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Introduction

1.1 Reason for the research
To date, cybernetic models are well capable to capture dynamic multimodal human manual-control
behavior in stationary and time-invariant situations, where the human operator is assumed to be sta-
tionary and time-invariant too (Lone and Cooke, 2014; Grant and Schroeder, 2010; Mulder et al., 2006).
In reality, however, the human operator is not only characterized as a multimodal controller, but also as
an adaptive and learning controller “capable of exhibiting an enormous variety of behavior” (McRuer
and Jex, 1967) varying over time and being nonlinear. In this context, adaptive refers to the behav-
ioral ability of changing performance in new situations, while learning refers to the behavioral ability of
changing performance in successive encounters with the same situation.

It is a desire to have system-theoretical models available that are capable to capture both the
adaptive and learning characteristics of the human operator’s manual-control behavior in the various
situations (Young, 1969). For instance, it would be interesting how novice and experienced human
operators manage themselves to respond differently to sudden changes in important task variables
(Zaal and Pool, 2014). A recent comprehensive research project, reviewed by Mulder et al. (2013),
has shown that studying the time-varying and nonlinear characteristics of human-operator behavior
requires an extension of the existing identification and modeling techniques.

As noted by Pool (2012), some argue that in the future, due to significant advances in automa-
tion technology, the role of human operators for skill-based manual-control tasks will diminish and that
there will be only rule-based and knowledge-based supervisory-control tasks left for them to do. Sub-
sequently, Pool refers to the still-valid statement by Young (1969) which reads that “man’s adaptability
as a controller is frequently cited as the primary reason for incorporating him in the complex vehicle
control loops.” In the near future, it is virtually impossible to imitate this ability by some sort of au-
tomation system. The need for ever-increasing levels of safety and economic efficiency in practically
all socio-technical domains involving manual control, leads to the need to advance training methods
and to further improve human-machine system performance. It is for these reasons that the role of the
human operator as a manual controller ought to be investigated further.

1.2 Aim of the research and research design
This thesis aims to provide an overview of the conducted research for the thesis project focusing
on the further characterization and understanding of adaptive human-operator behavior in manual-
control systems. A cybernetic approach is taken which will be based on time-varying autoregressive
exogenous (ARX) models, to be estimated using a recursive least-squares (RLS) algorithm equipped
with forgetting factor. The application of compensatory tracking tasks with time-varying controlled-
element dynamics will serve as a stepping stone toward meeting the challenge.

Research objective The research objective of the thesis project can be formulated as follows.
To further characterize and understand adaptive compensatory manual-control behavior, by
implementing an identification method based on time-varying ARX models, which requires
no prior definitions of specific human-operator parameter functions.

1



2 1 Introduction

Research framework In order to reach the research objective, consecutive steps need to be taken
during the research. A high-level schematic research framework representing these steps is drawn
in Figure 1.1. An analysis of compensatory manual-control theory, together with a literature survey
on the state-of-the-art in time-varying human-operator identification and on system identification, plus
preliminary research, consisting of mathematical implementations and offline simulations, will lead to
the research perspective, i.e., the identification scheme. The application of this research perspective
to the research object, i.e., the human operator, intends to achieve the research objective.

Theory on compensatory
manual control

Theory on human-
operator identification

Theory on system
identification

Preliminary research

Identification scheme

Human operator

Further characterization
and understanding

Sources Application Research objective

Figure 1.1 Research framework for researching the adaptive human operator in compensatory tracking tasks.

Research questions Based on the research framework, a set of research questions can be formu-
lated. The central question that drives the thesis project asks the following.

To what extent is an identification method based on time-varying ARX models, which re-
quires no prior definitions of specific human-operator parameter functions, able to quanti-
tatively describe adaptive compensatory manual-control behavior, due to transitions in the
controlled-element dynamics?

To provide an answer to this central question, the following subquestions are addressed.
• What are the fundamental considerations in human-operator modeling in compensatory tracking

tasks?
• What are the likely time variations to be introduced in simulating manual-control behavior for both

slow and fast parameter transitions in the controlled-element dynamics?
• Which preprocessing steps are needed for transforming human-operator input-output data to

model inside the operator’s frequency range of interest?
• What are the relevant criteria for selecting the appropriate ARX-model orders so that the adaptive

human-operator behavior due to parameter transitions in the controlled-element dynamics can
be captured?

• What are the relevant criteria for assessing the performance of the resulting time-varying ARX
models in relation to the input-output data, to prior knowledge, and to their intended use?

• What are the promising RLS forgetting-factor tuning techniques to capture human-operator be-
havior for both slow and fast parameter transitions in the controlled-element dynamics?

• Which verification and validation procedures should be employed to analyze the robustness of
the proposed identification method to different intensity levels and realizations of remnant?

• To what extent are other time-varying identification methods in development able to quantitatively
describe adaptive human-operator behavior compared to the proposed identification method?

Research subgoals From the above subquestions, the following research subgoals are set. These
need to be accomplished in order to reach the research objective.

• To perform a literature survey on compensatory manual control, methods for estimating time-
varying ARX models, other methods in development for time-varying human-operator identifica-
tion, and related verification and validation procedures.

• To set up compensatory tracking task simulations using software in which time variations can be
applied to both the dynamics of the human operator and the controlled element.

• To set up preprocessing steps to subject human-operator input-output data sets before present-
ing them to identification algorithms.
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• To determine suitable ARX-model orders so that typical human-operator adaptations in compen-
satory tracking tasks can be described based on a selection criterion.

• To decide on an assessment criterion for evaluating the performance of time-varying ARX models
in relation to the input-output data, to prior knowledge, and to their intended use.

• To implement and to tune an RLS algorithm equipped with forgetting factor so that human-
operator behavior can be described for both slow and fast parameter transitions in the controlled-
element dynamics.

• To analyze and to verify the capability of the novel time-varying ARX-model identification method
for capturing time-varying human-operator behavior by simulating different intensity levels and
realizations of remnant.

• To validate the novel identification method by gathering and analyzing real time-varying experi-
mental manual-control data from a fixed-base simulator operation.

The theoretical basis of the thesis project work to be undertaken is as follows. In order to meet
the external goal, i.e., the further characterization and understanding of adaptive human-operator be-
havior in compensatory tracking tasks, a cybernetic approach will be adopted. The internal goal,
i.e., the implementation of an identification method based on time-varying ARX models, is attempted
to be achieved by using the concept of system identification. In this research context, cybernetics
studies the fundamental properties of human-machine interaction centered around information used
for manual control (Mulder, 1999). System identification can be described as the process of build-
ing mathematical models of dynamic systems from observed input-output data (Ljung, 1999). In this
project, the cybernetic approach consists of two stages:

1. the analysis of the compensatory tracking task with time-varying controlled-element dynamics to
be completed by the human operator;

2. the capture of the time-varying manual-control behavior characteristics in a system-theoretical
model.

It should be emphasized that the resulting identification method will just serve as a tool for the further
human-operator characterization and understanding. However, in order to investigate the application
possibilities of the time-varying ARX models, a strong emphasis is put on the mathematical develop-
ment and the low-level implementation of the identification scheme.

The research objective will be facilitated by drawing on TU Delft’s Control and Simulation chair’s
knowledge of and experience with ARX models for human-operator identification. Because the accu-
racy of the identification method should be evaluated properly before using it in laboratory experiments
or real-life applications, extensive implementation testing with offline simulations is required. Real
experimental manual-control data will not be used until the identification method has realized its full
potential. The scope of the research project is limited, due to time constraints, in the sense that it
only focuses on compensatory tracking tasks. More specifically, single-axis target-following tasks are
considered with different time variations in the parameters of the controlled-element dynamics and with
different levels of remnant intensity.

1.3 Thesis’s structure
This thesis is structured as follows.

• Part I contains the scientific paper with the most relevant information and results on the conducted
research.

• Part II lists the chapters and appendices that are related to the preliminary work. Chapter 2
critically surveys the existing knowledge regarding adaptive human-operator identification. It lists
some fundamentals on compensatory manual control, addresses the relevant research fields re-
quiring further investigation of manual-control behavior, discusses the different approaches on
time-varying human-operator identification, and identifies the knowledge gap and the information
needed to fill that gap. From Chapter 3 on, a more mathematical approach is taken. In Chapter 3,
a setup of the compensatory manual-control model is given. Next, this chapter gives parametric
models for both the controlled-element and human-operator dynamics. It also compares different
time variations to be introduced in these dynamics. The setup of the identification framework is
described in Chapter 4. It outlines the identification loop, explains the proposed identification
method, provides a description of ARX models, and highlights the least-squares parameter esti-
mations. A preliminary simulation analysis, conducted with The MathWorks, Inc.’s Matlab® and
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4 1 Introduction

Simulink® R2016b, is presented in Chapter 5. The further research proposal for the remainder
of the thesis project is described in Chapter 6. Lastly, conclusions are drawn in Chapter 7.

• Additional results that are not documented in the scientific paper can be found in the appendices
in Part III.

H.A. van Grootheest MSc thesis



I
Paper

5





1

Identification of Time-Varying Manual-Control
Adaptation with Recursive ARX Models

H. A. van Grootheest, D. M. Pool, M. M. van Paassen, and M. Mulder

Abstract—The time-varying adaptation ability of human op-
erators in basic manual-control tasks is barely understood.
Most identification methods do not explicitly take into account
any time variations. An identification procedure based on both
batch and recursive autoregressive exogenous (ARX) models
is presented for capturing the operator’s controlled-element
adaptation in compensatory tracking tasks. The operator’s time
delay was assumed to be constant and estimated beforehand.
Conditions with constant controlled-element dynamics, matching
recent experimental work, and gradual and sudden transitions
in the controlled-element dynamics were considered. This study
introduces a procedure to fine-tune forgetting strategies for these
different conditions and for different remnant intensities. Both
the use of a constant scalar forgetting factorλ and a constant
forgetting matrix Λ, containing separate forgetting factors for
each ARX-model parameter, was analyzed. Batch ARX-model
identifications applied on conditions with constant dynamics,
indicate that a high bias results when the operator’s remnant is
not coupled to the linear operator dynamics. By means of Monte
Carlo simulations, an optimal forgetting factor is found for all
conditions. For the human-operator model considered, the use of
a forgetting matrix did not result in an improvement over the use
of a scalar forgetting factor. An evaluation of real experimental
manual-control data shows that the method has potential to
capture the operator’s adaptive control characteristics.

Index Terms—ARX model, forgetting factor, human operator,
manual control, recursive least squares, time-varying system
identification.

I. I NTRODUCTION

H UMAN manual-control behavior inherently varies over
time, across different situations, and between operators.

Identification methods have been developed that are able to
describe the dynamic characteristics of human operators (HOs)
in skill-based manual-control tasks [1]. These are, however,
mostly restricted in their use to cases where the control be-
havior is assumed to be time invariant. A long-standing desire
is to have control-theoretic models available that are capable
of capturing both the adaptive and learning characteristics of
manual-control behavior [2]–[4]. State-of-the-art cybernetics
cannot explain, in depth, how HOs adapt themselves to cope
with control-task transitions. Rapid advancement of under-
standing how humans interact with dynamic control systems
requires the further development of time-varying identification
methods [5].

Most research on identifying time-varying manual-control
behavior focuses on induced changes in the task variables
and, in particular, on transitions in the controlled-element (CE)

The authors are with the Section Control and Simulation, Department
of Control and Operations, Faculty of Aerospace Engineering, Delft
University of Technology, 2600 GB Delft, The Netherlands (e-
mail: H.A.vanGrootheest@student.TUDelft.nl; D.M.Pool@TUDelft.nl;
M.M.vanPaassen@TUDelft.nl; M.Mulder@TUDelft.nl).

dynamics [2], [6]. For these variables, substantial and highly
noticeable adaptation changes are expected. Many studies start
with investigating single-axis compensatory control tasks and
are based on the well-known crossover model [6], bearing in
mind that extensions to multiple axes of control or even the
usage of other classes of inputs to the HO should not pose
fundamental difficulties [4]. Previous investigations make clear
that, before using a novel identification method in laboratory
experiments or real-life tasks, its accuracy should be evaluated
thoroughly by means of Monte Carlo simulations [7]–[9]. In
addition to task variables, manual-control behavior depends on
a myriad of other factors, e.g., suffering fatigue or alterations
in motivation are directly related to the human operator.
Usually, these factors are lumped together as remnant, taking
into account different remnant intensities.

Literature shows that different approaches have been taken
to mathematically model time-varying manual-control behav-
ior. Identification using wavelet transforms [10], [11] is not
mature yet and very sensitive to HO remnant. The identifica-
tion method based on genetic maximum-likelihood estimation
[8] is less sensitive to remnant and can provide accurate
estimations, but requires restrictive definitions about how
certain parameters will change [12]. Recently, the viability of
linear parameter varying (LPV) predictor-based subspace iden-
tification was assessed [13]. To study the human-in-the-loop
problem, this framework requires precise scheduling functions.
Recursive identification methods, however, are beneficial in
that they are able to analyze the evolution of parameters
over time. They can even track time-varying dynamics in real
time, i.e., online. Initial results in [14] make the recursive
least-squares (RLS) algorithm equipped with forgetting factor
a promising candidate to consider. No previous study has
investigated in detail the tuning of this type of algorithm for
the identification of manual control.

In manual-control cybernetics, very few studies have yet
attempted to make use of recursive autoregressive exogenous
(ARX) models. In contrast to autoregressive moving average
exogenous (ARMAX), output-error (OE), or Box-Jenkins (BJ)
model structures, the structure of ARX models allows direct
linear regression estimation. This convenience is particularly
relevant in identifying manual-control behavior as the real
process is of infinite order. This study aims to extend the
works in [9] and [7] with recursive estimation, i.e., to takethe
ARX-model structure and to recursively estimate the model
parameters using RLS. Contrary to [12], this study opts to set
up an identification method able to capture time variations in
manual-control behavior without making explicit assumptions
on how these will evolve over time.

This paper investigates the use and feasibility of a recursive
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Fig. 1. Single-axis compensatory manual-control task with time-varying dynamics. (a) Compensatory display:e (t) acts as stimulus. (b) Block diagram.

ARX-model identification method for capturing time-varying
manual-control adaptations. RLS algorithms equipped witha
constant scalar forgetting factor and a constant forgetting ma-
trix are considered. To ensure the robustness of the identifica-
tion method, a Monte Carlo simulation analysis withM = 100
replications is performed, considering different remnant-filter
orders (m = 1–4) and remnant intensity levels (0–30%, in
increments of 5%). The emphasis is placed on identifying the
operator’s adaptive responses in a compensatory tracking task
when faced with gradual and sudden transitions in the CE
dynamics, as studied by Zaal [12]. For reference, the quality
of the obtained results is explicitly compared with batch
(i.e., nonrecursive) ARX-model estimation of the operator’s
responses to constant CE dynamics.

The paper is structured as follows. The compensatory
manual-control task is described in Section II. Section III
outlines the ARX-model identification approach. The setup of
the Monte Carlo simulation analysis is given in Section IV.
Section V provides example results. An evaluation of the
identification method on real experimental manual-controldata
is presented in Section VI. Section VII discusses the identi-
fication scheme and its limitations. Conclusions are drawn in
Section VIII.

II. COMPENSATORYMANUAL -CONTROL TASK

Based on research by Zaal [12], this study concentrates on
the single-axis compensatory manual-control task shown in
Fig. 1. The HO, modeled asHHO (s, t), observes and acts,
with a control outputu (t), upon the errore (t) between a
target ft (t) (e.g., a multisine) and the outputx (t) of the
CE dynamicsHCE (s, t). The HO dynamics consist of deter-
ministic responsesHHOe

(s, t) and remnantn (t) accounting
for control nonlinearities [6]. Changes over time in the CE
dynamics require control-strategy adaptations in the HO [2].

A. Controlled-Element Dynamics

In [12], the following second-order CE dynamics were taken
for analysis, which parametrically approximate many dynamic
control systems [6]:

HCE (s, t) =
Kc (t)

s (s+ ωb (t))
(1)

The CE parameters are the control gainKc (t) and the break
frequencyωb (t), which can both vary in time. Aroundωb (t)
the CE dynamics shift between single- and double-integrator

dynamics (i.e.,1/s ↔ 1/s2). Convenient functions to intro-
duce different types of time variations in a parameterp (t) are
sigmoids:

p (t) = pi +
pf − pi

1 + e−G(t−tM )
(2)

The initial and final parameter values are set bypi and pf ,
respectively. Fig. 2 clarifies the tuning of the maximum rate
of transitionG and the timetM at which this change happens.
For all G, p (tM ) equalspi +

pf−pi

2 . Gradual transitions are
obtained for low values ofG. AroundG = 10 s-1, the sigmoid
already approaches a step function.

G = 0.5 s-1

t, s

G = 10 s-1

p
(t
)

Transition
region

G = 100 s-1

0 20 40 60 80

pf

pi

Fig. 2. Sigmoid-function variation withG.

B. Human-Operator Dynamics

A suitable HO model for the time-varying CE dynamics
to be controlled [12], based on the precision model [15], is
defined by:

HHOe
(s, t) =

Equalization
︷ ︸︸ ︷

Ke (t) [TL (t) s+ 1]

Limitations
︷ ︸︸ ︷

e−sτeHnm (s) , (3)

with:

Hnm (s) =
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(4)

Equation (3) is split into equalization dynamicsHeq (s, t)
and operator limitations, which include the neuromuscular
dynamicsHnm (s). The equalization parameters are the error
gain Ke (t) and the lead-time constantTL (t). The limitation
parameters are the time delayτe, the natural frequencyωnm,
and the damping ratioζnm, which are assumed to be time
invariant [12]. If the HO’s equalization-model structure in (3)
is used and the pure response to the error rateė (t) has to be
determined, an ambiguity arises betweenKe (t) and TL (t).
An equivalent alternative parametrization forHeq (s, t), easing
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identification [13], can be obtained with the error-rate gain
Kė = Ke (t)TL (t):

Heq (s, t) = Kė (t) s+Ke (t) (5)

III. ARX-M ODEL IDENTIFICATION

A. ARX-Model Structure

Transfer-functions models with a rational polynomial struc-
ture provide high flexibility in describing the HO dynamics.
Computationally efficient polynomial estimation is offered by
the ARX-model structure. Fig. 3 represents this structure,
which is equivalent to the HO-model structure in Fig. 1. The
process dynamicsB(q)

A(q) relate e (t) to u (t). The disturbance
signal v (t), obtained by filtering the white-noise signalǫ (t)
using disturbance dynamics1

A(q) , is similar to the remnant
signal n (t). The coupling of the process and disturbance
dynamics is a shortcoming of the ARX-model structure.
However, in practice, the ease of estimation outweighs this
disadvantage significantly.

Denoting q as the discrete-time shift operator, the ARX
model’s difference equation is:

A (q)u (t) = B (q) e (t) + ǫ (t) (6)

with the output and input polynomialsA (q) andB (q), having
ordersna andnb − 1, respectively:

A (q) = 1 + a1q
−1 + · · ·+ ana

q−na (7)

B (q) =
(
b0 + b1q

−1 + · · ·+ bnb
q−nb+1

)
q−nk (8)

The integersna andnb set the number of parametersai for
i ≥ 1 andbj for j ≥ 0, respectively. The adjustable parameters
are thus:

θ =
[
a1 a2 · · · ana

b0 b1 · · · bnb

]T
(9)

The integernk models a discrete input delay, leading to
exponent shifts inB (q). To ease notation,n′

b = nb + nk − 1
can be used. Ifnk is zero, parameterb0 provides direct
transmission.

e (t) B (q)

A (q)

+

ǫ (t) 1

A (q)

v (t)

+ u (t)

Fig. 3. ARX-model structure.

B. OLS and RLS Estimation

As the ARX-model structure allows the application of linear
regression [16], ordinary least-squares (OLS) and recursive-
least squares (RLS) estimation of the parameter vectorθ in (9)
is straightforward. OLS estimation acts in batch mode, while
RLS estimation updates the parameter estimation for each new
measurement sample that becomes available, and is, therefore,
able to track time variations with appropriate use of forgetting.
In both least-squares estimations, the regression vectorϕ (t)

plays a central role. For the input-output data set{e (t) , u (t)},
it is defined as:

ϕ (t) = [−u (t− 1) −u (t− 2) · · · −u (t− na)

e (t− nk) e (t− nk − 1) · · · e (t− n′
b)]

T

(10)

The least-squares methods and their implementation can be
explained as follows.

1) OLS Estimation:From the input-output data set consist-
ing of N samples, a regression matrixΦ and output vector
u should be constructed fromϕ (t) and u (t), respectively.
In order to consider only known input-output data, regressors
ϕ (t) cannot be fully constructed at instants less than the criti-
cal instantkc = max (na + 1, nb + nk), unless assumptions
are made. OLS estimateŝθOLS can be obtained using QR
factorization provided thatΦ is full rank [16].

2) RLS Estimation:The RLS algorithm is provided by (11)
to (16) [16]. By adjusting the gain vectorK (t), the prediction
error ε (t) betweenu (t), i.e., the observed output at timet,
and û (t), i.e., the prediction ofu (t) based on observations
up to timet− 1, can be minimized. The computation ofQ (t)
makes use of the scaled covariance matrixP (t).

θ̂ (t) = θ̂ (t− 1) +K (t) ε (t) (11)

ε (t) = u (t)− û (t) (12)

û (t) = ϕT (t) θ̂ (t− 1) (13)

K (t) = Q (t)ϕ (t) (14)

Q (t) =
P (t− 1)

λ (t) + ϕT (t)P (t− 1)ϕ (t)
(15)

P (t) =
P (t− 1)

λ (t)

(
I −K (t)ϕT (t)

)
(16)

The design variable of the RLS algorithm is the forgetting
factor λ (t) ∈ 〈0, 1), which assigns less weight to older mea-
surements and, more importantly, affects the variance ofθ̂ (t).
In essence,λ (t) sets the trade-off between noise sensitivity
(i.e., λ (t) close to 1, slow adaptation, and low variance in
θ̂ (t)) and tracking ability (i.e., loweredλ (t), fast adaptation,
and high variance in̂θ (t)). Numerous strategies exist for
implementing and tuning the forgetting strategy. Particularly
in the area of research of manual-control cybernetics, it is
essential “to look for the simplest possibility of making esti-
mators reliably adaptive, within a rigorous framework” [17].
Hence, a conservative approach is taken here. Only constant
forgetting factorsλ (t) ≡ λ are used. A scalar forgetting factor
λ and a forgetting matrixΛ are considered. The latter may
use differentλ values for different parameters, with possible
different timescales of variations [18]. For the parametervector
θ in (9), Λ is defined as:

Λ = diag
(

λa1
, λa2

, . . . , λana
, λb0 , λb1 , . . . , λbnb

)−1/2

(17)

It is a diagonal matrix with inverse square roots of forgetting
factors matching specific parameters. When usingΛ, (15) and
(16) are changed into:

Q (t) =
ΛP (t− 1)Λ

1 + ϕT (t) ΛP (t− 1)Λϕ (t)
(18)

P (t) = ΛP (t− 1)Λ
(
I −K (t)ϕT (t)

)
(19)
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This ensures that all entries inP (t− 1) are weighted properly,
e.g., if na = nb = 2 (omitting (t− 1) for readability):

ΛPΛ =















Pa1

λa1

Pa1,a2
√
λa1

λa2

Pa1,b0
√
λa1

λb0

Pa1,b1
√
λa1

λb1
Pa1,a2

√
λa1

λa2

Pa2

λa2

Pa2,b0
√
λa2

λb0

Pa2,b1
√
λa2

λb1
Pa1,b0

√
λa1

λb0

Pa2,b0
√
λa2

λb0

Pb0

λb0

Pb0,b1
√
λb0λb1

Pa1,b1
√

λa1
λb1

Pa2,b1
√
λa2

λb1

Pb0,b1
√
λb0λb1

Pb1

λb1















(20)

As only constant forgetting factorsλ are considered, old
measurements are discounted exponentially [16]. A measure-
ment that isN0 = 1/(1− λ) samples old has a weight equal
to λN0 ≈ e−1 ≈ 37% times the weight of the most recent
observation. The memory horizonN0 is easier to interpret
than the value ofλ, e.g., ifλ = 0.9375,N0 equals 16 samples.
Alternatively, denotingTs as the sampling time in seconds, a
memory horizon is expressible in seconds:T0 = Ts/(1− λ),
e.g., if Ts = 0.01 s andλ = 0.9375,T0 equals 0.16 s.

The RLS algorithm is completed by specifying the initial
parameter estimatêθ0, and the initial scaled covariance ma-
trix P0 (typically set equal toδI, with δ a positive constant).
The actual covariance matrix of the parameters, i.e.,Pθ (t),
can be obtained by multiplyingP (t) with σ2

ε (t) /2, where
σ2
ε (t) denotes the variance ofε (t) [16, pp. 381–382]. Similar

as described in Section III-B1, if only known input-output data
is considered, RLS estimation starts at instantkc.

C. HO Model and ARX Model

As shown by Hess [19], the discrete-time transfer function
G (z) of the continuous-time HO-model structure in (3),
without consideringτe, and assuming zero-order hold (ZOH)
discretization would be:

G (z) = z−1 b0 + b1z
−1

1 + a1z−1 + a2z−2
(21)

Except for the unit-sample delayz−1 caused by ZOH dis-
cretization, this function corresponds to the ARX model’s
transfer function frome (t) to u (t) with na = nb = 2 and
nk = 0.

For easier interpretation, ARX models can also be con-
verted back to the HO-model structure under consideration.If
na = nb = 2, this conversion to the rational continuous-time
ZOH equivalent model is straightforward:

H (s) =
bc1s+ bc0

s2 + ac1s+ ac0
(22)

The HO-model parameters are then retrieved as:

K̂e =
bc0
ac0

, T̂L =
bc1
bc0

, K̂ė =
bc1
ac0

,

ω̂nm =
√

ac0, ζ̂nm =
ac1

2
√

ac0

(23)

Estimation complexity increases ifna and nb are not both
equal to 2 and the identified ARX model is fit to the specific

HO model. Then model order reduction techniques should be
applied. It means that a nonlinear optimization problem based
on a certain frequency-domain criterion should be solved.

The poles of (21) and (22) are mapped accordingz = esTs .
For the mapping of zeros, such an expression does not exist.
From (23) it can be observed that the HO’s neuromuscular
parameters are only related to the ARX model’s output polyno-
mial A (q). Inspecting again Fig. 3, the ARX-model estimation
thus compromises between the estimating these neuromuscular
parameters and the remnant characteristics usingA (q).

