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Abstract

People counting data in offices is used in many applications like HVAC system control and space
management to increase comfort, decrease energy consumption and optimise space utilisation. In
contrast to past approaches using imaging modalities that tend to be either expensive or intrusive, we
consider single-pixel thermopile sensors for people counting. These sensors may already be deployed
as part of a smart lighting system to provide temperature data for HVAC controls.

Firstly, a statistical sensor model for thermopile temperature measurements is proposed. The proposed
people counting method enhances the CUSUM RLS algorithm to estimate temperature change caused
by people entering or leaving. We estimate mean temperature changes upon detection of an occupancy
event, and then estimate the people count using a maximum likelihood on the estimated temperature
change. Finally, PIR vacancy data is merged with the people count estimation to increase accuracy. We
obtain an average counting error of 0.11 and 0.19 for 90% of the instants respectively when considering
15 minute windows for simulated and experimental datasets.

A second aspect of the thesis considers the problem of commissioning plan detection. We leverage the
two-sided CUSUM signals to address this problem. The two-sided CUSUM scores for a pair of sensors
are used to calculate similarity measures; these features are used in a Random Forest Classifier to
detect commissioning changes of the sensor pair. Using simulated data with the thermopile signal
model, we show that the proposed method achieves a true positive rate (determining the correct layout)
of 90.2% and false positive rate of 1.3%.
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Introduction

1.1. Problem description

1.1.1. Space management

Effective space management can have a huge impact on the performance and total costs for businesses
and universities. Research has found that in some cases, up to 20% of the work spaces are effectively
used at universities[1]. In closed IT work spaces, the average vacancy is up to 65%][2]. It is therefor not
a surprise that the costs of space utilisation and real estate can be significantly cut. ‘Some companies
use real estate as a lever to improve their competitive position‘[3]. Cost savings on real estate can be
cut up to 20%[4] and for many companies, this would result in savings that run into the millions[5].

Most of the solutions to tackle this problem is converting closed ‘cubicle’ work spaces to an open
work space environment[2]. Together with smart planning, and optimising seat utilisation[6]-[8], big
improvements in space utilisation can be achieved. Not only will optimisation improve in cost saving,
when converting a closed office setting into an open office setting, collaboration between colleagues is
encouraged and different work styles can be accommodated[2].

To improve upon the existing planning optimisation, sensors are used to track and detect occupancy.
With the insight of occupancy patterns and trends, better decisions in space utilisation can be made.
Occupancy Detection and People Tracking is a widely researched field. Many solutions are incorpo-
rating image sensors[9]-[12]. These solutions achieve a high accuracy in both occupancy detection
and people tracking. The main problem with image sensors is the intrusive nature on privacy. And
with new privacy laws in certain areas, image sensors cannot be used. Recently researched are the
ultrasonic sensors[13], [14] and binary sensor networks[15], [16]. Sadly, the accuracy was found to be
limited with these systems.

With the up-rise of cheaper thermopile arrays, low pixel infrared cameras are becoming more interesting
in tracking people[17]-[22]. These sensors will increase heavily in price in relation to the amount of
pixels.
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1.1.2. Commissioning changes

Many network algorithms and systems rely on a known and static topology for an optimal function-
ality[23]. A good example is localisation using Time Difference of Arrival (TDA) methods where the
measured TDA with the known locations of the sensor can accurately localise the source. If the loca-
tions of the receivers are to change, the localisation estimation will decrease in performance. Aside
from a known topology, foreground segmentation requires a static background. When a background
changes, the segmentation of the foreground will result in a larger foreground set, which results in
greater errors.

These changes in topology or background are not uncommon to occur in open offices. New projects,
changes in group hierarchy and employee numbers have the possibility to result in a commissioning
change: the scenario where the sensor topology or the measured area of interest is changed.

Various smart building systems like lighting and HVAC (heating, ventilation and air conditioning) con-
trols and space management applications rely on data from sensor systems [24], [25], [26], [27]. For
instance, temperature data and people count estimates from thermopile sensor systems may be used
to improve user comfort by adaptively controlling HVAC systems. People counting data may also be
used in space management applications to optimise use of workspaces based on historic trends as well
as real-time information. Commissioning information in the form of the sensor plan indicating locations
of sensors in an area is critical in all these systems for proper functioning.

1.2. Scope of the research

Since image sensors are too intrusive, thermopile arrays are still too expensive and other sensor net-
works lack in accuracy, the research on this thesis will focus on tackling the problem with the utilisation
of a single-pixel thermopile sensor. Previous works have only tackled the problem with thermopile
arrays instead of a single-pixel sensor[17]-[21].

Single-pixel thermopile sensor is that it can be easily embedded in other systems such as lighting
systems. Since PIR sensors are recently being embedded in lighting systems as well, its vacancy flag
will be available for approaching a solution to the problem.

When embedding connected sensors in lighting, it becomes important to detect any commission changes
in the setup to avoid estimation errors. This research had already been conducted using a network of
PIR sensors with overlapping FoVs[28]. In this report, an implementation involving thermopile sensors
will be tested.

In short, the key contributions of the thesis will consist of the following topics:
» Constructing a statistical signal model of a single-pixel thermopile sensor.

» Detecting people enter or leave events from the thermopile sensor.

Estimate the number of people involved in this event.

Embed the PIR vacancy flags and people estimated to track the number of people.

Detect commissioning changes for sensors with overlapping FoVs

1.3. Setting of the project

This project was conducted during an Electrical Engineering master at the TU Delft. For the project, an
internship at Signify was accepted. Signify is the new company name of Philips Lighting. They are the
world leader in lighting and provide their customers with high-quality, energy-efficient lighting products,
systems and services. Signify turns light sources into points of data to connect more devices, places
and people through light, contributing to a safer, more productive and smarter world.

Signify leads in LED lighting innovation and is at the forefront of the industry’s expansion into systems
and services. The problem description and resources were provided by Signify. Some of the information
is company confidential and will not be disclosed in this report.
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1.4. Outline of the thesis

This thesis consists of 6 chapters. First, background information and the state of the art will be re-
searched in chapter 2. Before determining an approach, the signal model of the sensor needs to be
known. This will be constructed in chapter 3. After this the approach to the two problems will be
discussed in chapter 4. Results of the approaches will be discussed in chapter 5. And lastly, the
conclusions will be drawn and a discussion is opened in chapter 6 and chapter 7 respectively.






Background Information

2.1. Occupancy detection and people counting

2.1.1. Image Sensors

The problem of occupancy detection and people counting is widely researched for image sensors[9]-
[12]. Tracking a human body has already been very accurately for cameras with a low resolution and
low sampling frequency thanks to the Pfinder algorithm[29]. The algorithm is able to classify the head
and hands from various angles. The algorithm uses a combination of foreground and background
segmentation and blob finding/tracking methods.

Privacy and Legal Issues
Counting people with cameras is not a big problem anymore. The main focus in the field is tracking a
single person in large groups [30]. From single camera setups, it is becoming more interesting to track
a single person in a crowd over a multiple and non-overlapping camera network [31].

