<]
TUDelft

Delft University of Technology

Car-following Behavior Model Learning Using Timed Automata

Zhang, Yihuan; Lin, Qin; Wang, Jun; Verwer, Sicco

DOI
10.1016/j.ifacol.2017.08.423

Publication date
2017

Document Version
Final published version

Published in
IFAC-PapersOnLine

Citation (APA)

Zhang, Y., Lin, Q., Wang, J., & Verwer, S. (2017). Car-following Behavior Model Learning Using Timed
Automata. In D. Dochain, D. Henrion, & D. Peaucelle (Eds.), IFAC-PapersOnLine (pp. 2353-2358). (IFAC-
PapersOnLine; Vol. 50, No. 1). Elsevier. https://doi.org/10.1016/j.ifacol.2017.08.423

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.ifacol.2017.08.423
https://doi.org/10.1016/j.ifacol.2017.08.423

ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 50-1 (2017) 2353-2358

Car-following Behavior Model Learning
Using Timed Automata

Yihuan Zhang* Qin Lin** Jun Wang* Sicco Verwer **

* Department of Control Science and Engineering, Tongji University,
Shanghat 201804, P. R. China (e-mail: {13yhzhang,
Junwang} @tongji.edu.cn).

** Department of Intelligent Systems, Delft University of Technology,
Delft 2628 CD, the Netherlands (e-mail: {q.lin,
s.e.verwer} @tudelft.nl).

Abstract: Learning driving behavior is fundamental for autonomous vehicles to “understand”
traffic situations. This paper proposes a novel method for learning a behavioral model of car-
following using automata learning algorithms. The model is interpretable for car-following
behavior analysis. Frequent common state sequences are extracted from the model and clustered
as driving patterns. The Next Generation SIMulation dataset on the I-80 highway is used for
learning and evaluating. The experimental results demonstrate high accuracy of car-following

model fitting.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: real-time automata learning, state sequence clustering, car-following behavior,

piece-wise fitting

1. INTRODUCTION

Car-following is the most common behavior in daily
driving scenarios. Modeling car-following behavior has
many uses. First, learning human drivers’ car-following
behavior helps build an autonomous car-following soft-
ware/controller. Furthermore, for subject drivers, moni-
toring, estimating or even predicting the states of nearby
vehicles is of great importance for interaction and decision
making. A car-following model essentially reflects how
drivers respond to their existing driving state by imple-
menting a certain action. The first work can be dated to
the 1950s, in which car-following models were developed
to evaluate traffic capacity and congestion. Pipes (1953)
proposed a linear follow-the-leader model that bridged
the drivers’ desired acceleration and the speed difference
between the following and leading vehicles. Another widely
used linear model was proposed by Helly (1959). Alter-
natively, a non-linear model proposed by Gazis et al.
(1961) introduced power operators of range and speed.
Treiber et al. (2000) developed an intelligent driver model
(IDM) that was a time-continuous car-following model for
the simulation of freeway and urban traffic. A genetic
algorithm is the most widely used technique to identify
good parameter values in the aforementioned models. A
gross fitting strategy, i.e., fitting a car-following model on
all the collected data, is usually used for identification.
Gross fitting has inevitably large fitting errors and it is
more suitable for use in rough traffic flow monitoring.
Alternatively, a single car-following model identified per
driver is typically used for driving skills evaluation.

* All the experiments are reproducible with our shared data and
code: hitps://bitbucket.org/anjutalq/carfollowingrti.

In this paper, we focus on a “mesoscale” to model car-
following behaviors/patterns shared by drivers. Driving
states, i.e., input stimuli or explanatory variables, are clus-
tered based on their sequential features. Then applying
a divide-and-rule or piece-wise fitting method, the ap-
proximation error of this switching car-following model is
expected to be lower.

