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1
Abstract

The overall purpose of this study is to establish novel methods of vehicle localization and mapping
using a 1D linear automotive radar array in conjuncture with pre-existing lidar maps, and to test if
the generated radar map can be made to be 3 dimensional. The reason for creating a novel local-
ization method was to try and alleviate some of the weaknesses of existing localization techniques,
such as GPS’(Global Positioning System) inability to localize in tunnels and other large structures,
or lidar based positionings’ low quality of service in certain weather conditions. The basic design
of this study was to implement a SLAM(Simultaneous Localization And Mapping) system that co-
registers radar data to radar data, and to then attempt to register radar data to lidar data, all taken
from experiments with cars with these sensors driving around the TU Delft campus. After the ex-
ecution of experiments, both on simulations and on real world data, it was established that it is
in fact possible to localize the car by relating observed radar data to premade lidar maps, and to
continually add to a cumulative map made with the radar data that can further aid the localization
process. Furthermore, it can be observed that the radar map created using the 1D linear automo-
tive array can be made to be 3D, though more experiments to establish the full potential of this
capability are recommended.
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2
Introduction

In a world where autonomous driving is becoming ever more prevalent, the need for secure/reli-
able localization methods has never been higher. Autonomous vehicles often have various means
of localizing themselves, ranging from GPS to using visual sensors. While these methods are suf-
ficient in many circumstances, there are certain scenarios where they tend to fail. The GPS sen-
sor has a hard time providing accurate localization inside structures, such as tunnels or parking
garages, and visual sensors, such as cameras and lidar, stop to function properly in thick mist and
rain. To fix these problems we will try to find a new method to provide localization estimates, a
radar based method. In this report we propose a novel method of radar based localization using a
1D array, to create a 3D map of the world, incorporating a previously created lidar map.
Not only does this approach provide a possibility for radar based localization, but it also provides
a continuously updated road map everywhere these cars drive (a result providing many applica-
tions on its own right, from building continuously updated roadmaps for navigation systems, to
detecting road blockage and even aiding environmental/ecological studies[1]).

2.1. Research Questions

To more clearly delineate the direction of this thesis project, a set of research questions was created,
to help guide the project in a productive direction.

1. Can localization be done by relating radar measurements to a lidar point cloud?

(a) How does the radar point cloud relate to the lidar point cloud, and how can they be
made more relatable?

(b) Can a 3D radar point cloud be created using DBS(Doppler Beam Sharpening), and can
it be used in localization?

(c) Is it possible to use only the radar based point cloud in the long term for localization, if
so: how?

2. Can this be implemented using a cost effective 1D antenna array?

3. Can pure-radar (without a priori maps) 3D SLAM(Simultaneous Localization And Mapping)
be implemented using a cost effective 1D antenna array?

7



8 2. Introduction

The gist of question 1 is to answer if, given an a priori map made with a lidar sensor, can a vehi-
cle equipped with a radar sensor find its position on that map. The process of relating/aligning
two images or other datasets is called (co–)registration, and it will have to play a role in the local-
ization of the vehicle. Question 1.a was generated out of an assumption that if datasets from two
completely different sensors are to be aligned, it might be necessary to make said sets "look more
alike", for example by making them the same dimensionality, and by taking into account what cer-
tain sensors might see that the other sensor is blind to, and vice versa. Discovering ways in which
to accomplish this is the purpose of question 1.a. Answering question 1.b could be helpful as well,
in making the two datasets look more alike. After all, the lidar maps available are all in 3D, and
creating a radar map that is also 3 dimensional, might make relating the two datasets more robust
for the purposes of localization.
Question 1.c lays the groundwork for a finalized system, that does not rely on premade maps that
might have been made so long ago that they no longer properly describe the environment. New
buildings get built, plants grow and can be cut down: The environment is in flux. To solve for this,
the proposed solution is the creation of a continuously updated map. Though the system might
start out with an a priori map, reliance on this should be reduced over time, until it is at some
point no longer necessary at all. Whether this is possible is the purpose of question 1.c. If it can be
proven that all of these things can be implemented using a cost effective 1D array, that one might
find in cutting edge automobiles, then this system could, hypothetically, be implemented in real
life in future cars, with the radar systems already installed within them. Therefore question 2 was
answered, to guide this project in a direction in which the created system could hypothetically and
practically be used in the future.
Finally, question 3 seeks to address to what degree a system with no a priori maps is able to localize
itself while simultaneously mapping its environment, and outputting a 3 dimensional pointcloud
of its environment. Because research in height detection for car radar is an ongoing field of study,
this question was created, to see if besides localization with the radar, the system could aid with
these height estimation techniques, these methods for making the radar map 3 dimensional. The
reason this is being researched is because it can be desirable for the car radar to be able to tell the
difference between a speed-bump/bridge, and a wall, so as to not engage the automatic braking
system when it is not desirable.[16]

2.2. Report Structure

The structure of this report is as follows: First the basics of automotive SLAM are discussed, show-
ing some of the techniques that can be used to reach the desired goals. Next, design choices are
discussed, showing the reasoning behind the choices made so far. Then some simulation results
are shown to provide proof of feasibility, at least in simulation. After that a real world experimental
application of the current system is shown, where a preliminary 3D radar map of a street is created.
Then we describe how to craft a lidar map that can be used as a prior data to further improve the
performance of the system. Here it can be seen that lidar data can indeed be used to create a map
that a radar system can use to localize itself, leading to novel methods of vehicle localization. And
finally future work and the conclusion are discussed.



3
Fundamentals of radar SLAM

In this section the previous advancements in the fields of automotive radar, SLAM, OGM (Occu-
pancy Grid Mapping), and various concepts that could be useful are reviewed. The purpose of this
thesis project is ultimately to aid in the development of a radar based navigation system that is
able to operate in environments where other sensors and GPS fail. To accomplish this multiple
approaches have been carried out, such as: creating a map using the radar data, relating it to a
previously created lidar point cloud, determining certain object properties with the radar such as
elevation, using a SLAM algorithm to combine mapbuilding with localization, etc. This chapter,
which is to serve as a literature review, is therefore divided into these general subjects, that could
be used to accomplish the thesis goals. These subjects form the sections.

3.1. Frequency Modulated Continuous Wave (FMCW) radar

First the basics of FMCW radar are briefly discussed in this section. FMCW radar works by sending
out a linearly modulated signal (a chirp), and then mixing the signal being sent out with the signal
being received back. [20].
Then, one puts this signal through a low pass filter to leave only the beat signal, samples this signal,
and applies spectral analysis (for example FFT) to find the distances to various reflectors. This is
how a typical heterogeneous radar system works. The velocity of the reflectors can also be calcu-
lated by looking at the phase difference between consecutive FMCW chirps, and the angle of arrival
can be estimated by looking at the phase difference between received signals at multiple receive
antenna elements. This type of radar is often used in automotive radar because it has a relatively
low complexity, is therefore relatively cheap to produce, and it has a high spectral efficiency.
Usually the aforementioned chirp signal, as illustrated in figure 3.1 is of the form:

st (t ) = exp( j 2π( fc t + 1

2
αt 2), (3.1)

where fc is the carrier frequency and α is called the chirp rate,

α= B

T
. (3.2)
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10 3. Fundamentals of radar SLAM

Figure 3.1: Visualization of the FMCW chirp signal, with the transmitted frequency in red, and the received
frequency in blue. [34]

In this expression B is the bandwidth of the signal, and T is the chirp length in seconds. The signal
that is received after reflection is a delayed version of the signal being transmitted,

sr (t ) = exp( j 2π( fc (t −τ+ 1

2
α(t −τ)2). (3.3)

Here τ is the delay in seconds, equal to twice the distance to the reflector, r , divided by the speed
of light

τ= 2r

c
. (3.4)

This received signal is then mixed with the signal being transmitted (equation (3.1)) to generate
the following beat signal:

sb(t ) = exp( j 2π( fcτ+αtτ− 1

2
ατ2). (3.5)

This signal is sampled in what is called "fast time". Multiple chirps per antenna are saved in what
will be referred to as a "radar data cube" (as seen in figure 3.2), along the axis called slow time. The
signals from different antennas are placed along the "spatial sampling" axis.