However, the use of cameras in public spaces has some privacy- and legal issues[32]. The debate
on surveillance and privacy is increasing in relevance. Due to these concerns, some areas are not
allowed to use cameras for tracking and surveillance purposes.

An approach to defeat the privacy problem is counting people in an image without tracking individual
persons. To avoid explicit use of segmentation and tracking, a Gaussian Process model was pro-
posed[9]. The algorithm extract motion parts from multiple frames of a image sensor. The features
from blobs moving in a certain direction are captured and inserted into a Gaussian Process model
which estimated the number of people. The features per motion direction are the area, perimeter,
perimeter edge orientation and perimeter-area ratio. The Gaussian model is trained with the help of a
regression of a training set. The accuracy of this approach resulted to be above 90%.

Social Issues
Guaranteeing privacy of people in the field of view of cameras using alternative algorithms does not
solve all the problems. Firstly, it is hard to proof that privacy is contained and organisations collect-
ing and processing the data have to be trusted. Secondly, there are many social effects on people’s
behaviour when installing visible cameras.

A study about the behaviour and consent of people exposed to cameras was conducted[33]. In the
study it found that people acted differently when being recorded and there were occasions where par-
ticipants showed concerns about being recorded.

Another study researched the effect of lifelogging your daily life and its legal and ethical issue[34].
The study claims that many people feel uncomfortable when getting filmed. There are even cases of
physical assault to the filmer. It is therefor safe to say that the use of cameras for the thesis’ problem
is not desired.
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2.1.2. Thermopile Arrays

Previous works of thermopile sensors have only used them in a network as an array, creating a very
low resolution thermal image[17]-[22]. The most popular method of detection people in the images is
thresholding the pixels[17]-[19]. Each blob or area of detected pixels is classified as one or more people
depending on the size or shape of the area. Results varied in the range of 80% to 90% accuracy.

Other approaches included the use of background extraction of the room temperature and the use
of a distinction map[20] or use an entropy-based machine learning classifier to detect occupancy[21].
These approaches had a slightly worse performance than the use of thresholding.

The last approach used only 4 sensors and could track a single person by exploiting the overlapping
properties of the sensors[22]. This research was more focused on tracking a single person in location
than to count the number of people. Its maximum error was about 30cm.

While thermopile sensors are decreasingly expensive, when the approach requires a 2D array, cost will
increase substantially. As previous mentioned in the previous section, creating a 2D image will cause
the same ethical problems of the image sensors.

2.1.3. Ultrasonic Sensors

An interesting approach for occupancy detection and people localisation is with the use of ultrasonic
sensors[13], [14]. The first approach focuses on the localisation of a person using a ultrasonic sensor
array. The setup is said to be energy efficient and cheap enough to embed in lighting. By analysing
the direction of arrival, a localisation of a person can be estimated.

The second approach is able to detect occupancy for zones by using distributed transmission slot syn-
chronisation. When a person moves, the measured echos are distinctive enough to detect occupancy
in zones.
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2.2. Thermopile sensor

A thermocouple generates a voltage dependent on the temperature difference between the joints[35].
The couple consists of two junctions, a cold and a hot junction. When this temperature difference
increases, the voltage increases as well. A thermopile sensor connects these thermocouples in series.
The cold junctions are placed at the thick chip substrate while the hot junction is placed over a thin
membrane. This membrane is able to absorb the IR radiation radiated by objects. Dependent on the
magnitude of the IR radiation, the membrane heats up or cools down.

When a reference temperature on one of the joints is known, the temperature measured on the other
junction can be calculated based on this voltage difference. This reference temperature needs to be
measured at the cold junction. The relation of the voltage and the temperature of the reference tem-
perature and the object temperature is given in Equation 2.1.

Vir (Ta:To) =A- (T(;} _T;) (21)
In the equation, V. stands for the voltage difference measured, T, for the reference temperature, also

known as the ambient temperature. T, stands for the average object temperature and A4 is the sensitivity
of the sensor. A figure of the functionality of a thermal couple is shown in Figure 2.1.
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Figure 2.1: Schematic of a thermocouple generating a voltage potential.
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2.3. Change point detection

In previous years, many research has been done on change point detection. A useful survey[36] gives
a nice overview of all the current state-of-the-art methods for detecting change points. The survey
splits the problem into supervised and unsupervised methods. For this thesis, we will consider the
subcategories for the unsupervised methods which are listed below:

1. Likelihood Ratio Approach: by either calculating the probability densities of both windows or by
calculating the direct ratio.

Subspace Model Approach: by finding parameter changes in a subspace model.
Probabilistic Approach: by finding the probability of a change point
Kernel Based Approach

o M w0 DN

Graph Based Approach
6. Clustering Approach

Another source for change point detection is Adaptive Filtering and Change Detection by Fredrik Gustafs-
son[37]. In the book, four types of change detection methods are explained:

1. Adaptive filtering and whiteness based change detection
2. Maximum likelihood based change detection
3. Multiple-model based change detection

4. Algebraic (parity space) change detection
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2.4. Commissioning change detection

With the uprising of loT devices and networks, ad-hoc networks become more common. Network
theory and distributed (non-centralised) algorithms are increasing in popularity. For many old systems,
a known topology is required for optimal performance of the network algorithms. For example, every
network that exploits the knowledge of overlapping sensor measurements are heavily dependent on a
known topology. Localisation algorithms often require topology and geological prior knowledge as well
for localising and tracking object. For topology changes, re-calibration is required.

Another important method still used today is foreground extraction or background segmentation. Many
(image) sensor first filter out background noise to collect relevant data. An example of these methods
are the monitoring of certain objects[38], [39]. When the background changes, the algorithm needs to
re-calibrate.

Often these re-calibration need manual interference from technical employees. The automatic re-
adjustment or re-calibration will reduce the work required for the applications to perform optimally.
An automatic detection of a commissioning change will aid in the initialisation of such an event. We will
consider 2 different approaches to the detection of a commissioning change: (i) traditional algorithms
and (ii) machine learning approaches.

Similarity Features The most common and traditional approach for detecting commissioning changes
is by the property of similarity measures[40]-[45]. Most of these approaches are constructing a sim-
ilarity measure for two 2D images of large landmarks. Many of these similarity features incorporate
Shannon entropy or correlation and apply these values to a threshold for decision making. One fresh
paper proposed a semi-supervised SVM measurement for classification.

Machine Learning Tackling the problem of change detection or commissioning change detection
with the help of machine learning has been researched mainly for image applications[46]-[49]. While
time series applications are less common[50], [51]. The most helpful resource was done using a binary
network of which binary similarity features were used to use in a Random Forest Classifier[51]. Of all
the used features, similarity features, correlations and differences between the images have been used
to find a commissioning change.






Statistical Model

There has not been much research on the single-pixel thermopile sensor and its possibilities in different
applications. The majority of the research in occupancy detection and people counting was with a setup
of multiple thermopile sensors to mimic an infrared image[17]-[22]. In this chapter, we will present a
signal model for a single-pixel thermopile sensor for people counting applications in an office setting.
To our knowledge, this has not been done yet and will help in the approach to solve the people count
problem.

