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Introduction

1.1 Reason for the research

To date, cybernetic models are well capable to capture dynamic multimodal human manual-control
behavior in stationary and time-invariant situations, where the human operator is assumed to be sta-
tionary and time-invariant too (Lone and Cooke, 2014; Grant and Schroeder, 2010; Mulder et al., 2006).
In reality, however, the human operator is not only characterized as a multimodal controller, but also as
an adaptive and learning controller “capable of exhibiting an enormous variety of behavior” (McRuer
and Jex, 1967) varying over time and being nonlinear. In this context, adaptive refers to the behav-
ioral ability of changing performance in new situations, while learning refers to the behavioral ability of
changing performance in successive encounters with the same situation.

It is a desire to have system-theoretical models available that are capable to capture both the
adaptive and learning characteristics of the human operator’s manual-control behavior in the various
situations (Young, 1969). For instance, it would be interesting how novice and experienced human
operators manage themselves to respond differently to sudden changes in important task variables
(zaal and Pool, 2014). A recent comprehensive research project, reviewed by Mulder et al. (2013),
has shown that studying the time-varying and nonlinear characteristics of human-operator behavior
requires an extension of the existing identification and modeling techniques.

As noted by Pool (2012), some argue that in the future, due to significant advances in automa-
tion technology, the role of human operators for skill-based manual-control tasks will diminish and that
there will be only rule-based and knowledge-based supervisory-control tasks left for them to do. Sub-
sequently, Pool refers to the still-valid statement by Young (1969) which reads that “man’s adaptability
as a controller is frequently cited as the primary reason for incorporating him in the complex vehicle
control loops.” In the near future, it is virtually impossible to imitate this ability by some sort of au-
tomation system. The need for ever-increasing levels of safety and economic efficiency in practically
all socio-technical domains involving manual control, leads to the need to advance training methods
and to further improve human-machine system performance. It is for these reasons that the role of the
human operator as a manual controller ought to be investigated further.

1.2 Aim of the research and research design

This thesis aims to provide an overview of the conducted research for the thesis project focusing
on the further characterization and understanding of adaptive human-operator behavior in manual-
control systems. A cybernetic approach is taken which will be based on time-varying autoregressive
exogenous (ARX) models, to be estimated using a recursive least-squares (RLS) algorithm equipped
with forgetting factor. The application of compensatory tracking tasks with time-varying controlled-
element dynamics will serve as a stepping stone toward meeting the challenge.

Research objective  The research objective of the thesis project can be formulated as follows.
To further characterize and understand adaptive compensatory manual-control behavior, by
implementing an identification method based on time-varying ARX models, which requires
no prior definitions of specific human-operator parameter functions.



2 1 Introduction

Research framework  In order to reach the research objective, consecutive steps need to be taken
during the research. A high-level schematic research framework representing these steps is drawn
in Figure 1.1. An analysis of compensatory manual-control theory, together with a literature survey
on the state-of-the-art in time-varying human-operator identification and on system identification, plus
preliminary research, consisting of mathematical implementations and offline simulations, will lead to
the research perspective, i.e., the identification scheme. The application of this research perspective
to the research object, i.e., the human operator, intends to achieve the research objective.

Theory on compensatory
manual control

Theory on human-

operator identification
Identification scheme
Theory on system 7Y —
identification N Further charact(_arlzatlon
v and understanding
Preliminary research Human operator
T 7507ur(?esi - - prﬁic&ioﬁ - 7R7ese7argh oibjeictigei
L e - - - - = = = 4 L —m — e e — = |

Figure 1.1 Research framework for researching the adaptive human operator in compensatory tracking tasks.

Research questions  Based on the research framework, a set of research questions can be formu-

lated. The central question that drives the thesis project asks the following.
To what extent is an identification method based on time-varying ARX models, which re-
quires no prior definitions of specific human-operator parameter functions, able to quanti-
tatively describe adaptive compensatory manual-control behavior, due to transitions in the
controlled-element dynamics?

To provide an answer to this central question, the following subquestions are addressed.

* What are the fundamental considerations in human-operator modeling in compensatory tracking
tasks?

« What are the likely time variations to be introduced in simulating manual-control behavior for both
slow and fast parameter transitions in the controlled-element dynamics?

* Which preprocessing steps are needed for transforming human-operator input-output data to
model inside the operator’s frequency range of interest?

* What are the relevant criteria for selecting the appropriate ARX-model orders so that the adaptive
human-operator behavior due to parameter transitions in the controlled-element dynamics can
be captured?

« What are the relevant criteria for assessing the performance of the resulting time-varying ARX
models in relation to the input-output data, to prior knowledge, and to their intended use?

* What are the promising RLS forgetting-factor tuning techniques to capture human-operator be-
havior for both slow and fast parameter transitions in the controlled-element dynamics?

< Which verification and validation procedures should be employed to analyze the robustness of
the proposed identification method to different intensity levels and realizations of remnant?

» To what extent are other time-varying identification methods in development able to quantitatively
describe adaptive human-operator behavior compared to the proposed identification method?

Research subgoals  From the above subquestions, the following research subgoals are set. These
need to be accomplished in order to reach the research objective.

« To perform a literature survey on compensatory manual control, methods for estimating time-
varying ARX models, other methods in development for time-varying human-operator identifica-
tion, and related verification and validation procedures.

» To set up compensatory tracking task simulations using software in which time variations can be
applied to both the dynamics of the human operator and the controlled element.

« To set up preprocessing steps to subject human-operator input-output data sets before present-
ing them to identification algorithms.

H.A. van Grootheest MSc thesis



1.3 Thesis’s structure 3

« To determine suitable ARX-model orders so that typical human-operator adaptations in compen-
satory tracking tasks can be described based on a selection criterion.

 To decide on an assessment criterion for evaluating the performance of time-varying ARX models
in relation to the input-output data, to prior knowledge, and to their intended use.

« To implement and to tune an RLS algorithm equipped with forgetting factor so that human-
operator behavior can be described for both slow and fast parameter transitions in the controlled-
element dynamics.

< To analyze and to verify the capability of the novel time-varying ARX-model identification method
for capturing time-varying human-operator behavior by simulating different intensity levels and
realizations of remnant.

« To validate the novel identification method by gathering and analyzing real time-varying experi-
mental manual-control data from a fixed-base simulator operation.

The theoretical basis of the thesis project work to be undertaken is as follows. In order to meet
the external goal, i.e., the further characterization and understanding of adaptive human-operator be-
havior in compensatory tracking tasks, a cybernetic approach will be adopted. The internal goal,
i.e., the implementation of an identification method based on time-varying ARX models, is attempted
to be achieved by using the concept of system identification. In this research context, cybernetics
studies the fundamental properties of human-machine interaction centered around information used
for manual control (Mulder, 1999). System identification can be described as the process of build-
ing mathematical models of dynamic systems from observed input-output data (Ljung, 1999). In this
project, the cybernetic approach consists of two stages:

1. the analysis of the compensatory tracking task with time-varying controlled-element dynamics to

be completed by the human operator;

2. the capture of the time-varying manual-control behavior characteristics in a system-theoretical

model.
It should be emphasized that the resulting identification method will just serve as a tool for the further
human-operator characterization and understanding. However, in order to investigate the application
possibilities of the time-varying ARX models, a strong emphasis is put on the mathematical develop-
ment and the low-level implementation of the identification scheme.

The research objective will be facilitated by drawing on TU Delft's Control and Simulation chair’s
knowledge of and experience with ARX models for human-operator identification. Because the accu-
racy of the identification method should be evaluated properly before using it in laboratory experiments
or real-life applications, extensive implementation testing with offline simulations is required. Real
experimental manual-control data will not be used until the identification method has realized its full
potential. The scope of the research project is limited, due to time constraints, in the sense that it
only focuses on compensatory tracking tasks. More specifically, single-axis target-following tasks are
considered with different time variations in the parameters of the controlled-element dynamics and with
different levels of remnant intensity.

1.3 Thesis’s structure
This thesis is structured as follows.

« Part | contains the scientific paper with the most relevant information and results on the conducted
research.

» Part |l lists the chapters and appendices that are related to the preliminary work. Chapter 2
critically surveys the existing knowledge regarding adaptive human-operator identification. It lists
some fundamentals on compensatory manual control, addresses the relevant research fields re-
quiring further investigation of manual-control behavior, discusses the different approaches on
time-varying human-operator identification, and identifies the knowledge gap and the information
needed to fill that gap. From Chapter 3 on, a more mathematical approach is taken. In Chapter 3,
a setup of the compensatory manual-control model is given. Next, this chapter gives parametric
models for both the controlled-element and human-operator dynamics. It also compares different
time variations to be introduced in these dynamics. The setup of the identification framework is
described in Chapter 4. It outlines the identification loop, explains the proposed identification
method, provides a description of ARX models, and highlights the least-squares parameter esti-
mations. A preliminary simulation analysis, conducted with The MathWorks, Inc.’s MaTLAB® and
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1 Introduction

SiMULINK® R2016b, is presented in Chapter 5. The further research proposal for the remainder
of the thesis project is described in Chapter 6. Lastly, conclusions are drawn in Chapter 7.
« Additional results that are not documented in the scientific paper can be found in the appendices

in Part 1.
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|dentification of Time-Varying Manual-Control
Adaptation with Recursive ARX Models

H. A. van Grootheest, D. M. Pool, M. M. van Paassen, and M. Mulde

Abstract—The time-varying adaptation ability of human op- dynamics [2], [6]. For these variables, substantial andhligig
erators in basic manual-control tasks is barely understood. noticeable adaptation changes are expected. Many studies s
Most identification methods do not explicitly take into account it jnvestigating single-axis compensatory control taakd
any time variations. An identification procedure based on both based th 1k del 161 bearing i
batch and recursive autoregressive exogenous (ARX) models@'€ Dased on the well-known Crossover mode [6], bearing in
is presented for capturing the operator's controlled-element Mind that extensions to multiple axes of control or even the
adaptation in compensatory tracking tasks. The operator’'s time usage of other classes of inputs to the HO should not pose
delay was assumed to be constant and estimated beforehandfundamental difficulties [4]. Previous investigations reakear
Conditions with constant controlled-element dynamics, matching that, before using a novel identification method in labasato

recent experimental work, and gradual and sudden transitions - t LLlife tasks. it hould b o
in the controlled-element dynamics were considered. This study experiments or real-lite tasks, 1ts accuracy shou evexal

introduces a procedure to fine-tune forgetting strategies fortiese  thoroughly by means of Monte Carlo simulations [7]-[9]. In
different conditions and for different remnant intensities. Both addition to task variables, manual-control behavior ddpam
the use of a constant scalar forgetting factorA and a constant a myriad of other factors, e.qg., suffering fatigue or aliers
forgetting matrix A, containing separate forgetting factors for in motivation are directly related to the human operator.

each ARX-model parameter, was analyzed. Batch ARX-model U v, th fact | d togeth i
identifications applied on conditions with constant dynamics, sually, these factors are lumped together as remnantigaki

indicate that a high bias results when the operator’s remnant is iNto account different remnant intensities.
not coupled to the linear operator dynamics. By means of Monte  Literature shows that different approaches have been taken
Carlo simulations, an optimal forgetting factor is found for all  to mathematically model time-varying manual-control heha
conditions. For the human-operator model considered, the usefo . |qengification using wavelet transforms [10], [11] istn
a forgetting matrix did not result in an improvement over the use o . e
of a scalar forgetting factor. An evaluation of real experimental mature yet and very sensmv_e to HQ remnan.t. The 'd‘?m'f'?a'
manual-control data shows that the method has potential to tion method based on genetic maximum-likelihood estinmatio
capture the operator's adaptive control characteristics. [8] is less sensitive to remnant and can provide accurate
Index Terms—ARX model, forgetting factor, human operator, estimations, but requires restrictive definitions aboutvho
manual control, recursive least squares, time-varying system certain parameters will change [12]. Recently, the vigbibif
identification. linear parameter varying (LPV) predictor-based subspadee-i
tification was assessed [13]. To study the human-in-thp-loo
|. INTRODUCTION problem, this framework requires precise scheduling fonst
UMAN manual-control behavior inherently varies oveRRecursive identification methods, however, are beneficial i
p%{it they are able to analyze the evolution of parameters

time, across different situations, and between operato i Th track ti ina d o |
Identification methods have been developed that are ableQ}F" IMe. They can even frack ime-varying dynamics in rea

describe the dynamic characteristics of human operatd@s)H tlmet, .€., Onlmsl'_sm't'?l r(.atf]ults n. [14]d mzil;]ef the t:_ecu&m
in skill-based manual-control tasks [1]. These are, how\/thL:eas -squares ( ) algorithm equipped with forgettingda

mostly restricted in their use to cases where the control He-Promising candidate to consider. No previous study has

havior is assumed to be time invariant. A Iong-standingréesi'nveStigated in detall the tuning of this type of algorithor f

is to have control-theoretic models available that are Ictaapathe identification of manual control.

of capturing both the adaptive and learning charactesisifc In manual-control cybernencs,. very few StUd'.e s have yet
manual-control behavior [2]-[4]. State-of-the-art cyletics attempted to make use of recursive autoregressive exogenou

N X) models. In contrast to autoregressive moving average
cannot explain, in depth, how HOs adapt themselves to co .
with control-task transitions. Rapid advancement of unde xogenous (ARMAX), output-error (OE), or Box-Jenkins (BJ)

standing how humans interact with dynamic control systerﬁ%c’del structures, the structure of ARX models allows direct

requires the further development of time-varying iderditicn Inear regres.smn.e_stlmauon. This convenience 1S paatibu
methods [5]. relevant in identifying manual-control behavior as thelrea

: e . . is of infinite order. This study aims to extend the
Most research on identifying time-varying manual-contrd] oce>> 1S 0 . : T
fying ying rks in [9] and [7] with recursive estimation, i.e., to tatke

behavior focuses on induced changes in the task variabYA%X del struct dt vel timate th del
and, in particular, on transitions in the controlled-elet(€E) -modet structure and 1o recursively estimate the mode
parameters using RLS. Contrary to [12], this study opts to se

The authors are with the Section Control and Simulation, Bept Up an identification method able to capture time variations i

of Control and Operations, Faculty of Aerospace Enginegribelft manyal-control behavior without making explicit assurop$
University of Technology, 2600 GB Delft, The Netherlands- (e h th ill | ti
mail:  H.A.vanGrootheest@student. TUDelft.nl;  D.M.Pool@elit.nl; ©ON NOW these will evolve over ume.

M.M.vanPaassen@TUDelft.nl; M.Mulder@TUDelft.nl). This paper investigates the use and feasibility of a reeairsi
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Fig. 1. Single-axis compensatory manual-control task witletvarying dynamics. (a) Compensatory displayt) acts as stimulus. (b) Block diagram.

ARX-model identification method for capturing time-vargin dynamics (i.e.,1/s <+ 1/s%). Convenient functions to intro-
manual-control adaptations. RLS algorithms equipped withduce different types of time variations in a parametér) are
constant scalar forgetting factor and a constant forggttim- sigmoids:

trix are considered. To ensure the robustness of the idemtifi p(t) = pi + _ Py —bhi )
tion method, a Monte Carlo simulation analysis with= 100 14 e~ Glt—ta)

replications is performed, considering different remrfdter  The initial and final parameter values are setzyand py,
orders {n = 1-4) and remnant intensity levels (0-30%, imespectively. Fig. 2 clarifies the tuning of the maximum rate
increments of 5%). The emphasis is placed on identifying tlx transitionG and the timet;; at which this change happens.
operator’s adaptive responses in a compensatory tracksig tFor all G, p (ta;) equalsp; + 2. Gradual transitions are
when faced with gradual and sudden transitions in the Gibtained for low values ofi. AroundG = 10 s, the sigmoid
dynamics, as studied by Zaal [12]. For reference, the qualiélready approaches a step function.

of the obtained results is explicitly compared with batch

(i.e., nonrecursive) ARX-model estimation of the operator ‘ Tnsiten
responses to constant CE dynamics. [ N region
The paper is structured as follows. The compensatory l
manual-control task is described in Section II. Section lll =~
outlines the ARX-model identification approach. The setfipo =

the Monte Carlo simulation analysis is given in Section IV. —— G=05s" ||
Section V provides example results. An evaluation of the l
identification method on real experimental manual-cortdeth .
is presented in Section VI. Section VII discusses the identi
fication scheme and its limitations. Conclusions are drawn i
Section VIII.

G =100 ¢ T Py

Fig. 2. Sigmoid-function variation witlds.

II. COMPENSATORYMANUAL-CONTROL TASK

Based on research by Zaal [12], this study concentrates gn
the single-axis compensatory manual-control task shown in } . . .
Fig. 1. The HO, modeled a&y;o (s,t), observes and acts, A suitable HO model for the time-varying CE dynam|cs_
with a control outputu (), upon the errore (t) between a to pe controlled [12], based on the precision model [15], is
target f, (¢) (e.g., a multisine) and the output(¢) of the defined by:

CE dynamicsH¢g (s,t). The HO dynamics consist of deter- Equalization Limitations

ministic response${ 5o, (s,t) and remnant: (¢) accounting . o

for control nonlinearities( [6]). Changes oveE 2ime in the CE Huo, (s,t) = Ke (4) [T (t) s + 1] e Hyum (5), - (3)
dynamics require control-strategy adaptations in the HO [2with:

Human-Operator Dynamics

w?

nm 4
82 4+ 2CnmWnmS + w2, )

Hnm (5) =

A. Controlled-Element Dynamics . . . o .
. ) Equation (3) is split into equalization dynamids,, (s,t)

In [12], the following second-order CE dynamics were takegng operator limitations, which include the neuromuscular

for analysis, which parametrically approximate many dyitamgynamicsH,,,, (s). The equalization parameters are the error

control systems [6]: gain K, (t) and the lead-time constafit, (¢). The limitation
K. (t) parameters are the time delay, the natural frequency,,.,,
Hep (st) = (1) and the damping ratid@,,,,, which are assumed to be time

s (s +wo (1) invariant [12]. If the HO’s equalization-model structure(i3)

The CE parameters are the control g&ip (¢) and the break is used and the pure response to the error ¢ét¢ has to be
frequencyw, (t), which can both vary in time. Around; (¢) determined, an ambiguity arises betweEp (t) and Ty, ().
the CE dynamics shift between single- and double-integratdn equivalent alternative parametrization i, (s, t), easing



identification [13], can be obtained with the error-ratengaiplays a central role. For the input-output data{sett) , v (¢)},

K; =K. (t) Ty, (¢): it is defined as:
Heq (s,8) = Ko (£) s + K. (t) ) ¢O=lult-1) —ult=2) - —ult=na)
e(t—mng) e(t—nr—1) - e(t—n)"
I1l. ARX-M ODEL IDENTIFICATION (10)
A. ARX-Model Structure The least-squares methods and their implementation can be

: : : : explained as follows.
Transfer-functions models with a rational polynomial stru T . .
ture provide high flexibility in describing the HO dynamics. 1) OLS Estimation:From the input-output data set consist

) g . SR ing of N samples, a regression matrix and output vector
Computationally efficient polynomial estimation is offdrby ugshould be c?onstructe?:i from () and u (£) resppectively.

the ARX-model structure. Fig. 3 represents this structurfer1 order to consider only known inbut-outout data. rearesso
which is equivalent to the HO-model structure in Fig. 1. The y P P » €9

process dynamic Ag((q) relate e (¢) to u (¢). The disturbance %) (t)_ cannot be fully constructed at instants less than th_e criti-
: . Alg o . . _ cal instantk, = max (n, + 1,np + ny), unless assumptions
signal v (¢), obtained by filtering the white-noise signa(t)

ina disturb q icsl  is similar to th , are made. OLS estimate#®™S can be obtained using QR
using disturbance dynamiCgygy, IS simiar to the remnant ¢, .7 ation provided thad is full rank [16].

signal ?1(75): The coupling' of the process and disturbance 2) RLS EstimationThe RLS algorithm is provided by (11)
dynamics is a shortcoming of the ARX-model structurg, 1) [16]. By adjusting the gain vectdt (t), the prediction
H_owever, in practice, the ease of estimation outweighs ”E?rora(t) betweenu (¢), i.e., the observed output at tinte
disadvantage significantly. _ and i (t), i.e., the prediction ofi () based on observations
Denoting ¢ as the discrete-time shift operator, the AR){Jp to timet — 1, can be minimized. The computation Qf(¢)

model's difference equation is: makes use of the scaled covariance marii).

A(Qu(t)=B(q)e(t)+e(t) (6) 0(t)=0(t—1)+K (t)e(t) (11)
with the output and input polynomialé (¢) and B (¢), having e(t) =u(t) —a(t) (12)
ordersn, andn;, — 1, respectively: alt) = o7 (t) 0 (t—1) (13)
Alg)=1+ag '+ +anqg " @) K (t)=Q(t) ¢ () (14)
B(q)=(bo+big™" + -+ bag ) g™ (8) Q1) = P(t—1) (15)
A(t THP(t—-1 t
The integersn, andn; set the number of parameteds for P((t)jlgj ) P ) ®)
i > 1 andb; for j > 0, respectively. The adjustable parameters P(t)=——-—=* (I — K (t) " (t)) (16)
are thus: A(t)
T The design variable of the RLS algorithm is the forgetting
0=la1 az - an, by b - by, ©) factor A (t) € (0, 1), which assigns less weight to older mea-

The integern, models a discrete input delay, leading tgurements and, more importantly, affects the va_triano(é(o)‘._ _
exponent shifts inB (¢). To ease notationy) = ny + ny, — 1 In essence) (t) sets the trade-off between noise sensitivity

can be used. Ifn; is zero, parameteb, provides direct (€. A(?) close to 1, slow adaptation, and low variance in
transmission. 0 (t)) and tracking ability (i.e., lowered (¢), fast adaptation,
and high variance ird (t)). Numerous strategies exist for
e(t) T implementing and tuning the forgetting strategy. Partidyl
— ¥ A9 in the area of research of manual-control cybernetics, it is
essential to look for the simplest possibility of making esti-
v () mators reliably adaptive, within a rigorous framewdrk.7].
c® | Bl@ LY+ u(t) Hence, a conservative approach is taken here. Only constant
A(9) forgetting factors\ (¢) = A are used. A scalar forgetting factor
A and a forgetting matrixA are considered. The latter may
use different\ values for different parameters, with possible
different timescales of variations [18]. For the parameéaator
6 in (9), A is defined as:

Fig. 3. ARX-model structure.