The beat frequency of the beat signal is equal to the difference between the transmitted frequency
and the received frequency, and can be extracted by using spectral estimation techniques along
fast time,

fb =ατ. (3.6)

Finally, the distance to the reflector can then found as,

r = cτ

2
= c fb

2α
(3.7)
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Figure 3.2: The radar data cube [33]

The velocity of the perceived target towards the radar can also be estimated, by applying spectral
estimation along the slow time axis, to find the phase differences between consecutive chirps. This
analysis yields the "Doppler frequency" fd , which can then, given the carrier frequency and speed
of light, be translated into a relative velocity,

v = c fd

2 f0
. (3.8)

Finally, from the data radar cube the angle of arrival of the returning signal can be extracted, by
applying spectral estimation along the spatial sampling axis, to estimate the phase difference of
the received signal between the different antenna elements in the system, which can be used to
recover the angle of arrival. How these data are estimated can vary based on the radar’s geometry,
on the type of radar used. In this report a specific type of radar used in the automotive industry
was examined, as the next section will describe.

3.2. MIMO (Minimum Input Minimum Output)

MIMO radar is a type of radar that synthesizes a virtual uniform linear array (ULA), using fewer
antennas than would have been necessary in a standard ULA with the same aperture. As it needs
fewer antennas, they are often cheaper to produce, and are currently being created for automotive
applications. This type of 1D array was chosen for this thesis project.
To simulate a MIMO array, the following needs to be taken into account, beginning with the signal
received by a hypothetical non virtual 1D linear array: If the signal is to be expressed which a
hypothetical ordinary N element linear array would receive, as shown in figure 3.3, this signal can
calculated as such: first, the distance of each element to the target (in the far-field) is
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Figure 3.3: Array with angle of incidence denoted

rM = r0 + (M −1)∗d sinθ, (3.9)

Where r0 is the distance from the transmit antenna to the target, θ is the angle of incidence (see
figure 3.3), d is the inter element spacing, and rM is the distance of the target to the M-th antenna.
After defining antenna 1 to be the transmit antenna, the delay to each antenna would be expressed
as such:

τM = r0

c
+ rM

c
(3.10)

The left fraction indicating the delay from TX antenna to target, and the right fraction indicating
the delay from the target to return antenna M , making the total, τM , the round trip delay. The
signal received at each antenna after mixing would be, using equation (3.5):

sM (t ) = exp( j 2π( fcτM +αtτM −0.5α(τM )2)) (3.11)

Expression (3.11) would hold true for an N element uniform linear array, but to simulate a N el-
ement MIMO array, with 3 TX antennas, and 4 RX antennas for example, some things need to be
kept in mind. This is because 3 TX chirps must be sent, instead of just the one. In this case the
amount of virtual array elements N would become Nt Nr = N = 12.
MIMO array signals are usually expressed with a steering vector that is the Kronecker product of
the transmit and receive steering vectors. In the case that there are Nt transmit antennas, Nr re-
ceive antennas, the distance between the transmit antennas is λ/2, and the distance between the
receive antennas is Ntλ/2, the steering vectors can be expressed as follows:

at x = [1,e1iπsin(θ), ...,eNt iπsin(θ)], (3.12)
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Figure 3.4: N virtual element MIMO array

ar x = [1,e1iπNt sin(θ), ...,eNr iπNt sin(θ)], (3.13)

a = at x ⊗ar x , (3.14)

where at x is the transmit steering vector, ar x is the receive steering vector, and ⊗ is the Kronecker
product.

sM (t ) = as0(t ) (3.15)

The total set of collected signals sM (t ) is the product of the total steering vector a and the signal
received by the corner antenna s0(t ). This means that if the target does not move (much) during the
Coherent Processing Interval (CPI), when D0(t ) ≈ D0(t +PRI ) ≈ D0(t +2PRI ), one has effectively
recreated a 12 element uniform linear array. If the target moves a lot between the chirps however,
problems may arise.

3.3. Super-resolution spectral estimation

For the purposes of this project it was considered that super resolution techniques might be neces-
sary, techniques that aim to provide resolution higher than an FFT would provide. This to increase
the fidelity of the maps to be created and to increase the accuracy of the localization. The tech-
niques that were considered are discussed here.

3.3.1. Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)

ESPRIT is an approach for estimating certain signal parameters, that can, for example, be used to
find the Direction of Arrival (DoA) of signals impinging on an array, or to create radar images.[22]
[23] It is an example of a super resolution algorithm, that makes use of certain qualities of the
signal subspace. In the case of ESPRIT, it takes advantage of the rotational invariance in signal
subspaces caused by translationally invariant structure of the array. In other words: Because the
radar array can be seen as a sum of 2 radar arrays, one of which is a translated (but not rotated)
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version of the other, an underlying rotational invariance among the signal subspaces arises that
can be exploited. ESPRIT is usually less computationally intensive than MUSIC, but more so than
the FFT approach.

3.3.2. MUltiple SIgnal Classification (MUSIC)

MUSIC algorithm is another super resolution algorithm for estimating signal parameters. Like
ESPRIT, it takes advantage of certain qualities of the signal subspaces. MUSIC makes use of the fact
that the noise subspaces are assumed to be orthogonal. Though it is computationally expensive,
there are methods to speed it up, such as Reduced-Dimension MUSIC [24]

3.3.3. Space-Time Adaptive Processing (STAP)

STAP is a technique that is adept at moving target detection, which is necessary for the application
at hand. It’s strengths lie in the rejection of interference, such as clutter or jamming.[25]
STAP involves a 2-dimensional filter technique using a phased-array radar with multiple spatial
channels. The coupling of multiple spatial channels with pulse-Doppler waveforms is where the
name "space-time" comes from. Applying the statistics of the interference environment, an adap-
tive STAP weight vector can be formed. This weight vector is then applied to the coherent samples
received by the radar.

3.4. Simultaneous Localization And Mapping (SLAM)

SLAM, or Simultaneous Localization And Mapping, is the process of creating a map, and finding
ones position on said map, at the same time. The mathematical basis that shows this problem is
solvable is given in [6], which shows that a map created using SLAM can be made to converge to a
correct map. SLAM often relies on acquiring "landmarks", certain stationary object on the terrain
with very specific properties, such as shape, color and/or RCS (Radar Cross Section), or creating
occupancy grid maps, or a point cloud based map. There are a lot of different SLAM algorithms,
such as Incremental Smoothing And Mapping (ISAM) [7], FastSLAM [8], and Extended Kalman Fil-
ter (EKF) based SLAM [9]. They all generally rely on creating a map on the environment around
the vehicle at a starting position, moving the vehicle, then mapping around the vehicle again and,
through registration, finding the vehicles translation and rotation relative to the first measurement.
We basically have to find how much the maps have to be translated and rotated for them to match
up best to find the vehicle’s movement, see figure 3.5. Then the two maps can be combined, and
the process repeats, matching a third map with the previously created map, combining it, then
matching a fourth, etc. This is the general idea, which can be improved by using one of the afore-
mentioned specific SLAM algorithms, by fusing sensor data, such as from an Inertial Measuring
Unit (IMU), and tracking the trajectory of the vehicle in question. [10]

3.4.1. Kalman filter

A popular solution to the SLAM problem is using a Kalman filter for the localization. This filter,
works as follows: First, given the previous state of the vehicle (consisting of its velocity, its tra-
jectory, its control-input (the gas pedal/brakes), and measurements from the IMU) an estimate is
created of the current state of the system, the current pose/position/velocity of the car.
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Figure 3.5: The process of registration, showing two example observations, one in red, and one in blue, that
have to be aligned.

x̂k|k−1 = F x̂k−1|k−1 +B k uk (3.16)

Here x̂k|k−1 is the predicted state at k, given the previous state at k −1, (x̂k−1|k−1), the state tran-
sition model F , and the control-input model B k to which the control input vector, uk , is ap-
plied.

Then a measurement of the system is taken, the measurement being the cars current position
based on the registration,

ẑk = H k xk +v k , (3.17)

here H k is the observation model to map the true state space into the observed state space and v k

is the observation noise. Next a residual is calculated, based on the difference between the current
observation and an estimated hypothetical noiseless observation, based on the predicted state in
equation (3.16):

ỹ k = zk −H k x̂k|k−1, (3.18)

here ỹ k is the residual, the difference between the measurement and what we were expecting to
measure. To some extent this provides a metric for how well the prediction step worked. If there
was no noise and the current state were to be perfectly predicted in equation (3.16), then ỹ k would
be zero.
Finally a prediction is made as to the actual state of the system: equation (3.19)
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x̂k|k = x̂k|k−1 +K k ỹ k (3.19)

Where K k is the Kalman gain, and x̂k|k is the estimated current state that is given by the Kalman
filter. Optimal Kalman gain can be calculated as found in the literature [32], but that is outside of
the scope of this project.

