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Abstract

Conceptual models in hydrology are widely used, allow for easy interpretation and require
little data. Machine learning models in hydrology often outperform conceptual models
but lack the ease of interpretability, require large amounts of data and and do not obey
physical laws. Hybrid approaches aiming to combine the advantages of both approaches
are becoming more popular. A Neural Ordinary Differential Equations approach is intro-
duced to combine a differential equation-based conceptual model with a neural network.
Additionally, conceptual models and Long Short-term Memory (LSTM) models are used
as benchmarks. The models are tested using the LArge-SaMple DAta for Hydrology and
Environmental Sciences for Central Europe (LamaH-CE) dataset as well as the E-OBS
dataset. In many cases the hybrid models outperform the conceptual model. However, to
further improve the performance of hybrid models more research is needed to make the
models more computationally efficient and optimized training strategies are required to
explore the full potential of the approach.
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1 Introduction

1.1 Motivation

Hydrological modelling plays an important role in many hydrology-related fields. Short-
and long-term forecasts of streamflow are used for the management of water resource
systems (Zealand et al., 1999; Bouaziz et al., 2021). Streamflow predictions are used
for flood frequency estimation (Moretti and Montanari, 2008) and for predicting low-
flows (Staudinger et al., 2011). Furthermore, hydrological modelling serves as a tool to
improve the understanding of the interaction between storages and fluxes at catchment
scale (Bouaziz et al., 2021).

Machine learning approaches to hydrological modelling such as LSTM models have shown
great skill in rainfall-runoff modelling, often showing superior performance compared to
conceptual models. However, the interpretability of machine learning models is more diffi-
cult compared to physics-based and conceptual models (Feng et al., 2020; Kratzert et al.,
2018; Samek et al., 2019; Feng et al., 2023). Besides accurate streamflow predictions,
hydrological system and process understanding is another common objective of hydrolog-
ical modelling (Devia et al., 2015; Höge et al., 2022). Machine learning models such as
LSTM models are fully data-driven or empirical. Hence, the translation from, in this con-
text, meteorological inputs to streamflow is learned entirely from data and does not allow
incorporation of prior existing hydrological knowledge (Höge et al., 2022; Devia et al.,
2015).

Conceptual models are widely used in hydrological modelling and are semi data-driven
or semi empirical. Simplified physical processes are implemented and parameters, which
are often assumed as constant across the catchment area, are calibrated using streamflow
observations (Merz and Blöschl, 2004; Devia et al., 2015). Conceptual models are easily
interpretable and allow incorporation of prior hydrological knowledge.

In recent years different hybrid approaches, combining conceptual models and neural net-
works have been introduced, aiming to combine the strengths of both approaches (Höge
et al., 2022; Feng et al., 2023; Rackauckas et al., 2020). Some hybrid approaches have
displayed similar performance to state-of-the-art machine learning models such as LSTMs
while additionally providing insight into physical variables and processes (Höge et al.,
2022; Feng et al., 2022). Approaches chosen by Frame et al. (2021) and Jiang et al. (2020)
apply the neural network component in a post-processing step while Höge et al. (2022),
Tsai et al. (2021) and Feng et al. (2022) directly combine the conceptual component with
the neural network component. The latter is assumed to result in better interpretability
and physical significance (Feng et al., 2022).

1



1 Introduction

1.2 Research Objective

The overarching goal of this work is to explore the utility of a Neural Ordinary Differential
Equation (NODE) approach as a hybrid hydrological model. A study region with good
data availability and sufficiently large diversity of catchment characteristics was selected to
allow for model comparison across different types of catchments. The LamaH-CE dataset
(Klingler et al., 2021), which is based on ERA5-Land dataset (Muñoz Sabater, 2019)
used here. The ERA5-Land dataset is a derivative of the ERA5 dataset (Hersbach et al.,
2020), which is a reanalysis dataset. The LamaH-CE dataset includes 859 catchments and
the meteorological forcings are aggregated per catchment. A second dataset is used for
comparison. The dataset is created based on the E-OBS dataset (Cornes et al., 2018) which
contains ground-based meteorological observations and it is aggregated to the catchments.

A conceptual model is selected as base model which is then extended with a neural network.
At the same time the conceptual model is used as a benchmark for the conceptual approach.
The conceptual model EXP-Hydro (Patil and Stieglitz, 2014) is used as the model structure
facilitates the incorporation of a neural network for the NODE approach. Additionally, a
LSTM model is built in this work which serves as a benchmark for the machine learning
approach.

The performance of the three types of models, conceptual models, hybrid models and
LSTM models is compared. For the comparison of the models, the catchments are aggre-
gated into clusters of hydrologically similar characteristics to allow for a comparison on
different types of catchments. At last, strategies to improce the performance of the hybrid
models are explored.

1.3 Research Questions

The main research question for this work is:

Can hybrid hydrological models, using a neural ordinary differential equations
approach, improve performance of conceptual models?

To assess this, the following research questions are addressed:

SQ1: How does the performance of a hybrid hydrological model, based on a neural ordinary
differential equations approach, compare to the performance of the underlying conceptual
base model and to a LSTM model?

SQ2: How do the models (conceptual, hybrid, LSTM) perform on catchments with differ-
ent catchment characteristics?

SQ3: What pathways can be explored to improve the performance of the hybrid models?

2



2 Theoretical Background

2.1 Hydrological Modelling

Hydrological models can be classified according to different criteria. They can be classified
as deterministic or stochastic models, the spatial representation can be lumped, semi-
distributed or fully distributed and the process description can be divided into physically-
based, conceptual and data-driven or empirical (Singh, 2018; Peel and McMahon, 2020).
Subsequently, a brief introduction is given.

2.1.1 Conceptual Hydrological Models

In the 1960s and 1970s several simple conceptual catchment runoff models were developed,
the complex hydrological system was represented in a limited number storages and fluxes,
partly due to computational constraints. Some of these simplistic models are still used
today, for example the HBV (Hydrologiska Byr̊ans Vattenbalansavdelning) model (Lind-
strom et al., 1997; Seibert and Bergström, 2022). Further conceptual hydrological models
include the GR4J model (Perrin et al., 2003) and EXP-HYDRO (Patil and Stieglitz, 2014).
An extensive overview of hydrological models is provided in Peel and McMahon (2020).
Advantages of conceptual models include the ease of interpretation, the ability to incor-
porate prior knowledge, prediction of unobserved variables as well as robust predictions
in data-scarce scenarios (Höge et al., 2022; Feng et al., 2022).

Many conceptual models are composed of a combination of three key elements: (1) storages
to represent the water that is stored and released, (2) lag functions to represent the
temporal dynamics of fluxes and (3) junction elements to represent the splitting and
merging of fluxes (Fenicia et al., 2011). One example for a simple conceptual model is
EXP-Hydro introduced by Patil and Stieglitz (2014). The conceptual model is composed of
two buckets, snow storage and water storage, it includes five mechanistic processes and six
static parameters for calibration. A slightly more complex and widely applied conceptual
model is the HBV model which includes two buckets for soil storage to represent fast and
slow subsurface flow and accounts for interactions of the two (Lindstrom et al., 1997).

2.1.2 Machine Learning Hydrological Models

One approach to machine learning based modelling in hydrology has been presented by
Kratzert et al. (2018) where the so called Long Short-Term Memory (LSTM) model, a
special type of recurrent neural network is introduced for hydrological modelling. LSTMs
have shown great skill in rainfall-runoff modelling and have been used as a benchmark
for ther models in recent years (Kratzert et al., 2018; Feng et al., 2022; Höge et al.,
2022). However, interpretability of LSTMs is limited as the relation of input variable (e.g.
meteorological forcings) to the output variable (e.g. streamflow) has no physical basis and
may not be easily interpretable (Feng et al., 2023).

3



2 Theoretical Background

2.1.3 Hybrid Hydrological Models

Hybrid hydrological models in this context can be grouped into two categories. Models
that directly combine conceptual and neural network components and models that apply
the neural network as a post-processing step. The latter can for example be used to
mitigate systematic errors in hydrological models (Frame et al., 2021).

A direct combination of neural network component with a neural network has been in-
troduced by Höge et al. (2022). Here a Neural Ordinary Differential Equations approach
for hybrid hydrological modelling is described which builds upon the conceptual model
EXP-Hydro by Patil and Stieglitz (2014). Two models are introduced, M50 and M100.
The underlying conceptual model contains two model states (snow storage and water stor-
age), five processes and six static parameters to be calibrated. The first model uses two
small neural network to replace the evapotranspiration process and the discharge compu-
tation while in the second model replaces al five mechanistic processes of the conceptual
models. Results show that particularly the second model performs as well as state-of-the-
art deep learning models while maintaining the interpretability of the conceptual model
(Höge et al., 2022).

In Feng et al. (2022) another approach that directly combines a neural network compo-
nent with a conceptual model is introduced. The models, referred to as ”differentiable,
learnable, process-based models” build upon the conceptual HBV model and the regional
parameterization of the model is replaced with a neural network and allows for either
static or dynamic parameterization of the model. Also here the performance is compa-
rable to state-of-the-art deep learning models, preserve interpretability and are able to
impose physical constraints such as mass conservation (Feng et al., 2022).

One example for hybrid hydrological modeling with a post-processing approach is found
in Frame et al. (2021) where the effect of using an LSTM model as post-processing step
to the United States National Water Model (NWM), a large-scale hydrology simulator
is assessed. Or, depending on the perspective, assessed the effect of using the output of
the NWM as input to the LSTM, additionally or instead of the meteorological forcings.
This was compared against a LSTM model that only takes the meteorological forcings
as input. All three models additionally took static catchment characteristics as input
(Frame et al., 2021). The models were compared on 531 out of the 671 basins using
forcing and streamflow data as well as static catchment characteristics from the Catchment
Attributes and MEteorologcy for Large-sample studies (CAMELS) dataset which covers
the contiguous United States. The post-processing approach in which the LSTM received
the outputs of the NWM as inputs (LSTM PP), along with the static catchment attributes,
resulted in improved NSE scores in 88% of the basins while it lead to a worse NSE score
in 12% of the basins. For the post-processing approach in which the LSTM received both
the outputs of the NWM and the meteorological forcings as inputs (LSTM PPA), along
with the static catchment characteristics, the NSE score showed improvements in 92%
of the catchments and while it deteriorated in 8% of the catchments. The LSTM model
which only received meteorological forcings (LSTM A), along with the static catchment
attributes as input outperformed the NWM in 89% of the cases w.r.t. NSE score while
performance was worse in 11% of the basins. LSTM PPA improved the NSE score and the
peak timing error in the largest number of catchments while LSTM A improved bias in the
largest number of catchments. Overall the the authors concluded that the LSTM PP and
LSTM PPA models showed significantly improved performance compared to the NWM.
However, they did not consistently, nor significantly, outperform the LSTM Amodel which

4



2.2 Hydrological Concepts and Methods

did not take any information from the NWM as input (Frame et al., 2021).

Another example for a post-processing approach is introduced by Jiang et al. (2020)
as ”process-wrapped recurrent neural network (P-RNN)”. Here the conceptual model
EXP-Hydro (Patil and Stieglitz, 2014) is integrated into a deep learning framework. The
underlying idea is that the conceptual model introduces physical knowledge and the data-
driven component fills gaps in the physical knowledge implemented in the conceptual
model.

2.2 Hydrological Concepts and Methods

In this section hydrological concepts that are used throughout this study are introduced.

2.2.1 Potential Evapotranspiration (ETP ) and Reference (Crop)
Evapotranspiration (ET0)

The concepts of potential evapotranspiration and reference evapotranspiration are closely
related but do not describe the same concept. However, the terms are not always clearly
distinguished. The concept of potential evapotranspiration (ETP ) is mostly used in clima-
tology, meteorology and hydrogy while the concept of reference evapotranspiration (ET0)
is mostly used in ecology and agriculture (Xiang et al., 2020). Subsequently, the terms
will be defined for this work.

Evapotranspiration is defined as ”combined evaporation from the soil surface and tran-
spiration from plants” (Thorntwaite, 1948). The author also introduced potential evapo-
transpiration as the ”transfer [of water to the atmosphere] that would be possible under
ideal conditions of soil moisture and vegetation” (Thorntwaite, 1948). In Penman (1956)
potential evapotranspiration is defined as ”the amount of water transpired in unit time
by a short green crop, completely shading the ground, of uniform height and never short
of water” (Penman, 1956).

λET =
∆(Rn −G) + ρacp

(es−ea)
ra

∆+ γ(1 + rs
ra
)

(2.1)

ET : Reference evapotranspiration [mm/day], ∆: Slope vapor pressure curve [kPa/°C], Rn: Net ra-
diation at the crop surface [MJ/m²/day], G: Soil heat flux density [MJ/m²/day], γ: Psychrometric
constant [kPa/°C], T : Mean daily air temperature [°C], es: Saturation vapor pressure [kPa], ea: Ac-
tual vapor pressure [kPa], ρ: , cp: specific heat of air [unit], ra: bulk surface resistance, rs: bulk
aerodynamic resistance, (Allen et al., 1998)

The United Nations Food and Agricultural Organization of the United Nations (FAO)
defined reference (crop) evapotranspiration as ”[t]he evapotranspiration rate from a ref-
erence surface, not short of water” (Allen et al., 1998). The reference surface is defined
as ”a hypothetical crop with an assumed height of 0.12 m having a surface resistance of
70 s m-1 and an albedo of 0.23, closely resembling the evaporation of an extension sur-
face of green grass of uniform height, actively growing and adequately watered” (Allen
et al., 1998). The FAO recommends the FAO Penman-Monteith equation to estimate
reference (crop) evapotranspiration. This is described in detail in chapter 7.1.1 However,
there are more approaches to approximating refecrence (crop) evapotranspiration Xiang
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et al. (2020). This means that reference crop evapotranspiration (ET0) is a special type
of potential evapotranspiration with a more detailed definition of the reference surface.