Our work is motivated by Higgs and Abbas (2015). In
their paper, they first segmented the time series data by
means of change point detection, then the mean values
representing the segmented piece-wise data were clustered
using k-means. The noticeable disadvantage of such a data
points clustering approach is that it loses sight of dynamic
and time information. In this paper, we deploy sequence
clustering which essentially clusters similar driving pro-
cesses shared among multiple complete car-following peri-
ods. Another related work is from Verwer et al. (2011),
which recognized truck driving behaviors from labeled
sequences. Our work addresses an unsupervised learning
task focusing on car-following scenarios containing more
complex driving patterns from unlabeled sequences. In-
stead of learning semi-supervised classifiers from speed and
fuel engine sensors, our framework is a unique generative
model with distinguishable behaviors in different model
regimes.

We discretize the original multivariate time series data
from a widely used public dataset into symbolic strings.
Symbolic representation significantly reduces the dimen-
sionality of multi-variate time series data and provides a
high-level overview of behavioral dynamics. It is sufficient
for the modeling of conventional discrete event systems.

However, in many application settings, time information
is crucial for behavioral modeling. For example, moderate

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2017.08.423

2354

and harsh deceleration are obviously not the same driv-
ing behavior. We therefore compute the time difference
between two consecutive distinct events to obtain timed
strings. The learning process benefits from such timed
sequential data since it helps to explicitly discover the
underlying varying-duration behaviors. We then deploy a
state-of-the-art machine learning algorithm named RTT+
(stands for real-time identification from positive data) to
learn a graphical model that “best” describes the observed
data. With the help of this structural model, we extract
frequent common state sequences as patterns and cluster
them. A complete car-following period is considered to
consist of distinguishable temporary behaviors represented
by the aforementioned clusters.

This paper makes the following contributions:

e We represent multivariate time series data with sym-
bolic timed strings and learn a highly interpretable
model with state-of-the-art automata learning algo-
rithms.

e Properties of temporal processes, i.e., sequential fea-
tures, are used for clustering the input data. The
results show that the fitting accuracy is significantly
improved.

e To the best of our knowledge, this is the first work
to use state sequence clustering to label different
behaviors in an automata model by dividing different
model parts.

e The usage of our model is promising. It can easily be
used as a classifier for recognizing driving behaviors
of surrounding drivers for human or autonomous
drivers. In addition, due to its insightful nature, an
intelligent car-following controller may also benefit
from our model.

This paper is organized as follows. Section 2 describes
the car-following model identification. Section 3 discusses
timed automata learning. Section 4 details the state se-
quence clustering. In Section 5 experiments and a com-
parison with baselines are conducted. We make concluding
remarks in Section 6.

2. CAR-FOLLOWING MODEL IDENTIFICATION

Traditional car-following model identification, also called
model calibration in many papers, is that given an as-
sumed model we trying to identify its parameters. In this
paper, we introduce two commonly used models: the IDM
and the Helly, which are representations of a non-linear
and a linear car-following model, respectively.

The acceleration in the IDM is a continuous function
associated with the velocity v, relative distance Az, and
relative velocity Awv, which is defined by Treiber et al.
(2000):

()) o

v - Av
s*(v,Av) =sg+v- Ty + ——e 2
()) 0 0 2@ ()
where ag, by, vg, 9, sg and T are parameters that need
to be calibrated. The exponential constant ¢ is often set

to 4. In Equation (1), the acceleration function is divided

and

Yihuan Zhang et al. / IFAC PapersOnLine 50-1 (2017) 2353-2358

into two parts. The first part ag - (1 - (v/vo)(;) represents

an acceleration rate toward a desired speed vy, where
aop denotes the maximum acceleration. The second part
—ag- (s* (v, Av)/Az)? indicates a braking action according
to a current relative distance Az and a desired minimum
gap s*, which is defined by Equation (2). The parameters
bp and sg are the desired deceleration and the minimum
safe distance, respectively, and Ty is the constant desired
safety time gap.

The acceleration in Helly’s car-following model is a linear
function combining the relative speed and relative distance
between the headway and the desired one, which is defined
by Helly (1959):
o(t) =C1-Av(t — 1)+ Cy - (Az(t — 1) — D(t)) (3)
and
Dit)y=a+8-vt—7)+v -0t —71) (4)
where C1, Cs, «, B, v and 7 are parameters that need to
be calibrated. The desired headway is a function of the
velocity and the acceleration of the follower vehicle, where
«a, 8 and 7 are the corresponding parameters for those
variables. Also, 7 represents the reaction time delay of the
follower vehicle.