The statistical model will be deducted from real measurements observations for multiple office sce-
narios. All the relevant features observed will be incorporated into the model. A balance between
complexity and simplicity is very important. A more complex model could include more features and
possible represent the data more accurately. However, deducting an optimal solution for a complex
model is not always possible. Some features might not be relevant for finding the solution and thus
simplicity might be preferred.

We’ve observed that the signal is constructed of three components:
1. the signal in vacancy
2. the signal during a transition
3. the attenuation model due to the sensor’s Field of View (FoV)

In this chapter we will first gather information based on the sensor’s datasheet in section 3.1. In section
3.2, we will construct a model of the signal in vacancy and add the transitional model in section 3.3.
Finally, the resulting model is presented in section 3.4 and a framework for simulating the data is
explained in section 3.5.

In Figure 3.1, the object temperature signal from a single-pixel thermopile sensor mounted at the ceiling
is shown for varying occupancy levels. The temperature can be observed to gradually increase in the
first hour, even under constant occupancy. This is due to the room temperature being controlled by
the HVAC. It can also be observed that the mean object temperature under vacancy is not constant
over time and depends on factors like HVAC control and occupancy levels prior to occupancy (e.g., the
temperature decreases gradually when people count changes from 2 to 0 around 14:40).

11
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Figure 3.1: Example of an experimental measurement taken during working hours.

3.1. Sensor datasheet

The datasheet[52] of the sensor is more focused on configuration and communication methods and
does not go much into details with respect to the generation of the signal or the internal signal process-

ing.

The benefits of the sensor is its small size and low cost. The datasheet claims to be easy integratable
with the help of a SMBus communication protocol. This protocol is similar to the I12C protocol, designed
by Philips Semiconductors. A high accuracy of 0.5°C and a measurement resolution of 0.02°C is
guaranteed for normal operational temperatures between 0°C and 50°C. The module also offers a
sleep mode to reduce power usage and the sensor claims to have an in-built digital signal processing
block to reduce noise and guarantee an accurate measurement.

The sensor measures two components:
+ the average object temperature in the sensor’s FoV
 the ambient temperature of the sensor

Of interest in the datasheet is the usage of the digital signal processing (DSP) block and the behaviour
of the field of view of the sensor.

3.1.1. DSP block

The sensor uses a 17-bit Analog to Digital Converter which is directly connected to a powerful DSP
unit. The sensor collects the raw data of an IR sensor. This signal is amplified by a chopper amplifier
with low noise, low offset settings and dynamic attenuation which can be configured by the user. The
signal is then converted to a digital signal with the help of a Sigma Delta modulator. The output of this
ADC is connected to the input of the DSP unit. The block diagram of the DSP block is shown in Figure
3.2.

The DSP unit consists of two filters: (i) a FIR filter and (ii) an IIR filter which are both configurable.
These configurations can reduce the bandwidth of the signal to get a desired noise performance but
will increase the refresh rate as well. For this project, the factory settings will be used provided by
the manufacturer. However it was shown that the noise level could be reduced by a large factor while
keeping an acceptable refresh rate.
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Figure 3.2: The digital signal processing block of the sensor from the datasheet[52].

The output of the IIR filter is then stored in an EEPROM register. This result can be fetched by a Master
device using the SMBus protocol.

The last piece of information given by the datasheet is the configurable settings of this attenuation, FIR
filter and IIR filter. All of the configurations have 8 options which can be selected by 3 bits each. This
configuration can be shown in Table 3.1.

bit1 bit2 bit3 | gain | FIR | lIR

0 0 0 1 8 a1=1, b1=0

0 0 1 3 16 a1=0.8, b1=0.2

0 1 0 6 32 a1=0.666, b1=0.333
0 1 1 12.5 | 64 a1=0.571, b1=0.428
1 0 0 25 128 | a1=0.5, b1=0.5

1 0 1 50 256 | a1=0.25, b1=0.75

1 1 0 100 | 512 | a1=0.1666, b1=0.833
1 1 1 100 | 1024 | a1=0.125, b1=0.875

Table 3.1: Configuration of the DSP Block.
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3.1.2. Field of view

Another important feature mentioned in the datasheet is the angle of incidence attenuation for the
computation of the average object temperature. Assuming the sensor is installed on a ceiling and
directed downwards. This angle is defined between the horizontal line from the sensor and the line from
the object towards the sensor. The attenuation for the given angle was measured by the manufacturer
and is shown in Figure 3.3.

1.0 4

0.8 A

0.6 -

0.4 A

signal attenuation

0.2 A

00 T T T T T
-90 -60 -30 0 30 60 90
angle[°]

Figure 3.3: Measured attenuation per angle according to the datasheet.

For the graph, the measurements were done in two directions and is notated from -90° to 90°. From
Figure 3.3, we see that the -3dB attenuation threshold is found at +- 45°. Concluding that the sensor
has a effective field of view of 45° in total. It can also be seen that the x-axis runs from -90° to 90°
degrees to display symmetry in the signal attenuation based on the angle. This means we only require
one angle parameter to calculate the attenuation from 0° to 90°.

Instead of using the measured attenuation to incorporate in the model, a functional approach is con-
structed to decrease the complexity of the model while still mimicking the dynamics of this feature. A
good function to model this -3dB threshold and a slope approaching unity which is also symmetrical
around 0° would be the raised cosine function. Which is defined in Equation 3.1.

1, 1< £
_ )1 T 1-B 1-B 148
f@ =131 +cos (B ir1 - E])|. HE<ir=if (3.1)
0, otherwise

The raised cosine function has two parameters. 1/2T denotes the -3db intersection which can naturally
set to be 45. The g parameter affects the slope magnitude at this intersection. A lower g will result in
a steeper slope. The effect of this parameter is plotted in Figure 3.4.

We fit the B parameter of the raised cosine function to the measured data of the manufacturer. We
specifically fit around the -3dB threshold to mimic this slope at 45°. A value of 8 = 0.4 is found to
represent this slope very well as can be found in Figure 3.5. We only use the (3.1) from 0° to 90° since
we assume symmetry in the Z-axis.
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3.2. Vacancy model

During periods of vacancy, the temperature variations are typically slow and happen due to factors like
daylight changes and HVAC control. We model the thermopile temperature signal over vacancy by a
slowly varying value Ty[n] with an additive noise component v[n],

x[n] = Ty[n] + v[n]. (3.2)

21.2

21.0 A

20.8 -

20.6

temperature [ ° C]

20.4

20-2 T T T T T T T
20:00 21:01 22:02 23:04 00:05 01:07 02:08 03:09

timestamp

Figure 3.6: Example of vacancy data for 3 sensors measured during night.