Methods are available to captureτe as fractional delay [20],
however, this would mean that extra parametersai andbi are
needed. The study aims to identify time-varying CE adapta-
tions in the HO, as unambiguously as possible. Therefore,na

and nb are both fixed to 2 andτe is modeled as an integer
multiple of the sampling intervalTs, taking into account the
additional ZOH unit-sample delay.

From an identification perspective, time variations in the
input-output data are best captured if the sampling timeTs is
as low as possible. It might be, however, that the ARX model’s
transfer function fromǫ (t) to u (t) cannot properly explain
the HO remnant characteristics. Typically, there are noise
disturbances in the data, above the frequencies of interest.
Then, a remedy is to decimate the input-output data [7], [16].
To circumvent the issue of decreased resolution in capturing
the integer time delay, the input signale (t) can be shifted with
the assumed interval stepsn∗

k of time delay before decimating.
Furthermore, it should be noted that the closed-loop iden-

tification problem considered here will be tackled by means
of the direct identification approach. In [21] it was found that
the direct identification approach with ARX models is able
to provide more accurate estimates in the frequency range of
interest for manual control than the indirect approach. Hence,
closed-loop identification issues are not explicitly takeninto
account.

D. Identification Approach

The general identification approach taken in this study
is shown in Fig. 4. The gray blocks indicate the user’s
main tuning options. In order to fine-tune the procedure,
two input-output data sets are considered, one for estimation
{ee (t) , ue (t)}, and one for validation{ev (t) , uv (t)}, both
sampled with frequencyfs. The procedure has 9 steps.

1) Discard run-in time data.Discard the transients present
in the beginning of the recordingsee (t), ue (t), uv (t)
and obtain the measurement signalsee,m (t), ue,m (t),
uv,m (t), respectively, all of lengthTm and containing
Nm = fsTm samples.

2) ARX-model setup.Select the integersna and nb, and
the range of integersn∗

k,min and n∗
k,max to be tested

for estimating the time delaŷτe with n∗
k/fs. The initial

choice is to use physical insight, and by applying the
principle of parsimony selectna andnb as low as pos-
sible. Insights could also be gained from nonparametric
analysis, e.g., using Fourier coefficients [22], for cases
where the HO can be characterized as time invariant.

3) Input-delay estimation.Simultaneously estimate the se-
lected ARX models, all with differentn∗

k, using OLS.
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Input-output
estimation and
validation data

ee(t)

ue(t)

uv(t)

ev(t)

Discard run-in
time data

ee,m(t) ue,m(t)

Input-delay
estimation

n∗

k

Input-delay
compensation

uv,m(t)

ee(t−τ̂e)

ev(t−τ̂e)

ARX-model setup:
na, nb, n∗

k,min
, n∗

k,max

na

nb

n∗

k,min

n∗

k,max

Signal selection:
Ne, Ne,v , Nv,v

Decimation:d

ẽe(t)

ũe(t)

ẽe,s(t)

ũe,v(t)

ẽv,s(t)

ũv,v(t)

Estimation setup: OLS or
RLS with θ̂0, P0, λ or Λ

ûe,v(t)

ûv,v(t)

ARX-model
estimation

Simulation

Simulation

MARX ARX-model
conversion

MHO

Verification
VAFe

Validation
VAFv

Revision

Revision

Fig. 4. Flow chart of the ARX-model identification method.

Pick out then∗
k that results in the lowest loss function

V of the one-step-ahead prediction̂ue,p (t). This V is
defined as:

V =
1

N

N∑

t=1

(ue,m (t)− ûe,p (t)) (24)

4) Input-delay compensation.Shift the recordingsee (t)
and ev (t) with n∗

k samples, and obtain the signals
ee (t− τ̂e) andev (t− τ̂e), respectively.

5) Signal selection.Select the number of samplesNe for
estimation,Ne,v for verification, andNv,v for valida-
tion. Obtain fromee (t− τ̂e) and ue,m (t) the signals
ẽe (t) andũe (t), respectively, for the actual ARX-model
estimation; fromee (t− τ̂e) and ev (t− τ̂e) the signals
ẽe,s (t) and ẽv,s (t), respectively, for simulation; from
ue,m (t) the signal ũe (t) for verification; and from
uv,m (t) the signalũv (t) for validation.

6) Estimation setup.This includes the choice between OLS
and RLS estimation. The latter requires specifications for
θ̂0, P0, and the forgetting strategy, i.e.,λ or Λ.

7) ARX-model estimation.Estimate the ARX model
MARX. Note that here the structure is defined with
integersna andnb.

8) Verification, validation, and optional revision.Simulate
using the ARX-model equations with zero initial output
condition. Obtain the verification output̂ue,v (t) and
validation outputûv,v (t). Verify and validateMARX

using the variance accounted for metricsVAFe and
VAFv, respectively. The VAF measures the quality of
fit and requires the (preprocessed) measured outputũ (t)
and (preprocessed) simulated outputû (t):

VAF=max






0,






1−

N∑

t=1
|ũ (t)−û (t)|

2

N∑

t=1
|ũ (t)|

2






·100%







(25)

If the VAF ratio VAFe/VAFv is larger than 1, overfit
occurs [9]. IfVAFe/VAFv ≫ 1, it means thatMARX

provides a high model quality on the estimation data, but
it cannot be generalized to other data. The user should
specify the acceptable range of VAF ratios, e.g., accept

a VAF ratio of 1.1 for all remnant intensities. A revision
of MARX is made possible by the following options.

a) Data decimation.Return to Step 5 and select a
decimation factord, for convenience a power of
two.

b) Estimation setup adjustment.Return to Step 6,
actually only applicable for RLS.

c) ARX-model setup adjustment.Return to Step 2.

Example decimators include a downsampler, an ideal
noncausal filter, or piecewise aggregate approximation.
These decimators consider the first sample and then
everydth sample of the input-output data. For a proper
decimation, the first sample of a shifted input signal
requires an offset of⌈n∗

k/d⌉ d − n∗
k, i.e., an integer

between 0 andd−1.
9) ARX-model conversion. Obtain the continuous-time HO

modelMHO by convertingMARX andn∗
k. Retrieve the

HO-model parameters as described in Section III-C.

IV. M ETHOD

To study the functionality and feasibility of the recursive
ARX-model identification method, a Monte Carlo simulation
analysis withM = 100 replications is set up. The com-
pensatory manual-control model in Fig. 1 is simulated for
different conditions. In particular, the sensitivity to remnant
is investigated. The simulations will run withfs = 100 Hz.
The measurement window is set toTm = 81.92 s. The total
recording time is set to a multiple of eight timesTm to reduce
the effects of transients.

A. Target-Forcing Function

The compensatory manual-control system will be excited
by the same target-forcing function as in [12]:

ft (t) =

Nt∑

k=1

At (k) sin [ωt (k) t+ φt (k)], (26)

for which a sum ofNt = 10 sinusoids is considered. Ta-
ble I lists the amplitudeAt (k), excitation frequencyωt (k),
and phase shiftφt (k) of the kth sinusoid. All ωt (k) are
integer multiples nt of the measurement-base frequency
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TABLE I
TARGET FORCING-FUNCTION PROPERTIES[12]

kt, – nt, – ωt, rad/s At, deg φt, rad
1 3 0.230 1.186 -0.753
2 5 0.384 1.121 1.564
3 8 0.614 0.991 0.588
4 13 0.997 0.756 -0.546
5 22 1.687 0.447 0.674
6 34 2.608 0.245 -1.724
7 53 4.065 0.123 -1.963
8 86 6.596 0.061 -2.189
9 139 10.661 0.036 0.875

10 229 17.564 0.025 0.604

t, s

f
t
(t
),

de
g

0 20 40 60 80

-4

-2

0

2

4

Fig. 5. Target forcing-function time trace.

ωm = 2π/Tm = 0.0767 rad/s. Fig. 5 shows the time trace of
ft (t). The amplitude distribution is varied and scaled to attain
a variance ofσ2

ft
= 2.2490 deg2 in Tm.

B. Parameter Variations and Conditions

Table II lists the two sets of parameter values that are
considered for the CE dynamics and the assumed HO dy-
namics. These are based on experimental data. Bode plots of
the corresponding states are shown in Fig. 6. State 1 mostly
represents1/s CE dynamics, while State 2 mostly represents
1/s2 dynamics in the frequency range 1–5 rad/s. For State 2,
a strong increase in lead generation by the HO is observed,
corresponding to the findings in [12].

TABLE II
CE AND HO PARAMETER VALUES FORTWO STATES [12]

CE HO

State Kc ωb Ke TL Kė τe ωnm ζnm

– rad/s – s s s rad/s –
1 90 6 0.09 0.4 0.036

0.28 11.25 0.35
2 30 0.2 0.07 1.2 0.084

Table III presents the six different conditions that will be
simulated. The same conditions were also studied in [12].
Conditions C1 and C2 have constant dynamics and are as-
sociated with States 1 and 2, respectively. Such dynamics
were also considered in [7], in which HO dynamics were
successfully identified using batch ARX models. Conditions
C1 and C2 could thus be used as reference conditions for the
identification with recursive ARX models. Conditions C3–C6
include time-varying dynamics. Here, the sigmoid’stM value
is set aroundTm/2. Both gradual and sudden transitions are
considered from C1 to C2, and vice versa. The time variations
introduced in the HO’s equalization parameters are equivalent
to the sigmoid function used to vary the CE dynamics. The
parameter functions for these equalization parameters canbe
expanded with deterministic perturbations [13]. This willbe

State 2

6
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E
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),

de
g
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Fig. 6. Bode plots corresponding to the two states listed in Table II. (a) Set
of CE dynamics. (b) Set of assumed HO dynamics.

more realistic than assuming that the HO’s equalization param-
eters are prescribed by the same sigmoid function introduced
for the variation in the CE parameters. This study, however,
focuses on algorithm performance and the question is whether
it could capture such transitions at all. Example remnant-free
input-output measurement-time traces for conditions C3 and
C4 are shown in Fig. 7. The gray line indicates the time instant
tM of the maximum transition rateG. Around tM , small, but
noticeable, differences between the two conditions can be seen.

TABLE III
CONDITIONS TO SIMULATE

Condition HCE (s) G, s-1

C1 HCE,1 (s) n/a
C2 HCE,2 (s) n/a
C3 HCE,1 (s) → HCE,2 (s) 0.5
C4 HCE,1 (s) → HCE,2 (s) 100
C5 HCE,2 (s) → HCE,1 (s) 0.5
C6 HCE,2 (s) → HCE,1 (s) 100

e
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Fig. 7. Remnant-free input-output measurement-time traces. (a) and (b) Con-
dition C3. (c) and (d) Condition C4.

ZOH equivalent parameter values for the two assumed HO
models listed in Table II (without considering the delay) are
presented in Table IV. These values are considered as the
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TABLE IV
ARX-M ODEL PARAMETER VALUES FORZOH DISCRETIZATION OF

ASSUMEDHO DYNAMICS

States 1 and 2 State 1 State 2

Ts, s a0
1

a0
2

b0
0

b0
1

b0
0

b0
1

0.01 -1.9121 0.9243 0.0443 -0.0432 0.1024 -0.1016

true ARX-model parametersθ0 = [ a0
1 a0

2 b00 b01 ]
T . A range of

these true parameters at each time instant is also obtainable
for conditions C3–C6.

C. Remnant Model

In manual-control literature, there is no clear agreement on
how HO remnantn (t) should be represented [7], [8], [23]–
[25]. Here, it is modeled as a zero-mean Gaussian white-
noise signalnw (t), with unit variance, passed through a low-
pass filter. The followingmth-order remnant-filter structure is
considered:

Hm
n (s, t) =

Kn (t)

(Tns+ 1)
m , (27)

where the remnant gainKn (t) could vary in time. The
remnant-time constantTn will be set equal to 0.06 s [26],
resulting in a cutoff frequency of 16.67 rad/s. A key issue
of ARX models is that the disturbance dynamics1

A(q) are

completely tied to the process dynamicsB(q)
A(q) . Hence, the

remnant characteristics cannot be parametrized independently
and the estimation of the parameters in the linear HO dynamics
becomes biased. This aspect was not fully investigated in [9]
and [7]. Therefore, this study will check to what extent
the ARX model constrains parametrization of the linear HO
dynamics by examining different remnant filters. Integer orders
of m = 1, 2, 3, and 4 are tested. In addition, a special remnant
filter, similar toHnm (s), is considered (m = nm), with the
values of the neuromuscular parameters listed in Table II:

Hnm
n (s, t) = Kn (t)Hnm (s) (28)

It is expected that theHnm
n (s, t) filter least constrains the

estimation of the parameters in the process dynamics.
For the differentHm

n (s, t), Kn (t) can be set to induce
remnant-intensity levelsPn = σ2

n/σ
2
u in the measurement

window. Seven levels ofPn are selected: 0.00 (i.e., no rem-
nant), 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30. By means of
the nonlinear programming solverfmincon [27], a constant
Kn is tuned for the constant dynamics conditions C1 and
C2, based on 10nw (t) realizations. For conditions C3–C6,
Kn (t) can then be varied according a sigmoid analogous to
the HO equalization and CE parameters. After tuningKn,
another 110 independentnw (t) are generated. To simulate
estimation data sets, 100 of these were used, and 10 were used
to create validation data sets. So, different remnant signals
n (t) are obtained by filtering exactly the same realizations
nw (t) through the differentHm

n,t (s) for which only Kn (t)
varies. This allows the fairest comparison.

Fig. 8 shows an overview of the different types of constant
Hm

n (s) filters with different tunedKn to induce aPn of 0.15
for condition C1. Equivalent Bode plots can be obtained

|H
n
(s
)|

,
–
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nm

3

6
H
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Fig. 8. Bode plots of the different remnant-filter models with different tuned
Kn to induce aPn of 0.15 for condition C1.

for other Pn and for condition C2. Over a wide frequency
range,H1

n (s) has the lowest magnitude andH4
n (s) has the

highest magnitude. The opposite can be seen at the highest
frequencies. For allHm

n (s), the phase angle becomes more
negative as the magnitude drops.

TABLE V
FORGETTINGFACTORSTAKEN BASED ONN0

N0, – λ, – N0, – λ, –

2 0.5 256 0.99609
4 0.75 512 0.99805
8 0.875 1024 0.99902

16 0.9375 2048 0.99951
32 0.96875 4096 0.99976
64 0.98438 8192 0.99988

128 0.99219 ∞ 1

D. Estimation Setup

As shown in Figs. 2 and 7, iftM is set aroundTm/2,
the initial and final 30.72 s of the measurement traces for
conditions C3–C6 can be assumed to include only constant
dynamics. In essence, if the dynamics to be identified are
constant, the RLS algorithm will recursively approximate the
OLS estimate. Therefore, in these particular regions ARX
models can be estimated with OLS serving as a reference for
the RLS estimation.

The main interest is concentrated on the recursive estimation
in the transition region of 20.48 s aroundtM (see again Fig. 2).
The implementation with the scalar forgetting factorλ and the
forgetting matrixΛ and corresponding results will be explored.
All conditions listed in Table III will be assessed with a range
of forgetting factors, that correspond to a matching range of
memory horizonsN0, of integer powers of two (see Table V).
Also, the case of no-forgetting is considered, i.e.,λ = 1 so
N0 = ∞. For each recursive estimation, the RLS algorithm
will be initialized with θ̂0 = θ̂OLS estimated on the initial
30.72 s, and withP0 = I.

As can be interpreted from Table IV, the ARX model’s
output parametersa1 (t) and a2 (t) remain constant in all
conditions with time-varying dynamics. These parameters are
closely linked to the HO’s neuromuscular parametersωnm and
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ζnm which were not varied in the offline simulations. There-
fore, a1 (t) and a2 (t) can be assumed to be time invariant
throughout the whole estimation. On the contrary, the ARX
model’s input parametersb0 (t) and b1 (t) are not constant.
These parameters are closely linked to the HO’s equalization
parametersKe (t) and Kė (t), which were varied according
the same sigmoid function. Hence, the forgetting matrix can
provide more accurate results as it is able to discount distinct
information for each ARX-model parameter. The forgetting
factorsλa1

andλa2
in the forgetting matrixΛ will be set equal

to 1, while the range of forgetting factors listed in Table V is
tested forλb0 = λb1 .

E. Identification-Tuning Criteria

Prior to commencing the analysis of the recursive ARX-
model estimation, the effects of the order of the remnant filter
on the resulting estimation accuracy with the selected ARX-
model structure, i.e.,na = nb = 2, is assessed for conditions
C1 and C2 using batch ARX-model estimation. First, the
estimation ofn∗

k is compared ton0
k, i.e., the true integer value

of 29 samples based onτefs plus a unit-sample delay from
the ZOH discretization. The use ofn∗

k can be justified by
calculating the difference in validation data VAFs forn0

k and
n∗
k:

∆VAFn0
k

v = VAFn0
k

v −VAFn∗

k
v (29)

If ∆VAFn0
k

v is close to zero, the model qualities are practically
the same. Second, the batch ARX-model parameter estimates
will be compared to the ZOH parameter values listed in
Table IV. For this, the metric of relative biasBr is used,
which accounts for the sign of the bias:

Br =
θ̂ − θ0
θ0

(30)

An objective metric to trade off the tracking ability and
remnant-level sensitivity is introduced by calculating the dif-
ference between the validation data VAFs forλ = 1 (highest
robustness against noise) and forλ < 1 for a range ofλ
(ability to capture time variations). The metrics for the scalar
forgetting factorλ and forgetting matrixΛ implementation are
defined as:

∆VAFλ=1
v = VAFλ

v −VAFλ=1
v (31)

∆VAFΛ=I
v = VAFΛ

v −VAFΛ=I
v (32)

As indicated in Section IV-D, the calculation of the above VAF
metrics in the transition region are of particular importance.

V. RESULTS

A. Influence of Remnant-Filter Type and Delay Estimation

Fig. 9 shows, for condition C1, a box plot of the variable
input-delay estimationn∗

k for the different types ofHm
n (s) and

intensity levelsPn, for M = 100 replications. For condition
C2, equivalent results were obtained. In Fig. 9, the dotted gray
line represents the true fixed integer delayn0

k of 29 samples.
In the remnant-free case, i.e.,Pn = 0, n∗

k = n0
k is indeed

found. A clear distinction can be made between remnant-filter
orders 1 and 2 that overestimaten0

k, and orders 3 and 4 that

Pn = 0.15

Pn = 0.20

Pn = 0.25

Pn = 0.30

Pn = 0.05

Hm
n (s)

n
∗ k

,
–

Pn = 0

Pn = 0.10

1 2 3 4 nm
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Fig. 9. Variablen∗

k
estimation, for condition C1, for differentHm

n (s).

underestimaten0
k. Then∗

k for theHnm
n (s) filter are centered

aroundn0
k. Furthermore, it is apparent that then∗

k for the
H1

n (s) filter, deviate, on average, for allPn, seven samples
from n0

k. Focusing for a moment on the higher frequency range
in the Bode phase-angle plots in Fig. 8, a clear trend can be
seen with the results in Fig. 9. The ARX-model estimations
on data simulated with theHnm (s) filter result in the best
estimates ofn0

k. An increase in delay is needed for the orders
1 and 2, while less delay is needed for the orders 3 and 4.

To further assess how the ARX-model estimates vary with
the different remnant-filter types, it is important to look at
the relative biasBr. Fig. 10 shows, again for condition C1,
box plots for all ARX-model parametersa1, a2, b0, and b1,
estimated with the true delay integern0

k and the variable delay
integern∗

k. Equivalent results were found for condition C2.
The Br of all parameters in the remnant-free case is zero. It
stands out that theBr in all parameters forH1

n (s) is more
than ten times larger compared to the otherHm

n (s). Similar
to the results in Fig. 9, a clear difference can be seen between
orders 1 and 2, and the other remnant-filter types. The output
parametersa1 anda2 are overestimated forH1

n (s) andH2
n (s),

while an underestimation of the input parametersb0 and b1
occurs. The opposite can be seen for the otherHm

n (s). The
lowest relative bias is seen forHnm

n (s). Except forH1
n (s),

the difference betweenBr when estimating withn0
k and n∗

k

is negligible.
To gain a better understanding of the differences and com-

monalities between the considered remnant filters, Figs. 11(a)
and (b) show, for conditions C1 and C2, Bode plots of the
batch ARX models, estimated with the true integer delayn0

k,
for a single remnant realization withPn = 0.15. Equivalent
Bode plots are obtained for the otherPn. Figs. 11(a) and (b)
also provide Bode plots of the ZOH equivalent dynamics, for
conditions C1 and C2, for the values listed in Table IV and
n0
k. For both conditions, the batch ARX-model estimations on

data sampled withfs = 100 Hz and generated withH1
n (s)

cannot provide a good description of the HO dynamics in
frequency range of interest for manual control (0.2–18 rad/s).
There is a large misfit at the high frequencies and the peak
value is not even captured. The above results clearly express
the ARX model’s compromise between minimizing the bias
in the parameters of the process dynamics and explaining
the disturbance dynamics. In fact, this bias minimization is
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Fig. 10. Relative bias in the ARX-model parameters, for condition C1, for the differentHm
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Fig. 11. Bode plots of the batch ARX-model estimations for differentHm
n (s)

for a single realization withPn = 0.15 and usingn0

k
. (a) HO dynamics for

condition C1. (b) HO dynamics for condition C2. (c) Weightingfunction for
condition C1. (d) Weighting function for condition C2.

weighted with
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−jω + a2e
−2jω
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[16].
Figs. 11(c) and (d) present Bode magnitude plots of the
weighting functions, for conditions C1 and C2, in correspon-
dence with the Bode plots of the HO dynamics. ForH1

n (s),

∆
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Fig. 12. Difference between the validation VAFs when usingn0

k
andn∗

k
and

selectingH2
n (s). (a) Condition C1. (b) Condition C2.

the high-frequency misfits are penalized much less than for the
otherHm

n (s), e.g., forH2
n (s), the weight at 100 rad/s is 103

times higher than the weight at 20 rad/s, whereas forH1
n (s)

this is just 15 times higher.
The results of Figs. 10 and 11 indicate that the use of

H3
n (s), H4

n (s), and Hnm
n (s), leads to ARX-model estima-

tions closest to the ZOH discretized HO models. While the
use ofHnm

n (s) led to the best estimation ofn0
k, the lowest

bias, and the best fit in the Bode plots, it is not realistic to
assume that the HO’s remnant dynamics are equivalent to the
HO’s neuromuscular dynamics—these were only considered
as a reference. The second and third best candidates servingas
appropriate remnant models for the further analysis are then
H3

n (s) and H4
n (s). However, to better assess the potential

feasibility of the ARX-model estimation, the further analysis
will be based on the second-order remnant filterH2

n (s). The
use of this filter is considered as the compromise limit between
bias in the ARX-model parameters and the fitting of the
remnant by the ARX model.



10

Pn = 0.30

Pn = 0.05

Pn = 0.20

Pn = 0

Pn = 0.10
Pn = 0.15

Pn = 0.25

C1, λ

N0, –

∆
V
A
F

λ
=

1
v

,
%

8 16 32 64
128

256
512

1024
2048

4096
8192

0
0.5

1
1.5

2
2.5

3
3.5

(a)

C1, Λ

N0, –

∆
V
A
F

Λ
=

I
v

,
%

8 16 32 64
128

256
512

1024
2048

4096
8192

0
0.5

1
1.5

2
2.5

3
3.5

(b)

C2, λ

N0, –

∆
V
A
F

λ
=

1
v

,
%

8 16 32 64
128

256
512

1024
2048

4096
8192

0
0.5

1
1.5

2
2.5

3
3.5

(c)

C2, Λ

∆
V
A
F

Λ
=

I
v

,
%

N0, –

8 16 32 64
128

256
512

1024
2048

4096
8192

0
0.5

1
1.5

2
2.5

3
3.5

(d)

C3, λ

N0, –

∆
V
A
F

λ
=

1
v

,
%

8 16 32 64
128

256
512

1024
2048

4096
8192

0
2.5

5
7.5
10

12.5
15

(e)

C3, Λ

∆
V
A
F

Λ
=

I
v

,
%

N0, –

8 16 32 64
128

256
512

1024
2048

4096
8192

0
2.5

5
7.5
10

12.5
15

(f)

∆
V
A
F

λ
=

1
v

,
%

N0, –

C4, λ

8 16 32 64
128

256
512

1024
2048

4096
8192

0
2.5

5
7.5
10

12.5
15

(g)
N0, –

∆
V
A
F

Λ
=

I
v

,
%

C4, Λ

8 16 32 64
128

256
512

1024
2048

4096
8192

0
2.5

5
7.5
10

12.5
15

(h)

C5, λ

∆
V
A
F

λ
=

1
v

,
%

N0, –

8 16 32 64
128

256
512

1024
2048

4096
8192

0
2.5

5
7.5
10

12.5
15

(i)

C5, Λ

N0, –

∆
V
A
F

Λ
=

I
v

,
%

8 16 32 64
128

256
512

1024
2048

4096
8192

0
2.5

5
7.5
10

12.5
15

(j)

∆
V
A
F

λ
=

1
v

,
%

C6, λ

N0, –

8 16 32 64
128

256
512

1024
2048

4096
8192

0
2.5

5
7.5
10

12.5
15

(k)
N0, –

∆
V
A
F

Λ
=

I
v

,
%

C6, Λ

8 16 32 64
128

256
512

1024
2048

4096
8192

0
2.5

5
7.5
10

12.5
15

(l)

Fig. 13. Overview for all conditions to trade off between tracking ability and noise sensitivity for the two forgetting strategiesλ andΛ, with Pn ranging
between 0 and 0.30 in increments of 0.05. (a) to (d) Conditionswith constant dynamics. (e) to (l) Conditions with time-varying dynamics.

To give a final justification of usingn∗
k and the selection of

H2
n (s), Fig. 12 shows box plots of the metric∆VAFn0

k
v , for

conditions C1 and C2. These results indicate that negligible
differences in model quality are obtained when usingn∗

k

compared ton0
k, for all remnant intensitiesPn.