3. STATE MACHINE LEARNING

State machine learning aims at identifying a “correct”
grammar for the (unknown) target language, given a finite
number of examples of the language Sakakibara (1997).
de La Higuera (2005) points out that the main goal of
research in the field of grammatical inference is learning
regular grammars or deterministic finite automata (DFA),
typically minimum state DFA. The first convincing model
for grammatical inference dates back to 1967, see Gold
(1967). It has been proved by Gold (1978) that finding
the minimum state DFA from incomplete examples is NP-
complete. Readers are referred to the survey paper of
Stevenson and Cordy (2014) for more formal definitions
and a history of grammatical inference. Although gram-
matical inference is hard in theory, new techniques have
emerged to make practical problems more tractable such as
heuristic-based state merging proposed by de La Higuera
(2005). These algorithms require discrete-event strings as
input. In this paper, the original real-valued time series
data are abstracted using symbols associated with time
information. The resulting timed strings are then fed to a
state machine inference algorithm that learns a structural
model discovering the underlying behaviors.

3.1 PDRTAs

Time constraints in regular automata or Markov models
are implicit. A probabilistic deterministic finite automata
(PDFA, very similar to a hidden Markov model) is a
generic model for such a conventional setting. However,
time information is relevant in many real-world applica-
tions of discrete event systems (DESs). The actions’ timing
or lifetime is important for characterizing behaviors. Sharp
and slow deceleration actions are conspicuously distinct
for instance. An algorithm for efficient learning of timed
automata was proposed by Verwer et al. (2006, 2010). This
algorithm uses an explicit representations of such time con-
straints. Discrete events are represented by timed strings

Yihuan Zhang et al. / IFAC PapersOnLine 50-1 (2017) 2353-2358

(a1,t1)(ag,ta) - (an, tn), where a; is a discrete event oc-
curring with ¢; time delay since the (i — 1)th event. A
probabilistic deterministic real timed automata (PDRTA)
model defines a probability distribution over such timed
strings, having a Markov property in the distribution over
events, and a semi-Markov property in the time guards.
PDRTASs are formally defined in Definition 1.

Definition 1. A PDRTA is a 4-tuple (A,&,7T,H), where

o A= (Q,%, A, q) is a 4-tuple defining the machine
structure:) is a finite set of states, ¥ is a finite
alphabet, A is a finite set of transitions, and ¢y € @
is a start state;

e £ and T are the event and time probability distri-
butions, respectively. £ : (Q,X) — [0, 1] returns the
probability of generating/observing a given event in
a given state. T : (Q,H) — [0,1] returns the same
but for a given time range [m,m'] € H, where H is a
finite set of non-overlapping intervals.

A transition § € A in a PDRTA is a tuple {q, ¢, a, [m,m]),
where ¢,q' € @ are the source and target states, a € X is
a symbol and [m,m/] is a temporal guard.

The states in a PDFA and a PDRTA are latent variables
that cannot be directly observed in strings, but have to be
estimated using a learning method. The state transition
in a PDFA is triggered only by an event. However, in a
PDRTA, it is triggered when both an event and its timing
are validated (inside a time range/guard). Therefore, a
PDRTA is essentially a timed variant of a PDFA.

3.2 Data Description and Pre-processing

The public dataset on individual vehicle trajectories used
in this paper is from NGSIM (2007), a program funded by
the U.S. Federal Highway Administration. This trajectory
data is so far unique in the history of traffic research
and provides a great and valuable basis for validation
and calibration of microscopic traffic models. We use the
data collected in the I-80 6-lane freeway site which has a
total length of 503 meters and has been recorded by seven
mounted cameras. Thanks to the efforts by Montanino and
Punzo (2013, 2015), the trajectory data has been extracted
through digital video processing techniques. The original
I-80 data is sampled every 0.1 seconds. Following and
leading vehicle pairs are extracted for the purpose of car-
following behavior studying. Table 1 shows a summary of
data features used in this paper. Note that vehicle speed,
relative distance, and relative speed are model inputs.
Longitudinal acceleration is model output and used as a
ground truth for testing the model’s output.