ET0 =
0.408 ·∆ · (Rn −G) + γ · 37

T+273 · U2 · (es − ea)

∆ + γ · (1 + 0.34 · U2)
(2.2)

ET0: Reference evapotranspiration [mm/day], ∆: Slope vapor pressure curve [kPa/°C], Rn: Net
radiation at the crop surface [MJ/m²/day], G: Soil heat flux density [MJ/m²/day], γ: Psychrometric
constant [kPa/°C], T : Mean daily air temperature [°C], U2: Wind speed at 2 meters above the ground
[m/s], es: Saturation vapor pressure [kPa], ea: Actual vapor pressure [kPa], (Allen et al., 1998)

Another concept that is relevant in this context is open water evaporation, which refers to
the amount of water that could potentially evaporate from the surface of an open water
body. One way to estimate potential open water evaporation is introduced in Penman
(1948) (equation 2.3)

Eo =
H∆+ Eaγ

∆+ γ
(2.3)

Eo: open water evaporation rate [kg / m2 / s], ∆ = dea/dTa, ea: actual vapour pressure [mm. HG.
or kPa], Ta: surface air temperature [°F or °C], γ: psychrometric constant [kPa / °C or mm. HG. /
°F], Ea: isothermal evaporation rate [mm/d] (Penman, 1948)

2.2.2 Budyko Framework

The Budyko framework is a simple method to estimate the water balance of hydrological
catchments. It relates the long-term evaporative ratio to its aridity index. The evap-
orative ratio is the ratio between actual evapotranspiration and precipitation (ETa/P )
and the aridity index is the ration between potential evapotranspiration and precipitation
(ETp/P ). Over long periods of time it can be reasonable to assume that catchment water
storage is negligible (∆S ≈ 0). With the assumption ∆S = 0, the relationship between
long-term mean precipitation, long-term mean discharge and long-term mean evapotran-
spiration is P = E +Q (Chen et al., 2023; Reaver et al., 2020).

Budyko (1974), among others, suggested that long-teram mean actual evapotranspiration
is a function of long-term mean precipitation and long-term mean potential evapotran-
spiration ETa = f0(P ,ETp) (Budyko, 1974) as cited in Reaver et al. (2022). Hence,
evapotranspiration in the original Budyko equation (equation 2.4) is assumed to be con-
trolled by precipitation and potential evapotranspiration and does not consider catchment
characteristics except long-term climatic conditions (Chen et al., 2023). Several mathe-
matical expressions have been developed based on the behaviour of many catchments with
different aridity indexes (Reaver et al., 2020).

The Budyko curve is constrained by the water limit and the energy limit. The evaporative
index (ETa/P ) cannot exceed the water limit (ETa/P = 1, PET/P < 1) as over a long
period of time actual evapotranspiration cannot exceed precipitation unless there is addi-
tional water input to the catchment. The aridity index (ETp/P ) cannot exceed the energy
limit (ETa/P = ETp/P,ETp/P < 1) as actual evapotranspiration cannot exceed potential
evapotranspiration unless the catchment loses water aside from discharge (Koppa et al.,
2022). Catchments that plot close to the water limit are generally more humid while
catchments that plot close the the energy limit are generally more humid.
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ETa

P
=

[
ETp

P
tanh(

ETp

P
)−1(1− exp(−ETp

P
))

]0.5
(2.4)

ETp: potential evapotranspiration [mm / yr], ETa: actual evapotranspiration [mm / yr], P : precipi-
tation [mm / yr] (Budyko, 1974) as cited in (Chen et al., 2023)

Figure 2.1: ETp: potential evapotranspiration [mm / yr], ETa: actual evapotranspiration [mm / yr],
P : precipitation [mm / yr] (Budyko, 1974) as cited in (Chen et al., 2023)

Alternatives to the non-parametric original Budyko equation are often parametric equa-
tions that consider catchment characteristics have been developed. For example in Zhang
et al. (2001) which includes a parameter that accounts for different types of vegetation
(Chen et al., 2023).

Budyko (1974) considered the Budyko curve semi-empirical. The physical component
is given by the conservation of mass and energy while the empirical component lies in
the functional form of the curve (Budyko, 1974) as cited in Reaver et al. (2020). The
original Budyko curve was developed based on a large number of catchments with different
aridity indexes. Current interpretations of Budyko mostly acknowledge that the Budyko
curves are semi-empirical and at the same time often associate physical meaning to the
mathematical expressions. The trajectory of the curve is interpreted as the path that a
catchment follows if its aridity index changes (Reaver et al., 2020).
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2.3 Methods for Numerically Solving Ordinary Differential
Equations

2.3.1 Euler’s Method

Differential Equations are equations that relate a function to one or more of its derivates,
describing the change over one or more independent variables. If the differential equation
contains only one independent variable, it is referred to as Ordinary Differential Equations.
The independent variable in this study is time. Simple differential equations can be solved
analytically by computing the antiderivative and an arbitrary integrations constant C. If
additionally to the ODE the value of the unknown function is known at a given point in
time, it is called an Initial Value Problem. If the initial condition and the antiderivative is
known, the Initial Value Problem (IVP) can be solved analytically (Atkinson et al., 2009).

If the antiderivative is not known, or if it is computationally or w.r.t complexity not
feasible to compute it, or for another reason not desirable to analytically solve an ordinary
differential equation, it can be solved numerically. The simplest approach to numerically
solving ODEs is Euler’s method. The forward difference approximation to the derivative
numerically approximates the solution of an IVP. This is briefly illustrated using an
example from Atkinson et al. (2009).

dy

dt
≈ yn+1 − yn

h
(2.5)

h: step size, (Atkinson et al., 2009)

yn+1 = yn + h · f(tn, y(tn)) (2.6)

h: step size, (Atkinson et al., 2009)

2.3.2 Runge-Kutta Method

Multiple other methods for numerically solving IVPs exist. The Runge-Kutta Method is
more accurate approximation of the analytical solution to an IVP compared to Euler’s
method. The concept of the Runge-Kutta method will be introduced briefly with focus on
the Runge-Kutta 4th order method as this version is used in this work. A more detailed
explanation can be found in Atkinson et al. (2009)

z1 = hyn, (2.7)

z2 = yn +
1

2
h · f(tn, z1) (2.8)

z3 = yn +
1

2
h · f(tn +

1

2
h, z2) (2.9)

z4 = yn + h · f(tn +
1

2
h, z3) (2.10)

yn+1 = yn +
1

6
h[f(tn, z1) + 2f(tn +

1

2
h, z2) + 2f(tn +

1

2
h, z3) + f(tn + h, z4)] (2.11)
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z1, z2, z3, z4: Intermediate stages (increments) in the RK4 method,
tn: current time, yn: estimate of the solution at time tn, tn+1: following time step, yn+1: estimate of
the solution at time tn+1, h: step size, (Atkinson et al., 2009)

2.4 Scientific Machine Learning

Scientific Machine Learning is an emerging discipline combine mechanistic modelling and
machine learning. In this section important concepts and terms relevant for this work are
introduced.

2.4.1 Universal Differential Equations & Neural Ordinary Differential
Equations

Universal Differential Equations are a concept in scientific machine learning and defined
as the combination of a mechanistic modelling part and a universal approximator. If
the differential equation is an ODE then it is called an Universal Ordinary Differential
Equation and if the universal approximator is a neural network, it is also referred to
as Neural Differential Equation or, if the differential equation is an ODE it is referred
to as Neural Ordinary Differential Equation (Rackauckas et al., 2020). Or as Bolibar
et al. (2023) puts it: ”[Universal or Neural Differential Equations] combine the physical
simulation of a differential equation using a numerical solver with machine learning”.
Accordingly, Neural Ordinary Differential Equation models are models using an ordinary
differential equation in which terms are partly or completely replaced by neural networks
(Höge et al., 2022).

2.4.2 Universal Approximation Theorem

The Universal Approximation Theorem for neural networks states that any continuous
function can be approximated arbitrarily well by a neural network. Different proofs with
different assumptions exist. The approximation of a feed-forward neural network with one
hidden layer is addressed in Cybenkot (1989) and Hornik (1991).

2.4.3 Automatic Differentiation

Optimization for Universal Differential Equations, and hence also Ordinary Differential
Equations algorithms require a differentiable framework (Bolibar et al., 2023). For this
work PyTorch is used to enable differentiability (Paszke et al., 2019).
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3.1 Data

3.1.1 LamaH-CE: LArge-SaMple Data for Hydrology and Environmental
Sciences for Central Europe

The LamaH dataset includes catchments in nine European countries (Austria, the Czech
Republic, Germany, Hungary, Italy, Liechtenstein, Slovakia, Slovenia and Switzerland)
and covers an area of approximately 170,000 km2. The gauge furthest downstream of the
Austrian Danube represents the lowest point at 130 meters above sea level (m.a.s.l.) and
the highest point is the peak of Piz Bernina at 4049 m.a.s.l. in Switzerland. The area is
divided into 18 river regions based on the main tributaries of the Danube (Klingler et al.,
2021).

Large-sample Hydrology (LSH) refers to datasets that include many catchments which
often is paired with a wide variation of catchment types. They may also include data from
different data sources and aim to improve the robustness of conclusions on hydrological
processes and models. Examples for LSH datasets include the CAMELS datasets, such as
the CAMELS-US dataset, which contains data from 671 in the contiguous United States
(Addor et al., 2017), the CAMELS-CL dataset which covers 516 catchments in Chile
Alvarez-Garreton et al. (2018), the CAMELS-GB dataset which covers 671 catchments in
Great Britain (Coxon et al., 2020) or the CAMELS-BR dataset which contains 897 catch-
ments in Brazil (Chagas et al., 2020). The CAMELS datasets contain hydrometeorological
as well as static catchment attributes, both aggregated to the catchment polygons. They
follow a consistent structure and data preparation and the LamaH-CE dataset is generally
based on the same structure (Klingler et al., 2021).

Basin Delineation

The meteorological time series in the LamaH-CE dataset are aggregated means across the
respective catchments. The catchment polygons were created based on the Hydrological
Atlas of Austria and the HydroATLAS. While sub-bsins outlets of the Hydrological Atlas of
Austria match the location of gauges, sub-basins from the HydroATLAS were in some cases
manually adjusted to ensure ”that the basin outlets of the polygons agree with the gauging
station locations” (Klingler et al., 2021; Federal Ministry of Agriculture, 2007; Linke et al.,
2019). The division into sub-catchments is based on data from the Hydrological Atlas of
Austria and from the HydroATLAS. Three different delineation techniques (A,B, and C)
and accordingly three sets of sub-catchments are included in the LamaH-CE dataset. In
catchment delineation B, which contains 859 catchments, computes sub-catchments by
subtracting the upstream area of a gauge from the upstream area above the downstream
gauge . The median basin size in basin delineation B is 114 km2 with a range from 1 km2

to 2500 km2. Basin delineation C, which is used in this study, is based on basin delineation
B but includes only the 454 catchments with little or no anthropogenic influence (Klingler
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Figure 3.1: Catchments and gauges from catchment delineation C in the LamaH-CE dataset (Klingler
et al., 2021), the color-coding represents the mean elevation of the catchments, basemap
”ESRI Satellite” (Copyright 1995–2023 Esri)

et al., 2021). The catchments including their mean elevation are shown in figure 3.1.

The aggregation of coarsely gridded or vector data to the catchment shapefiles is performed
by calculating the area-weighted arithmetic mean (upscaling approach 1). A second ap-
proach was used, mostly for data sources with a high spatial resolution (¡ 1km grid size)
the arithmetic mean was calculated for all cells whose centroid lies inside the polygon
(upscaling approach 2). However, if no centroid was within the polygon, upscaling 1 was
used (Klingler et al., 2021).

Meteorological Data

The meteorological timeseries in the LamaH-CE dataset are based on the ERA5-Land
dataset. Gap-free timeseries were obtained for 15 meteorological variables from 1981-
01-01 to 2019-12-31 with daily and hourly resolution. The resolution of the underlying
ERA5-Land data is 0.1◦x 0.1◦spatially and the temporal resolution is hourly and daily.
Meteorological timeseries were created for all three basin delineations and the meteoro-
logical variables used in this work are described in table 3.1 (Klingler et al., 2021).

potential evapotranspiration (PET) values from the ERA5-Land dataset showed signifi-
cantly too high values for large parts of the study area, therefore no PET were included
in the LamaH-CE dataset.

Runoff Data

Runoff in LamaH-CE were obtained from obtained from 882 gauges in Austria, Germany,
the Czech Republic and Switzerland. The dataset contains only 859 catchments as for 23 of
the gauges it was not possible to clearly define the catchment area. Runoff are also available
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Table 3.1: Meteorological variables used in this work from LamaH-CE dataset which are based on the
ERA5-Land dataset. Temperatures at 2 m above the surface (Klingler et al., 2021; Muñoz-
Sabater et al., 2021)

Variable Unit

Minimum temperature °C
Mean temperature °C
Maximum temperature °C
Precipitation mm/d
Forecast albedo -
Total evapotranspiration mm/d

at daily and hourly resolution and most of the are derived via the relationship between
water level and discharge (rating curve). The runoff were obtained from the Hydrographic
Central Bureau of Austria (609 gauges), from the hydrological services of Bavaria and
Baden-Württemberg (125 and 61 gauges), from the hydrological office of Switzerland (25
gauges) and the Czech Hydrometeorological Institute (61 gauges). Runoff are available
in hourly and daily resolution, however, the at hourly resolution often cover shorter time
periods. If hourly resolution runoff were available for the same period as daily runoff or
longer, daily runoff data was computed based on hourly runoff data. The maximum time
period for runoff data is from 1981 to 2017 as 1981 marks the start of the meteorological
from the ERA5-Land dataset and 2017 marks ”last year for quality-controlled runoff data
from Austria at the point of request” (Klingler et al., 2021). Approximately 80 % of the
runoff contain no gaps after gaps of less than 6 h were filled using linear interpolation
(Klingler et al., 2021).