In Figure 3.6, we show object temperature data from three thermopile sensors over a 7 hour period
under vacancy. The gradual temperature rise is on account of the HVAC system being disabled at night.
The measured object temperature was tested for normality by testing the null hypothesis if the sample
given comes from a normal distribution. The test combines the skew and kurtosis to test this property
based on the D’Agostino-Pearson test[53], [54]. The normality test returns the probability that a null
hypothesis can be rejected. We choose this decision for a threshold of 10~3. When the null hypothesis
rejection probability is lower than this threshold, a normal distribution can be assumed. In Figure 3.7,
we display the results of this normality test. We observed that v[n] can be modelled as an additive
white Gaussian noise (AWGN) component when considering a short duration of time. For a window of
9000 samples (15 min), 97% of the windows could be considered normally distributed.

Due to the low resolution of the sensor, only a few values will be measured in a timed window. When
there are only a few distinct values measured, the normality test will fail while the noise could still be
normal. To increase the resolution, the samples will be smoothed over a very short window allowing
intermediate values between the samples. After smoothing, the normality test is done over a dataset
with vacancy.
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Figure 3.7: Normality test for 3 sensors. For samples below the threshold, a normal distribution can be assumed for that window.

3.3. Transitional model

The presence of one or more people produces a temperature shift in the object temperature of the
thermopile sensor. The shift depends on the number of people, their locations and secondary aspects
like orientation. Furthermore, the shift in temperature transitions faster during entry of people and
slower when people leave, due to occupants having heated the environment and leaving a thermal
footprint that fades with time.

The magnitude of this mean change can have a few explanations. First thing that is apparent is the
angle of incidence discussed in section 3.1. Based on the location of the person, the effect that person
has can be limited by the lower attenuation caused by the angle of incidence. Another big impact on
this magnitude is the number of people involved. However, from observations, the magnitude change
of multiple people will not be constant for the same number of people. We expect that the previous
number of people and new number of people is explicable for this magnitude shift. During the approach
of the problem, we will go into more detail on this expectation.

When observing the transitions from a closer perspective, a small smooth transition can be found. The
transitional speed is different for an entry and leave event. This can be explained by the heat that is
introduced and left behind respectively. When a person enters, the only heat to be introduced is from
that person. Very slowly over time, it will heat up its environment. When leaving, a person will leave a
lot of heat behind on the workspace and seat. In general, this cooling will cause for a longer transition,
since the heated parts only get exposed during a leave event.

Zooming into a transition at the samples, we see a similar characterisation of an exponential function
e~ @". This can be explained by the attenuation from the angle of incidence. The attenuation will
increase when entering the FoV and it will decrease when leaving. The small difference per sample for
later samples can be explained due to the heating and cooling events.

Construction the transitional model results in:
di[n] = AT; (1 — e~ ) u[n — n]. (3.3)

In this equation, d;[n] is the change function for change event i, AT; is the total temperature change over
the full transition. (1 — e~%(®~")) is the exponential function of the change which approaches AT; over
time with a transitional speed parameter a. For large «a, the transition is quicker. The change function
is relevant at a change point n —n; at which the function is initialised by a step function u[n —n;].
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3.4. Resulting model

Putting together the earlier signal components, we can now write the thermopile signal model for K,,,
events followed by initial vacancy as

Km Ki

x[n] = Toln] + vin] + )" > f(6;)diln]. (3.4)

i=1j=1

In (3.4), till time sample n4, there is vacancy and the temperature at an initial temperature T, with AWGN
v[n]. At time sample n;, we consider K; occupants with the j-th occupant at angle 6;; with respect to
the sensor. At event i, there is a temperature shift AT; with a transition speed «;.

A simulated example of the dataset using the model in (3.4) with 10 occupancy events is shown in
Figure 3.8.

22 4 4 —— temperature signal Rkl -4
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timestamp

Figure 3.8: Example of a simulated dataset over a day.
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3.5. Simulations

Not only can we find a good approach for the solution of the problem with this model, but we can
also create many simulation based on the given parameters. A performance test per parameter can be
achieved by exhaustively iterating over the range of this given parameter. By creating many simulations
for different parameter values, the algorithm can be tested and sensitivities to certain parameters can
be found.

The first thing to simulate is the binary occupancy per workspace. An important trend is that the first
activity can occur from 07:00 and will last until 19:00. There should be vacancy outside these times-
tamps. Each workspace has an angle of incidence with respect to the sensor. The easiest way to
simulate the activity of a workspace is to have an even number of events per workspace.

The initialisation of the signal will be a constant with AWGN. Per workspace, the transitions will modify
the initial signal. Do this for every event and every workspace will result in the final simulated signal.
The simulation will be stored together with the ground truth which is created by summing all the ground
truths of the individual workspaces.

For the simulations, a standard and physical setup will only be considered for benchmark where the
parameters will closely resemble the measurements. When performing an exhaustive performance
test, these parameters will be iterated through a certain range uniformly. An example of the simulation
code is given in Algorithm 1.

Data: N, M, T,

1 events « generateEvents(N, M)
2 x «random(N) + T,

3 for event in events do

cp « event.cp

g(0;) « event.g

d; < event.d

for g in g(6;) do
| xlep ]« x[ep ]+ g - d;
9 end

10 end

o N o o b

Result: x

Algorithm 1: Simulation dataset generation pseudo-code.






Approach and Implementation

With the statistical model presented in chapter 3, we can more easily approach the solution for the
two problems: (i) people counting using a single sensor and (ii) detecting a commissioning change by
classifying the sensor layout.

The most important feature found in the model is the transitional model during events. Our main focus
will be to emphasise our approach on this feature to increase the performance. In section 4.1, we
will approach the first problem and propose an implementation. Our approach for problem (ii) will be
discussed in section 4.2.

4.1. People counting

The approach to the people count problem will be divided into a few sections. Firstly, spike anoma-
lies from the sensor requires filtering in subsection 4.1.1. A quick and simple implementation of an
interquartile filter will be discussed for this. Secondly, a change point detection algorithm is discussed
in section 4.1.2. At the change point, its magnitude needs to be estimated in section 4.1.3. This change
magnitude is converted into a people count. Eventually, the merging of the PIR sensor will be explained
in section 4.1.4, where the vacancy flags of the PIR sensor is used to more accurately track the number
of people. A design of the full system can be seen in Figure 4.1. For each function block, a subsection
is created. The arrows depict data flow at the speed of the sampling rate of 10Hz.

Thermopile 4‘
Pre- Vacancy > People
filtering Estimation Count
People
Change
; —> Count <«
Detection Estimation

Figure 4.1: System design for people counting using a single-pixel thermopile sensor and a PIR sensor.
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4.1.1. Pre-filtering

From observations of the sensor measurements, anomaly spikes were detected on occasion. The
spikes consisted of a single sample being much greater than the noise. There are many options of
filtering a spike. Sadly the spikes are not always big or small enough to use a static threshold filter.
The spikes are often too big to be filtered through a moving average filter since it would affect the
filtered signal too much. A good approach for filtering these anomalies are through the means of z-
score filtering[55], also known as the standard score which is the number of standard deviations a value
is away from the mean given a sample set. For the windowed set, the mean and standard deviation is
calculated. The calculation of the z-score of a single sample given the sample set is given as:

x[n] — E [x]

JVAR[x]

When the z-score exceeds a certain threshold, we would identify it as an anomaly. To keep the sampling
intervals uniform, instead of dropping the sample, the mean value is given to that sample. The resulting
output of the filter becomes:

z[n] = @.1)

] = {x[n], z[n] <3 4.2)

E[an], z[n] >3

In this instance, x,,, is the selected window surrounding sample n. An example of the functionality of
this filtering can be seen in Figure 4.2.