The problem with the SLAM application is that what is being solved is not necessarily a Linear
problem, and a normal Kalman filter does not work for non-Linear systems. A solution to this is to
use an EKF (extended Kalman Filter). In this filter the state transition/observation models do not
need to be linear functions of the state, they can be non-linear functions, such as:

xk = f (xk−1,uk )+w k (3.20)

xk = h(xk )+v k (3.21)

Here the function f can be utilized to find the predicted state from the previous estimate, and h
can be used to find the predicted measurement from the previous state.

3.4.2. Particle filter

The particle filter is another approach to tackling the SLAM problem[26]. Everything needed for
solving the SLAM problem, in the most general terms, can be summarized as such[27]:

ρ(x1:t , M |z1:t ,u1:t ) (3.22)

Here x1:t represents the position across time, m is the map of the environment, z1:t represents the
observations across time and u1:t is the control inputs.

The principle can be described as follows: The state of the system is modeled using particles, called
samples. Every particle represents a hypothesis of the world at time "t" and is assigned a weight.
The complete sum of all the samples is representative of the posterior distribution. The name
of the technique that is used for the generation of samples for a given distribution is called the
"importance sampling principle". In the case of the car each particle contains an estimate of the
cars pose and landmarks around it.-
The idea can be simplified as: particles are used to model the state of the system. Each particle is
a more or less likely hypothesis of the world. The algorithm recursively updates the particles with
better samples as the car takes observations and travels over the roads." The sample space can be
reduced by applying Rao-Blackwellization [28]:

p(x1:t ,M|z1:t ,u1:t ,c1:t ) = p(x1:t |z1:t ,u1:t ,c1:t )
N∏

n=1
p(mn |x1:t , z1:t ,c1:t ) (3.23)

With the vehicle path given, the landmarks (conditionally) independent, each of them is estimated
by a short, constant size, extended Kalman filter(EKF). c1:t represents the correlation between the
measurements and the "landmarks" on the map.
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Figure 3.6: Chromosome that can be used in 2D SLAM [30]

3.4.3. Registration and the Genetic Algorithm

As mentioned before, to execute SLAM, (co-)registration is needed. This would be the art of esti-
mating how much maps need to be moved for them to line up optimally. There are several ways to
do this, Iterative Closest Point (ICP), genetic algorithm and Normal Distribution Transform (NDT),
to name a few.

ICP Iterative closest point algorithm is a relatively computationally inexpensive registration al-
gorithm. It tries to match points in the map to the closest points in current observation, and then,
using a Least Squares approach, finds which rotations/translations minimize the mean square dis-
tance between all these points. [29]

NDT Normal Distribution transform relies on converting 1 of the 2 pointclouds to be registered
into a continuous map/fuction, a sum of normal distributions, and then positioning the other map
such that the points are as high up as possible on said normal distributions (in a 2D case). [19] The
advantage of this technique is that it represents, and takes into account, the noisy nature of the
maps.

Genetic Algorithm Genetic algorithms are a class of heuristic algorithms based on evolution, as
found in nature[35][36]. It seeks to express the solution of a problem as a set of values, which to-
gether form an array called a ’chromosome’, and to then have populations of these chromosomes
’breed’, ’mutate’, and ’die’, and in the process iteratively moving towards an increasingly optimal
solution. The most optimal solutions at every iteration will be allowed to breed, forming differ-
ent combinations of properties that could be ’good’, in the hope of getting closer to an optimal
solution. And with set probability, as can be seen in nature as well, mutations can occur in the
chromosomes, forming completely new properties, which might possibly be good.

Genetic algorithms in the case of SLAM make use of the fact that the movements of the car are not
random. The car will never suddenly move upwards for example, or start driving sideways. Even
the radius of the corners the car can take are limited. The way this is exploited is as follows: A pop-
ulation of chromosomes is created, each representative of a possible movement of the car between
frames, and containing within it which radar targets between the 2 frames should be related, and
which should be left out. A population of size n will provide n estimates, n guesses, of the trans-
lation/rotation between 2 frames. These guesses are tested with a fitness test, and the fittest guess
is taken as the shift between 2 frames. Next, the genetic steps are executed. The population of
chromosomes is made to breed, mutate and otherwise evolve. In a 2D example, the chromosomes
could look like in figure 3.6:

In the chromosome shown in figure 3.6, gm describes which targets between the 2 frames should
be related, in essence it’s a guess of which targets are the same target, but shifted because the car
moved between the 2 frames. gm says which target from the second frame, has to be related to
the m-th target of the first frame. If, for example, g3 equals 5, that means that the 3rd target in the
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Figure 3.7: example of crossing over [30]

Figure 3.8: example of genetic mutation [30]

first frame must be related to the 5th target in the second frame. If the m-th target is to be left out
and not related to anything at all, gm can be given an illegal value, such as -1. ∆X and ∆Y denote
how much the 2 frames must be shifted in X and Y direction, and ∆θ is the rotation between the 2
frames.
These chromosomes can start off quasi randomly, and as previously stated: between each location
estimation genetic operations are executed. These fall into 3 categories: Mutation, Crossover/Re-
production and Death. In mutation, one of the genes, the elements of the chromosome, is changed/-
mutated. In crossover/reproduction 2 chromosomes are copied, lined up, cut along a certain ele-
ment, and then the cut off parts of the chromosomes are switched. Death needs to occur to keep
the population size of the chromosomes in check, to keep it at a set size. To accomplish this, one
simply kills off the least fit chromosomes to maintain a constant population size.
See figure 3.7 and equation (6.2). Note that the chromosome presented is but one possible option
for the chromosomes, chromosomes are to represent possible solutions to a given problem, and
those solutions can be formulated differently. We might, for example, use the angle of the turn,
and the radius of the turn, to describe the cars’ movement, instead of rotation and translation. So:
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instead of the ∆X , ∆Y and ∆θ, there would be ∆θ and R elements, where R represents the radius
of the turn, and ∆θ represents the angle traveled allong the curve (the car moving in a straight line
would be equatable to a very small angle, and a very large radius)

3.5. Height Estimation

One of the questions to be answered in this report is how to relate lidar and radar maps to each
other. In this pursuit, height estimation might play a role, in that the lidar maps are 3D, and there-
fore making the radar maps 3D as well might make it easier to compare the two. This subsection
describes the two main methods of estimating height with a 1D array. One of them relies most
heavily on slow time data, the other on fast time data.

3.5.1. Vertical Doppler Beam Sharpening

Vertical Doppler Beam Sharpening is a technique for determining the height of a reflector from
the ground, and it relies on the Doppler frequency shift induced by a targets velocity relative to the
radar. [16] The idea is that the radar will have a certain velocity relative to stationary objects, which
depends on the elevation (and azimuthal) angle to the object.

Take figure 3.9, for example. The measured velocity vr , also known as the line of sight (LoS) velocity,
is related to the velocity of the car as follows: equation (3.24)

vr = v cosϕ (3.24)

And so, given the measured velocity vr , and the (assumed) known velocity of the car v , the angleϕ
is found to be: equation (3.25)

ϕ= arccos
vr

v
(3.25)

The height of the target is then: equation (3.26)

ht = hs −R sinϕ= hs −R sinarccos
vr

v
(3.26)

where R is the measured range to target. It has been shown that using this technique, the height of
the target can be estimated with high accuracy [16].

In essence, this allows us to create a 3D map, using a 1D array. Not only does this help to discern
objects suspended over the road (which the car can’t observe anymore if it gets to close to them: the
radar cant see traffic-lights when they’re overhead), it also allows for better comparison between a
lidar and radar dataset. There are numerous advantages to attempting this: Tunnels and hills can
be identified, which can hinder localization as they are only visible from a certain distance/angle.
Parked cars can be more easily identified. Fusion with 3D sensor data is aided, and the "richness"
of the map increases. What that last point means is that in a 3D map more features of the environ-
ment can be identified, more separate objects can be observed, making the registration process
more robust.
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Figure 3.9: Blue vector: Velocity of the car, R: range to target, ϕ: angle between boresight and target, Green
vector: target’s relative velocity in the direction of the radar, ht : height of reflector from the ground, hs :
height of radar from the ground [21]

Figure 3.10: Diagram of multipath, A is the radar, B is the scatterer, and C is the point of impingement for
the NLOS signal. [31]

3.5.2. Multipath Height Finding

Multipath Height Finding indicates that the height of a reflector is to be estimated by taking the
the multipath properties of the signal into account [31]. It is based upon the assumption that the
ground is flat, and the height of the radar from the ground is known. Figure 3.10 seeks to illustrate
this.