Catchment attributes

Catchment attributes describe the physical and georgaphical properties of a catchment.
This includes landcover, hydrology, climate and vegetation characteristics. The catch-
ment attributes in the LamaH-CE dataset were obtained using datasets with European to
global coverage and include 10 topographic attributes, twelve attributes related to climate
characteristics, fourteen attributes characterizing runoff , seven land cover attributes, six
attributes describing vegetation indices, ten attributes characterizing soil properties, 16
geological attributes as well as thirteen types of (anthropogenic) impact (Klingler et al.,
2021).

Climatic indices include mean daily total precipitation from Oct. 1989 to Sept. 2009 and
mean daily total evapotranspiration from Oct. 1989 to Sept. 2009, both based on ERA5-
Land data. Furthermore, mean daily reference evapotranspiration from 1970 to 2000 is
included. However, due to shortcomings of PET from ERA5-Land, which are explained in
chapter 3.1.1, based on the Global Aridity Index and Potential Evapotranspiration (ET0)
Climate Database v2 ?Klingler et al. (2021).

Data Preparation

The meteorological timeseries in the LamaH-CE dataset, which are derived from the
ERA5-Land dataset, are gap free and were not processed any further Klingler et al. (2021).
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Table 3.2: Variables in the E-OBS dataset. Temperature and relative humidity usually measured at
2 m above the surface. Wind speed measured at 10 m above surface. Precipitation data
based on rain gauge data (Cornes et al., 2018).

Variable Unit

Minimum temperature °C
Mean temperature °C
Maximum temperature °C
Precipitation mm/d
Relative humidity %
Sea level pressure hPa
Surface shortwave downwelling radiation W/m2

Wind speed m/s
Land surface elevation m

Catchment delineation C contains 454 catchments and accordingly also 454 runoff gauges
and runoff timeseries. 371 out of these runoff timeseries are free of gaps at daily resolution.
Furthermore, 246 runoff timeseries in catchment delineation C cover the whole time series
from 1981-01-01 to 2017-12-31 without gaps. Only these 246 catchments were used in this
study.

ERA5-Land

The ERA5-Land dataset is produced within the Copernicus Climate Change Service (C3S)
by the European Centre for Medium-Range Weather Forecasts (ECMWF) and, as de-
scribed in chapter 3.1.1 forms the basis of the meteorological forcings in the LamaH-CE
dataset. It covers the global land surface and is based on ERA5, the firth generation
of European ReAnalysis. The ERA5-Land dataset spans a time period fromm 1950 to
present and is continuously updated. It has a spatial resolution of 0.1◦x 0.1◦and a tem-
poral resolution of one hour Klingler et al. (2021); Muñoz-Sabater et al. (2021); Hersbach
et al. (2020).

3.1.2 E-OBS

E-OBS is a gridded meteorological dataset covering the land area in Europe. The dataset
is based on station data from the European Climate Assessment & Dataset (ECA&D)
project and compromises more than 23000 meteorological stations (Klein Tank et al.,
2002; Klok and Klein Tank, 2009; van den Besselaar and Copernicus Climate Change
Service, 2023). It has a daily temporal resolution and a spatial resolution of 0.1◦x 0.1◦as
well as 0.25◦x 0.25◦and covers a timespan from 1950 to 2023. The variables of the E-OBS
dataset are listed and described in table 3.2.

The latest version at the time of writing is v27.0e, however, in this work version v26.0e
was used as it was the most recent version available at the time of processing the data.
The E-OBS dataset can be downloaded as an ensemble with 20 members, accounting for
the uncertainty introduced by interpolating the station data into the grid, or as ensemble
mean. In this work only the ensemble mean was used. The different variables in the E-
OBS dataset are derived mostly from station data. The elevation data in E-OBS is from
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the Global 30 Arc-Second Elevation Data Set by the United States Geological Survey
(USGS). It is a raster Digital Elevation Model (DEM) with global coverage.

The variables relative humidity and shortwave (global) radiation were post-processed in the
E-OBS dataset. While the gridding approach already ensured that no relative humidity
values above 100 % occurred, further post-processing was performed setting all values
below 5 % to missing values. The shortwave (global) radiation data was also post-processed
in cases of unrealistic values. This occurred especially in areas of low station density. Daily
shortwave (global) radiation sums below 3 % compared to the radiation at the top of the
atmosphere and daily sums that exceeded the expected shortwave (global) radiation on
a clear sky day were set to missing values (van den Besselaar and Copernicus Climate
Change Service, 2023).

Data Preparation

The E-OBS data was clipped spatially to cover the area from 8◦E to 18◦E longitude
and 46◦N to 50◦N latitude, matching the approximate extent of the LamaH-CE dataset.
Furthermore, the data was clipped to cover the time period from 1981-01-01 to 2022-12-
31. The reduced dataset was inspected for missing values, and it was found that only
relative humidity and wind speed had missing values. The missing values are a result of
the post-processing described in chapter 3.1.2.

For relative humidity 556148 values in total were missing over the area from 8◦E to 18◦E
longitude and 46◦N to 50◦N latitude and over the time period from 1981-01-01 to 2022-12-
31, meaning that 0.928 % of values were missing. For wind speed a total of 14664 values
were missing over the same area and time period, meaning that 0.024 % of values were
missing.

For each time step with missing values a spatial interpolation was performed using the
rioxarray.interpolate na module. The method is based on the scipy.interpolate.griddata
function and a nearest neighbour interpolation was performed (Virtanen et al., 2020). The
interpolated relative humidity and wind speed data in combination with the other gap-free
E-OBS variables could then be used to estimate potential evapotranspiration (reference
evapotranspiration) without missing values.

Calculation of Potential Evapotranspiration

To obtain a dataset that is comparable to the LamaH-CE dataset and can be used with
a similar version of the EXP-HYDRO-bases conceptual model, potential evaporation was
estimated as an additional variable for the E-OBS dataset. This was done using the FAO
recommended Penman-Monteith equation as described in Annex A 7.1.1. The FAO guide-
line on computing reference evapotranspiration with the FAO Penman-Monteith equation
also includes guidance on estimating missing climatic data. The process of computing
potential evapotranspiration (reference evapotranspiration) is described in Annex 7.1.1.
One variable, albedo, was obtained from the ERA5-Land dataset to compute net short-
wave radiation in equation 7.8 from incoming shortwave radiation (Muñoz Sabater, 2019;
Muñoz-Sabater et al., 2021).

The final dataset which throughout this study is referred to as E-OBS dataset hence in-
cludes E-OBS variables without missing values, E-OBS variables with interpolated miss-
ing values (relative humidity and wind speed), and potential evapotranspiration (reference
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evapotranspiration) estimated using the FAO Penman-Monteith approach.

The gridded data was then aggregated to the catchments of catchment delineation C
from the LamaH-CE dataset using xagg1 and geopandas (Jordahl et al., 2020). The area
weighted aggregation to the catchments in the shapefile was performed using xagg.pixel overlaps
and xagg.aggregate.

3.2 Data Analysis

3.2.1 Clustering based on Catchment Characteristics

Clustering is a technique to group datapoints from a dataset in a way that datapoints
within a cluster have the greatest similarity within the cluster and the clusters have the
greatest dissimilarity between each other. There are multiple approaches to clustering,
one of them is unsupervised machine learning for which K-means is a popular clustering
algorithm (Sinaga and Yang, 2020). The goal in this work is to form groups of catchments
that with similar catchment characteristics which we expect to show similarity in their
hydrological response to meteorological inputs. These groups are referred to as hydrological
response units and are mentioned in a similar way for example in Flügel (1995).

K-means clustering, minimises the within-cluster sum of squares criterion:

n∑
i=0

min
µj∈Ci

||x− µi||2 (3.1)

n: number of clusters, Cj : j-th cluster, x: data point within j-th cluster, µj : centroid of j-th cluster,
||x−µi||2: squared Euclidean distance between the data point x and the centroid µj , (Pedregosa et al.,
2011)

To implement the K-means clustering in Python the sklearn.cluster.KMeans class is used.
To implement the algorithm, the number of clusters to be formed (n) has to be chosen
(Pedregosa et al., 2011).

To evaluate which number of clusters results in the best clustering of the data points,
the sum of squared distances of the datapoints to the cluster center, also called inertia,
was computed. As a second evaluation metric the silhouette score was computed, which
calculates the mean nearest-cluster distance (b) and the mean intra-cluster distance (a)
and then computes the silhouette score as (b − a)/max(a, b). The optimal value for the
silhouette score is 1 while the worst value is -1 and values close to 0 suggest overlapping
clusters (Pedregosa et al., 2011).

The LamaH-CE dataset contains 62 catchment attributes. To cluster the catchments us-
ing a K-means method, two approaches are used. In the first approach, all catchment
with numerical values (59 out of 62) were used as features in the K-means clustering.
To reduce the number of catchment characteristics used as features in the K-mean clus-
tering, a subset has been selected for the second approach. In the second approach ten
catchment characteristics have been selected based on a sensitivity analysis of catchment
characteristics by Kratzert et al. (2019b) using the CAMELS-US dataset and the Morris
method. The model used by Kratzert et al. (2019b) for this was an entity-aware LSTM
model. Subsequently, the ten catchment characteristics with the highest sensitivity as well

1https://xagg.readthedocs.io/en/latest/
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as their sensitivity score (in paranthesis) in decreasing order are listed: precipitation (68),
aridity (56), area (50), mean elevation (46), high precipitation duration (41), fraction of
snow (0.41), high precipitation frequency (0.38), mean slope (0.37), geological permeability
(0.35) and fraction of carbonate sedimentary rock (0.34) (Kratzert et al., 2019b).

Figure 3.2: Illustration of K-means clustering

The corresponding, or most similar catchment attributes in the LamaH-CE dataset are:
mean daily precipitation (p mean), aridity (arid 1), area (area calc), mean elevation (elev mean),
high precipitation duration (high prec du), fraction of snow (frac snow), high precipitation
frequency (high prec fr), mean slope (slope mean), subsurface permeability (geol perme)
and fraction of carbonate sedimentary rock (gc sc fra) (Klingler et al., 2021). Mean daily
precipitation, high precipitation duration, fraction of snow and high precipitation fre-
quency are calculated based on precipitation data from ERA5-Land and in the case of
fraction of snow, additionally mean temperature from ERA5-Land is used to calculate it.
Aridity is computed as the ratio of mean reference evapotranspiration from Evapotranspi-
ration (ET0) Climate Database v2 and mean precipitation from ERA5-Land (Trabucco
and Zomer, 2019; Muñoz Sabater, 2019; Klingler et al., 2021).

Figure 3.2 illustrates the K-means clustering results for two to ten clusters as well as the
values for the sum of square values and the silhouette scores using the second approach
with ten catchment attributes as features. The result of the clustering is shown in figure
3.3 and will be discussed in the results and discussion chapters.

Based on the sums of squares as well as the silhouette score, K-Means clustering results for
three, eight and then clusters were taken into further consideration and were paired with
an analysis of the number of catchments per cluster as well as a manual analysis using
satellite imagery to confirm geographical similarity. While showing overall inferior scores
in terms of sum of squares and average silhouette score, the pattern across the number
of clusters shows similarity. Despite a high silhouette score, catchment clustering with
only two clusters was not considered as a minimum amount of three clusters was deemed
necessary to represent the diversity of catchments in the LamaH-CE dataset catchment
delineation C in the clustering process.

3.2.2 Selection of Representative Catchments

For the conceptual models BaseEOBS (E-OBS data) and BaseERA5L (LamaH-CE data) a
representative catchment was selected for each cluster based on the KGE values closest to
the median KGE value of that cluster. For the BaseEOBS model, the following catchments
where selected: cluster 0: ID 241, cluster 1: ID 215, cluster 2: ID 581, cluster 3: ID 21,
cluster 4: ID 277, cluster 5: 797, cluster 7: ID 432. For the BaseERA5L model the
following catchments were selected: cluster 0: ID 334, cluster 1: 743, cluster 2: ID 439,
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3 Material & Methods

Figure 3.3: Catchments from basin delineation C (LamaH-CE dataset), the points represent the gauges
of the respective catchments and the color-coding indicates the cluster as a result of
the K-Means clustering with eight clusters based on catchments characteristics from the
LamaH-CE dataset (Klingler et al., 2021)

Figure 3.4: Conceptual model based on EXP-Hydro

cluster 3: ID 24, cluster 4: ID 330, cluster 5: ID 75, cluster 7: ID 383.

Additionally, one catchment for each dataset was chosen based on the KGE closest to the
median KGE of all catchments from the conceptual model runs. For the E-OBS dataset
this is catchment ID 572, for the LamaH-CE dataset this is catchment ID 79.

3.3 Models

3.3.1 Conceptual Model based on EXP-Hydro

EXP-Hydro

The EXP-Hydro model developed by Patil and Stieglitz (2014) is a rainfall-runoff bucket
model that is spatially lumped and operates at a daily time-step. The model operates with
two buckets, a catchment bucket and a snow accumulation bucket. Equation 3.2 describes
the water balance of the catchment (or water) bucket and equation 3.3 describes the water
balance of the snow bucket. The original model has three input variables: precipitation
(P ), temperature (T ) and length of day (Lday) and two state variables: snow storage
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(S0) and catchment (or water) storage (S1). The model contains six free calibration
parameters which are listed in table 3.3 Patil and Stieglitz (2014). The conceptual model
used in this work is based on EXP-Hydro but includes modifications. The current version
of EXP-Hydro differes from the version described in the paper (Patil and Stieglitz, 2014)
as the current version takes as input precipitation (P ), temperature (T ) and potential
evapotranspiration (PET ) instead of precipitation (P ), temperature (T ) and length of
day (Lday) which means that equation 3.5 is not used in the EXP-Hydro version that is
used in this work.

dS1

dt
= Pr +M − ET −Qbucket −Qspill (3.2)

S1: water storage catchment bucket [mm], Pr: precipitation as liquid rainfall [mm/d], M : snowmelt
[mm/d], ET : evapotranspiration [mm/d], Qbucket: generated runoff based on S [mm/d], Qspill:
capacity excess runoff [mm/d], (Patil and Stieglitz, 2014; Jiang et al., 2020)

dS0

dt
= Ps −M (3.3)

S0: storage snow bucket [mm], Ps: precipitation as snow [mm/d], M : snowmelt [mm/d] (Patil and
Stieglitz, 2014; Jiang et al., 2020)

Table 3.3: Calibration parameters in the EXP-Hydro model including the calibration ranges as used by
Patil and Stieglitz (2014)

Parameter Description Units Lower lim. Upper lim.