B. OLS and RLS Estimation

) —1/2
As the ARX-model structure allows the application of linear * = 4128 (/\‘“ 1 Aazs o Aang s Aboy Abis- )‘b"b) (17)
regression [16], ordinary least-squares (OLS) and reeexsilt is a diagonal matrix with inverse square roots of forgeti

least squares (RLS) estimation of the parameter vécto9) factors matching specific parameters. When ugingl5) and
is straightforward. OLS estimation acts in batch mode, &hi{16) are changed into:

RLS estimation updates the parameter estimation for eagh ne _
i X AP(t—1)A
measurement sample that becomes available, and is, therefo Q) = = (18)
. - ) . . 1+ T () AP (t—1)Ap (¥)
able to track time variations with appropriate use of faiiggt ha
In both least-squares estimations, the regression vectoy P(t)=AP(t-1AI-K(t)¢" (1) (9)



This ensures that all entries (¢ — 1) are weighted properly, HO model. Then model order reduction techniques should be

e.g., ifn, =n, = 2 (omitting (¢ — 1) for readability): applied. It means that a nonlinear optimization problenetas
- p P P, Py 7 on a certain frequency-domain criterion should bg solved.
= 21172 210 e The poles of (21) and (22) are mapped according e*s.
P)‘“l VA A, \//\Mb)‘bo \/)‘alg\bl For the mapping of zeros, such an expression does not exist.
ai,a2 az az,00 a2,01

From (23) it can be observed that the HO’s neuromuscular
APA = |V Aay Aay Aag \//}(;z)‘bo VAas b, parameters are only related to the ARX model’s output poelyno

21,50 Ly bo il —Thob mial A (q). Inspecting again Fig. 3, the ARX-model estimation
VA Aby v/ Aaz Mg Abo V Abo A, thus compromises between the estimating these neuroranscul
21,01 L Do by b1 parameters and the remnant characteristics udifg).
LV Aa e VA e Vs, Aoy Methods are available to capturgas fractional delay [20],

(20)  however, this would mean that extra parametgrandb; are

As only constant forgetting factors are considered, old needgd. The study aims t9 identify tlme-vgrylng CE adapta-
measurements are discounted exponentially [16]. A measu#gns in the HO, as unambiguously as possible. Therefare,
ment that isN, = 1/(1 — \) samples old has a weight equafind n, are both flxed_ to _2 and, is m(_)delgd as an integer
to ANo ~ e~! ~ 37% times the weight of the most recenfnu“_',ple of the samphng interval’s, taking into account the
observation. The memory horizoN, is easier to interpret additional ZQH u_n_lt—sgmple delay._ . . .
than the value of, e.g., if A — 0.9375,N, equals 16 samples. From an identification perspecnvg, time vangtlons in the
Alternatively, denotindgl’s as the sampling time in seconds, dnput-output da}ta are b_est captured if the sampling tiés .
memory horizon is expressible in seconds:= T, /(1 — \) as low as possible. It might be, however, that the ARX model’'s
e.g., if T, = 0.01 s and\ = 093757, equais 0 16 s " transfer function frome (¢) to w (t) cannot properly explain

e ' ' 0 ' ) fhe HO remnant characteristics. Typically, there are noise

The RLS algorithm is completed by specifying the initiad_ wrb i the dat b the . £ int A
parameter estimaté,, and the initial scaled covariance ma- ISturbances in he data, above ne frequencies of Interes

trix Py (typically set equal t@I, with ¢ a positive constant). Then, a remedy is o decimate the Input-output d"%ta [7]"[15]
The actual covariance matrix of the parameters, iR.(t), To circumvent the issue qf decrgased resolutlon.ln camgurin
can be obtained by multiplyind® (t) with o2 (t) /2, where the integer “"?e delay, the mqu signallt) can be shn‘tgd W.Ith
o2 (#) denotes the variance of(t) [16, pp. 381-382]. Similar the assumed interval step$ of time delay before decimating.

as described in Section 11I-B1, if only known input-outpuaita t_f'Futr.thermotr)?, It shou!g bednﬁted th.‘it ghetcl?jeéj—ll)oop iden-
is considered, RLS estimation starts at instant lication problem considered here will beé tackied by means

of the direct identification approach. In [21] it was foundith
the direct identification approach with ARX models is able
C. HO Model and ARX Model to provide more accurate estimates in the frequency range of
As shown by Hess [19], the discrete-time transfer functiditerest for manual control than the indirect approach.deen
G (z) of the continuous-time HO-model structure in (3)closed-loop identification issues are not explicitly taketo
without consideringr., and assuming zero-order hold (ZOH)account.
discretization would be: o
D. Identification Approach
(22) The general identification approach taken in this study
is shown in Fig. 4. The gray blocks indicate the user's
Except for the unit-sample delay! caused by ZOH dis- main tuning options. In order to fine-tune the procedure,
cretization, this function corresponds to the ARX model'svo input-output data sets are considered, one for estimati
transfer function frome (¢) to u (t) with n, =n, =2 and {e. (t),u. (t)}, and one for validation{e, (¢),u, (t)}, both

bo —+ blzfl

G(z) =21
(2) =2 1+a1z71 +agz2

ni = 0. sampled with frequencys. The procedure has 9 steps.
For easier interpretation, ARX models can also be con-1) Discard run-in time dataDiscard the transients present
verted back to the HO-model structure under consideratfon. in the beginning of the recordings (), u. (t), u, ()
n. =y = 2, this conversion to the rational continuous-time  and obtain the measurement signals,, (¢), te.m (¢),
ZOH equivalent model is straightforward: uy,m (t), respectively, all of lengtlf;,, and containing
s+ bg N, = fsT,, samples. _
H(s) = PO (22)  2) ARX-model setupSelect the integers, and n,, and
! 0 the range of integers} . andn} . to be tested
The HO-model parameters are then retrieved as: for estimating the time delag, with n}/f,. The initial
. bs . b§ . b§ choice is to use physical insight, and by applying the
K. = ac’ TL = b’ Ke = ac’ principle of parsimony select, andn; as low as pos-
0 ) Oac 0 (23) sible. Insights could also be gained from nonparametric
Wpm = \/678, Com = —+ analysis, e.g., using Fourier coefficients [22], for cases

2V ag where the HO can be characterized as time invariant.

Estimation complexity increases if, and n;, are not both  3) Input-delay estimationSimultaneously estimate the se-
equal to 2 and the identified ARX model is fit to the specific lected ARX models, all with different, using OLS.
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Pick out thenj that results in the lowest loss function a VAF ratio of 1.1 for all remnant intensities. A revision
V' of the one-step-ahead predictian , (¢). This V' is of Marx is made possible by the following options.
defined as: a) Data decimation.Return to Step 5 and select a
1 & decimation factord, for convenience a power of
V= N Z (te,m (t) = e p (1)) (24) two.
t=1 b) Estimation setup adjustmenReturn to Step 6,
Input-delay compensatiorShift the recordingse, (t) actually only applicable for RLS.
and e, (t) with n} samples, and obtain the signals ¢) ARX-model setup adjustmeiReturn to Step 2.
e. (t — 7.) ande, (t — 7.), respectively. Example decimators include a downsampler, an ideal
Signal selectionSelect the number of samplég, for noncausal filter, or piecewise aggregate approximation.
estimation, N, ,, for verification, andN, , for valida- These decimators consider the first sample and then
tion. Obtain frome, (t —7.) and u. ., (t) the signals every dth sample of the input-output data. For a proper
é. (t) anda, (t), respectively, for the actual ARX-model decimation, the first sample of a shifted input signal
estimation; frome. (t — 7.) ande, (t — 7.) the signals requires an offset ofin}/d|d — nj, i.e., an integer
€e,s (t) and é, s (t), respectively, for simulation; from between 0 and/—1.
ue,m (t) the signala. (¢t) for verification; and from  9) ARX-model conversiorObtain the continuous-time HO
Uy, m (t) the signalz, (t) for validation. model Mo by convertingM arx andnj. Retrieve the

Estimation setupThis includes the choice between OLS HO-model parameters as described in Section I1I-C.
and RLS estimation. The latter requires specifications for
0o, Py, and the forgetting strategy, i.e\,or A. IV. METHOD

ARX-model estimation.Estimate the ARX model 14 stydy the functionality and feasibility of the recursive
Marx. Note that here the structure is defined with\ry_model identification method, a Monte Carlo simulation
'”te,g,efs?% and_”b'_ . . analysis withM = 100 replications is set up. The com-
Verification, validation, and optional revisiorsimulate ensatory manual-control model in Fig. 1 is simulated for
using Fhe ARX—r_nodeI equations with zero initial OutpuEifferent conditions. In particular, the sensitivity tonteant
condition. Obtain the verification output., (1) and g investigated. The simulations will run with, — 100 Hz.
validation outputi,,, (¢). Verify and validate Marx  The measurement window is set Ty, — 81.92 s. The total

using the variance accounted for metrid®\F. and ocording time is set to a multiple of eight timés, to reduce
VAF,, respectively. The VAF measures the quality ofy,o effects of transients.

fit and requires the (preprocessed) measured outpyt

and (preprocessed) simulated outpu): A. Target-Forcing Function

iv: \ﬂ(t)—ﬁ(t)ﬁ The compensatory manual-control system will be excited
VAF =max | 0. | 1- =L 100% | (25) by the same target-forcing function as in [12]:
’ N
> la (b)) ol ,
=1 Fo()y = Ac(k)sinfw (k) t + ¢ (R)],  (26)
If the VAF ratio VAF./VAF, is larger than 1, overfit k=1

occurs [9]. If VAF./VAF, > 1, it means thatM rx for which a sum of N; = 10 sinusoids is considered. Ta-
provides a high model quality on the estimation data, bbte | lists the amplitudeA, (k), excitation frequencyw; (k),
it cannot be generalized to other data. The user shoddd phase shiftp, (k) of the kth sinusoid. All w, (k) are
specify the acceptable range of VAF ratios, e.g., accepteger multiplesn, of the measurement-base frequency



TABLE |

TARGET FORCING-FUNCTION PROPERTIES[12] I 10 I
- 107 =10
ki, — ni, —  wi, radls Az, deg &y, rad Z 10 Z
1 3 0.230 1186 -0.753 21 g
2 5 0.384 1121  1.564 T 10t T 10t
614 .991 . 2
i 12 8'397 gggs 82?12 10) 51 10° 10t 107 10? 10° 10 107
5 22 1.687 0447  0.674 o -90 w, radls o 90 w, rad/s
6 34 2608 0245 -1.724 € 105 g o
7 53 4.065 0.123  -1.963 =-120 = -90
8 86 6.596 0.061  -2.189 =135 <-180
9 139 10.661 0.036 0.875 ©-150 %-270
10 229 17.564 0.025  0.604 T -165 T -360
-180 -450
101 10° 10 107 10t 10° 10t 107
4 w, radls w, radls
[=2]
g (a) (b)
é 0 Fig. 6. Bode plots corresponding to the two states listedablé ' Il. (a) Set
& 2 of CE dynamics. (b) Set of assumed HO dynamics.
4
0 20 40 60 80
ts more realistic than assuming that the HO’s equalizatioampar
Fig. 5. Target forcing-function time trace. eters are prescribed by the same sigmoid function intratiuce

for the variation in the CE parameters. This study, however,
focuses on algorithm performance and the question is whethe
wy, = 27 /Ty, = 0.0767 rad/s. Fig. 5 shows the time trace ot could capture such transitions at all. Example remneg-f
[t (t). The amplitude distribution is varied and scaled to attajjput-output measurement-time traces for conditions C& an

a variance obr}, = 2.2490 de§in T,,,. C4 are shown in Fig. 7. The gray line indicates the time irtstan
tar of the maximum transition rat€'. Aroundt,,, small, but
B. Parameter Variations and Conditions noticeable, differences between the two conditions carebg.s
Table Il lists the two sets of parameter values that are
considered for the CE dynamics and the assumed HO dy- TABLE Il
R . CONDITIONS TO SIMULATE
namics. These are based on experimental data. Bode plots of
the corresponding states are shown in Fig. 6. State 1 mostly Condition Hcg (s) G, st
representd /s CE dynamics, while State 2 mostly represents cl Hep,1(s) n/a
1/s? dynamics in the frequency range 1-5 rad/s. For State 2 2 Hop () nla
_ _ X - g C3 Hcp,a(s) — Hep,2 (s) 0.5
a strong increase in lead generation by the HO is observed, c4 Hcpa(s) = Hop2 (s) 100
i ndi i C5 H s) = H s 0.5
corresponding to the findings in [12]. s Hggz gsg - Hgii Esg 2
TABLE I
CE AND HO PARAMETER VALUES FORTWO STATES [12]
CE HO 2 0.5
State K. wp Ke Tp, K Te wnm  Cnm g ! § 025
— radls - s s s radls - S 0 s 0
LB oS 5% Y% SEem nam om - o o
0 20 40 60 80 0 20 40 60 80
Table Il presents the six different conditions that will be ts Ls
simulated. The same conditions were also studied in [12]. @ ®)
Conditions C1 and C2 have constant dynamics and are a~ 2 05
sociated with States 1 and 2, respectively. Such dynamig 1 2 o025
were also considered in [7], in which HO dynamics were> Z 0
successfully identified using batch ARX models. Conditionsy 1 < 025
C1 and C2 could thus be used as reference conditions for tt 05
identification with recursive ARX models. Conditions C3-c6 ~ ° 20 40 0 8 0 20 8000 %
include time-varying dynamics. Here, the sigmoithg value (C)’ (d)’

is set aroundr,, /2. Both gradual and sudden transitions arg, . i

. . . ... Fig. 7. Remnant-free input-output measurement-time tracgangh(b) Con-
considered from C1 to C2, and vice versa. The time vananoaﬁon C3. (c) and (d) Condition C4.
introduced in the HO’s equalization parameters are eqgival
to the sigmoid function used to vary the CE dynamics. The ZOH equivalent parameter values for the two assumed HO
parameter functions for these equalization parameterdoeanmodels listed in Table Il (without considering the delayg ar
expanded with deterministic perturbations [13]. This vii#é presented in Table IV. These values are considered as the



TABLE IV
ARX-MODEL PARAMETER VALUES FORZOH DISCRETIZATION OF

I
ASSUMEDHO DyNAMICS E
3
States 1 and 2 State 1 State 2 =
Ts, S a9 a9 b9 b9 b3 b9
0.01 -1.9121 009243 0.0443 -0.0432 0.1024 -0.1016
2
o
true ARX-model parameter®” = [a¢ a9 3 02]". A range of =,
these true parameters at each time instant is also obtainabl =
for conditions C3-C6. .
36001 10° 10t 107
w, rad/s

C. Remnant Model Fig. 8. Bode plots of the different remnant-filter models witfiedent tuned
In manual-control literature, there is no clear agreement & to induce aP, of 0.15 for condition C1.

how HO remnant. (¢) should be represented [7], [8], [23]-
[25]. Here, it is modeled as a zero-mean Gaussian white- . .
noise signak,, (¢), with unit variance, passed through a Iowt—f%r other P, and for condition C2. Over a wide frequency

1 i 4
pass filter. The followingnth-order remnant-filter structure isrgnge,Hn (5) has the lowest m_agmtude arfd, (s) has th?
considered: highest magnitude. The opposite can be seen at the highest
Kn (1)

frequencies. For alH" (s), the phase angle becomes more
(Tos+1)™'

negative as the magnitude drops.
where the remnant gair, (¢) could vary in time. The
remnant-time constart,, will be set equal to 0.06 s [26],
resulting in a cutoff frequency of 16.67 rad/s. A key issue

H" (s,t) = (27)

TABLE V
FORGETTINGFACTORS TAKEN BASED ON Ny

of ARX models is that the disturbance dynamigs_; are No, - A= No, - A -
completely tied to the process dynami Z). Hence, the i 007-2 gig g-ggggg
remnant characteristics cannot be parametrized indepénde 8 0875 1024 0.99902
and the estimation of the parameters in the linear HO dyrmmic 16 09375 2048 0.99951
i i i i i 32 0.96875 4096 0.99976
becomes biased. This aspect was not fully investigated]in [9 o4 095438 8197  0.99988
and [7]. Therefore, this study will check to what extent 128  0.99219 00 1

the ARX model constrains parametrization of the linear HO
dynamics by examining different remnant filters. Integeters

of m =1, 2, 3, and 4 are tested. In addition, a special remnant S
filter, similar to H,,, (s), is consideredit, = nm), with the D- Estimation Setup

values of the neuromuscular parameters listed in Table Il As shown in Figs. 2 and 7, ify; is set around7,,/2,

nm the initial and final 30.72 s of the measurement traces for
H™ (5,1) = Ko (8) Hom (5) (28) conditions C3—-C6 can be assumed to include only constant
It is expected that thed!™ (s,t) filter least constrains the dynamics. In essence, if the dynamics to be identified are
estimation of the parameters in the process dynamics. constant, the RLS algorithm will recursively approximate t
For the differentH™ (s,t), K, (t) can be set to induce OLS estimate. Therefore, in these particular regions ARX
remnant-intensity levels?, = o2/02 in the measurement models can be estimated with OLS serving as a reference for
window. Seven levels of’, are selected: 0.00 (i.e., no remthe RLS estimation.
nant), 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30. By means ofThe main interest is concentrated on the recursive estmati
the nonlinear programming solvémincon [27], a constant in the transition region of 20.48 s arouti (See again Fig. 2).
K, is tuned for the constant dynamics conditions C1 anthe implementation with the scalar forgetting factoand the
C2, based on 1@, (¢) realizations. For conditions C3—C6,forgetting matrixA and corresponding results will be explored.
K, (t) can then be varied according a sigmoid analogous Adl conditions listed in Table Il will be assessed with a gan
the HO equalization and CE parameters. After tunikig, of forgetting factors, that correspond to a matching range o
another 110 independent,, (t) are generated. To simulatememory horizonsV,, of integer powers of two (see Table V).
estimation data sets, 100 of these were used, and 10 were uslsd, the case of no-forgetting is considered, i®e= 1 so
to create validation data sets. So, different remnant &gna/, = oc. For each recursive estimation, the RLS algorithm
n (t) are obtained by filtering exactly the same realizationsill be initialized with 6, = §°%5 estimated on the initial
ny (t) through the different)”, (s) for which only K, (t) 30.72's, and with?, = I.
varies. This allows the fairest comparison. As can be interpreted from Table IV, the ARX model's
Fig. 8 shows an overview of the different types of constaoutput parameters; (¢) and as (¢) remain constant in all
H™ (s) filters with different tunedk, to induce aP,, of 0.15 conditions with time-varying dynamics. These parametegs a
for condition C1. Equivalent Bode plots can be obtainedosely linked to the HO’s neuromuscular parameters, and



Cnm Which were not varied in the offline simulations. There- 28 ‘

fore, a; (t) and az (¢t) can be assumed to be time invariant 3(75: . i i i . o oo ]
throughout the whole estimation. On the contrary, the ARX 35+ o%-- | | | . ? —oh
model’s input parameters, (¢) and b, (t) are not constant. gg: oL T | Py =020| |
These parameters are closely linked to the HO'’s equalizatio ' 32 |+ Q00d) | . os| ]
parametersk, (¢) and K (t), which were varied according < Al ORI T ]
the same sigmoid function. Hence, the forgetting matrix can 99 k@ e | D emem .TQ.......M.*. ..}G,i. ?
provide more accurate results as it is able to discountrdisti 28 | | OPOOOY 4+ $ :
information for each ARX-model parameter. The forgetting 20 | L {‘? | .
factors\,, and\,, in the forgetting matrix\ will be set equal 25 ‘ ‘ ‘ ‘

to 1, while the range of forgetting factors listed in TablesV i 1 2 3 4 nm

H (s)
tested forh,, = A, -

Fig. 9. Variablen} estimation, for condition C1, for differenti;;* (s).

E. Identification-Tuning Criteria

Prior to commencing the analysis of the recursive AR)ﬂ]nderestimatezg The n; for the H™™ (s) filter are centered
model estimation, the effects of the order of the remnamatrflltaround ng. Furthermore, it is apparent that the for the

on the resulting estimation accuracy with the selected AR)ﬁl (s) filter, deviate, on average, for a,, seven samples
L L ) s

model structure, i.en, = n, = 2, is assessed for conditions, " /g . .
! ’ ’ h ) . rom n}. Focusing for a moment on the higher frequency range
C1l and C2 using batch ARX-model estimation. First, th "tk g 9 g yrang

N for dto i h X | f the Bode phase-angle plots in Fig. 8, a clear trend can be
estimation ofnj; Is compared toy;, 1.e., the true integer value goo, yith the results in Fig. 9. The ARX-model estimations
of 29 samples based on f; plus a unit-sample delay from

on data simulated with théf,,,, filter result in the best
the ZOH discretization. The use of; can be justified by imu Wi (s) fi ult |

) . : o estimates of:. An increase in delay is needed for the orders
cal.culatmg the difference i validation data VAFs fof and and 2, while less delay is needed for the orders 3 and 4.
ng.

n0 n? ne To further assess how the ARX-model estimates vary with
AVAF,* = VAF,* — VAF, (29) the different remnant-filter types, it is important to look a

If AVAF"* is close to zero, the model qualities are practicalij?® relative biasi,. Fig. 10 shows, again for condition C1,
the same. Second, the batch ARX-model parameter estimd@¥ Plots for all ARX-model parameters;, a2, b, and by,

will be compared to the ZOH parameter values listed gstimated with the true delay intege} and the variable delay
Table IV. For this, the metric of relative biaB, is used, integern;. Equivalent results were found for condition C2.

which accounts for the sign of the bias: The B, of all parameters in the remnant-free case is zero. It
. stands out that thés, in all parameters forfl} (s) is more
B. — 0 — 0o (30) than ten times larger compared to the ot} (s). Similar

" to to the results in Fig. 9, a clear difference can be seen betwee

An objective metric to trade off the tracking ability andorders 1 and 2, and the other remnant-filter types. The output
remnant-level sensitivity is introduced by calculating tif- parameters; anda, are overestimated fdd, (s) andH;. (s),
ference between the validation data VAFs foe= 1 (highest While an underestimation of the input parametagysand b;
robustness against noise) and for< 1 for a range ofA occurs. The opposite can be seen for the ottigt (s). The
(ability to capture time variations). The metrics for thalse lowest relative bias is seen fdi}™ (s). Except for H,, (s),
forgetting factor\ and forgetting matrix\ implementation are the difference betweei, when estimating withz;, and n;;
defined as: is negligible.

AVAFM=! — VAF® — VAR =1 (31) To gain a better understanding of the differences and com-

CEE v v monalities between the considered remnant filters, Figg)11

AVAFA=T — VAFA — VAFA=T (32) and (b) show, for conditions C1 and C2, Bode plots of the
batch ARX models, estimated with the true integer deldy
for a single remnant realization witk,, = 0.15. Equivalent
Bode plots are obtained for the othBEy,. Figs. 11(a) and (b)
also provide Bode plots of the ZOH equivalent dynamics, for
. ~conditions C1 and C2, for the values listed in Table IV and
A. Influence of Remnant-Filter Type and Delay Estimation ,,0 For hoth conditions, the batch ARX-model estimations on

Fig. 9 shows, for condition C1, a box plot of the variablelata sampled withf;, = 100 Hz and generated with! (s)
input-delay estimation;, for the different types oH* (s) and cannot provide a good description of the HO dynamics in
intensity levelsP,, for M = 100 replications. For condition frequency range of interest for manual control (0.2-18sjd/
C2, equivalent results were obtained. In Fig. 9, the dottegt g There is a large misfit at the high frequencies and the peak
line represents the true fixed integer detgy of 29 samples. value is not even captured. The above results clearly expres
In the remnant-free case, i.eF,, = 0, nj = n) is indeed the ARX model's compromise between minimizing the bias
found. A clear distinction can be made between remnant-filie the parameters of the process dynamics and explaining
orders 1 and 2 that overestimat&, and orders 3 and 4 thatthe disturbance dynamics. In fact, this bias minimizatien i

As indicated in Section IV-D, the calculation of the aboveFVA
metrics in the transition region are of particular impodan

V. RESULTS
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Fig. 11. Bode plots of the batch ARX-model estimations fored#htH ™ ()

for a single realization with?,, = 0.15 and usingzg. (a) HO dynamics for
condition C1. (b) HO dynamics for condition C2. (c) Weightifumction for
condition C1. (d) Weighting function for condition C2.

weighted with| A (e7%)|* = |1 + aje 7% + age=2% | [16].
Figs. 11(c) and (d) present Bode magnitude plots of thuse of this filter is considered as the compromise limit betwe

weighting functions, for conditions C1 and C2, in corresporbias in the ARX-model parameters and the fitting of the
dence with the Bode plots of the HO dynamics. Fdf (s),
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Fig. 12. Difference between the validation VAFs when usixigandn: and
selectingH? (s). (a) Condition C1. (b) Condition C2.

the high-frequency misfits are penalized much less tharhéor t
other H™ (s), e.g., forH2 (s), the weight at 100 rad/s is 10
times higher than the weight at 20 rad/s, whereasHgr(s)
this is just 15 times higher.