Table 1. NGSIM data features.

Features Definitions

Vehicle speed
Longitudinal acceleration
Relative distance

Speed of a subject vehicle
Acceleration of a subject vehicle
Distance from the front of a sub-
ject vehicle to the back of a lead-
ing vehicle

Speed difference between a sub-
ject vehicle and a leading vehicle

Relative speed

The k-means clustering algorithm is used as a discretiza-
tion approach to symbolize the car-following data. The

2355

elbow finding method proposed by Goutte et al. (1999) is
used to determine the number of clusters. The idea is to
find the elbow of the within the cluster sum of squares
(WSS). In this paper, we choose 10 as a good cluster
number and the centroids are listed in Table 2.

3.8 Learning PDRTAs

A state-of-the-art machine learning algorithm named
RTI+ proposed by Verwer (2010) is used to learn car-
following behaviors from unlabeled data. A traditional
probabilistic state merging algorithm starts by building
a large tree-shaped automata called prefix tree from a
sample of input strings. Every state of this tree can
be reached by exactly one untimed string and therefore
encodes exactly the input sample. The algorithm then
greedily merges pairs of states (¢, ¢’) in this tree, forming a
smaller and smaller machine that generalizes over samples.
When the target machine is deterministic, for every event
e € X the states that are reached from ¢ and ¢’ have to be
merged as well (the determinization process).

The algorithm uses a statistical test to decide whether to
merge or not. A merge between the state pair g and ¢’ is
considered good if the future behavior after reaching ¢ is
similar to that after reaching ¢’, which can be tested using
a likelihood-ratio test proposed by Verwer et al. (2010).
This essentially tests the Markov property, i.e., whether
future behavior is independent of being in state ¢ or ¢'.
When these futures are significantly different, the merge
is considered inconsistent and will not be performed.

In addition to state merges, RTI+ is capable of performing
transition splits. In the prefix tree, the temporal guards
include all possible time values. A split of a transition § =
(q,¢, a,[m,m']) at time point ¢ creates two new transitions
(q,q1,a,[m,t]) and (g, 2, a, [t + 1,m']). The target states
q1 and ¢o are the roots of two new prefix trees that are
reconstructed from the input sample. In this way, RTT+
can learn temporal constraints in addition to the machine
structure.

4. STATE SEQUENCE CLUSTERING

We bridge a mapping between the observable variables
(time series data/symbolic data) and the latent variables
(state sequences). First, subsequence of each state se-
quence is clustered and the cluster ID is used to look
up the associated symbolic transition. Then the origin
domain corresponding to the symbol is identified and
the associated raw values is obtained. Because we only
need to follow the mappings backwards, we call this a
(reverse) indices mapping. The parameters in piece-wise
fitting model are obtained in each individual cluster of time
series data. We compare it with another approach that
clusters the symbolic data directly. The advantages of the
state sequence clustering over direct symbolic clustering
are as follows:

e States are latent variables determining the distribu-
tion of symbols. However, the mapping from symbols
to states is not unique. As a result, behaviors are more
identifiable with a state sequence.

e On one hand, Symbolic clustering without time infor-
mation is not able to distinguish behaviors with short

2356

Yihuan Zhang et al. / IFAC PapersOnLine 50-1 (2017) 2353-2358

Table 2. Code book of k-means centroids for numeric data.

Symbols a b c d e f g h i j

Relative speed centroid (m/s) 0.79 3.02 -2.88 4.82 -3.12 -0.98 -9.67 252 -7.02 0.12
Relative distance centroid (m) 57.87 36.13 15.63 15.55 204.18 96.09 39.74 24.00 24.47 10.13
Speed centroid (m/s) 13.69 10.54 7.74 5.94 19.41 17.25 12.99 8.38 10.10 4.12

or long duration. On the other hand, this information
is encoded with time guards of states in a timed
automata.

We compare the final fitting error of the car-following mod-
els (one for every cluster) for a direct symbolic clustering
with the proposed state clustering in experiments.