Smax Maximum storage catchment
bucket

mm 100.0 1500.0

Qmax Maximum subsurface runoff mm/d 10.0 50.0
Df Thermal degree-day factor mm/d/°C 0.0 5.0
f Rate of decline in runoff from

catchment bucket
mm-1 0.0 0.1

Tmax Temperature above which
snowmelt starts

°C 0.0 3.0

Tmin Temperature threshold rain
snow

°C -3.0 0.0

Daily streamflow Q is the sum of Qbucket and Qspill. Qspill, the capacity excess runoff,
occurs when snowmelt and/or excess precipitation is available but the catchment storage
S1 is at maxmimum capacity Smax.

Potential evapotranspiration (ETp, equation 3.5) in the original EXP-Hydro model is
calculated based on Hamon’s formula (Hamon, 1963). Actual evapotranspiration (ETa,
equaiton 3.4) is calculated based on potential evapotranspiration, catchment (or water)
storage (S) and maximum water storage (Smax). Actual vapor pressure (ea, equaiton 3.6)
which is needed to calculate potential evapotranspiration is calculated based on tempera-
ture (Ta) (Patil and Stieglitz, 2014).

ETa = ETp(S/Smax) (3.4)
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ETa: actual evapotranspiration [mm/d], ETp: potential evapotranspiration [mm/d], S: water storage
catchment bucket [mm], Smax: maximum storage capacity catchment bucket [mm], (Patil and Stieglitz,
2014)

ETp = 29.8Lday
esat(Ta)

Ts + 273.2
(3.5)

ETp: potential evapotranspiration [mm/d], Lday: length of day [h], esat: saturation vapor pressure
[kPa] (Patil and Stieglitz, 2014)

ea(Ta) = 0.611exp(
17.3Ta

Ta + 273.3
) (3.6)

esat: saturation vapor pressure [kPa], Ta: temperature [°C] (Patil and Stieglitz, 2014)

Snowmelt in EXP-Hydro is calculated using a thermal degree-day model. The snow bucket
accumulates only precipitaiton that falls as snow based on the temperature threshold
(Tmin). Id S0 > 0 and Ta > Tmax snowmelt component (M) is calculated as follows:

M = min{S0, Df (Ta − Tmax)} (3.7)

Else:

M = 0 (3.8)

M : snowmelt [mm/d], S0: snow storage [mm], Df : thermal degree-day factor [mm/d/°C], Ta: tem-
perature [°C], Tmax: temperature above which snowmelt starts [°C] (Patil and Stieglitz, 2014)

BaseEOBS & BaseERA5L

The models BaseEOBS and BaseERA5L were developed based on the the current EXP-Hydro
model which takes as input precipitation (P ), temperature (T ) and potential evapotran-
spiration (PET ). To enable Automatic Differentiation, both models were created to by
compatible with PyTorch. This was done by replacing the custom ODE solver by (Patil
and Stieglitz, 2014), which is based on scipy (Virtanen et al., 2020) with ODE solvers
from the torchdiffeq library (Chen, 2018), which is Python library providing a PyTorch
implementation of differentiable ODE solvers. Furthermore, the loss functions or evalua-
tions metrics were replaced by differentiable loss functions. The evaluation metrics used
are described in chapter 3.5.

The model BaseEOBS was developed to run with E-OBS data it takes as input pre-
cipitation (P ), temperature (T ) and potential evapotranspiration (PET ). The model
BaseERA5L was developed to run with LamaH-CE data. Since potential evapotranspira-
tion (PET ) is not included in the LamaH-CE dataset, instead actual evapotranspiraiton
(ET ) is used as third input to the model. Accordingly, equation 3.4 is not used in this
model as ET is a direct input to the model. Apart from this, the two models (BaseEOBS
& BaseERA5L) are the same. The ODE solver solves an IVP and hence requires an initial
condition. The equivalent of the differential equation in the model is the change in soil
bucket and snow bucket storage over time depending on the current level of the storages
and the current values of the meteorological forcings. Accordingly, the ODE solver requires
an inital condition for the storages which are assumed to be empty in this work.
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Figure 3.5: Hybrid model based on EXP-Hydro

3.3.2 Hybrid Models

Subsequently, a demonstration of the theoretical approach to creating the hybrid models
in this work is introduced.

An IVP consists of an ODE and an initial condition:

dy

dt
= f(t, y(t)) (3.9)

y(0) = y0 (3.10)

The function f can be replaced by a neural network according to the Universal Approxi-
mation Theorem for Neural Networks (chapter 2.4.2):

dy

dt
= NN(t, y(t), θ) (3.11)

In the context of this work the ODE is dS/dt, the change in system state over time.
Furthermore, the system state and the change in system state also depends on the mete-
orological forcing variables x(t):

dS

dt
= NN(t, S(t), θ,−→x (t)) (3.12)

Based on the Universal Differential Equation approach introduced in Rackauckas et al.
(2020) a combination of a theoretical model and a neural network is created:

dy

dt
= g(t, y(t)) +NN(t, y(t), θ) (3.13)

Applied to the system state and including the meteorological variables this becomes:

dS

dt
= f(t, S(t),−→x (t) +NN(S(t), θ, x(t)) (3.14)
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t: time, −→x (t): array of meteorological forcings, θ: neural network parameters, S(t): storage state at
time t

Two hybrid models with two versions each, one with the Euler method in the ODE solver
and on with the RK4 method in the ODE solver, were evaluated in this work. Hy-
bridEOBS for the modelling with E-OBS data and HybridERA5L for the modelling with
the ERA5-Land-based LamaH-CE data. The HybridEOBS and HybridERA5L models
were created by combining the conceptual base model (BaseEOBS and BaseERA5L) with
a neural network. The neural network consists of an input layer with five inputs, a Tanh
activation function, a hidden layer with sixteen nodes, a LeakyReLU activation function
and an output layer with 2 output nodes. The neural network takes as input the current
value of the three meteorological forcings precipitation (P ), mean temperature (Tmean)
and for the Hybrid V1 model potential evapotranspiration (PET ) and for the Hybrid V2
model actual evapotranspiration (ET ). Additionally, the neural network, for each time
step, takes as input the storage values for the soil bucket and snow bucket which is com-
puted by the ODE solver as it it solves the IVP which is initialized with the initial storages
and which is here, as it is done for the conceptual models, assumed to be initially empty.

To account for the fact that many catchments receive very little snow fall, each of the
hybrid models was also developed so that the neural network only connects to the water
storage. Accordingly, the neural network has four input nodes and one output node. Due
to minor differences in performance and the computational limitations which are discussed
in the discussion, the models e excluded from the model comparison in this study.

The conceptual part of the hybrid models uses the calibrated parameters from the cali-
bration of the conceptual models. Hence, only the neural network’s weights and biases are
optimized in training. The weights of the neural network are initialized with a mean = 0
and std = 0.1 to ensure that the random initialization of the neural network does not
result in too large deviations of the prediction from the hybrid model from the streamflow
prediction that would be produced by the conceptual part of the model.

To create a differentiable modelling framework, the conceptual part was re-written to
replace aspects of the model that are not compatible with gradient tracking which is needed
for the backpropagation. However, the conceptual part of the hybrid model performs the
same processes as the current version of the original EXP-Hydro model.

3.3.3 Long Short-term Memory (LSTM) Model

The LSTM uses a moving window of 365 days and predicts one time step ahead. Accord-
ingly, the input data has to be prepared by create sequences of 365 days and then shifting
them by one day for the whole training, validation and testing period.

The LSTM models LstmEOBS and LstmERA5L are using E-OBS and LamaH-CE data
respectively. LstmEOBS takes three meteorological forcings as input: precipitation (P ),
mean temperature (Tmean) and potential evapotranspiration (PET ). Instead of potential
evapotranspiration, LstmERA5L takes as third input actual evapotranspiration (ET ). In
different experiments, additional input forcings were added to the LSTM models.

Apart from that, the LSTM models have the same structure. They consist of an input
layer with three or six input nodes, two LSTM layers with ten nodes, a dropout layer to
avoid overfitting, a linear layer and a LeakyReLU activation function. The dropout rate
during training is set to 30
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Table 3.4: Training/calibration, validation and testing time periods

Training /
Calibraiton

Validation Testing

Start 1981-10-01 2001-10-01 2005-10-01
Stop 2001-9-30 2005-9-30 2017-9-30

3.4 Calibration and Training

The conceptual models were calibrated from 1981-10-01 to 2001-10-01 and evaluated from
2005-10-01 to 2017-10-01. The hybrid models and LSTM models were trained on the
same time period and also evaluated on the same time period. KGE is used as loss
function for the calibration of the conceptual models as this is also used as loss function
in the current version of EXP-HYDRO Patil and Stieglitz (2014). The hybrid models and
LSTM models were trained and evaluated on the same time period. The validation period
is used to observe the training process and to save the best set of parameters for both
the conceptual models as well as the best weights and biases for the neural network for
the hybrid and LSTM models. For the hybrid and LSTM models the MSE is used as loss
function.

The meteorological forcings and discharge observations used for the conceptual and hybrid
models were not scaled as the static parameters for the conceptual models and hence also
for the conceptual component of the hybrid models were calibrated within the calibration
ranges provided in (Patil and Stieglitz, 2014).

Scaling
The meteorological input forcings and discharge observations for the LSTM models were
scaled using the MinMaxScaler from scikit-learn to ensure that the features are in the
same value range to optimise the training process. The data is normalised by using the
value ranges of the training sequences of the input forcings and discharge observations.
Subsequently, the validation and testing timeseries are scaled using the scaler that was
fitted to the training data. Equations 3.15 and 3.16 are used for this (Pedregosa et al.,
2011). After the training process, the data is re-scaled using the inverse of the described
process.

Xstd =
X −Xmin

Xmax −Xmin
(3.15)

Xscaled = Xstd × (max−min) + min (3.16)

xi,t: MinMaxScaler equations from scikit-learn (Pedregosa et al., 2011)

3.4.1 Particle Swarm Optimization

Particle Swarm Optimization is a paradigm of Swarm Intelligence (SI) and it is a stochastic
method for optimization of continuous non-linear functions. It is used in different scientific
fiels and is conceptually simple and computationally inexpensive (Kennedy and Eberhart,
1995; Gad, 2022).
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A swarm is made of of many agents that locally interact with their environment and the
whole concept is based on the behaviour of animals such as a fish school. An underlying
concept in SI systems is that local interactions of agents has global impacts. In the context
of Particle Swarm Optimization (PSO) the agents are referred to as particles which move
through the space of the problem with a certain speed and direction. As a combination
of a particles best location, current location as well as the location of the other particles,
the direction for movement in the next iteration is determined. The particle swarm moves
through the space and approaches the objective function minimum or maximum (Gad,
2022).

If the objective function is to be minimized, the PSO algorithm can be illustrated as
follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (3.17)

vi(t+ 1) = w · vi(t) + c1 · r1 · (pbesti − xi(t)) + c2 · r2 · (gbest − xi(t)) (3.18)

If f(xi(t+ 1)) > f(pbesti),−→ pbesti = xi(t+ 1) (3.19)

If f(pbesti) > f(gbest),−→ gbest = pbesti (3.20)

xi,t: particle i and time t, vi,t: velocity of particle i at time t, pbest: best position of particle i, gbest:
best position of all particles, w, c1, c2: controlling paramters, (Patil and Stieglitz, 2014)

3.5 Evaluation Metrics

Mean Squared Error
The MSE computes the average squared difference between prediction and observation.
The lower the MSE the smaller the error between prediction and observation.

MSE =
1

n

n∑
i=1

(Qobs,i −Qsim,i)
2 (3.21)

Qsim(i): simulated discharge, Qobs(i): observed discharge

Nash-Sutcliffe Efficiency

The NSE (equation 3.22) is a commonly used performance metric with an upper limit
of NSE = 1 indicating a perfect fit with Qsim being identical to Qobs whereas a value
of NSE = 0 indicates ”that the model simulations have the same explanatory power as
the mean of the observations” (Knoben et al., 2019). Values NSE < 0 indicate a model
performance that is inferior to the mean of the observations.

NSE = 1−
∑n

i=1(Qsim,i −Qobs,i)
2∑n

i=1(Qobs,i − ¯Qobs)2
(3.22)
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Qsim(i): simulated discharge, Qobs(i): observed discharge, ¯Qobs: mean observed discharge (Knoben
et al., 2019; Nash and Sutcliffe, 1970)

Kling-Gupta Efficiency
Values of KGE = 1 indicate a perfect fit, KGE = 0 indicates that the explanatory
power of the model is equivalent to the mean of the observations while values of KGE < 0
indicate inferior explanatory power of the model compared to the mean of the observations
(Knoben et al., 2019).

KGE = 1−
√

(r − 1)2 + (α− 1)2 + (β − 1)2 (3.23)

r =

∑n
i=1(Qobs,1 − ¯Qobs)(Qsim,i − ¯Qsim)√∑n

i=1(Qobs,i − ¯Qobs)2 ·
√∑n

i=1(Qsim,i − ¯Qsim)2
(3.24)

α =
σsim
σobs

=

√∑n
i=1(Qsim,i − ¯Qsim)2√∑n
i=1(Qobs,i − ¯Qobs)2

(3.25)

β =
µsim

µobs
=

¯Qsim

¯Qobs
(3.26)

r: linear correlation between observations and simulations, α: flow variability error, β: bias term, σ:
standard deviation, µ: mean, Qsim: discharge prediction, Qobs: discharge observation (Knoben et al.,
2019; Gupta et al., 2009)
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4 Results

4.1 Data Analysis

In this chapter the the catchments are analyzed using the Budyko framework to analyze the
hydrological properties of the catchments. Furthermore, the deviation of the catchments
from the Budyko curve is analyzed to draw conclusions on the in the ERA5-Land-based
meteorological forcings LamaH-CE dataset.