The results of Figs. 10 and 11 indicate that the use of
H3 (s), HE(s), and H"™ (s), leads to ARX-model estima-
tions closest to the ZOH discretized HO models. While the
use of H™™ (s) led to the best estimation of?, the lowest
bias, and the best fit in the Bode plots, it is not realistic to
assume that the HO’s remnant dynamics are equivalent to the
HO’s neuromuscular dynamics—these were only considered
as a reference. The second and third best candidates sasving
appropriate remnant models for the further analysis ara the
H? (s) and HZ (s). However, to better assess the potential
feasibility of the ARX-model estimation, the further ansily
will be based on the second-order remnant filtEf (s). The

remnant by the ARX model.
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Fig. 13. Overview for all conditions to trade off betweenclig ability and noise sensitivity for the two forgettingategiesA and A, with P, ranging
between 0 and 0.30 in increments of 0.05. (a) to (d) Conditimitis constant dynamics. (e) to (I) Conditions with time-vaiyidynamics.

To give a final justification of using;, and the selection of condition C2 compared to condition C1. The variability i th
H? (s), Fig. 12 shows box plots of the metr'ﬁsVAFZg, for data increases more with highgy, for condition C2 than for
conditions C1 and C2. These results indicate that negégittondition C1. Furthermore, a comparison between condition
differences in model quality are obtained when usimy C3 and C4 (i.e.1/s — 1/s%) and conditions C5 and C6 (i.e.,
compared tmg, for all remnant intensitie®,. 1/s> — 1/s) reveals that differences between no-forgetting

and forgetting are notably smaller for the latter. In coiotis
B. Forgetting-Factor Tuning C5 and C6, the estimations are influenced more by the data
. o . blased on/s? dynamics thar /s dynamics. Hence, the effect

This section includes the results of recursive ARX-modeé Lo : .

L . . . . ; . Of variability in the data is flattened. Overall, the onehoat
estimation. Fig. 13 visualizes, for all conditions listedl i . o . i ol
Table 1l and tested remnant intensitié%,, the calculations forgetting factor, for all conditions, for this data, is d

; 68r Ny = 256 samples, i.e) = 0.99609. So, for data sampled

O.f the _metrlcs defined in (31) and (3.2)’ based on 10 with f; = 100 Hz, the RLS algorithm requires 2.56 s to come
simulations. Data for the scalar forgetting factbrand the ' .
P with accurate parameter estimates.

forgetting matrix A are shown side by side. The validatio
data VAFs are calculated on the transition region window of While Fig. 13 did not show significant differences between
20.48 s around;;. For both implementations, the range othe implementation of the scalar and the matrixA, the
memory horizonsV, listed in Table V are compared with thematching recursive estimates®f (t), as (t), by (t), andb; (t)

case of no-forgetting, i.eA = 1 and A = I. What stands show that there is in fact a benefit of making use /of

out in Fig. 13 is that no significant differences can be seétnig. 14 shows in black the time evolutions of the recursive
between the two different forgetting-factor implemerdaa. ARX-model parameters for condition C4, based on the 100
Apparently, the quality of fit in the transition region datalifferent estimation data sets, for a scalar forgettingdiad

is not improved by changing the forgetting strategy. Morand for a forgetting matrix\. The results for three different
interesting, perP, and condition, an optimalV, can be remnant-intensity levels are shown, i.€,, = 0 (no remnant),
observed from Fig. 13. Data with loweP, require the 0.15 and 0.30. A similar pattern was observed fyrbetween
selection of lowerNy. In particular, this can be seen for thed.05 and 0.30. Fo?, = 0.15 and 0.30, standard deviations
remnant-free cases. Higher forgetting factors for the wonis are included. The red lines in Fig. 14 represent the true
dynamics conditions C1 and C2 should be selected, as #®H parameter values. The green lines, at the beginning and
corresponding data are less variable compared to the datah&f end, indicate batch ARX-model estimations (mean and
the conditions with time-varying dynamics. For the differe standard deviations). The gray lines indicate the sigrsoid’
P,, the values ofAVAF)=! and AVAF2=7 differ more for instantt,,. For all P,, the black lines clearly show that
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Fig. 14. ARX-model parameters for condition C4 for three défet P,. (a) A with No = 256. (b) A with Ny**“? = oo and Ngo’bl = 256.
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Fig. 15. HO-model parameters for condition C4 for three differ?,. () A with No = 256. (b) A with Ngj***? = oo and Ngu’bl = 256.

ap (t) and by (t) are negatively correlated with, (t) and and the tracking ability can be increased by decreadVpg

by (t), respectively. In accordance with the results shown From Fig. 14(b), a significant reduction in the variabilifytioe
Section V-A, for P, > 0, a high bias with respect to theARX-models parameters is observed for 8ll. This becomes
true parameters is obtained for both the batch and recursolear, in particular, when looking at the ARX-model output
ARX models as the simulation was set up witt? (s,t). For parameters. Better fits are obtained by using the matrix

P, = 0, it can be noted tha¥V, = 256 samples is not the best Turmning now toMee by convertina M with integers
choice. In this case, the estimation is not driven by remnant 9 HO DY 9/MARX 9

« = np = 2, the HO parameters can be retrieved using (23).
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Only instants ofM Arx with pairs of complex-conjugate polesanalysis in Section V. In accordance with Figs. 14 and 15,
are considered. In accordance with Fig. 14, Fig. 15 is ptegenFigs. 16 and 17 are presented, respectively. The latter two fi
for condition C4 for both forgetting-factor implementat® ures include ensemble averages based on batch and recursive
The black lines represent the HO parameters based on #RX-model estimation. These batch ARX-model estimates fit
recursive ARX models, and the green lines at the beginniog the initial and final 30.72 s are indicated with thick green
and end are based on batch ARX-model estimations. Standiémds, and these recursive ARX-model estimates are shown
deviations are included fof,, = 0.15 and 0.30. The red with thick black lines. The sigmoid’s instamj; is indicated
lines are the true HO parameters, of which the equalizatianith the gray line. Both Figs. 16 and 17 also include the five
parameters vary according the sigmoid function. The graasli recursive single-run ARX-model estimates (thin coloreed).
representt,,;. Similar patterns as in Fig. 14 can be seen iNo extreme outliers are observed in these single-run etgna
Fig. 15 for the two different forgetting-factor implemetitens. In addition to these results, Table VI lists the average
While for K. (t) and K. (t) acceptable estimation results argerformance scores for each subject in different time wivido
obtained, the estimation @f;, (¢) is seen to be problematic inThe scores include the root-mean-square of the error signal
the1/s? dynamics region. This can be explained by examiningns, (t), the tracking score defined Iy (¢) /afct (t), and the

the definition ofT}, (¢) in (23) and drawing the analogy with control activity expressed as the variance of the contgpiai

the negative correlation between the ARX-model parameter3 (¢). Four time windows are considered: the measurement
by (t) and by (¢). If the continuous-time coefficiend$ (t) window T,, the initial region of 30.72 s (ini), the transition
increasesp (t) decreases, and vice versa. The variability iregion of 20.48 s (tran), and the final region of 30.72 s (fin).
the data related to/s? dynamics increases, hence the negativehe results clarify that all subjects executed a differemttiml
correlation effect is stronger. Therefore, no stable esiafifor strategy. On average Subject 1 has the highest scores for
Ty, (t) are obtained. High deviations from the true values arens, (t) ando? (t) /o7, (t), and it has a low control activity.
observed inv,,,, and({,,,. This clearly demonstrates that theOn contrary, Subject 3 has the lowest scoresrfos, (¢) and
ARX model not only captures the dynamics of the system bug (¢) /aj%t (t), and it has a higher control activity. The highest
also those of the remnant filtéif? (s, t). Both wy,,, (t) and control activity is observed for Subject 2. All subjects dav

Cnm (t) are overestimated. more difficulty in controlling thel /s? dynamics.
The ARX-model identification results in Fig. 16 show that
VI. EXPERIMENTAL EVALUATION Subject 3 strongly adapts to the step transition in the CE
A. Method dynamics. In particular, this becomes clear when focusimg o

An experiment was conducted in the SIMONA Researctﬁ'e evolution .Ofbo (t), and by (2). S.UCh strong adaptations
are not seen in the results for Subjects 1 and 2. In all cases,

?g,:,:il:]lato.:.ha:;eDin.g;'\sler\i;g] o;nT:igrn;k;g); :: ;;Xz(zbajgpse ensemble averages of the recursive ARX-model estimates

9. Ubjects, ge ag y approach the initial and final ensemble averages of the batch
performed the single-axis compensatory manual-contk taARX-modeI estimates. Furthermore, a comparison between
(see Fig. 1) for all the conditions listed in Table Ill. In dac ' '

condition seven runs were performed. The length of the ru'hhse initial and final batch ARX-model estimates and the

was set to 90.00 s. A measurement tiffie of 81.92 s was recursive ARX-model estimates in the transition regioregiv

: L . o an indication if some ARX-model parameters have distinct
used for the identification. The maximum rate of transitign . . .
. . . ra&es of changes, and if the use of the forgetting matriis
in conditions C3—C6 was set at 42.93 s in the measurem%‘asonable For Subject 3, a low variabilityan(¢) andas (£)
window (i.e., at 50.00 s in the recording window). For the y ) ' yan a2

. e : . IS seen. Hence, there seems to be a justification in using
actual identification, only the five last runs were considere Th ichi : f the ARX-model ters t
The ARX-model identification approach, as outlined in € mafching conversion of the -Mode! parameters to

Fig. 4, was adopted. Input-output data were recorded wi O-model parameters is presented in Fig. 17. Focusing on the

— ; o . evolutions of K; (t), a generation of lead is seen for Subjects
fs = 100 Hz, andf, (t) was set up with the properties listed in and 3. This is not the case for Subject 1. Furthermore, it can

Table I. Similar to the Monte Carlo analysis, the ARX-mod . X
Y e noted that the values af,,, (t) for Subject 1 remain low

structure was set to, = n;, = 2. Visual delay was assumed to : ) . .
be constant and es'(clima?é)d usingy Batch A)FIQX models were compared with Subjects 2 and 3. It is questionable whetleer th

fit on the initial and final 30.72 s of the measurement windogt €¢t€d ARX-model structure, = n, = 2 is appropriate for
The recursive ARX-model estimations were initialized wit ubject 1. Similar as observed in the Monte Carlo simulation

the initial #°%S and P, set tol. In accordance with the results2N2YSIs, the estimation dfy, (1) is problematic in the region -
from the Monte Carlo analysis in Section W, was set to 256 with 1/s? dynamics. However, clear patterns are observed in

samples. Both the scalar forgetting factoand the forgetting the qv?lutgon_tﬁfﬁe (? 3.nd Ke: (g' Irl_gen\claral, the results are
matrix A (with A, = A, = 1) were considered. consistent wi € findings In Section V.

B. Results VIl. DISCUSSION

Example identification results are presented for condition An identification method based on recursive ARX models
C4, for all three subjects. Equivalent results are obtaiieed is described that requires the user to specify the orderkeof t
the other conditions. Condition C4 is taken as this allow&RX model and to set up a forgetting strategy. The orders are
a comparison with the results of Monte Carlo simulatiodefined using the integers, and n;,, and the sum of these
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TABLE VI
AVERAGE PERFORMANCESCORES FORFIVE RUNS
rmse (t) oz (t) /o3, (1) oz ()
Tm ini tran fi Tm ini tran fi Tm ini tran fi
Subject1 1.037 0.978 0.900 1.159 0.420 0.310 0.293 0.458 090.00.005 0.006 0.016
Subject2 0.944 0.640 0920 1.180 0.373 0.151 0.350 0.499 370.00.027 0.037 0.048
Subject3 0.774 0.622 0.817 0.871 0.259 0.142 0.284 0.286220.00.018 0.021 0.026
Subject 1 Subject 2 Subject 3 Subject 1 Subject 2 Subject 3
-1.95 -1.95
_-1.9625 _-1.9625
< 1975 < 1975 —_
® .1.9875 ® .1.9875
-2 -2
1.025 1.025
__ 1.0062 __ 1.0062
g 0.9875 \:g 0.9875
0.9688 0.9688 %
0.95 0.95
0.075 0.075
__ 0.0563 __ 0.0563
< 0.0375 < 0.0375
“ 0.0188 = 0.0188 PR
0 0 -
0 o 0 -
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Fig. 16. ARX-model parameters for condition C4 for three défet subjects. (ak with No = 256. (b) A with Ng''“? = co and Ngo’bl = 256.
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integers sets the number of parameters to be estimated. Toeurther improve the obtained results, further reseamhidc
choice of the forgetting strategy in the recursive parameteoncentrate on time-varying forgetting strategies [1@B][
estimation affects the trade-off between tracking abitityd Instead of using a constant forgetting strategy, time viaria
noise sensitivity. This study considered the implemeatatif in the forgetting factors can be introduced to locally adhpt
a constant scalar forgetting factar and a constant forgetting forgetting profile. This means that the scalar forgettingtda
matrix A comprising forgetting factors for each parameteturns into a vector of forgetting factors. Instead of a canst
Through testing on simulation data, an understanding iseghi forgetting matrix, a time-varying forgetting matrix can beed.
of the identification method’s capability to quantitativele- This can be very useful for identification purposes, if the
scribe time-varying compensatory manual-control adaptat remnant levels vary during a measurement run.
if the operator is faced with transitions in the CE dynamics The ARX-model delay estimation method based on the loss
matching Zaal's experiment [12]. function of the one-step-ahead prediction seems to be lusefu
Assuming that the considered HO model, consisting of lowever, a drawback of the current identification approach i
visual gain, a lead term, a delay and neuromuscular dynamittgt it does not work for capturing time-varying delay. This
is the suitable representation for the control of secomtor issue can be circumvented by means of a sliding window
CE dynamics, the results indicate that ARX models can ondpproach, and by updating the input entries of the regnessio
be used, directly, if the remnant dynamics are sufficientiector ¢ (¢) at different time instants. In essence, this results
similar to the (second-order) neuromuscular dynamics. Thea switched regression problem, which can be approached
results presented in this paper show that the bias in the H§ means of piecewise ARX models [29].
parameters becomes very high if the remnant is first-orderFurther investigations are needed to explore whether the
low-pass filtered Gaussian white noise. Therefore, diré&XA recursive ARX-model identification method is also capable t
model estimation on measured input-output data cannot detect time-varying manual-control adaptation due to gkan
used to identify the specific type of HO model if the remnarin other task variables. The properties of the forcing fiorct
dynamics characterizes to first order. However, it was fourmén be altered over time, e.g., to represent different camma
that the remnant dynamics of orders 2, 3 or 4 are suitable.inputs to the HO or time-varying disturbances on the CE
For manual-contol tasks, where the HO is better representiyghamics [2]. In [7] and [9], batch ARX-model identification
by for example an extra lead or lag term, the ARX modsalas also used to determine the operator’s vestibular motion
defined by the integers, andn, can be easily adapted [19].and feedforward responses, respectively. Future workedex
Furthermore, it is straightforward to convert the resgithkRX to determine if the recursive ARX-model identification medh
model to the (easier to interpret) HO-model parameters. Tlsealso able to capture, in addition to the visual resporhseset
computational burden increases, however, if the conuwersittvo multimodal characteristics of manual-control behavio
relationship is applicable, e.g., if extra ARX-model paedens  The identification method is computationally efficient.
are added to capture delay as a fraction. Then, model-orddverefore, online implementation of the proposed approach
reduction approximations should be carried out, or noalineis relatively straightforward. Furthermore, an experitaén
optimization problems should be solved to retrieve the gays evaluation of real manual-control data indicates that tem4
HO-model parameters. tification method is ready to use in future laboratory-cohtr
This study demonstrated, by means of simulated estimatiexperiments.
and validation data, a tuning procedure for an optimal for-
getting strategy for different conditions and differentreant VIIl. CONCLUSION
intensities. These findings are not trivial given the higrele A recursive ARX-model identification method was devel-
of remnant present in manual-control data. On average, fgged that is able to capture time-varying CE adaptation ®f th
data sampled with 100 Hz, it can be said that the use O in compensatory tracking tasks. The method is practical
the scalar forgetting factoh = 0.99609, corresponding tosince no stringent assumptions are required on how manual-
a memory horizon of 256 samples, is a satisfactory point obntrol behavior will vary over time. A procedure was shown
departure for the identification of time-varying compensgat for the determination of the optimal forgetting factor for
manual-control behavior. In general, higher levels of ramin different conditions and different remnant intensitiesr Ehe
are present in single experimental runs. It means that fer tltonsidered application, the advice is to select a forggfiuc-
application the value of should be increased. For ensembletor A of 0.99609, if input-output data is sampled with 100 Hz.
averaged experimental runs, the remnant levels will alteyi A Monte Carlo simulation analysis with remnant intensités
so lower values of\ can be taken. up to 30% shows that the method is then accurate in tracking
In addition to the constant scalar forgetting factarthe time variations in adaptive manual-control behavior. The
constant forgetting matriA was considered as forgetting stratvalue can be slightly decreased for lower remnant interssiti
egy for capturing time-varying compensatory manual-agntrlf parameters have distinct rates of variations, the vagan
behavior. It was found that the use of a forgetting matrix dish parameter estimates can be lowered by using a forgetting
not increase the model quality. However, the variance in tieatrix A with different forgetting factors.
parameter estimates over time will notably lower. The use As was shown by the experimental evaluation, the method
of a constant forgetting matrix should be considered, onhas potential to become a novel cybernetic tool for further
if there is a strong evidence that HO parameters vary withO characterization and understanding. In the field of sci-
different temporal scales, or certain parameters are anhst entific studies of time-varying HO behavior, it may lead to



better investigations of how human respond, make decisio(zs)
and perceive the environment. The method could also serve
as building block for the improvement of adaptive human-
machine systems in practically all social-technical domai
Key applications include HO monitoring and adaptive suppd?fll
systems.
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NOMENCLATURE ny True ARX model’s integer delay.

g Integer multiple.
Greek Symbols ny (t) Zero-mean Gaussian white-noise signal with unit vari-
0 Positive constant. ance, deg.
e(t)  White noise, deg. P (t) Scaled covariance matrix.
e(t)  Prediction error, deg. Py Initial scaled covariance matrix.
Cnm  Neuromuscular damping ratio. Py (t) Actual covariance matrix of parametefts
0 Parameter vector. P, (t) Remnant intensity.
0o Initial parameter estimate. p(t) Parameter function.
A Forgetting matrix. Q@ (t) Matrix obtained by RLS criterion minimization.
A Forgetting factor (scalar). q Discrete-time shift operator.
o? Standard deviation. s Laplace variable.
Te Visual time delay, s. To Memory horizon, s.
) Regression matrix. Ty, (t) Lead-time constant, s.
o Sinusoid phase shift, rad. T Measurement time/window, s.
©(t) Regression vector. T, Remnant-time constant, s.
w Frequency, rad/s. T, Sampling time/interval, s.
wp (t) Break frequency, rad/s. t Time, s.
wy Sinusoid frequency, rad. ta Time of maximum rate of change, s.
W Measurement-base frequency, rad/s. u (t)  Control-output signal, deg.
wnm  Neuromuscular frequency, rad/s. %4 Loss function.

VAF  Variance accounted for, %.
Latin Symbols v(t) Disturbance signal, deg.
A(q) ARX model’s output polynomial x (t)  System-output signal, deg.
Ay Sinusoid amplitude, deg. z z-transform variable.
a; Coefficient: of A (q).
B(q) ARX model's input polynomial Other Symbols
b; Coefficientj of B (q). - Estimated; Predicted; Simulated.
d Decimation factor. - Preprocessed.
e(t)  Error signal, deg. Marx ARX model.
é(t)  Error-rate signal, deg/s. Mpuo HO model.
fs Sampling frequency, Hz.
fi+ (t) Target forcing-function signal, deg. Subscripts
G Maximum rate of change;s i Initial.
G (z) Discrete-time transfer function. e Estimation.
Hepg (s,t) Time-varying CE dynamics. I Final.
H., (s,t) Time-varying equalization dynamics. m Measurement
Hpyo (s,t) Time-varying HO dynamics. D One-step-ahead prediction.
Hpo, (s,t) Time-varying HO’s linear response to the error.s Simulation.
H, (t) Time-varying remnant filter. v Validation; Verification.

H,,, (s) Neuromuscular dynamics.

1 Identity matrix. Superscripts
ke = max (n, + 1,np + ng). Critical instant. 0 True.
K. (t) Error-rate gain. c Continuous time.
K (t) Gain vector.

K. (t) Control gain.

K. (t) Error gain.

K, (t) Remnant gain.

M Monte Carlo replications.

m Order of remnant filter.

N Number of samples.

Ny Memory horizon in samples.

n(t) Remnant signal, deg.

Ng Number of coefficients i (gq).

ng Number of coefficients imB (g¢).

nj, = ny, + ny — 1. Highest order ofB (q).

ng ARX model’s integer delay.

ny Estimated ARX model’s integer delay.
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Preliminary report






State-of-the-art in time-varying
human-operator identification

The research on both the functioning and the structure of human-operator dynamics in manual-control
systems has received considerable attention over the past few decades. Current research in manual-
control cybernetics mainly focuses on the adaptive and learning behavior of human operators. In
order to quantitatively describe these characteristics in compatible terms with the controlled element,
time-varying and possibly nonlinear system-identification methods should be employed or extended.
In general, the research vision is to first develop system-theoretical models that are able to capture
adaptive manual-control behavior. The capture of the human operator’s learning behavior is seen as a
long-term challenge. Mulder et al. (2013) state that the abilities “to peek into the currently ‘black box’
of human adaptation and learning, and [to] quantify the dynamics of experience,” will have “major sci-
entific impact, for all domains where humans are trained to manually operate dynamic systems.” This
statement could even be extended, as the reason for modeling the human operator in manual-control
tasks is not only motivated by the practical application but also by scientific interest in the general ques-
tion of human behavior: experimental physiologists and psychologists can utilize manual-control tasks
to investigate in more detail the “primitive sensing, decision making, and response characteristics of
the human” (Sheridan and Ferrell, 1974).

This chapter aims to present an accurate overview of the state-of-the art in time-varying human-
operator identification oriented toward the adaptive role of the human operator. From a historical
perspective, the most well-known linear control-theoretic model for describing manual-control behavior
is the crossover model. This model is validated for compensatory tracking tasks and still serves as
a baseline in human-operator modeling. The survey discussed here is therefore primarily concerned
with this successful approach.

The chapter starts off with Section 2.1 summarizing some fundamentals in modeling adaptive
human-operator behavior in compensatory tracking tasks, essential for understanding the topic. The
subsequent section, Section 2.2, addresses the relevant research fields where human-operator behav-
ior needs to be investigated and where parts of the challenges can be traced back to the identification
of the operator’s behavior in compensatory tracking tasks. The areas of controversy in the literature
on time-varying human-operator identification are considered in Section 2.3. This section also briefly
touches upon the most successfully implemented identification methods of manual-control behavior
based on the restrictive assumption that this is time invariant during the identification period. The
chapter ends with Section 2.4 containing a synthesis of what is and is not known. The discovered
knowledge gap was used to formulate the research objective, framework, questions, and subgoals in
the preceding chapter, Chapter 1.

2.1 Fundamentals of compensatory manual control

The compensatory manual-control theory serves as a baseline for modeling human-operator behavior
in manual-control tasks. This section starts with a consideration of some fundamentals in human-
operator modeling in compensatory control systems.
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26 2 State-of-the-art in time-varying human-operator identification

2.1.1 Adaptive behavior

As mentioned earlier, in real manual-control tasks, time-varying adaptive behavior is virtually always
present due to various changes of variables. For example, suffering fatigue or alterations in motivation
are directly related to the human operator. The paper by McRuer and Jex (1967) includes a clear-cut
classification of variables affecting manual-control behavior (see Figure 2.1). In addition to a class of
operator-centered variables, classes of environmental, procedural and task variables can be distin-
guished. The task variables are considered most important as these are most explicit for the specific
control task.

