a relative improve-
ment of 0.42%. This demonstrates that the inclusion of both global mean and bias terms is an
effective strategy for maximizing predictive accuracy and ranking performance.

• A Synergistic Effect: The importance of combining the mean and bias components is illustrated
by the intermediate models. Including only the global mean (MF+Mean) provides a modest 0.47%
relative improvement in RMSE, while adding only biases (MF+Biases) did not provide a benefit,
instead showing a slight degradation in performance relative to the baseline. However, when used
together, they produce the 3.09% RMSE improvement, a gain that far exceeds the sum of their
individual effects. This highlights a powerful synergy where the global mean provides a stable
predictive base, allowing the bias terms to model user and item tendencies more effectively.

• Increased Model Capacity and Factor Specialization: A key insight from the hyperparameter
search (Table 6.5) is that the MF+Mean+Biases model achieves its optimal performance with a
significantly larger latent dimension (d = 32) compared to the simpler architectures (d ≈ 5 − 6).
This suggests a specialization of model components. By explicitly modeling the primary effects of
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Figure 6.3: Relative improvement in Test RMSE and nDCG@10 for each model configuration compared to the MF-Base
baseline. Positive values indicate better performance.

user and item biases, the architecture appears to ”free” the latent factors to focus exclusively on
capturing more subtle, higher-order interactions. Simpler models must conflate both tasks within
the factors, limiting their expressive power. This specialization would then explain why the full
model can effectively leverage a higher-dimensional space, increasing its capacity to learn, and
leading to superior predictive accuracy.

• A Clear Efficiency-Accuracy Trade-off: The Fast configuration highlights the practical value
of our approach. It achieves a 0.47% relative RMSE improvement over the baseline, matching
the MF+Mean model’s accuracy, while converging nearly ten times faster (15 epochs vs. 145).
However, this efficiency comes at a minor, quantifiable cost to ranking performance, with its
nDCG@10 score showing a 0.12% relative decrease compared to the baseline. This trade-off
suggests that the hyperparameters optimized for rapid convergence are slightly different from
those that perfect the top-10 item ranking, offering a valuable option for scenarios where compu-
tational cost is a primary constraint.

6.4. The True Cost of Accuracy
The preceding analyses have established a comprehensive case for our proposed enhancements. We
have demonstrated that they are secure by design (section 6.1), introduce a modest and predictable
theoretical overhead (section 6.2), and provide significant empirical gains in both accuracy and conver-
gence speed (section 6.3). A simple analysis might conclude here, asserting that these improvements
are always worth the minor increase in vector dimensionality.

However, a closer look at our hyperparameter optimization results (Table 6.5) reveals a critical nuance.
The true cost of the enhanced architecture is not merely the addition of two bias terms. To reach
their peak performance, the enhanced models require a significantly larger latent dimension (d). For
instance, the MF+Mean+Biases model found its optimum with d = 32, giving it a total operational vector
dimension of 34, whereas the baseline’s optimal was just d = 6. This discovery necessitates a more
sophisticated cost-benefit analysis than a simple ”+2” dimension comparison. While the architectural
advantage is evident, the crucial question becomes: Does this advantage hold up when measured
against the true total computational cost?

To answer this, we define a metric that approximates the total computational effort. This metric is
proportional to the product of the model’s operational dimensionality (d) and the number of iterations
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(K) required for convergence:

Total Effort ∝

{
K × d for MF-Base
K × (d+ 2) for MF+Mean+Biases.

(6.5)

Figure 6.4 plots this total effort against the Validation RMSE for every Pareto-optimal configuration of
the MF-Base and MF+Mean+Biases models from subsection 6.3.2. This provides a direct comparison of
the true computational cost required to achieve a given level of accuracy. The analysis uses validation
data, offering a direct view into the efficiency of the model’s learning process.
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Figure 6.4: Total computational effort vs. Validation RMSE for all Pareto-optimal configurations. Each point represents a
non-dominated hyperparameter set. The desirable region (low effort, low error) is the bottom-left. The shaded areas visually
represent the performance envelope for each model class, while the dashed line at RMSE=0.931 marks the best performance

achieved by any baseline configuration.

The graph highlights a sharp contrast in performance. The baseline models cluster above a clear
performance barrier, unable to breach a validation RMSE of 0.931, regardless of the computational
effort invested. In contrast, the enhanced models not only break this barrier, achieving higher accuracy
but also demonstrate superior performance across the entire computational effort spectrum. This leads
to two distinct conclusions depending on the optimization goal:

• For those seeking maximum performance: The enhanced model is the only choice. The
hyperparameter search could not find a single configuration of the baseline model capable of
matching the accuracy of the enhanced architecture. As Figure 6.4 shows, the red dots populate
a region of low RMSE that is entirely inaccessible to the blue dots, confirming the existence of a
hard performance ceiling for the baseline.