A signal that hits B from the radar, can return and arrive along the line BA, and along the line
BCA. The first is the Line Of Sight (LOS) component, the second the Non Line Of Sight (NLOS)
component. In this figure, ht indicates the height of the target from the ground, and hs is the
height of the radar from the ground. ht can be determined as follows:

ht = AC B 2 − AB 2

4hs
. (3.27)
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Assuming that the height of the radar from the ground hs is known, and ACB and AB are found: ht

can be calculated. The exercise in multipath heightfinding is therefore finding out which received
signals are LOS, and which are their NLOS counterparts. This is done by looking at the data along
the range axis, in the fast time. One tries to find the highest peak along the range axis, assumes
this to be the LOS component as it is assumed to be the most powerful, and then assumes that
the very next peak following it, the next peak that is further away, is the NLOS signal belonging to
it. In simple scenarios these assumptions will hold. Now that the perceived distance of the LOS
component (AB), and the NLOS component are estimated, ht can be estimated as well.
Issues this technique has is that it assumes there to be 2 perfect LOS and NLOS channels, that
the ground is flat, and that no multipath effects more complicated than this take place. One has
to establish, in noisy data, which peaks are the LOS components, and which peaks are the NLOS
components that belong to them: Mistakes therein lead to errors.





4
Design choices for radar SLAM with 1D

array

In this chapter some of the choices made throughout thesis are discussed. For many parts of the
system, multiple choices, multiple options, are available, all with their own strengths and weak-
nesses. This section seeks to clear up why certain decisions have been made.

4.1. Registration

Registration can be seen as the art of aligning datasets/images. As discussed in chapter 3, we will
focus on 3 main techniques: NDT, ICP and Genetic algorithm, and the choice between them. The
genetic algorithm is different from the others, in that it technically is not just registering data, its
actually a full fledged form of SLAM, in which registration cannot be seen separate from the rest
of the system. Nonetheless, its registering ability will be discussed here. Starting off with the elim-
ination of ICP. Iterative closest points’ biggest advantage is its low computational complexity, it
very quickly converges two maps together. Its main downside is that it doesn’t deal with outliers or
noisy data well. One way of dealing with this is attempting to remove outliers for example but for
the time being, this aspect makes it a bad choice. Leaving the other two options. NDT and Genetic
algorithm. Proposed is to not actually make a choice between the two, and implement both, as will
be shown in the consequent sections.

4.2. Height extraction

To attain a form of 3-Dimensional awareness using a 1D array, a form of post processing is needed
to estimate height/elevation-angle. The main methods to attain this are based on different quali-
ties of the signal, due to scatterer height. The first technique is called DBS (Doppler Beam Sharpenning)[16],
and it makes use of the fact that stationary scatterers at different heights cause different Doppler
shifts. In effect, it makes use of a similar principle as front looking SAR (Synthetic Aperture Radar).
The second method makes use of the multipath propagation [31]. Cars are often found on the
road, and roads tend to be flat, meaning that the radar will usually receive a direct LOS(Line Of
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Sight) return signal from a scatterer, and a NLOS(Non Line Of Sight) signal that bounced off the
ground before returning to the radar. The difference in delay or phase between these signals can
be used to estimate the vehicle height.
The pros and cons of these two approaches are as follows:

Doppler Beam Sharpening Method:

Pro:

• The Doppler approach does not require figuring out which received signals are LOS and
which are NLOS, nor which belong together

• The height of the radar from the ground does not have to be known or even constant

• The ground does not have to be locally flat around the car

• It does not require a very high fast time resolution

Con:

• It requires the vehicle be moving

• It does need a very high Doppler resolution: Errors in Doppler estimation cause different
errors in height estimation quickly

Multipath Method:

Pro:

• It can create a height estimate while the car is standing still.

• It doesn’t require a high Doppler resolution

Con:

• It does require a very high range resolution: Errors in the Range (difference) estimate cause
errors in the height estimation quickly

• LoS and NLoS peaks along the range axis have to be related by some algorithm, and in a
situation with multiple multipath channels, and a lot of peaks, this can be hard and error
prone

• The road has to be flat in the field of view around the car

• The height of the radar from the ground has to be continuously known

All in all, one of the most glaring differences is that one approach gathers a form of elevation angle
estimation from the Doppler(DBS), and the other derives this elevation angle estimation from the
Range (Multipath). This doesn’t necessarily raise one method over another, but it is a good thing
to keep in mind when designing the system and its trade-offs.

For this particular application the DBS method was chosen. The main reason is the requirement
of relating the LOS peaks to the NLOS peaks, in an environment where many peaks may arise,
because complex objects are being observed. For either approach a super resolution algorithms
could be used, so that doesn’t make one approach better than the other. And for this approach,
we wish to test in an urban environment, that has many stationary scatterers in it, making it less
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important to be able to take out moving targets.

4.3. Super resolution target acquisition

As was just described, for the concept to work, a relatively high resolution is required, either along
the Doppler or the Range axis. To achieve this, a super resolution algorithm is required. The 3
methods that will be compared are MUSIC, ESPRIT, and STAP.

ESPRIT.
Of the 3 techniques this one is usually the least computationally expensive, but its also improves
resolution least. It has been proven to be less accurate than MUSIC would be, in the same setup
[37]. Another downside this technique has is that it only works for specific array configurations.
Though we are planning to use a virtual Uniform Linear Array, with an even number of antennas
(one of the array configurations for which ESPRIT works), different configurations might be used
in the future. A sparse array for example, could be used to improve azimuthal angle resolution, but
in a lot of cases, ESPRIT can not be used for this. For these reasons, we reject the use of ESPRIT in
this particular application.

This leaves the most computationally expensive techniques. The problem is that their resolutions
are hard to compare, as they are completely different imaging techniques. One is a so called Space-
Time technique (STAP), the other is a subspace method (MUSIC), just like ESPRIT. To decide which
to use, we looked at the average applications.
The main power of STAP is interference rejection, like clutter mitigation in MTI (Moving Target In-
dication). This could be useful in real world applications, to make sure that bad actors are unable
to disable the system with a signal jammer for example. However, in the current stage of the re-
search, we can safely assume that no one will be purposefully jamming our experiments.
MUSICs great strength lies in resolving targets close to each other, which is useful as it helps to
gather more information about the structure of objects being observed.
Figure 4.1 shows images created using FFT, and using MUSIC, for comparison. As can be seen, the
sidelobes are suppressed in MUSIC, and the 3 targets in the middle can now be separated.

(a) Image created using FFT
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(b) Image created using MUSIC

Figure 4.1: Comparison of images created using FFT and MUSIC
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4.4. Conclusion

Taking these things into account, we have currently decided to investigate MUSIC, to gather as
much information about the shape of the world around the vehicle, though different approaches
can be attempted in future research. One of the things to keep in mind while proceeding with the
use of MUSIC, is the computational complexity, and how it might possibly be reduced[17] Further-
more, if the bandwidth, chirplength and pulse number are chosen correctly, the resolution might
not have to be increased at all. For the height estimation the DBS approach was selected, and it
is therefore necessary to have sufficient Doppler resolution going forward. Finally, for the SLAM
itself, the genetic algorithm approach was chosen. Though more optimal solutions exist, finding
an optimal SLAM solution is outside of the scope of this thesis, and the genetic algorithm will suf-
fice.



5
Simulation Results

This section will briefly show some simulation results. For this simulation, 36 radar targets were
simulated, around the cars trajectory, in the shape of a hexagonal prism. For these results, the
genetic algorithm approach was used.
For the first simulation, the situation was as follows: The virtual car was ’driving’ at 20 [m/s] in a
circle with a 5 meter diameter, in this circle, a measurement frame is created every 1.8 degrees,
making for 200 measurement frames for 1 entire circle. The car starts at X = 5 [m], Y = 0 [m],
and completes 2 full circles during the entire simulation. The radar specifications can be seen
in table 5.1, and a quick overview of the scheme of the simulation is shown in the flowchart in
figure 5.1.