A set of constant classes of variables can be defined as a situation. A small variation in just one
variable could change the situation, inducing adaptive behavior. This complexity, together with the fact
that the behavior commonly has a closed-loop nature, makes it a challenge to develop useful models
for engineering purposes that can describe manual-control behavior over a wide set of circumstances.
However, in certain situations where, in particular, the task variables are kept constant, experiments
have shown that this behavior can be described by quasi-linear models. The most successful quasi-
linear models are able to describe manual-control behavior in compensatory tracking tasks.

Mission Task variables
Forcng |  _ __ __ _ _ _ Distubances
functions T 0
Perceived inputs, | |
outputs and v Control v
] i Outputs
Commandg Display errors Human ' Manipulator actions _ | Controlled p >
> operator | element
A
l
Motion feedback
Environmental variables Operator-centered variables Procedural variables
In-flight vs. fixed-base Motivation Instructions
Vibration Stress Practice
g-level Workload Experimental design
Temperature Tral_nlng Order of presentation
Atmospheric conditions Fatigue Etc.

Etc. Etc.

Figure 2.1 Variables affecting the manual-control behavior, adapted from McRuer and Jex (1967).

2.1.2 Compensatory tracking tasks

The simplest kind of manual-control task is single-axis compensatory tracking. In a classical sense, a
compensatory tracking task is one in which the operator is presented a visual stimulus indicating the
to be compensated difference between a stationary reference line or point and a moving line or point,
while modern usage refers to situations where the human observes and acts upon errors irrespective of
display details (McRuer, 1980). Figure 2.2 shows the archetypal compensatory display and a functional
block diagram of a compensatory tracking task clarifying the operation. The operator output, often the
displacement of a hand-joystick, drives the controlled element, which in effect, influences the system
output. A closed loop is then formed by feeding back the system output to the input, imposing the
human operator to act as a servo to compensate the error. Typically, the reference input is a target to
be followed. The task could be challenged by rejecting disturbance inputs on the controlled element.

2.1.3 Quasi-linear models

The most well-known control-theoretic model, only validated for compensatory tracking tasks but
still serving as a baseline in describing human-operator behavior in manual-control systems, is the
crossover model (Mulder et al., 2006). This model was postulated in the 1960s (refer to McRuer and
Jex, 1967), and states that human operators adjust their manual-control behavior to the controlled-
element dynamics in such a way that the the open-loop dynamic characteristics around the crossover
frequency approximate those of a single integrator. The crossover model was found by describing the
human operator with a quasi-linear model structure. Figure 2.3 shows such a structure which consists
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(a) Compensatory display. (b) Functional block diagram.

Figure 2.2 A compensatory tracking task, adapted from McRuer (1980).

of a linear part and a remnant part representing nonlinearities. Quasi-linear models are very suitable
for analysis and system identification. They allow the use of control theory so the human operator can
be quantitatively described in the same terms as the controlled element. On condition that laboratory
experiments are designed properly, these types of models are capable of capturing the most important
behavioral characteristics (McRuer and Krendel, 1974).

77777 hl

"Human operator |
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| Operator
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Error|
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Figure 2.3 Quasi-linear human-operator model structure.

2.2 Relevant research fields

Previous research has primarily investigated the adaptive operator behavior for important changes in
task variables, as this has the greatest practical interest (Hess, 2009; Phatak and Bekey, 1969). The
prior investigations on the human operator’s adaptive behavior have resulted in quantitative descrip-
tions of different transition response phases, e.g., the steady-state and transient responses (Johnson
and Weir, 1969; Miller and Elkind, 1967; Sheridan, 1960). Hess (2009) lists many more of such studies.
What still remains unclear, however, is exactly how the human operators manage their “remarkable
adaptation abilities” (Young, 1969). Partly, this is a result of the fact that early researchers were plagued
by the then-existing recording and processing techniques of signals. However, these troubles no longer
apply as advances have been made in the equipment of the modern control laboratories and in the
simulation software. Another reason is that, after the 1960s, the focus in human-machine research has
mainly shifted toward supervisory control (Sheridan, 1985).

Safety Inrecent years, the interest in characterizing and understanding the human operator is rekin-
dled by the rise of reconfigurable and adaptive control systems in various applications and by the
insistence on ever-increasing levels of safety (Hess, 2014). Several loss-of-control aviation incidents
can, for instance, be attributed to unpredicted interactions between the adaptive human pilot and the
adaptive flight-control system. Truijillo et al. (2014) hypothesized that the “reason for the adverse in-
teractions with an adaptive controller in the loop is the pilot not realizing how the adaptive controller is
changing aircraft dynamics.” Another branch of research puts it the other way around. It approaches
the adverse interactions with the concept of human-adaptive mechatronics. This concept was intro-
duced by Harashima and Suzuki (2006) who define it as “an intelligent mechanical system that adapts
themselves to human skill under various environments, improves human skill, and assists the operation
to achieve best performance of the human-machine system.”

Economic efficiency  Tervo et al. (2010) point out that still, in many industrial processes, skilled
manual control plays an important role in terms of fuel economy, productivity, and quality of the end
product. They explain, for example, that productivity differences of over forty percent could exist be-
tween two professionally trained operators who work with similar machines in similar conditions. There-
fore, in order to further improve the overall performance in the industrial processes, not only the opti-
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mization of the machines should be considered, but also the limitations and the inherent capabilities of
human-operator control (Xi and de Silva, 2015).

Current research is thus motivated by the quests of ever-increasing levels of safety and of economic
efficiency. The alleged approaches, described above, require current identification techniques to be
extended significantly for investigating manual-control behavior.

2.3 Areas of controversy

Before proceeding on to the different time-varying identification methods under development, a mention
is made to the three most successfully implemented identification methods for cases where the opera-
tor can be characterized as quasi-linear and time invariant. These are the methods based on Fourier
coefficients (FCs) (Stapleford et al., 1967; van Paassen and Mulder, 1998), linear time-invariant (LTI)
ARX models (Nieuwenhuizen et al., 2008), and genetic maximum-likelihood estimation (MLE) (Zaal
et al., 2009). They are very important to consider, because, despite significantly different dimension-
ality and complexity, some of them form basic building blocks for the development of the time-varying
identification methods.

As already noted, research on identifying time-varying adaptive manual-control behavior primarily
concentrates on adaptation due to changes in tasks variables. This section first gives account of
studies toward ad hoc logic on this kind of adaptation. It then presents studies where the time-varying
identification is performed with the genetic MLE procedure. Also the identification with wavelet trans-
forms is highlighted. Next, it describes attempts of using recursive identification. In addition, a connec-
tion is made to identifying time-varying neuromuscular responses.

Adaptive logic  Research by Hess (2009, 2016) has brought forward an adaptive logic as a tractable
framework to approach the problem of operator adaptation for changes in the controlled-element dy-
namics which is not only applicable to single-axis but also to dual-axis control tasks. His most important
guideline is as follows: “the post-adapted pilot models must follow the dictates of the crossover model
of the human pilot” (Hess, 2016).

Maximum-likelihood estimation and wavelets Zaal (2016) investigated in a real experiment how
human operators adapt to time-varying changes (transitions) in the controlled-element dynamics in a
multi-axis closed-loop control task. The time-varying behavior was characterized by employing the
genetic MLE procedure to estimate operator-model parameters with generalized time-dependent lo-
gistic models (sigmoid functions). In another study, performed by Zaal and Pool (2014), a multi-axis
multi-loop control-task experiment was investigated by employing an identical identification procedure,
although here the time variations were applied to motion-filter gains, also using sigmoid functions. A
third study which used the MLE procedure to identify time-varying behavior was carried out by Zaal
and Sweet (2011). They simulated a compensatory target-following tracking task where the controlled-
element dynamics varied linearly over time. Here, also wavelet transforms were used to characterize
time-varying operator behavior. This wavelet approach was particularly based on prior research by
Thompson et al. (2001).

Recursive identification Recently, Olivari et al. (2016) attempted to identify time-varying operator
responses to visual and force feedback during a compensatory tracking task using a regularized re-
cursive least-squares (RegRLS) algorithm equipped with forgetting factor. In this case, time-varying
human-operator dynamics were simulated according a control mode parameter representing abrupt
and slow linear changes between different control device dynamics. Several more attempts were
made in the past to identify the human in the loop using recursive identification. Ameyoe et al. (2015),
for example, investigated a real-time identification of a linear parameter-varying (LPV) cybernetic driver
model using the unscented Kalman filter. Boer and Kenyon (1998) made use of an extended Kalman
filter to recursively identify time-varying human-operator delay. Trujillo and Gregory (2016) explored
three different recursive estimation methods to analyze experimental manual-control data on the ef-
fects of an adaptive controller and on the use of vision system technologies, with the main purpose
to develop a real-time indicator of manual-control behavior. Their considered estimators were based
on gradient descent, least squares with exponential forgetting, and least squares with bounded gain
forgetting.
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Neuromuscular responses The RegRLS method was initially developed for estimating time-varying
neuromuscular responses in human-in-the-loop experiments (Olivari et al., 2015a). In fact, such in-
vestigations are more specific, but they form a basis for identifying the completer models. Wavelet
transforms (Mulder et al., 2011) and LPV subspace methods (van Wingerden and Verhaegen, 2009)
are also under development for this specific problem. However, these applications are very immature.

2.4 Synthesis

By synthesizing the various studies on developing identification methods for time-varying manual-
control behavior, relevant commonalities and differences in the research approaches are observed.
Next, by delving into the details of the various studies, i.e., the setups and algorithms used, some
potential advantages and disadvantages can be found.

« Most research on identifying time-varying adaptive manual-control behavior in the loop focuses
on changes in the task variables and, in particular, on transitions in the controlled-element dy-
namics as for these variables the biggest adaptation changes are expected (McRuer and Jex,
1967).

» As a baseline, many studies start with investigating single-axis compensatory control tasks and
keep reference to the famous crossover model, bearing in mind that extensions to multiple axes
of control or even the usage of other classes of inputs to the human operator should not pose
fundamental difficulties.

 Previous investigations make clear that, before using a novel identification method in laboratory
experiments or real-life tasks, the accuracy of it should be evaluated thoroughly by means of
Monte-Carlo simulations for different remnant levels.

« The identification method using wavelet transforms is not mature yet. Initial results have shown
that this method is very sensitive to human-operator remnant (Zaal and Sweet, 2011).

« The MLE identification method is less sensitive to remnant and is able to provide accurate es-
timations, However, it requires a restrictive definition about how certain parameters will change
(Zaal, 2016).

« Recursive identification methods have the big advantage that they are able to analyze the evo-
lution of parameters over time. In addition, the main benefit of recursive identification is that
time-varying dynamics can be tracked in real time, i.e., online. The initial results of the study by
Olivari et al. (2016) make the RLS algorithm equipped with forgetting factor a promising candidate
to consider.

« Apparently, in manual-control cybernetics, very few studies have yet attempted to make use of
LPV models. There is a great temptation to extend the work by Nieuwenhuizen et al. (2008) with
time-varying estimation, i.e., to take the representation of ARX models as a basic building block
and then to employ a time-varying estimation method on the model parameters. The ARX-model
structure is preferred as this is a linear regression-model structure which eases computations.

These points clarify, to some extent, which research approach should be adopted. As there is still a
serious lack of knowledge to explain and to understand how human operators manage their ability of
adaptation, the proposed thesis project opts to set up an identification method able to capture time vari-
ations in manual-control behavior without making explicit assumptions on how these will evolve over
time. Based on the state-of-the-art literature survey, it seems most promising to bridge the knowledge
gap by making use of an ARX-model structure and an RLS estimation method. The application of com-
pensatory tracking tasks with time-varying controlled-element dynamics is considered as a stepping
stone toward meeting the challenge.
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Compensatory manual-control model

A complete identification scheme requires clear-cut specifications of the particular application to be
modeled and the identification framework to be used. In this study, the human operator is the ap-
plication to be considered. The operator is modeled as a compensatory controller in such a way
that the manual-control behavior can be characterized in the same quantitative terms as the element
to be controlled. Compensatory manual-control theory has been described extensively in the past.
Many different approaches have been taken to mathematically model this type of manual control. The
approaches range from the application of classical to optimal control theory (McRuer, 1980). More
recently, also emerging approaches have been applied such as artificial neural networks and fuzzy
logic (e.g., Celik and Ertugrul, 2010). As was already addressed in Chapter 2, the most solid basis for
describing manual-control behavior, in many situations, is provided by the crossover model (i.e., a re-
sult of applying classical control theory) (Mulder et al., 2006). On this basis, attempts have been made
to parameterize manual-control behavior. It has led to the successful buildup of structural-isomorphic
models. Widely known are the extended crossover model and the precision model, both covering a
broad frequency range (McRuer et al., 1967). However, despite their success in characterizing some
of the human operator’s capabilities and limitations, these models are not able to capture short-term
adaptations, learning and time-varying behavior (McRuer and Jex, 1967).

In line with the procedure laid down in Chapter 1, this chapter takes a more mathematical approach
in modeling the human operator compared to the previous chapter. A compensatory manual-control
model is set up with the possibility to introduce time variations in both the human-operator and the
controlled-element dynamics. More specifically, single-axis target-following control tasks will be con-
sidered. The dynamics of the human operator will be modeled using a modified version of the precision
model by McRuer et al. (1967). As there is less common ground on how human operators manage
their abilities of adaptation to time-varying controlled-element dynamics, prior definitions are required
in simulating the time variations in control behavior. The setup described here is primarily based on
the study by Zaal (2016).

This chapter begins with Section 3.1 which provides a mathematical description of the single-axis
target-following control task to be considered. A block diagram clarifies the functioning of the human
operator as a compensatory controller. In addition, the type of forcing function to excite the operator
and the crossover model are explained in mathematical terms. Section 3.2 presents parametric models
for both the controlled-element and the operator dynamics. Lastly, Section 3.3 discusses the various
suggestions found in literature for simulating time-varying control behavior. Essentially, the operator’s
input-output data resulting from simulating the proposed compensatory manual-control model will be
used by the identification algorithms presented in Chapter 4. More specific details and results of the
simulation are given in Chapter 5.

3.1 Single-loop target-following control task

A block diagram of the compensatory manual-control model to be simulated with time-varying dynam-
ics is shown in Figure 3.1. The figure was adapted from Zaal (2016). As was explained in Chapter 2,
in compensatory tracking tasks, the human operator can only directly (visually) perceive the tracking
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Figure 3.1 Block diagram of a single-loop compensatory target-following control task with time-varying dynamics, adapted from
Zaal (2016).

v

error signal e (¢) in time ¢. This signal is the input to the operator. In Figure 3.1, the operator dynamics
are represented, in the corner-aligned dashed rectangle, with the transfer function Hyo (s,t). The op-
erator output is the control signal « () serving as input to the controlled element whose dynamics are
expressed by Hog (s,t). As indicated by ¢, both these dynamics can be considered as time varying.
In this control task, the operator aims to minimize e (¢) which is defined as the difference between a
target forcing-function signal f; (¢) and the system-output signal = (¢):
e(t) = fi(t) — (1) (3.1)
Taking a closer look at Figure 3.1, Hyo (s, t) is modeled with a quasi-linear model. It is an addition
of a linear response to the error Hy o, (s,t), and a remnant signal n (¢) accounting nonlinearities. The
latter signal is modeled by passing a zero-mean Gaussian white-noise signal n., (¢) with unit variance
through a time-invariant remnant filter H,, (s). In reality, however, the remnant characteristics would
also be time-varying. This study focuses on a proper examination of the linear time-varying operator
responses. In order to avoid complications, H,, (s) is assumed to be time invariant.
As the human operator is embedded in a closed loop, a crucial point for identification is that the
remnant will be circulated, resulting in a correlation between e (t) and n (t). Accordingly, care should
be taken in identifying the operator only on the basis of e (¢) and « (¢) as they will be biased estimates.

Forcing functions For executing human-in-the-loop simulations or experiments, van Paassen and
Mulder (1998) provide useful guidelines to be taken into account. Usually, the forcing functions to excite
the operator are multisinusoidal signals. They have a quasi-random appearing but are completely
deterministic. In the tracking task to be simulated, f; (¢) is described by

N,

Fe(t) =" Avlke] sin (wy [ke] t+ b [kr]) (3.2)
k=1
where A; [k:], w [kt], and ¢ [k:] are the amplitude, frequency, and phase shift of the k;th sinusoid in
f+ (t), respectively, and NV, is the total number of sinusoids. All excitation frequencies w; [k:] are integer
multiples n, of the measurement-base frequency w,,. In designing the forcing functions, care should
be taken that the signal-to-noise ratios are high.

Crossover model  The crossover model was already discussed in Chapter 2. Mathematically, it can
be expressed as follows. First, denote the open-loop transfer function Hoy, (jw), in the frequency
domain, in Figure 3.1, relating « (¢) to e (t), as

Hor (jw) = Hio (jw) Hom (jw) (3.3)
Around the crossover frequency w,, i.e., where |Hoy, (jw)|,_,, €quals one, Hoy, (jw) approximates
integrator-like dynamics (1/jw). Taking into account the operator’s effective time delay 7. (e.g., due to
information-processing lags), the crossover model is mathematically represented as (McRuer and Jex,
1967)!

Hor (jw) = 2¢e=3“™ when w =~ w, (3.4)
Jqw

If Hog (jw) is known, the model allows to predict Hyo (jw) in the crossover region.

3.2 Parametric models

This study will investigate manual-control behavior for time-varying controlled-element dynamics, which
could approximate both single- and double-integrator dynamics (1/jw and 1/(jw)?) in the crossover

1The frequency operator jw (with j2 = —1) is used instead of the general Laplace variable s = o + jw. The validity is only in
the frequency domain and the existence is only under essentially stationary conditions.
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region. They are defined parametrically by (Zaal, 2016)
K
Heg (jw,t) = % (3.5)
where K¢ (t) and wy, (t) are the time-varying controlled-element gain and time-varying break fre-
guency, respectively.
In order to parameterize Hyo, (s,t), the following model is taken from Zaal (2016) which is a
modified version of the precision model. In this report, it will be referred to as the analytical human-
operator model.

Limitations
Equalization dynamics: Heq (s, t) >
W,
Hyo, (s,t) = K, (t)[TL (t)s+1 e T nm (3.6)
)= KOOt <0 e et

Gain Lead term Time delay

Neuromuscular-actuation dynamics: H,,, (s)

It is split up into equalization dynamics and operator limitations. The equalization dynamics H, (s, t)
for the controlled-element dynamics to be considered, consist of a time-varying visual gain K, (¢) and
alead term T7, (t) s + 1, where T}, (¢) is a time-varying lead-time constant. The operator’s limitations
include the time delay 7, incurred in the central nervous system’s perception and processing of visual
information, and the neuromuscular-actuation dynamics H,,, (s) due to the operator’s control actions.
The latter ones are defined by a second-order system yielding the (undamped natural) neuromuscu-
lar frequency w,,,,, and the neuromuscular-damping ratio (,,,. Generally, K,, and T, are called the
equalization parameters, while 7, w,,, and (.., are termed the limitation parameters.

Compared with the precision model by McRuer et al. (1967), the above model does not take into
account an additional low-frequency lag-lead term and it lacks an additional neuromuscular-lag term.
Pool et al. (2011a) refer to previous investigations indicating that models like the one in Eq. (3.6) have
sufficient capability to capture manual-control behavior in similar tracking tasks over a wide frequency
range. The limitation parameters are not considered to be time-varying in this study. Zaal (2016)
argues, on the basis of previous research, that they are not significantly different for the proposed
dynamics to be controlled.

3.3 Time variations

As was explained in Chapter 2, there is no clear agreement on how human operators adapt their
manual-control behavior over time. The literature survey has led to the conclusion that some high-level
guiding principles of adaptation are available, but no reliable identification frameworks exist to capture
the time-varying adaptive human-operator dynamics for abrupt or gradual changes in for instance the
task variables. In fact, in order to perform offline simulations, a priori information is needed on how
human operators adapt. However, the availability of such a priori information is the external goal of the
research here. It leads to a causality dilemma.

This study attempts to resolve the dilemma on the basis of earlier proposals for simulating time
variations in manual-control behavior. The survey in Chapter 2 addressed different attempts: time vari-
ations were introduced by means of linear parameter changes, a control-mode parameter, and sigmoid
functions. The paragraphs below explain them in more mathematical detail. Conclusive remarks are
given at the end of this section.

Linear parameter changes  In the work by Zaal and Sweet (2011), a similar control task as described
above was set up and linear time variations were introduced in both the parameters of the controlled
element and the operator. Figure 3.2 shows a visualization of their proposed time variations in the
parameters (©). Changes happen at two time instants (¢; and ¢;) They were introduced in both the
controlled element’s gain (K.) and time constant (7..), and both the operator’s visual gain (K,) and
lead-time constant (7;). Both time-varying lead-time constants were assumed to be equal throughout
the runs. The operator’s limitation parameters were set to fixed values. In this simulation, the open-
loop dynamics had single-integrator dynamics over the entire range. While some of the parameters
changed linearly over time, the responses of the controlled element and the human operator did not
change linearly.

Control-mode parameter A slightly different manual-control task was modeled in the study by Oli-
vari et al. (2016). Their aim was to capture not only time-varying responses to visual but also force
feedback. Instead of the controlled-element dynamics, control-device dynamics were changed over
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Figure 3.2 “Values of the time-varying simulation parameters” (Zaal and Sweet, 2011).

time via a control-mode parameter CM (¢) varying between values of zero and one. The transfer func-
tions H (s) of both the control device and the operator’s visual and force responses were equally varied
in time between two parameter sets (1 and 2) according

H (s,t) = (1 —CM(t)) Hy (s) + CM (t) Hz (s) 3.7)
The used pattern of CM (t) is shown in Figure 3.3. It consists of two step and two ramp transitions.

| 4/—\\
0
0 20 40 60 80

Simulation time, s

CM,

Figure 3.3 “Time evolution of the control mode” (Olivari et al., 2016).

Sigmoid functions Zaal (2016) introduced time variations in the parameters of both the controlled-
element dynamics and the operator’s equalization dynamics by means of (nonlinear) sigmoid functions.
The type of sigmoid functions used by Zaal to vary a p}gram}e):ter P in time is mathematically defined as
2 — 41
where P; and P, are the initial and final parameter values, respectively. The maximum rate of change
is denoted by G and the time at which this happens is set by M. Actually, similar sigmoid functions
were used in the study by Zaal and Pool (2014). Figure 3.4 clarifies the tuning of the variables M and
G. The legends in this figure indicate the values used for M and G in order to generate the various
sigmoid curves. It can be seen that the sigmoid functions allow the modeling of both abrupt and gradual
transitions.
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Figure 3.4 “Sigmoid function parameter variation” (Zaal, 2016).

t,s

(b) G variation (P, = 0.1, P, = 0.4, M =50s).
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Conclusive remarks  In reality, manual-control behavior is nonlinear. Although the resulting operator
responses in the study by Zaal and Sweet (2011) varied nonlinear over time, the operator’s equalization
parameters were changed linearly. It would be better to directly introduce nonlinear time variations in
the operator's parameters. Hence, the use of sigmoid functions for such variations, as suggested
by Zaal (2016), possibly reflects more realistic control behavior. In contrast to the work by Olivari
et al. (2016), where four transitions in the control-mode parameter were considered to introduce time-
varying operator responses in one simulation run, Zaal (2016) just modeled one transition in a set
of parameters in a run of similar length. The identification of manual-control behavior for even one
transition during a run is already a challenge. Taken together, it seems to be fruitful to make use of a
similar setup as in Zaal (2016) for introducing the time variations.
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|dentification framework

In recent years, identification frameworks based on parametric LTI models have been successfully
applied in characterizing manual-control behavior, under the assumption that this behavior is time-
invariant during the identification period. Commonly, these types of models are built by using time-
domain data. Early experimental investigations utilizing time-series analysis for modeling the operator
in the loop are described, for instance, by Stankovi¢ and Kouwenberg (1973), Shinners (1974), Bal-
akrishna (1976), Osafo-Charles et al. (1980), Jategaonkar et al. (1982), Balakrishna et al. (1983),
Hanson and Jewell (1983), Biezad and Schmidt (1985), Hess and Mnich (1986), Hess (1990), and
Goto and Matsuo (1988). The work by Nieuwenhuizen et al. (2008) lists many more studies covering
such investigations. The actual research by Nieuwenhuizen et al. (2008) has led to the buildup of
the currently most successful identification framework based on LTI models for the characterization of
compensatory manual-control behavior. Compared to preceding studies, they were able to take the
step forward in employing parametric LTI models through advances made in simulation software. More
recent investigations of manual-control behavior, partly relying on this work, can be found in the studies
by Drop et al. (2013, 2016a,b), Olivari et al. (2014, 2015b), and Roggenkamper et al. (2016). As con-
cluded in Chapter 2, very few attempts have been taken to make use of LTI models with time-varying
parameters, i.e., LPV models, in the identification of manual-control behavior.

