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Article

Multistability and dynamic transitions of
intracellular Min protein patterns
Fabai Wu1,†, Jacob Halatek2,†, Matthias Reiter2, Enzo Kingma1, Erwin Frey2,* & Cees Dekker1,**

Abstract

Cells owe their internal organization to self-organized protein
patterns, which originate and adapt to growth and external stimuli
via a process that is as complex as it is little understood. Here, we
study the emergence, stability, and state transitions of multistable
Min protein oscillation patterns in live Escherichia coli bacteria
during growth up to defined large dimensions. De novo formation of
patterns from homogenous starting conditions is observed and stud-
ied both experimentally and in simulations. A new theoretical
approach is developed for probing pattern stability under perturba-
tions. Quantitative experiments and simulations show that, once
established, Min oscillations tolerate a large degree of intracellular
heterogeneity, allowing distinctly different patterns to persist in dif-
ferent cells with the same geometry. Min patterns maintain their
axes for hours in experiments, despite imperfections, expansion, and
changes in cell shape during continuous cell growth. Transitions
between multistable Min patterns are found to be rare events
induced by strong intracellular perturbations. The instances of
multistability studied here are the combined outcome of boundary
growth and strongly nonlinear kinetics, which are characteristic of
the reaction–diffusion patterns that pervade biology at many scales.
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Introduction

Many cells have characteristic forms. To guide proper assembly of

their subcellular structures, cells employ machineries that garner

and transmit information of cell shape (Kholodenko & Kolch, 2008;

Shapiro et al, 2009; Moseley & Nurse, 2010; Minc & Piel, 2012). But

cells are not static objects: They grow, divide, and react to stimuli,

and these processes are often accompanied by a change of cell

shape. Hence, the means by which a cell gathers spatial information

need to be adaptive. One versatile mechanism that is capable of

such spatial adaptation is self-organized pattern formation (Cross &

Hohenberg, 1993; Epstein & Pojman, 1998; Murray, 2003).

Spontaneous emergence of spatial structures from initially homo-

geneous conditions is a major paradigm in biology, and Alan

Turing’s reaction–diffusion theory was the first to show how local

chemical interactions could be coupled through diffusion to yield

sustained, non-uniform patterns (Turing, 1952). In this way, the

symmetry of the starting system can be broken. Reaction–diffusion

mechanisms have been shown to account for the generation of many

biological patterns (Kondo & Miura, 2010). However, how patterns

change in response to noise and perturbations, be they chemical or

geometrical, is poorly understood. Resolution of such issues is critical

for an understanding of the role of reaction–diffusion systems in the

context of the spatial confines and physiology of a cell (or an organ-

ism). To include the effects of geometry, the mathematical frame-

work for reaction–diffusion theory has been extended to circular

(Levine & Rappel, 2005), spherical (Klünder et al, 2013), and ellipti-

cal geometries (Halatek & Frey, 2012). However, focusing on pattern

formation from homogeneity is not enough, as was noted by Turing

himself at the end of his seminal article in 1952 (Turing, 1952):

“Most of an organism, most of the time, is developing from one

pattern into another, rather than from homogeneity into a pattern”.

Min proteins form dynamic spatial patterns that regulate the place-

ment of division sites in prokaryotic cells and eukaryotic plastids (de

Boer et al, 1989; Hu & Lutkenhaus, 1999; Raskin & de Boer, 1999;

Colletti et al, 2000; Maple et al, 2002; Ramirez-Arcos et al, 2002;

Szeto et al, 2002; Leisch et al, 2012; Leger et al, 2015; Makroczyová

et al, 2016). In rod-shaped Escherichia coli cells, MinD and MinE form

a reaction–diffusion network that drives pole-to-pole oscillations in

their local concentrations (Hu & Lutkenhaus, 1999; Raskin & de Boer,

1999; Huang et al, 2003). Membrane-bound MinD binds MinC, which

inhibits FtsZ polymerization (Dajkovic et al, 2008). The dynamic Min

oscillation patterns thus result in maximal inhibition of FtsZ accumu-

lation at the cell poles and minimal inhibition at the cell center,

which, together with a nucleoid occlusion mechanism, restricts

formation of the division apparatus to midcell (Adams & Errington,

2009). Because it exhibits a multitude of complex phenomena, which

can be explored by experimental and theoretical means, the Min
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oscillator provides an informative reference system for the quantita-

tive study of geometry-responsive pattern formation.

The dynamic Min oscillations have been explained by reaction–

diffusion models based on a minimal set of interactions between

MinD, MinE, ATP, and the cell membrane (Howard et al, 2001;

Meinhardt & de Boer, 2001; Kruse, 2002; Huang et al, 2003; Fange &

Elf, 2006; Touhami et al, 2006; Loose et al, 2008; Halatek & Frey,

2012). MinD, in its ATP-bound form, cooperatively binds to the

cytoplasmic membrane (Hu et al, 2002; Mileykovskaya et al, 2003).

MinE interacts with membrane-bound MinD, triggering the hydro-

lysis of its bound ATP and releasing MinD from the membrane (Hu

et al, 2002; Shih et al, 2002; Hsieh et al, 2010; Loose et al, 2011;

Park et al, 2011). MinD then undergoes a nucleotide exchange cycle

in the cytosol, which was initially incorporated into the modeling

framework by Huang et al (Huang et al, 2003). Further theoretical

analysis of the minimal reaction scheme suggested that the interplay

between the rate of cytosolic nucleotide exchange and strong prefer-

ence for membrane recruitment of MinD relative to MinE facilitates

transitions from pole-to-pole oscillations in cells of normal size to

multinode oscillations (striped mode) in filamentous cells (Halatek

& Frey, 2012). Such transitions occur if proteins that have detached

from one polar zone have a greater tendency to re-attach to the

membrane in the other half of the cell rather than to the old polar

zone—a process which has been termed canalized transfer. This

leads to synchronized growth and depletion of MinD from spatially

separated polar zones, enabling the simultaneous maintenance of

multiple polar zones. Numerical simulations of a reaction–diffusion

model based on this canalized transfer of Min proteins successfully

explain a plethora of experimentally observed Min oscillations in

various geometries (Halatek & Frey, 2012).

Essential for the robust function of Min proteins in ensuring

symmetric cell division is their ability to respond to, and thus encode,

information relating to cell shape. Upon cell-shape manipulation, Min

proteins have been found to exhibit a range of phenotypes under dif-

ferent boundary conditions (Corbin et al, 2002; Touhami et al, 2006;

Varma et al, 2008; Männik et al, 2012; Wu et al, 2015b). Recent

development of a cell-sculpting technique allows accurate control of

cell shape over a size range from 2 × 1 × 1 lm3 to 11 × 6 × 1 lm3,

in which Min proteins show diverse oscillation patterns, including

longitudinal, diagonal, rotational, striped, and even transverse modes

(Wu et al, 2015b). These patterns were found to autonomously sense

the symmetry and size of shaped cells. The longitudinal pole-to-pole

mode was most stable in cells with widths of < 3 lm, and lengths of

3–6 lm. In cells of this size range, Min proteins form concentration

gradients that scale with cell length, leading to central minima and

polar maxima of the average Min concentration. Increasing cell length

to 7 lm and above led to the emergence of striped oscillations. In

cells wider than 3.5 lm, Min oscillations can align with the short axis

of the lateral rectangular shape, yielding a transverse mode (Wu et al,

2015b). The existence of various oscillation modes has also been

reconstituted in vitro with MinD, MinE, ATP, and lipid bilayers con-

fined to microchambers (Zieske & Schwille, 2014). Numerical simula-

tions based on an established reaction–diffusion model (Halatek &

Frey, 2012) successfully recaptured the various oscillation modes in

the experimentally sampled cell dimensions (Wu et al, 2015b). This

further emphasizes the role of the two above-mentioned factors

generic to reaction–diffusion processes in cells: cytosolic nucleotide

exchange and membrane recruitment (Huang et al, 2003; Halatek &

Frey, 2012). These data provided the first evidence that sensing of

geometry is enabled by establishing an adaptive length scale through

self-organized pattern formation.