Carrier Frequency 78.5 GHz
Bandwidth 1 GHz
PRI 25.6 us
Number of Pulses 128
Beat Sample Frequency 40 MHz
Number of transmit antennas 3
Number of receive antennas 4
Max unambiguous range 76.8 m
Max unambiguous velocity 37.3 m/s

Table 5.1: Radar Specifications
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Start

Generate simulated
radar data for frame
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Figure 5.1: Flowchart illustrating the basic setup of the simulation

As can be seen in figures 5.2 and 5.3, the system manages to create a map that resembles the ac-
tual targets. There are several false points in the map however, this is mostly caused by the system
wrongly estimating the range of a target. The trajectory is also estimated relatively well, and that is
with a system for which much can still be improved in terms of performance, as will be discussed
in section 5.1.

Figure 5.2: Top View of the map created, the red circle called "data1" is the estimated trajectory
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Figure 5.3: Isometric view of the radar map, the red circle called "data1" is the estimated trajectory

Figure 5.4: Isometric zoomed in view of created map, the trajectory is the red line called "data1"

It is worth observing the errors in localization during these simulations, as seen in figure 5.5. Here
we can see that the errors stay within 1 meter. It is expected that there would be some steady state
errors observed here, as the system can only localize itself on the map it is creating: it does not
return an absolute position on earth. To get such a position, the SLAM map must ex post facto
be aligned with actual coordinates on the earth, but as creating a system that returns latitude and
longitude on the earth is outside the scope of this project, it is not executed in this thesis. Although
the implementations of the systems created that use an a priori lidar map offer a solution to this
alignment problem, in that the lidar map can be created such that it is already correctly aligned on
the face of the earth.
Figure 5.4 shows a zoomed in version of this simulation, in which the wrong points can not be seen,
to show the effect of changing 2 parameters, to make creating a map harder. This time, 2 circles are
driven as well, except only 100 measurement frames are created per circle. And, to further pressure
the system, the vehicle velocity has been lowered to 5 [m/s].
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5.1. Conclusion

From these figures we can gather that this approach, with the genetic algorithm radar SLAM, can
work, at least in simulation. We have achieved a system that can localize a vehicle equipped with an
automotive MIMO radar, while mapping the environment at the same time. The genetic algorithm
created, in concordance with the NDT, can be used to realize SLAM given a list of targets in every
radar frame, and said target list could be generated by using MUSIC to hypothetically increase the
precision of the system, if necessary.
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Figure 5.5: Errors in positioning along respectively X, Y, and total euclidean distance.



6
Experimental verification

A 3D SLAM system was created using the previous findings, and tested with real world data, to try
and determine some of the possible future challenges, and to tailor the system to the given appli-
cation of localizing a car with the data at hand. In this pursuit, we engineered several adaptations
to the previously discussed techniques and algorithms.
First, the current system application for real world experiments will be discussed as it stands. After
that, the output and results of the system will be shown and discussed, and then finally, some of
the future challenges will be laid out.

6.1. Adaptations

This section describes how the current system works. The current system is, for the most part, a
combination and implementation of modules that were previously discussed, made to work to-
gether.
The input for the current system is a list of targets (i) detected at every radar frame(j), Ti , j .

Ti , j = (Ri ,θi , vi , Mi ) (6.1)

Where Ri is the range, θi , is the azimuthal angle, vi is the perceived Doppler velocity and Mi is
the RCS magnitude. Using these targets, a SLAM loop is run, with the previously discussed genetic
algorithm. Some minor changes were made to this algorithm, to improve its stability, taking into
account vehicle behavior of the car.

6.1.1. Adapted Genetic Algorithm

The genetic algorithm takes the same shape as described in chapter 3 and chapter 4, with 2 major
changes: Chromosomal symmetry, and an updated breeding scheme. To start off with the chro-
mosomal symmetry.
The chromosomes represent moves (rotation and translation) that the car can make in between
radar frames, and, taking into account the symmetrical nature of the vehicle, this opens the ge-
netic algorithm up to a constraint: For every high fitness move that is discovered its symmetrical
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partner is saved as well. For example: if the genetic algorithm comes to the conclusion that the
highest fitness move is 1 meter forward, 10 cm to the left, and rotated 10 degrees to the left, then
the mirrored version of this move is saved as well, which would be 1 meter forward, 10 cm to the
right, and 10 degrees to the right, see figure 6.1.

Figure 6.1: Figure depicting the mirror move principle now included in the genetic algorithm

This is done to increase the rate of convergence, and to account for the fact that often, after a car
has (over)-corrected in one direction, it is likely to soon after steer in the other direction.
The second thing thing that was changed is the way chromosomes are bred, specifically: the way
chromosomes are mutated. Previously, if a mutation occurs during the breeding stage, this entails
that a random gene in the chromosomes is "reset" to a random value. The adaptation that was
made is that now, instead of changing said gene to a random value, it is changed to a slight and
random variation of the old gene value.

Gnew =Gol d +Φ (6.2)

Where Gnew and Gol d are the new and old values of the chosen gene in the chromosome respec-
tively. Φ is a random value, with probability density function:

f (x) =
{

1
2a for x ∈ [−a, a]

0 otherwise.
(6.3)

This continuous uniform distribution can be can be seen in figure 6.2. This way, instead of choos-
ing mutations at random to try and find new good moves, this version of the algorithm tries to
iterate on the moves that have already been proven to be good. In equation (6.3) the value of a can
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Figure 6.2: Figure depicting the probability density function ofΦ

be tuned to increase or decrease the variance of Φ, with the aim of increasing the rate of conver-
gence of the genetic algorithm.

6.1.2. Ego Motion

One of the most important factors to establish for Doppler Beam Sharpening [16], is the ego mo-
tion: The current velocity of the car. This is because in DBS the velocities of all detected targets
relative to the car need to be compared to the car’s velocity on the road. To accomplish this, there
are at least two techniques/factors that can be used.

SLAM based ego motion estimation The first is the output of the SLAM algorithm. That is to say:
the distance moved between frames, the trajectory, can be used as an estimate for the velocity. If
a 2D SLAM algorithm is used for example, one in which DBS is not necessary, as the map being
created is only 2D, the velocity estimate gathered from the estimated trajectory can be used as a
velocity estimate for DBS, to create a second map that is 3D.

Radar target information based ego motion estimation The second technique relies on creat-
ing an ego motion estimate from the detected radar targets. First, all targets are assumed to be
stationary targets, none of the detections are assumed to be false, and all targets are assumed to
have no elevation angle relative to the radar, only an azimuthal angle. Then every target can be
used to generate an estimate of the velocity of the car as follows:

Ωi = vi

cosθi
(6.4)

In this list of velocity estimates, outliers have to be removed. These outliers can represent non-
stationary targets, or fully false detections. After these estimates have been removed, an estimate
of the velocity of the car can be created. This is done by analysing the distribution of the velocity
estimates. This was done by first creating a histogram distribution for all the velocity estimates in
a single frame. As can be seen in figure 6.4, there are several outliers in the set of velocity estimates
Ω. For example, in the figure, it can be observed on the right side that there are targets that are
perceived to have a positive velocity relative to the radar. This would indicate that the targets are
moving away from the car, even thought the car is driving forward. Though this is not impossible,
it is also a possibility that there were targets moving towards the car, such that the relative velocity
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Figure 6.3: Diagram depicting a set of targets in front of the car, with measured velocities vi , and azimuthal
angles θi
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Figure 6.4: Example histogram of the Velocity estimates. Notice the outliers, even with a positive velocity on
the right, indicating the target would be moving away from the car in theory.

between the car and the target is above the maximum unambiguous Doppler velocity, and because
of aliasing the target wrapped around and shows an incorrect Doppler velocity.
In the histogram, the center of the highest bin is taken as the final velocity estimate, until it is fur-
ther refined. There are several factors that can still be tuned that affect the outcome. The amount
of bins in the histogram for example. By increasing the amount of bins, the amount of possible
final velocity estimates increases, the resolution along the X axis of figure 6.4 increases as it were.
This comes, on average, at the expense of resolution along the Y axis. If the amount of bins is in-
creased, then the height of the highest bin is likely to decrease. This makes it more likely that there
are multiple highest bins, of the same size, in which case the average of the centers of these bins
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can be taken as the velocity estimate. Another factor that has to be taken into account when in-
creasing the amount of bins is computation time: If the amount of bins is taken high enough, the
system might fail as it is no longer able to calculate things within a reasonable time-frame.
After this process, a velocity estimate has been created for every frame in time, which can then
further be refined by means of fitting. As can be observed in figure 6.5, in this estimation pro-
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Figure 6.5: Figure depicting the output of the histogram based velocity estimator, with an example fit given
in blue. The two estimates that are highlighted are assumed to be outliers.