4.1.1 Budyko Framework

Figure 4.1 visualises the catchments from basin delineation C (LamaH-CE dataset) in the
Budyko framework based on mean actual evapotranspiration and mean precipitation (from
Oct 1989 to Sept 2009) from the LamaH-CE dataset, based on data from ERA5-Land as
well as mean potential evaporation also from the LamaH-CE dataset based on the ERA5-
Land dataset (Muñoz Sabater, 2019; Klingler et al., 2021). In figure 4.2 the catchments
of basin delineation C are shown using the same data for mean actual evapotranspira-
tion and mean precipitation but now using mean reference evapotranspiration from the
LamaH-CE dataset based on the Global Aridity Index and Potential Evapotranspiration
(ET0) Climate Database v2 (Muñoz Sabater, 2019; Klingler et al., 2021; Trabucco and
Zomer, 2019). It can be seen that using the evapotranspiration from the ERA5-Land
dataset results in significant deviation of the catchments from the Budyko curve which
is not the case when using the reference evapotranspiration based on the Global Aridity
Index and Potential Evapotranspiration (ET0) Climate Database v2.

4.1.2 Catchment Clustering

In this chapter the results of the catchment clustering which is described in chapter 3.2.1
are examined. At first the location of the catchment clusters in the Budyko framework is
analysed, this will later be used to discuss the model performance on the different types of
clusters. Furthermore, the catchment characteristics and hydrological signatures for the
respective clusters are analyzed. The analysis of the catchment characteristics in figure 4.4
and the hydrological signatures in figure 4.5 is complemented with the statistical metrics
(median, mean, 95th and 5th percentile) in Appendix A. The clustering used in this work
is based on ten catchment attributes and divides the catchments into 8 clusters. Each
cluster contains between 20 and 59 catchments and the median catchment size of the
clusters ranges from 67,2 km2 to 126,1 km2.

Figure 4.3 displays the the catchments from basin delineation C in the Budyko framework
based on the same data as figure 4.2, which is mean actual evapotranspiration and mean
precipitation (from Oct 1989 to Sept 2009) from the LamaH-CE dataset, based on data
from ERA5-Land as well as mean reference evapotranspiration (from 1970 to 2000) from
the LamaH-CE dataset based on the Global Aridity Index and Potential Evapotranspi-
ration (ET0) Climate Database v2 (Muñoz Sabater, 2019; Klingler et al., 2021; Trabucco
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Figure 4.1: ETa: mean actual evapotranspiration [mm/d] (from ERA5-Land)1, Ep: potential evapora-
tion (from ERA5-Land) 1, P : preciptation [mm/d] (from ERA5-Land)1, the color indicates
the mean elevation of the catchments above sea level [m] and the size of the circles indi-
cates the relative catchment area

Figure 4.2: ETa: mean actual evapotranspiration [mm/d] (from ERA5-Land)1, ET0: reference evap-
otranspiration (from Global Aridity Index and Potential Evapotranspiration [mm/d] (ET0)
Climate Database v2)2, P : preciptation [mm/d] (from ERA5-Land)1, the color indicates
the mean elevation of the catchments above sea level [m] and the size of the circles indi-
cates the relative catchment area

and Zomer, 2019). The color-coding indicates the result of the K-Means clustering with
eight clusters based on the catchment characteristics. It should be noted that the K-Means
clustering included mean daily precipitation (from 1 October 1989 to 30 September 2009)
as feature, hence the same variable, averaged over the same period of time, was an input
feature to the clustering as well as part of the plot of the Budyko curve, explain part of
the relatively clear distinction of catchment clusters in the Budyko curve. It can be seen
in figure 4.3 that catchments from cluster 7 and cluster 5 form relatively distinct conglom-
erates at the top and bottom of the spread. Catchments from cluster 4 span a relatively
wide range from top to bottom parallel to the energy limit line. Catchments from cluster
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0, 1 and 2 seem to lie in a similar region within the Budyko framework and catchments
from cluster 3 lie distinctly clustered below the middle. Cluster 6 only contains one large
catchment.

Figure 4.3: ETa: mean actual evapotranspiration [mm/d] (from ERA5-Land)1, ET0: mean daily
reference evapotranspiration (from Global Aridity Index and Potential Evapotranspiration
[mm/d] (ET0) Climate Database v2)2, P : mean daily preciptation [mm/d] (from ERA5-
Land)1, the colors indicate the respective cluster based on the KMeans clustering with
10 catchment characteristics and 8 clusters, the size of the circles indicates the relative
catchment area

Cluster 0
The catchments from cluster 0 are mostly located in Northern Autria near the border to
Germany and the Czech Republic. The catchments lie at a low elevation and the mean
slope is small. The catchment receives very little snow.

Cluster 1
The catchments from cluster 1 are located primarily in Southern Germany and display in
many ways similar catchment characteristics and hydrological signatures as catchments
from cluster 0. Differences between the two catchment clusters are particularly clear in
the subsurface permeability and in the fraction of carbonate sedimentary rock.

Cluster 2
Also the catchments from cluster 2 display in many aspects similarities to catchments
from cluster 0 and 1 but does display a higher fraction of precipitation falling as snow
and a higher mean elevation. All three cluster also plot in a similar region of the Budyko
framework (figure 4.3).

Cluster 3
Parallel to the highest section of the mountain range lie catchments from cluster 3 with
a mean elevation of 1339.1 m.a.s.l. The cluster display the second highest mean slop
and is characterized by high mean precipitation, however with a low frequency of high
precipitation events (defined as precipitation events five times larger than the mean pre-
cipitation). This indicates that these catchments likely experience relatively frequent and
moderate precipitation events. The catchments experience a lot of snow fall with 28 % of
precipitation falling as snow on average. The catchments have a high runoff ratio and plot
low in the Budyko framework, indicating that a relatively small fraction of precipitation
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Figure 4.4: Boxplots of catchment characteristics per cluster
Variables: area calc: Area [km2], elev mean: Mean elevation [m.a.s.l.], slope mean:
Mean slope [m/km], p mean: Mean precipitation [mm/d], arid 1: Aridity as the ratio
of mean daily reference evapotranspiration to mean precipitation, hi prec cu: Mean du-
ration of high-precipitation events(number of consecutive days with 5 times mean daily
precipitation) [d], hi prec fr: Frequency of dry days (<1 [mm/d] precipitation) [d/yr],
geol perme: Subsurface permeability [-], gc sc fra: Fraction of carbonate sedimentary
rocks [-], frac snow: Fraction of precipitation falling as snow [-]

evaporates and a high fraction is translated into runoff.

Cluster 4
The catchments which are mostly located in the lower mountain regions are characterized
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by a relatively high mean slope and relatively high mean precipitation as well as relatively
high mean runoff and accordingly a comparatively high runoff ration. The discharge
is characterized by comparatively high low-flow values and moderate high-flow values
indicating a relatively moderate flow regime.

Cluster 5
The catchments from cluster 5 have by far the highest mean elevation (2165.9 m.a.s.l.)
and are located in the high mountain regions of the alps. The catchments have the high-
est mean slope and experience relatively much precipitation on average paired with high
runoff and accordingly high runoff ratios. It can be seen that at least part of the catch-
ments experience both high-flow and low-flow events frequently and with high duration,
indicating peaky runoff regimes.

Cluster 7
Cluster 7 contains the catchments with the lowest mean elevation (411.7 m.a.s.l.) and
the second-lowest mean slope. The catchments receive the least amount of precipitation,
on average 2.22 [mm/d]. However, in comparison with the other catchment clusters the
mean daily runoff is even lower (0.44 [mm/d]) which results in a very low runoff ratio with
an average value of 0.19, which means that on average 19 % of precipitation is translated
into runoff. The catchments plot close to the water limit in the Budyko curve and show
the highest aridity of all clusters, indicating that a significant portion of the precipitation
evaporates. Catchments in cluster 7 at the same time also receive high precipitation most
frequently on average and also experience high-flow relatively often, indicating a dynamic
runoff regime.
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Figure 4.5: Boxplots of hydrological signatures per cluster
Variables: q mean: Mean daily runoff [mm/d], runoff ratio: ratio of mean daily runoff
and mean daily precipitation [-], baseflow index ladson: ratio of mean daily – baseflow
and mean daily discharge; hydrograph separation is performed using the digital filter [-],
Q5: 5% flow quantile (low flow) [mm/d], Q95: 95% flow quantile (high flow) [mm/d],
high q freq: Frequency of high flow days (>9 times median daily flow) [d/yr], high q dur:
Mean duration of high-flow events [d], low q freq: Frequency of low-flow days (<0.2 times
mean daily flow) [d/yr], low q dur: Mean duration of low-flow events [d]
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4.2 Model Analysis

In the following section, the six models developed in this study are evaluated and com-
pared. Table 4.1 gives an overview of the models, including the dataset used and the
meteorological forcings. The conceptual models and the hybrid models were implemented
using two different ODE solvers, (1) the Euler method and (2) the fourth-order Runge-
Kutta method. Chapter 4.2.1 examines the impact of the method of the ODE solver
as well as the selected data source on model performance. Chapter 4.2.2 compares the
performance of the conceptual models, hybrid models and LSTM models and assess the
performance on different types of catchments.

Table 4.1: Overview of the models including the data source, method for the ODE solver, input vari-
ables and the loss function used during calibration (conceptual models) and trainin (hybrid
and LSTM models).

Model Name Dataset Solver Input Forcings Loss Function

E
R
A
5L

E
-O

B
S

E
u
le
r

R
K
4

BaseERA5L p, et, t KGE
BaseEOBS p, pet, t KGE
HybridERA5L p, et, t MSE
HybridEOBS p, pet, t MSE
LstmERA5L p, et, t MSE
LstmEOBS p, pet, t MSE

4.2.1 Impact of ODE Solver and Meteorological Forcings on Model
Performance

ODE Solver
To examine the effect of the method of the ODE solver, the models BaseERA5L and
BaseEOBS were compared in their performance across all catchments that are selected in
this study. To assess the impact of the data source of the meteorological input forcings, the
models were compared using the LamaH-CE (figure 4.7) and E-OBS (figure 4.6) dataset.

The median NSE and KGE values for the BaseERA5L model using the Euler method for
the ODE solver are 0.05 and 0.46 on the test period while they are 0.30 and 0.54 when
using the RK4 method for the ODE solver. This shows that the use of the RK4 method
leads improvements in performance.

For the BaseEOBS model, the median NSE and KGE values on the test period using
the Euler method are 0.25 and 0.56 while for the RK4 method they are 0.40 and 0.60.
This confirms the performance improvement when using the RK4 method over the Euler
method for the ODE solver. For a more detailed overview see table 7.9 (Appendix B).

Comparison of the HybridEOBS model with the Euler and RK4 method on the seven
representative catchments based on the median KGE from the BaseEOBS model runs
reveal that also for the hybrid model the performance is generally superior in most cases
when using the RK4 method. These results are shown in Appendix B in table 7.10. The
results and discussion of the hybrid models therefore focus on the models using the RK4
solver.
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Figure 4.6: E-OBS Dataset: Boxplots of the Nash-Sutcliffe Efficiency and Kling-Gupta Efficiency values
for all catchments from the Base model using E-OBS data. Boxplots for model runs using
an ODE solver with Euler and RK4 method, outliers are excluded in the plot. The red
triangle represents the mean.

Figure 4.7: ERA5-Land Dataset: Boxplots of the Nash-Sutcliffe Efficiency and Kling-Gupta Efficiency
values for all catchments from the Base model using ERA5-Land data. Boxplots for model
runs using an ODE solver with Euler and RK4 method, outliers are excluded in the plot.
The red triangle represents the mean.
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Meteorological Forcings
Furthermore, higher median and mean NSE and KGE values as well as a lower MSE values
when comparing the E-OBS dataset to the LamaH-CE (ERA5-Land), paired with smaller
interquartile ranges show that the base models perform better using the E-OBS dataset
as opposed to the LamaH-CE (ERA5-Land) dataset.

Similar patterns of performance improvement when using the E-OBS dataset over the
LamaH-CE (ERA5-Land) dataset have been identified when comparing the hybrid models
(HybridERA5L, HybridEOBS) on catchments 241, 215, 581, 21, 277, 797, 432, 572. For
reasons of conciseness these results are not included in this study and further experiments
with the hybrid models were restricted to the E-OBS dataset.

4.2.2 Model Comparison and Performance on Different Type of Catchments

The conceptual models (BaseEOBS, BaseERA5L) and LSTM models (LstmEOBS, Lst-
mERA5L) were calibrated/trained and evaluated on all 246 catchments selected for this
study. Due to computational limitations which are discussed in 5.2 the hybrid model was
trained and evaluated on 14 catchments. In chapter 4.2.2 the models are compared on the
individual catchments and in chapter 4.2.2 the model performance is analysed considering
the different catchment characteristics of the catchment clusters.

Model Comparison on Individual Catchments

At first the models are compared on one representative catchment per cluster based on
the catchment with the KGE value closest to the median KGE value of the respective
cluster from the BaseEOBS model runs. Based on the findings in chapter 4.2.1 the RK4
solver is used for the ODE solver of the base model and hybrid model, Furthermore, the
E-OBS dataset is chosen for the meteorological forcings. The results as displayed in table
4.2. The best NSE value for a certain catchment in most cases corresponds also to the
best KGE value for that catchment. The base model scores best on catchment 277, the
hybrid model scores best on catchments 581, 797, and for catchment 215 the KGE value
is highest too. The best NSE value for 215 is achieved by the LSTM model and the
LSTM model furthermore scores best on catchments 241, 215 and 21 for botch NSE and
KGE. Overall the hybrid model outperforms the conceptual model on both NSE and
KGE in four cases while the opposite is true in two cases. The largest performance (NSE)
improvements of HybridEOBS over BaseEOBS are achieved on catchments 581 and 432
were the conceptual model achieves low NSE scores of 0.16 and 0.13. The LSTM model
achieves both the highest NSE and KGE scores (catchment 215 and 21) as well as the
lowest NSE and KGE scores (catchment 432).