B. Forgetting-Factor Tuning

This section includes the results of recursive ARX-model
estimation. Fig. 13 visualizes, for all conditions listed in
Table III and tested remnant intensitiesPn, the calculations
of the metrics defined in (31) and (32), based on 1 000
simulations. Data for the scalar forgetting factorλ and the
forgetting matrixΛ are shown side by side. The validation
data VAFs are calculated on the transition region window of
20.48 s aroundtM . For both implementations, the range of
memory horizonsN0 listed in Table V are compared with the
case of no-forgetting, i.e.,λ = 1 andΛ = I. What stands
out in Fig. 13 is that no significant differences can be seen
between the two different forgetting-factor implementations.
Apparently, the quality of fit in the transition region data
is not improved by changing the forgetting strategy. More
interesting, perPn and condition, an optimalN0 can be
observed from Fig. 13. Data with lowerPn require the
selection of lowerN0. In particular, this can be seen for the
remnant-free cases. Higher forgetting factors for the constant
dynamics conditions C1 and C2 should be selected, as the
corresponding data are less variable compared to the data of
the conditions with time-varying dynamics. For the different
Pn, the values of∆VAFλ=1

v and∆VAFΛ=I
v differ more for

condition C2 compared to condition C1. The variability in the
data increases more with higherPn for condition C2 than for
condition C1. Furthermore, a comparison between conditions
C3 and C4 (i.e.,1/s → 1/s2) and conditions C5 and C6 (i.e.,
1/s2 → 1/s) reveals that differences between no-forgetting
and forgetting are notably smaller for the latter. In conditions
C5 and C6, the estimations are influenced more by the data
based on1/s2 dynamics than1/s dynamics. Hence, the effect
of variability in the data is flattened. Overall, the one-optimal
forgetting factor, for all conditions, for this data, is observed
for N0 = 256 samples, i.e.,λ = 0.99609. So, for data sampled
with fs = 100 Hz, the RLS algorithm requires 2.56 s to come
up with accurate parameter estimates.

While Fig. 13 did not show significant differences between
the implementation of the scalarλ and the matrixΛ, the
matching recursive estimates ofa1 (t), a2 (t), b0 (t), andb1 (t)
show that there is in fact a benefit of making use ofΛ.
Fig. 14 shows in black the time evolutions of the recursive
ARX-model parameters for condition C4, based on the 100
different estimation data sets, for a scalar forgetting factor λ
and for a forgetting matrixΛ. The results for three different
remnant-intensity levels are shown, i.e.,Pn = 0 (no remnant),
0.15 and 0.30. A similar pattern was observed forPn between
0.05 and 0.30. ForPn = 0.15 and 0.30, standard deviations
are included. The red lines in Fig. 14 represent the true
ZOH parameter values. The green lines, at the beginning and
the end, indicate batch ARX-model estimations (mean and
standard deviations). The gray lines indicate the sigmoid’s
instant tM . For all Pn, the black lines clearly show that
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Fig. 14. ARX-model parameters for condition C4 for three differentPn. (a) λ with N0 = 256. (b)Λ with Na1,a2
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= 256.
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Fig. 15. HO-model parameters for condition C4 for three differentPn. (a) λ with N0 = 256. (b)Λ with Na1,a2
0

= ∞ andNb0,b1
0

= 256.

a1 (t) and b0 (t) are negatively correlated witha2 (t) and
b1 (t), respectively. In accordance with the results shown in
Section V-A, for Pn > 0, a high bias with respect to the
true parameters is obtained for both the batch and recursive
ARX models as the simulation was set up withH2

n (s, t). For
Pn = 0, it can be noted thatN0 = 256 samples is not the best
choice. In this case, the estimation is not driven by remnant

and the tracking ability can be increased by decreasingN0.
From Fig. 14(b), a significant reduction in the variability of the
ARX-models parameters is observed for allPn. This becomes
clear, in particular, when looking at the ARX-model output
parameters. Better fits are obtained by using the matrixΛ.

Turning now toMHO by convertingMARX with integers
na = nb = 2, the HO parameters can be retrieved using (23).
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Only instants ofMARX with pairs of complex-conjugate poles
are considered. In accordance with Fig. 14, Fig. 15 is presented
for condition C4 for both forgetting-factor implementations.
The black lines represent the HO parameters based on the
recursive ARX models, and the green lines at the beginning
and end are based on batch ARX-model estimations. Standard
deviations are included forPn = 0.15 and 0.30. The red
lines are the true HO parameters, of which the equalization
parameters vary according the sigmoid function. The gray lines
representtM . Similar patterns as in Fig. 14 can be seen in
Fig. 15 for the two different forgetting-factor implementations.
While for Ke (t) andKė (t) acceptable estimation results are
obtained, the estimation ofTL (t) is seen to be problematic in
the1/s2 dynamics region. This can be explained by examining
the definition ofTL (t) in (23) and drawing the analogy with
the negative correlation between the ARX-model parameters
b0 (t) and b1 (t). If the continuous-time coefficientbc1 (t)
increases,bc0 (t) decreases, and vice versa. The variability in
the data related to1/s2 dynamics increases, hence the negative
correlation effect is stronger. Therefore, no stable estimates for
TL (t) are obtained. High deviations from the true values are
observed in̂ωnm and ζ̂nm. This clearly demonstrates that the
ARX model not only captures the dynamics of the system but
also those of the remnant filterH2

n (s, t). Both ωnm (t) and
ζnm (t) are overestimated.

VI. EXPERIMENTAL EVALUATION

A. Method

An experiment was conducted in the SIMONA Research
Simulator at Delft University of Technology, in fixed-base
setting. Three subjects, with an average age of 24 years,
performed the single-axis compensatory manual-control task
(see Fig. 1) for all the conditions listed in Table III. In each
condition seven runs were performed. The length of the runs
was set to 90.00 s. A measurement timeTm of 81.92 s was
used for the identification. The maximum rate of transitiontM
in conditions C3–C6 was set at 42.93 s in the measurement
window (i.e., at 50.00 s in the recording window). For the
actual identification, only the five last runs were considered.

The ARX-model identification approach, as outlined in
Fig. 4, was adopted. Input-output data were recorded with
fs = 100 Hz, andft (t) was set up with the properties listed in
Table I. Similar to the Monte Carlo analysis, the ARX-model
structure was set tona = nb = 2. Visual delay was assumed to
be constant and estimated usingn∗

k. Batch ARX models were
fit on the initial and final 30.72 s of the measurement window.
The recursive ARX-model estimations were initialized with
the initial θ̂OLS andP0 set toI. In accordance with the results
from the Monte Carlo analysis in Section V,N0 was set to 256
samples. Both the scalar forgetting factorλ and the forgetting
matrix Λ (with λa1

= λa2
= 1) were considered.

B. Results

Example identification results are presented for condition
C4, for all three subjects. Equivalent results are obtainedfor
the other conditions. Condition C4 is taken as this allows
a comparison with the results of Monte Carlo simulation

analysis in Section V. In accordance with Figs. 14 and 15,
Figs. 16 and 17 are presented, respectively. The latter two fig-
ures include ensemble averages based on batch and recursive
ARX-model estimation. These batch ARX-model estimates fit
on the initial and final 30.72 s are indicated with thick green
lines, and these recursive ARX-model estimates are shown
with thick black lines. The sigmoid’s instanttM is indicated
with the gray line. Both Figs. 16 and 17 also include the five
recursive single-run ARX-model estimates (thin colored lines).
No extreme outliers are observed in these single-run estimates.

In addition to these results, Table VI lists the average
performance scores for each subject in different time windows.
The scores include the root-mean-square of the error signal
rmse (t), the tracking score defined byσ2

e (t) /σ
2
ft
(t), and the

control activity expressed as the variance of the control signal
σ2
u (t). Four time windows are considered: the measurement

window Tm, the initial region of 30.72 s (ini), the transition
region of 20.48 s (tran), and the final region of 30.72 s (fin).
The results clarify that all subjects executed a different control
strategy. On average Subject 1 has the highest scores for
rmse (t) andσ2

e (t) /σ
2
ft
(t), and it has a low control activity.

On contrary, Subject 3 has the lowest scores forrmse (t) and
σ2
e (t) /σ

2
ft
(t), and it has a higher control activity. The highest

control activity is observed for Subject 2. All subjects have
more difficulty in controlling the1/s2 dynamics.

The ARX-model identification results in Fig. 16 show that
Subject 3 strongly adapts to the step transition in the CE
dynamics. In particular, this becomes clear when focusing on
the evolution ofb0 (t), and b1 (t). Such strong adaptations
are not seen in the results for Subjects 1 and 2. In all cases,
the ensemble averages of the recursive ARX-model estimates
approach the initial and final ensemble averages of the batch
ARX-model estimates. Furthermore, a comparison between
the initial and final batch ARX-model estimates and the
recursive ARX-model estimates in the transition region gives
an indication if some ARX-model parameters have distinct
rates of changes, and if the use of the forgetting matrixΛ is
reasonable. For Subject 3, a low variability ina1 (t) anda2 (t)
is seen. Hence, there seems to be a justification in usingΛ.

The matching conversion of the ARX-model parameters to
HO-model parameters is presented in Fig. 17. Focusing on the
evolutions ofKė (t), a generation of lead is seen for Subjects
2 and 3. This is not the case for Subject 1. Furthermore, it can
be noted that the values ofωnm (t) for Subject 1 remain low
compared with Subjects 2 and 3. It is questionable whether the
selected ARX-model structurena = nb = 2 is appropriate for
Subject 1. Similar as observed in the Monte Carlo simulation
analysis, the estimation ofTL (t) is problematic in the region
with 1/s2 dynamics. However, clear patterns are observed in
the evolution ofKe (t) andKė (t). In general, the results are
consistent with the findings in Section V.

VII. D ISCUSSION

An identification method based on recursive ARX models
is described that requires the user to specify the orders of the
ARX model and to set up a forgetting strategy. The orders are
defined using the integersna and nb, and the sum of these
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TABLE VI
AVERAGE PERFORMANCESCORES FORFIVE RUNS

rmse (t) σ2
e (t) /σ2

ft
(t) σ2

u (t)

Tm ini tran fi Tm ini tran fi Tm ini tran fi
Subject 1 1.037 0.978 0.900 1.159 0.420 0.310 0.293 0.458 0.009 0.005 0.006 0.016
Subject 2 0.944 0.640 0.920 1.180 0.373 0.151 0.350 0.499 0.037 0.027 0.037 0.048
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Fig. 16. ARX-model parameters for condition C4 for three different subjects. (a)λ with N0 = 256. (b)Λ with Na1,a2
0

= ∞ andNb0,b1
0

= 256.

K
ė
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integers sets the number of parameters to be estimated. The
choice of the forgetting strategy in the recursive parameter
estimation affects the trade-off between tracking abilityand
noise sensitivity. This study considered the implementation of
a constant scalar forgetting factorλ, and a constant forgetting
matrix Λ comprising forgetting factors for each parameter.
Through testing on simulation data, an understanding is gained
of the identification method’s capability to quantitatively de-
scribe time-varying compensatory manual-control adaptation
if the operator is faced with transitions in the CE dynamics
matching Zaal’s experiment [12].

Assuming that the considered HO model, consisting of a
visual gain, a lead term, a delay and neuromuscular dynamics,
is the suitable representation for the control of second-order
CE dynamics, the results indicate that ARX models can only
be used, directly, if the remnant dynamics are sufficiently
similar to the (second-order) neuromuscular dynamics. The
results presented in this paper show that the bias in the HO
parameters becomes very high if the remnant is first-order
low-pass filtered Gaussian white noise. Therefore, direct ARX-
model estimation on measured input-output data cannot be
used to identify the specific type of HO model if the remnant
dynamics characterizes to first order. However, it was found
that the remnant dynamics of orders 2, 3 or 4 are suitable.

For manual-contol tasks, where the HO is better represented
by for example an extra lead or lag term, the ARX model
defined by the integersna andnb can be easily adapted [19].
Furthermore, it is straightforward to convert the resulting ARX
model to the (easier to interpret) HO-model parameters. The
computational burden increases, however, if the conversion
relationship is applicable, e.g., if extra ARX-model parameters
are added to capture delay as a fraction. Then, model-order
reduction approximations should be carried out, or nonlinear
optimization problems should be solved to retrieve the physical
HO-model parameters.

This study demonstrated, by means of simulated estimation
and validation data, a tuning procedure for an optimal for-
getting strategy for different conditions and different remnant
intensities. These findings are not trivial given the high levels
of remnant present in manual-control data. On average, for
data sampled with 100 Hz, it can be said that the use of
the scalar forgetting factorλ = 0.99609, corresponding to
a memory horizon of 256 samples, is a satisfactory point of
departure for the identification of time-varying compensatory
manual-control behavior. In general, higher levels of remnant
are present in single experimental runs. It means that for this
application the value ofλ should be increased. For ensemble-
averaged experimental runs, the remnant levels will alleviate,
so lower values ofλ can be taken.

In addition to the constant scalar forgetting factorλ, the
constant forgetting matrixΛ was considered as forgetting strat-
egy for capturing time-varying compensatory manual-control
behavior. It was found that the use of a forgetting matrix did
not increase the model quality. However, the variance in the
parameter estimates over time will notably lower. The use
of a constant forgetting matrix should be considered, only
if there is a strong evidence that HO parameters vary with
different temporal scales, or certain parameters are constant.

To further improve the obtained results, further research could
concentrate on time-varying forgetting strategies [16], [28].
Instead of using a constant forgetting strategy, time variations
in the forgetting factors can be introduced to locally adaptthe
forgetting profile. This means that the scalar forgetting factor
turns into a vector of forgetting factors. Instead of a constant
forgetting matrix, a time-varying forgetting matrix can beused.
This can be very useful for identification purposes, if the
remnant levels vary during a measurement run.

The ARX-model delay estimation method based on the loss
function of the one-step-ahead prediction seems to be useful.
However, a drawback of the current identification approach is
that it does not work for capturing time-varying delay. This
issue can be circumvented by means of a sliding window
approach, and by updating the input entries of the regression
vectorϕ (t) at different time instants. In essence, this results
in a switched regression problem, which can be approached
by means of piecewise ARX models [29].

Further investigations are needed to explore whether the
recursive ARX-model identification method is also capable to
detect time-varying manual-control adaptation due to changes
in other task variables. The properties of the forcing function
can be altered over time, e.g., to represent different command
inputs to the HO or time-varying disturbances on the CE
dynamics [2]. In [7] and [9], batch ARX-model identification
was also used to determine the operator’s vestibular motion
and feedforward responses, respectively. Future work is needed
to determine if the recursive ARX-model identification method
is also able to capture, in addition to the visual response, these
two multimodal characteristics of manual-control behavior.

The identification method is computationally efficient.
Therefore, online implementation of the proposed approach
is relatively straightforward. Furthermore, an experimental
evaluation of real manual-control data indicates that the iden-
tification method is ready to use in future laboratory-control
experiments.

VIII. C ONCLUSION

A recursive ARX-model identification method was devel-
oped that is able to capture time-varying CE adaptation of the
HO in compensatory tracking tasks. The method is practical
since no stringent assumptions are required on how manual-
control behavior will vary over time. A procedure was shown
for the determination of the optimal forgetting factor for
different conditions and different remnant intensities. For the
considered application, the advice is to select a forgetting fac-
tor λ of 0.99609, if input-output data is sampled with 100 Hz.
A Monte Carlo simulation analysis with remnant intensitiesof
up to 30% shows that the method is then accurate in tracking
time variations in adaptive manual-control behavior. Theλ
value can be slightly decreased for lower remnant intensities.
If parameters have distinct rates of variations, the variance
in parameter estimates can be lowered by using a forgetting
matrix Λ with different forgetting factors.

As was shown by the experimental evaluation, the method
has potential to become a novel cybernetic tool for further
HO characterization and understanding. In the field of sci-
entific studies of time-varying HO behavior, it may lead to
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better investigations of how human respond, make decisions,
and perceive the environment. The method could also serve
as building block for the improvement of adaptive human-
machine systems in practically all social-technical domains.
Key applications include HO monitoring and adaptive support
systems.
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NOMENCLATURE

Greek Symbols
δ Positive constant.
ǫ (t) White noise, deg.
ε (t) Prediction error, deg.
ζnm Neuromuscular damping ratio.
θ Parameter vector.
θ̂0 Initial parameter estimate.
Λ Forgetting matrix.
λ Forgetting factor (scalar).
σ2 Standard deviation.
τe Visual time delay, s.
Φ Regression matrix.
φt Sinusoid phase shift, rad.
ϕ (t) Regression vector.
ω Frequency, rad/s.
ωb (t) Break frequency, rad/s.
ωt Sinusoid frequency, rad.
ωm Measurement-base frequency, rad/s.
ωnm Neuromuscular frequency, rad/s.

Latin Symbols
A (q) ARX model’s output polynomial
At Sinusoid amplitude, deg.
ai Coefficienti of A (q).
B (q) ARX model’s input polynomial
bj Coefficientj of B (q).
d Decimation factor.
e (t) Error signal, deg.
ė (t) Error-rate signal, deg/s.
fs Sampling frequency, Hz.
ft (t) Target forcing-function signal, deg.
G Maximum rate of change, s-1.
G (z) Discrete-time transfer function.
HCE (s, t) Time-varying CE dynamics.
Heq (s, t) Time-varying equalization dynamics.
HHO (s, t) Time-varying HO dynamics.
HHOe

(s, t) Time-varying HO’s linear response to the error.
Hn (t) Time-varying remnant filter.
Hnm (s) Neuromuscular dynamics.
I Identity matrix.
kc = max (na + 1, nb + nk). Critical instant.
Kė (t) Error-rate gain.
K (t) Gain vector.
Kc (t) Control gain.
Ke (t) Error gain.
Kn (t) Remnant gain.
M Monte Carlo replications.
m Order of remnant filter.
N Number of samples.
N0 Memory horizon in samples.
n (t) Remnant signal, deg.
na Number of coefficients inA (q).
nb Number of coefficients inB (q).
n′
b = nb + nk − 1. Highest order ofB (q).

nk ARX model’s integer delay.
n∗
k Estimated ARX model’s integer delay.

n0
k True ARX model’s integer delay.

nt Integer multiple.
nw (t) Zero-mean Gaussian white-noise signal with unit vari-

ance, deg.
P (t) Scaled covariance matrix.
P0 Initial scaled covariance matrix.
Pθ (t) Actual covariance matrix of parametersθ.
Pn (t) Remnant intensity.
p (t) Parameter function.
Q (t) Matrix obtained by RLS criterion minimization.
q Discrete-time shift operator.
s Laplace variable.
T0 Memory horizon, s.
TL (t) Lead-time constant, s.
Tm Measurement time/window, s.
Tn Remnant-time constant, s.
Ts Sampling time/interval, s.
t Time, s.
tM Time of maximum rate of change, s.
u (t) Control-output signal, deg.
V Loss function.
VAF Variance accounted for, %.
v (t) Disturbance signal, deg.
x (t) System-output signal, deg.
z z-transform variable.

Other Symbols
ˆ Estimated; Predicted; Simulated.
˜ Preprocessed.
MARX ARX model.
MHO HO model.

Subscripts
i Initial.
e Estimation.
f Final.
m Measurement
p One-step-ahead prediction.
s Simulation.
v Validation; Verification.

Superscripts
0 True.
c Continuous time.
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2
State-of-the-art in time-varying

human-operator identification

The research on both the functioning and the structure of human-operator dynamics in manual-control
systems has received considerable attention over the past few decades. Current research in manual-
control cybernetics mainly focuses on the adaptive and learning behavior of human operators. In
order to quantitatively describe these characteristics in compatible terms with the controlled element,
time-varying and possibly nonlinear system-identification methods should be employed or extended.
In general, the research vision is to first develop system-theoretical models that are able to capture
adaptive manual-control behavior. The capture of the human operator’s learning behavior is seen as a
long-term challenge. Mulder et al. (2013) state that the abilities “to peek into the currently ‘black box’
of human adaptation and learning, and [to] quantify the dynamics of experience,” will have “major sci-
entific impact, for all domains where humans are trained to manually operate dynamic systems.” This
statement could even be extended, as the reason for modeling the human operator in manual-control
tasks is not only motivated by the practical application but also by scientific interest in the general ques-
tion of human behavior: experimental physiologists and psychologists can utilize manual-control tasks
to investigate in more detail the “primitive sensing, decision making, and response characteristics of
the human” (Sheridan and Ferrell, 1974).

This chapter aims to present an accurate overview of the state-of-the art in time-varying human-
operator identification oriented toward the adaptive role of the human operator. From a historical
perspective, the most well-known linear control-theoretic model for describing manual-control behavior
is the crossover model. This model is validated for compensatory tracking tasks and still serves as
a baseline in human-operator modeling. The survey discussed here is therefore primarily concerned
with this successful approach.

The chapter starts off with Section 2.1 summarizing some fundamentals in modeling adaptive
human-operator behavior in compensatory tracking tasks, essential for understanding the topic. The
subsequent section, Section 2.2, addresses the relevant research fields where human-operator behav-
ior needs to be investigated and where parts of the challenges can be traced back to the identification
of the operator’s behavior in compensatory tracking tasks. The areas of controversy in the literature
on time-varying human-operator identification are considered in Section 2.3. This section also briefly
touches upon the most successfully implemented identification methods of manual-control behavior
based on the restrictive assumption that this is time invariant during the identification period. The
chapter ends with Section 2.4 containing a synthesis of what is and is not known. The discovered
knowledge gap was used to formulate the research objective, framework, questions, and subgoals in
the preceding chapter, Chapter 1.

2.1 Fundamentals of compensatory manual control
The compensatory manual-control theory serves as a baseline for modeling human-operator behavior
in manual-control tasks. This section starts with a consideration of some fundamentals in human-
operator modeling in compensatory control systems.
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2.1.1 Adaptive behavior
As mentioned earlier, in real manual-control tasks, time-varying adaptive behavior is virtually always
present due to various changes of variables. For example, suffering fatigue or alterations in motivation
are directly related to the human operator. The paper by McRuer and Jex (1967) includes a clear-cut
classification of variables affecting manual-control behavior (see Figure 2.1). In addition to a class of
operator-centered variables, classes of environmental, procedural and task variables can be distin-
guished. The task variables are considered most important as these are most explicit for the specific
control task.

A set of constant classes of variables can be defined as a situation. A small variation in just one
variable could change the situation, inducing adaptive behavior. This complexity, together with the fact
that the behavior commonly has a closed-loop nature, makes it a challenge to develop useful models
for engineering purposes that can describe manual-control behavior over a wide set of circumstances.
However, in certain situations where, in particular, the task variables are kept constant, experiments
have shown that this behavior can be described by quasi-linear models. The most successful quasi-
linear models are able to describe manual-control behavior in compensatory tracking tasks.

Task variables

Disturbances

Mission

Forcing
functions

Commands
Display

Perceived inputs,
outputs and
errors Human

operator
Manipulator

Control
actions Controlled

element

Outputs

Motion feedback

Environmental variables
In-flight vs. fixed-base
Vibration
g-level
Temperature
Atmospheric conditions
Etc.

Operator-centered variables
Motivation
Stress
Workload
Training
Fatigue
Etc.

Procedural variables
Instructions
Practice
Experimental design
Order of presentation
Etc.

Figure 2.1 Variables affecting the manual-control behavior, adapted from McRuer and Jex (1967).

2.1.2 Compensatory tracking tasks
The simplest kind of manual-control task is single-axis compensatory tracking. In a classical sense, a
compensatory tracking task is one in which the operator is presented a visual stimulus indicating the
to be compensated difference between a stationary reference line or point and a moving line or point,
while modern usage refers to situations where the human observes and acts upon errors irrespective of
display details (McRuer, 1980). Figure 2.2 shows the archetypal compensatory display and a functional
block diagram of a compensatory tracking task clarifying the operation. The operator output, often the
displacement of a hand-joystick, drives the controlled element, which in effect, influences the system
output. A closed loop is then formed by feeding back the system output to the input, imposing the
human operator to act as a servo to compensate the error. Typically, the reference input is a target to
be followed. The task could be challenged by rejecting disturbance inputs on the controlled element.

2.1.3 Quasi-linear models
The most well-known control-theoretic model, only validated for compensatory tracking tasks but
still serving as a baseline in describing human-operator behavior in manual-control systems, is the
crossover model (Mulder et al., 2006). This model was postulated in the 1960s (refer to McRuer and
Jex, 1967), and states that human operators adjust their manual-control behavior to the controlled-
element dynamics in such a way that the the open-loop dynamic characteristics around the crossover
frequency approximate those of a single integrator. The crossover model was found by describing the
human operator with a quasi-linear model structure. Figure 2.3 shows such a structure which consists
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Stationary reference
line or point

Moving
line or point

Error

(a) Compensatory display.

Reference
input + Error

Display

Visual
stimulus Human

operator

Operator
output Controlled

element

System
output

−

(b) Functional block diagram.

Figure 2.2 A compensatory tracking task, adapted from McRuer (1980).

of a linear part and a remnant part representing nonlinearities. Quasi-linear models are very suitable
for analysis and system identification. They allow the use of control theory so the human operator can
be quantitatively described in the same terms as the controlled element. On condition that laboratory
experiments are designed properly, these types of models are capable of capturing the most important
behavioral characteristics (McRuer and Krendel, 1974).

Error

Human operator

Linear
part

Remnant

++

Operator
output

Figure 2.3 Quasi-linear human-operator model structure.

2.2 Relevant research fields
Previous research has primarily investigated the adaptive operator behavior for important changes in
task variables, as this has the greatest practical interest (Hess, 2009; Phatak and Bekey, 1969). The
prior investigations on the human operator’s adaptive behavior have resulted in quantitative descrip-
tions of different transition response phases, e.g., the steady-state and transient responses (Johnson
and Weir, 1969; Miller and Elkind, 1967; Sheridan, 1960). Hess (2009) lists many more of such studies.
What still remains unclear, however, is exactly how the human operators manage their “remarkable
adaptation abilities” (Young, 1969). Partly, this is a result of the fact that early researchers were plagued
by the then-existing recording and processing techniques of signals. However, these troubles no longer
apply as advances have been made in the equipment of the modern control laboratories and in the
simulation software. Another reason is that, after the 1960s, the focus in human-machine research has
mainly shifted toward supervisory control (Sheridan, 1985).

Safety In recent years, the interest in characterizing and understanding the human operator is rekin-
dled by the rise of reconfigurable and adaptive control systems in various applications and by the
insistence on ever-increasing levels of safety (Hess, 2014). Several loss-of-control aviation incidents
can, for instance, be attributed to unpredicted interactions between the adaptive human pilot and the
adaptive flight-control system. Trujillo et al. (2014) hypothesized that the “reason for the adverse in-
teractions with an adaptive controller in the loop is the pilot not realizing how the adaptive controller is
changing aircraft dynamics.” Another branch of research puts it the other way around. It approaches
the adverse interactions with the concept of human-adaptive mechatronics. This concept was intro-
duced by Harashima and Suzuki (2006) who define it as “an intelligent mechanical system that adapts
themselves to human skill under various environments, improves human skill, and assists the operation
to achieve best performance of the human-machine system.”