cess, there are still outliers, such as the estimates for frames 196 and 217. Both these outliers and
some of the noise/jitter can be removed by means of fitting. The example fit given is a smoothing
spline fit s(n), which is also used in the final results. This fit is generated by trying to minimize
equation (6.5),

p
∑
n

(ve n − s(n))2 + (1−p)
∫

(
d 2s

dn2 )2dn, (6.5)

where n is the frame number, ve n is the histogram velocity estimate for frame n, and p is the
smoothing parameter. The smoothing process is executed manually, tuning the smoothing pa-
rameter p until a result such as observed in figure 6.5 is reached. In this process points that are
suspected of being false outliers can also be removed manually. This method of fitting is called a
cubic smoothing spline interpolation. A general description of the method is as follows: given a
set of points (x, y), equation (6.6) is to be minimized[38].

p
n∑

j=1
w j |y j − f (x j )|2︸ ︷︷ ︸
error measure

+(1−p)
∫
λ(t )|D2 f (t )|2d t︸ ︷︷ ︸

roughness measure

. (6.6)

In equation (6.6), n denotes the amount of entries of x and y , and the integral in the roughness
measure portion of the equation is to be executed over the smallest interval that still contains all
entries of x and y , where D2 f is the second derivative of function f . Furthermore, the weights of
the entries can be set by setting w j , though all entries of w j are set to 1 by default. In a similar
manner, the importance of the roughness over the interval of the fit can be changed by adapting
λ(t ), such that the roughness of the fit in certain locations can be made more or less important
in the outcome of the entire integral, but λ(t ) is set to be a uniform 1 over all t by default. By
increasing p, the error measure part of the equation becomes relatively more important in the
outcome of the equation, and the fit will on average have a lower mean square error, although it
will also be less smooth. Conversely, by lowering p, the roughness measure portion becomes more
important relative to the error measure portion, and as such, the "roughness" of the final fit will
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decrease, although the fit will have a higher mean squared error. As such, by tuning the value of p,
one can make a weighted decision between smoothness and mean square error.

This estimate is limited in accuracy by the Doppler resolution, and therefore a system that has a
high Doppler-Velocity resolution should be able to able to estimate the ego motion with a high
accuracy as well. To separate between an elevation angle of 0 degrees, andϕ degrees, right in front
of the car (boresight), while driving g [m/s], a difference in velocity (∆v) must be measured that
can be described as such:

g − g cos(ϕ°) =∆v. (6.7)

Another factor that must be kept in mind is that this estimation carries within it a slight steady
state error. This is caused by the fact that the elevation angles of the targets are not 0. This
means that this velocity estimator is biased. This bias should be estimated and minimized in future
work.

6.1.3. Proposed mapping method

Using SLAM and DBS, a 3D map of the environment can be generated. One problem that must be
overcome in this process is the elevation angle ambiguity. From the Doppler information we can
gather that a certain target is some distance Z above the horizontal plane of the radar, or below
it. To resolve whether the target is above or below the plane of the radar, one could try to use a
simplified version of Multipath Height Finding [31], but this assumes an ideal situation, and tends
to fail at larger distances in an "object rich" environment.
Proposed is the following method to overcome part of the ambiguity. We assume that detected
targets do not exist underground, and therefore, for example, if a target is found to either be 5
meters above the horizontal plane of the radar, or below it, we assume the target to be above the
plane, as it is unreasonable to assume that a target was detected underground. This resolves a part
of the ambiguous targets. See figure 6.6.

Figure 6.6: Figure depicting the problem with ambiguous target heights, the red lines indicate the
beamwidth in elevation, h is the height of the radar from the road, and T1/T2 are the detected targets.

As can be seen in figure 6.6, targets like T1/T1’ can instantly be resolved, as we can assume tar-
gets not to be underground, so T1 is correct, and T1’ can be discarded. For T2/T2’ however, this
can not simply be done, as both possible target locations are feasible. To resolve this, we propose
the following: Always disregard the higher target. The reasoning for this is as follows: We assume
the area between the ground and the horizontal plane of the radar to be more densely populated
by objects, like potholes, speed-bumps, manhole covers and curbs, than the area between the 2
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segmented gray lines in figure 6.6. This means that in mapping, the layer between said aforemen-
tioned gray lines is always kept empty, see figure 6.7. Future mapping implementations might
want to work around this, but for the purposes of mapping and localization, this does not harm
the performance in a noticeable way.

(a) Figure depicting the hole created by the current mapping method, in 5 lantern poles
(b) Image of one of the
poles

Figure 6.7: 3D mapping of 5 lantern poles with an image of one of the lantern poles

6.1.4. Current System

The combination of all these modules yields system shown in figure 6.8. In the first frame, when
the radar starts working, the currently observed targets are used to create the cumulative map, to
which the system will add data points from the next frame on. This is the initialization frame. Next,
another radar measurement is taken, and a list of targets, with their respective Azimuthal angles,
ranges, RCS’s and Doppler velocities is created. Using the Range and Azimuthal angle information,
a 2D map of the current targets is created. It is important to note, that in this implementation,
the SLAM still takes place in 2D. It makes 2D maps of the current targets, compares these to the
2D cumulative map, and then adds to them. This can be changed, which will be discussed in the
chapter on future work.
As stated: a 2D map of current targets is created, and fed into the genetic algorithm. From the cur-
rently observed target list, an ego-motion estimate is also created, as described in the Ego-Motion
subsection, which is also fed to the genetic algorithm. The genetic algorithm then determines
heuristically to what degree the car has moved between frames, the 2D current target map is ro-
tated and shifted accordingly, and added to the cumulative map. Finally, using both the ego motion
and estimated trajectory from the SLAM, another map is created, a 3D map, using DBS.
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Figure 6.8: Flowchart depicting one of the current system architectures

6.2. Results

This section will show some of the results of the current 3D mapping system, in an attempt to show
its feasibility. First, a 3D map of the whole environment will be shown.

Figure 6.9: 3D image of entire environment
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As can be seen from figure 6.9, a 3D image of the street the car drove through begins to appear,
though there are still several things that can be improved. It is observed in the results that er-
rors in the order of 0.01 m/s in the ego motion estimation, can cause aberrant errors in the height
estimation. This means that the image can be improved by improving the methods for ego mo-
tion estimation, which are aided by the SLAM system. Furthermore, for these results, no MUSIC
algorithm is applied to attempt to increase the Doppler resolution (as the implemented MUSIC
algorithm did not sharpen the image), errors in which can cause the same magnitude of errors in
the height estimation, as errors in the ego motion estimation can cause.
The next result example seems to show the system working correctly, though not as precise as is
desired of the final product.

Figure 6.10: Side view of a lantern (on the left), and a group of people having a conversation (on the right)

(a) Image from the camera footage of the experimental run
with the car, showing both the lantern and the group of men
having a conversation.

(b) Image displaying a different angle of the group of talking
men, showing a 4th person standing about a meter further
down the road, explaining the rightmost set of points in fig-
ure 6.10.

Figure 6.11: Comparison of images created using FFT and MUSIC
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As is shown in figure 6.10, the current system seems to be able to distinguish between the height of
a lantern, and the height of a group of people. Figure 6.11 shows what the scene looked like when
the car drove past it. The lanterns are slightly under 6 meters tall in reality, when measured with a
laser mater. The group of people is estimated to have a max height of 3 meters by the algorithm,
which is incorrect, but can be the result of errors in one of 3 factors: The Doppler estimation of
the radar target, the ego-motion estimate of the vehicle, and the azimuthal angle estimate of the
target. Further improvement of the qualities of these 3 factors is necessary if more precise height
estimation is desired.
Another part of the 3D radar map that indicates that the system is working can be found in the
height data of several windows on buildings along the road. This is because the windowframes
are quite deep and made of metal, making them corner reflectors with a high RCS, relative to the
rest of the building. Therefore all radar targets detected along the side of these buildings come
from these scatterers. First, the detected targets from the area of the map where the windows
are located can be extracted from the 3D map, as seen in figure 6.12d and figure 6.12b, and the
separate windows isolated. Then a histogram distribution of the height values of these windows
can be generated, as seen in figure 6.12a. In this height estimation histogram set, we can notice
first of all, that the leftmost histogram is located high up, and has no "lower" part, which would
indeed be correct as it is the only window on the 3rd floor of the building that has no window
below it. To further illustrate that the system has height estimating capabilities, is by overlaying
the histograms on an image taken of the facade with a cellphone, as seen in figure 6.12c. Though
the height estimations are going to be off, because of aforementioned error sources, such as errors
in ego motion estimation and limited Doppler resolution, it can be observed that the histograms
do align with the positioning of the windows on the facade. One last thing to note is that not all the
windows are the same, some windows have a long white metal portion on the left side, some on the
right side. This might explain why the top window might show up more brightly then the bottom,
or vice versa, as the car was passing the facade from the left side to the right side of figure 6.12c.
For example, the top window at "window number" 3 is more prevalently present than the bottom.
Same thing goes for "window number" 5.
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(a) Histogram distributions of the estimated
heights of strong point targets possibly scattered
from the frame of a window