Given that Min proteins in all cells initially adopt the same regime

of pole-to-pole oscillations, it is as yet unclear how diverse oscillation

modes emerge during cell growth to large dimensions, and whether

transitions occur between these patterns. Furthermore, more than

one mode of oscillation was often observed in different cells with the

same shape, presenting an intriguing example of the multistability of

different complex patterns (Wu et al, 2015b). These unexplained

phenomena provide us with the rare opportunity to quantitatively

explore the basic principles of the dynamics of pattern formation in

the context of geometric perturbations and cellular heterogeneities.

In this study, we combine experiments and theory to systemati-

cally examine the emergence and dynamic switching of the distinct

oscillatory Min protein patterns (longitudinal, transverse, and

striped oscillations, cf. Fig 1A) observed in E. coli bacteria that are

physically constrained to adopt defined cell shapes. Our primary

aim was to investigate the origin of multistability (coexistence of

stable patterns), and to further understand its relevance in the

context of cell growth (i.e. changing cell shape). Furthermore, we

hoped to identify the kinetic regimes and mechanisms that promote

transitions between patterns and to probe their robustness against

spatial variations in kinetic parameters. One striking discovery is

the high degree of robustness of individual modes of oscillation

even in the face of significant changes in geometry.

To present our results, we first show experimentally that dif-

ferent patterns can emerge out of near-homogeneous initial states in

living cells with different dimensions, thus providing further support

for an underlying Turing instability. We then use computational

approaches to capture the dependence of pattern selection on geo-

metry. Using stability analysis, we establish kinetic and geometric

parameter regimes that allow both longitudinal and transverse

patterns to coexist. Furthermore, we evaluate the emergence and

stability of these patterns in computer simulations and compare the

results with experimental data. Remarkably, we find that the experi-

mentally observed multistability is reproduced by the theoretical

model in its original parameter regime characterized by canalized

transfer. In experiments, we trace pattern development during the

cell-shape changes that accompany cell growth, and we quantita-

tively assess the persistence and transition of patterns in relation to

cell shape. These analyses reveal that Min patterns are remarkably

robust against shape imperfections, size expansion, and even

changes in cell axes induced by cell growth. Transitions between

multistable patterns occur (albeit infrequently), driving the system

from one stable oscillatory pattern to another. Altogether, this study

provides a comprehensive framework for understanding pattern

formation in the context of spatial perturbations induced by intra-

cellular fluctuations and cellular growth.

Results

Symmetry breaking of Min patterns from homogeneity in live
E. coli cells

One of the most striking examples of the accessibility of multiple

stable states observed in shaped E. coli cells is the emergence of
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different—transverse and longitudinal—Min oscillation modes in

rectangular cells with identical dimensions (Wu et al, 2015b). The

existence of a transverse mode has also been noted in reconstituted

in vitro systems (Zieske & Schwille, 2014). In live cells, this

phenomenon is most prominent in cells with widths of about 5 lm
and lengths of between 7 and 11 lm (Wu et al, 2015b). To probe

the emergence and stability of these different stable states, we began

this study by monitoring the temporal evolution of Min protein
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Figure 1. Symmetry breaking of Min protein patterns in vivo.

A Schematic showing Min protein patterns in a defined geometry originating from 1) a dynamic instability arising from an equilibrium state or 2) dynamic
transitions from a pre-existing pattern associated with cell growth. Green and red particles represent MinD and MinE proteins, respectively. The green gradient
depicts the MinD concentration gradient.

B–D Examples of Min protein patterns emerging from nearly homogeneous initial conditions in E. coli cells of different sizes. Lateral dimensions (in lm) from top to
bottom: 2 × 6.5, 2 × 8.8, and 5.2 × 8.8, respectively. The gray-scale images show cytosolic near-infrared fluorescence emitted by the protein eqFP670 at the first
(left) and last (right) time points. The color montages show the sfGFP-MinD intensity (indicated by the color scale at the bottom right) over time. The scale bar in
panel (B) corresponds to 5 lm. Red arrows show the oscillation mode at the respective time point.

E Two early and two late frames depicting sfGFP-MinD patterns in a cell exhibiting stable transverse oscillations. The images share the scale bar in (B).
F Difference in sfGFP-MinD intensity between the top half and bottom half of the cell plotted against time.
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patterns in deformable cells growing in rectangular microchambers.

Improving upon our previous shaping and imaging method (see

Materials and Methods), we recorded cytosolic eqFP670 (a near-

infrared fluorescent protein) and sfGFP-MinD fluorescence signals

over the entire course of cell growth (~6–8 h). Owing to the superior

brightness and photostability of these two fluorescent probes (Wu

et al, 2015a), we were able to image the cells at 2-min intervals

without affecting cell growth. Given that an oscillation cycle (or

period) takes 68 � 13 s (mean � SD) at our experimental tempera-

ture (26°C), shorter intervals were subsequently used to capture the

detailed dynamics within one oscillation cycle.

We first grew cells with the above-mentioned lateral dimen-

sions (7–11 × 5 × 1 lm3) in microchambers of the appropriate

form. Of the 126 cells examined, almost all (n = 121) showed

clear MinD polar zones in all times prior to cell death or growth

beyond the confines of the chambers, demonstrating the striking

persistence of the oscillation cycles. In some cells, transition states

between different patterns were also captured, which are described

below (see Sections Persistent directionality traps Min oscillations

in a stable state during cell growth and Experimental observations

of pattern transitions between multistable states). Interestingly,

imaging of the remaining five cells captured 1–2 frames in which

the sfGFP-MinD fluorescence was distributed homogeneously

(Fig EV1 and Video EV1). Such a homogeneous state phenomeno-

logically resembles the initial conditions chosen in the majority of

chemical and theoretical studies on pattern formation. However,

in the present case, Min proteins re-established oscillations exclu-

sively in the transverse mode, irrespective of their preceding oscil-

lation mode (Fig EV1). Why the system should “revert” to such a

homogeneous state in the first place is unknown, although the

rapid recovery of patterns leads us to speculate that it most proba-

bly results from a transient effect, such as a change in membrane

potential or a rearrangement of chromosomes, rather than from a

drastic depletion of ATP. Nonetheless, such an intermittent state

provides a unique opportunity to study the emergence of patterns

from a spatially uniform background.