The three models are compared on another seven catchments, in this case each catch-
ment represents the catchment with the KGE value closest to the 75th percentile of the
BaseEOBS runs. The results are displayed in tabel 4.3.

The BaseEOBS and HybridEOBS mdoels perform almost identical on catchments 220 and
219 with respect to NSE and KGE values. A particularly large performance improvement
of HybridEOBS over BaseEOBS is again observed where the conceptual model scores
lowest (catchment 586). The hybrid model improves upon the conceptual model also on
catchment 214 where the conceptual model scores relatively high. Overall the hybrid model
performs better in four out of seven cases in NSE score, equal in two cases and performs
worse in one case. For the KGE scores the hybrid model performs better in three out of
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Table 4.2: Comparison of the BaseEOBS, HybridEOBS and LstmEOBS models using the NSE and
KGE values for the test period (Oct. 2005 - Oct. 2017). One representative catchment
per cluster based on the median KGE of the BaseEOBS model for the respective cluster.
Coloring indicates performance relative to the other models

BaseEOBS HybridEOBS LstmEOBS

ID NSE KGE NSE KGE NSE KGE

241 0.54 0.64 0.52 0.58 0.52 0.50
215 0.45 0.62 0.53 0.68 0.69 0.69
581 0.16 0.56 0.58 0.74 0.40 0.49
21 0.31 0.59 0.33 0.49 0.68 0.82
277 0.52 0.56 0.50 0.54 0.49 0.48
797 0.46 0.61 0.54 0.68 0.47 0.63
432 0.13 0.58 0.24 0.63 -0.68 -0.77

seven cases, worse in three out of seven cases and once it performs identical. The LSTM
achieves the overall highest scores (catchment 534) and lowest scores (catchment 348).

Table 4.3: Comparison of the BaseEOBS, HybridEOBS, and LstmEOBS models using the NSE and
KGE values for the test period (Oct. 2005 - Oct. 2017). One representative catchment per
cluster based on the 75th percentile KGE value of the BaseEOBS model for the respective
cluster. Coloring indicates performance relative to the other models.

BaseEOBS HybridEOBS LstmEOBS

ID NSE KGE NSE KGE NSE KGE

220 0.56 0.74 0.56 0.73 0.58 0.62
219 0.55 0.66 0.55 0.67 0.62 0.58
586 0.23 0.62 0.54 0.77 0.48 0.71
214 0.69 0.73 0.72 0.80 0.68 0.69
330 0.61 0.70 0.65 0.66 0.64 0.58
534 0.57 0.75 0.65 0.75 0.82 0.90
348 0.32 0.65 0.25 0.61 -0.05 -0.32

Model Performance and Catchment Characteristics

As discussed in chapter 4.1.2, the study area encompasses a wide range of catchment
characteristics. It includes catchments at mean elevations as low as 221 m.a.s.l. and as high
as 2858 m.a.s.l. There are large differences in mean slope and mean precipitation. Some
catchments have a high snow coverage and others have relatively high aridity. As described
in chapter 4.1.2, the catchments have been clustered based on ten catchment characteristics
into groups that are expected to show similarities in their hydrological responses. In this
chapter an analysis of performance of the conceptual and LSTM models on the different
clusters as well as the performance of the hybrid model on the representative catchments
of these clusters are analysed. Furthermore the hydrological signatures of the discharge
observations are considered in the analysis. See figure 4.4 for an overview of the catchment
characteristics analysis and figure 4.5 for an overview of the hydrological signature analysis.

The performance of the BaseEOBS and the LstmEOBS model on the catchment clusters is
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Figure 4.8: Comparison of the performance of the BaseEOBS and LstmEOBS accross the catchment
clusters. Outliers are excluded in the plot and the lower limit of the y-axis is set to -0.5.

Figure 4.9: Comparisong of the original LSTM model (left) to a LSTM model with additional input
forcings (right)
Data source: E-OBS dataset.

visualised in figure 4.8. It can be seen in both the boxplots for both performance metrics
that their performance follows in a similar pattern across the cluster. The LstmEOBS
model significantly outperforms the BaseEOBS model with respect to NSE on all clusters
except for cluster seven, showing higher median values as well as smaller interquartile
ranges.

The model performance for the catchments in cluster 0 and 1 is relatively similar which
matches the findings in chapter 4.1.2 that these clusters display similarities across several
catchment characteristics and hydrological signatures.

4.2.3 Impact of Adding additional Meteorological Input Forcings

Conceptual models can only take the meteorological variables as input that are considered
in the model structure. LSTM models are very flexible with respect to their inputs. The
hybrid models add this flexibility to the conceptual model without changing the inputs
to the conceptual component of the model. Figure 4.9 compares the original LstmEOBS
model which takes precipitation, mean temperature and potential evapotranspiration as
input to an expanded version that takes as additional inputs minimum temperature, max-
imum temperature, humidity, pressure, wind speed, solar radiation, albedo, length of day.
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The addition of additional input forcings improce the median NSE of the LSTM model
on five of the seven clusters, it remains approximately the same on cluster zero while it
deteriorates on cluster one.

Adding the same additional meteorological input forcings to the neural network component
of the hybrid model while feeding the same meteorological input forcings to the conceptual
part of the model did not lead to any performance improvements in experiments on the
representative catchments. Observations of the training progress indicate that the addi-
tional inputs to the neural network lead to a larger initial deviation from the conceptual
prediction. Additionally the training process converged significantly slower and was more
prone to overfitting on the training data. Accordingly, these results are not included here
but are instead discussed in chapter 5.1.3.
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5.1 Model Results

The aim of this study was to develop a framework for hybrid modelling in hydrology using
a Neural Ordinary Differential Equations Approach. Subsequently, the results presented
in chapter 4.2 will be discussed and the research questions will be answered. The section
does not strictly follow the order of the research questions as different different parts of
the results contribute to the same research questions. Answering SQ3 is divided into
improvement techniques that were implemented leading up to the HybridEOBS model
that is used for comparison with the conceptual and LSTM model and into an exploration
of further approaches to improve the performance.

5.1.1 Model Performance and Comparison (SQ1 & SQ3)

ODE Solver
The conceptual models as well as the conceptual components contain as central element
an ODE solver which then numerically approximates the trajectory of the system states
(snow storage and water storage) using an initialization for each storage as initial condition.
Accordingly, the method chosen for the ODE solver was explored first in the assessment
of pathways to improving the conceptual and hybrid models. The Euler solver as a simple
method and the RK4 as a more advanced method, which is also used by Patil and Stieglitz
(2014) for the EXP-Hydro model and is recommended as fixed time step solver for the
torchdiffeq solver (Chen, 2018).

The results in chapter 4.2.1 demonstrate that the chosen method for the ODE solver has
a significant impact on the performance of the conceptual model. For the BaseERA5L
model the median performance (NSE) on the testing data increases from 0.05 to 0.30 (Euler
vs. RK4). For the BaseEOBS model, the performance (NSE) on the same time period
increases from 0.25 to 0.50 (Euler vs. RK4). The results in table 7.10 in Appendix B
comparing the BaseEOBS and HybridEOBS with the Euler method vs. the RK4 method
for the ODE solver show that also for the hybrid model the ODE solver is of crucial
importance and with the training setup used in this study, the effect of the ODE solver
cannot be compensated for by the neural network in the hybrid model.

Meteorological Forcings
The analysis of the long-term water balance of the catchments using the meteorologic
forcings from the LamaH-CE dataset in comparison with data from the Global Aridity
Index and Potential Evapotranspiration (ET0) Climate Database v2 (Trabucco and Zomer,
2019) revealed that there might be an overestimation of (potential) evapotranspiration in
the ERA5-Land dataset. This is also mentioned by Klingler et al. (2021). Based on these
findings, the E-OBS dataset was used additionally to assess the performance of the models
using another dataset. The results show that the performance of all models significantly
improved when using the E-OBS dataset over the ERA5-Land-based LamaH-CE dataset.
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Figure 5.1: Hydrograph analysis of the conceptual model, hybrid model and the observations over a
period of three years on catchment 220

Figure 5.2: Hydrograph analysis of the conceptual model, hybrid model and the observations over a
period of three years on catchment 534

Model Comparison
In figure 5.1 and 5.2 the hydrographs of the BaseEOBS and HybridEOBS as well as the
observations are visualized of a period of three years. Catchment 220 represents a catch-
ment were little to no improvement was achieved by the hybrid model while catchment 534
represents a catchment with a large performance improvement through the hybrid model.
The hybrid model improves the prediction of baseflow and in the time period around day
1000 it can be seen that the hybrid model avoids the spike which the conceptual model
predicts.

Figures 5.3 and 5.4 show the contrbution to the neural network to the changes in snow
storage (S0) and water storage (S1) as well as the storage respective storage levels. This
demonstrates that the hybrid modelling framework introduced in this study can be used
to analyze both the model states of the model as well as the contributions of the neural
network, which bears the potential of identifying limitations of the conceptual model which
is underlying.
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Figure 5.3: NN contribution to changes in storages and storage levels catchment 220

41



5 Discussion

Figure 5.4: NN contribution to changes in storages and storage levels catchment 534
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5.1.2 Model Performance on Catchments with Different Catchment
Characteristics (SQ2)

Several findings in this study indicate that the catchment clustering performed using ten
catchment attributes results in a meaningful creation of so-called hydrological response
units, groups of catchments that respond to similar meteorological inputs in a similar
way. Figure 3.3 shows that clusters form distinct groups of catchments in the same region
even though no spatial information is included in the clustering. Even though the large
differences in elevation throughout the study area are likely to contribute to the spatial
agglomeration. Figure 4.4 shows however, that other catchment attributes must be decisive
in this as well as clusters zero, one and seven show significant similarities in elevation.

The similarity of the hydrological response, at least with respect the NSE and KGE values
becomes obvious in figure 4.8 which compares the BaseEOBS and the LstmEOBS models
across clusters. A distinct pattern that is similar for both models can be seen. Similar
performance of the respective models on clusters zero and one paired with the findings
in the cluster analysis strengthens the hypothesis, that these catchment behave similarly,
despite the fact that clusters zero and one are relatively far apart when looking at the
map of the study area.

Two catchment clusters display particularly bad performance metrics, cluster two and
cluster seven. Here performance on cluster seven is significantly worse compared to cluster
two. When comparing the catchment attributes and hydrological signatures it stands out
that both catchments receive high precipitation events much more frequently than the
other catchment clusters, in both cases however, this is paired with a relatively low mean
daily runoff and accordingly a low runoff ratio. At the same time both clusters also
show relatively high aridity values. This indicates that is likely challenging for both the
BaseEOBS and the LstmEOBS model to predict streamflow in arid catchments with a
peaky discharge regime and a low runoff ratio. This is also in line with findings in Guo
et al. (2020) with respect to the challenges for conceptual rainfall-runoff models.

Catchment cluster five represents the second best catchment with respect to the perfor-
mance of the BaseEOBS model when look at the median of NSE and KGE values and it
represents the best performance of the LstmEOBS model. The catchments in cluster five
are located in the mountains at very high elevation and with steep slopes. The mean snow
fraction is 42 % and mean precipitation is relatively high. Furthermore, mean daily runoff
is also relatively high and accordingly, the runoff ratio as well. Paired with a low aridity
this indicates the inverse of the findings above. Both models seem to perform well when
the runoff ratio is high and aridity is low. Additionally both models seem to perform well
in a setting where a large fraction of precipitation falls as snow. For the LSTM this is in
line with findings in Sabzipour et al. (2023) where the performance of LSTM models is
compared to distributed physically-based models. For the BaseEOBS performance on the
three catchment clusters with a snow coverage higher than 15 % (cluster three, four and
five) the performance is especially good for clusters four and five as cluster three display
a larger interquartile range. Nevertheless, performance on the catchments with significant
snow coverage is better than on the ones with little snow coverage. While reasons for this
may be complex, on explanation for this is the model structure. The model only serves
as a two-bucket model if there is precipitation falling as snow, else it basically acts as a
single-bucket model. This could be a reason for the improved performance in catchments
with higher snow coverage.

The performance of the hybrid model (HybridEOBS) is compared to the conceptual model
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(BaseEOBS) on fourteen catchments, on representative for the median performance of the
conceptual model and one representative for the performance near the 75th percentile of
the conceptual model. Altogether the hybrid model outperforms the conceptual model
with respect to NSE in nine out of fourteen cases while it performs the same in two cases
and worse in three cases. For the KGE values the hybrid model performs better in seven
cases, worse in 6 cases and the same in one case. No clear pattern is distinguishable that
could relate the ability of the hybrid model to certain catchment attributes as there is
a case for each cluster, except cluster zero, in which the hybrid model outperforms the
conceptual model when looking at the fourteen comparisons and both evaluation metrics.

The results show that there is a clear difference in performance of the models on catchments
with different catchment attributes. However, the ability of the hybrid model to improve
the performance of the underlying conceptual model could not be identified as particularly
strong or weak on certain types of catchments.