The aim of this chapter is to present the setup of an identification framework based on ARX models.
It focuses on the kind of knowledge, information, and insights needed to establish the framework.
Similarly to Chapter 3, a mathematical approach is taken here. In order to develop the framework,
reference is primarily made to Ljung (1999). In essence, the framework is only going to make use
of time-domain data sets containing the operator’s error signal serving as input and control signal
serving as output. In this chapter, some common notations used in system identification are adopted
to notations introduced in Chapter 3.

The chapter’s structure is as follows. Section 4.1 outlines the system-identification loop that will
serve as basis for the development of the identification framework. Steps to be taken in the data
generation and preprocessing, and in the estimation, simulation and validation are presented in Sec-
tion 4.2. Section 4.3 provides a description of ARX models. Lastly, Section 4.4 highlights the parameter
estimation. The estimation methods of ordinary least squares and recursive least squares equipped
with forgetting factor are considered.

4.1 ldentification loop

As introduced in Chapter 3, the identification scheme needs clear specifications of the application to
be analyzed (i.e., in this research, the operator in a compensatory tracking task) and the identification
framework to be used. The setup of the application was described in Chapter 3. This chapter specifies
the identification framework. Ljung (1999) and Verhaegen and Verdult (2007) provide clever visualiza-
tions of the iterative identification procedure. An adapted version of these is shown in Figure 4.1. The
procedure requires both basic principles from a statistical nature as well as prior knowledge about the
application to be modeled.

It is important to gather maximally informative data from the application. However, it is very likely
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that the data sets require preprocessing steps to avoid identification problems. In this project, the
model structure is set to be ARX, but the real crux is the decision on the model orders. In deciding,
not only physical insight must be considered, but also the principle of parsimony should be applied.
The latter says that “when describing a dynamic process one should not use extra parameters if not
necessary” (Niedzwiecki, 2000). In order to assess candidate models, a criterion of fit must be chosen.
In general, it is usually a trade-off between the model complexity and the model quality-of-fit. So
before estimating the ARX models with the proposed time-varying estimation method, all the preceding
should be carefully thought out. Presumably, multiple revisions are needed before the “best” model is
obtained with the correctly tuned estimation algorithm. Once this is done, Monte-Carlo testing should
be employed for different intensity levels and realizations of remnant to verify the procedure. Eventually
real experimental data will be used to completely validate the procedure. As can be inferred, the
identification procedure is thus an iterative process with a lot of interdependencies.

Prior knowledge JL

’ Application H Unsuitable data
Data ¢

Preprocess Unsuitable preprocessed
data data
Choose model P Unsuitable model structure
structure and
and orders
orders
Preprocessed o . o
data Choose criterion | Unsuitable criterion
Model structure of fit of fit
and orders
Criterion of fit¢
- Unsuitable estimation
’ Fit model to data ki method
Model ¢
’ Verify/validate model }—»
Not OK:
#OK: use it revise

Figure 4.1 Identification loop, adapted from Ljung (1999) and Verhaegen and Verdult (2007).

4.2 Proposed identification method

Based on the general identification procedure, this section specifies the workflow that will be used
in producing the “best” ARX models by identification. It starts with discussing how the input-output
data sets will be generated. Next, it considers the data-preprocessing procedure. Lastly, the steps of
estimation, simulation and validation are explained.

4.2.1 Data generation

The time-domain input-output data sets are generated using guidelines proposed by van Paassen and
Mulder (1998). The total recording time T; should consists of a run-in time T, e.g., for discarding tran-
sients in the manual-control behavior at the start of the recording, and a measurement time 7,,,. Very
often, e.g., see Zaal (2016), the data is sampled with a frequency f, of 100 Hz (w, = 628.32 rad/s),
i.e., with a sampling time or interval T of 0.01 s. It is usually fixed by the simulation software or the
laboratory equipment. Commonly, the generated data sets are not only considered in the time domain
but also in the frequency domain. In order to calculate the discrete Fourier transforms (DFTs) using
the fast Fourier transform algorithm, it is most efficient that the number of samples N is an integer
power of two. Typically, e.g., see again Zaal (2016), T,, is set to 81.92 s, resulting in measured data
signals whose discrete-time samples range from k = 1 to k = 2*3, hence N equals 8192. The cor-
responding measurement-base frequency w,, = 2x/T,, and frequency resolution f;/N then become
0.0767 rad/s and 0.0122 Hz, respectively. In reconstructing signals, aliasing effects are avoided if the
Nyquist-Shannon sampling theorem is obeyed. The maximum frequency that the signals can contain is
determined by the Nyquist frequency fx = fs/2, which equals 50 Hz in this case (wy = 314.16 rad/s).
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4.2.2 Data preprocessing
In general before using input-output data sets in identification algorithms, data need to be subjected
to preprocessing steps (Ljung, 1999). Typically, there are noise disturbances in the data, above the
frequencies of interest. Nieuwenhuizen et al. (2008) mention that the typical frequency range of in-
terest for identifying human-operator dynamics in compensatory tracking tasks covers 0.3 to 17 rad/s.
Furthermore, they explain that, in general, recorded data need to be resampled or filtered, or both.
Their most important note is that “the cutoff frequency of the filter should be higher than or equal to the
Nyquist frequency of the resampled signal.”

In this study, the type of filter that will be used in the data preprocessing is the ideal noncausal filter.
In line with the advice stated above, the cutoff frequency of this filter will be set equal to the Nyquist
frequency. In order to decimate the data signals, a decimation factor d is used. As explained by Ver-
haegen and Verdult (2007), decimated signals are obtained by taking the first sample and then every
subsequent dth sample (for d € Z-) from the original recordings. Consequently, signal-processing
quantities will change. Table 4.1 shows an overview of these quantities for different values of d. Only
values of d that are a power of 2 are considered so that the number of samples in the resampled
signals also stays a power of 2. For clarity’s sake, d = 1 is included, i.e., the case of no resampling.

Table 4.1 Signal-processing quantities for different decimation factors (w,, = 0.0767 rad/s, fs/N = 0.0122 Hz).

d || Ts,s | fs,Hz | ws,radls | fn,HzZ | wy,radls | Nm | Ne | Ny | kes | kee | kus | kue
1 0.01 100 628.32 50 314.16 | 8192 | 4096 | 4096 1 | 4096 | 4097 | 8192
2 0.02 50 314.16 25 157.08 | 4096 | 2048 | 2048 1 | 2048 | 2049 | 4096
4 0.04 25 157.08 12,5 78.54 | 2048 | 1024 | 1024 1 | 1024 | 1025 | 2048
8 0.08 12.5 78.54 6.25 39.27 | 1024 512 512 1 512 513 | 1024
16 0.16 6.25 39.27 3.125 19.63 512 256 256 1 256 257 512
es ()
Data generation em (t) Ifi?;ﬁnpézarg;ﬁssmg:
s =100 H L2
(fs = 100 Hz) um () | decimation
e(keys. kee)| |u(ke,s.-kee) es (1..ke) U (kv,s .. ku,e)
Estimation of ARX Simulation of (ke — No+1. . ke) Validation of
ARX models models ARX models ARX models

Figure 4.2 Proposed identification method. Denoting k. as the end sample, the measurement signals e, (t) and un, (t) are
obtained by taking the samples k. — N + 1. . k. from the total recordings e (t) and u (t), respectively.

4.2.3 Further steps
In addition to the number of measurement samples N,,, when using different values of d, Table 4.1
provides the number of samples of a (re)sampled signal that will be used for estimation (N.) and
validation (V,) in the order selection of ARX models. The start and end samples range from k. s to
ke . for the estimation data subset, and from k, , to k, . for the validation data subset. The proposed
identification method is schematized in Figure 4.2. It partly originates from the works of Drop et al.
(2016a,b). The signals without subscript m indicate that they are preprocessed, and that they are
used for the estimation and the validation. In the simulation of ARX models, decimated versions of the
simulated input signal e (¢) are used. The modeled estimates of the true output are denoted by @ (k).
An intuitive metric for validating an estimated model is the variance accounted for (VAF) (Nieuwen-
huizen et al., 2008). It measures the model's quality of fit. For single-output signals the VAF is defined
as (Verhaegen and Verdult, 2007)

kUC
1 & A
- > @ -aP
VAF (u(t),(t)) = max | 0, [ 1 - ——*= -100% @.1)
[ E
A Z Ju (t)]*
Y t=ky,s
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40 4 |dentification framework

The computation requires the measured output « (¢) and the simulated output @ (¢). The resulting
percentage says how well the ARX model is able to simulate the measured output.

4.3 ARX models

This study considers the use of LTI ARX models for the identification. This section describes the ARX-
model structure, its suitability for human-operator identification, the application of linear regression,
and the determination of the ARX-model orders.

4.3.1 ARX-model structure

Equivalent representations of the signal flow of the ARX-model structure are presented in Figure 4.3.
The notation of the input and output signals corresponds to the notation used in Chapter 3. To clarify,
the input signal is the preprocessed error signal e (¢), and the output signal is the preprocessed control
signal u (t). As shown in Figure 4.3(a), the LTI ARX-model structure can be described by

Deterministic process  Stochastic disturbance: v(t)

u(t) = G(g;0) e(t) + H(q:0) €(t) (4.2)
—— S—— N~~~
Output Plant model Input Noise model White noise
_ Bl 6
= A(q)e(t) + o) (t) (4.3)

It is thus a superposition of a deterministic process, in which a parametric (indicated by ) plant model
operates on the input, and a stochastic disturbance signal v (t), obtained by letting a parametric noise
model operate on a white-noise signal e (¢). Equation (4.2) can be written more compactly as (see also
Figure 4.3(b))

Aq)u(t) = B(q)e(t) +e(t) (4.4)
The argument ¢ in Egs. (4.2) to (4.4) and Figure 4.3 denotes the discrete-time shift operator, e.g.,
¢ tu(t) = u(t — 1). The ARX model makes use of the following two shift polynomials:

A (q> =1+ (lqul + -+ anaqin“ (45)
B (q) = (bo + blq_l + -+ ban_nb+1) q_nk
= boq_"k + blq—nk—l 4+ -+ ban_nk_nb+1 (46)

= bog ™ 4 blq_”k_l et ban—”i

The complete ARX-model structure is defined by three integers: n, € Zso, ny € Zso, and ny € Zxo.
The number of coefficients a; for < > 1 in the output polynomial A (¢) is set by n,, while n;, defines
the number of coefficients b; for j > 0 in the input polynomial B (¢). The final coefficients of A (¢) and
B (q) are denoted by a,,, and b, , respectively. A delay (i.e., a dead time) from the input to the output
in terms of the number of samples is set using n,. The orders of polynomials A (¢) and B (¢) are set
by n, and by n, — 1, respectively. Similarly, n, and n; — 1 set the number of poles and the number of
finite zeros, respectively. Using ny, the highest order of B (q) is changed to n, = ny, + n, — 1.

As shown in Egs. (4.5) and (4.6), the formulations of A (¢) and B (¢) are slightly different. It can be
observed that the lead coefficient of A (¢), i.e., ao, is fixed to 1 and that a direct transmission coefficient
by is used in B (q). In this way, there will be no ambiguity in the definition of G (¢;6). Also, the monic
property of H (q; 0) is preserved. Furthermore, it is straightforward to compute the output.

v (t) e(t)

e(®) [ Blg) +Y+ u(l) e(?) B () +V+ 1] uC

@ (b)

Figure 4.3 Equivalent representations of the ARX-model structure.
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B (q)

e(t)

Figure 4.4 Representation of the ARX-model structure and the human-operator model.

4.3.2 ARX model and human-operator model

In order to better understand how the ARX model takes the human-operator input-output data, the
block diagram in Figure 4.4 is drawn. It can be seen that the operator’s blocks and signals are adapted
from Figure 3.1 and incorporated in the ARX-model structure. The ARX model takes as input e (¢) and
as output « (t). The mismatch between B (¢q) e (t) and A (q) u (t) is modeled by e ().

It must be pointed out that the identification method based on ARX models considered here does
not explicitly take into account closed-loop identification issues. Feedback is ignored and an open-loop
system is identified using measured input-output data. Drop et al. (2016a) also utilized ARX models
for the identification of manual-control behavior and compared this direct identification method with
an indirect (two-stage) method that does explicitly take into account closed-loop identification. They
concluded that the direct method is able to provide more accurate estimates in the frequency range of
interest for manual control than the indirect method. Hence, there seems to be little resistance against
using the direct method in identifying manual-control behavior with ARX models.

Considering again Figure 4.3(a), it can be noted that the deterministic block G (g¢; #) is equivalent
to the operator’s linear response to the error Hyo, (s,t). Using the definition of B (q), the operator’'s
time delay 7, can be approximated with n;. In fact, n; is an integer multiple of the sampling time
Ts. Consequently, the higher the decimation factor, the rougher the approximation of r,, with ny. The
remnant n (¢) is modeled by the stochastic disturbance v (¢), obtained by passing the white noise e (¢)
through H (¢;0). Thus, H (g¢; ) is tied to G (¢; #). However, as will be explained below, the ARX-model
parameters 6 can be obtained by applying linear regression.

4.3.3 Linear regression

As shown by Ljung (1999), the one-step-ahead predictor @ (t|t — 1) can be denoted by 4 (¢|6) to em-
phasize its dependence on 6. It is computed as

a(tt—=1)=[1-A(gJu(t)+ Blge(t) (4.7)
~— —— ——
Past outputs Current and past inputs

The above, which only involves known terms, can be written in the convenient linear regression format
a(tle) = ¢ ()0 4.8)

where ¢ (t) is the regression vector of known past outputs, and current and past inputs:

p(t) = [fu(tfl) —u(t—2) -+ —u(t—mng) e(t—mng) e(t—mp—1) --- e(tfng)]T

(4.9

and @ is the unknown parameter vector:
6=1[a1 as -~ an, bo b1 -+ by] (4.10)

4.3.4 ARX-model orders

One of the biggest questions in setting up the identification framework, is how the right ARX-model
orders, i.e., how the two integers n, and n;, can be selected. In addition, there is the integer n; to
be set. A combination of the integers should be found that will serve as basic building block in the
identification. Time-variations can then be captured by the proposed time-varying estimation method.

MSc thesis | Il Preliminary report H.A. van Grootheest



42 4 |dentification framework

Mathematically, this approach can be clarified as follows
1
S H(st)= —— (4.12)

H(s) =
1+ ags 1+aq(t)s
Above transfer functions have the same model structure. They differ in that the left one is time invariant,
while the right one is time varying. The time-invariant model structure, however, is used for the initial
order selection.

The problem of model-order determination for time-domain models of human-operator dynamics
in compensatory tracking tasks was already investigated decades ago by Jategaonkar et al. (1982).
Several model (order) selection criteria were tested by them for this application. A more up-to-date
overview of such criteria is given by Raol et al. (2004, pp. 130-137). Although these criteria have been
available for a number of years, to date, no well-accepted objective ARX-model selection criterion
exists for identifying human-operator behavior in compensatory tracking tasks. Recent research by
Drop et al. (2016a,b), however, has established a potential objective procedure for identifying human
feedfoward responses in manual control. The study uses a modified Bayesian information criterion
(mBIC) which trades off between model complexity and model’'s quality of fit.

As research is ongoing, this study will not directly make use of the mBIC to determine the ARX-
model orders. Instead, it considers the use of the VAF. This metric was also used in the work by
Nieuwenhuizen et al. (2008). Numerous ARX models will be computed for the different preprocessed
data sets. In the end, the “best” model for a preprocessed data set is obtained based on physical
insight and the parsimony principle.

4.4 Fit criterion

As the ARX-model structure allows the application of linear regression, the criterion of fit is based on
the one-step-ahead prediction error,

e(t,0) =u(t)—a(to) (4.12)
In order to estimate the parameter vector 6, the least-squares method can be used:
min V 9, Z) (4.13)

Here, V (0, Z) denotes the criterion function (also called the least-squares criterion) to be minimized
on the data set Z. The least-squares estimate 63 is then provided by
6L% = arg min V' (6, Z) (4.14)

Several least-squares estimation methods are available that differ with respect to their definition of
V (6,Z). In this study, the estimation methods of ordinary least squares (OLS) and recursive least
squares (RLS) equipped with forgetting factor will be considered. These are explained below.

4.4.1 Ordinary least-squares estimation
In general, the OLS criterion is defined as
N
V2ES (0,2V) =3 (u (t)6)° (4.15)

t=1
for which the OLS estimate becomes

NOLS
Ox

M=

1
= argnbmﬁ

(u(t) — " (£)6) (4.16)
t=1

The minimum can be found, assuming that the indicated inverse exists, using

OLS
l ¥ Zso t)] v Z o (t (4.17)
With matrix-vector formulation, Eq. (4. 17) can be written as
6985 = (873) 2T (4.18)
where & is the regression matrix:
T
¢ (1)
¢ (2)

ot kN)
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—u (0) —u(=1) -+ —u(l—n,) e(l—mng) e (0 —ng) e e(l—mnyp)
_ —u (1) —u (0) o —u(2—mng)  e(2—mnyg) e(l—ny) ee(2—mny)
Cu(N=1) —a(N=2) - —u(N-ng) e(N-ng) e(N—1—ng) - e(N—nl)
(4.19)
and u is the vector of control-output signals:
u(1)
u= u@ (4.20)
u(N)

Usually, the data for ¢ < 1 is unknown. Then, before computing é%LS, all rows in & and u with an
unknown data sample should be removed.

A limitation of the OLS estimation method is that it acts in batch mode, i.e., on the whole time series
at once. This method assumes that the system to be modeled is time invariant. On the contrary, as
will be discussed next, the RLS estimation method is capable to track time variations of the system.

4.4.2 Recursive least-squares estimation

In recursive identification, the parameter estimation is updated for each new measurement sample
that becomes available. It is, therefore, also referred to as online or real-time identification, or adaptive
parameter estimation. Actually, the RLS algorithm is a special case of the Kalman filter algorithm.

RLS algorithm  The criterion of fit for RLS estimation is in general defined as

VLS (9, 7Y) Zﬁ (t, k) o7 (k) 6)* (4.21)
containing the weight (also called the forgettlng prof|le)
H A (H) (4.22)
j=k+1
where |\ (j)| < 1 denotes the forgetting factor The corresponding RLS estimate then becomes
. . 2
OIS — arg memz B (t,k) (u(k) — T (k)6 (k) (4.23)

k=1
The t in the above equations emphasizes that the criterion and the estimate are based on ¢ data (i.e.,
Z%). In order to compute 75, the following recursive algorithm will be used. For easier notation,

0 (t) = 0( ) is introduced, denoting the parameter estimate at time ¢.

O()=0(t—1)+K (t)e () (4.24)

e(t)=u(t)—a(t) (4.25)

at) =" ()0t —1) (4.26)

K(t)=Q()¢(t) (4.27)

B P(it-1)
MRS YORTOY I ) (@20
P(t) = P(;(;)l) (I-K@) " (1) (4.29)
Equation (4.24) is seen as an update rule for the parameters, which can also be written with ¢:

0(t) = f (qt)ls(t) (4.30)

The above can be clarified using Figure 4.5. Here, the RLS algorithm is casted as a feedback control
problem. By adjusting the gain vector K (t), the prediction error « (¢) between u (¢), i.e., the observed
output at time ¢, and 4 (t), i.e., the prediction of « (¢t) based on observations up to time ¢t — 1, can be
minimized. By multiplying the matrix @ (¢) with the regression vector ¢ (t), defined in Eq. (4.9), K (t)
is computed. Actually, @ (¢) is obtained by minimizing the RLS criterion at time ¢. The computation of
Q (t) makes use of the scaled covariance matrix of the parameters P (¢). The I in the definition of P (t)
denotes the identity matrix. The algorithm is completed by specifying the initial parameter estimate
0o = 6(0), the initial regression vector ¢ (1), and the initial scaled covariance matrix P, = P (0).
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u(t) + e(t) Parameter o (t) 4 (t)

%(7 . update Model >

Figure 4.5 RLS estimation from the viewpoint of feedback control, adapted from Tangirala (2015).

The actual covariance matrix of the parameters, i.e., P (t), can be obtained by multiplying P (¢) with
o2 (t) /2, where o2 (t) denotes the variance of ¢ (¢) (Ljung, 1999, pp. 381-382).

Forgetting factor ~ The forgetting factor is considered as the design variable of the RLS algorithm: it
is a trade-off between the ability to track and the sensitivity to noise. By taking a constant forgetting

factor, i.e., A (t) = ), old measurements are discounted exponentially: a measurement that is
1

Ty = T (4.31)
old has a weight equal to A° times the weight of the most recent observation. This Tj is called
the memory horizon of the algorithm. By setting A < 1, the parameters can be estimated over time.
Commonly, X is set to a positive value ranging between 0.98 and 0.995 (Ljung, 1999). If a constant
forgetting factor is used, the weight in Egs. (4.21) to (4.23) becomes

B(t k) =A\"F (4.32)

Choosing a fixed value of )\ is suitable for a system that “changes gradually and in a ‘stationary
manner, ” (Ljung, 1999) and when it is persistently excited. The value of A can also be selected in such
a way that it depends on the variation rates of the system’s properties or parameters. Ljung (1999)
argues that “if the system remains approximately constant over T samples, a suitable choice of A can
then be made from [Eq. (4.31)]" as this “reflects the ratio between the time constants of variations in
the dynamics and those of the dynamics itself.”

Numerous other strategies exist for choosing the forgetting profile. A theoretical account on the
general concept of forgetting is given by Kulhavy and Zarrop (1993). Here, points of particular interest
are given for classical exponential forgetting, regularized exponential forgetting, directional forgetting
and mixed forgetting. It especially features a role for prior information. Their main objective has been
“to look for the simplest possibility of making estimators reliably adaptive, within a rigorous framework.”
Furthermore, they state that, in this particular context, a good estimation algorithm is expected to be:

(a) effective — the adaptive estimator is to track both constant and time-varying parameters as
closely as possible (some trade-off is clearly inevitable);

(b) robust — whichever data are observed, parameter estimation must generate acceptable results;

(c) simple — the resulting complexity must not go far beyond the complexity of a non-adaptive al-
gorithm (more complex solutions can be justified perhaps for special applications, but not as a
standard tool).