Economic efficiency Tervo et al. (2010) point out that still, in many industrial processes, skilled
manual control plays an important role in terms of fuel economy, productivity, and quality of the end
product. They explain, for example, that productivity differences of over forty percent could exist be-
tween two professionally trained operators who work with similar machines in similar conditions. There-
fore, in order to further improve the overall performance in the industrial processes, not only the opti-
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mization of the machines should be considered, but also the limitations and the inherent capabilities of
human-operator control (Xi and de Silva, 2015).

Current research is thus motivated by the quests of ever-increasing levels of safety and of economic
efficiency. The alleged approaches, described above, require current identification techniques to be
extended significantly for investigating manual-control behavior.

2.3 Areas of controversy
Before proceeding on to the different time-varying identification methods under development, a mention
is made to the three most successfully implemented identification methods for cases where the opera-
tor can be characterized as quasi-linear and time invariant. These are the methods based on Fourier
coefficients (FCs) (Stapleford et al., 1967; van Paassen and Mulder, 1998), linear time-invariant (LTI)
ARX models (Nieuwenhuizen et al., 2008), and genetic maximum-likelihood estimation (MLE) (Zaal
et al., 2009). They are very important to consider, because, despite significantly different dimension-
ality and complexity, some of them form basic building blocks for the development of the time-varying
identification methods.

As already noted, research on identifying time-varying adaptive manual-control behavior primarily
concentrates on adaptation due to changes in tasks variables. This section first gives account of
studies toward ad hoc logic on this kind of adaptation. It then presents studies where the time-varying
identification is performed with the genetic MLE procedure. Also the identification with wavelet trans-
forms is highlighted. Next, it describes attempts of using recursive identification. In addition, a connec-
tion is made to identifying time-varying neuromuscular responses.

Adaptive logic Research by Hess (2009, 2016) has brought forward an adaptive logic as a tractable
framework to approach the problem of operator adaptation for changes in the controlled-element dy-
namics which is not only applicable to single-axis but also to dual-axis control tasks. His most important
guideline is as follows: “the post-adapted pilot models must follow the dictates of the crossover model
of the human pilot” (Hess, 2016).

Maximum-likelihood estimation and wavelets Zaal (2016) investigated in a real experiment how
human operators adapt to time-varying changes (transitions) in the controlled-element dynamics in a
multi-axis closed-loop control task. The time-varying behavior was characterized by employing the
genetic MLE procedure to estimate operator-model parameters with generalized time-dependent lo-
gistic models (sigmoid functions). In another study, performed by Zaal and Pool (2014), a multi-axis
multi-loop control-task experiment was investigated by employing an identical identification procedure,
although here the time variations were applied to motion-filter gains, also using sigmoid functions. A
third study which used the MLE procedure to identify time-varying behavior was carried out by Zaal
and Sweet (2011). They simulated a compensatory target-following tracking task where the controlled-
element dynamics varied linearly over time. Here, also wavelet transforms were used to characterize
time-varying operator behavior. This wavelet approach was particularly based on prior research by
Thompson et al. (2001).

Recursive identification Recently, Olivari et al. (2016) attempted to identify time-varying operator
responses to visual and force feedback during a compensatory tracking task using a regularized re-
cursive least-squares (RegRLS) algorithm equipped with forgetting factor. In this case, time-varying
human-operator dynamics were simulated according a control mode parameter representing abrupt
and slow linear changes between different control device dynamics. Several more attempts were
made in the past to identify the human in the loop using recursive identification. Ameyoe et al. (2015),
for example, investigated a real-time identification of a linear parameter-varying (LPV) cybernetic driver
model using the unscented Kalman filter. Boer and Kenyon (1998) made use of an extended Kalman
filter to recursively identify time-varying human-operator delay. Trujillo and Gregory (2016) explored
three different recursive estimation methods to analyze experimental manual-control data on the ef-
fects of an adaptive controller and on the use of vision system technologies, with the main purpose
to develop a real-time indicator of manual-control behavior. Their considered estimators were based
on gradient descent, least squares with exponential forgetting, and least squares with bounded gain
forgetting.
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Neuromuscular responses The RegRLS method was initially developed for estimating time-varying
neuromuscular responses in human-in-the-loop experiments (Olivari et al., 2015a). In fact, such in-
vestigations are more specific, but they form a basis for identifying the completer models. Wavelet
transforms (Mulder et al., 2011) and LPV subspace methods (van Wingerden and Verhaegen, 2009)
are also under development for this specific problem. However, these applications are very immature.

2.4 Synthesis
By synthesizing the various studies on developing identification methods for time-varying manual-
control behavior, relevant commonalities and differences in the research approaches are observed.
Next, by delving into the details of the various studies, i.e., the setups and algorithms used, some
potential advantages and disadvantages can be found.

• Most research on identifying time-varying adaptive manual-control behavior in the loop focuses
on changes in the task variables and, in particular, on transitions in the controlled-element dy-
namics as for these variables the biggest adaptation changes are expected (McRuer and Jex,
1967).

• As a baseline, many studies start with investigating single-axis compensatory control tasks and
keep reference to the famous crossover model, bearing in mind that extensions to multiple axes
of control or even the usage of other classes of inputs to the human operator should not pose
fundamental difficulties.

• Previous investigations make clear that, before using a novel identification method in laboratory
experiments or real-life tasks, the accuracy of it should be evaluated thoroughly by means of
Monte-Carlo simulations for different remnant levels.

• The identification method using wavelet transforms is not mature yet. Initial results have shown
that this method is very sensitive to human-operator remnant (Zaal and Sweet, 2011).

• The MLE identification method is less sensitive to remnant and is able to provide accurate es-
timations, However, it requires a restrictive definition about how certain parameters will change
(Zaal, 2016).

• Recursive identification methods have the big advantage that they are able to analyze the evo-
lution of parameters over time. In addition, the main benefit of recursive identification is that
time-varying dynamics can be tracked in real time, i.e., online. The initial results of the study by
Olivari et al. (2016) make the RLS algorithm equipped with forgetting factor a promising candidate
to consider.

• Apparently, in manual-control cybernetics, very few studies have yet attempted to make use of
LPV models. There is a great temptation to extend the work by Nieuwenhuizen et al. (2008) with
time-varying estimation, i.e., to take the representation of ARX models as a basic building block
and then to employ a time-varying estimation method on the model parameters. The ARX-model
structure is preferred as this is a linear regression-model structure which eases computations.

These points clarify, to some extent, which research approach should be adopted. As there is still a
serious lack of knowledge to explain and to understand how human operators manage their ability of
adaptation, the proposed thesis project opts to set up an identification method able to capture time vari-
ations in manual-control behavior without making explicit assumptions on how these will evolve over
time. Based on the state-of-the-art literature survey, it seems most promising to bridge the knowledge
gap by making use of an ARX-model structure and an RLS estimation method. The application of com-
pensatory tracking tasks with time-varying controlled-element dynamics is considered as a stepping
stone toward meeting the challenge.
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3
Compensatory manual-control model

A complete identification scheme requires clear-cut specifications of the particular application to be
modeled and the identification framework to be used. In this study, the human operator is the ap-
plication to be considered. The operator is modeled as a compensatory controller in such a way
that the manual-control behavior can be characterized in the same quantitative terms as the element
to be controlled. Compensatory manual-control theory has been described extensively in the past.
Many different approaches have been taken to mathematically model this type of manual control. The
approaches range from the application of classical to optimal control theory (McRuer, 1980). More
recently, also emerging approaches have been applied such as artificial neural networks and fuzzy
logic (e.g., Celik and Ertugrul, 2010). As was already addressed in Chapter 2, the most solid basis for
describing manual-control behavior, in many situations, is provided by the crossover model (i.e., a re-
sult of applying classical control theory) (Mulder et al., 2006). On this basis, attempts have been made
to parameterize manual-control behavior. It has led to the successful buildup of structural-isomorphic
models. Widely known are the extended crossover model and the precision model, both covering a
broad frequency range (McRuer et al., 1967). However, despite their success in characterizing some
of the human operator’s capabilities and limitations, these models are not able to capture short-term
adaptations, learning and time-varying behavior (McRuer and Jex, 1967).

In line with the procedure laid down in Chapter 1, this chapter takes a more mathematical approach
in modeling the human operator compared to the previous chapter. A compensatory manual-control
model is set up with the possibility to introduce time variations in both the human-operator and the
controlled-element dynamics. More specifically, single-axis target-following control tasks will be con-
sidered. The dynamics of the human operator will be modeled using a modified version of the precision
model by McRuer et al. (1967). As there is less common ground on how human operators manage
their abilities of adaptation to time-varying controlled-element dynamics, prior definitions are required
in simulating the time variations in control behavior. The setup described here is primarily based on
the study by Zaal (2016).

This chapter begins with Section 3.1 which provides a mathematical description of the single-axis
target-following control task to be considered. A block diagram clarifies the functioning of the human
operator as a compensatory controller. In addition, the type of forcing function to excite the operator
and the crossover model are explained in mathematical terms. Section 3.2 presents parametric models
for both the controlled-element and the operator dynamics. Lastly, Section 3.3 discusses the various
suggestions found in literature for simulating time-varying control behavior. Essentially, the operator’s
input-output data resulting from simulating the proposed compensatory manual-control model will be
used by the identification algorithms presented in Chapter 4. More specific details and results of the
simulation are given in Chapter 5.

3.1 Single-loop target-following control task
A block diagram of the compensatory manual-control model to be simulated with time-varying dynam-
ics is shown in Figure 3.1. The figure was adapted from Zaal (2016). As was explained in Chapter 2,
in compensatory tracking tasks, the human operator can only directly (visually) perceive the tracking
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HHO (s, t)

ft (t) + e (t)
HHOe
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HCE (s, t)

x (t)

−

Figure 3.1 Block diagram of a single-loop compensatory target-following control task with time-varying dynamics, adapted from
Zaal (2016).

error signal e (t) in time t. This signal is the input to the operator. In Figure 3.1, the operator dynamics
are represented, in the corner-aligned dashed rectangle, with the transfer function HHO (s, t). The op-
erator output is the control signal u (t) serving as input to the controlled element whose dynamics are
expressed by HCE (s, t). As indicated by t, both these dynamics can be considered as time varying.
In this control task, the operator aims to minimize e (t) which is defined as the difference between a
target forcing-function signal ft (t) and the system-output signal x (t):

e (t) = ft (t)− x (t) (3.1)
Taking a closer look at Figure 3.1, HHO (s, t) is modeled with a quasi-linear model. It is an addition

of a linear response to the error HHOe
(s, t), and a remnant signal n (t) accounting nonlinearities. The

latter signal is modeled by passing a zero-mean Gaussian white-noise signal nw (t) with unit variance
through a time-invariant remnant filter Hn (s). In reality, however, the remnant characteristics would
also be time-varying. This study focuses on a proper examination of the linear time-varying operator
responses. In order to avoid complications, Hn (s) is assumed to be time invariant.

As the human operator is embedded in a closed loop, a crucial point for identification is that the
remnant will be circulated, resulting in a correlation between e (t) and n (t). Accordingly, care should
be taken in identifying the operator only on the basis of e (t) and u (t) as they will be biased estimates.

Forcing functions For executing human-in-the-loop simulations or experiments, van Paassen and
Mulder (1998) provide useful guidelines to be taken into account. Usually, the forcing functions to excite
the operator are multisinusoidal signals. They have a quasi-random appearing but are completely
deterministic. In the tracking task to be simulated, ft (t) is described by

ft (t) =

Nt∑

kt=1

At [kt] sin (ωt [kt] t+ φt [kt]) (3.2)

where At [kt], ωt [kt], and φt [kt] are the amplitude, frequency, and phase shift of the ktth sinusoid in
ft (t), respectively, and Nt is the total number of sinusoids. All excitation frequencies ωt [kt] are integer
multiples nt of the measurement-base frequency ωm. In designing the forcing functions, care should
be taken that the signal-to-noise ratios are high.

Crossover model The crossover model was already discussed in Chapter 2. Mathematically, it can
be expressed as follows. First, denote the open-loop transfer function HOL (jω), in the frequency
domain, in Figure 3.1, relating x (t) to e (t), as

HOL (jω) = HHO (jω)HCE (jω) (3.3)
Around the crossover frequency ωc, i.e., where |HOL (jω)|ω=ωc

equals one, HOL (jω) approximates
integrator-like dynamics (1/jω). Taking into account the operator’s effective time delay τe (e.g., due to
information-processing lags), the crossover model is mathematically represented as (McRuer and Jex,
1967)1

HOL (jω)
.
=

ωc

jω
e−jωτe , when ω ≈ ωc (3.4)

If HCE (jω) is known, the model allows to predict HHO (jω) in the crossover region.

3.2 Parametric models
This study will investigate manual-control behavior for time-varying controlled-element dynamics, which
could approximate both single- and double-integrator dynamics (1/jω and 1/(jω)

2) in the crossover

1The frequency operator jω (with j2 = −1) is used instead of the general Laplace variable s = σ + jω. The validity is only in
the frequency domain and the existence is only under essentially stationary conditions.

H.A. van Grootheest MSc thesis | II Preliminary report



3.3 Time variations 33

region. They are defined parametrically by (Zaal, 2016)

HCE (jω, t) =
KCE (t)

s2 + ωb (t) s
(3.5)

where KCE (t) and ωb (t) are the time-varying controlled-element gain and time-varying break fre-
quency, respectively.

In order to parameterize HHOe
(s, t), the following model is taken from Zaal (2016) which is a

modified version of the precision model. In this report, it will be referred to as the analytical human-
operator model.

HHOe
(s, t) =

Equalization dynamics: Heq (s, t)
︷ ︸︸ ︷

Kv (t)
︸ ︷︷ ︸

Gain

[TL (t) s+ 1]
︸ ︷︷ ︸

Lead term

Limitations
︷ ︸︸ ︷

e−sτv
︸ ︷︷ ︸

Time delay

ω2
nm

s2 + 2ζnmωnms+ ω2
nm

︸ ︷︷ ︸

Neuromuscular-actuation dynamics: Hnm (s)

(3.6)

It is split up into equalization dynamics and operator limitations. The equalization dynamics Heq (s, t)
for the controlled-element dynamics to be considered, consist of a time-varying visual gain Kv (t) and
a lead term TL (t) s + 1, where TL (t) is a time-varying lead-time constant. The operator’s limitations
include the time delay τv, incurred in the central nervous system’s perception and processing of visual
information, and the neuromuscular-actuation dynamics Hnm (s) due to the operator’s control actions.
The latter ones are defined by a second-order system yielding the (undamped natural) neuromuscu-
lar frequency ωnm and the neuromuscular-damping ratio ζnm. Generally, Kv and TL are called the
equalization parameters, while τv, ωnm and ζnm are termed the limitation parameters.

Compared with the precision model by McRuer et al. (1967), the above model does not take into
account an additional low-frequency lag-lead term and it lacks an additional neuromuscular-lag term.
Pool et al. (2011a) refer to previous investigations indicating that models like the one in Eq. (3.6) have
sufficient capability to capture manual-control behavior in similar tracking tasks over a wide frequency
range. The limitation parameters are not considered to be time-varying in this study. Zaal (2016)
argues, on the basis of previous research, that they are not significantly different for the proposed
dynamics to be controlled.

3.3 Time variations
As was explained in Chapter 2, there is no clear agreement on how human operators adapt their
manual-control behavior over time. The literature survey has led to the conclusion that some high-level
guiding principles of adaptation are available, but no reliable identification frameworks exist to capture
the time-varying adaptive human-operator dynamics for abrupt or gradual changes in for instance the
task variables. In fact, in order to perform offline simulations, a priori information is needed on how
human operators adapt. However, the availability of such a priori information is the external goal of the
research here. It leads to a causality dilemma.

This study attempts to resolve the dilemma on the basis of earlier proposals for simulating time
variations in manual-control behavior. The survey in Chapter 2 addressed different attempts: time vari-
ations were introduced by means of linear parameter changes, a control-mode parameter, and sigmoid
functions. The paragraphs below explain them in more mathematical detail. Conclusive remarks are
given at the end of this section.

Linear parameter changes In the work by Zaal and Sweet (2011), a similar control task as described
above was set up and linear time variations were introduced in both the parameters of the controlled
element and the operator. Figure 3.2 shows a visualization of their proposed time variations in the
parameters (Θ). Changes happen at two time instants (t1 and t2) They were introduced in both the
controlled element’s gain (Kc) and time constant (Tc), and both the operator’s visual gain (Kv) and
lead-time constant (Tl). Both time-varying lead-time constants were assumed to be equal throughout
the runs. The operator’s limitation parameters were set to fixed values. In this simulation, the open-
loop dynamics had single-integrator dynamics over the entire range. While some of the parameters
changed linearly over time, the responses of the controlled element and the human operator did not
change linearly.

Control-mode parameter A slightly different manual-control task was modeled in the study by Oli-
vari et al. (2016). Their aim was to capture not only time-varying responses to visual but also force
feedback. Instead of the controlled-element dynamics, control-device dynamics were changed over
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Figure 3.2 “Values of the time-varying simulation parameters” (Zaal and Sweet, 2011).

time via a control-mode parameter CM(t) varying between values of zero and one. The transfer func-
tions H (s) of both the control device and the operator’s visual and force responses were equally varied
in time between two parameter sets (1 and 2) according

H (s, t) = (1− CM(t))H1 (s) + CM(t)H2 (s) (3.7)
The used pattern of CM(t) is shown in Figure 3.3. It consists of two step and two ramp transitions.
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Figure 3.3 “Time evolution of the control mode” (Olivari et al., 2016).

Sigmoid functions Zaal (2016) introduced time variations in the parameters of both the controlled-
element dynamics and the operator’s equalization dynamics by means of (nonlinear) sigmoid functions.
The type of sigmoid functions used by Zaal to vary a parameter P in time is mathematically defined as

P (t) = P1 +
P2 − P1

1 + e−G(t−M)
(3.8)

where P1 and P2 are the initial and final parameter values, respectively. The maximum rate of change
is denoted by G and the time at which this happens is set by M . Actually, similar sigmoid functions
were used in the study by Zaal and Pool (2014). Figure 3.4 clarifies the tuning of the variables M and
G. The legends in this figure indicate the values used for M and G in order to generate the various
sigmoid curves. It can be seen that the sigmoid functions allow the modeling of both abrupt and gradual
transitions.

increase over time (lead is generated at increasingly lower fre-
quencies) as the break frequency of the aircraft dynamics decreases.
Based on previous research, the pilot gain was also expected to
change over time [13,14]. The time-varying pilot model capable of
modeling this adaptation in pilot control behavior is defined by

The pilot equalization dynamics consisted of a time-varying
gain and a time-varying
lead time constant . The
pilot limitations, defined by the time delay , neuromuscular
damping , and neuromuscular frequency , were assumed to
be constant. Previous research found that these pilot limitation
parameters are not significantly different when controlling dynamics
similar to or [13,14]. The time of maximum rate of
change and the maximum rate of change of both parameter functions
were assumed to be equal. The resulting parameter vector

, with a
total of nine parameters, was estimated for each controlled axis.

E. Forcing Functions

Both forcing functions in Fig. 1 were sums of sines defined by the
following equation:

where is the number of sine waves, and , , and
are the frequency, amplitude and phase shift of the th sine wave,
respectively. The length of an experiment run was . The
measurement time used to construct the forcing functions was

. With a data sampling frequency of 100 Hz, this
measurement time contains the highest power-of-two data points
( ) in the total length of an experiment run. The sinusoid
frequencies were all integer multiples of the measurement-
time base frequency · and were
covering the frequency range relevant to human manual control
( – · ). The spacing between the frequencies was
approximately equal on a logarithmic scale.
The absolute value of a second-order low-pass filter at a sinusoid

frequencywas used to determine the amplitudes of the individual sine
waves:

The second-order low-pass filter reduced amplitudes at higher
frequencies, yielding a more feasible control task. The final ampli-
tude distributions were scaled to produce roll and pitch disturbance
forcing functions with a standard deviation of 1.5 deg.
To determine the forcing function phase distributions, a large

number of random phase sets were generated. The set yielding a sig-
nal with a probability distribution closest to a Gaussian distribution,
without leading to excessive peaks, was selected [15]. The charac-
teristics of the forcing functions are summarized in Table 1. Note that
the roll and pitch disturbance forcing functions contained the same
frequencies and amplitudes. However, the phase distributions of the
two forcing functionswere different. This ensured that spectral power
and frequency content of the forcing functions were equivalent in
both axes, while the signals appeared to be different.

III. Parameter Estimation Performance

Techniques for the identification and prediction of human operator
control behavior in control tasks with constant controlled dynamics
are well established and are proven to provide accurate results

Fig. 4 Frequency response of the aircraft dynamics at different time instances.

Fig. 3 Sigmoid function parameter variation.
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(b) G variation (P1 = 0.1, P2 = 0.4, M = 50 s).

Figure 3.4 “Sigmoid function parameter variation” (Zaal, 2016).
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Conclusive remarks In reality, manual-control behavior is nonlinear. Although the resulting operator
responses in the study by Zaal and Sweet (2011) varied nonlinear over time, the operator’s equalization
parameters were changed linearly. It would be better to directly introduce nonlinear time variations in
the operator’s parameters. Hence, the use of sigmoid functions for such variations, as suggested
by Zaal (2016), possibly reflects more realistic control behavior. In contrast to the work by Olivari
et al. (2016), where four transitions in the control-mode parameter were considered to introduce time-
varying operator responses in one simulation run, Zaal (2016) just modeled one transition in a set
of parameters in a run of similar length. The identification of manual-control behavior for even one
transition during a run is already a challenge. Taken together, it seems to be fruitful to make use of a
similar setup as in Zaal (2016) for introducing the time variations.
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4
Identification framework

In recent years, identification frameworks based on parametric LTI models have been successfully
applied in characterizing manual-control behavior, under the assumption that this behavior is time-
invariant during the identification period. Commonly, these types of models are built by using time-
domain data. Early experimental investigations utilizing time-series analysis for modeling the operator
in the loop are described, for instance, by Stanković and Kouwenberg (1973), Shinners (1974), Bal-
akrishna (1976), Osafo-Charles et al. (1980), Jategaonkar et al. (1982), Balakrishna et al. (1983),
Hanson and Jewell (1983), Biezad and Schmidt (1985), Hess and Mnich (1986), Hess (1990), and
Goto and Matsuo (1988). The work by Nieuwenhuizen et al. (2008) lists many more studies covering
such investigations. The actual research by Nieuwenhuizen et al. (2008) has led to the buildup of
the currently most successful identification framework based on LTI models for the characterization of
compensatory manual-control behavior. Compared to preceding studies, they were able to take the
step forward in employing parametric LTI models through advances made in simulation software. More
recent investigations of manual-control behavior, partly relying on this work, can be found in the studies
by Drop et al. (2013, 2016a,b), Olivari et al. (2014, 2015b), and Roggenkämper et al. (2016). As con-
cluded in Chapter 2, very few attempts have been taken to make use of LTI models with time-varying
parameters, i.e., LPV models, in the identification of manual-control behavior.

The aim of this chapter is to present the setup of an identification framework based on ARX models.
It focuses on the kind of knowledge, information, and insights needed to establish the framework.
Similarly to Chapter 3, a mathematical approach is taken here. In order to develop the framework,
reference is primarily made to Ljung (1999). In essence, the framework is only going to make use
of time-domain data sets containing the operator’s error signal serving as input and control signal
serving as output. In this chapter, some common notations used in system identification are adopted
to notations introduced in Chapter 3.

The chapter’s structure is as follows. Section 4.1 outlines the system-identification loop that will
serve as basis for the development of the identification framework. Steps to be taken in the data
generation and preprocessing, and in the estimation, simulation and validation are presented in Sec-
tion 4.2. Section 4.3 provides a description of ARX models. Lastly, Section 4.4 highlights the parameter
estimation. The estimation methods of ordinary least squares and recursive least squares equipped
with forgetting factor are considered.

4.1 Identification loop
As introduced in Chapter 3, the identification scheme needs clear specifications of the application to
be analyzed (i.e., in this research, the operator in a compensatory tracking task) and the identification
framework to be used. The setup of the application was described in Chapter 3. This chapter specifies
the identification framework. Ljung (1999) and Verhaegen and Verdult (2007) provide clever visualiza-
tions of the iterative identification procedure. An adapted version of these is shown in Figure 4.1. The
procedure requires both basic principles from a statistical nature as well as prior knowledge about the
application to be modeled.

It is important to gather maximally informative data from the application. However, it is very likely
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that the data sets require preprocessing steps to avoid identification problems. In this project, the
model structure is set to be ARX, but the real crux is the decision on the model orders. In deciding,
not only physical insight must be considered, but also the principle of parsimony should be applied.
The latter says that “when describing a dynamic process one should not use extra parameters if not
necessary” (Niedźwiecki, 2000). In order to assess candidate models, a criterion of fit must be chosen.
In general, it is usually a trade-off between the model complexity and the model quality-of-fit. So
before estimating the ARX models with the proposed time-varying estimation method, all the preceding
should be carefully thought out. Presumably, multiple revisions are needed before the “best” model is
obtained with the correctly tuned estimation algorithm. Once this is done, Monte-Carlo testing should
be employed for different intensity levels and realizations of remnant to verify the procedure. Eventually
real experimental data will be used to completely validate the procedure. As can be inferred, the
identification procedure is thus an iterative process with a lot of interdependencies.

Prior knowledge

Application

Data

Unsuitable data

Preprocess
data

Preprocessed
data

Unsuitable preprocessed
data

Choose model
structure and
orders

Model structure
and orders

Unsuitable model structure
and orders

Choose criterion
of fit

Criterion of fit

Unsuitable criterion
of fit

Fit model to data

Model

Unsuitable estimation
method

Verify/validate model

OK: use it
Not OK:
revise

Figure 4.1 Identification loop, adapted from Ljung (1999) and Verhaegen and Verdult (2007).

4.2 Proposed identification method
Based on the general identification procedure, this section specifies the workflow that will be used
in producing the “best” ARX models by identification. It starts with discussing how the input-output
data sets will be generated. Next, it considers the data-preprocessing procedure. Lastly, the steps of
estimation, simulation and validation are explained.