4.1 Common Strings

The state frames dataset D.S contains N state sequences,
ie., DS = {S1,---,Sn}, where S; = (851, - ,8:1,) is a
single sequence of length [; containing states from Q. A
substring, also called a factor of a string S;, is a string
S; = (Siji+j - Sim+j), where j > 0 and m + j < [;.
Given a DS, a frequent common substring problem is
to find strings that occur as substrings of at least ¢
state sequences, where 2 < e¢ < N is a user-defined
threshold. Intuitively, we aim at finding patterns that
are shared among drivers as common frequent behaviors,
which potentially characterize car-following behaviors.

4.2 Hierarchical Strings Clustering

In this paper, the Jaro-score is used to measure the
similarity between two strings which is defined as:

JS if Nmatch =0
- % (Nw}::;ch + Nwia;ch + Nma,f,ch*NT) otherwise

match

(5)
where L; and L; are the respective lengths of these two
strings. Nopaten is the number of matching characters that

are not farther than a window length L%J —1. Np
is half of the transpositions number. The higher the Jaro
score is, i.e., the closer to 1, the more similar two strings
are. We use d = 1 — JS as the metric measuring string
distance. For the two state sequences 1,6,2 and 1,6,2,1 for
instance, d =1 — % (% + % + %) The 4th symbol “1” in
the latter sequence does not match the 1st symbol “1” in
the former sequence, since its index distance is larger than
one, which is the length of the matching window.

We deploy a hierarchical clustering for frequent common
strings. At the beginning, every string represents a unique
cluster, then a hierarchical clustering essentially conducts
pairwise distance computation between two clusters. For
clusters containing multiple strings, we compute the aver-
age distance. In each iteration, only one pair of clusters is
merged. The iteration stops at the cut-off threshold that
is a user-defined parameter for determining the number of
clusters.

5. EXPERIMENTAL RESULTS

In this paper, the differential evolution algorithm (DEA)
proposed by Storn and Price (1997) is applied to identify

the parameters of the IDM and the Helly car-following
models. The population scale is set to be 15, differential
weight and crossover probability are 0.5 and 0.9. The
maximum generations are 500. We choose the first 80%
proportion of the dataset for training and the remaining
20% for testing. In the following experiments, the k-means
discretization and the state sequence clustering are both
deployed only in the training data. To avoid over-fitting
and obtain a less biased evaluation, the testing data are not
included during clustering. Their symbolic and sequential
labels are assigned by computing the closest distance to
the clusters obtained from the training data. To make a
more complete overview of driving behaviors, we use the
whole dataset for model interpretation and the examples
of techniques implementation.

5.1 Model Interpretation

The learned model from the whole dataset is illustrated
in Figure 1. All clusters are distinguished with different
colors. Note that the original solution we got from RTI+
has 34 states in total. We remove states with very low
frequencies to simplify our model interpretation. The arcs
represent transitions between states. The information of
timed guards, events, and number of occurrences is also
printed next to the arcs.

There are loops with significantly large occurrences in
Cluster 6, e.g., state sequence: 1 — 6 — 11 — 16 — 1 with a
symbolic transitions loop: d-j-c-j, see Table 3. The relative
distances of “c” and “d” are very close, see the code
book in Table 2, but negative and positive respectively.
They are associated with “j”, which has a very small
speed difference. This sequence can be interpreted as the
steady car-following behavior at short distances,
i.e., adapting the speed difference with the leading vehicle
around 0. Similarly interesting and significant loops can
also be seen in Cluster 2 and Cluster 4, which are steady
long distance and steady medium distance car-
following behaviors respectively. An intermediate state
S15 in Cluster 5 has many incoming transitions, which
explains how to transfer between clusters. For the example
S6 — S15 — S4 with transitions “h, i”, i.e., slowing down
and speeding up to catch up, from the short distance
following in Cluster 6 to the medium distance following
in Cluster 4. The time split can also be seen in two
branches of [0,37],7 and [38,542],7 from S15. They share
the same symbolic transition condition but have distinct
time guards. It means the “i” speed up action followed by
short or long duration of “h”, i.e., after how much time the
subject vehicle driver notices that their relative distance
has been expanded by the leading vehicle and begins to
catch up. Note that some states, such as S12 and S13, are
intermediate processes and do not exist only in a unique
cluster (cf. Table 3). It makes the boundary among clusters