22.3 —— data

22.2

value x[n]

N N N
= N N
© o =
! !

21.8 1
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—— Z-score
X outliers

z-score z[n]
o

0 1000 2000 3000 4000 5000
sample [n]

Figure 4.2: Example of z-score filtering of anomalies and spikes.
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4.1.2. Change detection

After filtering the anomalies, change points should be detected. There are many change point detection
algorithms as found in chapter 2. The goal is to find an algorithm to exploit its properties and adapt
it to accurately estimate the magnitude of the change and eventually estimate the number of people
involved in the event. The chosen algorithm for this algorithm is the well known CUSUM algorithm.
While many of the applications of the algorithm are used in the medical field of work. The CUSUM
algorithm can accurately detect mean changes in data.

There are many reasons for preferring the CUSUM algorithm. Benefits include the low complexity of the
algorithm and the online nature to detect change points. Another property of the CUSUM, the creation
of a two-sided score signal will be useful for the problem of commission change detection as will be
discussed later. In section 4.1.3, a method is proposed to exploit the score properties of the CUSUM
to directly and accurately estimate the magnitude of the change.

There are many versions of the CUSUM algorithm. The algorithm with the least amount of parameter
tuning and the one which is independent on initial constant value is the CUSUM RLS proposed by
Gustaffson[37]. This algorithm is shown in Algorithm 2.

Data: y, 1,v, h
1 rls « y[0]
2e<0
39p<0
4 gn<0
5 ids « [ ]
6 fori < 1to N do
7 rls « Arls + (1 — A)y[i]
8 e «rls —y[i]
9 gp<—max[0, gp+e—v]

10 gm < min[0, g, +e +v]

" if g, > h or g, < —h then

12 rls « y[i]
13 gp <0
14 Im < 0
15 ids.append (i)
16 end
17 end
Result: ids

Algorithm 2: Traditional CUSUM RLS algorithm

The algorithm introduces three parameters available for tuning: (i) 4, the forgetting factor of the RLS
estimate, (ii) v, the drift for filtering noise spikes and (iii) h the detection threshold. For each iteration,
the following variables are updated:

T[n] = Af‘[n — 1]+ (1 - Dy[n] (4.3)
e[n] = y[n] - T[n] (4.4)
gpl[n] = max [0, gpln—1] +¢€[n] — v] (4.5)
gmln] = min [0, g [n — 1] + €[n] + v] (4.6)

When the scores g, [n] and g, [n] is larger than h or smaller than —h respectively, a change point would
be detected. The algorithm is displayed in Figure 4.3 on the bottom left side where the data (top left)
and the error (top right) is plotted. As can be observed in the score, peaks are generated during a
transition.
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Figure 4.3: Comparison of the traditional CUSUM algorithm versus the modified CUSUM algorithm. top left: data with RLS
estimation. top right: error per sample. bottom left: traditional CUSUM score. bottom right: modified CUSUM score.

The three parameters need tweaking. For the forgetting factor, the parameter is bounded by 0 < 1 < 1.
When approaching one, the estimation is very accurate and removes most of the noise. During a
transition, the RLS estimation will converge very slow to the new magnitude when approaching one.
For the forgetting factor we thus use 1 = 0.97. Gustaffson[37] proposes the drift to be fitted such that
at least half of the score values equals to zero. We find this point when we set the drift equal to the
deviation of the noise in vacancy. Lastly the threshold will be set to h = 0.8 to include all subtle changes
as well.
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4.1.3. People estimation

Mean change estimation
Given the change points, the objective in this step is to estimate the magnitude of the change. Originally,
the CUSUM algorithm has not been used to directly calculate the mean change magnitude. In this part,
we will propose a method to exploit the score of the CUSUM and the RLS estimation to directly calculate
the magnitude of the change.

Due to the lag the RLS introduces, there is a small latency for detecting a change. In the notes on
scientific computing for bio-mechanics and motor control[56], it was suggested that the start of the
change point can be found in the score of the CUSUM. This start is found at the last zero in the score
before the change point detection. At this point, we would find the initial temperature calculated by the
RLS estimation.

To find the end of a transition we would naturally be looking for the first next zero in the score. Sadly,
the original algorithm resets the score upon detecting a change point. If this reset mechanism would be
dropped, the score would be increasing during the rest of the transition. At the end of the transition, the
score would approach zero again when the RLS settles to the new constant value since the difference
is smaller than the drift. When the score returns to zero, we can safely assume that this RLS estima-
tion has settled near the new constant value again. We will use this RLS value as the new constant
value.

Together with the RLS value capture before the change point, we simply take the difference to imme-
diately receive the accurate mean change. This temperature estimate is written as:

AT = T[n,] — T[n]. 4.7)

where n; and n,. are found with:
n; =i, when g[i] = 0,g[j] # 0 fori <j <mn,, (4.8)
n,. =i, when g[i] =0, g[j] # 0forn, <j <i. (4.9)

with g the selected score which exceeds the threshold:

_ 9 if gp[ny]l > h
Im, if gm[”p] <-h
Here, n; and n, denote the start and end respectively of the transition and the settling point of the RLS

estimate to the new temperature level and n,, is the sample at detection.g is either g,, or g,, depending
on which of the scores exceeded the threshold.

(4.10)

In short, by dropping the reset mechanism in the original CUSUM algorithm, the differences of the
RLS estimations at the first zero before and after the change point detection, we obtain an accurate
estimation of the change magnitude. The new and proposed algorithm is shown in Listing 3. The effect
can be seen in Figure 4.3 on the bottom right.

In Figure 4.4, we can see a signal with mean changes on the top. The bottom left shows the CUSUM
signal. The algorithm detects change points and their magnitudes. On the bottom right, we see the
true mean in green and estimated mean based on the mean change estimates in orange.
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Figure 4.4: Example of constant mean estimation by estimating the mean change per change point. top: data with RLS estima-
tion. bottom left: CUSUM score and detected change point. bottom right: true constant mean and estimated mean.

People count estimation
The temperature differential in (4.7) is used to estimate the people count. This temperature change
is dependent on various factors: the number of people leaving or entering the room, the position at
which the person(s) are located in the FoV of the sensor, and the previous number of people in the
FoV.