We therefore explored symmetry breaking by Min proteins over

a larger range of cell sizes and found that different cell dimensions

gave rise to different patterns from an intermittent homogeneous

state. Because homogeneous distributions of MinD are observed at

low frequency, we manually searched for cells in such a state. Once

targeted, such cells were subsequently imaged at short time inter-

vals of between 5 and 20 s until an oscillation pattern stabilized. As

shown in Fig 1B–D, the uniform distribution of sfGFP-MinD seen in

cells of different sizes and shapes became inhomogeneous, and

always re-established stable oscillations within a few minutes. In

the 6.5 × 2 × 1 lm3 cell shown in Fig 1B, the homogeneous sfGFP-

MinD signal first became concentrated at the periphery of the cell,

indicating a transition from the cytosolic state to the membrane-

bound form. At t = 20 s, a minor degree of asymmetry was

observed. Within the next 30 s, a clear sfGFP-MinD binding zone

developed on the left-hand side of the top cell half. This zone

persisted for 40 s, until a new binding zone was established at the

top cell pole, which then recruited the majority of the sfGFP-MinD

molecules. This pattern rapidly evolved into longitudinal pole-to-

pole oscillations which lasted for the rest of the time course of our

time-lapse imaging (10 min). In an 8.8 × 2 × 1 lm3 cell (Fig 1C),

the initial membrane binding of sfGFP-MinD was accompanied by

the formation of several local patches of enhanced density (see, e.g.

t = 30 s), which went on to form one large patch that was asymmet-

rically positioned in relation to the cell axes (t = 110 s). This MinD

binding zone further evolved into a few cycles of asymmetric oscil-

lations before converging into striped oscillations, with sfGFP-MinD

oscillating between two polar caps and a central striped. In the

8.8 × 5.2 × 1 lm3 cell (Fig 1D), persistent transverse oscillations

emerged within ~2.5 min after clusters of sfGFP-MinD had begun to

emerge as randomly localized, membrane-bound patches from the

preceding homogeneous state.

To further examine the stability of the transverse mode, we

tracked transverse oscillations in 5-lm-wide cells with a time resolu-

tion of 20 s. We found that these indeed persisted, with a very

robust oscillation frequency, for at least 17 cycles (i.e. the maximum

duration of our experiment) under our imaging conditions (Fig 1E

and F, and Video EV2). This indicates that, once established, the

transverse mode in these large cells is just as robust as the longitudi-

nal pole-to-pole mode in a regular rod-shaped E. coli cell.

In order to probe the effect of MinE in the process of symmetry

breaking, we engineered a strain that co-expresses sfGFP-MinD and

MinE-mKate2 from the endogenous minDE genomic locus (see

Materials and Methods). In shaped bacteria, MinE-mKate2 proteins

oscillate in concert with MinD (Video EV3). After the loss of oscilla-

tory activities of both sfGFP-MinD and MinE-mKate2, no heteroge-

neous MinE pattern was observed prior to the emergence of MinD

patches that dictate the axis of symmetry breaking (Video EV2).

This is in agreement with the previous finding that MinE relies on

MinD for its recruitment to the membrane (Hu et al, 2002).

The observed emergence of Min protein patterns from homoge-

neous states shows several striking features. First of all, after the

early stage of MinD membrane binding, which appears to be rather

uniform across the cell, the first patch with enhanced MinD density

that forms is neither aligned with the symmetry axes nor does it

show a preference for the highly curved polar regions. Secondly,

Min patterns converge into a stable pattern within a few oscillation

cycles. Emerging patterns align with symmetry axes, and exhibit a

preference for the characteristic length range discovered previously

(Wu et al, 2015b), confirming that the geometry-sensing ability of

Min proteins is intrinsic and self-organized. The fast emergence and

stabilization of Min protein patterns indicates an intrinsic robust-

ness of Min oscillations and an ability to adjust oscillatory patterns

dynamically to changes in cell geometry.

Analytical and computational approach to probe the geometry-
dependent symmetry breaking and pattern selection

The experimental observations described above showed that

symmetry breaking in spatially almost-homogeneous states can

result in stable oscillation patterns of Min proteins. These spatiotem-

poral configurations are longitudinal and transverse oscillation

patterns whose detailed features are dependent on the geometry of

the system, in accordance with our previous study (Wu et al,

2015b). We therefore set out to gain a deeper understanding of the

mechanisms underlying the phenomenon of multistability and the

role of cell geometry in determining, regulating, and guiding the

pattern formation process and the ensuing stable spatiotemporal

patterns. To this end, we performed a theoretical analysis, building

on previous investigations of symmetry breaking induced by the

Molecular Systems Biology 12: 873 | 2016 ª 2016 The Authors
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oscillatory Turing instability in bounded geometries (Halatek &

Frey, 2012).

The results presented in this Section are based on the observation

that the selection of the initial pattern (which does not necessarily

coincide with the final pattern) depends on both the Turing instabil-

ity and the system’s geometry. While we focus on the latter aspect

in the main text, we review in Box 1 how, more generally, a Turing

instability facilitates symmetry breaking in a planar geometry, which

may help the reader to understand why the interconnection between

geometry and the classical Turing mechanism is crucial.

The non-uniformity of the well-mixed state in cell geometries (as

noted in Box 1) is not the only salient difference relative to the clas-

sical case of a planar geometry. To perform linear stability analysis

on a particular system, a set of Fourier modes must be derived that

is specific for the boundary geometry of the system. Hence, both the

well-mixed state and the spectrum of Fourier modes are generically

geometry-dependent. Only a few geometries are amenable to an

analytical treatment. A recent advance was the derivation of eigen-

functions for reaction–diffusion systems with reactive boundaries

(the cell membrane) and diffusive bulks (the cytosol) in an elliptical

geometry (Halatek & Frey, 2012). This geometry, being analytically

accessible, permits broad, systematic parameter studies. At the same

time, it shares the symmetries of interest with rod-shaped, circular,

and rectangular cells. The eigenfunctions or modes of the ellipse are

classified into even and odd functions by their symmetry with

respect to reflections through a plane along the long axis; the

lowest-order modes are shown in Fig 2A. Even functions are

symmetric, and odd functions are anti-symmetric with respect to

long-axis reflection. As such, even functions correspond to longitu-

dinal modes, and odd functions to transverse modes. More subtle

than the separation into two symmetry classes, but no less signifi-

cant, is the strict absence of any homogeneous steady states in ellip-

tical systems undergoing cytosolic nucleotide exchange (Thalmeier

et al, 2016). This can be understood intuitively from a source–

degradation picture: Proteins detach from the membrane and

undergo cytosolic ADP-ATP exchange. The concentration of ADP-

bound MinD drops with increasing distance from the membrane as

the diphosphate is replaced by ATP. This yields cytosolic concentra-

tion gradients at the membrane that determine the densities of

membrane-bound proteins. In an equilibrium state confined to an

elliptical geometry, the cytosolic gradients at the membrane cannot

be constant, but will vary along the cell’s circumference. Hence, a

uniform density at the membrane cannot be a steady state of the

system, and instead, the new basal state of the system is defined by

the elliptical eigenfunction of the lowest order (Fig 2A). This new

steady state takes maximal and minimal values at the cell poles

and at midcell, respectively. Note that the spatial variation of the

density can be very small and may be very difficult to detect

experimentally.