• For those seeking maximum efficiency: The enhanced model offers a more cost-effective
training process. At any given level of computational effort, the best-achievable RMSE from the
enhanced architecture is consistently lower than that of the baseline. This holds true across the
entire spectrum, from low-cost configurations (e.g., in the 300-1500 Total Effort range) to high-cost
ones, proving the enhanced architecture’s superiority when resources are constrained.

The enhanced architecture is not a marginal improvement but a fundamental replacement for the
baseline. We have demonstrated that its superiority holds even when accounting for its higher true
complexity—both the larger latent dimensions and the two additional bias terms. This dual advan-
tage is especially important in a cryptographic setting, where every operation is inherently expensive;
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the model’s faster convergence can deliver better results for less computational effort. Furthermore,
its higher predictive accuracy translates directly to more relevant and helpful course suggestions for
students. Therefore, these architectural enhancements are validated not merely as a theoretical im-
provement, but as a necessary and practical advancement for building a recommender system that is
powerful, efficient, and secure by design.



7
Discussion and Conclusion

7.1. Argument and Interpretation of Findings
A central challenge in educational technology is the tension between data-driven personalization and
the non-negotiable need for student privacy. This thesis argues that this is not an inescapable trade-off
but a technical challenge that can be met. We demonstrate that cryptographic methods can deliver
strong privacy guarantees without a significant penalty to predictive accuracy.

To do so, we designed and evaluated a course recommendation system using Homomorphic Encryp-
tion (HE), which guarantees that raw student data is never exposed to any party. Our system builds
upon the encrypted matrix factorization protocol of Kim, Kim, Koo, et al. [24] by integrating bias terms,
a standard technique for improving accuracy in non-private models. Our results show a significant im-
provement over this privacy-preserving baseline: the proposed model achieved a test RMSE of 0.9213
and an nDCG@10 of 0.9428. This represents a 3.09% improvement in RMSE, while also reaching the
baseline’s peak performance 9.7 times faster (see Figure 6.3). Furthermore, our approach consistently
outperforms the baseline across all levels of computational effort, as demonstrated in Figure 6.4.

7.1.1. The Contribution to Private Recommender Systems
In collaborative filtering, where accuracy gains are often incremental, this improvement represents a
significant advance. Our approach makes two key contributions:

1. Bridging the Performance Gap: Our model substantially narrows the performance gap between
private and non-private systems. By integrating bias terms directly into the encrypted protocol—a
crucial enhancement omitted by prior encrypted matrix factorization protocols—we achieve sig-
nificant performance gains. This integration drives our model’s improved test RMSE from 0.951
to 0.921, a substantial improvement in collaborative filtering contexts. To place this result in per-
spective, Table 7.1 includes several standard non-private benchmarks. It is important to note that
the exact performance of these benchmarks can vary based on factors like implementation and
hyperparameter optimization. Their purpose here is to demonstrate that our private approach
achieves an accuracy level that is firmly on par with, and competitive within the range of, stan-
dard non-encrypted methods. While more sophisticated models exist, establishing a competitive
benchmark with a foundational method like biased Matrix Factorization is a critical prerequisite for
privacy-preserving research in this domain. Its compatibility with homomorphic encryption primi-
tives makes it the ideal starting point. Our results demonstrate that well-designed cryptographic
systems can genuinely compete with non-private alternatives.

2. Establishing a New Benchmark: This work establishes a new practical benchmark for privacy-
by-design recommender systems by addressing key limitations of existing approaches. Unlike
Differential Privacymethods, our approach avoids inherent accuracy degradation [20]. Compared
to encrypted neighborhood-based methods, we achieve superior accuracy on sparse data [81].
Most importantly, we outperform previous encrypted matrix factorization protocols by incorporat-
ing the bias terms they omitted [23], [24].
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Table 7.1: Summary of Results. Our private, biased MF model shows a significant RMSE improvement over the private
baseline and is competitive with standard non-private benchmarks (values from Hug [82]) on the MovieLens-100k dataset.

Category Algorithm Test RMSE
Private Models (This Thesis) Baseline (Kim, Kim, Koo, et al. [24]) 0.951

Biased MF (Ours) 0.921
Non-Private Benchmarks Biases Only 0.944

Biased MF (SVD) 0.934
Neighborhood-Based (k-NN) 0.931

7.1.2. Uncovering Latent Aptitude
As introduced in subsection 5.3.3, an additional strength of our model is the conceptual shift it enables.
By decomposing the prediction into baseline estimates (µ, bi, bj) and an interaction term (uT

i vj), the
system can answer two distinct and valuable questions:

1. ”In which course am I likely to get a high grade?” This is answered by the full prediction, which
is dominated by general popularity and baseline factors.