5.1.3 Exploration of Improvement Pathways (SQ3)

In an experiment of the effects of adding additional meteorological input forcings to the
LSTM model it was shown that it increases the overall median NSE performance as well
as increases performance on five out of seven of the catchment clusters. The goal of this
experiment was to explore the option of adding additional meteorological input forcings
to the hybrid model. However, the adding the same meteorological forcings to the neural
network component of the hybrid did not lead to any improvements in performance. The
observed tendency for overfitting the training data when adding the additional forcings is
likely explained by the increasing number of neurons in the neural network while applying
no regularization. Additionally, the added meteorogical forcings display a wider range of
values, which in a modelling setup without scaling for the hybrid model is likely to be
an additional factor explaining the slow and inconsistent convergence of the model during
training. However, it has been shown in previous experiments that the hybrid models are
able to capture additional information from the input forcings and it has been shown that
additional forcings can improve the performance of the LSTM model. Accordingly an
optimized setup of the hybrid model training including regularization and scaling of the
additional input forcings as well as a more thorough selection of the number and type of
input forcings is necessary to inverstigate whether this has potential to further improve the
performance of the hybrid model. The same is true for experiments providing additional
meteorolical forcings from another dataset which lead to the same described issues in the
training process.

In a similar but nevertheless different approach Höge et al. (2022) have shown that an
alternative implementation of a Neural Ordinary Differential Equations approach based
on the same conceptual model (EXP-Hydro) can predict discharge on individual basins
in the US using the CAMELS dataset as well as state-of-the-art deep learning models.
A possible advantage of the approach is that in the M50 model a part of the processes
in the conceptual model and in the M100 all of the processes in the conceptual model
are replaced by a neural network. This allows the neural network to more flexibly to
enhance the model structure of the base model. The modelling framework introduced in
this study allows for a flexible setup in which parts or the entire neural network can be
replaced by a neural network, hence to reproduce the approach by Höge et al. (2022).
Exploring a hybrid model in which parts of the neural network are replaced by the neural
network accordingly represents another pathway to improving the performance of the
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hybrid modelling approach introduced in this study.

5.2 Limitations and Recommendations

Data
One limitation of this study is related to the data preparation of the E-OBS dataset,
more specifically regarding the approximation of reference evapotranspiration using the
FAO Penman-Monteith equation. While variables from E-OBS that have been used as
direct inputs to any of the models were gap-free. Some variables from the E-OBS dataset
that were used to compute the reference evapotranspiration included gaps. The E-OBS
dataset is based on interpolated station data so gaps in the time series are most likely
left consciously as their temporal or spatial extent was too large or interpolation. In this
study the variables with gaps were interpolated anyways to produce a gap-free dataset
which introduces uncertainty to the reference evapotranspiration values.

The experiments with the conceptual models and LSTM models on the clustered catch-
ments as well as their regional clusters which has been shown on a map, indicates that the
clustering does group the catchments to a certain extent by hydrological similarity into
so-called Hydrological Reponse Units. However, the K-means clustering which was the
basis for the clutering, was based on ten catchment attributes that have been determined
to be hydrologically relevant by (Kratzert et al., 2019a). However, this was performed on
the CAMELS-US dataset for the contiguous united states and does not necessarily reflect
upon their hydrological importance in central Europe, especially since the study area in
the LamaH-CE dataset, despite significant variability in catchment characteristics, does
not include some types of catchments/landscapes that are present in the United States.

Models and Training
While meteorological forcings were scaled for the use in the LSTM model, no scaling was
applied to the meteorological forcings for the conceptual model and hybrid model. To
optimize the training process of the models, future experiments should explore the added
value of data scaling.

The EXP-Hydro model which is used as base model for the hybrid models in this study is a
very simple conceptual model, especially in catchments with little to now snow fall it acts
as a single-bucket model. Exploration of the effect of adding more complex conceptual
hydrological models as base model would grant further insights into the potential of the
approach. To further improve model performance, static parameters could be replaced
partially or entirely by dynamic parameterization with time-dependent parameters that
are also learnt by the neural network. This approach is implemented in Feng et al. (2023).

The differentiable modelling framework created in this study comes creates significant
computational costs when training the models. To create a differentiable version of the
conceptual model the model structure was changed in order to allow tracking the gradients.
The torchdiffeq package is used to create a differentiable modelling framework. Depending
on the modelling setup, tracking the gradients increases the time for the forward pass of
the ODE solver by 10x or more, severely limiting the experimental setup executed in
this study. Future studies to explore Neural Ordinary Differential Equations should be
performed in a setting that is better designed for automatic differentiation, for example
using the programming langueage Julia, which was done in Höge et al. (2022).

Because of the described computational limitations only a very limited hyper parameter
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optimization was performed. More experiments on the effect of different loss functions
on the training of the hybrid models as well as the impact of different learning rates and
training for more epochs is recommended to fully explore the potential of this approach.

Reflection on the Modelling Approach
The hybrid model introduced in this study aims to improve discharge predictions by
improving the representation of the storages in the conceptual model. For each time step,
the conceptual component of the model which is composed of the mechanistic processes and
calibrated parameters can be seen as the right hand side of a differential equation which
is integrated by numerical approximation using an ODE solver and an initial condition, in
this case the initialization of the storages. The neural network component of the hybrid
model receives for each time step the meteorological input forcings as well as the prediction
for the two storage from the conceptual component. The conceptual component has been
calibrated before, therefore the neural network learns to improve the computation of the
changes in storages (dS0/dt and dS1/dt). The neural network is then trained by tracking
the gradients and using a loss function to compute the difference between the simulated
and the observed discharge. The process of improving results by adjusting storages to
better capture the observed discharge is comparable to data assimilation.

Multiple examples exist in hydrological modelling for the use of data assimilation to im-
prove discharge predictions. For example, terrestrial water storage from the Gravity Re-
covery and Climate Experiment (GRACE) has been used to adjust model storages at each
time step to arrive at better discharge predictions (Wu et al., 2022). Another application
of data assimilation for streamflow prediction is introduced in Boucher et al. (2020). The
approach shows large similarities to the approach implemented in this study. GR4J, an-
other simple conceptual model is chosen as base model. Similarly to EXP-Hydro it also
has two model states that represent storages. These are also connected to a neural network
and training is performed on streamflow observations as, similar to the case in this study,
no observations for the storages exist (Boucher et al., 2020).

The approach in this study displays similarity to data assimilation but it is still to be
assessed whether it has the same potential of improving hydrological models as data as-
similation does. Therefore, it is suggested to conduct further experiments which compare
the performance of the present neural ODE approach to data assimilation on conceptual
models.
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As part of this work it has been demonstrated that hybrid models using a Neural Ordinary
Differential Equations approach represent a promising way to enhance the performance of
conceptual models while preserving the ease of interpretability. At the same time it has
been shown that machine learning-based approaches such as LSTM models are in many
cases superior when it comes to accuracy of predictions. This shows that hybrid hydro-
logical models using a Neural Ordinary Differential Equations approach can contribute to
the field of hydrological modelling especially since the implementation in this work is only
one of the many ways to combine physical/conceptual models and nural networks.

Key elements in developing hybrid models using a NODE approach are the choice of base
model as well as the choice of ODE solver, the decisions in how to combine the conceptual
part with the neural network and how to train the parameters of the conceptual part of
the model as well as the neural network part. Another key point is the computational
efficiency of the models which represented a bottle-neck in this work.

The field of Universal Differential Equations is gaining traction and has recently shown
promising approaches across fields and will certainly benefit the field of hydrological mod-
elling as well.

Code availablility: https://github.com/JonathanSchieren/MasterThesis
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Merz, R. and Blöschl, G. (2004). Regionalisation of catchment model parameters. Journal
of Hydrology, 287(1-4):95–123.

Moretti, G. and Montanari, A. (2008). Inferring the flood frequency distribution for an
ungauged basin using a spatially distributed rainfall-runoff model. Hydrology and Earth
System Sciences, 12(4):1141–1152.
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Perrin, C., Michel, C., and Andréassian, V. (2003). Improvement of a parsimonious model
for streamflow simulation. Journal of Hydrology, 279(1-4):275–289.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D.,
Ramadhan, A., and Edelman, A. (2020). Universal Differential Equations for Scientific
Machine Learning.

Reaver, N. G. F., Kaplan, D. A., Klammler, H., and Jawitz, J. W. (2020). Reinterpreting
the Budyko Framework. Hydrology and Earth System Sciences.

Reaver, N. G. F., Kaplan, D. A., Klammler, H., and Jawitz, J. W. (2022). Theoretical
and empirical evidence against the Budyko catchment trajectory conjecture. Hydrology
and Earth System Sciences, 26(5):1507–1525.

Sabzipour, B., Arsenault, R., Troin, M., Martel, J. L., Brissette, F., Brunet, F., and Mai, J.
(2023). Comparing a long short-term memory (LSTM) neural network with a physically-
based hydrological model for streamflow forecasting over a Canadian catchment. Journal
of Hydrology, 627.

Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., and Müller, K.-R. (2019). Ex-
plainable AI: Interpreting, Explaining and Visualizing Deep Learning, volume 11700 of
Lecture Notes in Computer Science. Springer International Publishing, Cham.

Seibert, J. and Bergström, S. (2022). A retrospective on hydrological catchment modelling
based on half a century with the HBV model. Hydrology and Earth System Sciences,
26(5):1371–1388.

Sinaga, K. P. and Yang, M.-S. (2020). Unsupervised K-Means Clustering Algorithm. IEEE
Access, 8:80716–80727.

Singh, A. (2018). A Concise Review on Introduction to Hydrological Models. GRD Journal
for Engineering, 3(10).

Staudinger, M., Stahl, K., Seibert, J., Clark, M. P., and Tallaksen, L. M. (2011). Com-
parison of hydrological model structures based on recession and low flow simulations.
Hydrology and Earth System Sciences, 15(11):3447–3459.

Thorntwaite, C. W. (1948). An Approach toward a Rational Classification of Climate.
The Geological Review, 38:55–94.

Trabucco, A. and Zomer, R. (2019). Global Aridity Index and Potential Evapotran-
spiration (ET0) Climate Database v2. CGIAR Consortium for Spatial Information
(CGIAR-CSI) [dataset].

53



Bibliography

Tsai, W. P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., and Shen, C.
(2021). From calibration to parameter learning: Harnessing the scaling effects of big
data in geoscientific modeling. Nature Communications, 12(1).

van den Besselaar, E. and Copernicus Climate Change Service (2023). E-OBS daily gridded
observations for Europe from 1950 to present: Product user guide. ECMWF Confluence
Wiki.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., Carey, C. J., Polat, , Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,
A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. P.,
Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C. N.,
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7 Appendix

7.1 Appendix A - Data & Data Analysis

7.1.1 Estimating Potential Evapotranspiration

This chapter shows the equations used to estimate potential evapotranspiration using the
FAO Penman-Monteith Equation including the equations to estimate missing climatic
data.

FAO Penman-Monteith Equation

From the Penman-Monteith equation , the equation for aerodynamic resistance and the
equaiton for surface resistance the FAO Penman-Monteith equation (equation 7.1) was
developed.

ET0 =
0.408∆(Rn −G) + γ 900

T+273u2(es − ea)

∆ + γ(1 + 0.34u2)
(7.1)

ET0: reference evapotranspiration [mm day-1], Rn: net radiation at the crop surface [MJ m-2 day -1],
G: soil heat flux density [MJ m-2 day-1], T : mean daily air temperature at 2m height [°C], u2: wind
speed at 2m height [m s-1], es: saturation vapour pressure [kPa], ea: actual vapour pressure [kPa],
es − ea: saturation pressure deficit [kPa], ∆: slope vapour pressure curve [kPa / °C], γ: psychrometric
constant [kPa / °C] Allen et al. (1998)

Missing Climatic Data

Saturation vapour pressure and mean saturation vapour pressure

Saturation vapour pressure (es) can be calculated using equation 7.2.

e◦(T ) = 0.60108exp(
17.27T

T + 273
) (7.2)

e(T ): saturation vapour pressure at air temperature T [kPa], T : air temperature [°C] Allen et al. (1998)

The daily mean of the saturation vapour pressure can then be computed with equation
7.3.

es =
e◦(Tmax) + e◦(Tmin)

2
(7.3)

e◦(T ): saturation vapour pressure at air temperature T [kPa], T : air temperature [°C] Allen et al.
(1998)

Slope of saturation vapour pressure curve
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The slope of the relationship between temperature T and saturation vapour pressure is
calculated as shown in equation 7.4.

∆ =
4098(0.6018exp( 17.27T

T+237.3))

(T + 237.3)2
(7.4)

∆: slope of saturation vapour pressure curve at air temperature T [kPa / °C], T : air temperature [°C]
Allen et al. (1998)

Determine actual vapour pressure from relative humidity Actual vapour pressure
can be determined from the daily mean relative humidity as well as from saturation vapour
pressure at daily minimum and maximum temperature. This is shown in equation 7.5.

ea =
RHmean

100
(
e◦(Tmax) + e◦(Tmin)

2
) =

RHmean

100
∗ es (7.5)

ea: actual vapour pressure [kPa], RHmean: mean relative humidity [%], e◦(Tmin): saturation vapour
pressure at daily minimum temperature [kPa], e◦(Tmax): saturation vapour pressure at daily maximum
temperature [kPa]

Vapour pressure deficit

The vapour pressure deficit is calculated as the difference between mean saturation vapour
pressure (equation 7.3) and actual vapour pressure (equation 7.5).

Albedo

Albedo values are required to calculate net shortwave radiation (Rns) and were ontained
from ERA5-Land, making it the only observed variable that was added from a dataset
other than E-OBS for the computation of PET.

Soil heat flux

The soil heat flux is small compared to other components of the energy balance and will
be ignored in this work Allen et al. (1998).

Net radiation

Net radiation (Rn) is the difference between incoming net shortwave radiation (Rns) and
outgoing net longwave radiation (Rnl).

Rn = Rns −Rnl (7.6)

Rn: net radiation [MJ / m2 / day], Rnl: outgoing net longwave radiation [MJ / m2 / day], Rns:
incoming net shortwave radiation [MJ / m2 / day] Allen et al. (1998)

To compute net radiation, first incoming net shortwave radiation (Rns) and outgoing net
longwave radiation (Rnl) need to be determined.