So what is the relevance of such a spatially non-uniform basal

state? The answer lies in the nonlinear nature of the system. Nonlin-

earities are known to amplify weak signals. As discussed in Box 1,

the selective amplification of parts of a noise spectrum is at the

origin of symmetry breaking. The non-uniformity of the well-mixed

basal state implies that a spatially uniform initial condition set in a

simulation will first adapt to the symmetry of this basal state, even

in the absence of any spatial instability. Only after the basal state

has been reached can the growth of (linearly) unstable modes begin.

In the present case, the geometry of an ellipse imposes a preferred

symmetry on the well-mixed state that resembles the symmetry of a

striped oscillation (compare the 0th and 2nd even mode in Fig 2A).

Therefore, the initial symmetry adaptation process creates a bias in

favor of the 2nd even mode corresponding to striped oscillations,

which thus dominates the initial growth of patterns. As shown in

Fig 2B, striped oscillations dominate the early phase of pattern

formation in a wide variety of cell shapes. In a 6.5 × 2 × 1.1 lm3

cell, the oscillatory striped mode persists for about three oscillation

cycles before the dynamics switch to pole-to-pole oscillations. By

contrast, the oscillatory striped mode persists indefinitely in cells

with sizes of 9 × 2 × 1.1 lm3 and also 9 × 5 × 1 lm3. This latter

observation differs from our corresponding experimental results in

the same geometry, which had revealed the consistent emergence of

a transverse mode after the system had passed through a homoge-

neous phase (Figs 1D and EV1) [though striped oscillations were

also observed in cells of this size (Wu et al, 2015b)]. Clearly, letting

the computational system evolve from a uniform configuration

introduces a bias toward even modes, which should disfavor the

selection of transverse patterns. This difference led us to conclude

that we needed to characterize in detail the physiological relevance

of the bias imposed by the non-uniformity of the well-mixed basal

state, that is, its robustness against other types of intracellular

heterogeneities. This issue is addressed in the following.

Realistic cellular systems contain many different factors that

induce asymmetries and heterogeneities: The cytosol and the

membrane are crowded, cell shape is never perfectly symmetrical,

Box 1: Symmetry breaking by the Turing instability in cellular
geometries

The initial phase of a “symmetry-breaking” process in a nonlinear,
spatially extended system is determined by a mode-selection mecha-
nism. Consider an initial steady state of the corresponding well-mixed
system that is weakly perturbed spatially, by some spatially white
noise, for instance. For the planar geometry considered in textbooks
and review articles, the initial state is typically a spatially uniform
state (Cross & Hohenberg, 1993; Epstein & Pojman, 1998; Murray,
2003). The spectral decomposition of this state gives equal weight to
all Fourier modes and, therefore, sets no bias for a particular mode. A
system is referred to as being “Turing unstable” if any spatially non-
uniform perturbation of a uniform equilibrium fails to decay (as
expected due to diffusion) but instead grows into a patterned state.
The collection of growth rates plotted as a function of the wave
number of the corresponding Fourier modes is called the dispersion
relation, and can be computed by a linear stability analysis. The mode
with the fastest growth rate is called the critical mode. It sets the
length scale of the initial pattern if there is no other bias for a dif-
ferent mode. Such a bias could, for instance, be provided by a specific
initial condition that is non-uniform.
It has been shown recently that, in the context of realistic biological
systems, a well-mixed state is generically non-uniform for reaction–
diffusion systems based on membrane–cytosol cycling and an NTPase
activity (Thalmeier et al, 2016). Hence, in this generic case, the
symmetry of the stationary state is already broken—in the sense that
it is adapted to the geometry of the cell. Consequently, any down-
stream instabilities—such as the Turing instability—will inherit the
symmetry of this spatially non-uniform steady state. In this paper, we
discuss how the analysis of the instability of such a non-uniform
steady state differs from that of the traditional Turing instabilities of
uniform states.
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and the lipid distribution (and hence the membrane’s affinity for

MinD) is sensitive to membrane curvature. All these intrinsic

perturbations of the system’s symmetry can have an effect on the

process of pattern selection if multiple stable patterns are possible.

Previous studies (Halatek & Frey, 2012) have suggested that stable

Min patterns are not destabilized by spatial heterogeneities in the

A

B

C

Figure 2. Pattern emergence upon spatial perturbation.

A Even and odd Mathieu functions in an elliptical geometry. The 0.even mode shows the symmetry of the basal state of the system. Here, no homogeneous steady state
exists. Note the similarity between the 0th and the 2nd even mode.

B Simulations of Min pattern formation from an initially homogeneous state. Dimensions of the cells shown are 6.5 × 2 × 1 lm3, 9 × 2 × 1 lm3, and 9 × 5 × 1 lm3.
All cells show an initial striped pattern, which persists in both cells of 9 lm length throughout the simulation period.

C Simulations analogous to the experiments shown in Fig 1B, with the same cell dimensions as in Fig 2B. The left-hand column depicts the spatially perturbed MinD
attachment profile, showing gradients along the diagonal lines of the rectangles. With these attachment profiles, the Min distributions in the three cells quickly
evolve into longitudinal, striped, and transverse patterns, respectively.
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rate of attachment of MinD to the membrane, as the dynamics are

dominated by the recruitment process. Here, faced with a multi-

stable system, we asked whether heterogeneities in MinD

membrane attachment might to some extent affect the initial

selection process. To this end, we spatially perturbed the MinD

attachment rate by superimposing a linear gradient. We systemati-

cally altered the slope and direction of this gradient, and investi-

gated the effects on initial MinD dynamics. After a few oscillation

cycles, we turned the perturbation off again and continued the

simulation without any induced bias (i.e. with spatially uniform

MinD attachment rates). This procedure provided us with a versa-

tile means of generating a weak spatial perturbation that can break

symmetry and is applicable to all cell geometries. In particular, it

enabled us to quantify the effects of these intrinsic perturbations

on pattern selection and compare them to the impact of the

geometric bias discussed above.

Indeed, our simulations showed that an initial MinD attachment

gradient with a spatial peak-to-peak amplitude of the spatial varia-

tion of as little as 20% indeed compensates for the aforementioned

geometric bias for striped oscillations (Fig 2C). To put this

20% variation in perspective, we note that the affinity of MinD

for different lipids can vary by up to one order of magnitude

(Mileykovskaya et al, 2003; Renner & Weibel, 2012). Figure 2C

shows the onset of pattern formation obtained from computer simu-

lations based on the same geometry as that in Fig 1B. In contrast to

the simulations in Fig 2B, the MinD attachment gradient is now

initially aligned diagonally. Two observations stand out: Firstly, we

find that the asymmetric template does not impede the formation of

stripes. Hence, the template does not dictate the symmetry of possi-

ble patterns. Secondly, in the 5-lm-wide cells with the weak initial

gradient, the transverse mode wins the competition against striped

oscillations, which contrasts with the outcome shown in Fig 2B. We

accordingly conclude that the geometric bias for striped oscillations

is rather weak and is presumably of little physiological relevance.

However, in the absence of any intrinsic heterogeneity, pattern

selection obtained from computer simulations in cellular geometries

will inevitably overemphasize the effect of the geometric bias.

We therefore sought a solution, discussed in the following

sections, which explicitly incorporates spatial heterogeneities that

compensate for the intrinsic bias, thus effectively restoring unbiased

pattern selection based on the Turing instability alone.