4.2.1 Data generation
The time-domain input-output data sets are generated using guidelines proposed by van Paassen and
Mulder (1998). The total recording time Tt should consists of a run-in time Tr, e.g., for discarding tran-
sients in the manual-control behavior at the start of the recording, and a measurement time Tm. Very
often, e.g., see Zaal (2016), the data is sampled with a frequency fs of 100 Hz (ωs = 628.32 rad/s),
i.e., with a sampling time or interval Ts of 0.01 s. It is usually fixed by the simulation software or the
laboratory equipment. Commonly, the generated data sets are not only considered in the time domain
but also in the frequency domain. In order to calculate the discrete Fourier transforms (DFTs) using
the fast Fourier transform algorithm, it is most efficient that the number of samples N is an integer
power of two. Typically, e.g., see again Zaal (2016), Tm is set to 81.92 s, resulting in measured data
signals whose discrete-time samples range from k = 1 to k = 213, hence N equals 8192. The cor-
responding measurement-base frequency ωm = 2π/Tm and frequency resolution fs/N then become
0.0767 rad/s and 0.0122 Hz, respectively. In reconstructing signals, aliasing effects are avoided if the
Nyquist-Shannon sampling theorem is obeyed. The maximum frequency that the signals can contain is
determined by the Nyquist frequency fN = fs/2, which equals 50 Hz in this case (ωN = 314.16 rad/s).
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4.2.2 Data preprocessing
In general before using input-output data sets in identification algorithms, data need to be subjected
to preprocessing steps (Ljung, 1999). Typically, there are noise disturbances in the data, above the
frequencies of interest. Nieuwenhuizen et al. (2008) mention that the typical frequency range of in-
terest for identifying human-operator dynamics in compensatory tracking tasks covers 0.3 to 17 rad/s.
Furthermore, they explain that, in general, recorded data need to be resampled or filtered, or both.
Their most important note is that “the cutoff frequency of the filter should be higher than or equal to the
Nyquist frequency of the resampled signal.”

In this study, the type of filter that will be used in the data preprocessing is the ideal noncausal filter.
In line with the advice stated above, the cutoff frequency of this filter will be set equal to the Nyquist
frequency. In order to decimate the data signals, a decimation factor d is used. As explained by Ver-
haegen and Verdult (2007), decimated signals are obtained by taking the first sample and then every
subsequent dth sample (for d ∈ Z>0) from the original recordings. Consequently, signal-processing
quantities will change. Table 4.1 shows an overview of these quantities for different values of d. Only
values of d that are a power of 2 are considered so that the number of samples in the resampled
signals also stays a power of 2. For clarity’s sake, d = 1 is included, i.e., the case of no resampling.

Table 4.1 Signal-processing quantities for different decimation factors (ωm = 0.0767 rad/s, fs/N = 0.0122 Hz).

d Ts, s fs, Hz ωs, rad/s fN , Hz ωN , rad/s Nm Ne Nv ke,s ke,e kv,s kv,e
1 0.01 100 628.32 50 314.16 8192 4096 4096 1 4096 4097 8192
2 0.02 50 314.16 25 157.08 4096 2048 2048 1 2048 2049 4096
4 0.04 25 157.08 12.5 78.54 2048 1024 1024 1 1024 1025 2048
8 0.08 12.5 78.54 6.25 39.27 1024 512 512 1 512 513 1024

16 0.16 6.25 39.27 3.125 19.63 512 256 256 1 256 257 512

Data generation
(fs = 100 Hz)

es (t)

em (t)

um (t)

Data preprocessing:
filtering and/or
decimation

e (ke,s . . ke,e) u (ke,s . . ke,e) es (1 . . ke) u (kv,s . . kv,e)

Estimation of
ARX models

ARX
models

Simulation of
ARX models

û (ke −Nv + 1 . . ke) Validation of
ARX models

Figure 4.2 Proposed identification method. Denoting ke as the end sample, the measurement signals em (t) and um (t) are
obtained by taking the samples ke −N + 1 . . ke from the total recordings e (t) and u (t), respectively.

4.2.3 Further steps
In addition to the number of measurement samples Nm, when using different values of d, Table 4.1
provides the number of samples of a (re)sampled signal that will be used for estimation (Ne) and
validation (Nv) in the order selection of ARX models. The start and end samples range from ke,s to
ke,e for the estimation data subset, and from kv,s to kv,e for the validation data subset. The proposed
identification method is schematized in Figure 4.2. It partly originates from the works of Drop et al.
(2016a,b). The signals without subscript m indicate that they are preprocessed, and that they are
used for the estimation and the validation. In the simulation of ARX models, decimated versions of the
simulated input signal es (t) are used. The modeled estimates of the true output are denoted by û (k).

An intuitive metric for validating an estimated model is the variance accounted for (VAF) (Nieuwen-
huizen et al., 2008). It measures the model’s quality of fit. For single-output signals the VAF is defined
as (Verhaegen and Verdult, 2007)

VAF (u (t) , û (t)) = max











0,











1−

1

Nv

kv,e∑

t=kv,s

|u (t)− û (t)|
2

1

Nv

kv,e∑

t=kv,s

|u (t)|
2











· 100%











(4.1)
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The computation requires the measured output u (t) and the simulated output û (t). The resulting
percentage says how well the ARX model is able to simulate the measured output.

4.3 ARX models
This study considers the use of LTI ARX models for the identification. This section describes the ARX-
model structure, its suitability for human-operator identification, the application of linear regression,
and the determination of the ARX-model orders.

4.3.1 ARX-model structure
Equivalent representations of the signal flow of the ARX-model structure are presented in Figure 4.3.
The notation of the input and output signals corresponds to the notation used in Chapter 3. To clarify,
the input signal is the preprocessed error signal e (t), and the output signal is the preprocessed control
signal u (t). As shown in Figure 4.3(a), the LTI ARX-model structure can be described by

u (t)
︸︷︷︸

Output

=

Deterministic process
︷ ︸︸ ︷

G (q; θ)
︸ ︷︷ ︸

Plant model

e (t)
︸︷︷︸

Input

+

Stochastic disturbance: v(t)
︷ ︸︸ ︷

H (q; θ)
︸ ︷︷ ︸

Noise model

ǫ (t)
︸︷︷︸

White noise

(4.2)

=
B (q)

A (q)
e (t) +

1

A (q)
ǫ (t) (4.3)

It is thus a superposition of a deterministic process, in which a parametric (indicated by θ) plant model
operates on the input, and a stochastic disturbance signal v (t), obtained by letting a parametric noise
model operate on a white-noise signal ǫ (t). Equation (4.2) can be written more compactly as (see also
Figure 4.3(b))

A (q)u (t) = B (q) e (t) + ǫ (t) (4.4)
The argument q in Eqs. (4.2) to (4.4) and Figure 4.3 denotes the discrete-time shift operator, e.g.,
q−1u (t) = u (t− 1). The ARX model makes use of the following two shift polynomials:

A (q) = 1 + a1q
−1 + · · ·+ ana

q−na (4.5)

B (q) =
(
b0 + b1q

−1 + · · ·+ bnb
q−nb+1

)
q−nk

= b0q
−nk + b1q

−nk−1 + · · ·+ bnb
q−nk−nb+1

= b0q
−nk + b1q

−nk−1 + · · ·+ bnb
q−n′

b

(4.6)

The complete ARX-model structure is defined by three integers: na ∈ Z>0, nb ∈ Z>0, and nk ∈ Z≥0.
The number of coefficients ai for i ≥ 1 in the output polynomial A (q) is set by na, while nb defines
the number of coefficients bj for j ≥ 0 in the input polynomial B (q). The final coefficients of A (q) and
B (q) are denoted by ana

and bnb
, respectively. A delay (i.e., a dead time) from the input to the output

in terms of the number of samples is set using nk. The orders of polynomials A (q) and B (q) are set
by na and by nb − 1, respectively. Similarly, na and nb − 1 set the number of poles and the number of
finite zeros, respectively. Using nk, the highest order of B (q) is changed to n′

b = nb + nk − 1.
As shown in Eqs. (4.5) and (4.6), the formulations of A (q) and B (q) are slightly different. It can be

observed that the lead coefficient of A (q), i.e., a0, is fixed to 1 and that a direct transmission coefficient
b0 is used in B (q). In this way, there will be no ambiguity in the definition of G (q; θ). Also, the monic
property of H (q; θ) is preserved. Furthermore, it is straightforward to compute the output.

e (t) B (q)

A (q)

+

ǫ (t)

1

A (q)

v (t)

+ u (t)

(a)

e (t)
B (q)

+

ǫ (t)

+ 1

A (q)

u (t)

(b)

Figure 4.3 Equivalent representations of the ARX-model structure.

H.A. van Grootheest MSc thesis | II Preliminary report



4.3 ARX models 41

HHO (s, t)

HHOe
(s, t)

+

nw (t)
Hn (s)

n (t)

+e (t)

B (q)
−

ǫ (t)

+
A (q)

u (t)

Figure 4.4 Representation of the ARX-model structure and the human-operator model.

4.3.2 ARX model and human-operator model
In order to better understand how the ARX model takes the human-operator input-output data, the
block diagram in Figure 4.4 is drawn. It can be seen that the operator’s blocks and signals are adapted
from Figure 3.1 and incorporated in the ARX-model structure. The ARX model takes as input e (t) and
as output u (t). The mismatch between B (q) e (t) and A (q)u (t) is modeled by ǫ (t).

It must be pointed out that the identification method based on ARX models considered here does
not explicitly take into account closed-loop identification issues. Feedback is ignored and an open-loop
system is identified using measured input-output data. Drop et al. (2016a) also utilized ARX models
for the identification of manual-control behavior and compared this direct identification method with
an indirect (two-stage) method that does explicitly take into account closed-loop identification. They
concluded that the direct method is able to provide more accurate estimates in the frequency range of
interest for manual control than the indirect method. Hence, there seems to be little resistance against
using the direct method in identifying manual-control behavior with ARX models.

Considering again Figure 4.3(a), it can be noted that the deterministic block G (q; θ) is equivalent
to the operator’s linear response to the error HHOe

(s, t). Using the definition of B (q), the operator’s
time delay τv can be approximated with nk. In fact, nk is an integer multiple of the sampling time
Ts. Consequently, the higher the decimation factor, the rougher the approximation of τv with nk. The
remnant n (t) is modeled by the stochastic disturbance v (t), obtained by passing the white noise ǫ (t)
through H (q; θ). Thus, H (q; θ) is tied to G (q; θ). However, as will be explained below, the ARX-model
parameters θ can be obtained by applying linear regression.

4.3.3 Linear regression
As shown by Ljung (1999), the one-step-ahead predictor û (t|t− 1) can be denoted by û (t|θ) to em-
phasize its dependence on θ. It is computed as

û (t|t− 1) = [1−A (q)]u (t)
︸ ︷︷ ︸

Past outputs

+ B (q) e (t)
︸ ︷︷ ︸

Current and past inputs

(4.7)

The above, which only involves known terms, can be written in the convenient linear regression format
û (t|θ) = ϕT (t)θ (4.8)

where ϕ (t) is the regression vector of known past outputs, and current and past inputs:
ϕ (t) =

[
−u (t− 1) −u (t− 2) · · · −u (t− na) e (t− nk) e (t− nk − 1) · · · e (t− n′

b)
]T

(4.9)
and θ is the unknown parameter vector:

θ =
[
a1 a2 · · · ana

b0 b1 · · · bnb

]T
(4.10)

4.3.4 ARX-model orders
One of the biggest questions in setting up the identification framework, is how the right ARX-model
orders, i.e., how the two integers na and nb, can be selected. In addition, there is the integer nk to
be set. A combination of the integers should be found that will serve as basic building block in the
identification. Time-variations can then be captured by the proposed time-varying estimation method.
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Mathematically, this approach can be clarified as follows

H (s) =
1

1 + a1s
→ H (s, t) =

1

1 + a1 (t) s
(4.11)

Above transfer functions have the same model structure. They differ in that the left one is time invariant,
while the right one is time varying. The time-invariant model structure, however, is used for the initial
order selection.

The problem of model-order determination for time-domain models of human-operator dynamics
in compensatory tracking tasks was already investigated decades ago by Jategaonkar et al. (1982).
Several model (order) selection criteria were tested by them for this application. A more up-to-date
overview of such criteria is given by Raol et al. (2004, pp. 130–137). Although these criteria have been
available for a number of years, to date, no well-accepted objective ARX-model selection criterion
exists for identifying human-operator behavior in compensatory tracking tasks. Recent research by
Drop et al. (2016a,b), however, has established a potential objective procedure for identifying human
feedfoward responses in manual control. The study uses a modified Bayesian information criterion
(mBIC) which trades off between model complexity and model’s quality of fit.

As research is ongoing, this study will not directly make use of the mBIC to determine the ARX-
model orders. Instead, it considers the use of the VAF. This metric was also used in the work by
Nieuwenhuizen et al. (2008). Numerous ARX models will be computed for the different preprocessed
data sets. In the end, the “best” model for a preprocessed data set is obtained based on physical
insight and the parsimony principle.

4.4 Fit criterion
As the ARX-model structure allows the application of linear regression, the criterion of fit is based on
the one-step-ahead prediction error,

ε (t, θ) = u (t)− û (t|θ) (4.12)
In order to estimate the parameter vector θ, the least-squares method can be used:

min
θ

V (θ, Z) (4.13)

Here, V (θ, Z) denotes the criterion function (also called the least-squares criterion) to be minimized
on the data set Z. The least-squares estimate θ̂LS is then provided by

θ̂LS = argmin
θ

V (θ, Z) (4.14)

Several least-squares estimation methods are available that differ with respect to their definition of
V (θ, Z). In this study, the estimation methods of ordinary least squares (OLS) and recursive least
squares (RLS) equipped with forgetting factor will be considered. These are explained below.

4.4.1 Ordinary least-squares estimation
In general, the OLS criterion is defined as

V OLS
N

(
θ, ZN

)
=

N∑

t=1

(
u (t)− ϕT (t) θ

)2
(4.15)

for which the OLS estimate becomes

θ̂OLS
N = argmin

θ

1

N

N∑

t=1

(
u (t)− ϕT (t) θ

)2
(4.16)

The minimum can be found, assuming that the indicated inverse exists, using

θ̂OLS
N =

[

1

N

N∑

t=1

ϕ (t)ϕT (t)

]−1

1

N

N∑

t=1

ϕ (t)u (t) (4.17)

With matrix-vector formulation, Eq. (4.17) can be written as
θ̂OLS
N =

(
ΦTΦ

)−1
ΦT

u (4.18)
where Φ is the regression matrix:

Φ =








ϕT (1)
ϕT (2)

...
ϕT (N)







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=








−u (0) −u (−1) · · · −u (1− na) e (1− nk) e (0− nk) · · · e (1− n′
b)

−u (1) −u (0) · · · −u (2− na) e (2− nk) e (1− nk) · · · e (2− n′
b)

...
...

. . .
...

...
...

. . .
...

−u (N − 1) −u (N − 2) · · · −u (N − na) e (N − nk) e (N − 1− nk) · · · e (N − n′
b)








(4.19)
and u is the vector of control-output signals:

u =








u (1)
u (2)
...

u (N)








(4.20)

Usually, the data for t < 1 is unknown. Then, before computing θ̂OLS
N , all rows in Φ and u with an

unknown data sample should be removed.
A limitation of the OLS estimation method is that it acts in batch mode, i.e., on the whole time series

at once. This method assumes that the system to be modeled is time invariant. On the contrary, as
will be discussed next, the RLS estimation method is capable to track time variations of the system.

4.4.2 Recursive least-squares estimation
In recursive identification, the parameter estimation is updated for each new measurement sample
that becomes available. It is, therefore, also referred to as online or real-time identification, or adaptive
parameter estimation. Actually, the RLS algorithm is a special case of the Kalman filter algorithm.

RLS algorithm The criterion of fit for RLS estimation is in general defined as

V RLS
t

(
θ, Zt

)
=

t∑

k=1

β (t, k)
(
u (k)− ϕT (k) θ

)2
(4.21)

containing the weight (also called the forgetting profile)

β (t, k) =

t∏

j=k+1

λ (j) (4.22)

where |λ (j)| ≤ 1 denotes the forgetting factor. The corresponding RLS estimate then becomes

θ̂RLS
t = argmin

θ

t∑

k=1

β (t, k)
(
u (k)− ϕT (k) θ (k)

)2
(4.23)

The t in the above equations emphasizes that the criterion and the estimate are based on t data (i.e.,
Zt). In order to compute θ̂RLS

t , the following recursive algorithm will be used. For easier notation,
θ̂ (t) = θ̂

(t)
t is introduced, denoting the parameter estimate at time t.

θ̂ (t) = θ̂ (t− 1) +K (t) ε (t) (4.24)

ε (t) = u (t)− û (t) (4.25)

û (t) = ϕT (t) θ̂ (t− 1) (4.26)

K (t) = Q (t)ϕ (t) (4.27)

Q (t) =
P (t− 1)

λ (t) + ϕT (t)P (t− 1)ϕ (t)
(4.28)

P (t) =
P (t− 1)

λ (t)

(
I −K (t)ϕT (t)

)
(4.29)

Equation (4.24) is seen as an update rule for the parameters, which can also be written with q:

θ̂ (t) =
K (t)

1− q−1
ε (t) (4.30)

The above can be clarified using Figure 4.5. Here, the RLS algorithm is casted as a feedback control
problem. By adjusting the gain vector K (t), the prediction error ε (t) between u (t), i.e., the observed
output at time t, and û (t), i.e., the prediction of u (t) based on observations up to time t − 1, can be
minimized. By multiplying the matrix Q (t) with the regression vector ϕ (t), defined in Eq. (4.9), K (t)
is computed. Actually, Q (t) is obtained by minimizing the RLS criterion at time t. The computation of
Q (t) makes use of the scaled covariance matrix of the parameters P (t). The I in the definition of P (t)
denotes the identity matrix. The algorithm is completed by specifying the initial parameter estimate
θ̂0 = θ̂ (0), the initial regression vector ϕ (1), and the initial scaled covariance matrix P0 = P (0).
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u (t) + ε (t) Parameter
update

θ̂ (t)
Model

û (t)

−

Figure 4.5 RLS estimation from the viewpoint of feedback control, adapted from Tangirala (2015).

The actual covariance matrix of the parameters, i.e., Pθ (t), can be obtained by multiplying P (t) with
σ2
ε (t) /2, where σ2

ε (t) denotes the variance of ε (t) (Ljung, 1999, pp. 381–382).

Forgetting factor The forgetting factor is considered as the design variable of the RLS algorithm: it
is a trade-off between the ability to track and the sensitivity to noise. By taking a constant forgetting
factor, i.e., λ (t) ≡ λ, old measurements are discounted exponentially: a measurement that is

T0 =
1

1− λ
(4.31)

old has a weight equal to λT0 times the weight of the most recent observation. This T0 is called
the memory horizon of the algorithm. By setting λ < 1, the parameters can be estimated over time.
Commonly, λ is set to a positive value ranging between 0.98 and 0.995 (Ljung, 1999). If a constant
forgetting factor is used, the weight in Eqs. (4.21) to (4.23) becomes

β (t, k) = λt−k (4.32)
Choosing a fixed value of λ is suitable for a system that “changes gradually and in a ‘stationary

manner,’ ” (Ljung, 1999) and when it is persistently excited. The value of λ can also be selected in such
a way that it depends on the variation rates of the system’s properties or parameters. Ljung (1999)
argues that “if the system remains approximately constant over T0 samples, a suitable choice of λ can
then be made from [Eq. (4.31)]” as this “reflects the ratio between the time constants of variations in
the dynamics and those of the dynamics itself.”

Numerous other strategies exist for choosing the forgetting profile. A theoretical account on the
general concept of forgetting is given by Kulhavý and Zarrop (1993). Here, points of particular interest
are given for classical exponential forgetting, regularized exponential forgetting, directional forgetting
and mixed forgetting. It especially features a role for prior information. Their main objective has been
“to look for the simplest possibility of making estimators reliably adaptive, within a rigorous framework.”
Furthermore, they state that, in this particular context, a good estimation algorithm is expected to be:

(a) effective — the adaptive estimator is to track both constant and time-varying parameters as
closely as possible (some trade-off is clearly inevitable);

(b) robust — whichever data are observed, parameter estimation must generate acceptable results;
(c) simple — the resulting complexity must not go far beyond the complexity of a non-adaptive al-

gorithm (more complex solutions can be justified perhaps for special applications, but not as a
standard tool).

Tangirala (2015) refers to different investigations that consider the use of an adaptive forgetting
factor based on levels of excitation and measurement noise. Next, he mentions studies that consider
vector-type forgetting, i.e., “to choose different forgetting factors for each parameter because parame-
ters may have significantly differing timescales of variations.” A more practical overview of various RLS
algorithms with several forgetting-factor policies is given by Navrátil and Ivanka (2014). They provide
brief descriptions for RLS estimation with exponential forgetting, variable exponential forgetting, fixed
directional forgetting, adaptive directional forgetting, an exponential forgetting matrix, a constant trace
algorithm, and an exponential forgetting and resetting algorithm.

Turning more specifically toward ARX models, Fraccaroli et al. (2015) proposed to split up the
classic RLS algorithm into “the minimization of the current prediction error and the minimization of
a quadratic function which penalizes the distance between the current and previous value of the es-
timate.” This allows the modeling of multiple forgetting factors. Hence, different change rates for
the estimation parameters can be set. Qin et al. (2010) proposed a recursive penalized weighted
least-squares method for estimating ARX models that uses discounted weights and a regularization
parameter. They also introduce a general information criterion to select the proper weights, regulariza-
tion parameters and ARX-model orders. However, both forgetting-factor strategies are only verified for
simple case studies, incomparably different to modeling compensatory manual-control behavior.
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5
Preliminary simulation analysis

The advances made in simulation software have allowed detailed setups of identification schemes
and careful designs of laboratory experiments. This is especially useful in the research on identifying
manual-control behavior, as the experiments can be quite intrusive for subjects. By means of offline
simulations, significant savings in time and effort on answering specific research questions could be
realized and typical pitfalls in identification-scheme setups and experiment designs will be avoided.

This chapter covers the preliminary simulation analysis of the proposed identification scheme. Off-
line simulations of the compensatory manual-control model, introduced in Chapter 3, are conducted. In
setting up this simulation, reference is made to the work by Zaal (2016). Next, a low-level implementa-
tion of the identification framework, set up in Chapter 4, is done. All this, will result in a solid foundation
for the further development of the identification scheme based on time-varying ARX models.

The chapter is set out as follows. Section 5.1 describes the setup and the results of the offline
simulation of the compensatory manual-control model. The implementation and application of the
identification framework is covered in Section 5.2. This section contains a theoretical selection of the
ARX-model structure. Numerous ARX models are then estimated on preprocessed data sets using the
OLS estimation method. The selection is assessed by means of VAF-contour plots and the principle of
parsimony. Lastly, a demonstration is given of the RLS algorithm. Although initial and final analytical
expressions of the time-varying simulation are given, this preliminary simulation analysis is concerned
with human-operator data sets obtained from simulations in which no time variations were introduced
yet in the manual-control behavior. Simulink implementation details can be found in Appendix A.

5.1 Compensatory manual-control model simulations
The simulations of the compensatory manual-control model (refer again to Figure 3.1) will be per-
formed in a similar way as described in the work of Zaal (2016). Dynamics in this control model will
change from an initial state to a final state. First, details of the type of forcing function are given. Then
the results of the controlled-element dynamics, the analytical human-operator dynamics and the cor-
responding analytical system dynamics are provided for the initial and final state. Next, a step is made
toward a more realistic modeling approach. By means of different noise realizations, human-operator
remnant is simulated. The operator’s input-output data resulting from these simulations can then be
used in the identification algorithms.

5.1.1 General simulation setup
Forcing function The system is excited by the target forcing function ft (t) whose properties are
summarized in Table 5.1. Its construction is based on Nt = 10 sinusoids. Figure 5.1(a) shows the
measurement-time trace of ft (t). A frequency range of 0.2 to 17.6 rad/s is covered. As described
in Section 4.2, the data is sampled with fs = 100 Hz, resulting in a measurement-base frequency of
ωm = 0.0767 rad/s which is used to calculate all ωt. Furthermore, the amplitude distribution is varied
and scaled to attain a variance of σ2

ft
of 2.2490 deg2. The phase shifts are adjusted so that a crest

factor Cr of 2.6930 is obtained. Figure 5.1(b) displays the auto-power-spectral density (PSD) estimates
of ft (t). The peaks of Sftft (jω) are located at ωt.
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Table 5.1 Target forcing-function properties adapted from Zaal (2016).

kt nt ωt, rad/s At, deg φt, rad
1 3 0.230 1.186 -0.753
2 5 0.384 1.121 1.564
3 8 0.614 0.991 0.588
4 13 0.997 0.756 -0.546
5 22 1.687 0.447 0.674
6 34 2.608 0.245 -1.724
7 53 4.065 0.123 -1.963
8 86 6.596 0.061 -2.189
9 139 10.661 0.036 0.875

10 229 17.564 0.025 0.604
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Figure 5.1 Forcing-function signal.

Controlled-element dynamics As was explained in Section 3.3, a set of initial (1) and a set of
final (2) parameter values are considered to set up the sigmoid functions for the controlled-element
parameters:

KCE,1 = 90.0, ωb,1 = 6.0 rad/s (5.1)

KCE,2 = 30.0, ωb,2 = 0.2 rad/s (5.2)
Bode plots of the corresponding controlled-element dynamics, expressible as

HCE (jω) =
KCE

(jω)
2
+ ωbjω

(5.3)

are shown in Figure 5.2(a). In the human operator’s crossover-frequency range, in general running
from 1 to 5 rad/s, HCE,1 (jω) approximates single-integrator dynamics (1/jω), while HCE,2 (jω) ap-
proximates double-integrator dynamics (1/(jω)2).