Net longwave radiation

Rnl = σ(
T 4
max,K + T 4

min,K

2
)(0.34− 0.14

√
ea)(1.35

Rs

Rso
− 0.35) (7.7)
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Rnl: net outgoing longwave radiation [MJ / m2 / day], σ: Stefan-Boltzman constant [4.903 *
10−9MJK4/m2/day],Tmax,K : maximum daily air temperature [K], Tmin,K : minimum daily air tem-
perature [K], ea: actual vapour pressure [kPa], RS/Rso: relative shortwave radiation, Rs: shortwave
radiation [MJ / m2 / day], Rso: clear-sky radiation [MJ / m2 / day] Allen et al. (1998)

Incoming shortwave radiation

Incoming shortwave radiation (Rs) is part of the E-OBS dataset.

Net shortwave radiation

Net shortwave radiation is calculated based on incoming shortwave radiation (Rs) and
albedo (α).

Rns = (1− α)Rs (7.8)

Rns: net shortwave radiation [MJ / m2 / day], α: albedo [-], Rs: incoming shortwave radiation [MJ /
m2 / day] Allen et al. (1998)

Clear-sky shortwave radiation

The calculation of clear-sky shortwave radiation is required to compute the net longwave
radiation.

Rso = (0.75 + 2 ∗ 10−5z)Ra (7.9)

Rso: clear-sky shortwave radiation [MJ / m2 / day], z: station elevation above sea level [m], Ra:
extraterrestrial radiation [MJ / m2 / day] Allen et al. (1998)

Extraterrestrial radiation

Ra =
24(60)

π
Gscdr(ωssin(ϕ)sin(δ) + cos(ϕ)cos(δ)sin(ωs)) (7.10)

Ra: extraterrestrial radiation [MJ / m2 / day], Gsc: solar constant = 0.0820 [MJ / m2 / day], dr:
inverse relative distance Earth-Sun, ωs: sunset hour angle [rad], ϕ: latitude [rad], δ solar declination
[rad] Allen et al. (1998)

To calculate extraterrestrial radiation (Ra) also the inverse relative distance Earth-sun
and solar declination are required (equation 7.11 & 7.12).

dr = 1 + 0.033cos(
2π

365
J) (7.11)

δ = 0.409sin(
2π

365
J − 1.39) (7.12)

J : day of the year Allen et al. (1998)

ωs = arccos(−tan(ϕ)− tan(δ)) (7.13)

J : day of the year Allen et al. (1998)

Wind speed Wind speed is part of the E-OBS dataset at 10 m above the surface. It is
corrected to 2 m above the surface with equation 7.14.
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u2 = uz
4.87

ln(67.8z − 5.42)
(7.14)

u2: wind speed at 2m above surface [m / s], uz: measured wind speed z m above surface [m / s], z:
height of wind speed measurement above surface[m] Allen et al. (1998)

Atmospheric parameters

The FAO Penman-Monteith equation also requires the psychometric constant (γ) which
again requires the atmospheric pressure (P ).

P = 101.3(
293− 0.0065z

293
)5.26 (7.15)

P : atmospheric pressure [kPa], z: elevation above sea level [m] Allen et al. (1998)

γ =
cpP

ϵλ
= 0.665 ∗ 10−3P (7.16)

γ: psychrometric constant [kPa / °C], P : atmospheric pressure [kPa], λ: latent heat of vaporization:
2.45 [MJ / kg], cp: specific heat at constant pressure: 1.013 * 10-3 [MJ / kg / °C], ϵ: ratio molecular
weight of water vapour / dry air: 0.622 Allen et al. (1998)

7.1.2 Catchment Clustering & Analysis

Table 7.1: Median catchment characteristics across clusters based on data from (Klingler et al., 2021).
Variables: area calc: Area [km2], elev mean: Mean elevation [m.a.s.l.], slope mean: Mean
slope [m/km], p mean: Mean precipitation [mm/d], arid 1: Aridity as the ratio of mean
daily reference evapotranspiration to mean precipitation, hi prec cu: Mean duration of high-
precipitation events(number of consecutive days with 5 times mean daily precipitation) [d],
hi prec fr: Frequency of dry days (<1 [mm/d] precipitation) [d/yr], geol perme: Subsurface
permeability [-], gc sc fra: Fraction of carbonate sedimentary rocks [-], frac snow: Fraction
of precipitation falling as snow [-]

Cluster Count area calc elev mean slope mean p mean arid 1 hi prec du hi prec fr geol perme gc sc fra frac snow

0 59 70,298 593,0 88,0 2,88 0,76 1,19 12,15 -14,2 0,0 0,1

1 31 98,303 634,0 71,0 2,97 0,74 1,16 11,55 -11,9 0,153 0,08

2 24 101,433 918,0 209,5 2,865 0,785 1,18 16,575 -12,95 0,066 0,12

3 43 80,218 1336,0 332,0 5,04 0,44 1,18 8,5 -11,8 0,896 0,29

4 32 96,852 831,0 290,0 3,775 0,6 1,23 12,0 -11,85 0,858 0,17

5 37 67,166 2170,0 392,0 4,09 0,47 1,11 9,7 -13,8 0,0 0,43

7 20 126,046 407,5 90,5 2,215 1,13 1,2 17,4 -14,15 0,0 0,08

58



7.1 Appendix A - Data & Data Analysis

Table 7.2: Mean catchment characteristics across clusters based on data from (Klingler et al., 2021).
Cluster Count area calc elev mean slope mean p mean arid 1 hi prec du hi prec fr geol perme gc sc fra frac snow

0 59 95,505 584,068 94,576 3,053 0,746 1,19 11,988 -14,39 0,003 0,1

1 31 169,534 622,968 86,645 3,179 0,727 1,164 11,392 -11,981 0,318 0,088

2 24 130,626 949,625 205,667 2,887 0,8 1,175 16,731 -13,058 0,121 0,135

3 43 90,771 1339,14 328,698 4,936 0,442 1,177 8,908 -11,912 0,8 0,28

4 32 123,376 870,281 280,312 3,661 0,646 1,229 12,972 -11,938 0,771 0,169

5 37 92,688 2165,892 383,459 4,058 0,476 1,123 10,15 -13,37 0,099 0,422

7 20 156,172 411,7 91,15 2,222 1,162 1,201 17,252 -14,02 0,056 0,082

Table 7.3: 5th percentile of catchment characteristics across clusters based on data from (Klingler
et al., 2021).

Cluster Count area calc elev mean slope mean p mean arid 1 hi prec du hi prec fr geol perme gc sc fra frac snow

0 59 13,016 366,0 49,8 2,54 0,538 1,149 9,92 -15,0 0,0 0,06

1 31 45,933 449,5 49,5 2,495 0,525 1,115 9,675 -12,85 0,0 0,05

2 24 30,873 580,05 123,7 2,47 0,672 1,132 15,062 -14,2 0,0 0,082

3 43 15,312 847,8 213,7 4,155 0,38 1,111 7,955 -12,29 0,35 0,182

4 32 28,941 556,75 183,75 2,696 0,496 1,19 10,315 -12,245 0,366 0,115

5 37 19,269 1508,6 307,0 3,27 0,398 1,068 8,77 -14,1 0,0 0,288

7 20 56,458 258,05 46,9 1,877 0,939 1,16 14,75 -15,0

Table 7.4: 95th percentile of catchment characteristics across clusters based on data from (Klingler
et al., 2021).

Cluster Count area calc elev mean slope mean p mean arid 1 hi prec du hi prec fr geol perme gc sc fra frac snow

0 59 268,988 835,1 175,1 3,96 0,901 1,221 13,55 -13,39 0,027 0,14

1 31 363,888 785,5 145,5 4,35 0,905 1,225 12,4 -11,2 0,924 0,145

2 24 258,251 1451,4 301,45 3,258 0,958 1,2 18,632 -12,3 0,345 0,231

3 43 200,524 1799,6 441,5 5,307 0,499 1,23 10,455 -11,8 1,0 0,36

4 32 257,361 1228,95 375,4 4,43 0,907 1,26 18,122 -11,8 1,0 0,229

5 37 283,884 2718,4 462,2 4,8 0,578 1,24 12,98 -12,0 0,519 0,52

7 20 386,182 583,15 148,35 2,632 1,482 1,241 19,718 -12,2 0,374 0,101

Table 7.5: Median hydrological signatures across clusters based on data from (Klingler et al., 2021).
Variables: q mean: Mean daily runoff [mm/d], runoff ratio: ratio of mean daily runoff
and mean daily precipitation [-], baseflow index ladson: ratio of mean daily – baseflow
and mean daily discharge; hydrograph separation is performed using the digital filter [-],
Q5: 5% flow quantile (low flow) [mm/d], Q95: 95% flow quantile (high flow) [mm/d],
high q freq: Frequency of high flow days (>9 times median daily flow) [d/yr], high q dur:
Mean duration of high-flow events [d], low q freq: Frequency of low-flow days (<0.2 times
mean daily flow) [d/yr], low q dur: Mean duration of low-flow events [d]

Cluster Count q mean runoff ratio baseflow index ladson Q5 Q95 high q freq high q dur low q freq low q dur

0 59 1,147 0,387 0,617 0,264 3,213 4,694 1,732 10,361 5,46

1 31 1,058 0,349 0,715 0,425 2,084 1,056 1,475 0,639 3,143

2 24 1,072 0,366 0,776 0,418 2,188 0,194 1,449 0,014 0,5

3 43 4,409 0,852 0,665 0,919 10,896 0,833 1,357 9,444 8,2

4 32 2,376 0,59 0,67 0,78 5,872 2,097 1,615 0,361 3,375

5 27 3,397 0,812 0,68 0,52 10,248 1,611 1,806 33,694 17,061

7 20 0,436 0,208 0,638 0,074 1,24 4,334 1,8 14,653 5,436

Table 7.6: Mean hydrological signatures across clusters based on data from (Klingler et al., 2021).
Cluster Count q mean runoff ratio baseflow index ladson Q5 Q95 high q freq high q dur low q freq low q dur

0 59 1,257 0,4 0,607 0,327 3,49 5,243 1,952 15,472 5,034

1 31 1,262 0,372 0,692 0,411 3,327 2,828 1,964 13,519 3,907

2 24 1,158 0,392 0,773 0,472 2,572 0,441 1,326 0,7 2,14

3 43 4,285 0,872 0,652 0,931 12,279 2,214 1,5 23,185 7,484

4 32 2,324 0,622 0,665 0,758 6,0 2,577 1,603 3,251 3,86

5 27 3,627 0,89 0,682 0,558 11,617 11,149 2,524 64,742 28,072

7 20 0,446 0,196 0,642 0,093 1,257 5,453 1,835 26,032 6,18
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Table 7.7: 5th percentile of hydrological signatures across clusters based on data from (Klingler et al.,
2021).

Cluster Count q mean runoff ratio baseflow index ladson Q5 Q95 high q freq high q dur low q freq low q dur

0 59 0,654 0,246 0,458 0,118 1,783 0,497 1,35 0,0 0,0

1 31 0,388 0,132 0,452 0,075 1,007 0,0 0,0 0,0 0,0

2 24 0,754 0,275 0,667 0,295 1,7 0,0 0,0 0,0 0,0

3 43 2,209 0,473 0,528 0,307 5,795 0,091 1,0 0,0 0,0

4 32 1,19 0,423 0,528 0,314 3,075 0,392 1,196 0,0 0,0

5 27 2,169 0,523 0,599 0,205 5,372 0,028 1,0 0,0 0,0

7 20 0,133 0,064 0,485 0,031 0,244 0,528 1,0 0,712 2,332

Table 7.8: 95th percentile of hydrological signatures across clusters based on data from (Klingler
et al., 2021).

Cluster Count q mean runoff ratio baseflow index ladson Q5 Q95 high q freq high q dur low q freq low q dur

0 59 2,854 0,668 0,731 0,663 7,305 12,589 2,828 53,355 9,162

1 31 2,69 0,66 0,859 0,801 7,646 11,736 6,454 62,056 10,79

2 24 1,671 0,532 0,849 0,904 3,897 1,904 2,656 4,257 9,418

3 43 6,788 1,381 0,788 1,619 21,452 9,497 2,64 95,263 16,648

4 32 3,39 0,89 0,77 1,063 9,423 6,642 2,05 15,506 11,817

5 27 6,055 1,309 0,773 0,95 21,876 54,289 7,189 160,634 72,907

7 20 0,754 0,323 0,802 0,214 2,408 12,429 2,856 73,218 9,517

7.2 Appendix B - Models & Model Results

7.2.1 Impact of ODE Solver and Forcing Data on Model Performance

Table 7.9: Median NSE, KGE, and MSE values for the BaseERA5L and BaseEOBS model using
ERA5-Land data and E-OBS data

LamaH-CE E-OBS

Calibration Test Calibration Test

Euler RK4 Euler RK4 Euler RK4 Euler RK4

NSE 0.10 0.33 0.05 0.30 0.31 0.50 0.25 0.40
KGE 0.49 0.56 0.46 0.54 0.62 0.66 0.56 0.60
MSE 4.71 3.25 4.86 3.39 3.54 2.33 3.82 2.70
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Table 7.10: Impact of the method for the ODE solver
Training with starting learning rate of 0.01, 25 epochs for the hybrid model with the RK4
solver and 50 epochs for the hybrid model with the Euler solver.

Model BaseEOBS HybridEOBS

Solver Euler RK4 Euler RK4
ID NSE KGE NSE KGE NSE KGE NSE KGE
241 0.47 0.62 0.54 0.64 0.44 0.53 0.52 0.58
215 0.39 0.65 0.45 0.62 0.40 0.61 0.53 0.68
581 0.12 0.55 0.16 0.56 0.48 0.71 0.58 0.74
21 0.27 0.59 0.31 0.59 0.06 0.36 0.33 0.49
277 0.36 0.59 0.52 0.56 0.31 0.54 0.50 0.54
797 0.37 0.59 0.46 0.61 0.37 0.54 0.54 0.68
432 -0.12 0.49 0.13 0.58 -0.13 0.50 0.24 0.63
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