Yihuan Zhang et al. / I[FAC PapersOnLine 50-1 (2017) 2353-2358 2357
Cluster 6
(s1)
[0,542]
d, #3086
[0,542] [0,542]
¢, #596 g, #463
[0,542] [0,542]
j, #1275 d, #584 b, #306
Cluster 5
[0,542] P [0.,542]
c, #1524 g, #298
[0,542] \ [0,542]
j, #1237) ¢, #670
Cluster 3
(57)
[3,542]|[0,542] [0,542] |[0,542]
¢, #759|h, #288 b, #272 i, #424
Cluster 2
#2162 d. 42570 CORN D
[0,542] [0,542]
g,#386/ b, #290 c, #222
G () ©) G (521))
Fig. 1. Real-timed automata learned from the whole dataset.
Table 3. Interpretation of Clusters
Cluster ID Dominating states Dominating symbolic loops Description
1 0,2,3,8,13 - without significant meaning
2 17, 21 b-g steady long distance car-following
3 7,13,20 - intermediate process
4 4,9,10, 14 h-i steady medium distance car-following
5 12, 15, 19 - intermediate process
6 1, 2,6, 11, 12, 16 c-d-j steady short distance car-following
vague. But this phenomenon also serves as the evidence of
transitions among clusters.
A complete car-following example in our dataset is illus- 12
trated in Figure 2. It starts from the bottom (in orange),
passes through Clusters 6, 5, and 3, then finishes in Cluster 10 K
4. At the beginning, the subject vehicle follows the leading PR
vehicle at short distances. Then the leading vehicle speeds é
up, see the positive relative speed and the increasing rel- 6 = = cluster 3
ative distance in Cluster 5. The subject vehicle then also | |=== cluster 4
speeds up to approach the leading vehicle, see the nega- 4 - = cluster 5
. . g . . . cluster 6
tive relative speed and the decreasing relative distance in 2
Cluster 3. Finally, it follows the leading vehicle at medium 40
distances in Cluster 4. We can see that in Cluster 6 and 20 10 20
4, the subject car enters an unconscious reaction region, 10 0
also called a steady car-following episode, i.e., the relative 0 20

distance and the relative speed are both bounded in a small
region. Cluster 3 and 5 can be both treated as intermediate
transition processes.

1 An animated video can be found in our code repository:
https://bitbucket.org/anjutalg/carfollowingrti/src

Relative speed (m/s)

Relative distance (m)

Fig. 2. A complete car-following period switching among
clusters.

5.2 Fitting Error Test

Some baselines are implemented for a comparison with
the proposed model. The first one is gross fitting that uses

2358

a single car-following model. Also, a symbolic clustering
method is implemented. The main idea is that we deploy
the clustering with the same setting as our state sequence
clustering, directly on the symbolic data without the timed
information. Note that the symbolic strings are essentially
timed strings without the time information. This approach
is a fair comparison because the original symbolic data
sampled every 0.1s has too much redundancy leading to
large errors. Tables 4 shows the fitting error performance in
the Helly and the IDM models. Generally, the Helly model
achieves higher accuracy than the IDM for our dataset.

Table 4. Testing data error

Helly Gross-fitting ~ Symbolic clustering Proposed
Average 0.4836 0.0340 0.0122
Minimum 0.0912 0.0062 0.0037
Maximum 1.4069 0.3396 0.1757
IDM Gross-fitting ~ Symbolic clustering Proposed
Average 2.0416 1.0066 0.9490
Minimum 0.1233 0.2838 0.0631
Maximum 8.2538 5.4854 3.6611

6. CONCLUSION

In this paper, a timed automata model is learned from
multivariate time series car-following data with a timed
strings representation. The model is easily visualizable and
interpretable for the study of car-following behaviors. Se-
quential feature-based clustering of state sequences is used
for partitioning the model to represent distinguishable
behaviors. The original time series data are also clustered
correspondingly. We train different models from individual
clustered data to obtain a piece-wise fitting result and ex-
periments demonstrate that the proposed method achieves
high model fitting accuracy.