Tangirala (2015) refers to different investigations that consider the use of an adaptive forgetting
factor based on levels of excitation and measurement noise. Next, he mentions studies that consider
vector-type forgetting, i.e., “to choose different forgetting factors for each parameter because parame-
ters may have significantly differing timescales of variations.” A more practical overview of various RLS
algorithms with several forgetting-factor policies is given by Navratil and Ilvanka (2014). They provide
brief descriptions for RLS estimation with exponential forgetting, variable exponential forgetting, fixed
directional forgetting, adaptive directional forgetting, an exponential forgetting matrix, a constant trace
algorithm, and an exponential forgetting and resetting algorithm.

Turning more specifically toward ARX models, Fraccaroli et al. (2015) proposed to split up the
classic RLS algorithm into “the minimization of the current prediction error and the minimization of
a quadratic function which penalizes the distance between the current and previous value of the es-
timate.” This allows the modeling of multiple forgetting factors. Hence, different change rates for
the estimation parameters can be set. Qin et al. (2010) proposed a recursive penalized weighted
least-squares method for estimating ARX models that uses discounted weights and a regularization
parameter. They also introduce a general information criterion to select the proper weights, regulariza-
tion parameters and ARX-model orders. However, both forgetting-factor strategies are only verified for
simple case studies, incomparably different to modeling compensatory manual-control behavior.
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Preliminary simulation analysis

The advances made in simulation software have allowed detailed setups of identification schemes
and careful designs of laboratory experiments. This is especially useful in the research on identifying
manual-control behavior, as the experiments can be quite intrusive for subjects. By means of offline
simulations, significant savings in time and effort on answering specific research questions could be
realized and typical pitfalls in identification-scheme setups and experiment designs will be avoided.

This chapter covers the preliminary simulation analysis of the proposed identification scheme. Off-
line simulations of the compensatory manual-control model, introduced in Chapter 3, are conducted. In
setting up this simulation, reference is made to the work by Zaal (2016). Next, a low-level implementa-
tion of the identification framework, set up in Chapter 4, is done. All this, will result in a solid foundation
for the further development of the identification scheme based on time-varying ARX models.

The chapter is set out as follows. Section 5.1 describes the setup and the results of the offline
simulation of the compensatory manual-control model. The implementation and application of the
identification framework is covered in Section 5.2. This section contains a theoretical selection of the
ARX-model structure. Numerous ARX models are then estimated on preprocessed data sets using the
OLS estimation method. The selection is assessed by means of VAF-contour plots and the principle of
parsimony. Lastly, a demonstration is given of the RLS algorithm. Although initial and final analytical
expressions of the time-varying simulation are given, this preliminary simulation analysis is concerned
with human-operator data sets obtained from simulations in which no time variations were introduced
yet in the manual-control behavior. SIMULINK implementation details can be found in Appendix A.

5.1 Compensatory manual-control model simulations

The simulations of the compensatory manual-control model (refer again to Figure 3.1) will be per-
formed in a similar way as described in the work of Zaal (2016). Dynamics in this control model will
change from an initial state to a final state. First, details of the type of forcing function are given. Then
the results of the controlled-element dynamics, the analytical human-operator dynamics and the cor-
responding analytical system dynamics are provided for the initial and final state. Next, a step is made
toward a more realistic modeling approach. By means of different noise realizations, human-operator
remnant is simulated. The operator’s input-output data resulting from these simulations can then be
used in the identification algorithms.

5.1.1 General simulation setup

Forcing function The system is excited by the target forcing function f; (¢) whose properties are
summarized in Table 5.1. Its construction is based on N; = 10 sinusoids. Figure 5.1(a) shows the
measurement-time trace of f; (¢). A frequency range of 0.2 to 17.6 rad/s is covered. As described
in Section 4.2, the data is sampled with f, = 100 Hz, resulting in a measurement-base frequency of
wy, = 0.0767 rad/s which is used to calculate all w;. Furthermore, the amplitude distribution is varied
and scaled to attain a variance of af of 2.2490 deg?. The phase shifts are adjusted so that a crest
factor C,. of 2.6930 is obtained. Figure 5.1(b) displays the auto-power-spectral density (PSD) estimates
of f; (t). The peaks of Sy, ;, (jw) are located at w;.
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46 5 Preliminary simulation analysis

Table 5.1 Target forcing-function properties adapted from Zaal (2016).

ke nt | we, radls | Ag deg | ¢4, rad
1 3 0.230 1.186 -0.753
2 5 0.384 1.121 1.564
3 8 0.614 0.991 0.588
4 13 0.997 0.756 -0.546
5 22 1.687 0.447 0.674
6 34 2.608 0.245 -1.724
7 53 4.065 0.123 -1.963
8 86 6.596 0.061 -2.189
9 | 139 10.661 0.036 0.875
10 | 229 17.564 0.025 0.604
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(a) Time trace. (b) Auto-power spectrum.

Figure 5.1 Forcing-function signal.

Controlled-element dynamics As was explained in Section 3.3, a set of initial (1) and a set of
final (2) parameter values are considered to set up the sigmoid functions for the controlled-element

parameters:

KCE,I = 90.0, Wh,1 = 6.0 rad/s (51)
Kcg2 = 30.0, wp2 = 0.2 rad/s (5.2)
Bode plots of the corresponding controlled-element dynamics, expressible as
. K
Hop (jw) = —5 22— (5.3)

— (jw)? + wpjw _ .
are shown in Figure 5.2(a). In the human operator’'s crossover-frequency range, in general running
from 1 to 5 rad/s, Hcg 1 (jw) approximates single-integrator dynamics (1/jw), while Heg o (jw) ap-

proximates double-integrator dynamics (1/(jw)?)

Analytical human-operator dynamics In order to define the parameter functions for the analytical
human-operator model, the following sets of initial and final equalization-parameter values are consid-
ered

K, =0.09, Tp,1=04s (5.4)
Kv’g = 0.07, TL72 =1.2s (55)

The fixed set of values that is considered for the operator’s limitation parameters is
7, = 0.28s, Wnm = 11.25 rad/s, Cnm = 0.35 (5.6)

The above values were determined using data from a test experiment (Zaal, 2016). Bode plots of
the resulting analytical human-operator dynamics Hyo, (jw) are shown in Figure 5.2(b). These were
computed using the time-invariant version of the analytical human-operator model. From Eq. (3.6), this
version is described as

Limitations
Equalization dynamics: Hcq (jw) >
—_— ) w
Hpo, (jw) = Ky [Tpjo+1]  ¢7%™ — e (5.7)
N~ (]w) + 2CnmWnmjw + W%m

Gain  Lead term Time delay

Neuromuscular-actuation dynamics: H,,,, (jw)
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(a) Controlled-element dynamics. (b) Analytical human-operator dynamics.

Figure 5.2 Bode plots of the controlled-element dynamics and the analytical human-operator dynamics.

The magnitude Bode plots most clearly show, in the crossover-frequency range, the effect of the dif-
ferent lead-time constants. As dictated by the crossover model, in order to control Hep o (jw) the
operator generates more lead for compensating the double-integrator dynamics. Hence, the peak of
the neuromuscular-actuation dynamics is lifted.

Analytical system dynamics Bode plots of the analytical open- and closed-loop dynamics corre-
sponding to the initial and final sets of the parameter values are shown in Figures 5.3(a) and (b),
respectively. Equation (3.3) is used to compute the analytical open-loop dynamics. The analytical
closed-loop dynamics are computed by
Hoy (jw)
1+ Hor .(J'W) . (5.8)
_ Hpyo (jw) Hor (jw)
1+ Hpo (jw) Hop (jw)

From the Bode plots of the analytical open-loop dynamics in Figure 5.3(a), the following crossover
frequencies and phase margins can be determined

Her (jw) =

we = 1.5 rad/s, ¢m,1 = 77.0 deg (5.9)
we,2 = 2.8 rad/s, Pm,2 = 22.7 deg (5.10)
! 101 =TT T : | 101
= T~ whi =15radls = ik
3 100F———-——- ;';\'r’ia';g?z; 28radls ————— 3 10° —
vg 107} o S 107
= 102 L : T 102 ! ‘
10t 10° 10t 102 10t 10° 10t 10?
w, rad/s w, rad/s
2 =)
3 0 T ‘ 3 98
T = AL = o
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o8 EE g S
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(a) Open-loop dynamics. (b) Closed-loop dynamics.

Figure 5.3 Bode plots of the analytical system dynamics.
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48 5 Preliminary simulation analysis

5.1.2 Toward more realistic simulations

Typically, data sets obtained from manual-control experiments contain high levels of remnant (Zaal
et al., 2009). Therefore, the simulation of remnant should be taken into account too. A metric that
characterizes the level of remnant in manual-control data is the remnant intensity (also called power
ratio) P,, defined as

0.2

P, = U—;’ (5.112)
u
Here, 02 and o2 denote the variances of the measurement-time traces of the remnant signal and the
control signal, respectively. In order to simulate operator remnant, a zero-mean Gaussian white-noise
signal n,, (t) with unit variance is passed through the following first-order time-invariant remnant filter
H, (jw) = ﬁ (5.12)
The remnant-time constant T, is set equal to 0.2 s. In this preliminary simulation analysis, the remnant
gain K, is set to induce a certain average value of P, based on a set of ten realizations of n,, (¢). For
this, the nonlinear programming solver fmincon in MATLAB was used with default options. The total
recording time T; of a simulation run is set to 819.2 s, i.e., a multiple of ten times 7,,,. A run-in time
T, of 737.28 s will be canceled to reduce the effects of transients in the operator’s actions. In order to
create the first noise realization for tuning K,,, the seed of the random number generator in MATLAB
was set to 100. The corresponding K,, with these settings was found to be 0.0202.

Simulation with remnant Figure 5.4 displays the block diagram of a compensatory manual-control
model in which no time variations are introduced in both the dynamics of the human operator and
the controlled element. The model is referred to as the compensatory manual-control model with
time-invariant dynamics. A simulation of this model with P, set to 0.15 is performed using the sets
of parameter values listed in Egs. (5.1), (5.4) and (5.6). Figure 5.5(a) shows the measurement-time
trace of n (¢;¢),* for which the seed was set to 110. The auto-power spectrum of this signal is shown
in Figure 5.5(b). This figure also indicates the auto-PSD estimates at w;. It can be observed that the
auto-power spectrum approximates the remnant-filter characteristics.

u (t) z (t)

4?—> Ho, (jw) Hor (»)

Figure 5.4 Block diagram of a single-loop compensatory target-following control task with time-invariant dynamics, adapted from
Figure 3.1.

v

The corresponding measurement-time traces and the auto-power spectra of e (¢), u (¢), and z (t) are
shown in Figures 5.6 to 5.8, respectively. The signal-to-noise ratio is high for all auto-power spectra.
From Figure 5.8, it can be noted that the system output closely follows f; (t). For this case, the
performance score, defined as o7 /07, equals 0.1722.

In addition to the identification method based on ARX models, the nonparametric identification
method based on Fourier coefficients (FCs) (van Paassen and Mulder, 1998) is considered as a means
of reference. It is, however, only applicable if the dynamics to be identified are assumed to be time
invariant during the identification method. The method dictates that “for each frequency response to
be estimated an uncorrelated input signal, a forcing function, must be inserted in the closed loop” (Mul-
der, 1999). The forcing functions act like “black-box” identification inputs. Using the DFTs U (jw; (),
E (jw; ), and N (jw; (), the following is obtained from the block diagram in Figure 5.4:

U (jw;¢) = Huo (jw) E (jw; ¢) + N (jw; ¢) (5.13)
Assuming that the signal-to-noise ratio is high, the frequency-response estimates of the human-operator
dynamics can be identified at w; with
U (jwi; Q)
E (jwt; )

1The ¢ reflects that the signal is a realization of a stochastic process.

Hyo (jori; §) = (5.14)

H.A. van Grootheest MSc thesis | Il Preliminary report



5.1 Compensatory manual-control model simulations 49

Bode plots of the human-operator dynamics and system dynamics are provided in Figures 5.9 and
5.10. These also include the analytical dynamics. Most frequency responses are correctly estimated.
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(a) Time trace. (b) Auto-power spectrum.
Figure 5.5 Remnant signal (P, = 0.15).
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Figure 5.6 Error signal (P, = 0.15).
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Figure 5.7 Control-output signal (P, = 0.15).
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Figure 5.8 System-output signal (P, = 0.15).
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Figure 5.9 Bode plots of the analytical human-operator dynamics and frequency responses identified with the FC method

(P, = 0.15).
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Figure 5.10 Bode plots of the analytical system dynamics and frequency responses identified with the FC method (P,, = 0.15).

Remnant-free simulation Figures, similar to Figures 5.6 to 5.10, if remnant is excluded can be found
in Appendix B. The same forcing function, with the properties listed in Table 5.1, and sets of parameter
values, i.e., the ones listed in Egs. (5.1), (5.4) and (5.6), are used for simulating the compensatory

manual-control model displayed in Figure 5.4.
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5.2 Identification-framework implementation and application

Low-level implementations of identification algorithms lead to a full understanding on how they work.
This section discusses how the identification framework based on ARX models is implemented and
how it will be applied on the different human-operator input-output data sets.

5.2.1 Theoretical selection of the ARX-model orders and dela vy integer
Care should be taken in the selection of the ARX-model orders, i.e., the integers n, and n;, and the
delay integer, i.e., ng. Setting the orders too high, leads to overfitting in the parameter estimation
procedure. However, setting the orders too low leads to underfitting. As explained in Section 4.3, the
order selection will be based on time-invariant ARX models. The resulting ARX-model transfer function
for describing the operator’s linear response to the error is expressed by

. Blg)

Glg:0) =~ @

5.15
b0+b1q71 "‘r"'-‘rbanianrl ( )

1+aigt 4+ +ap,qg

—np

The z-transform  The selection of the ARX-model orders can be derived theoretically from the time-
invariant version of the analytical human-operator model described in Eg. (5.7). In essence, this de-
scription is valid in the continuous-time domain. It is a continuous model of the human operator. ARX
models, however, are discrete-time models which identify discrete-time transfer functions. By applying
the z-transformation to Hy o, (jw), an equivalent discrete-time transfer function can be obtained. Han-
son and Jewell (1983), Hess and Mnich (1986), and Hess (1990) provide tables with some common
z-transforms of continuous systems. A prospective discrete-time transfer-function structure, in ascend-
ing powers of z~1, for a system consisting of a gain, a first-order lead term, a pure time delay (modeled
as e~7“™ where m is an integer multiple of T), and a second—?rder system is:
— ,—(14m) bo + b1z~

G(z)=z [P ar— (5.16)
Hence, without considering the time delay, there are four unknowns: two unknown b; coefficients, i.e.,
bo and by, and two unknown a; coefficients, i.e., a; and a-.

Time delay The time delay e7“™ in the ARX models can be approximated with one of the following
two methods.

(1) Using the ARX model’s discrete-time delay operator ¢~ "+, similar to =" in Eq. (5.16).

(2) Using extra coefficients a; and b; representing a Padé approximant, expressible as
1— hijwr, + hg(jWTU)Q +---t hk(ijv)k
1+ hyjwty + ha(jwry)? + -+ - + by (jwry )"

with h, the Padé approximation coefficient at discrete instant k.

As described in Section 4.3, n;, can only be an integer multiple of the sampling time, and consequently,
the approximation of 7, becomes less accurate once higher decimation factors are used. Turning to
method (2), Zaal et al. (2009) point out that human-operator delays are typically approximated with
fifth-order Padé approximations. This study, however, will make use of both methods (1) and (2).
Part of the time delay will be captured using the input-output delay by setting the ARX-model integer
ng, primarily dependent on the decimation factor d. Another part of the time delay is captured by
using extra coefficients a; and b;. A first attempt will be taken with a first-order variant of the Padé
approximant:

e IWTy =

(5.17)

1 — hijwr,
1+ hlijv

—JWTy

(5.18)

Bias term  An aspect not yet addressed is the bias in the identification. As the human operator is
embedded in a closed loop and the direct identification method will be used, bias will certainly be
present. For this one extra numerator term is considered in the ARX model’s transfer function.

Conclusive remarks  From the above analysis, it is concluded that the number of unknowns for the
A (q) polynomial amounts to three, and the number of unknowns for the B (¢) polynomial amounts to
four (or five) if closed-loop identification issues (with remnant) and a proper capture of the time delay
are taken into account. However, a first attempt is to take n, = 2 and n;, = 2, based on Eq. (5.16).
Depending on the decimation factor d, the right n; for approximating the time delay might be found
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using the second column of Table 4.1 which lists the different sampling times. In order to model a time
delay value 7, of 0.28 s (Eq. (5.6)), the following integer values of n;, (d) are prospected:
Nk (1) = 28, ng (2) =14, Nk (4) =17, Nk (8) =3 or4, ng (16) =2 (519)

5.2.2 OLS estimation of ARX models and selection using VAF-c ontour plots
As the ARX-model structure allows linear regression, the OLS estimation method is used for the pa-
rameter estimation. For the complete input-output estimation data subset ZVe,

ZNe = {e(t) ,u ()}, (5.20)
the following regression matrix
)
" (p+1)
e = :
L @T (.Ne)
[ —u(p-1) —u(p—-2) -+ —ulp-—n) elp—ng) elp—1-nx) -~ elp—mn)
| ul) —ulp=1) o culptlone) e(prlong)  elp—mnk)  -ooe(ptl-mp)
u(No—1) —u(Ne=2) - —u(No=na) e(No—mg) e(Ne—1—np) - e(No—n))
(5.21)
and control-output vector
u (p)
u(p+1)
u= : (5.22)
U(Ne)

can be setup. The integer p is set to max (n, + 1, ny + ny) in order to consider only known input-output
data. By making use of the backslash operator “\” in MATLAB, QOLS can be computed. This operation
directly calls a computational efficient QR-factorization solver, prowded that the regression matrix is
nonsquare.> ARX models are only estimated if the regression matrix is full rank. A transfer function
can then be constructed from the entries in 9925

Analysis without taking remnant into account Before using the different preprocessed input-
output data sets which include remnant, the input-output data set resulting from the remnant-free
simulation (Appendix B) is analyzed. Taking as first attempt the set of ARX-model integers n, = 2,
ny = 2, and ny = 28, results in the discrete-time frequency-response function shown in the Bode plot
of Figure 5.11. In addition, Bode plots of the analytical human-operator model and the FC frequency
responses are presented in this figure. The ARX model’s frequency responses almost perfectly fits the
analytical transfer function of the human operator. The corresponding VAF-value is 99.9553%. The fit
becomes a little bit worse at the higher frequencies. While the FC method only estimates frequency
responses at the excitation frequencies of the forcing function, the method based on ARX models gives
frequency responses over the full Nyquist frequency range. Figure 5.11 and the VAF-value indicate
that the selection of a low ARX-model order and the right delay integer can be sufficient.

VAF-contour plots  In order to check if the theoretical selection of the ARX-model orders and delay
integers holds for the different preprocessed, i.e., filtered and/or decimated, data sets with remnant
(P, = 0.15) included, ranges of the integers n,, n;, and n; should be evaluated. The bounds of the
ranges considered for different decimation factors are given in Table 5.2. The case of no resampling
(d = 1) is also included. For all combinations (i.e., a total of 19 800), ARX models are estimated using
the OLS method and validated using the VAF-metric. The results for d = 2 to d = 16 are summarized
in VAF-contour plots which can be found in Appendix C. As an example, Figure 5.12 provides VAF-
contour plots for ARX-model estimations on the input-output data set that was decimated with d = 16.
The mesh is defined by the integers n, and n,. A VAF-contour plot is made per distinct value of n.
Empty areas in the bottom-left corners indicate VAF-values less than or equal to 0%. The highest VAF-

2For reference, GOLS can be compared to the output of the MarLaB function arx. Given the measured output and in-

put signals u and e, sampled with time Ts, and the |ntegers na, nb, and nk, the syntax required in MarLaB R2016b is:
data = iddata(u,e,Ts); data2 = nkshift(data,nk-1); m = arx(data2,[na nb 1]); m.nk = nk;. In earlier MATLAB re-
leases, the syntax data = iddata(u,e,Ts); m = arx(data, [na nb nk]) can just be used.

H.A. van Grootheest MSc thesis | Il Preliminary report



5.2 Identification-framework implementation and application 53

101 10° 10t 10°

> w, rad/s
(3}
90
)
3 -0¢ ,
SR e
- A Hpgo (Gwt)
g :ﬁgg [ |~ Byo (=) ARX[2,2,28]
E -540 : :
10t 10° 10t 10?
w, rad/s

Figure 5.11 Bode plots of the analytical human-operator dynamics and frequency responses identified with the FC method and
an ARX model (remnant free).

value in each contour plot is marked with an asterisk. More details can be found in Appendix C. From
Figure 5.12 it becomes clear that the VAF-values do not necessarily increase for higher ARX-model
orders. Instead, by applying the principle of parsimony, the ARX-model orders should be selected as
low as possible. However, the selection cannot be completely based on VAF-contour plots and this
principle. Potential combinations of n,, n, and n; should always be compared in Bode plots.

Table 5.2 Bounds of ARX-model integers n, and n;, and delay integer n, for different decimation factors.

d H Ng ‘ ny ‘ ng
1 [1..10] | [1..10] | [1..50]
2 [1..10] | [1..10] | [1..25]
4 [1..10] | [1..10] | [1..13]
8 [1..10] | [1..10] 1..7]
16 [1..10] | [1..10] 1..4]

n =1 ng =2

10 85 10 85 10 85

9 9 9

8 8 8
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Figure 5.12 High-valued VAF-contour plots: input-output signals decimated with d = 16.

Most suitable ARX models  Table 5.3 presents an overview of the most suitable integer combina-
tions for the different preprocessed data sets. The case of no resampling (d = 1) is considered too.
The table also lists the VAF-values, which are all around 80% to 85%. These values are quite rea-
sonable for P, = 0.15. Bode plots of the frequency responses constructed from the ARX models are
shown in Figure 5.13. These are compared with the ones of the analytical human-operator model and
the FC frequency responses. The most striking feature is that the frequency ranges on which the ARX
models are valid differ per decimation factor. The maxima of these ranges are the Nyquist frequencies
wy (d) (i.e., the vertical dashed lines). From the Bode phase-angle plots, it can be observed that the
ARX models do not differ much. Up until a frequency of 10 rad/s they are very similar and approach
the analytical human-operator model. On the contrary, the Bode magnitude plots show big differences.
Especially, the ARX models, estimated on data sets that were decimated with d = 2 or 4, or that were
not resampled (d = 1), have great difficulty in describing the peak of the neuromuscular-actuation dy-
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namics. Interestingly, for d = 1, 2, and 4, low values for n, and n; can be selected. In the analysis it
was found that using higher values for these integers did not result in meaningful Bode plots. As shown
in Table 5.3 the values of ny, for d = 1, 2, and 4, correspond to the ones in Eq. (5.19). Hence, in these
cases, the time delay 7, of 0.28 s is captured properly with n;. However, by making use of d = 8 and
16, higher values for n,, and n; should be selected. In these cases, 7, cannot be captured properly by
ny alone. Therefore, two extra coefficients of a; and b; are needed to capture a part of it using a Padé
approximant like Eq. (5.18). One more coefficient b, is used to account for the closed-loop bias.