For every possible transition for a changing people count, we measure the temperature difference
observed during that transition. From these measurements, a probability distribution of the temperature
differential under various people count states is estimated. In Figure 4.5, we show the kernel density
estimate with a Gaussian kernel for a sensor over an area with two people. The three people count
states (p = 0, p = 1 and p = 2) have each two possible transitions for which the estimated probability
distributions using an experimental dataset are shown. In general, for an area covered by a sensor
with capacity of C people, we would have C states and a total of C(C — 1) probability distributions. The
distributions can be built using a combination of experimental data and simulated data using the signal
model in (3.4).

The people count estimation algorithm works as follows. For the current estimated people count, we
consider the corresponding distributions. When a change is detected, for temperature differential AT,
compute the likelihood probabilities L(c|p[n — 1], AT). We then estimate the number of people ¢[n]
corresponding to the temperature change by choosing the highest likelihood and update the people
count,

¢[n] = arg, max L(c|p[n — 1],AT),

pln] = p[n — 1] +¢[n].

This method is also known as maximum likelihood ratio testing.

@.11)
4.12)
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Figure 4.5: Kernel density estimation of the base temperature change for a given number of people and number of people

change.
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Data: y, 1, v, h

rls « y
9p,gm.€ < 0
Zp, Zm < 0
Sp»Sm < 0
ids « []
dts <[]

fori < 1to N do

rls « Arls + (1 — A)y[i]

e < ylil—rls

9p < gpte—v

Im < gm te+v

if g, <0 then

if s, = 1 then
ids.append(z,)
dts.append(ris[i] —ris[z,])
sp <0

end

Zy < 1

gp <0

end

if g, > 0 then

if s, = 1 then
ids.append(z,,)
dts.append(ris[i] — ris[zy])
Sm< 0

end

Zm <L

9m <0

end

if g, > h then
| spe1
end
if g, < —h then
| Ssme1
end

end
Result: ids, dts

Algorithm 3: Modified CUSUM RLS algorithm.
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4.1.4. Vacancy estimation

One of the challenges with people counting with the thermopile sensor is slow variation of temperature
under vacancy. Furthermore, the dependence of mean temperature differential on human orientation
characteristics may lead to errors in people count estimation, and thus possible error propagation. On
the other hand, the PIR sensor is typically configured to have low false alarms (at the expense of high
missed detections) [57], i.e., it can detect vacancy reliably. Instead of using the raw signal of a typical
PIR sensor, the processed signal that controls lighting with built-in delay will be used. We adopt the
following decision rule to combine the people count estimate of the thermopile sensor with the PIR
sensor,

pln—1 ¢ , oth i
Bn] = ®@[n — 1] + ¢[nDrpir[n] (3 erwise (4.13)
0, pl[n—1]<0.1
where
1, occupancy
= 414
p1r[N] {r, vacancy ( )

with 0 < r < 1 a decay factor when vacancy is determined, and where ¢ is the estimated people count
from the temperature differential. The result of (4.13) will be that the people count is gradually set to 0
when the processed PIR signal determines vacancy. Since the people count estimate with the decay
factor will never be zero, we force it to zero when small enough as indicated in the second condition in
(4.13).

An example of the functionality of the merging can be seen in Figure 4.6.
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Figure 4.6: Example of the people count estimation with and without the PIR sensor.
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4.2. Commissioning change detection

Given data from various thermopile sensors from an indoor space, we consider a 2-class random forest
classifier to determine which of the sensor plans exists in that space. We first describe the signal pre-
processing and then describe the signal features used in the random forest classifier.

A simple and intuitive approach to a binary classification problem when a large dataset can be provided
is with the means of machine learning . During the time of the project, not many data could be collected
with respect to commissioning change data. However, with the help of the signal model, the scenarios
and classifications can be simulated.

In this section, we will first go over the physical setup and the workflow in subsection 4.2.1. This will
give a good overview of the two classifications and an example of the effect per sensor.

When designing a solution for the problem there are two important factors: (i) the features that will play
an important role in detecting the commissioning change and (ii) the machine learning method to detect
the change. In subsection 4.2.2, we will display two approaches for finding the features. In subsection
4.2.3, we will propose the final implementation by choosing a machine learning method.

4.2.1. Setup

We consider a sensor system with thermopile sensors co-located in luminaires. Sensor and lighting
plans may respectively be designed such that there are no blind areas in the sensor coverage region
and the illumination from the luminaires is uniform. We shall use a simple illustrative example wherein
there are two possible sensor plans, with four sensors in two rows of sensors shown in Figure 4.7 and
Figure 4.8. We consider two situations for commissioning detection. One, wherein in an area sensors
are situated as per one plan and then moved to a different location as per another design plan. Two,
wherein in different areas of a building, sensors are situated according to one of the two sensor plans.
The problem in either case is to determine which commissioning exists in an area.

In the first sensor plan shown in Figure 4.7, sensors 1 and 2 have a field of view that covers five
workspaces labelled 1,2, 3,4and 7, and 1, 2, 3, 4 and 5 respectively. It can be expected that occupancy
over workspaces 1, 2, 3 or 4 would result in similar temperature measurements at thermopile sensors
1 and 2. In the second sensor plan shown in Figure 4.8, sensors 2" and 4’ are displaced locations
compared to sensors 2 and 4 in the previous plan. Sensor 2’ has a FoV that covers five workspaces
labelled 2, 5, 6, 7 and 8. In this sensor plan, the measurements of sensors 1 and 2" are influenced by
quite different occupancy patterns, given their FoV covers quite distinct workspaces.

L 2 L 2
1|2 ?6 9 10 13,14/ )
3 4 7 8 1 12 15 16| )
L L 2

Figure 4.7: Sensor commissioning of an area with 4 sensors covering 12 workspaces. Classification 0
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Figure 4.8: Sensor commissioning where the locations of sensors 2 and 4 are displaced. Classification 1

4.2.2. Features

In order to effectively utilise a machine learning approach, the data will be pre-processed. By aggre-
gating the data into a few relevant features, training time and number of required training data will be
significantly reduced. This subsection is divided in three paragraphs: (i) the introduction of the CUSUM
control chart, (ii) the use of baseline features and (iii) the proposed feature set.

CUSUM RLS processing
In a subsection 4.1.3, a CUSUM algorithm was used to detect events and estimate the magnitude of
these changes to track the number of people. The distinct features in the signal model becomes easier
to estimate when incorporating this CUSUM algorithm. The CUSUM algorithm will result in two signals,
one for negative and positive changes.

The generation of two signals doubles the number of features for the random forest. Adding, the enter
and leave events are separated. From the observations, we know that the leave events are more subtle
and more difficult to detect. The subtle leave events wont be overshadowed by the enter events.

The two-sided score of the CUSUM also has two built-in filters: (i) the RLS estimation used to calculate
the sample error and (ii) the subtraction of the drift suppressing the noise. This way, correlation between
the signals are more accurate and less spoiled by the noise.

All these properties of the CUSUM control chart have the potential to increase the machine learning
problem solution by a surprisingly large margin. It is therefor interesting to compare the raw signal to
the two-sided CUSUM signal when designing the features and random forest.