Computing pattern stability in multistable regimes

Now that we have learned how the initial pattern selection process

can be affected by spatial perturbations, we will address how and to

what extent the existence and stability of different patterns is

affected by the system’s geometry, and which molecular processes

in the Min reaction circuit control how the system adapts to cell

geometry.

Geometry sensing requires the existence of a characteristic length

scale. Previous theoretical analysis of Min oscillations has shown

that such a length scale is accompanied by synchronization of the

depletion and initiation of old and new polar zones, respectively

(Halatek & Frey, 2012). A key insight was that a relatively high rate

of MinD recruitment (relative to MinE recruitment) is essential for

initiation and amplification of the collective redistribution of MinD

that leads to such synchronization (Halatek & Frey, 2012). For a

broad range of MinD recruitment rates, we found that oscillatory

pole-to-pole and striped oscillations could coexist in cells whose

length exceeds a certain limit (Halatek & Frey, 2012; Wu et al,

2015b). These earlier studies suggested that the ratio of MinD to

MinE recruitment rates is the parameter that allows for geometry-

dependent multistability in rectangular cells in which longitudinal

and transverse patterns can coexist. The experimental observation

of a transverse mode (Wu et al, 2015b) supports the previous theo-

retical suggestion that circular and aberrant patterns in nearly spher-

ical cells (Corbin et al, 2002) are caused by the additional

destabilization and persistence of odd (transverse) modes in an

elliptical geometry with increased cell width (Halatek & Frey, 2012).

This implies that the circular and aberrant patterns found experi-

mentally in cells with low aspect ratios, such as nearly spherically

shaped cells (Corbin et al, 2002), and the observation of transverse

patterns in rectangular shapes (Wu et al, 2015b), are attributable to

the same mechanism, namely the additional destabilization of odd

modes. The key difference between the nearly spherical and rectan-

gular cases is that, in the former, the choice of modes is reversible

(i.e. neither mode is definitively selected), such that the axis of

oscillation switches aberrantly, whereas in rectangular cells the high

aspect ratio of the geometry leads to the mutually exclusive selec-

tion of either longitudinal (purely even) or transverse (purely odd)

patterns, but both symmetries of the pattern are initially accessible

(i.e. the system exhibits multistability).

To gain further insight into pattern selection, we first computed

and compared the growth rates of even and odd modes in a simpli-

fied 2D elliptical geometry, and then proceeded to test the results of

this linear stability analysis by computer simulations that take the

full 3D cell geometry into account. In these computer simulations,

the pattern stability was then probed by the application of spatial

heterogeneities in the MinD attachment rate.

As a first step, we performed a linear stability analysis in the

elliptical geometry. To characterize the difference between growth

rates of even (longitudinal) and odd (transverse) modes, we intro-

duce a quantity which we term the non-degeneracy. This is defined

as the Euclidian distance between the growth rates of the first three

even and the first three odd modes (cf. Materials and Methods

section; note that the notion “growth rates of modes” is not to be

associated with the physiological growth rates of cells). Figure 3A

shows how the non-degeneracy depends on cell geometry and on

the MinD recruitment rate. In agreement with our previous analysis,

nearly spherical cells are almost degenerate with respect to even

and odd modes (Halatek & Frey, 2012). The effect of a larger MinD

recruitment rate is to extend this region of near degeneracy toward

larger aspect ratios. Hence, when rates of MinD recruitment are

high, we can expect that longitudinal and transverse modes have

similar growth rates even in rectangular cells. These results were

then tested in 3D computer simulations.

For simulations of realistic 3D cellular geometries, we employ a

spatially varying MinD attachment rate, similar to the approach

described in Section Analytical and computational approach to

probe the geometry-dependent symmetry breaking and pattern

selection. This allows us to probe the stability of patterns against

spatial perturbations, and thereby to test the (nonlinear) stability of

the oscillatory pattern. The simulation strategy is schematically

shown in Fig 3B. First, we align the gradient of the MinD attach-

ment profile with one symmetry axis and initialize the simulation.
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A

B

C

D

Figure 3. Computing stability in multistability regimes.

A Two plots that show the non-degeneracy of even and odd modes in an elliptical geometry for varying cell geometry and MinD recruitment rate (kdD). The unvaried
MinE recruitment rate is noted as kdE. The degeneracy (light blue area) increases with the MinD recruitment rate.

B Schematic representation of the simulation process used to probe the stability of longitudinal and transverse patterns. The system is initialized with a
homogeneous configuration, and the gradient of the MinD attachment rate is aligned with the major or minor axis to direct pattern selection. After initialization,
the MinD attachment rate is equalized to allow the system to relax into the initialized state. If the initialized pattern persists in the absence of a stabilizing
gradient, the gradient is reapplied to deflect the pattern from its preset alignment and study its stability vis-a-vis spatial inhomogeneities that break its symmetry.
The stability toward all possible deflections with linear MinD attachment profiles is probed, and the persistence of the initialized pattern is checked.

C, D Stability diagrams of the simulation procedure outlined in (B) for longitudinal (C) and transverse (D) patterns. White areas represent configurations where the
respective mode was not initialized. The gray values show the fraction of all simulations (with different attachment templates) in which the respective pattern
mode is sustained.
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After a few oscillation cycles, we turn the MinD attachment gradient

off and allow the simulation to proceed for another ~40 oscillation

cycles. If the pattern was stable (i.e. a local attractor of the reaction–

diffusion dynamics), it remained aligned with the initially selected

axis. In these cases, we used the final state as the initial configura-

tion and ran the simulation for another ~40 oscillation cycles, now

with reactivated perturbation of the MinD attachment rate and with

the gradient inclined at an angle to the initial oscillation axis. This

final step was intended to probe the stability of the pattern against

spatial heterogeneities that could potentially switch pattern symme-

try from longitudinal to transverse or vice versa. We repeated this

simulation to cover all possible alignments (i.e. angles from 0 to 90

degrees) and slopes of the MinD attachment perturbation (i.e.

spatial variations from 0 to 100% of the average MinD attachment

rate). Together, these simulations enabled us to quantify the stabil-

ity of each initialized pattern based on the degree of perturbation

that it can sustain without losing its alignment to the initial axis. We

performed this stability analysis for a broad range of experimentally

probed geometries as well as recruitment rates. Note that we only

distinguished transverse oscillations from longitudinal oscillations,

but not between pole-to-pole and striped modes within the longitu-

dinal oscillations. In all probed configurations (cell geometries,

spatial heterogeneities), we observed that longitudinal patterns are

stable, independently of the MinD recruitment rate (Fig 3C). In

contrast, the number of cell geometries that support stable trans-

verse patterns turned out to be strongly dependent on the relative

rate of MinD recruitment (Fig 3D). In agreement with the above

linear stability analysis in the 2D elliptical geometry, we found that

an increasing MinD recruitment rate extends the domain of stable

transverse patterns toward cell geometries with larger aspect ratios.

Furthermore, our simulations show that the degree of pattern stabil-

ity is surprisingly high. Almost all configurations were able to with-

stand more than 90% of all applied perturbations (slopes and

angles) to the MinD attachment profile (Fig 3C and D).