Table 5.3 Most suitable combinations of ARX-model integers n, and n;, and delay integer n;, for the different preprocessed

data sets based on VAF-contour plots and Bode plots (P, = 0.15).

d | FINF* || [na,ns,n] | VAF, %
1 F [2,2,28] | 77.3841
2 NF [2,2,14] | 77.9174
2 F [2,2,14] | 78.5233
4 NF [2,27] | 79.0345
4 F [2,2,7] | 80.4681
8 NF [3,4,4] | 82.5968
8 F [3.4,4] | 83.9417
16 NF [3,4,2] | 83.5605
16 F [3.4,2] | 86.0262

*filtered (F); not filtered (NF)
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Figure 5.13 Bode plots of the analytical human-operator dynamics and frequency responses identified with the FC method and
with the most suitable ARX models for different preprocessed data sets (P, = 0.15).
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5.2 Identification-framework implementation and application 55

In essence, Table 5.3 shows that filtering the input-output data sets results in higher VAF-values
compared to decimating only. However, the corresponding Bode plots in Figure 5.13 are not neces-
sarily much better. This becomes clear, in particular, when focusing on the Bode magnitude plots of
the models ARX35nF[3,4,2] and ARX36 £[3,4,2]. The peak of the neuromuscular-actuation dynamics is
better described by the former model. Overall, the results indicate that the human-operator dynamics
in the operator’s frequency range of interest are best described by the model ARX36nr[3,4,2].

Conclusive remarks  In general, it seems sufficient to only decimate the input-output data sets,
at least for the ARX-model structure selection. The further analysis will, therefore, mainly consider
decimation as the one and only step in data preproccessing. Next, it is very important to capture the
time delay properly. Otherwise, higher orders of n, and n; are needed. Taken together, it seems that
the theoretical selection holds.

5.2.3 RLS estimation of ARX models

In contrast to the OLS estimation method, the RLS estimation method equipped with forgetting factor is
able to track time variations. The following presents a demonstration of the RLS algorithm and provides
some details on how it should be implemented and applied. Input-output signals which contain time
variations in the dynamics of the human operator and the controlled element are not considered yet.
Light is shed on how the RLS algorithm works.

RLS algorithm initialization and OLS method comparison Before the RLS algorithm can be used,
the initial parameter estimate 6, the initial regression vector ¢ (1) and the initial scaled covariance
matrix P, need to be set. Theoretically, if no information is available about 6, ¢ (1), and Py, the
RLS estimation method will only give the same results as the OLS estimation method when an infinite
number of samples is used, the forgetting factor \ is fixed to one, and P, equals ool. In practice, a
nearly perfect match between 91125 and 65 is obtained, if § = 3%%, A\ = 1, and a P, similar to the

covariance matrix of GOLS are used. Then, the RLS algorithm does not adjust 6.

Turning more specmcally toward the RLS algorithm, care should be taken with the definition of
v (1). For regression at time ¢, the algorithm requires the vector ¢ (t) expressed by Eq. (4.9). In the
case that data for t < 1 is unknown, a zero vector 0 is used for initialization. Often, the vector éo is
also set equal to 0. In order to avoid numerical issues, 0, can also be initialized to a set of zero-mean
unit-variance Gaussian random numbers. Typically, P, is set equal to 61, where § represents a large
positive constant. The higher the uncertainty of 6, the higher the value of § should be chosen.

Initial scaled covariance matrix By making use of the particular preprocessed input-output esti-
mation data subset and the proposed ARX-model structure, i.e., ARX1nr[3,4,2], the working of RLS
algorithm is demonstrated. Figure 5.14 compares RLS parameter estimations for different initializa-
tions of P, when A = 1 is used. Values for § of 102, 10*, and 10°® were considered. Zero vectors were
used for A, and ¢ (1). In addition, Figure 5.14 shows the coefficients of é]?,fs with dashed lines. It can
be observed that the use of high values for ¢ will result in high initial responses in the RLS parameter
estimation. However, the difference between setting § equal to 10* or 10° appears to be small. In the
further analysis, a ¢ value of 10* will be considered.

Py = 10%] Py = 10%1 Py = 1081
1.5 1.5 mm—
70/2
1 1 }‘,,, | - (1?
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g, Op g, Ofh— Z.,
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Figure 5.14 RLS parameter estimations for different initial scaled covariance matrices with A = 1 (p = 0, (1) = 0,
Py, = 0.15). Coefficients of /=5 are indicated with the dashed-lines.
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56 5 Preliminary simulation analysis

Influence of the forgetting factor Before trying out different forgetting factors, a view is given on the
concept of the memory horizon (Tp = 1/ (1 — A)) and the RLS weight in the case a constant forgetting
factor is used (i.e., 3 (t,k) = A~*). Figure 5.15(a) shows Ty for different \. Figure 5.15(b) shows
the forgetting profiles for different constant forgetting factors. In this case, the ¢ in A\*~* was set to
N, = 256. It can be seen that for smaller )\, old data is discounted quicker.

A comparison of RLS parameter estimations with different forgetting factors is shown in Figure 5.16.
Coefficients of the GOLS are also displayed. Apparently, no reasonable RLS estimation results are
obtained for values of A < 0.99. Next, in almost all cases, the estimation rate of each coefficient is
similar, e.g., by approaches its final value very fast, while a¢ reaches its final value relatively slow.
Furthermore, it can be seen that through the use of A < 1 the initial estimate will become obsolete.
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(a) Memory horizon. (b) RLS weight (t = 256 samples).

Figure 5.15 Influence of different constant forgetting factors on the memory horizon and the RLS weight.
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Figure 5.16 RLS parameter estimations for different forgetting factors (Py = 10*1, 6o = 0, ¢ (1) =0, P, = 0.15). Coefficients
of 635 are indicated with the dashed-lines.

Conclusive remarks  The input-output data analyzed with the RLS estimation method was obtained
from a compensatory manual-control model simulation with time-invariant dynamics. No abrupt or
gradual changes were considered in the system yet. It would be more interesting to analyze such
data. For instance, the tracking ability and noise sensitivity of the RLS can then be investigated in
more detail. However, some of the ins and outs of the algorithm have been demonstrated.
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Further research proposal

By means of the literature survey and the preliminary simulation analysis, the majority of the research
subquestions has been answered and most research subgoals have been accomplished. The pro-
posed thesis project will not only deal with the remainder, but also with some new thoughts that resulted
from the iterative-parallel research progression.

This chapter is concerned with the further steps to be taken in the proposed thesis project. In
view of the cybernetic approach adopted in this project (refer to Chapter 1), these steps are related to
the two stages. A number of steps belong to the further analysis of the compensatory manual-control
model simulation with time-varying dynamics, and a number of steps correspond to the capture of time-
varying manual-control behavior. Furthermore, this chapter highlights the steps needed for verification
and validation of the identification method. In addition, some interesting future research is described.

The outline of the chapter is as follows. Section 6.1 discusses what is needed for the more ad-
vanced simulations. Section 6.2 explains how the estimation with time-varying ARX models can be
improved. The procedure of verification and validation is addressed in Section 6.3. Lastly, the interest-
ing recommended future research that is in line with the thesis project, but that will not be considered
further, is listed in Section 6.4.

6.1 Compensatory manual-control model simulation with time-
varying dynamics

The likely time variations to be introduced in simulating manual-control behavior for both slow and
fast parameter transitions in the controlled-element dynamics were determined in Section 3.3. Sig-
moid functions will be used for the parameter variations. Although Bode plots of the initial and final
analytical dynamics of the human-operator and the system for the time-varying simulation were given,
sigmoid functions were not yet analyzed in Chapter 5. In the further research, the sigmoid functions
will be implemented in both the operator’'s equalization parameters as well as the controlled-element
parameters. The initial type of sigmoid function to be implemented (refer to Eq. (3.8)) is one with a
maximum rate of change G of 0.5 s, which will be set on M = T;,, /2. Using this value of G, the param-
eter transitions are then in between gradual and abrupt ones. The sigmoid functions for the operator’s
equalization parameters can be expanded with an additional perturbation. This will be more realistic
than assuming that the values of M are equal for both the operator’'s equalization and the controlled-
element parameters. Subsequently, lower and higher values of G can be selected to simulate gradual
and abrupt parameter transitions, respectively.

In Chapter 5, only a remnant-free simulation and a simulation with a remnant intensity P,, of 0.15
have been analyzed. Higher and lower remnant intensities should also be examined in order to test the
robustness of the identification method. This robustness testing will be explained further in Section 6.3.
Anyway, the compensatory manual-control model with time-varying dynamics should also be simulated
with remnant intensities of 0 (remnant free), 0.05, 0.10, 0.15, 0.20 and 0.25.
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58 6 Further research proposal

6.2 Further steps in ARX-model selection and RLS estimation

In the selection of the most suitable ARX models, it was found that problems occurred in capturing the
time delay once higher decimation factors were used. The integer n; can only be an integer multiple
of the downsampling time after input-output data sets are decimated. In contrast to this, the input data
could also be shifted by the number of time steps associated with the assumed time delay before the
data set is decimated. This was also done in the research by Boer (1995).

Turning to the proposed time-varying RLS estimation method, it has been found that some promis-
ing forgetting-factor strategies are available. However, these are not specifically tuned for the identi-
fication of manual-control behavior. In the literature survey, it has been found that especially for this
application, novel identification and estimation algorithms should be as effective, as robust and as sim-
ple as possible. Therefore, a conservative approach will be taken in the tuning of the forgetting factor in
the RLS algorithm. A start will be made with the classic exponential forgetting factor. Gradually, more
advanced forgetting-factor strategies, like exponential forgetting and resetting (refer again to Navratil
and lvanka (2014)), will be implemented and tested.

6.3 Verification and validation procedure

In order to verify the sensitivity of the identification method based on time-varying ARX models to dif-
ferent remnant levels and realizations, extensive testing is needed, i.e., a Monte-Carlo analysis should
be performed. Instead of using one white noise realization for the remnant modeling, numerous should
be considered. Consecutively, variance, bias and other statistical calculations can be performed. The
paper by Nieuwenhuizen et al. (2008) explains how the variance and bias of ARX models can be cal-
culated. The paper by Zaal et al. (2009) provides a method to investigate average parameter bias for
different remnant levels. Snapshots of Bode plots will be made in order to evaluate the time variations
of the ARX models visually.

The identification method can be validated by analyzing real time-varying experimental manual-
control data. This will be done once the verified identification method seems to be accurate. For
instance, the data from an experiment described in the paper by Zaal (2016) could be requested and
investigated.

6.4 Recommended future research

Some interesting research that is related to the thesis project, but that will not be considered further,
can be described as follows.

» Focusing on time-varying manual-control behavior, in addition to changes in the controlled-
element dynamics, two other types of time-varying control situations possible are (Phatak and
Bekey, 1969):

1. achange in the input characteristics, e.g., statistical or transient variations;

2. achange in the display, e.g., compensatory to pursuit or vice versa and preview variations.
The identification method based on time-varying ARX models might also be suitable to investi-
gate the effects of such changing situations.

* Besides OLS and RLS estimation, a parametric estimation method not yet considered is the
estimation based on smoothers. These can be seen as batch estimators that can handle time-
varying system dynamics, as they can estimate model parameters at each time instance (Boer,
1995). They are only suitable for offline identification. The thesis project, however, focuses on
online identification. Still, it might be interesting to compare all parametric estimation methods in
the offline case.

« Decent comparisons should be made between the identification method based on time-varying
ARX models and other novel time-varying identification methods for capturing adaptive manual-
control behavior. The genetic MLE procedure by Zaal (2016) is already at hand. As surveyed in
Chapter 1, attempts are undertaken to capture (part of the) manual-control behavior by means of
wavelet transforms and LPV subspace methods. Very recently, Pronker (2016) studied changes
in neuromuscular admittance with global LPV models based on local LTI models. Duarte (2016)
assessed the viability of LPV predictor-based subspace identification on the time-varying human-
in-the-loop problem. Active research is conducted by Rojer (2016) to identify time-varying manual
control with the use of an unscented Kalman filter.
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Conclusions

The literature survey has shown that there exists a great lack of knowledge on how human operators
manage their ability of adaptation due to various changes of variables over time. The biggest adapta-
tion changes are expected for changes in task variables, in particular for transitions in the controlled-
element dynamics. Furthermore, it has become clear that well-established system identification tech-
nigues are not capable to capture such time-varying manual-control behavior of adaptation in system-
theoretical models. However, most successful models developed so far for describing manual-control
behavior make use of quasi-linear models that follow the dictates of the crossover model.

The proposed thesis project will contribute to fill up a part of the knowledge gap of how opera-
tors adapt their manual-control behavior, in compensatory tracking tasks, due to transitions in the
controlled-element dynamics. A cybernetic approach and the concept of system identification will be
used for this. Over the years, TU Delft's Control and Simulation chair has gained extensive knowledge
of and experience with linear time-invariant (LTI) autoregressive exogenous (ARX) models for time-
invariant human-operator identification. However, no attempts have been made to make use of linear
parameter-varying models, i.e., to take the LTI model representation as basic building block and then
to employ a recursive least-squares algorithm equipped with forgetting factor on the model parame-
ters for capturing time-varying operator behavior. It seems, therefore, very promising to implement an
identification method based on such time-varying ARX models.

The current state of knowledge in the field does not provide a universal approach to be taken in the
simulating time-varying manual-control behavior. Guidelines are available on how to model the human
operator in compensatory tracking tasks, but these are mainly based on the assumption that manual-
control behavior can be considered as time invariant during the identification period. In this research,
the time-variations in both the human-operator dynamics as well as the controlled-element dynamics
will be introduced by making use of sigmoid functions. This can be seen as restrictive, however, no
other reasonable justifications are available.

An identification scheme based on ARX models was set up and implemented. The direct approach
for closed-loop identification was applied. Both filtering and decimation were selected as the prepro-
cessing steps to subject human-operator input-output data. In order to make the crucial decision of
the ARX-model structure, both physical insight and the principle of parsimony were considered. The
intuitive variance accounted for (VAF) metric was selected as the assessment criterion to compare dif-
ferent ARX models. Both the estimation methods of ordinary least squares and recursive least squares
equipped with forgetting factor were explained and demonstrated.

For the further development and tuning of the time-varying ARX-model identification method, ex-
tensive offline simulations will be performed. Monte-Carlo testing is employed to verify the method'’s
sensitivity to different remnant levels and realizations and to give the method statistical significance.
Real experimental manual-control data will only be used to validate the method once it has realized its
full potential in the simulation environment.

Taken together, it can be concluded that a strong foundation is laid for the setup of compensatory
manual-control model simulations with time-varying dynamics, and for the further development of the
time-varying identification method based on ARX models.
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Simulation setup of the compensatory
manual-control model with time-invariant
dynamics

A high-level block diagram of the compensatory manual-control model with time-invariant dynamics
was given in Chapter 5 of Part Il . This diagram is repeated in Figure A.1. Figure A.2 shows the corre-
sponding SIMULINK block diagram. In order to compute the states of the model during the simulation,
the fixed-step solver ode4 is selected with the step size setto dt = 0.01. This solver uses the fourth-
order Runge-Kutta (RK4) formula. The operator’s visual time delay is modeled with a “Transport Delay”
block without using linearization.

Huo (o)
- (t)} Hy (ju) |
\ n(t)|
fe @) + 6(0: Hiro, () + +: u(t) Hop (o) z(t) >

Figure A.1 Block diagram of a single-loop compensatory target-following control task with time-invariant dynamics. Figure 5.4

repeated.
num_n
[t,n_w] K_n » = » n
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tf 1 -4 > D%( < S > x
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Forcing-function signal Equalization dynamics and Visual time delay Controlled-element dynamics | System-output signal

neuromuscular-actuation dynamics

Figure A.2 SimuLINK implementation of the compensatory manual-control model with time-invariant dynamics.
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Remnant-free simulation of the
compensatory manual-control model
with time-invariant dynamics

This appendix contains the set of figures for the remnant-free simulation of the compensatory target-
following control task with time-invariant dynamics. A block diagram of this setup is shown in Figure B.1.
The human operator is considered as a perfect controller, i.e., Hyo (jw) equals Hyo, (jw), who re-
sponds, using control signal « (¢), on the error e (t) between the target-forcing function f; (¢) and the
system output x (¢) of the controlled-element dynamics Heo g (jw). Target-forcing function properties
can be found in Table 5.1. The set of parameter values for Hy o, (jw) is

K, =0.09, T, =04s, 7, =0.28 s, wnm = 11.25 rad/s, Cnm = 0.35 (B.1)
For Heg (jw), the set of parameter values is
Ko = 90.0, wp = 6.0 rad/s (B.2)

The red triangles in Figures B.2 to B.4 indicate auto-power-spectral density estimates at w;. Frequency-
response estimates identified at w; with the Fourier-coefficient (FC) method are included in the Bode
plots of Figures B.5 to B.6. The performance score Jf/aj%t for this simulation was found to be 0.1765.

| u(t) x (t)

4?—> Huo. (jw) » Hep (jw) >
L - - — = — |

Figure B.1 Block diagram of a single-loop compensatory target-following control task with time-invariant dynamics excluding
remnant.
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B Remnant-free simulation of the compensatory manual-control model with time-invariant dynamics
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Figure B.3 Remnant-free control-output signal.
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Figure B.4 Remnant-free system-output signal.
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Figure B.6 Bode plots of the analytical system dynamics and frequency responses identified with the FC method (remnant free).
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VAF-contour plots

The figures in this appendix display the contour plots of the variance accounted for (VAF) values for
ARX-model estimations on different preprocessed input-output data sets. The original data sets had a
remnant intensity P, of 0.15. Using these contour plots parsimonious selections can be made on the
ARX-model integers n, and n; and the delay integer n;. Figures C.1 to C.8 each consider a data set
that is filtered and/or decimated with a factor d of 2, 4, 8 or 16. The integers n,, and n; both range from
1 to 10. Different ranges of the integer n;, are considered per decimation factor. The bounds of these
ranges are listed in Table C.1.1 The contour plots are created using vertices from the mesh defined by
nq and ny,. Each contour plot in a figure considers a different value for n;. In Figures C.1 to C.8 the
contour lines vary from 40% (“unreliable” model) to 80% (“good” model) in steps of 10% and a color-
axis scaling is used with limits of 40% and 90%. Figures C.9 to C.12 again consider the input-output
data sets decimated with a factor 8 or 16. The VAF-values in these contour plots are much higher and
therefore the contour lines vary from 72% to 85% in steps of 1% and a color-axis scaling is used with
limits of 70% and 85%. Empty areas in the bottom-left corners indicate that VAF-values are less than
or equal to 0%. Empty areas in the upper-right corners indicate that the regression matrices were rank
deficient. The corresponding integers were not considered in the estimation of the ARX models. The
highest VAF-value in each contour plot is marked with an asterisk.

Table C.1 Bounds of ARX-model integers n, and ny, and delay integer n, for different decimation factors. Table 5.2 repeated.

d H Ng ‘ ny ‘ ng
1 [1..10] | [1..10] | [1..50]
2 [1..10] | [1..10] | [1..25]
4 [1..10] | [1..10] | [1..13]
8 [1..10] | [1..10] 1..7]
16 [1..10] | [1..10] 1..4]

IMeaningless VAF-contour plots for high values of n;, are not shown in this appendix.
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68 C VAF-contour plots
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Figure C.1 VAF-contour plots: input-output signals decimated with d = 2 (P, = 0.15).
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70 C VAF-contour plots
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Figure C.2 VAF-contour plots: input-output signals filtered and decimated with d = 2 (P, = 0.15).
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Figure C.2 (continued)
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Figure C.3 VAF-contour plots: input-output signals decimated with d = 4 (P,, = 0.15).
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Figure C.4 VAF-contour plots: input-output signals filtered and decimated with d = 4 (P,, = 0.15).
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Figure C.5 VAF-contour plots: input-output signals decimated with d = 8 (P, = 0.15).

ng = 0 ne = 1 ne = 2

10 90 10 90 10 90
9 9 9

8 80 8 80 8 80
7 7 7

.6 70 o6 70 26 70

S 60 ° 60 O 60
4 4 4

3 50 3 50 3y 50
2 2 2

1 0 1 0 1 40

123456 78 910 123456 78 910 123456 78 910
Ng Na Na
nEg =3 ng =4 nE =5

10 90 10 90 10 o 90
9 9 9

8 80 8 80 8 80
s 7 7

56 70 56 o 56 70

5 60 ° 60 ° 60
4 4 4

3 50 3 50 3 50
2 2 2

1 0 1 0 1 40

123456 78 910 12345678 910 123456 7 8 910

Ng Na Na

Figure C.6 VAF-contour plots: input-output signals filtered and decimated with d = 8 (P, = 0.15).
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Figure C.7 VAF-contour plots: input-output signals decimated with d = 16 (P, = 0.15).
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Figure C.8 VAF-contour plots: input-output signals filtered and decimated with d = 16 (P, = 0.15).
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Figure C.9 High-valued VAF-contour plots: input-output signals decimated with d = 8 (P,, = 0.15).
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C VAF-contour plots
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Figure C.10 High-valued VAF-contour plots: input-output signals filtered and decimated with d = 8 (P, = 0.15).
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Figure C.11 High-valued VAF-contour plots: input-output signals decimated with d = 16 (P,, = 0.15).
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Figure C.12 High-valued VAF-contour plots: input-output signals filtered and decimated with d = 16 (P,, = 0.15).
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Simulation setup of the compensatory
manual-control model

Chapter 3 of Part Il provided the setup of the single-loop compensatory target-following control task.
A block diagram was given and parametric definitions of the controlled-element and the analytical
human-operator dynamics were defined. In the further research, the setup of the remnant filter is
slightly changed. The updated high-level block diagram of the compensatory manual-control model
with time-varying dynamics is shown in Figure D.1. This appendix presents the approach toward a
low-level SIMULINK implementation, in which attention is paid to the model’s capability of simulating
both time-invariant as well as time-varying dynamics.

Hiro (s,1) |
% Hy (s,1) |
\ n(t)|
1@ g e : Hpo, (s,1) lﬂf Hep (s,t) ) >

Figure D.1 Block diagram of a single-loop compensatory manual-control model.

D.1 Human-operator dynamics

Analytical human-operator dynamics The time-varying analytical human-operator dynamics are
parametrically defined by
w
H t) =K, (t) [Ty, (t 1] e 5™ nm D.1
HO. (87 ) ( ) [ L ( )5 + } € s2 + QCnmUJnmS + W?’nn ( )

The above equation should be rewritten as follows, in order to implement it in SIMULINK.
2

2

w,
H t) = [K, () Ty, (t) s + K, (t)] e ” b2
HO, (87 ) [ ( ) L ( )S + ( )] ¢ 52 + 2<nmwnm,5 + w%m ( )
9 2
= | K, (t) Ty, (1) Wi K, (t) S e (D.3)

82 4+ 2CnmWnms + w2, $2 4 2Cmwnms + w2,

Remnant filter Based on studies performed by Pool et al. (2011b, 2012), the following mth-order
remnant filter is considered

Ko (t)
(Tns+1)™
in which the remnant gain K, (¢) can vary in time. The remnant-time constant 7,, is set equal to 0.06 s.
Analogous to the values of the parameters of the controlled-element dynamics and the operator’s
equalization dynamics, the value of K, (¢) will vary according a sigmoid function.

H, (s,t) = (D.4)
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80 D Simulation setup of the compensatory manual-control model

In addition, the following specific remnant filter is considered.
H, (s,t) = K, (t) Hym (5) (D.5)
This one is similar to the human operator’s neuromusuclar-actuation dynamics H,,,, (s).

D.2 Controlled-element dynamics
The time-varying controlled-element dynamics are parametrically defined by

_ Kcg (1)
In order to set up the simulation, Eq. (D.6) should be rewritten as follows.
1
_ _Kee() 2
Hepg (s,t) = o (t)s i (D.7)
52
Keg (t)
82
=5 D.8
14 @ (t) (©8)
S
Kog (t) wp (1)
_ s? “o (t) (D 9)
L4 @ (t) '
S
Keog (t) wp (1) 1
= % (D.10)
1+ 2
S
ws (t)
_Kepg@) 5 1 (D.11)
wp (1) 1@ (t) s
H,S_/

0
The controlled-element dynamics part represented by the square [J can be expressed in an open-loop
block diagram as in Figure D.2(a). A closed-loop representation of this, suitable for implementation in
SIMULINK, is shown in Figure D.2(b).

wp (1) Input Output
Output iy w (8) P »
—p

— S

Input

ij (t)

(a) Open-loop representation. (b) Closed-loop representation.