In the near future, we will implement the segmentation
and clustering approach of Higgs and Abbas (2015) and
make a comparison with ours. Our model can be used
for subject drivers’ decision making by recognizing or
predicting surrounding vehicles’ car-following states. It can
also provide insights for the designing of a car-following
controller.

7. ACKNOWLEDGMENTS

We would like to thank Dr. John M. Dolan in Carnegie
Mellon University and Mr. Christian Hammerschmidt in
University of Luxembourg for their very helpful reviews
and discussions.

This work is partially supported by Technologiestichting
STW VENTI project 13136 (MANTA) and NWO project
62001628 (LEMMA). This work is also supported by

the National Natural Science Foundation of China under
Grant No. 61473209.

REFERENCES

de La Higuera, C. (2005). A bibliographical study of gram-
matical inference. Pattern Recognition, 38(9), 1332—
1348.

Yihuan Zhang et al. / IFAC PapersOnLine 50-1 (2017) 2353-2358

Gazis, D.C., Herman, R., and Rothery, R.W. (1961). Non-
linear follow-the-leader models of traffic flow. Operations
Research, 9(4), 545-567.

Gold, E.M. (1967). Language identification in the limit.
Information and Control, 10(5), 447-474.

Gold, E.M. (1978). Complexity of automaton identifica-
tion from given data. Information and Control, 37(3),
302-320.

Goutte, C., Toft, P., Rostrup, E., Nielsen, F.A., and
Hansen, L.K. (1999). On clustering fMRI time series.
NeuroImage, 9(3), 298-310.

Helly, W. (1959). Simulation of bottlenecks in single-lane
traffic flow. In Proceedings of the Symposium on Theory
of Traffic Flow, 207-238. New York: Elsevier.

Higgs, B. and Abbas, M. (2015). Segmentation and clus-
tering of car-following behavior: recognition of driving
patterns. IEEFE Transactions on Intelligent Transporta-
tion Systems, 16(1), 81-90.

Montanino, M. and Punzo, V. (2013). Recon-
structed NGSIM 180-1. Cost Action TU0903-Multitude.
http://www.multitude-project.eu/exchange/
101.html.

Montanino, M. and Punzo, V. (2015). Trajectory data
reconstruction and simulation-based validation against
macroscopic traffic patterns. Transportation Research
Part B: Methodological, 80, 82—-106.

NGSIM (2007). U.S. Department of Transporta-
tion, NGSIM - Next generation simulation.
http://www.ngsim.fhwa.dot.gov.

Pipes, L.A. (1953). An operational analysis of traffic
dynamics. Journal of Applied Physics, 24(3), 274-281.

Sakakibara, Y. (1997). Recent advances of grammatical
inference. Theoretical Computer Science, 185(1), 15-45.

Stevenson, A. and Cordy, J.R. (2014). A survey of
grammatical inference in software engineering. Science
of Computer Programming, 96, 444—459.

Storn, R. and Price, K. (1997). Differential evolution—
a simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimization,
11(4), 341-359.

Treiber, M., Hennecke, A., and Helbing, D. (2000). Con-
gested traffic states in empirical observations and mi-
croscopic simulations. Physical Review E, 62(2), 1805.

Verwer, S., de Weerdt, M., and Witteveen, C. (2010). A
likelihood-ratio test for identifying probabilistic deter-
ministic real-time automata from positive data. In In-
ternational Colloquium on Grammatical Inference, 203—
216. Springer Berlin Heidelberg.

Verwer, S., De Weerdt, M., and Witteveen, C. (2011).
Learning driving behavior by timed syntactic pattern
recognition. In IJCAI 2011, Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence,
1529-1534. IJCAI/AAAL

Verwer, S.E., De Weerdt, M.M., and Witteveen, C. (2006).
Identifying an automaton model for timed data. In
Benelearn 2006: Proceedings of the 15th Annual Ma-
chine Learning Conference of Belgium and the Nether-
lands, Ghent, Belgium, 11-12 May 2006.

Verwer, S.E. (2010). Efficient identification of timed
automata: theory and practice. Ph.D. thesis, Delft
University of Technology.