These findings lead to several important conclusions. First, the

simulation data show that stability analysis in the two-dimensional

elliptical geometry is able to account well for the patterns of behav-

ior observed in realistic three-dimensional geometries. Second, our

findings indicate that a gradient in the MinD attachment rate affects

the initial selection of the axis of oscillation by guiding the dynamics

into the basin of attraction of the corresponding pattern. Moreover,

spatial gradients of MinD attachment rate typically cannot drive a

system from one pattern into the orthogonal alternative once the

system has settled down into a stable oscillation. This suggests that

the spatiotemporal patterns are in general very robust against spatial

heterogeneities in the MinD attachment rate. The above analysis

provides a way to probe the basins of attraction of different oscilla-

tory patterns systematically, which will be introduced and discussed

in the following.

Basins of patterns are controlled by geometry and
recruitment strength

In the preceding Section, we demonstrated that highly stable longitu-

dinal and transverse patterns can be initialized in a broad range of

geometric configurations. Knowing that these patterns exist, we

turned to the question of which patterns can be plausibly reached by

the system dynamics, that is, without having to tune the initial

conditions in any particular fashion. To approach this issue, we

began our simulations with a homogeneous initial configuration. As

discussed in Section Analytical and computational approach to

probe the geometry-dependent symmetry breaking and pattern selec-

tion, adaptation to the non-uniform well-mixed state (adaptation to

geometry) introduces a preference for striped oscillations, and hence

a bias for even patterns. To include other potential effects that

weakly break the system’s symmetry (but not the symmetry of the

stable patterns, cf. Section Computing pattern stability in multistable

regimes) and neutralize the weak bias for striped selection, we

imposed a fixed, weak spatial gradient on the rate of MinD attach-

ment. The relative magnitude of the variation was again set to 20%,

which, as mentioned above, is well below the typical range of varia-

tion in MinD’s affinity for different lipids in the E. coli membrane.

We examined all alignments of the MinD attachment gradient inter-

polating between purely longitudinal and purely transversal states.

After ~100 oscillation cycles, we recorded the final pattern, distin-

guishing between transverse pole-to-pole, longitudinal pole-to-pole,

and longitudinal striped oscillations. Following this procedure, we

separately studied the effects of varying geometry and MinD recruit-

ment rates on multistability and pattern selection.

To study the effect of system geometry, we fixed the value of the

MinD recruitment rate to a high value (kdD = 0.1) such that the

number of coexisting stable longitudinal and transverse patterns is

largest. Sampling over all alignments of the gradient led to the distri-

butions of the final patterns shown in the histograms in Fig 4A. Cell

length was varied from 7 to 10 lm, cell width from 3 to 5 lm. We

observed a critical cell length of between 9 and 10 lm for the selec-

tion of striped oscillations. This coincides with the length scale for

which the model parameters were initially adjusted in the 2D ellipti-

cal geometry (Halatek & Frey, 2012). Surprisingly, this length scale

translates directly to realistic 3D cell shapes. We found that the frac-

tion of oscillatory striped patterns decreased in favor of transverse

patterns as the cell width was increased. Overall, these results show

that cell width, and not cell length, is the main determinant for the

onset of transverse modes. All these observations are remarkably

consistent with previous experimental data based on random

sampling of live E. coli cells after they have reached a defined shape

(Wu et al, 2015b). Given this level of agreement, we expected to

gain further insight into the molecular origin of the observed pattern

distribution by studying its dependence on the kinetic parameters in

the theoretical model.

To investigate the effect of MinD recruitment rate, we focused on

data from the cell sizes that show the greatest number of coexisting

patterns, as determined by the previous numerical stability analysis.

The corresponding histograms are shown in Fig 4B. The cell lengths

for which the data was collected were 9 and 10 lm, and the cell

width varied from 1.1 to 5 lm. In narrow cells, we recovered our

previous results on the onset of striped oscillations: The fraction of

stripes increased with the MinD recruitment rate (Halatek & Frey,

2012). Remarkably, this was no longer the case when cells reached

a width of 5 lm: Here, the fraction of stripes was zero below some

threshold MinD recruitment rate, and took on a constant value

above this threshold. On the other hand, the fraction of transverse

patterns did increase with MinD recruitment rate in these 5-lm-wide

cells, as does that of the striped fraction in narrower cells. Hence,

we conclude that multistability is indeed promoted by high rates of

MinD recruitment. We attribute this feature to the ability of the
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reaction–diffusion system to operate in the regime in which a char-

acteristic length scale is established through synchronized growth

and depletion of spatially separated polar zones (“canalized trans-

fer”) (Halatek & Frey, 2012). Notably, the same mechanism that

enables striped oscillations in filamentous cells also facilitates trans-

verse oscillations in wide cells.

In all examples discussed so far, the height of the cell was fixed

at 1.1 lm, well below the minimal span required to establish a Min

oscillation (Halatek & Frey, 2012). Therefore, no oscillations occur

along the z-axis. While the present study focuses on competition

between longitudinal and transverse patterns, we also used our

computational model to explore patterns along the z-direction. In a

representative simulation with a 3.1 lm high chamber (cell dimen-

sions 5 × 4 × 3.1 lm3), we found oscillations aligned with the

z-axis in addition to oscillations aligned with the x- and y-axes. This

shows that increased headroom in the third dimension extends the

number of accessible stable patterns even further.

Persistent directionality traps Min oscillations in a stable state
during cell growth

Experiments (Fig 1B–F) and simulations have shown that both

longitudinal and transverse modes are stable over a range of rectan-

gular shapes once they have been established. However, it is still

unclear how patterns evolve during cell growth, which can involve

an increase in volume of over 10-fold. Particularly intriguing is the

fact that different patterns emerge during the growth of cells that

reach the same final shape. This prompted us to study the

development of patterns throughout the growth history of a cell. We

captured around 200 successive MinD binding patterns per cell at

intervals of 2 min during the geometrical changes that accompanied

cell growth. Here, we focused on the cells that reach a final width of

between 5 and 5.5 lm and a final length of 8–10 lm, taking advan-

tage of their very long growth history of 6–8 h and the previously

detected coexistence of two longitudinal modes and a transverse

mode in such cells. The final data set comprised 97 cells.

Spatially constrained by microchambers, the cells adopted

growth patterns that can be categorized into several types, based on

the difference in alignment of the cell axes with the axes of the

chambers (Fig 5A, D and G). Under the combined effects of expo-

sure to A22 and cephalexin, cells are initially elliptical in shape

(Fig 5A and D). When cell widths were small, Min oscillations

almost exclusively aligned along the longest elliptical axis of the

cell, with a certain degree of lateral-axis fluctuation (Fig 5B and E).

As a result, with respect to the rectangular chamber axes, the initial

Min patterns were aligned in accordance with the orientations of the

cells. Figure 5A and D, for example, show two cells whose long axes

are initially aligned with the long axis and short axis of the cham-

bers, respectively. In Fig 5B, Min oscillations remained aligned close

to the vertical (long) axis for the entire 7.8 h of cell growth, from an

initial size of 2.1 × 1.5 × 1 lm3 (at t = 0) to a final size of

9 × 5 × 1 lm3 (Fig 5A; for other examples see Video EV4). In

contrast, Min oscillations in Fig 5E aligned close to the horizontal

(short) axis of the chamber over the whole 8 h taken to reach the

same dimensions (Fig 5D; for more examples see Video EV4). Note

that in the latter scenario, the long and short axes exchanged

A

B

Figure 4. Basins of attraction predicted from systematic perturbations of patterns with shallow attachment gradients.