It is therefore that we have chosen to test two different kind of features: (i) the most generic features
based on common signal statistics and (ii) features that are instinctively relevant to solving the prob-
lem.
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Baseline features
It is common to use statistical features to characterise a signal by considering measures of central
tendency, variability, shape and impurity, by considering features like the mean, variance, minimum
value, maximum value, skewness, kurtosis and entropy [58], respectively given by:

1
ba= Z afn] (4.15)

1
ot =+ ) (aln] - w? (4.16)
Amin = mina (4.17)
Amax = Maxa (4.18)
Skew[a] = %Z(a[n] — w3 /a° (4.19)
Kurt[a] = %Z(a[n] —w)*/ot —3 (4.20)
H(@ = = ) p(4)-logp(4) (4.21)

Given signals a and b from two sensors, we use the difference of features computed according to
(4.15-4.21) and use this feature in the random forest classifier.

Proposed features
We employ different features based on similarity/distance between two signals [59]. Given two signals
a and b, the first feature is the Pearson correlation coefficient,

E[(a—ua)(b — up)]
0q0p .

y(a,b) = (4.22)

The other features are based on spatial distance between signals. These are respectively the City
block, Cosine, Euclidean, and the Jensen-Shannon, given by

deiey (@ b) = ) |aln] = binl], (4.23)
deosi(@,b) = 1= (@~ B)/(lal 2 IB]12), (4.24)
dever(@ D) = lla = bl (4.25)
1 w
Qjens(@,b) = 5 )" D(AylIMy) + D(BylIM,) (4.26)
w=1
where )
_ log P
D(AIIB) = ) p(4) log _ s (4.27)

in (4.26) is the Kullback-Leibler divergence and M,, is the point-wise average of 4,, and B,,. The Jensen-
Shannon divergence is calculated for multiple windows to limit the number of samples per calculation.
Features (4.22-4.26) are used in the random forest.
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4.2.3. Random Forest

A random forest classifier is a collection of decision trees which all make a separate classification
decision based on the input features [60]. The final class is then determined by majority voting within
the classifier. There are two key parameters - number of trees and their depth, in the random forest
classifier. A visual representation of a Random Forest Classifier can be seen in Figure 4.9.

i INPUT;
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Figure 4.9: Representation of the functionality of a random forest.






Evaluation

5.1. Error statistics

5.1.1. People counting

We evaluate the proposed method through exhaustive simulations using the signal model in (3.4) and
using experimental data. Influence of various model parameters on the performance of the method
is evaluated in in section 5.2. The experimental evaluation is done in a cell office/meeting room en-
vironment in section 5.3 and characterises the performance of the method in a realistic indoor office
environment.

Consider the error over a window of M samples,

€xj =Pij —Drjp J =1, M. (5.1)

We consider an error metric by discarding a portion of the errors, specifically the largest and smallest
errors. This choice is driven by application considerations - small latencies or errors do not matter (e.qg.
a workspace where a user is away for a few minutes’ break need not be considered vacant). Define
the trimmed average counting error as

1 1-8)M
M) _ .
€k = (1-286)M jZM |6k[1]| (5.2)

where €;) is the ordered sequence of error terms ¢, ; within the k-th window. The average counting
error (ACE) is then given by

K
1
ACE(M) = - Z e (5.3)
k=1

For M = 1, ACE(1) is simply the point-wise counting error. For other values of M, (5.3) provides an
average error with the largest and smallest § fraction of values removed; in the performance evaluation
to follow, we choose § = 0.1. For instance, ACE(600) gives the average counting error for windows of
duration 1 minute ignoring a few errors within this window. Such a performance metric better captures
requirements for space management applications where a people counting value needs to be delivered
every few minutes.

35
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5.1.2. Commissioning change detection

In order to evaluate the performance of the proposed approach, we consider a commissioning change
scenario wherein the commissioning plan changes from the one depicted in Figure 4.7 to Figure 4.8.
For this commissioning plan detection scenario, we shall use the true positive rate (TPR) - ratio of the
number of detected plan changes to the number of actual plan changes, and false positive rate (FPR)
- ratio of the number of detected plan changes to the total number of no plan changes, as performance
metrics.

5.2. People count simulations

We use the signal model in (3.4) under different occupancy patterns to generate simulated data to
evaluate the impact of various model parameters on performance. Three parameters are of interest:
(i) the base temperature, f(6;;)AT;, which depends on angle of object with respect to sensor, user
orientation and the sensor height, (ii) the transition speed, «a, of an event, and (iii) sensor noise level,
under normality assumption.

The distribution of the base temperature change f(6;;)AT; values are used to characterise the distribu-
tions based on which likelihood probabilities are computed and people count estimation done as per
(4.11). In Figure 5.1, we see the performance based on this temperature change. The example is given
for a zero to one transition event with varying values of base temperature change. If the base temper-
ature change increase is too small, then it is difficult to detect an increase in people count leading to
possible underestimation, and if the base temperature change is too large then an overestimation in
people count is likely to occur. We thus observe that ACE first decreases with the base temperature
change and then again increases.
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Figure 5.1: ACE vs base temperature change.

In Figure 5.2, we evaluate ACE over a range of transition speed, a, values. We see that ACE reduces
for higher values of a. The transition speed determines how fast the temperature level increases or
decreases under an occupancy event. A higher value of transition speed indicates that the temperature
change under an occupancy event is faster. The transition speed affects the size of peaks in the score
of CUSUM RLS processing. For slower transitions, the RLS has a smaller error with the current sample,
resulting in smaller peaks. It was found that the performance for slower transitions could be increased
by increasing the forgetting factor. Another affect found when dealing with slower transitions was the
increase in underestimating the mean temperature change since the score could prematurely converge
to zero.
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Figure 5.2: ACE vs transition speed.

transitional speed

The noise levels which were encountered from real sensor data measurements were found to have
minimal effect on the performance of the algorithm as can be seen in Figure 5.3. The ACE is lower for
higher values of M; errors for M = 1 are largely due to the inherent latency of the algorithm.

0.020

0.015 A

0.010 4 .oevs+

ACE(M)

0.005 ~

0.000 A

T aasw

*PzragetranE

Figure 5.3: ACE vs noise level.
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People counting estimation results of the example simulation in Figure 3.8 for a single day is shown in

Figure Figure 5.4.

Lastly, we show the cumulative distribution function (cdf) of ACE using simulated data in Figure 5.5.
The range for the transition speed is used between 0.07 and 0.1 and the range of the base temperature
change is between 0.1 and 0.15. The noise level was chosen to be 0.05. From Figure 5.5, we see that
with probability 0.9, ACE(1) = 0.23, ACE(600) = 0.19 and ACE(9000) = 0.11.
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5.3. People count experiments

Experiments were conducted in a room emulating a cell office/meeting room environment, with the
setup shown in Figure 5.6. There were 4 combi-sensors at the ceiling at a height of 3.2 meter from the
floor. There were 4 workspaces within the FoV of the sensors.

During measurements, occupancy events were recorded manually each day and served as the ground
truth. Measurements were also collected overnight to collect sufficient data under vacancy conditions.
Data collection was done over three weeks, with diverse people count patterns. At maximum capacity,
4 people were present in the room.