Figure D.2 Equivalent block diagrams of a part of the controlled-element dynamics.

D.3 SIMULINK implementation

Figure D.3 shows the SimuLINK block diagram of the compensatory manual-control model with the
possibility to simulate both time-invariant and time-varying dynamics. The gray blocks represent the
analytical human-operator dynamics and the controlled-element dynamics, which were set up using
Egs. (D.3) and (D.11). In order to avoid integrator windup, it is very important to perform most of the
setpoint calculations before signals enter the integrator blocks. The operator’'s visual time delay is
modeled with a (discrete) “Delay” block.

In order to compute the states of the model during the simulation, the fixed-step solver ode4 is
selected with the step size set to dt = 1/f,. This solver uses the fourth-order Runge-Kutta (RK4)
formula.
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D.3 SIMULINK implementation
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Remnant-free simulations of the
compensatory manual-control model

This appendix illustrates the time traces of the signals that are obtained when simulating the com-
pensatory manual-control model in different conditions without taking into account remnant (see Fig-
ure E.1). Both the time traces in the measurement window and the transition window are provided.
Table E.1 presents an overview of the different conditions and lists the references to the figures.
For conditions with controlled-element transitions, the maximum rate of transition G was set around
M = 40.96 s, i.e., around the midpoint of the measurement window. This midpoint is indicated in the
corresponding figures. Time traces of the forcing function f; (¢) are shown in Figure E.2.

r

‘HHO (Svt)

fe () + e(t) |

Hro, (s,t)

pu(t) z ()

» Hck (Svt) >

Figure E.1 Block diagram of the single-loop compensatory target-following control task excluding remnant.

Table E.1 Simulated conditions and overview of figures.

Condition H¢g (s) G,s1 Measurement window Transition window
C1 Hcpa(s) n/a  Figure E.3 Figure E.9

C2 Hcgp(s) n/a  Figure E.4 Figure E.10

C3 Hepa(s) > Hog2 (s) 0.5 Figure E.5 Figure E.11

C4 Hcpa(s) = Hop2 (s) 100 Figure E.6 Figure E.12

C5 Hepo(s) — Hop (s) 0.5 Figure E.7 Figure E.13

C6 Heop2 (s) = Hog,1 (s) 100  Figure E.8 Figure E.14

fe (t), deg
AN o N s

0 20 40 60 80
t, s
(a) Measurement window.

Figure E.2 Time traces of the forcing function.

35 40 45 50
t, s
(b) Transition window.

fe (1), deg
AN o N B
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E Remnant-free simulations of the compensatory manual-control model

84

E.1 Measurement window
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Figure E.3 Measurement-time traces for condition C1.
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Figure E.4 Measurement-time traces for condition C2.
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Figure E.5 Measurement-time traces for condition C3.
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Figure E.6 Measurement-time traces for condition C4.

H.A. van Grootheest MSc thesis | lll Final report appendices



E.2 Transition window
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Figure E.7 Measurement-time traces for condition C5.
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Figure E.8 Measurement-time traces for condition C6.
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Figure E.9 Transition-time traces for condition C1.
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Figure E.10 Transition-time traces for condition C2.
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Figure E.11 Transition-time traces for condition C3.
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Figure E.12 Transition-time traces for condition C4.
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Figure E.13 Transition-time traces for condition C5.
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Figure E.14 Transition-time traces for condition C6.
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ZOH discretization of the analytical
human-operator dynamics

In the simulation study (cf., Chapter 5 of Part Il), the following analytical human-operator model is
considered

Limitations
Equalization dynamics: Heq (jw)
—_—~— . w2
Hyo, (jw) = Ky [Tujo +1] 070 o (F1)
Gain  Lead term Time delay (]w) + 2CnmWnmjw + Wim

Neuromuscular-actuation dynamics: H,,,, (jw)
Without taking into account the time delay 7, this continuous-time model is written as

W2
H (jw) = K, [Trjw + 1]

— nm : (F2)
(]w) + 2<nmwnmjw + w%m
A discrete-time transfer function G, () can be obtained from a continuous-time transfer function H. (s)

by applying zero-order hold (ZOH) discretization. The following expression summarizes the procedure

(Tangirala, 2015):
Z{Ll {H:(S)}

1
1—2-1
If the input e [k] is set to a step signal, ZOH results in a step input e (¢) to the process. Then, the output
u (t) is a step response to H, (s).

The above model in Eq. (F.2) can be specified using the following rational expression in the discrete-
time variable z, in ascending powers of z~!:

Ga(2) = t"“Ts} (F3)

_1 bo —+ blz*I

H(z)==2 T (F4)
It can be observed that the numerator and the denominator of the above expression have the same
conventions as the ARX model’s input polynomial B (¢) and output polynomial A (¢), respectively (cf.,
Chapter 4 of Part Il). Furthermore, a unit-sample input-output delay arises due to discretization. The
value of ay always equals 1. The actual values of a1, a2, by, and by, can be found by discretizing
Eq. (F2) (take care about the z-transform convention), once values for the equalization and the (neuro-
muscular) limitation parameters are substituted. Furthermore, they are dependent on the discretization
method and the sampling time T. It should be noted that the human-operator model assumes another
disturbance than the ARX model (see Figure F1). Thus, it is necessary to keep in mind that the
ARX-model parameters will be estimated biased and inconsistent.

Demonstration  The following particular sets of values for the equalization and limitation parameters
are taken in this simulation study

K’u}l = 0.09, TL,l =04s (F5)
K, 2 =0.07, Tp.=12s (F.6)
7, = 0.28 s, Wnm = 11.25 rad/s, Cm = 0.35 (F7)
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88 F ZOH discretization of the analytical human-operator dynamics

e(t) n ()

e (t) +VW+ 1 w(t e (t) 1 +Y+ u(t
» B —_— —» B
(@ A(q) (@ A(q)
(a) ARX-model assumption. (b) Human-operator model assumption.

Figure F.1 Comparison of the ARX model and the human-operator model.

Substituting the latter two values listed in Eq. (F.7), and, in turn, the values listed in Egs. (F.5) and (F.6),
into Eq. (F.2), will lead to the following two continuous-time models:
. 4.556jw + 11.39
H,y (Jw) =73 .
(jw)” + 7.875jw + 126.6
10.63jw + 8.859

(jw)? + 7.875jw + 126.6
Table F.1 shows the ARX model’'s parameter values when employing the ZOH discretization with dif-
ferent sampling times on Egs. (F.8) and (F.9). They will be treated as the true parameters 6¢,. Table F.1
also lists the decimation factors d as a means of reference in case T, = 0.01 s is considered as no dec-
imation (i.e., d = 1). Accompanying Bode plots of the different discrete-time models H; (z) and Hs (z)
are shown in Figures F2(a) and (b), respectively. They also include the analytical continuous-time
human-operator models Hyo, 1 (jw) and Hyo, 2 (jw). The Bode phase-angle plots of the discrete-
time models are adjusted with fli—own, as the delay was left out during discretization. The frequency
range of each discrete-time model depends on the Nyquist frequency wy (d).

Table F.2 lists for different decimation factors, the variance accounted for (VAF) values when using
the the parameter values in Table F.1 as true ARX model. The higher the decimation, the lower the
VAF. Analogously, Table F.3 presents the true parameter values if data is sampled with 200 Hz (no
resampling). Then, VAFzon, % for condition C1 and C2 with n) = 57 equal 99.9182 and 99.9525,
respectively.

(F8)

Hj (jw) =

(F9)

Table F.1 Values of the ARX-model coefficients for different sampling times 7 once ZOH discretization is employed.

Hy (Z);HQ (Z) Hy (Z) Ho (Z)
To,s | d af al b0 b0 B0 b
0.01 1 || -1.9121 | 0.9243 | 0.0443 | -0.0432 | 0.1024 | -0.1016
0.02 2 -1.8076 | 0.8543 | 0.0858 | -0.0816 | 0.1967 | -0.1935
0.04 4 15590 | 0.7298 | 0.1592 | -0.1438 | 0.3589 | -0.3470
0.08 8 -0.9709 | 0.5326 | 0.2636 | -0.2130 | 0.5715 | -0.5322
0.16 16 0.1226 | 0.2837 | 0.3065 | -0.1799 | 0.5942 | -0.4957

Table F.2 VAF values when using ARX-model coefficients for different sampling times 7 once ZOH discretization is employed,
fs =100 Hz, n = 29.

Hi (2) H> (2)
Ts,s | d || VAFzou, % | VAFz0m, %
0.01 1 99.9104 99.9423
0.02 2 99.8966 99.9475
0.04 4 99.7140 99.7271
0.08 8 98.9185 98.4915
0.16 | 16 96.5235 92.1485

Table F.3 Values of the ARX-model coefficients for different sampling times 7s once ZOH discretization is employed.

Hi (2); Ha (2) Hi (z) Hs (z)
Ts, S af ad b3 b9 b9 b9
0.005 || -1.9583 | 0.9614 | 0.0225 | -0.0222 | 0.0522 | -0.0520
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Influence of the remnant-filter type on
ARX-model estimation

In the scientific paper the influence of the variable delay estimation »n; and remnant-filter type H,” (s)
was only shown for C1. This appendix shows for C1 and C2 (see Table E.1), the box plot results for
M = 100 Monte Carlo replications and seven remnant intensities P,, i.e., 0, 0.05, 0.10, 0.15, 0.20,
0.25, 0.30. In addition the results are shown for open-loop input-output data. Remnant-free error
signals e (t) are taken and the open-loop control-output signals « (t) are obtained by
w(t) =u'(t) +n(t) (G.1)

with «’ (t) the remnant-free control-output signal (see Appendix E).

Table G.1 lists the optimized K,, values for different remnant-filter types H™ (s), for conditions C1
and C2.

Table G.1 Optimized K, values for different remnant-filter types H™ (s), for conditions C1 and C2.

Kn
Hj, (s) H3, (s) H;, (s) H, (s) Hp™ (s)
P, cL, c2 cL, c2 cL, c2 cL, cC2 cL, cC2
0.05 || 0.006 | 0.013 | 0.008 | 0.019 | 0.010 | 0.022 | 0.010 | 0.024 | 0.006 | 0.013
0.10 || 0.009 | 0.020 | 0.012 | 0.029 | 0.014 | 0.034 | 0.015 | 0.038 | 0.009 | 0.020

| | | |
| | | |
| | | |
0.15 || 0.011 ' 0.026 | 0.016 ' 0.039 | 0.018 ' 0.047 | 0.020 ' 0.053 | 0.011 ' 0.026
| | | |
| | | |
| | | |

0.20 || 0.013 ' 0.032 | 0.019 ' 0.051 | 0.022 ' 0.063 | 0.024 ' 0.073 | 0.013 ' 0.033
0.25 || 0.015 ' 0.039 | 0.023 ' 0.066 | 0.026 ' 0.088 | 0.029 ' 0.110 | 0.016 ' 0.040
0.30 || 0.018 A 0.046 | 0.026 = 0.091 | 0.031 = 0.150 | 0.034 0.339 | 0.018 1 0.050
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G Influence of the remnant-filter type on ARX-model estimation

G.1 Variable delay estimation
G.1.1 Condition 1
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(e) Closed loop: fs = 200 Hz.
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(f) Open loop: fs = 200 Hz.

Figure G.1 Variable n}, estimation for condition C1, for different H* (s).
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G.1.2 Condition 2
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Figure G.2 Variable n}, estimation for condition C2, for different HJ* (s).
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G.2 Relative bias
G.2.1 Condition 1
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Figure G.3 Relative bias in ARX-model parameters for condition C1, for different H* (s), when using ng and nj for fs =50 Hz.
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Figure G.4 Relative bias in ARX-model parameters for condition C1, for different H™ (s), when using ng and nj for fs = 100 Hz.
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Figure G.6 Relative bias in ARX-model parameters for condition C2, for different H* (s), when using ng and nj for fs =50 Hz.
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Figure G.7 Relative bias in ARX-model parameters for condition C2, for different H™ (s), when using ng and nj for fs = 100 Hz.
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Figure G.8 Relative bias in ARX-model parameters for condition C2, for different H™ (s), when using ng and nj for fs = 200 Hz.
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Frequency-response statistics and
accuracies

H.1 Ensemble statistics

In order to calculate the average magnitude and the average phase angle of the frequency response
H (jwy;7Z), at a given frequency wy, for a set Z of n realizations ¢;, the real and imaginary parts of

the estimated frequency responses H (jwy; Z), i.e., Re {H (jwk;Z)} and Im{fl (jwk;Z)}, should be
averaged first:

Re { H (jeoi: ) ZRe{ (owi ) } (H.1)
Im {H Jwi; Z } = Zlm{ jwk,g)} (H.2)

The average magnitude and the average phase angle are then computed, respectively, using
‘H Jjwi; Z | = \/Re {H jwk;Z)} +Im {H jwk;Z)}Q (H.3)

Im {H (jwg; Z)}
Re {H (jwr; Z)}

Similarly, in order to calculate the standard deviations of the magnitude and the phase angle of
the frequency response H (jwy;Z), the standard deviations of the real and imaginary parts should be
computed first:

/H (jwy;Z) = arctan (H.4)

T e Z ’Re{ ]wk,g)} — Re { H (juy; Z)}’Q (H.5)

_ 2
Z ‘Im{ g%g)} - Im{H(jwk;Z)}‘ (H.6)
The standard deviation of the magnitude is then obtained by

— 2 2
U|H|(jwk'~,z) - \/aRe{H}(jwk;Z) + UIm{H}(jwk;Z) (H7)
The standard deviation of the phase angle (in rad) is calculated as (van der Vaart, 1992, pp. 234-235):

Taf i} GonZ) = A|

- i TN H|(jwr:2) o1
H (jwi; Z)
O'LH(jwk;Z) = O—|H|(jw;€;Z) ‘ ) | (H8)
arctan —————  otherwise
|H (jwr; Z)|

A graphical interpretation of the above is given in Figure H.1. The standard deviation of the phase
angle equals = (i.e., 180°) if the standard deviation of the magnitude is larger than the average magni-
tude itself.
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102 H Frequency-response statistics and accuracies

Im[H|F-----/F-----5 Y|a]|

@ o\ < | (b) o1q| > ||

Figure H.1 Standard deviations 9| a| and o, 7 in the complex plane, adapted from van der Vaart (1992).

H.2 Frequency—response accuracies

As presented in Nieuwenhuizen et al. (2008) [note the typo in Eq. (16) corrected here], the analytical
variances of the magnitude and the phase angle (in rad) of the frequency response H (jwk; ¢i), at a
given frequency wy, are computed, respectively, as (omitting (jwy; ¢;) for readability)

ot = ‘le (Re (I?I)201 +2Re (H) Im (H) Ciz +Im (131)202> (H.9)
0%, = ;4 <Im (ﬁ)201 ~2Re (A) Im () C1z + Re (H)202> (H.10)

In the above, C; is the variance of the real part of H,ie., O—;e{ﬁ}' C1» is the covariance between the

real and imaginary parts of H, i.e. CRe{H} m{A} and C, is the variance of the imaginary part of 4,
ie., ofm{ﬁ}. Letting * denote the complex conjugate transpose, these elements are determined using

Gauss’ approximation formula as

i ai\”
i di\
di di\’
Cy =1Im <d9 ) PyIm <d9 > (H.13)

where ‘% is the sensitivity of dF with respect to the parameter set # and P; is the covariance matrix.
Considering an ARX model’s frequency response at a given frequency w and sampling time T (not
taking into account the input-output delay ny)
N bo +bre 7T ... b, e— ()i (ny—1)wTs

H , , H.14
(W) 1 + ale_JWTs _|_ e _|_ anae—J”aWTs ( )
the sensitivity is expressed as (omitting w for readability)
dH dH  dHA dH  dH dH dH
20~ |dar daz T dan, dby dby T dba, (H.15)
with (considering no input-output delay ny)
dH H .
R _ _ /*(Z)JWTS H.16
da; 14+ aie=39Ts ... 4 q,, e=InawTs ( )
dH 1 .
= ~ (@3 (H.17)

db; 1+ a1e=99Ts ... + q, e~ inawTs
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Frequency-response estimation with
FCs, and batch and recursive ARX
models

This appendix presents frequency-response estimates of the human operator (HO) dynamics for con-
dition C1 (mostly 1/s dynamics) and C2 (mostly 1/s? dynamics) (see Table E.1) for M = 100 Monte
Carlo replications and seven remnant intensities P,, i.e., 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. The rem-
nant dynamics were defined according H? (s). Both the methods of Fourier coefficients (FCs), batch
and recursive ARX models are considered. The ARX-model structure is specified with n, = n, = 2.
Continuous-time delay is estimated with ;. (see procedure in scientific paper). For the RLS estimation,
the initial parameter estimate 6, is set to §°5 estimated on the initial 30.72 s, and the initial scaled
covariance matrix Py is set to I. Constant dynamics are considered so the forgetting factor X is set to
1. The final RLS estimation is used to obtain the frequency-response estimates. For the different P,
Bode plots of the frequency responses for condition C1 and C2 are shown in Figures 1.1 and 1.2, re-
spectively. The ensemble-average mean and ensemble standard deviation is shown for the frequency
responses based on the FCs. Both the analytical and ensemble standard deviations (see Appendix H)
are included in Bode plots of the batch and recursive ARX models. These ARX models are consistent.
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104 | Frequency-response estimation with FCs, and batch and recursive ARX models
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Figure 1.1 Bode plots for condition 1.
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VAF-results

This appendix contains additional results of the variance accounted for (VAF) calculations in the tran-
sition window of 20.48 s, for all conditions and remnant intensities. In the scientific paper the actual
VAF values were not shown. Figures J.1 and J.2 present the estimation data and validation data VAFs,
respectively. Figures J.3 and J.4 shows the average overfit that can be calculated based on these
estimation data and validation data VAFs. Figure J.3 expresses the overfit as a subtraction:

AVAF* = VAF) — VAF) 3.1
AVAF? = VAFA — VAFA (J.2)
J.4 shows the overfit as a ratios: \
VAF
= J.3
VAF) (3)
and N
VAF
- J.4
VAFA 04)
An alternative measure to trade off the tracking ability versus noise sensitivity is given by.
VAF)
v J5
VAF)=! (3:5)
and N
VAF
— J.6
VAFA=T (26)

The results of these ratios are shown in Figure J.5.
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J VAF-results

J.1 Estimation data VAFs
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J.2 Validation data VAFs
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J.2 Validation data VAFs
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MSc thesis | lll Final report appendices

H.A. van Grootheest



J VAF-results
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Figure J.4 Overfit as a ratio, ratios for low N approach infinity.
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J.4 Tracking ability versus noise sensitivity

J.4 Tracking ability versus noise sensitivity
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Time traces of the ARX-model

parameters

The subsequent pages show figures with the time traces of the ARX-model parameters a; (¢), a2 (1),
by (t), and by (t), for the different conditions and remnant intensities considered. The results are based
on M = 100 Monte Carlo replications. Time traces are shown for the initial and final (constant) batch
ARX-model estimates with green lines and the recursive ARX-model estimates with black lines. For
both the batch and recursive estimates the mean and standard deviations are presented. In addition
the ZOH discretized true parameter values are presented in red line. The instant of the sigmoid time of
maximum rate of change is shown with a gray line. Memory horizons of powers of two ranging between
2 and 8192 samples are considered. The results are shown for both the scalar forgetting factor A and
the forgetting matrix A, with \,, and \,, set equal to 1. In addition the case of no forgetting, i.e.,
Ny = oo is given for each condition.

Table K.1 Simulated conditions and overview of figures.

Condition  Hgg (s) G,sT  Measurement window
Cl Hcg, (s) n/a  Figure K.1
Cc2 Hog2 (s) n/a  Figure K.2
C3 Hep,1(s) = Hog,2 (s) 0.5 Figure K.3
C4 Hepa(s) — Hoge (s) 100  Figure K.4
C5 Hcp2(s) = Hegpa (s) 0.5 Figure K.5
C6 Hepo(s) = Hopa (s) 100  Figure K.6
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Time traces of the human-operator
model parameters

The subsequent pages show figures with the time traces of the HO-model parameters T}, (), K; (1),
Wnm (), Cum (). These figures are in accordance with the figures shown in Appendix K. Only the
results are shown for optimal scalar forgetting factor A of 0.99609 (for data sampled with f; = 100 Hz),
and for the forgetting matrix A, with A\,, = A\,, = 1 and A\,, = A\,, = 0.99609. ARX models were
only converted to the HO model structure at instants where the corresponding discrete ARX model’'s
transfer function had complex-conjugate poles.
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L Time traces of the human-operator model parameters
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Real measurements

This appendix shows the application of the identification procedure outlined in this research on real
experimental manual-control data.

An experiment was conducted in the SIMONA Research Simulator (SRS) at Delft University of
Technology, in fixed-base setting. Three subjects (average age 24 years) performed the single-axis
compensatory manual-control task that was studied in this research by means of the Monte Carlo
simulations. The conditions are listed in Table M.1. The conditions C3-C6 contained time-varying
controlled-element (CE) dynamics in which the rate of change of the parameters was varied. Subjects
1 and 2 also performed the task with constant controlled element (CE) dynamics. In each condition
multiple runs were performed. The length of the runs was set to 90.00 s. A measurement time 7,,, of
81.92 s was used for the identification. The maximum rate of transition M in conditions C3—-C6 was
set to 50.00 s (i.e., at 42.93 s in the measurement window). Data was samples with f; = 100 Hz.

Table M.1 Experiment conditions.

Condition | Hog (s) | G, s | Subjects | Figure

C1 Hcpa(s) nfa | 1,2 Figure M.1
C2 HcEg,2 (s) nfa | 1,2 Figure M.2
C3 HCE,l (S) — HC’E’Q (S) 0.5 l, 2, 3 Figure M.3
c4 Hep,1(s) = Hog,2 (s) 100 | 1,2,3 Figure M.4
C5 Hcg2 (s) = Hog, (s) 051,23 Figure M.5
Cé Hcgp2 (s) = Hog,1 (s) 100 | 1,2,3 Figure M.6

The ARX-model identification approach, as outlined in the scientific paper, was adopted. Input-
output data were recorded with f; = 100 Hz, and f; (¢) was set up with the properties listed in Table 5.1.
Similar to the Monte Carlo analysis, the ARX-model structure was set to n, = n, = 2. Visual delay
was assumed to be constant and estimated using »;. Batch ARX models were fit on the initial and
final 30.72 s of the measurement window. The recursive ARX-model estimations were initialized with
the initial 6°LS and P, set to I. In accordance with the results from the Monte Carlo analysis, N, was
set to 256 samples. Both the scalar forgetting factor A and the forgetting matrix A (with A, = A\,, = 1)
were considered.

Table M.1 also gives a reference overview of the figures with time traces of ARX-model estimates
and corresponding HO-model parameters. The figures show batch ARX-model estimates fit on the
initial and final 30.72 s and are indicated with thick green lines. Recursive ARX-model estimates are
shown with thick black lines. The sigmoid’s instant ¢, is indicated with the gray line. All figures also
include the five recursive single-run ARX-model estimates (thin colored lines). No extreme outliers are
observed in these single-run estimates.
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162 M Real measurements
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Figure M.1 Estimated ARX-model parameters and HO-model parameters for condition C1.
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Figure M.2 Estimated ARX-model parameters and HO-model parameters for condition C2.
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Figure M.3 Estimated ARX-model parameters and HO-model parameters for condition C3.
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Figure M.4 Estimated ARX-model parameters and HO-model parameters for condition C4.
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Figure M.5 Estimated ARX-model parameters and HO-model parameters for condition C5.
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Figure M.6 Estimated ARX-model parameters and HO-model parameters for condition C6.
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