Analytical human-operator dynamics In order to define the parameter functions for the analytical
human-operator model, the following sets of initial and final equalization-parameter values are consid-
ered

Kv,1 = 0.09, TL,1 = 0.4 s (5.4)

Kv,2 = 0.07, TL,2 = 1.2 s (5.5)
The fixed set of values that is considered for the operator’s limitation parameters is

τv = 0.28 s, ωnm = 11.25 rad/s, ζnm = 0.35 (5.6)
The above values were determined using data from a test experiment (Zaal, 2016). Bode plots of
the resulting analytical human-operator dynamics HHOe

(jω) are shown in Figure 5.2(b). These were
computed using the time-invariant version of the analytical human-operator model. From Eq. (3.6), this
version is described as

HHOe
(jω) =

Equalization dynamics: Heq (jω)
︷ ︸︸ ︷

Kv
︸︷︷︸

Gain

[TLjω + 1]
︸ ︷︷ ︸

Lead term

Limitations
︷ ︸︸ ︷

e−jωτv
︸ ︷︷ ︸

Time delay

ω2
nm

(jω)
2
+ 2ζnmωnmjω + ω2

nm
︸ ︷︷ ︸

Neuromuscular-actuation dynamics: Hnm (jω)

(5.7)

H.A. van Grootheest MSc thesis | II Preliminary report



5.1 Compensatory manual-control model simulations 47

10-1 100 101 102
10-2
10-1
100
101
102
103

10-1 100 101 102
-180

-157.5
-135

-112.5
-90

ω, rad/s

ω, rad/s

|H
C
E
(j
ω
)|

,–
∠
H

C
E
(j
ω
),

de
g

HCE,1 (jω)
HCE,2 (jω)

(a) Controlled-element dynamics.

10-1 100 101 102

10-1

100

10-1 100 101 102
-540
-450
-360
-270
-180

-90
0

90

ω, rad/s

ω, rad/s

|H
H

O
e
(j
ω
)|

,–
∠
H

H
O

e
(j
ω
),

de
g

HHOe,1 (jω)
HHOe,2 (jω)
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Figure 5.2 Bode plots of the controlled-element dynamics and the analytical human-operator dynamics.

The magnitude Bode plots most clearly show, in the crossover-frequency range, the effect of the dif-
ferent lead-time constants. As dictated by the crossover model, in order to control HCE,2 (jω) the
operator generates more lead for compensating the double-integrator dynamics. Hence, the peak of
the neuromuscular-actuation dynamics is lifted.

Analytical system dynamics Bode plots of the analytical open- and closed-loop dynamics corre-
sponding to the initial and final sets of the parameter values are shown in Figures 5.3(a) and (b),
respectively. Equation (3.3) is used to compute the analytical open-loop dynamics. The analytical
closed-loop dynamics are computed by

HCL (jω) =
HOL (jω)

1 +HOL (jω)

=
HHO (jω)HCE (jω)

1 +HHO (jω)HCE (jω)

(5.8)

From the Bode plots of the analytical open-loop dynamics in Figure 5.3(a), the following crossover
frequencies and phase margins can be determined

ωc,1 = 1.5 rad/s, φm,1 = 77.0 deg (5.9)

ωc,2 = 2.8 rad/s, φm,2 = 22.7 deg (5.10)
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Figure 5.3 Bode plots of the analytical system dynamics.
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5.1.2 Toward more realistic simulations
Typically, data sets obtained from manual-control experiments contain high levels of remnant (Zaal
et al., 2009). Therefore, the simulation of remnant should be taken into account too. A metric that
characterizes the level of remnant in manual-control data is the remnant intensity (also called power
ratio) Pn, defined as

Pn =
σ2
n

σ2
u

(5.11)

Here, σ2
n and σ2

u denote the variances of the measurement-time traces of the remnant signal and the
control signal, respectively. In order to simulate operator remnant, a zero-mean Gaussian white-noise
signal nw (t) with unit variance is passed through the following first-order time-invariant remnant filter

Hn (jω) =
Kn

Tnjω + 1
(5.12)

The remnant-time constant Tn is set equal to 0.2 s. In this preliminary simulation analysis, the remnant
gain Kn is set to induce a certain average value of Pn, based on a set of ten realizations of nw (t). For
this, the nonlinear programming solver fmincon in Matlab was used with default options. The total
recording time Tt of a simulation run is set to 819.2 s, i.e., a multiple of ten times Tm. A run-in time
Tr of 737.28 s will be canceled to reduce the effects of transients in the operator’s actions. In order to
create the first noise realization for tuning Kn, the seed of the random number generator in Matlab

was set to 100. The corresponding Kn with these settings was found to be 0.0202.

Simulation with remnant Figure 5.4 displays the block diagram of a compensatory manual-control
model in which no time variations are introduced in both the dynamics of the human operator and
the controlled element. The model is referred to as the compensatory manual-control model with
time-invariant dynamics. A simulation of this model with Pn set to 0.15 is performed using the sets
of parameter values listed in Eqs. (5.1), (5.4) and (5.6). Figure 5.5(a) shows the measurement-time
trace of n (t; ζ),1 for which the seed was set to 110. The auto-power spectrum of this signal is shown
in Figure 5.5(b). This figure also indicates the auto-PSD estimates at ωt. It can be observed that the
auto-power spectrum approximates the remnant-filter characteristics.

HHO (jω)

ft (t) + e (t)
HHOe

(jω)
+

nw (t)
Hn (jω)

n (t)

+ u (t)
HCE (jω)

x (t)

−

Figure 5.4 Block diagram of a single-loop compensatory target-following control task with time-invariant dynamics, adapted from
Figure 3.1.

The corresponding measurement-time traces and the auto-power spectra of e (t), u (t), and x (t) are
shown in Figures 5.6 to 5.8, respectively. The signal-to-noise ratio is high for all auto-power spectra.
From Figure 5.8, it can be noted that the system output closely follows ft (t). For this case, the
performance score, defined as σ2

e/σ
2
ft

, equals 0.1722.
In addition to the identification method based on ARX models, the nonparametric identification

method based on Fourier coefficients (FCs) (van Paassen and Mulder, 1998) is considered as a means
of reference. It is, however, only applicable if the dynamics to be identified are assumed to be time
invariant during the identification method. The method dictates that “for each frequency response to
be estimated an uncorrelated input signal, a forcing function, must be inserted in the closed loop” (Mul-
der, 1999). The forcing functions act like “black-box” identification inputs. Using the DFTs U (jω; ζ),
E (jω; ζ), and N (jω; ζ), the following is obtained from the block diagram in Figure 5.4:

U (jω; ζ) = HHO (jω)E (jω; ζ) +N (jω; ζ) (5.13)
Assuming that the signal-to-noise ratio is high, the frequency-response estimates of the human-operator
dynamics can be identified at ωt with

ĤHO (jωt; ζ) =
U (jωt; ζ)

E (jωt; ζ)
(5.14)

1The ζ reflects that the signal is a realization of a stochastic process.
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Bode plots of the human-operator dynamics and system dynamics are provided in Figures 5.9 and
5.10. These also include the analytical dynamics. Most frequency responses are correctly estimated.
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Figure 5.5 Remnant signal (Pn = 0.15).
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Figure 5.6 Error signal (Pn = 0.15).
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Figure 5.7 Control-output signal (Pn = 0.15).
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Figure 5.8 System-output signal (Pn = 0.15).
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Figure 5.9 Bode plots of the analytical human-operator dynamics and frequency responses identified with the FC method
(Pn = 0.15).
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(b) Closed-loop dynamics.

Figure 5.10 Bode plots of the analytical system dynamics and frequency responses identified with the FC method (Pn = 0.15).

Remnant-free simulation Figures, similar to Figures 5.6 to 5.10, if remnant is excluded can be found
in Appendix B. The same forcing function, with the properties listed in Table 5.1, and sets of parameter
values, i.e., the ones listed in Eqs. (5.1), (5.4) and (5.6), are used for simulating the compensatory
manual-control model displayed in Figure 5.4.
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5.2 Identification-framework implementation and application
Low-level implementations of identification algorithms lead to a full understanding on how they work.
This section discusses how the identification framework based on ARX models is implemented and
how it will be applied on the different human-operator input-output data sets.

5.2.1 Theoretical selection of the ARX-model orders and dela y integer
Care should be taken in the selection of the ARX-model orders, i.e., the integers na and nb, and the
delay integer, i.e., nk. Setting the orders too high, leads to overfitting in the parameter estimation
procedure. However, setting the orders too low leads to underfitting. As explained in Section 4.3, the
order selection will be based on time-invariant ARX models. The resulting ARX-model transfer function
for describing the operator’s linear response to the error is expressed by

G (q; θ) =
B (q)

A (q)

= q−nk
b0 + b1q

−1 + · · ·+ bnb
q−nb+1

1 + a1q−1 + · · ·+ ana
q−na

(5.15)

The z-transform The selection of the ARX-model orders can be derived theoretically from the time-
invariant version of the analytical human-operator model described in Eq. (5.7). In essence, this de-
scription is valid in the continuous-time domain. It is a continuous model of the human operator. ARX
models, however, are discrete-time models which identify discrete-time transfer functions. By applying
the z-transformation to HHOe

(jω), an equivalent discrete-time transfer function can be obtained. Han-
son and Jewell (1983), Hess and Mnich (1986), and Hess (1990) provide tables with some common
z-transforms of continuous systems. A prospective discrete-time transfer-function structure, in ascend-
ing powers of z−1, for a system consisting of a gain, a first-order lead term, a pure time delay (modeled
as e−jωm, where m is an integer multiple of Ts), and a second-order system is:

G (z) = z−(1+m) b0 + b1z
−1

1 + a1z−1 + a2z−2
(5.16)

Hence, without considering the time delay, there are four unknowns: two unknown bi coefficients, i.e.,
b0 and b1, and two unknown ai coefficients, i.e., a1 and a2.

Time delay The time delay e−jωτv in the ARX models can be approximated with one of the following
two methods.

(1) Using the ARX model’s discrete-time delay operator q−nk , similar to z−m in Eq. (5.16).
(2) Using extra coefficients ai and bi representing a Padé approximant, expressible as

e−jωτv .
=

1− h1jωτv + h2(jωτv)
2
+ · · · ± hk(jωτv)

k

1 + h1jωτv + h2(jωτv)
2
+ · · ·+ hk(jωτv)

k
(5.17)

with hk the Padé approximation coefficient at discrete instant k.
As described in Section 4.3, nk can only be an integer multiple of the sampling time, and consequently,
the approximation of τv becomes less accurate once higher decimation factors are used. Turning to
method (2), Zaal et al. (2009) point out that human-operator delays are typically approximated with
fifth-order Padé approximations. This study, however, will make use of both methods (1) and (2).
Part of the time delay will be captured using the input-output delay by setting the ARX-model integer
nk, primarily dependent on the decimation factor d. Another part of the time delay is captured by
using extra coefficients ai and bi. A first attempt will be taken with a first-order variant of the Padé
approximant:

e−jωτv ≈
1− h1jωτv
1 + h1jωτv

(5.18)

Bias term An aspect not yet addressed is the bias in the identification. As the human operator is
embedded in a closed loop and the direct identification method will be used, bias will certainly be
present. For this one extra numerator term is considered in the ARX model’s transfer function.

Conclusive remarks From the above analysis, it is concluded that the number of unknowns for the
A (q) polynomial amounts to three, and the number of unknowns for the B (q) polynomial amounts to
four (or five) if closed-loop identification issues (with remnant) and a proper capture of the time delay
are taken into account. However, a first attempt is to take na = 2 and nb = 2, based on Eq. (5.16).
Depending on the decimation factor d, the right nk for approximating the time delay might be found
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using the second column of Table 4.1 which lists the different sampling times. In order to model a time
delay value τv of 0.28 s (Eq. (5.6)), the following integer values of nk (d) are prospected:

nk (1) = 28, nk (2) = 14, nk (4) = 7, nk (8) = 3 or 4, nk (16) = 2 (5.19)

5.2.2 OLS estimation of ARX models and selection using VAF-c ontour plots
As the ARX-model structure allows linear regression, the OLS estimation method is used for the pa-
rameter estimation. For the complete input-output estimation data subset ZNe ,

ZNe = {e (t) , u (t)}
Ne

t=1
(5.20)

the following regression matrix

Φ =








ϕT (p)
ϕT (p+ 1)

...
ϕT (Ne)








=








−u (p− 1) −u (p− 2) · · · −u (p− na) e (p− nk) e (p− 1− nk) · · · e (p− n′
b)

−u (p) −u (p− 1) · · · −u (p+ 1− na) e (p+ 1− nk) e (p− nk) · · · e (p+ 1− n′
b)

...
...

. . .
...

...
...

. . .
...

−u (Ne − 1) −u (Ne − 2) · · · −u (Ne − na) e (Ne − nk) e (Ne − 1− nk) · · · e (Ne − n′
b)








(5.21)
and control-output vector

u =








u (p)
u (p+ 1)

...
u (Ne)








(5.22)

can be set up. The integer p is set to max (na + 1, nb + nk) in order to consider only known input-output
data. By making use of the backslash operator “\” in Matlab, θ̂OLS

Ne
can be computed. This operation

directly calls a computational efficient QR-factorization solver, provided that the regression matrix is
nonsquare.2 ARX models are only estimated if the regression matrix is full rank. A transfer function
can then be constructed from the entries in θ̂OLS

Ne
.

Analysis without taking remnant into account Before using the different preprocessed input-
output data sets which include remnant, the input-output data set resulting from the remnant-free
simulation (Appendix B) is analyzed. Taking as first attempt the set of ARX-model integers na = 2,
nb = 2, and nk = 28, results in the discrete-time frequency-response function shown in the Bode plot
of Figure 5.11. In addition, Bode plots of the analytical human-operator model and the FC frequency
responses are presented in this figure. The ARX model’s frequency responses almost perfectly fits the
analytical transfer function of the human operator. The corresponding VAF-value is 99.9553%. The fit
becomes a little bit worse at the higher frequencies. While the FC method only estimates frequency
responses at the excitation frequencies of the forcing function, the method based on ARX models gives
frequency responses over the full Nyquist frequency range. Figure 5.11 and the VAF-value indicate
that the selection of a low ARX-model order and the right delay integer can be sufficient.

VAF-contour plots In order to check if the theoretical selection of the ARX-model orders and delay
integers holds for the different preprocessed, i.e., filtered and/or decimated, data sets with remnant
(Pn = 0.15) included, ranges of the integers na, nb and nk should be evaluated. The bounds of the
ranges considered for different decimation factors are given in Table 5.2. The case of no resampling
(d = 1) is also included. For all combinations (i.e., a total of 19 800), ARX models are estimated using
the OLS method and validated using the VAF-metric. The results for d = 2 to d = 16 are summarized
in VAF-contour plots which can be found in Appendix C. As an example, Figure 5.12 provides VAF-
contour plots for ARX-model estimations on the input-output data set that was decimated with d = 16.
The mesh is defined by the integers na and nb. A VAF-contour plot is made per distinct value of nk.
Empty areas in the bottom-left corners indicate VAF-values less than or equal to 0%. The highest VAF-

2For reference, θ̂OLS
Ne

can be compared to the output of the Matlab function arx. Given the measured output and in-
put signals u and e, sampled with time Ts, and the integers na, nb, and nk, the syntax required in Matlab R2016b is:
data = iddata(u,e,Ts); data2 = nkshift(data,nk-1); m = arx(data2,[na nb 1]); m.nk = nk;. In earlier Matlab re-
leases, the syntax data = iddata(u,e,Ts); m = arx(data,[na nb nk]) can just be used.
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Figure 5.11 Bode plots of the analytical human-operator dynamics and frequency responses identified with the FC method and
an ARX model (remnant free).

value in each contour plot is marked with an asterisk. More details can be found in Appendix C. From
Figure 5.12 it becomes clear that the VAF-values do not necessarily increase for higher ARX-model
orders. Instead, by applying the principle of parsimony, the ARX-model orders should be selected as
low as possible. However, the selection cannot be completely based on VAF-contour plots and this
principle. Potential combinations of na, nb and nk should always be compared in Bode plots.

Table 5.2 Bounds of ARX-model integers na and nb, and delay integer nk for different decimation factors.

d na nb nk

1 [1 . . 10] [1 . . 10] [1 . . 50]
2 [1 . . 10] [1 . . 10] [1 . . 25]
4 [1 . . 10] [1 . . 10] [1 . . 13]
8 [1 . . 10] [1 . . 10] [1 . . 7]

16 [1 . . 10] [1 . . 10] [1 . . 4]
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Figure 5.12 High-valued VAF-contour plots: input-output signals decimated with d = 16.

Most suitable ARX models Table 5.3 presents an overview of the most suitable integer combina-
tions for the different preprocessed data sets. The case of no resampling (d = 1) is considered too.
The table also lists the VAF-values, which are all around 80% to 85%. These values are quite rea-
sonable for Pn = 0.15. Bode plots of the frequency responses constructed from the ARX models are
shown in Figure 5.13. These are compared with the ones of the analytical human-operator model and
the FC frequency responses. The most striking feature is that the frequency ranges on which the ARX
models are valid differ per decimation factor. The maxima of these ranges are the Nyquist frequencies
ωN (d) (i.e., the vertical dashed lines). From the Bode phase-angle plots, it can be observed that the
ARX models do not differ much. Up until a frequency of 10 rad/s they are very similar and approach
the analytical human-operator model. On the contrary, the Bode magnitude plots show big differences.
Especially, the ARX models, estimated on data sets that were decimated with d = 2 or 4, or that were
not resampled (d = 1), have great difficulty in describing the peak of the neuromuscular-actuation dy-
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namics. Interestingly, for d = 1, 2, and 4, low values for na and nb can be selected. In the analysis it
was found that using higher values for these integers did not result in meaningful Bode plots. As shown
in Table 5.3 the values of nk, for d = 1, 2, and 4, correspond to the ones in Eq. (5.19). Hence, in these
cases, the time delay τv of 0.28 s is captured properly with nk. However, by making use of d = 8 and
16, higher values for na and nb should be selected. In these cases, τv cannot be captured properly by
nk alone. Therefore, two extra coefficients of ai and bi are needed to capture a part of it using a Padé
approximant like Eq. (5.18). One more coefficient bi is used to account for the closed-loop bias.

Table 5.3 Most suitable combinations of ARX-model integers na and nb, and delay integer nk for the different preprocessed
data sets based on VAF-contour plots and Bode plots (Pn = 0.15).

d F/NF* [na, nb, nk] VAF, %
1 F [2,2,28] 77.3841
2 NF [2,2,14] 77.9174
2 F [2,2,14] 78.5233
4 NF [2,2,7] 79.0345
4 F [2,2,7] 80.4681
8 NF [3,4,4] 82.5968
8 F [3,4,4] 83.9417

16 NF [3,4,2] 83.5605
16 F [3,4,2] 86.0262

*filtered (F); not filtered (NF)
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ĤHO (z; ζ) ARX1,NF[2,2,28]
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Figure 5.13 Bode plots of the analytical human-operator dynamics and frequency responses identified with the FC method and
with the most suitable ARX models for different preprocessed data sets (Pn = 0.15).
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In essence, Table 5.3 shows that filtering the input-output data sets results in higher VAF-values
compared to decimating only. However, the corresponding Bode plots in Figure 5.13 are not neces-
sarily much better. This becomes clear, in particular, when focusing on the Bode magnitude plots of
the models ARX16,NF[3,4,2] and ARX16,F[3,4,2]. The peak of the neuromuscular-actuation dynamics is
better described by the former model. Overall, the results indicate that the human-operator dynamics
in the operator’s frequency range of interest are best described by the model ARX16,NF[3,4,2].

Conclusive remarks In general, it seems sufficient to only decimate the input-output data sets,
at least for the ARX-model structure selection. The further analysis will, therefore, mainly consider
decimation as the one and only step in data preproccessing. Next, it is very important to capture the
time delay properly. Otherwise, higher orders of na and nb are needed. Taken together, it seems that
the theoretical selection holds.

5.2.3 RLS estimation of ARX models
In contrast to the OLS estimation method, the RLS estimation method equipped with forgetting factor is
able to track time variations. The following presents a demonstration of the RLS algorithm and provides
some details on how it should be implemented and applied. Input-output signals which contain time
variations in the dynamics of the human operator and the controlled element are not considered yet.
Light is shed on how the RLS algorithm works.

RLS algorithm initialization and OLS method comparison Before the RLS algorithm can be used,
the initial parameter estimate θ̂0, the initial regression vector ϕ (1) and the initial scaled covariance
matrix P0 need to be set. Theoretically, if no information is available about θ̂0, ϕ (1), and P0, the
RLS estimation method will only give the same results as the OLS estimation method when an infinite
number of samples is used, the forgetting factor λ is fixed to one, and P0 equals ∞I. In practice, a
nearly perfect match between θ̂RLS

t and θ̂OLS
Ne

is obtained, if θ̂0 = θ̂OLS
Ne

, λ = 1, and a P0 similar to the
covariance matrix of θ̂OLS

Ne
are used. Then, the RLS algorithm does not adjust θ̂0.

Turning more specifically toward the RLS algorithm, care should be taken with the definition of
ϕ (1). For regression at time t, the algorithm requires the vector ϕ (t) expressed by Eq. (4.9). In the
case that data for t < 1 is unknown, a zero vector 0 is used for initialization. Often, the vector θ̂0 is
also set equal to 0. In order to avoid numerical issues, θ̂0 can also be initialized to a set of zero-mean
unit-variance Gaussian random numbers. Typically, P0 is set equal to δI, where δ represents a large
positive constant. The higher the uncertainty of θ̂0, the higher the value of δ should be chosen.

Initial scaled covariance matrix By making use of the particular preprocessed input-output esti-
mation data subset and the proposed ARX-model structure, i.e., ARX16,NF[3,4,2], the working of RLS
algorithm is demonstrated. Figure 5.14 compares RLS parameter estimations for different initializa-
tions of P0 when λ = 1 is used. Values for δ of 102, 104, and 106 were considered. Zero vectors were
used for θ̂0 and ϕ (1). In addition, Figure 5.14 shows the coefficients of θ̂OLS

Ne
with dashed lines. It can

be observed that the use of high values for δ will result in high initial responses in the RLS parameter
estimation. However, the difference between setting δ equal to 104 or 106 appears to be small. In the
further analysis, a δ value of 104 will be considered.
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Figure 5.14 RLS parameter estimations for different initial scaled covariance matrices with λ = 1 (θ̂0 = 0, ϕ (1) = 0,
Pn = 0.15). Coefficients of θ̂OLS

Ne
are indicated with the dashed-lines.
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Influence of the forgetting factor Before trying out different forgetting factors, a view is given on the
concept of the memory horizon (T0 = 1/ (1− λ)) and the RLS weight in the case a constant forgetting
factor is used (i.e., β (t, k) = λt−k). Figure 5.15(a) shows T0 for different λ. Figure 5.15(b) shows
the forgetting profiles for different constant forgetting factors. In this case, the t in λt−k was set to
Ne = 256. It can be seen that for smaller λ, old data is discounted quicker.

A comparison of RLS parameter estimations with different forgetting factors is shown in Figure 5.16.
Coefficients of the θ̂OLS

Ne
are also displayed. Apparently, no reasonable RLS estimation results are

obtained for values of λ < 0.99. Next, in almost all cases, the estimation rate of each coefficient is
similar, e.g., b0 approaches its final value very fast, while a0 reaches its final value relatively slow.
Furthermore, it can be seen that through the use of λ < 1 the initial estimate will become obsolete.
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Figure 5.15 Influence of different constant forgetting factors on the memory horizon and the RLS weight.
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Figure 5.16 RLS parameter estimations for different forgetting factors (P0 = 104I, θ̂0 = 0, ϕ (1) = 0, Pn = 0.15). Coefficients
of θ̂OLS

Ne
are indicated with the dashed-lines.

Conclusive remarks The input-output data analyzed with the RLS estimation method was obtained
from a compensatory manual-control model simulation with time-invariant dynamics. No abrupt or
gradual changes were considered in the system yet. It would be more interesting to analyze such
data. For instance, the tracking ability and noise sensitivity of the RLS can then be investigated in
more detail. However, some of the ins and outs of the algorithm have been demonstrated.

H.A. van Grootheest MSc thesis | II Preliminary report



6
Further research proposal

By means of the literature survey and the preliminary simulation analysis, the majority of the research
subquestions has been answered and most research subgoals have been accomplished. The pro-
posed thesis project will not only deal with the remainder, but also with some new thoughts that resulted
from the iterative-parallel research progression.

This chapter is concerned with the further steps to be taken in the proposed thesis project. In
view of the cybernetic approach adopted in this project (refer to Chapter 1), these steps are related to
the two stages. A number of steps belong to the further analysis of the compensatory manual-control
model simulation with time-varying dynamics, and a number of steps correspond to the capture of time-
varying manual-control behavior. Furthermore, this chapter highlights the steps needed for verification
and validation of the identification method. In addition, some interesting future research is described.

The outline of the chapter is as follows. Section 6.1 discusses what is needed for the more ad-
vanced simulations. Section 6.2 explains how the estimation with time-varying ARX models can be
improved. The procedure of verification and validation is addressed in Section 6.3. Lastly, the interest-
ing recommended future research that is in line with the thesis project, but that will not be considered
further, is listed in Section 6.4.

6.1 Compensatory manual-control model simulation with time-
varying dynamics

The likely time variations to be introduced in simulating manual-control behavior for both slow and
fast parameter transitions in the controlled-element dynamics were determined in Section 3.3. Sig-
moid functions will be used for the parameter variations. Although Bode plots of the initial and final
analytical dynamics of the human-operator and the system for the time-varying simulation were given,
sigmoid functions were not yet analyzed in Chapter 5. In the further research, the sigmoid functions
will be implemented in both the operator’s equalization parameters as well as the controlled-element
parameters. The initial type of sigmoid function to be implemented (refer to Eq. (3.8)) is one with a
maximum rate of change G of 0.5 s-1, which will be set on M = Tm/2. Using this value of G, the param-
eter transitions are then in between gradual and abrupt ones. The sigmoid functions for the operator’s
equalization parameters can be expanded with an additional perturbation. This will be more realistic
than assuming that the values of M are equal for both the operator’s equalization and the controlled-
element parameters. Subsequently, lower and higher values of G can be selected to simulate gradual
and abrupt parameter transitions, respectively.

In Chapter 5, only a remnant-free simulation and a simulation with a remnant intensity Pn of 0.15
have been analyzed. Higher and lower remnant intensities should also be examined in order to test the
robustness of the identification method. This robustness testing will be explained further in Section 6.3.
Anyway, the compensatory manual-control model with time-varying dynamics should also be simulated
with remnant intensities of 0 (remnant free), 0.05, 0.10, 0.15, 0.20 and 0.25.
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58 6 Further research proposal

6.2 Further steps in ARX-model selection and RLS estimation
In the selection of the most suitable ARX models, it was found that problems occurred in capturing the
time delay once higher decimation factors were used. The integer nk can only be an integer multiple
of the downsampling time after input-output data sets are decimated. In contrast to this, the input data
could also be shifted by the number of time steps associated with the assumed time delay before the
data set is decimated. This was also done in the research by Boer (1995).