(b) Image of the building being used to establish
height estimation functionality, taken from google
maps

(c) Height estimation of windows overlaid on the facade of the
building itself. Note that the height axis does not align with
the actual height of the building, it is merely included for il-
lustration purposes

(d) Area of the radar map
from which the windows of
the building are extracted

Figure 6.12: Figures and images used to establish the working of the height estimation system
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Incorporation of Lidar

This section will go over the the way in which lidar can, and was, added to the system, to aid in
localization of the vehicle. 3D lidar pointclouds proved to be too large to be worked with simply,
so a method of reducing the data was devised, and will be discussed here.

7.1. Lidar vs. Radar

In this thesis, all practical tests focused on one street on campus, on which the car can localize
itself using only radar. But as discussed in the beginning of the thesis report, the eventual aim is
to add in lidar data as well, as pre-made lidar maps are already available for all of the Netherlands
(and most of the rest of the world), and using them as well could improve the fidelity of the system.
Lidar data will effectively be used as a starting map, a map that is available before the first radar
measurements are added to this map. As if the car had already gone past this street once, and
build up a map in doing so with the radar. Except, this map is generated using a lidar sensor, which
means there are multiple things to take into account.

The first and most important thing is that lidar and radar don’t always see the same things. Radar
might see through things that a lidar does not, and vice versa. Lidar might be able to see through a
metal mesh, or though a window. Lidar detects objects, even when viewed at a very shallow angle,
whereas the RCS of an object can be very dependent on the angle from which it is perceived. The
lidar sees the road surface itself consistently, in most cases the radar does not. On the other hand,
radar can see through rain better, can see through fog better, and depending on the frequency band
being used, might even see through walls. These are all merely examples of situations in which the
two sensors might perceive something different from one another.

Another thing to take into account is moving targets, or rather, the methods of removing them from
the map. Where a radar has the Doppler information which can be exploited to take out moving
targets, the lidar is not in possession of such information, and therefore a different method of
removing moving targets must be devised.

Thirdly, as previously stated, the lidar data is immensely dense. Where, as an example, on an av-
erage run of the street the cumulative radar map that is generated consists of around 3500 points,
the entire lidar map consists of over 55 million points. Manipulating that amount of data is not
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feasible live. Therefore, the amount of data must be reduced.

Lastly, the lidar data, the pointclouds, are 3D, whereas the cumulative map being created by the
radar for the purposes of localization, is only 2D. The radar has a very narrow elevation beamwidth,
of around 4 degrees, as is common for most automotive radars, the lidar has a much wider Field
of View in elevation. Besides this the lidar was placed on top of the car, whereas the radar was
placed on the bumper. These geometric differences can also be kept in mind, when comparing
and combining lidar and radar data in the same application.

7.2. Proposed Method

Bearing all these things in mind, the following method for crafting an a priori lidar map was de-
vised.

For the purposes of understanding the chosen solutions it is essential to separate key problems.

1. The lidar map is 3D, and must become 2D for the purposes of the current SLAM.

2. The lidar sees the road, radar does not, therefore the road must somehow be removed.

3. The lidar pointcloud is too large, and must be reduced in size before it can be worked with.

4. The lidar data contains moving objects, such as cyclists, which need to be removed.

Starting off with problem 2, the chosen solution is: take only the points from the pointcloud in a
certain height range. For example: take only the points from j cm below the lidar up, effectively
extracting a half-space from the total 3D pointcloud, and choose j such that the road is selected
out, which can depend on the height of the radar from the ground, for example. This takes out the
road, and any aberrant objects that are high up from the ground, that the radar cannot see in most
circumstances. This solution also affects problem 3, in that it reduces the amount of points already.
And then,to solve problem 1, remove the height from the pointcloud, flatten the 3D pointcloud to
2D by doing so. This 2D pointcloud still has as many points in it as before this step.

The next step in the creation of a lidar map that can be used as an initial map in the SLAM system,
a map that must have a manageable amount of points, is 2D, and has no moving objects in it, is a
single solution. That is to say: there is a single chosen solution that simultaneously solves prob-
lems 3 and 4.
The solution is based on the statistical analysis, in the form of the creation of a histogram, being
used to find the places in the pointcloud that have a high density of points. The flattened map
is input into a 2D histogram function, with set bin coordinates. Effectively, a grid is placed over
the 2-dimensional map, a grid consisting of 1/3 by 1/3 meter squares. Then, the amount of points
within every square is counted. Finally, a threshold is set: Find the squares/resolution bins with at
least n amount of points in them. The value of n in was manually tuned to gain a map in which
the lanterns, sides of buildings, and tree trunks were all clearly visible and not removed by this part
of the lidar map creation. An example of such a density/histogram plot can be seen in figure 7.1.
As can be observed in said figure, things like walls, lantern-poles and and trees show up brightest.
Note that in this plot the road has not been removed from the data, but as the lidar points on the
road don’t stack up in the Z direction, the road still appears less bright than any vertical object.
The center coordinates of these bins, the "square feet" on the map that contain at least n amount
of points, are saved. These coordinates form the new map. There are several factors that can be
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Figure 7.1: Histogram map of the lidar data, the color indicating the amount of lidar points per bin.

tuned, from the threshold n to the size of the tiles of the grid, but these are the values used as of
now. This method inadvertently solves both problems 3 and 4. Through this approach the amount
of points is reduced drastically, starting off with 52 million points, in this set-up we end up with a
map of the street consisting of around 1500 points. This method of creating the map also favours
stationary objects, as the lidar points will add up consistently in the same place for stationary ob-
jects. A moving object will show up on the map as smeared out over its trajectory while it was being
observed, with their points spread out across the squares in the trajectory, instead of all ending up
in a smaller amount of squares. Moving things show up in the original lidar map with a lower den-
sity per area, than stationary object. As such, choosing the correct tuning values ends up removing
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all moving targets from the map.
To most easily allow the localization algorithm to lock onto the lidar map, it was necessary to first
rotate it such that the street was oriented vertically Starting off with the map shown in figure 7.2,
the map shown in figure 7.3 is created, for use in the SLAM algorithm.

Figure 7.2: Overhead view of the lidar map of the street.
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Figure 7.3: Overhead view of the a priori compressed lidar map of the street, to be used in SLAM

7.3. Implementation

This subsection describes how the now created a priori lidar map can be used in coordination with
the already existing system. The final product should rely heavily on the lidar map at first, as the
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lidar map has a higher fidelity than the radar map, given that the lidar itself had a higher precision,
and a cutting edge GPS system was used to determine the trajectory. But, as the system adds more
to the cumulative map, the system should start to rely more and more on the radar data, given that
this map will better represent what a radar would perceive. This is accomplished by running the
Fitness function, used in the genetic algorithm, twice. Once comparing the currently perceived
radar targets to the a priori lidar map, generating the fitness value FR2L , and once more comparing
the currently perceived radar targets to the cumulative radar map, generating the fitness value
FR2R , and then combining the two values, with weights, into a new fitness value Fnew , as shown in
equation (7.1).

Fnew =Q ∗FR2L + (1−Q)∗FR2R (7.1)

As the amount of points in the cumulative map grows, so will the average value of FR2R , and there-
fore, as time goes on, the value of Fnew will become more dependent on FR2R over FR2L . The
currently chosen value for Q, the weighting factor, is 0.75, though this can be tuned further in the
future.