' < “ |

.

——

—

Figure 5.6: Experimental setup of indoor space with four workspaces, with a zoomed view of the sensor setup at the ceiling.

Results of these experiments are shown in Figure 5.7. From this figure, we see that with probabil-
ity 0.9, ACE(1) = 0.28, ACE(600) = 0.25, and ACE(9000) = 0.19. When increasing the window, the
performance improves due to instantaneous errors being removed as well as temporal filtering.

An example of results from a dataset over a day is shown in Figure 5.8. The example shows a good
estimation of the number of people and also depicts situations where the algorithm results in errors.
As we can see, short events like getting coffee and small bathroom breaks are not affected by the
algorithm. At the end, we do see an overestimation of such a short event.
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5.4. Commissioning change simulations

We consider the setup shown in Figure 4.8 with occupancy generated over workspaces 1-8 over 10000
days, and a working time between 07:00 and 19:00. Sensor data was generated for sensors 1, 2 and
2' according to the model in (3.4), with a sampling frequency of 10 Hz. The noise was assumed to be
AWGN with zero mean and a standard deviation of 0.04.

The attenuation due to sensor FoV is determined based on physical locations of user workspaces with
respect to the sensors. Values for the transition speed a were chosen uniformly between 0.06 and 0.1
and for effective temperature change according to a normal distribution with mean 0.12 and standard
deviation of 0.015. These values were determined based on experimental data collection. We use
a simple occupancy model to emulate workspace occupancy over a day by generating a number of
enter/leave events and the duration between events was chosen to be at least 5 minutes. The reader
is referred to [61] for occupancy modelling in office buildings.

5.4.1. Random forest classifier parameters

We start by analysing the number of trees used in the Random Forest. In Figure 5.9, we see that the
two curves start to converge after about 20 trees. From this point, the training data is perfectly fitted
and adding more trees does not improve the performance of the test data. Since we have a binary
classification and only 4 features selected. The required number of trees was not expected to be large.
We set the number of trees to be 20.
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Figure 5.9: Response of the accuracy on the test and training data based on the number of trees in the Random Forest.
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The second parameter to be tested is the maximum nodes per tree. In Figure 5.10, we see that the
training set vastly increases in accuracy and approaches a perfect fitting of the training data. However,
starting from 9 to 10 max depth, the accuracy of the test set is decreasing. This indicates that at a higher
maximum node count, the Random Forest starts overfitting the training data. We set the maximum
number of nodes to be 9.
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Figure 5.10: Response of the accuracy on the test and training data based on the maximum number of nodes per tree.
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5.4.2. Performance results

The confusion matrix of the results are shown in Figure 5.11. From this confusion matrix, the perfor-
mance does not seem overwhelmingly positive. The maijority of the classifications is done correctly.
From the confusion matrix, we find a TPR of 53.8% and 52.7% for the raw signal and CUSUM signals
respectively. The FPR is at 46.1% and 47.2% respectively.
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Figure 5.11: Confusion of matrix when using baseline features.

The feature importance spread seem almost uniformly divided in importance except for the CUSUM
signal features where the minimum and maximum value features contribute less to the performance
based on the positive or the negative side. In Figure 5.12, the importance spread is plotted for the raw
signal and positive CUSUM signal.
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Figure 5.12: Importance of each baseline feature.
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In Figure 5.13, we conclude a TPR of 74.0% and 90.2% for the raw signal and CUSUM signals respec-
tively. The FPR is 8.6% and 1.3% respectively.
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Figure 5.13: Confusion matrices with raw signal and CUSUM signal features using similarity features.

When using these features in Figure 5.14, the Pearson coefficient is the most important feature for both
signals.
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Figure 5.14: Importance of each similarity feature.
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Conclusion

6.1. People counting

We showed that a single-pixel thermopile infrared sensing solution can provide people counting data
with high accuracy. We extended the CUSUM-RLS filter by considering temperature change estimation,
in turn using this to estimate people count. The proposed approach was shown to achieve an ACE of
0.11 and 0.19 for 90% of instants respectively when considering 15 minute windows for simulated and
experimental datasets.

With the help of the statistical model, exhaustive parameter evaluation on three parameters was con-
ducted. We find that performance increases for faster transitions. Experimental results also showed
that small breaks (e.g., getting coffee or bathroom breaks) were mostly ignored by the algorithm pre-
venting possible error propagation issues.

6.2. Commissioning change detection

We considered a random forest classifier to determine thermopile sensor commissioning in terms of
their location plan. The classifier used various signal distance features for pairs of sensors. We
proposed these features using CUSUM RLS processed object temperature signals from the ther-
mopile sensors. Using simulated occupancy conditions and an analytical thermopile signal model,
daily datasets were generated for evaluating the proposed approach. We obtained a TPR of 90.2%
and an FPR of 1.3% using the proposed approach, in comparison to 53.2% and 25.3% when using
basic statistical features.

By calculating 5 similarity features between the CUSUM signals of each sensor, a Random Forest
Classifier was able to accurately detect a commissioning change. More importantly, the thesis showed
a clear and relevant improvement when incorporating the CUSUM algorithm with respect to not using
the CUSUM algorithm. When using the most basic signal statistics, an improvement of 3% accuracy
was found probably due to the two-sided nature of the CUSUM algorithm. And more than 10% im-
provement was found when using relevant similarity features of the CUSUM signals instead of the raw
signal.
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Discussion

During the evaluation and run of the project, many ideas and questions were created. From the results
of the People Count Estimation using the single-pixel thermopile sensors, we see that there is room for
improvements. For example, the most sensitive model parameter for the performance of the algorithm
is the base temperature change. This value highly depends on two factors: the position of the person
and the orientation. Since the position is modelled, parametrical estimation could increase a correct
estimation of the number of people from the temperature change estimation. When estimating the
position in combination with the temperature change, a more accurate likelihood mapping is possible.
Having estimated the positions allows for the localisation of work spaces as well.

Another interesting possible improvement for the involved people estimation is by implementing a dy-
namic distribution for calculating the likelihood. Since the probability densities should be different for
different setups, by training the distribution per setup, the performance should increase. A method
for dynamically calibrating and estimating this distribution would be required. Since we know from the
PIR sensor when vacancy occurs and when activity is present, with the help of the number of events.
We could fit the steps of temperature change to a fixed number of people and update the probability
distribution.

Since we've only explored the possibilities of a single sensor, it is interesting to find if the performance
could be increased when merging multiple overlapping sensors. Since the thermopile sensor is easily
integratable into luminars, the option of sensor merging and performance improvements arrive.

When looking at the Commissioning Change Detection problem, we obtained high classification accu-
racy for simulated data. Of course, the next step would be to test the performance on real measured
data. This however requires data availability for a large number of scenarios.

We found that the use of CUSUM RLS pre-processing led to a substantial improvement in classification
for our problem. It would be worthwhile to generalize this approach for a larger class of problems
wherein the information features lie in changes in a signal.
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