A Relative distribution of the final patterns (indicated on the right) observed after sampling all alignment angles of the MinD attachment template from 0 to 90
degrees. The MinD recruitment rate was set to a constant value kdD = 0.1. The data show the increase in the incidence of multistability as the cell size is increased
beyond minimal values for cell length and cell width.

B Fractions of the final patterns in cells of 9 and 10 lm length after sampling all alignment angles of the MinD attachment template from 0 to 90 degrees. The data
show that increasing the MinD recruitment rate facilitates multistability.
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identity at t = 5.8 h, but this did not affect the persistence of hori-

zontal Min oscillations (Fig 5D and E). These observations suggest

that Min oscillations have a strong tendency to remain faithful to

their existing orientation for as long as the length scale allows. In

addition, some pattern transitions were observed during instances

of drastic switching of cell axes that are associated with a low aspect

ratio of the cell shapes (Fig 5G and Video EV5), similar to examples

shown previously (Corbin et al, 2002; Männik et al, 2012). This

phenomenon was explained previously by invoking theoretical

predictions that low aspect ratios should lead to a transient coupling

between longitudinal and transverse modes (Halatek & Frey, 2012)

and Min patterns in these shapes are more sensitive to stochastic

perturbations (Fange & Elf, 2006; Schulte et al, 2015). The above

scenarios show that pattern multistability can emerge through adap-

tation of persistent Min oscillations during different modes of cell

growth.

To quantitatively characterize the evolution of Min patterns

during cell growth, we wrote a data analysis program that automati-

cally quantifies cell shape and Min patterns (see Materials and Meth-

ods, Fig EV2). We used Feret’s statistical diameters to parameterize
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Figure 5. The effect of cell-shape change during growth on the stability of Min protein patterns.

A Cytosolic fluorescence during growth of a cell from a small elliptical form into a large rectangular shape. Numbers in red indicate time in hours. Illustrations show
the positions and orientations of the cell in the first and last time frames. Green and blue lines indicate the maximum and minimum Feret diameters, respectively.

B sfGFP-MinD patterns during the growth of the cell shown in (A). Illustrations indicate the cell boundaries and oscillation angles observed in the first and last
frames (not to scale).

C Quantitative data obtained from the cell shown in (A and B). The maximum and minimum Feret diameters (green and blue), and the measured MinD oscillations
(red) were expressed in terms of length (top) and angle (bottom) and plotted against time. The number of cells that fit this category was 41/97. Arrows indicate the
time when cell width reached the chamber width of 5 lm.

D–F Data are presented as in (A–C) for another cell that showed persistent oscillations along the horizontal axis throughout growth. The number of cells that fit this
category was 28/97.

G Time-lapse images of sfGFP-MinD that reveal stochastic switching of patterns in a cell with an asymmetric shape and a low aspect ratio. White arrows indicate the
oscillation axes.

H The angles of the maximum and minimum Feret diameters (green and blue), and the measured MinD clusters (red) for the cell shown in panel (G) plotted against
time. The number of cells that fit this category was 10/97.

Data information: All scale bars correspond to 5 lm.
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cell shape. Feret’s diameter measures the perpendicular distance

between two parallel tangents touching the opposite sides of the

shape (Walton, 1948). This can be measured along all angles, and

the maximum and minimum values are used here to define the

smallest and largest cell dimensions. In general, the minimum Feret

diameter aligns with the short (symmetry) axis of the cell; the maxi-

mum Feret diameter aligns with the long axis of a near-

elliptical shape and the diagonal of a near-rectangular shape. We

defined the angle of oscillations by connecting the center of the

MinD patch to the cell center. Note that all angles were calculated

relative to the horizontal plane. With these measurements, we can

now compare the length scale that Min oscillations adopt with the

lengths of the cell’s dimensions (top panels in Fig 5C, F and H). We

can also correlate the angle of the Min oscillations with the planes

along which these cell dimensions are measured (bottom panels in

Fig 5C and F). Indeed, Fig 5C and F show that Min patterns aligned

with either the long (symmetry) axis or the short (symmetry) axis of

the cell shapes, albeit with some degree of fluctuation. In addition,

the frequent switching of Min oscillation angles in cells with low

aspect ratios is well captured by the automated analysis (Fig 5H).

For statistical analyses of the robustness of Min oscillations

against cell-axis switching, we evaluated Min patterns 20 min

before and 20 min after the time point at which cell width reaches

the limit of 5 lm imposed by the width of the chamber (marked by

the black arrows in all plots in Fig 5C and F). At the beginning of

this period, all Min patterns were in longitudinal pole-to-pole mode.

Over the following 40 min, 41 of the 97 cells analyzed showed no

large-scale axis shift, with the long axes remaining above 75° and

the short axes below 15°. In all these cells, Min oscillations were

sustained along the vertical (long) axes, as shown in Fig 5A–C.

Maintenance of the oscillations along the long axis was also

observed in 18 cells in which the long axis did not undergo a drastic

switch but the short axis did. In total, 60% of the cells exhibited

continuous alignment with the long axis during adaptation of the

cell to the width of the chamber. The other 40% of the cells showed

a switch in the mode of oscillations, including 28 cells that followed

a similar pattern of growth to those shown in Fig 5D–F and 10 cells

that grew as in Fig 5G and H.

These observations reveal several features. First of all, a robust

long-axis alignment of Min patterns in narrow cells determines the

initial oscillation direction. Second, the directions of established

oscillations are sustained for as long as the corresponding cell

dimension along this direction falls within the characteristic symme-

try and scale preferred by the oscillation mode (e.g. a 5-lm horizon-

tal dimension in Fig 5D). Third, Min oscillations show a notable

degree of tolerance to asymmetries in cell shape during growth.

These properties largely agree with our previous conclusion that the

propensity to adopt a given pattern is set by the length scale and the

symmetry of the cell shape (Wu et al, 2015b). Hence, in a cell shape

that allows for multistability, the selection of Min pattern mode

depends largely on (and thus is deducible from) the growth history

of the cell.