Turning to the proposed time-varying RLS estimation method, it has been found that some promis-
ing forgetting-factor strategies are available. However, these are not specifically tuned for the identi-
fication of manual-control behavior. In the literature survey, it has been found that especially for this
application, novel identification and estimation algorithms should be as effective, as robust and as sim-
ple as possible. Therefore, a conservative approach will be taken in the tuning of the forgetting factor in
the RLS algorithm. A start will be made with the classic exponential forgetting factor. Gradually, more
advanced forgetting-factor strategies, like exponential forgetting and resetting (refer again to Navrátil
and Ivanka (2014)), will be implemented and tested.

6.3 Verification and validation procedure
In order to verify the sensitivity of the identification method based on time-varying ARX models to dif-
ferent remnant levels and realizations, extensive testing is needed, i.e., a Monte-Carlo analysis should
be performed. Instead of using one white noise realization for the remnant modeling, numerous should
be considered. Consecutively, variance, bias and other statistical calculations can be performed. The
paper by Nieuwenhuizen et al. (2008) explains how the variance and bias of ARX models can be cal-
culated. The paper by Zaal et al. (2009) provides a method to investigate average parameter bias for
different remnant levels. Snapshots of Bode plots will be made in order to evaluate the time variations
of the ARX models visually.

The identification method can be validated by analyzing real time-varying experimental manual-
control data. This will be done once the verified identification method seems to be accurate. For
instance, the data from an experiment described in the paper by Zaal (2016) could be requested and
investigated.

6.4 Recommended future research
Some interesting research that is related to the thesis project, but that will not be considered further,
can be described as follows.

• Focusing on time-varying manual-control behavior, in addition to changes in the controlled-
element dynamics, two other types of time-varying control situations possible are (Phatak and
Bekey, 1969):

1. a change in the input characteristics, e.g., statistical or transient variations;
2. a change in the display, e.g., compensatory to pursuit or vice versa and preview variations.

The identification method based on time-varying ARX models might also be suitable to investi-
gate the effects of such changing situations.

• Besides OLS and RLS estimation, a parametric estimation method not yet considered is the
estimation based on smoothers. These can be seen as batch estimators that can handle time-
varying system dynamics, as they can estimate model parameters at each time instance (Boer,
1995). They are only suitable for offline identification. The thesis project, however, focuses on
online identification. Still, it might be interesting to compare all parametric estimation methods in
the offline case.

• Decent comparisons should be made between the identification method based on time-varying
ARX models and other novel time-varying identification methods for capturing adaptive manual-
control behavior. The genetic MLE procedure by Zaal (2016) is already at hand. As surveyed in
Chapter 1, attempts are undertaken to capture (part of the) manual-control behavior by means of
wavelet transforms and LPV subspace methods. Very recently, Pronker (2016) studied changes
in neuromuscular admittance with global LPV models based on local LTI models. Duarte (2016)
assessed the viability of LPV predictor-based subspace identification on the time-varying human-
in-the-loop problem. Active research is conducted by Rojer (2016) to identify time-varying manual
control with the use of an unscented Kalman filter.

H.A. van Grootheest MSc thesis | II Preliminary report



7
Conclusions

The literature survey has shown that there exists a great lack of knowledge on how human operators
manage their ability of adaptation due to various changes of variables over time. The biggest adapta-
tion changes are expected for changes in task variables, in particular for transitions in the controlled-
element dynamics. Furthermore, it has become clear that well-established system identification tech-
niques are not capable to capture such time-varying manual-control behavior of adaptation in system-
theoretical models. However, most successful models developed so far for describing manual-control
behavior make use of quasi-linear models that follow the dictates of the crossover model.

The proposed thesis project will contribute to fill up a part of the knowledge gap of how opera-
tors adapt their manual-control behavior, in compensatory tracking tasks, due to transitions in the
controlled-element dynamics. A cybernetic approach and the concept of system identification will be
used for this. Over the years, TU Delft’s Control and Simulation chair has gained extensive knowledge
of and experience with linear time-invariant (LTI) autoregressive exogenous (ARX) models for time-
invariant human-operator identification. However, no attempts have been made to make use of linear
parameter-varying models, i.e., to take the LTI model representation as basic building block and then
to employ a recursive least-squares algorithm equipped with forgetting factor on the model parame-
ters for capturing time-varying operator behavior. It seems, therefore, very promising to implement an
identification method based on such time-varying ARX models.

The current state of knowledge in the field does not provide a universal approach to be taken in the
simulating time-varying manual-control behavior. Guidelines are available on how to model the human
operator in compensatory tracking tasks, but these are mainly based on the assumption that manual-
control behavior can be considered as time invariant during the identification period. In this research,
the time-variations in both the human-operator dynamics as well as the controlled-element dynamics
will be introduced by making use of sigmoid functions. This can be seen as restrictive, however, no
other reasonable justifications are available.

An identification scheme based on ARX models was set up and implemented. The direct approach
for closed-loop identification was applied. Both filtering and decimation were selected as the prepro-
cessing steps to subject human-operator input-output data. In order to make the crucial decision of
the ARX-model structure, both physical insight and the principle of parsimony were considered. The
intuitive variance accounted for (VAF) metric was selected as the assessment criterion to compare dif-
ferent ARX models. Both the estimation methods of ordinary least squares and recursive least squares
equipped with forgetting factor were explained and demonstrated.

For the further development and tuning of the time-varying ARX-model identification method, ex-
tensive offline simulations will be performed. Monte-Carlo testing is employed to verify the method’s
sensitivity to different remnant levels and realizations and to give the method statistical significance.
Real experimental manual-control data will only be used to validate the method once it has realized its
full potential in the simulation environment.

Taken together, it can be concluded that a strong foundation is laid for the setup of compensatory
manual-control model simulations with time-varying dynamics, and for the further development of the
time-varying identification method based on ARX models.
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A
Simulation setup of the compensatory

manual-control model with time-invariant
dynamics

A high-level block diagram of the compensatory manual-control model with time-invariant dynamics
was given in Chapter 5 of Part II . This diagram is repeated in Figure A.1. Figure A.2 shows the corre-
sponding Simulink block diagram. In order to compute the states of the model during the simulation,
the fixed-step solver ode4 is selected with the step size set to dt = 0.01. This solver uses the fourth-
order Runge-Kutta (RK4) formula. The operator’s visual time delay is modeled with a “Transport Delay”
block without using linearization.

HHO (jω)

ft (t) + e (t)
HHOe

(jω)
+

nw (t)
Hn (jω)

n (t)

+ u (t)
HCE (jω)

x (t)

−

Figure A.1 Block diagram of a single-loop compensatory target-following control task with time-invariant dynamics. Figure 5.4
repeated.
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Figure A.2 Simulink implementation of the compensatory manual-control model with time-invariant dynamics.
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B
Remnant-free simulation of the

compensatory manual-control model
with time-invariant dynamics

This appendix contains the set of figures for the remnant-free simulation of the compensatory target-
following control task with time-invariant dynamics. A block diagram of this setup is shown in Figure B.1.
The human operator is considered as a perfect controller, i.e., HHO (jω) equals HHOe

(jω), who re-
sponds, using control signal u (t), on the error e (t) between the target-forcing function ft (t) and the
system output x (t) of the controlled-element dynamics HCE (jω). Target-forcing function properties
can be found in Table 5.1. The set of parameter values for HHOe

(jω) is
Kv = 0.09, TL = 0.4 s, τv = 0.28 s, ωnm = 11.25 rad/s, ζnm = 0.35 (B.1)

For HCE (jω), the set of parameter values is
KCE = 90.0, ωb = 6.0 rad/s (B.2)

The red triangles in Figures B.2 to B.4 indicate auto-power-spectral density estimates at ωt. Frequency-
response estimates identified at ωt with the Fourier-coefficient (FC) method are included in the Bode
plots of Figures B.5 to B.6. The performance score σ2

e/σ
2
ft

for this simulation was found to be 0.1765.

HHO (jω)

ft (t) + e (t)
HHOe

(jω)
u (t)

HCE (jω)
x (t)

−

Figure B.1 Block diagram of a single-loop compensatory target-following control task with time-invariant dynamics excluding
remnant.
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64 B Remnant-free simulation of the compensatory manual-control model with time-invariant dynamics
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Figure B.2 Remnant-free error signal.
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Figure B.3 Remnant-free control-output signal.
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Figure B.4 Remnant-free system-output signal.
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Figure B.5 Bode plots of the analytical human-operator dynamics and frequency responses identified with the FC method
(remnant free).
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Figure B.6 Bode plots of the analytical system dynamics and frequency responses identified with the FC method (remnant free).
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C
VAF-contour plots

The figures in this appendix display the contour plots of the variance accounted for (VAF) values for
ARX-model estimations on different preprocessed input-output data sets. The original data sets had a
remnant intensity Pn of 0.15. Using these contour plots parsimonious selections can be made on the
ARX-model integers na and nb and the delay integer nk. Figures C.1 to C.8 each consider a data set
that is filtered and/or decimated with a factor d of 2, 4, 8 or 16. The integers na and nb both range from
1 to 10. Different ranges of the integer nk are considered per decimation factor. The bounds of these
ranges are listed in Table C.1.1 The contour plots are created using vertices from the mesh defined by
na and nb. Each contour plot in a figure considers a different value for nk. In Figures C.1 to C.8 the
contour lines vary from 40% (“unreliable” model) to 80% (“good” model) in steps of 10% and a color-
axis scaling is used with limits of 40% and 90%. Figures C.9 to C.12 again consider the input-output
data sets decimated with a factor 8 or 16. The VAF-values in these contour plots are much higher and
therefore the contour lines vary from 72% to 85% in steps of 1% and a color-axis scaling is used with
limits of 70% and 85%. Empty areas in the bottom-left corners indicate that VAF-values are less than
or equal to 0%. Empty areas in the upper-right corners indicate that the regression matrices were rank
deficient. The corresponding integers were not considered in the estimation of the ARX models. The
highest VAF-value in each contour plot is marked with an asterisk.

Table C.1 Bounds of ARX-model integers na and nb, and delay integer nk for different decimation factors. Table 5.2 repeated.

d na nb nk

1 [1 . . 10] [1 . . 10] [1 . . 50]
2 [1 . . 10] [1 . . 10] [1 . . 25]
4 [1 . . 10] [1 . . 10] [1 . . 13]
8 [1 . . 10] [1 . . 10] [1 . . 7]

16 [1 . . 10] [1 . . 10] [1 . . 4]

1Meaningless VAF-contour plots for high values of nk are not shown in this appendix.
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68 C VAF-contour plots
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Figure C.1 VAF-contour plots: input-output signals decimated with d = 2 (Pn = 0.15).
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Figure C.1 (continued)
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Figure C.2 VAF-contour plots: input-output signals filtered and decimated with d = 2 (Pn = 0.15).
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Figure C.2 (continued)
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Figure C.3 VAF-contour plots: input-output signals decimated with d = 4 (Pn = 0.15).
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Figure C.4 VAF-contour plots: input-output signals filtered and decimated with d = 4 (Pn = 0.15).
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Figure C.5 VAF-contour plots: input-output signals decimated with d = 8 (Pn = 0.15).
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Figure C.6 VAF-contour plots: input-output signals filtered and decimated with d = 8 (Pn = 0.15).
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Figure C.7 VAF-contour plots: input-output signals decimated with d = 16 (Pn = 0.15).
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Figure C.8 VAF-contour plots: input-output signals filtered and decimated with d = 16 (Pn = 0.15).
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Figure C.9 High-valued VAF-contour plots: input-output signals decimated with d = 8 (Pn = 0.15).
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Figure C.10 High-valued VAF-contour plots: input-output signals filtered and decimated with d = 8 (Pn = 0.15).
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Figure C.11 High-valued VAF-contour plots: input-output signals decimated with d = 16 (Pn = 0.15).
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Figure C.12 High-valued VAF-contour plots: input-output signals filtered and decimated with d = 16 (Pn = 0.15).
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D
Simulation setup of the compensatory

manual-control model

Chapter 3 of Part II provided the setup of the single-loop compensatory target-following control task.
A block diagram was given and parametric definitions of the controlled-element and the analytical
human-operator dynamics were defined. In the further research, the setup of the remnant filter is
slightly changed. The updated high-level block diagram of the compensatory manual-control model
with time-varying dynamics is shown in Figure D.1. This appendix presents the approach toward a
low-level Simulink implementation, in which attention is paid to the model’s capability of simulating
both time-invariant as well as time-varying dynamics.

HHO (s, t)

ft (t) + e (t)
HHOe

(s, t)
+

nw (t)
Hn (s, t)

n (t)

+ u (t)
HCE (s, t)

x (t)

−

Figure D.1 Block diagram of a single-loop compensatory manual-control model.

D.1 Human-operator dynamics
Analytical human-operator dynamics The time-varying analytical human-operator dynamics are
parametrically defined by

HHOe
(s, t) = Kv (t) [TL (t) s+ 1] e−sτv

ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(D.1)

The above equation should be rewritten as follows, in order to implement it in Simulink.

HHOe
(s, t) = [Kv (t)TL (t) s+Kv (t)] e

−sτv
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

(D.2)

=

[

Kv (t)TL (t)
ω2
nms

s2 + 2ζnmωnms+ ω2
nm

+Kv (t)
ω2
nm

s2 + 2ζnmωnms+ ω2
nm

]

e−sτv (D.3)

Remnant filter Based on studies performed by Pool et al. (2011b, 2012), the following mth-order
remnant filter is considered

Hn (s, t) =
Kn (t)

(Tns+ 1)
m (D.4)

in which the remnant gain Kn (t) can vary in time. The remnant-time constant Tn is set equal to 0.06 s.
Analogous to the values of the parameters of the controlled-element dynamics and the operator’s
equalization dynamics, the value of Kn (t) will vary according a sigmoid function.
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80 D Simulation setup of the compensatory manual-control model

In addition, the following specific remnant filter is considered.
Hn (s, t) = Kn (t)Hnm (s) (D.5)

This one is similar to the human operator’s neuromusuclar-actuation dynamics Hnm (s).

D.2 Controlled-element dynamics
The time-varying controlled-element dynamics are parametrically defined by

HCE (s, t) =
KCE (t)

s2 + ωb (t) s
(D.6)

In order to set up the simulation, Eq. (D.6) should be rewritten as follows.

HCE (s, t) =
KCE (t)

s2 + ωb (t) s

1

s2
1

s2

(D.7)

=

KCE (t)

s2

1 +
ωb (t)

s

(D.8)

=

KCE (t)

s2
ωb (t)

ωb (t)

1 +
ωb (t)

s

(D.9)

=

KCE (t)

ωb (t)

ωb (t)

s

1

s

1 +
ωb (t)

s

(D.10)

=
KCE (t)

ωb (t)

ωb (t)

s

1 +
ωb (t)

s
︸ ︷︷ ︸

�

1

s
(D.11)

The controlled-element dynamics part represented by the square � can be expressed in an open-loop
block diagram as in Figure D.2(a). A closed-loop representation of this, suitable for implementation in
Simulink, is shown in Figure D.2(b).

Input
ωb (t)

s

1+
ωb (t)

s

Output

(a) Open-loop representation.

Input + ωb (t)

s

Output

−

(b) Closed-loop representation.

Figure D.2 Equivalent block diagrams of a part of the controlled-element dynamics.

D.3 Simulink implementation
Figure D.3 shows the Simulink block diagram of the compensatory manual-control model with the
possibility to simulate both time-invariant and time-varying dynamics. The gray blocks represent the
analytical human-operator dynamics and the controlled-element dynamics, which were set up using
Eqs. (D.3) and (D.11). In order to avoid integrator windup, it is very important to perform most of the
setpoint calculations before signals enter the integrator blocks. The operator’s visual time delay is
modeled with a (discrete) “Delay” block.

In order to compute the states of the model during the simulation, the fixed-step solver ode4 is
selected with the step size set to dt = 1/fs. This solver uses the fourth-order Runge-Kutta (RK4)
formula.
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E
Remnant-free simulations of the

compensatory manual-control model

This appendix illustrates the time traces of the signals that are obtained when simulating the com-
pensatory manual-control model in different conditions without taking into account remnant (see Fig-
ure E.1). Both the time traces in the measurement window and the transition window are provided.
Table E.1 presents an overview of the different conditions and lists the references to the figures.
For conditions with controlled-element transitions, the maximum rate of transition G was set around
M = 40.96 s, i.e., around the midpoint of the measurement window. This midpoint is indicated in the
corresponding figures. Time traces of the forcing function ft (t) are shown in Figure E.2.

HHO (s, t)

ft (t) + e (t)
HHOe

(s, t)
u (t)

HCE (s, t)
x (t)

−

Figure E.1 Block diagram of the single-loop compensatory target-following control task excluding remnant.

Table E.1 Simulated conditions and overview of figures.

Condition HCE (s) G, s-1 Measurement window Transition window
C1 HCE,1 (s) n/a Figure E.3 Figure E.9
C2 HCE,2 (s) n/a Figure E.4 Figure E.10
C3 HCE,1 (s) → HCE,2 (s) 0.5 Figure E.5 Figure E.11
C4 HCE,1 (s) → HCE,2 (s) 100 Figure E.6 Figure E.12
C5 HCE,2 (s) → HCE,1 (s) 0.5 Figure E.7 Figure E.13
C6 HCE,2 (s) → HCE,1 (s) 100 Figure E.8 Figure E.14
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(b) Transition window.

Figure E.2 Time traces of the forcing function.
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84 E Remnant-free simulations of the compensatory manual-control model

E.1 Measurement windowreplacements
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(c) System-output signal.

Figure E.3 Measurement-time traces for condition C1.
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(c) System-output signal.

Figure E.4 Measurement-time traces for condition C2.
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Figure E.5 Measurement-time traces for condition C3.
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Figure E.8 Measurement-time traces for condition C6.
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Figure E.10 Transition-time traces for condition C2.
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Figure E.11 Transition-time traces for condition C3.
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Figure E.12 Transition-time traces for condition C4.
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Figure E.13 Transition-time traces for condition C5.
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Figure E.14 Transition-time traces for condition C6.
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F
ZOH discretization of the analytical

human-operator dynamics

In the simulation study (cf., Chapter 5 of Part II), the following analytical human-operator model is
considered

HHOe
(jω) =

Equalization dynamics: Heq (jω)
︷ ︸︸ ︷

Kv
︸︷︷︸

Gain

[TLjω + 1]
︸ ︷︷ ︸

Lead term

Limitations
︷ ︸︸ ︷

e−jωτv
︸ ︷︷ ︸

Time delay

ω2
nm

(jω)
2
+ 2ζnmωnmjω + ω2

nm
︸ ︷︷ ︸

Neuromuscular-actuation dynamics: Hnm (jω)

(F.1)

Without taking into account the time delay τv, this continuous-time model is written as

H (jω) = Kv [TLjω + 1]
ω2
nm

(jω)
2
+ 2ζnmωnmjω + ω2

nm

(F.2)

A discrete-time transfer function Gd (z) can be obtained from a continuous-time transfer function Hc (s)
by applying zero-order hold (ZOH) discretization. The following expression summarizes the procedure
(Tangirala, 2015):

Gd (z) =

Z

{

L−1
{

Hc(s)
s

}∣
∣
∣
t=kTs

}

1
1−z−1

(F.3)

If the input e [k] is set to a step signal, ZOH results in a step input e (t) to the process. Then, the output
u (t) is a step response to Hc (s).

The above model in Eq. (F.2) can be specified using the following rational expression in the discrete-
time variable z, in ascending powers of z−1:

H (z) = z−1 b0 + b1z
−1

1 + a1z−1 + a2z−2
(F.4)

It can be observed that the numerator and the denominator of the above expression have the same
conventions as the ARX model’s input polynomial B (q) and output polynomial A (q), respectively (cf.,
Chapter 4 of Part II). Furthermore, a unit-sample input-output delay arises due to discretization. The
value of a0 always equals 1. The actual values of a1, a2, b0, and b1, can be found by discretizing
Eq. (F.2) (take care about the z-transform convention), once values for the equalization and the (neuro-
muscular) limitation parameters are substituted. Furthermore, they are dependent on the discretization
method and the sampling time Ts. It should be noted that the human-operator model assumes another
disturbance than the ARX model (see Figure F.1). Thus, it is necessary to keep in mind that the
ARX-model parameters will be estimated biased and inconsistent.

Demonstration The following particular sets of values for the equalization and limitation parameters
are taken in this simulation study

Kv,1 = 0.09, TL,1 = 0.4 s (F.5)

Kv,2 = 0.07, TL,2 = 1.2 s (F.6)
τv = 0.28 s, ωnm = 11.25 rad/s, ζnm = 0.35 (F.7)
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e (t)
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+
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+ 1
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(a) ARX-model assumption.

e (t)
B (q)

1

A (q)

+

n (t)

+ u (t)

(b) Human-operator model assumption.

Figure F.1 Comparison of the ARX model and the human-operator model.

Substituting the latter two values listed in Eq. (F.7), and, in turn, the values listed in Eqs. (F.5) and (F.6),
into Eq. (F.2), will lead to the following two continuous-time models:

H1 (jω) =
4.556jω + 11.39

(jω)
2
+ 7.875jω + 126.6

(F.8)

H2 (jω) =
10.63jω + 8.859

(jω)
2
+ 7.875jω + 126.6

(F.9)

Table F.1 shows the ARX model’s parameter values when employing the ZOH discretization with dif-
ferent sampling times on Eqs. (F.8) and (F.9). They will be treated as the true parameters θ0. Table F.1
also lists the decimation factors d as a means of reference in case Ts = 0.01 s is considered as no dec-
imation (i.e., d = 1). Accompanying Bode plots of the different discrete-time models H1 (z) and H2 (z)
are shown in Figures F.2(a) and (b), respectively. They also include the analytical continuous-time
human-operator models HHOe,1 (jω) and HHOe,2 (jω). The Bode phase-angle plots of the discrete-
time models are adjusted with − 180

π
ωτv as the delay was left out during discretization. The frequency

range of each discrete-time model depends on the Nyquist frequency ωN (d).
Table F.2 lists for different decimation factors, the variance accounted for (VAF) values when using

the the parameter values in Table F.1 as true ARX model. The higher the decimation, the lower the
VAF. Analogously, Table F.3 presents the true parameter values if data is sampled with 200 Hz (no
resampling). Then, VAFZOH, % for condition C1 and C2 with n0

k = 57 equal 99.9182 and 99.9525,
respectively.

Table F.1 Values of the ARX-model coefficients for different sampling times Ts once ZOH discretization is employed.

H1 (z); H2 (z) H1 (z) H2 (z)

Ts, s d a01 a02 b00 b01 b00 b01
0.01 1 -1.9121 0.9243 0.0443 -0.0432 0.1024 -0.1016
0.02 2 -1.8076 0.8543 0.0858 -0.0816 0.1967 -0.1935
0.04 4 -1.5590 0.7298 0.1592 -0.1438 0.3589 -0.3470
0.08 8 -0.9709 0.5326 0.2636 -0.2130 0.5715 -0.5322
0.16 16 0.1226 0.2837 0.3065 -0.1799 0.5942 -0.4957

Table F.2 VAF values when using ARX-model coefficients for different sampling times Ts once ZOH discretization is employed,
fs = 100 Hz, n0

k
= 29.

H1 (z) H2 (z)

Ts, s d VAFZOH, % VAFZOH, %
0.01 1 99.9104 99.9423
0.02 2 99.8966 99.9475
0.04 4 99.7140 99.7271
0.08 8 98.9185 98.4915
0.16 16 96.5235 92.1485

Table F.3 Values of the ARX-model coefficients for different sampling times Ts once ZOH discretization is employed.

H1 (z); H2 (z) H1 (z) H2 (z)

Ts, s a01 a02 b00 b01 b00 b01
0.005 -1.9583 0.9614 0.0225 -0.0222 0.0522 -0.0520
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G
Influence of the remnant-filter type on

ARX-model estimation

In the scientific paper the influence of the variable delay estimation n∗
k and remnant-filter type Hm

n (s)
was only shown for C1. This appendix shows for C1 and C2 (see Table E.1), the box plot results for
M = 100 Monte Carlo replications and seven remnant intensities Pn, i.e., 0, 0.05, 0.10, 0.15, 0.20,
0.25, 0.30. In addition the results are shown for open-loop input-output data. Remnant-free error
signals e (t) are taken and the open-loop control-output signals u (t) are obtained by

u (t) = u′ (t) + n (t) (G.1)
with u′ (t) the remnant-free control-output signal (see Appendix E).

Table G.1 lists the optimized Kn values for different remnant-filter types Hm
n (s), for conditions C1

and C2.

Table G.1 Optimized Kn values for different remnant-filter types Hm
n (s), for conditions C1 and C2.

Kn

H1
n (s) H2

n (s) H3
n (s) H4

n (s) Hnm
n (s)

Pn C1 C2 C1 C2 C1 C2 C1 C2 C1 C2
0.05 0.006 0.013 0.008 0.019 0.010 0.022 0.010 0.024 0.006 0.013
0.10 0.009 0.020 0.012 0.029 0.014 0.034 0.015 0.038 0.009 0.020
0.15 0.011 0.026 0.016 0.039 0.018 0.047 0.020 0.053 0.011 0.026
0.20 0.013 0.032 0.019 0.051 0.022 0.063 0.024 0.073 0.013 0.033
0.25 0.015 0.039 0.023 0.066 0.026 0.088 0.029 0.110 0.016 0.040
0.30 0.018 0.046 0.026 0.091 0.031 0.150 0.034 0.339 0.018 0.050
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G.1 Variable delay estimation
G.1.1 Condition 1
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Figure G.1 Variable n∗

k
estimation for condition C1, for different Hm

n (s).
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Figure G.2 Variable n∗

k
estimation for condition C2, for different Hm

n (s).
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G.2 Relative bias
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Figure G.3 Relative bias in ARX-model parameters for condition C1, for different Hm
n (s), when using n0

k
and n∗

k
for fs = 50 Hz.
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Figure G.4 Relative bias in ARX-model parameters for condition C1, for different Hm
n (s), when using n0

k
and n∗

k
for fs = 100 Hz.