Using this new fitness function in the genetic algorithm, a new trajectory can be estimated. The
Final result is shown in figure 7.4. As can be observed in the figure. the car is able to localize itself
on the street, using both lidar and radar data.
This new system can then be represented by the flowchart observed in figure 7.5. In this new sys-
tem, both the a prior lidar map, and the cumulative radar map are being related to the current
radar data, to estimate the vehicles current location. As no mention of such a system can be found
in the literature, it is indeed assumed to be a novel method of vehicle localization. However, an-
other scheme has also been tested. In this scheme the radar data is not being saved in any way: the
system only has access to the current radar observation. In any practical application this would
mean that the system needs less memory, and will only ever have to download data from the cloud
(the a priori lidar map, before driving off), and never upload it. Though it might come at the cost of
precision, accuracy and stability, which at this moment in time is still under investigation, as more
data and more research time than is currently available for this thesis would be required.
This streamlined version of the previous localization method can then be described as shown in
figure 7.6. This method of vehicle localization has been shown to also be able to provide a location
estimate, as shown in figure 7.7. To give an impression of the stability of both localization imple-
mentations that make use of lidar data figure 7.8 was created. It is interesting to note that both
implementations show more likeness to each other than to the radar trajectory, which is known to
have an inaccuracy in the orders of several meters.
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Figure 7.4: Overhead view of the final result.
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Figure 7.7: A priori lidar map with the estimated trajectory of the vehicle
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8
Conclusion and Recommendations

In this final chapter I will explain the contributions I have made, and the systems I have developed.
After that, I have several recommendations for future work that can be executed using the results
and developed systems from this thesis.

8.1. Conclusions

In this thesis I have investigated and answered the following research questions:

1. Can localization be done by relating radar measurements to a lidar point cloud?

(a) How does the radar point cloud relate to the lidar point cloud, and how can they be
made more relatable?

(b) Can a 3D radar point cloud be created using DBS(Doppler Beam Sharpening), and can
it be used in localization?

(c) Is it possible to use only the radar based point cloud in the long term for localization, if
so: how?

2. Can this be implemented using a cost effective 1D antenna array?

3. Can pure-radar (without a priori maps) 3D SLAM(Simultaneous Localization And Mapping)
be implemented using a cost effective 1D antenna array?

To this end, the following activities were performed:

– A review of the existing literature was executed, to establish different routes by which these
questions may be answered, and to form the ground work from which novel applications
could be developed in this thesis.

– Radar data from simulated targets was generated, to establish the functionality of the DBS
algorithm, the SLAM algorithm, and target detection system.

– Target detection scripts were constructed, while also researching the possibility of including
super resolution algorithms, to improve the precision of the system if it were found to not be
precise enough.
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– A DBS algorithm was implemented, and tested on the detected simulated targets, to prove
the functionality of the DBS, before it was to be given real world data.

– A genetic SLAM algorithm was constructed, Which both allows the creation of maps from
scratch, and can also be used to have the system lock onto existing maps provided to the
system. This algorithm was then tested and proven to be functional using simulated data.

– The genetic SLAM algorithm was tested on real world data, creating the first 2D maps of the
environment, and proving the systems ability to localize the vehicle on the road.

– An ego motion estimation algorithm was developed that allowed for ego motion estimation
that is precise enough for the current applications, and was then used to improve the SLAM
system.

– Using the ego motion estimates, the 2D maps were turned into 3D maps of the environment,
using the DBS algorithm for the necessary height estimation, and the functionality of this
height estimation was proven by isolating scatterers with known heights or configurations.

– Next, to establish that the system could lock onto an existing map created using a lidar sen-
sor, a lidar map was created, and filtered to reduce the dimensionality from 3D to 2D, and to
reduce the amount of points in it.

– The system was then adapted to accept a priori information about the environment, by pro-
viding it with said aforementioned a priori lidar map. It was proven to be able to lock onto
it, and localize the vehicle on the road. Thus, another localization system was invented, one
that makes use of both lidar and radar, unlike the previous SLAM system, that builds maps
using only radar data.

– Finally, a last novel localization system was constructed that not only locks onto an existing
lidar map, but also creates and maintains a cumulative map created using the radar data.
This system can stop relying on the lidar data when a cumulative radar map has been created
that is sufficiently populated after enough passes of the environment.

These points define an outline for the followed work flow during the thesis project. The results of
these activities can be summarized as follows:

– A system to create 3D radar maps using an automotive radar with a 1D antenna array has
been developed.

– A novel self localization algorithm for car localization, using both lidar and radar data was
developed. It makes use of a previously created and processed lidar based map, on which it
is able to localize the vehicle using the radar data available at any moment in time.

– A second novel localization algorithm and new approach to the localization problem was
proposed and implemented, one that saves the radar data from every frame into a cumula-
tive radar based map. This system can then localize itself by relating the current radar target
observations to both the a priori lidar map and the radar map, both localizing the car, and
adding to the cumulative map, as it goes along. If the radar map becomes sufficiently pop-
ulated, the lidar map is no longer necessary, thereby avoiding this data becoming outdated,
and creating a continuously self updating radar map.

– The algorithms/systems were all tested on real world data, and the fact that they work has
been verified
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Over the course of this project, there were various things that I found to be important that must
be kept in mind. For one, accurate estimation of the ego motion is very important. Not only does
knowledge of the ego motion of the vehicle help improve the performance of localization algo-
rithms, it is also vital for the DBS based height estimation, with which the 3D maps are generated.
The more accurate the ego motion estimate is, the more accurate the height estimations become.
On a related note, it is also important to have accurate and precise Doppler measurements of the
perceived radar targets. This aids both the ego motion estimation accuracy and precision, and the
height estimation performance.
Another important finding is that it is in fact possible to relate radar data to a lidar map, but, to
accomplish this, the lidar map has to be processed to make it have the same dimensionality as the
radar map, and to reduce the amount of points in it to make the computation time between frames
manageable. This was initially why I attempted to make the radar maps 3D, instead of making the
lidar maps 2D. Though I found out that with the current setup, the latter approach is better for the
built applications, though more about this will be discussed in section 8.2.
The height estimation is most accurate for targets that are not in right in front of the radar, but are
instead above or below boresight. The further up a target is, the more accurate the height estima-
tion becomes, until the targets are so high up that they are never in the main beam of the radar. To
this end, using a radar with a narrow beamwidth in the elevation angle is a hindrance, but not one
that can not be overcome.
Similarly, the faster the car drives, the greater the difference in received Doppler from a target right
in front of the radar, and one high up, becomes. This causes the height estimation resolution to in-
crease with the velocity of the vehicle. It also means that height estimation with the implemented
methods is impossible if the car is standing still.

8.2. Recommendations

In this section I seek to consider what changes/adaptations/implementations might possibly be
tried. While this system illustrated the feasibility of 3D SLAM with a 1D array, there are some
things that can still be implemented. Such as: feeding the genetic algorithm 3D lidar and radar
maps, and possibly allowing it to estimate the pitch and roll and height of the car, giving a more
complete picture of the pose of the vehicle. This could also help in the SLAM, in that certain targets
can appear and disappear depending on the vehicle pose, such as bridges and traffic signs that are
not visible when the vehicle is underneath them, and knowing which points on the map are not
visible to the car at its current pose and location can help you select which points on the map the
currently observed radar targets should be related to, and which can be ignored.
Another idea might be to refine the Doppler/angular information using MUSIC algorithm or dif-
ferent target detection schemes, to improve the height estimation and ego motion estimation ac-
curacy, or simply running an experiment with different radar settings, such as greater bandwidth
or higher pulsenumber, thereby increasing the precision of the range and Doppler information
gained from FFT based spectral analysis. These changes are to improve the fidelity of the map to
be created, and to allow the system to estimate the pose of the car more accurately.

Future research questions could include:

1. Can RADAR measurements made with different cars or different radars be combined, does
3D mapping aid in this pursuit?

2. Can quasi stationary objects be taken into account, such as parked cars?
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3. Can near stationary objects be taken into account, such as parked cars?

4. Can hills, tunnels, and other objects that can only be detected when close to them, or far
away from them, be taken into account?

5. What is the best angle for the RADAR to be placed in the car?

In future research, the multipath approach might still be attempted, or a combination of both DBS
and the multipath approach. The system should be tested in real time in a real life scenario, to
establish if the system can run live. I also recommend testing various forms of SLAM, as I used the
genetic algorithm approach merely for its broadness, and adaptability. With the Genetic Algorithm
approach, almost no prior information about the problem being solved is necessary, such as a
vehicle model for example. It was used to prove that hybrid lidar and radar localization, with only
a radar attached to the vehicle, was possible. If the system is to be deployed in the real world, it
would be beneficial to test which of the many existing SLAM algorithms provides the most optimal
solution for these types of data.
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