2. ”For which course do I have a unique aptitude?” This is answered by the latent interaction
term (uT

i vj) alone.

This second component serves as a proxy for the latent compatibility between a student and a course,
independent of that course’s average difficulty or the student’s average performance. It isolates the
unique, personalized affinity. This transforms the recommender from a simple grade optimizer into
a tool for academic discovery, capable of surfacing courses and fields where a student has a hidden
talent, guiding them toward more fulfilling academic paths they might otherwise never have considered.

7.2. Limitations and Future Directions
While the findings are promising, they were established under controlled conditions. A critical appraisal
of the study’s limitations is essential for contextualizing the results and defining a clear trajectory for
future inquiry. These limitations can be divided into methodological choices and architectural gaps in
the protocol.

7.2.1. Methodological Limitations
The first limitation is the use of the MovieLens-100k proxy dataset. While a standard benchmark, the
dynamics of movie ratings may not perfectly mirror those of student course selection and performance.
A definitive validation of our model requires testing on a real-world educational dataset to confirm its
effectiveness in the target domain.

The second limitation is the evaluation in plaintext. While this methodology is valid for demonstrating
the algorithmic superiority of our approach, it does not capture the full picture. The numerical results
do not carry over perfectly to the encrypted domain due to the use of fixed-point arithmetic, which in-
troduces small precision errors. However, as shown by Kim, Kim, Koo, et al. [24], these errors can be
made negligible with appropriate parameter selection. A full-stack deployment is still required to bench-
mark the system’s practicality, accounting for the considerable engineering challenges of cryptographic
parameter optimization, computational overhead, and network latency.

7.2.2. Architectural Limitations
We have also identified two architectural limitations, partially inherited from the foundational protocol,
that persist in our design and should be addressed in future work:

• Lack of Gradient Normalization: In Batch Gradient Descent, it is standard practice to normalize
the summed gradient by the total number of ratings to ensure the effective learning rate remains
stable as the dataset grows [83]. The current protocol does not perform this normalization, a
feature that is important for any adaptive, real-world system.

• Single Learning Rate: Our plaintext hyperparameter optimization (Table 6.5) found that the best-
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performing models used different, and often smaller, learning rates for the bias terms compared to
the latent factors. However, the cryptographic protocol in its current form supports only a single
learning rate for all parameters. This implies that a direct implementation of the cryptographic
protocol would likely not achieve the optimal test RMSE of 0.9213 reported in our evaluation.
A next step is to modify the protocol to support separate learning rates, allowing the privacy-
preserving model to realize its full, demonstrated potential.

7.2.3. Future Research
Addressing these limitations points toward a clear path for future research. The immediate priority is
to implement the architectural improvements (gradient normalization and separate learning rates) and
validate the complete system in a real-world educational setting. Such a study should be designed not
merely to confirm performance but to test the novel hypotheses enabled by our model:

1. Does the incorporation of high school academic records provide a statistically significant improve-
ment in mitigating the cold-start problem for first-year students?

2. Is there a demonstrable correlation between a high latent affinity score (uT
i vj) and qualitativemea-

sures of student success, such as course engagement, long-term interest, or overall academic
satisfaction?

These real-world validation studies represent the immediate future for this line of educational technol-
ogy research. In parallel, the broader field of privacy-preserving machine learning continues to address
the long-term ”grand challenge”: closing the performance gap with non-private, state-of-the-art neural
architectures like Graph Neural Networks or Transformers [84]. Adapting these complex models to
the HE framework remains a significant challenge due to the high cost of encrypted non-linear opera-
tions [85], but it is a path that will be informed by the validated success of fundamental models like the
one presented in this thesis.

7.3. Conclusion
This thesis began with the tension between personalization and privacy in education and concludes
with a demonstration that this tension can be productively resolved. By developing and validating an
enhanced, privacy-preserving matrix factorization model, this work has shown that it is possible to build
a recommendation system that is both effective and secure by design. The core contribution is not just
an algorithm, but a proof of concept: that we can engineer systems that reflect our values. Moving
forward, the goal of this research field should not be limited to creating tools that are merely intelligent,
but to building a new generation of educational technology that is demonstrably respectful of student
autonomy, worthy of institutional trust, and fundamentally committed to safeguarding the privacy of
those it is designed to serve.
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