MSc thesis | III Final report appendices H.A. van Grootheest



96 G Influence of the remnant-filter type on ARX-model estimation

Pn= 0.30
Pn= 0.25
Pn= 0.20

Hm
n (s)

b1

Pn= 0.05

B
r

,–

Hm
n (s)

b0

B
r

,–

Hm
n (s)

a2

Pn= 0.15
Pn= 0.10

B
r

,–

Pn= 0

Hm
n (s)

a1

B
r

,–

n0
k

2
n∗

k n0
k

3
n∗

k n0
k

4
n∗

k n0
k
nm

n∗

kn0
k

1
n∗

kn0
k

2
n∗

k n0
k

3
n∗

k n0
k

4
n∗

k n0
k
nm

n∗

kn0
k

1
n∗

k

n0
k

2
n∗

k n0
k

3
n∗

k n0
k

4
n∗

k n0
k
nm

n∗

kn0
k

1
n∗

kn0
k

2
n∗

k n0
k

3
n∗

k n0
k

4
n∗

k n0
k
nm

n∗

kn0
k

1
n∗

k

-1.25

-0.75

-0.25

0.25

0.75

-35

-25

-15

-5

5

-1.25

-0.75

-0.25

0.25

0.75

-35

-25

-15

-5

5

-0.16

-0.08

0

0.08

0.16

-0.2

0.15

0.5

0.85

1.2

-0.1

-0.05

0

0.05

0.1

-0.25

0

0.25

0.5

0.75

(a) Closed loop.

Hm
n (s)

a2

Hm
n (s)

B
r

,–

b0

B
r

,–

b1

Hm
n (s)

B
r

,–

Hm
n (s)

a1

B
r

,–

n0
k

2
n∗

k n0
k

3
n∗

k n0
k

4
n∗

k n0
k
nm

n∗

kn0
k

1
n∗

kn0
k

2
n∗

k n0
k

3
n∗

k n0
k

4
n∗

k n0
k
nm

n∗

kn0
k

1
n∗

k

n0
k

2
n∗

k n0
k

3
n∗

k n0
k

4
n∗

k n0
k
nm

n∗

kn0
k

1
n∗

kn0
k

2
n∗

k n0
k

3
n∗

k n0
k

4
n∗

k n0
k
nm

n∗

kn0
k

1
n∗

k

-1.25

-0.75

-0.25

0.25

0.75

-35

-25

-15

-5

5

-1.25

-0.75

-0.25

0.25

0.75

-35

-25

-15

-5

5

-0.16

-0.08

0

0.08

0.16

-0.2

0.15

0.5

0.85

1.2

-0.1

-0.05

0

0.05

0.1

-0.25

0

0.25

0.5

0.75

(b) Open loop.

Figure G.5 Relative bias in ARX-model parameters for condition C1, for different Hm
n (s), when using n0

k
and n∗

k
for fs = 200 Hz.
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G.2.2 Condition 2
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(b) Open loop.

Figure G.6 Relative bias in ARX-model parameters for condition C2, for different Hm
n (s), when using n0

k
and n∗

k
for fs = 50 Hz.
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Figure G.7 Relative bias in ARX-model parameters for condition C2, for different Hm
n (s), when using n0

k
and n∗

k
for fs = 100 Hz.
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(b) Open loop.

Figure G.8 Relative bias in ARX-model parameters for condition C2, for different Hm
n (s), when using n0

k
and n∗

k
for fs = 200 Hz.
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H
Frequency-response statistics and

accuracies

H.1 Ensemble statistics
In order to calculate the average magnitude and the average phase angle of the frequency response
H̄ (jωk; Z), at a given frequency ωk, for a set Z of n realizations ζi, the real and imaginary parts of

the estimated frequency responses Ĥ (jωk; Z), i.e., Re
{

Ĥ (jωk; Z)
}

and Im
{

Ĥ (jωk; Z)
}

, should be

averaged first:

Re
{
H̄ (jωk; Z)

}
=

1

n

n∑

i=1

Re
{

Ĥ (jωk; ζi)
}

(H.1)

Im
{
H̄ (jωk; Z)

}
=

1

n

n∑

i=1

Im
{

Ĥ (jωk; ζi)
}

(H.2)

The average magnitude and the average phase angle are then computed, respectively, using
∣
∣H̄ (jωk; Z)

∣
∣ =

√

Re
{
H̄ (jωk; Z)

}2
+ Im

{
H̄ (jωk; Z)

}2
(H.3)

∠H̄ (jωk; Z) = arctan
Im
{
H̄ (jωk; Z)

}

Re
{
H̄ (jωk; Z)

} (H.4)

Similarly, in order to calculate the standard deviations of the magnitude and the phase angle of
the frequency response H̄ (jωk; Z), the standard deviations of the real and imaginary parts should be
computed first:

σRe{H̄}(jωk;Z)
=

√
√
√
√

1

n− 1

n∑

i=1

∣
∣
∣Re

{

Ĥ (jωk; ζi)
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− Re
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}
∣
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∣

2

(H.5)

σIm{H̄}(jωk;Z)
=

√
√
√
√

1

n− 1

n∑

i=1

∣
∣
∣Im

{

Ĥ (jωk; ζi)
}

− Im
{
H̄ (jωk; Z)

}
∣
∣
∣

2

(H.6)

The standard deviation of the magnitude is then obtained by
σ|H̄|(jωk;Z)

=
√

σ2
Re{H̄}(jωk;Z)

+ σ2
Im{H̄}(jωk;Z)

(H.7)

The standard deviation of the phase angle (in rad) is calculated as (van der Vaart, 1992, pp. 234–235):

σ∠H̄(jωk;Z) =







π if
σ|H̄|(jωk;Z)
∣
∣H̄ (jωk; Z)

∣
∣
> 1

arctan
σ|H̄|(jωk;Z)
∣
∣H̄ (jωk; Z)

∣
∣

otherwise
(H.8)

A graphical interpretation of the above is given in Figure H.1. The standard deviation of the phase
angle equals π (i.e., 180◦) if the standard deviation of the magnitude is larger than the average magni-
tude itself.
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Figure H.1 Standard deviations σ|H̄| and σ∠H̄ in the complex plane, adapted from van der Vaart (1992).

H.2 Frequency-response accuracies
As presented in Nieuwenhuizen et al. (2008) [note the typo in Eq. (16) corrected here], the analytical
variances of the magnitude and the phase angle (in rad) of the frequency response Ĥ (jωk; ζi), at a
given frequency ωk, are computed, respectively, as (omitting (jωk; ζi) for readability)

σ2

|Ĥ| =
1
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∣
∣Ĥ
∣
∣
∣

2

(
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Ĥ
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C1 + 2Re
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Ĥ
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(H.9)
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Ĥ
)

Im
(

Ĥ
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C2
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(H.10)

In the above, C1 is the variance of the real part of Ĥ, i.e., σ2
Re{Ĥ}

, C12 is the covariance between the

real and imaginary parts of Ĥ, i.e. CRe{Ĥ},Im{Ĥ}, and C2 is the variance of the imaginary part of Ĥ,

i.e., σ2
Im{Ĥ}

. Letting ∗ denote the complex conjugate transpose, these elements are determined using

Gauss’ approximation formula as

C1 = Re

(

dĤ

dθ

)

Pθ Re

(

dĤ

dθ

)∗

(H.11)

C12 = Re

(

dĤ

dθ

)

Pθ Im

(

dĤ

dθ

)∗

(H.12)

C2 = Im

(

dĤ

dθ

)

Pθ Im

(

dĤ

dθ

)∗

(H.13)

where dĤ
dθ

is the sensitivity of dĤ with respect to the parameter set θ and Pθ is the covariance matrix.
Considering an ARX model’s frequency response at a given frequency ω and sampling time Ts (not

taking into account the input-output delay nk)

Ĥ (ω) =
b0 + b1e

−jωTs + · · · bnb
e−(i)j(nb−1)ωTs

1 + a1e−jωTs + · · ·+ ana
e−jnaωTs

(H.14)

the sensitivity is expressed as (omitting ω for readability)
dĤ

dθ
=
[
dĤ
da1

dĤ
da2

· · · dĤ
dana

dĤ
db0

dĤ
db1

· · · dĤ
dbnb

]

(H.15)

with (considering no input-output delay nk)
dĤ

dai
= −

Ĥ

1 + a1e−jωTs + · · ·+ ana
e−jnaωTs

e−(i)jωTs (H.16)

dĤ

dbi
=

1

1 + a1e−jωTs + · · ·+ ana
e−jnaωTs

e−(i)jωTs (H.17)
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I
Frequency-response estimation with

FCs, and batch and recursive ARX
models

This appendix presents frequency-response estimates of the human operator (HO) dynamics for con-
dition C1 (mostly 1/s dynamics) and C2 (mostly 1/s2 dynamics) (see Table E.1) for M = 100 Monte
Carlo replications and seven remnant intensities Pn, i.e., 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. The rem-
nant dynamics were defined according H2

n (s). Both the methods of Fourier coefficients (FCs), batch
and recursive ARX models are considered. The ARX-model structure is specified with na = nb = 2.
Continuous-time delay is estimated with n∗

k (see procedure in scientific paper). For the RLS estimation,
the initial parameter estimate θ̂0 is set to θ̂OLS estimated on the initial 30.72 s, and the initial scaled
covariance matrix P0 is set to I. Constant dynamics are considered so the forgetting factor λ is set to
1. The final RLS estimation is used to obtain the frequency-response estimates. For the different Pn,
Bode plots of the frequency responses for condition C1 and C2 are shown in Figures I.1 and I.2, re-
spectively. The ensemble-average mean and ensemble standard deviation is shown for the frequency
responses based on the FCs. Both the analytical and ensemble standard deviations (see Appendix H)
are included in Bode plots of the batch and recursive ARX models. These ARX models are consistent.
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(g) Pn = 0.30.

Figure I.1 Bode plots for condition 1.

H.A. van Grootheest MSc thesis | III Final report appendices



105

RLS σana

OLS σana

∠
H

H
O

(z
),

de
g

ZOH
FCs

ARX-RLS

ARX-OLS

RLS σen

OLS σen

ω, rad/s

ω, rad/s

|H
H

O
(z

)|
,–

10-1 100 101 102

10-1 100 101 102

-450
-360
-270

-180
-90

0
90

10-1

100

(a) Pn = 0.

ω, rad/s

∠
H

H
O

(z
),

de
g

|H
H

O
(z

)|
,–

ω, rad/s

10-1 100 101 102

10-1 100 101 102

-450
-360
-270

-180
-90

0
90

10-1

100

(b) Pn = 0.05.

ω, rad/s

∠
H

H
O

(z
),

de
g

ω, rad/s

|H
H

O
(z

)|
,–

10-1 100 101 102

10-1 100 101 102

-450
-360
-270

-180
-90

0
90

10-1

100

(c) Pn = 0.10.

ω, rad/s

∠
H

H
O

(z
),

de
g

|H
H

O
(z

)|
,–

ω, rad/s

10-1 100 101 102

10-1 100 101 102

-450
-360
-270

-180
-90

0
90

10-1

100

(d) Pn = 0.15.

ω, rad/s

∠
H

H
O

(z
),

de
g

ω, rad/s

|H
H

O
(z

)|
,–

10-1 100 101 102

10-1 100 101 102

-450
-360
-270

-180
-90

0
90

10-1

100

(e) Pn = 0.20.

∠
H

H
O

(z
),

de
g

ω, rad/s

ω, rad/s

|H
H

O
(z

)|
,–

10-1 100 101 102

10-1 100 101 102

-450
-360
-270

-180
-90

0
90

10-1

100

(f) Pn = 0.25.

∠
H

H
O

(z
),

de
g

ω, rad/s

ω, rad/s

|H
H

O
(z

)|
,–

10-1 100 101 102

10-1 100 101 102

-450
-360
-270

-180
-90

0
90

10-1

100

(g) Pn = 0.30.

Figure I.2 Bode plots for condition 2.
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J
VAF-results

This appendix contains additional results of the variance accounted for (VAF) calculations in the tran-
sition window of 20.48 s, for all conditions and remnant intensities. In the scientific paper the actual
VAF values were not shown. Figures J.1 and J.2 present the estimation data and validation data VAFs,
respectively. Figures J.3 and J.4 shows the average overfit that can be calculated based on these
estimation data and validation data VAFs. Figure J.3 expresses the overfit as a subtraction:

∆VAFλ = VAFλ
e −VAFλ

v (J.1)

∆VAFΛ = VAFΛ
e −VAFΛ

v (J.2)
J.4 shows the overfit as a ratios:

VAFλ
e

VAFλ
v

(J.3)

and
VAFΛ

e

VAFΛ
v

(J.4)

An alternative measure to trade off the tracking ability versus noise sensitivity is given by.
VAFλ

v

VAFλ=1
v

(J.5)

and
VAFΛ

v

VAFΛ=I
v

(J.6)

The results of these ratios are shown in Figure J.5.
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J.1 Estimation data VAFs
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Figure J.1 Estimation data VAFs.
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J.2 Validation data VAFs
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Figure J.2 Validation data VAFs.
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J.3 Overfit measures
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Figure J.3 Overfit as subtraction.
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Figure J.4 Overfit as a ratio, ratios for low N0 approach infinity.
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Figure J.5 Ratio to trade off between tracking ability and noise sensitvity.
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K
Time traces of the ARX-model

parameters

The subsequent pages show figures with the time traces of the ARX-model parameters a1 (t), a2 (t),
b0 (t), and b1 (t), for the different conditions and remnant intensities considered. The results are based
on M = 100 Monte Carlo replications. Time traces are shown for the initial and final (constant) batch
ARX-model estimates with green lines and the recursive ARX-model estimates with black lines. For
both the batch and recursive estimates the mean and standard deviations are presented. In addition
the ZOH discretized true parameter values are presented in red line. The instant of the sigmoid time of
maximum rate of change is shown with a gray line. Memory horizons of powers of two ranging between
2 and 8 192 samples are considered. The results are shown for both the scalar forgetting factor λ and
the forgetting matrix Λ, with λa1

and λa2
set equal to 1. In addition the case of no forgetting, i.e.,

N0 = ∞ is given for each condition.

Table K.1 Simulated conditions and overview of figures.

Condition HCE (s) G, s-1 Measurement window
C1 HCE,1 (s) n/a Figure K.1
C2 HCE,2 (s) n/a Figure K.2
C3 HCE,1 (s) → HCE,2 (s) 0.5 Figure K.3
C4 HCE,1 (s) → HCE,2 (s) 100 Figure K.4
C5 HCE,2 (s) → HCE,1 (s) 0.5 Figure K.5
C6 HCE,2 (s) → HCE,1 (s) 100 Figure K.6

113



114 K Time traces of the ARX-model parameters

N
0
=

2
P
n
=

0.
30

a2(t) b0(t)

t,
s

b1(t)

t,
s

t,
s

t,
s

t,
s

t,
s

t,
s

P
n
=

0.
00

a1(t)

P
n
=

0.
05

P
n
=

0.
10

P
n
=

0.
15

P
n
=

0.
20

P
n
=

0.
25

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
a
1
,a

2
0

=
∞

,N
b
0
,b

1
0

=
2

t,
s

b1(t)

t,
s

P
n
=

0.
20

b0(t)

P
n
=

0.
05

P
n
=

0.
00

P
n
=

0.
10

P
n
=

0.
15

a1(t) a2(t)

t,
s

t,
s

P
n
=

0.
25

P
n
=

0.
30

t,
s

t,
s

t,
s

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
0
=

4

b0(t)

P
n
=

0.
15

P
n
=

0.
20

P
n
=

0.
05

P
n
=

0.
10

P
n
=

0.
00

a1(t)

t,
s

b1(t)

t,
s

t,
s

t,
s

t,
s

P
n
=

0.
25

P
n
=

0.
30

a2(t)

t,
s

t,
s

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
a
1
,a

2
0

=
∞

,N
b
0
,b

1
0

=
4

P
n
=

0.
15

a2(t)

P
n
=

0.
05

t,
s

b1(t)

t,
s

P
n
=

0.
00

a1(t)

P
n
=

0.
10

b0(t)

P
n
=

0.
25

P
n
=

0.
30

P
n
=

0.
20

t,
s

t,
s

t,
s

t,
s

t,
s

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

F
ig

ur
e

K
.1

T
im

e
tr

ac
es

of
A

R
X

-m
od

el
pa

ra
m

et
er

s
fo

r
co

nd
iti

on
C

1.

H.A. van Grootheest MSc thesis | III Final report appendices



115

N
0
=

8

t,
s

t,
s

P
n
=

0.
10

a1(t)

P
n
=

0.
05

a2(t)

P
n
=

0.
30

P
n
=

0.
25

P
n
=

0.
00

P
n
=

0.
20

P
n
=

0.
15

b0(t)

t,
s

b1(t)

t,
s

t,
s

t,
s

t,
s

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
a
1
,a

2
0

=
∞

,N
b
0
,b

1
0

=
8

P
n
=

0.
30

a2(t)

t,
s

b1(t)

P
n
=

0.
15

P
n
=

0.
10

P
n
=

0.
00

a1(t)

P
n
=

0.
05

t,
s

t,
s

b0(t)

P
n
=

0.
25

P
n
=

0.
20

t,
s

t,
s

t,
s

t,
s

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
0
=

16

b0(t)

t,
s

t,
s

t,
s

b1(t)

t,
s

t,
s

P
n
=

0.
15

P
n
=

0.
30

P
n
=

0.
25

P
n
=

0.
10

P
n
=

0.
20

t,
s

t,
s

P
n
=

0.
05

P
n
=

0.
00

a1(t) a2(t)

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
a
1
,a

2
0

=
∞

,N
b
0
,b

1
0

=
16

a2(t)

P
n
=

0.
00

a1(t) b0(t)

P
n
=

0.
30

t,
s

t,
s

t,
s

P
n
=

0.
25

P
n
=

0.
05

P
n
=

0.
10

P
n
=

0.
20

P
n
=

0.
15

t,
s

t,
s

t,
s

b1(t)

t,
s

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

F
ig

ur
e

K
.1

(c
on

tin
ue

d)

MSc thesis | III Final report appendices H.A. van Grootheest



116 K Time traces of the ARX-model parameters

N
0
=

32
P
n
=

0.
05

a2(t)

P
n
=

0.
30

t,
s

t,
s

t,
s

P
n
=

0.
10

P
n
=

0.
00

a1(t) b0(t)

t,
s

b1(t)

P
n
=

0.
25

P
n
=

0.
15

t,
s

t,
s

t,
s

P
n
=

0.
20

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
a
1
,a

2
0

=
∞

,N
b
0
,b

1
0

=
32

P
n
=

0.
25

P
n
=

0.
30

a2(t)

t,
s

t,
s

t,
s

t,
s

t,
s

b0(t)

P
n
=

0.
20

P
n
=

0.
05

P
n
=

0.
15

t,
s

b1(t)

t,
s

P
n
=

0.
10

P
n
=

0.
00

a1(t)

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
0
=

64

a2(t)

P
n
=

0.
25

P
n
=

0.
30

t,
s

b1(t)

t,
s

P
n
=

0.
00

a1(t)

t,
s

t,
s

t,
s

t,
s

t,
s

P
n
=

0.
10

P
n
=

0.
05

P
n
=

0.
20

b0(t)

P
n
=

0.
15

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
a
1
,a

2
0

=
∞

,N
b
0
,b

1
0

=
64 P

n
=

0.
20

P
n
=

0.
25

P
n
=

0.
00

a1(t)

P
n
=

0.
05

P
n
=

0.
10

P
n
=

0.
15

P
n
=

0.
30

a2(t)

t,
s

t,
s

b1(t)

t,
s

t,
s

t,
s

t,
s

b0(t)

t,
s

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

F
ig

ur
e

K
.1

(c
on

tin
ue

d)

H.A. van Grootheest MSc thesis | III Final report appendices



117

N
0
=

12
8

t,
s

b1(t)

t,
s

P
n
=

0.
00

a1(t)

P
n
=

0.
05

b0(t)

P
n
=

0.
25

P
n
=

0.
20

t,
s

t,
s

t,
s

P
n
=

0.
15

P
n
=

0.
10

P
n
=

0.
30

t,
s

t,
s

a2(t)

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
a
1
,a

2
0

=
∞

,N
b
0
,b

1
0

=
12

8
P
n
=

0.
00

a1(t)

P
n
=

0.
20

a2(t) b0(t)

t,
s

t,
s

t,
s

t,
s

t,
s

t,
s

b1(t)

t,
s

P
n
=

0.
10

P
n
=

0.
15

P
n
=

0.
05

P
n
=

0.
25

P
n
=

0.
30

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
0
=

25
6

b1(t)

t,
s

t,
s

t,
s

P
n
=

0.
30

a2(t)

t,
s

t,
s

P
n
=

0.
25

P
n
=

0.
15

P
n
=

0.
00

a1(t)

P
n
=

0.
05

P
n
=

0.
20

t,
s

t,
s

P
n
=

0.
10

b0(t)

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

N
a
1
,a

2
0

=
∞

,N
b
0
,b

1
0

=
25

6

t,
s

t,
s

t,
s

t,
s

P
n
=

0.
00

a1(t)

P
n
=

0.
05

a2(t) b0(t)

P
n
=

0.
10

t,
s

b1(t)

P
n
=

0.
15

P
n
=

0.
20

t,
s

t,
s

P
n
=

0.
25

P
n
=

0.
30

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
0

20
40

60
80

0
20

40
60

80
-0

.4

-0
.3

-0
.2

-0
.100

0.
1

0.
2

0.
3

0.
4

0.
750.

8

0.
850.

9

0.
95

-1
.9

5

-1
.9

-1
.8

5

-1
.8

-1
.7

5

F
ig

ur
e

K
.1

(c
on

tin
ue

d)

MSc thesis | III Final report appendices H.A. van Grootheest



118 K Time traces of the ARX-model parameters
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120 K Time traces of the ARX-model parameters
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122 K Time traces of the ARX-model parameters
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124 K Time traces of the ARX-model parameters
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126 K Time traces of the ARX-model parameters
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128 K Time traces of the ARX-model parameters
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132 K Time traces of the ARX-model parameters
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134 K Time traces of the ARX-model parameters
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136 K Time traces of the ARX-model parameters
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138 K Time traces of the ARX-model parameters
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148 K Time traces of the ARX-model parameters
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150 K Time traces of the ARX-model parameters
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152 K Time traces of the ARX-model parameters
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154 K Time traces of the ARX-model parameters
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L
Time traces of the human-operator

model parameters

The subsequent pages show figures with the time traces of the HO-model parameters TL (t), Kė (t),
ωnm (t), ζnm (t). These figures are in accordance with the figures shown in Appendix K. Only the
results are shown for optimal scalar forgetting factor λ of 0.99609 (for data sampled with fs = 100 Hz),
and for the forgetting matrix Λ, with λa1

= λa2
= 1 and λa1

= λa2
= 0.99609. ARX models were

only converted to the HO model structure at instants where the corresponding discrete ARX model’s
transfer function had complex-conjugate poles.
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158 L Time traces of the human-operator model parameters
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160 L Time traces of the human-operator model parameters
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M
Real measurements

This appendix shows the application of the identification procedure outlined in this research on real
experimental manual-control data.

An experiment was conducted in the SIMONA Research Simulator (SRS) at Delft University of
Technology, in fixed-base setting. Three subjects (average age 24 years) performed the single-axis
compensatory manual-control task that was studied in this research by means of the Monte Carlo
simulations. The conditions are listed in Table M.1. The conditions C3–C6 contained time-varying
controlled-element (CE) dynamics in which the rate of change of the parameters was varied. Subjects
1 and 2 also performed the task with constant controlled element (CE) dynamics. In each condition
multiple runs were performed. The length of the runs was set to 90.00 s. A measurement time Tm of
81.92 s was used for the identification. The maximum rate of transition M in conditions C3–C6 was
set to 50.00 s (i.e., at 42.93 s in the measurement window). Data was samples with fs = 100 Hz.

Table M.1 Experiment conditions.

Condition HCE (s) G, s-1 Subjects Figure
C1 HCE,1 (s) n/a 1, 2 Figure M.1
C2 HCE,2 (s) n/a 1, 2 Figure M.2
C3 HCE,1 (s) → HCE,2 (s) 0.5 1, 2, 3 Figure M.3
C4 HCE,1 (s) → HCE,2 (s) 100 1, 2, 3 Figure M.4
C5 HCE,2 (s) → HCE,1 (s) 0.5 1, 2, 3 Figure M.5
C6 HCE,2 (s) → HCE,1 (s) 100 1, 2, 3 Figure M.6

The ARX-model identification approach, as outlined in the scientific paper, was adopted. Input-
output data were recorded with fs = 100 Hz, and ft (t) was set up with the properties listed in Table 5.1.
Similar to the Monte Carlo analysis, the ARX-model structure was set to na = nb = 2. Visual delay
was assumed to be constant and estimated using n∗

k. Batch ARX models were fit on the initial and
final 30.72 s of the measurement window. The recursive ARX-model estimations were initialized with
the initial θ̂OLS and P0 set to I. In accordance with the results from the Monte Carlo analysis, N0 was
set to 256 samples. Both the scalar forgetting factor λ and the forgetting matrix Λ (with λa1

= λa2
= 1)

were considered.
Table M.1 also gives a reference overview of the figures with time traces of ARX-model estimates

and corresponding HO-model parameters. The figures show batch ARX-model estimates fit on the
initial and final 30.72 s and are indicated with thick green lines. Recursive ARX-model estimates are
shown with thick black lines. The sigmoid’s instant tM is indicated with the gray line. All figures also
include the five recursive single-run ARX-model estimates (thin colored lines). No extreme outliers are
observed in these single-run estimates.
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162 M Real measurements
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(c) HO-model parameters, T0 = 256.

t, s

T
L
(t
),

s

Subject 1

K
e
(t
),

–
ζ
n
m
(t
),

–

t, s

K
ė
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Figure M.1 Estimated ARX-model parameters and HO-model parameters for condition C1.
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Figure M.2 Estimated ARX-model parameters and HO-model parameters for condition C2.
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(c) HO-model parameters, T0 = 256.
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Figure M.3 Estimated ARX-model parameters and HO-model parameters for condition C3.
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(c) HO-model parameters, T0 = 256.
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Figure M.4 Estimated ARX-model parameters and HO-model parameters for condition C4.
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(c) HO-model parameters, T0 = 256.
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Figure M.5 Estimated ARX-model parameters and HO-model parameters for condition C5.
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Figure M.6 Estimated ARX-model parameters and HO-model parameters for condition C6.
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