Experimental observations of pattern transitions between
multistable states

In large cells, 5 lm in width, we observed transitions from longitu-

dinal pole-to-pole modes to transverse modes and vice versa (Fig 6A

and B, and Video EV6). These transitions occurred after the long

and short axes of the cell had aligned with the respective axes of the

chambers due to confinement, and were characteristically different

from the transitions caused by low aspect ratio and shape asymme-

try shown in Fig 5G. For instance, Fig 6A shows a transition from

the longitudinal to the transverse mode. This transition initiated

with a large and unexpected displacement of the MinD polar zone

from the longitudinal axis of the cell (9 × 5 × 1 lm3) after several

hours of persistent longitudinal oscillations. This perturbation grad-

ually shifted the axis of oscillation toward the short axis of the cell

over the course of 10 oscillation cycles. An example of the inverse

transition is shown in Fig 6B for a 6 × 5 × 1 lm3 cell. We note here

that this type of spontaneous rearrangement of the oscillation mode

occurred rather infrequently, considering the 6- to 8-h lifetime of a

bacterium on the chip. To distinguish this type of transition from

the previously discussed transitions induced by small aspect ratio or

apparent asymmetry (cf. Fig 4H), we restricted the further statistical

analysis to data from the growth phase after the point at which the

maximum cell width of 5 lm had been attained. This phase

spanned the last 2–3 h of cell growth, that is, encompassed 120–

180 min oscillation cycles. We found that the majority of cells that

eventually came to occupy a volume of 9 × 5 × 1 lm3 (n = 47,

excluding the few cells that went through a transient homogeneous

state such as that shown in Fig 1B) only exhibited one transition in

their Min patterns (Fig 6C). Transitions rarely occurred more than

once in any given cell. On average, 0.3 transitions occurred per cell

per hour during growth from a size of 6 × 5 × 1 lm3 to a size of

9 × 5 × 1 lm3, and this observation holds true for cells grown in

both nutrient-rich and nutrient-poor media (see Materials and Meth-

ods). The average number of transitions per cell did however

increase in nutrient-poor medium (see Fig 6C, inset), which corre-

lates well with the fact that it took them longer to fill out the

custom-designed shapes. Altogether, the rarity of such transitions

again confirms that different pattern modes are robust against intra-

cellular fluctuations.

Automatic angle tracking of the sfGFP-MinD clusters reveals that

most of the transitions between longitudinal and transverse modes

involve an intermediate state in which the axis of oscillation devi-

ates from the symmetry axes of the cell shape (Fig 6D). This

suggests that the transitions are due to a strong perturbation of a

stable oscillation that pushes the system into the domain of attrac-

tion of another stable oscillatory mode. Most of these gradual transi-

tions took place on time scales of 4–8 min in both nutrient-rich and

nutrient-poor growth medium (Fig 6E and inset).

The types of transitions occurring in these cells are length depen-

dent (Fig 6F). In our data set, transitions from transverse to longitu-

dinal mode were only found in cells with lengths around 6 and

7 lm, whereas the inverse transition was only observed at cell

lengths of around 8–9 lm. In such cells, the longitudinal striped

oscillation mode was observed to evolve from either longitudinal or

transverse pole-to-pole oscillations at lower frequencies.

To explore the effect of cell width on pattern stability, we

carried out long-term time-lapse imaging of cells shaped into rect-

angles with lengths of 9–10 lm and widths of 3–6 lm (Fig 6G).

Unlike previous experiments, in which we had randomly sampled

cells that had already attained the desired shape and imaged them

at 2-min intervals (Wu et al, 2015b), here we were able to deter-

mine the final pattern before cell death or before cells grew out of
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the chamber. In agreement with the trend seen in previous experi-

ments, increase in cell width resulted in a reduction of the fraction

of cells displaying oscillations in the longitudinal pole-to-pole

mode and a corresponding increase in the proportion of the trans-

verse mode. Strikingly, we find that the incidence of oscillatory

striped patterns decreases dramatically as cell width increases

from 4 to 5 lm. This feature was also well captured by the simu-

lation data in Fig 4A. Hence, while the precise pattern mode in a

cell depends on various factors including growth history and large

intracellular perturbations, the statistical trend in pattern composi-

tion with respect to cell size is compatible with the basins of

attractions probed through small spatial perturbations in our simu-

lations (Fig 4A).

When cell widths reached more than 5 lm, more complex oscil-

lation modes were observed, including diagonally striped, zigzag

and other asymmetric patterns. These modes often appeared to

represent transient, intermediate states between two symmetric

modes (Fig 6H and Video EV6), but could occasionally persist for
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Figure 6. Transitions between various modes of Min protein patterns.

A Time-lapse images showing the transition from longitudinal pole-to-pole mode to transverse mode. Scale bar, 5 lm.
B Time-lapse images showing the transition from transverse mode to longitudinal pole-to-pole mode.
C Bar plot showing the distribution of the number of transitions. Inset: Data from experiments carried out under nutrient-poor conditions in which growth rates are

reduced.
D Representative time course of a change in the mode of sfGFP-MinD oscillation. The black line is a sigmoidal fit. The dashed black lines indicate 15° and 75°, and the

dashed red line indicates 45°.
E Bar plot showing the time scale of the switch in the oscillations. Inset: Data from experiments carried out in nutrient-poor conditions.
F Bar plots showing the relative numbers of the indicated transitions that occur at different cell lengths. All cells have a width of 5 lm.
G Distribution of final patterns in cells of the indicated widths . Cell lengths are all 9–10 lm.
H Time-lapse images of various modes of transitions between patterns. Cell sizes from top to bottom are, respectively, 10 × 2 × 1, 10 × 6 × 1, 9 × 5 × 1,

10 × 4 × 1 lm3. Note that the cells are scaled differently. On the right is an illustration showing Min pattern transitions through intermediate states.
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several cycles before cell death or overgrowth, as presented in the

statistics in Fig 6G. Thus, increasing cell width expands the number

of intermediary metastable states available for transitions between

stable oscillation modes (Fig 6H). In addition, a transverse–striped

mode has also been observed (albeit infrequently) in cells with

widths of slightly over 6 lm (Video EV6), further demonstrating

that the 3- to 6-lm adaptive range dictates mode selection in Min

pattern formation.

Discussion

Combining experiments and theory to study the time evolution of

Min oscillations in shaped bacteria, this work sheds new light on

the origin of multistability in biological Turing patterns and on tran-

sitions between different patterned states. The experiments

described here show how a stable pattern can emerge from a homo-

geneous state via direct symmetry breaking. Moreover, these

patterns exhibit persistent adaptation during cell growth, as well as

dynamic transitions induced by strong spatial perturbations.

Systematic stability analyses of multistable states in silico revealed

that the underlying Min pattern dynamics is set by (i) the sensitivity

of initial pattern selection to cellular heterogeneity and (ii) the

robustness of the established oscillations in the face of perturba-

tions. Overall, this study establishes a framework for understanding

Turing reaction–diffusion patterns in the context of fluctuating cellu-

lar environments and boundary growth.

Any study on the emergence of patterns within a cellular bound-

ary must take cellular heterogeneity into account. Homogeneous

initial states have been broadly used to probe the emergence of

spatial patterns in computational simulations. While such an

approach has been shown to capture the symmetry breaking of

unbounded reaction–diffusion systems, we demonstrate that

computing pattern selection in bounded systems from such a homo-

geneous initial state can lead to an intrinsic (but physiologically

irrelevant) bias. For example, in this study, a bias toward striped

modes impedes computer simulations that employ a homogeneous

initial state from reaching a transverse pattern, even if the stability

of such a transverse pattern is comparable to that of a longitudinal

pattern. The new theoretical methods outlined in this study provide

a framework for realistically predicting symmetry breaking in

biological systems through linear stability analysis in an elliptical

geometry, and probing the basins of attraction of different stable

patterns by numerical simulations. Our examples demonstrate the

importance of taking spatial heterogeneity into account when study-

ing symmetry breaking within biological boundaries.

Multistability in Min patterns is not determined by either kinetic

parameters or cell geometry alone, but originates from the interde-

pendence between the geometric properties of the cell’s form and

the kinetic regimes of the pattern-forming system. Some limited

examples of multistability in reaction–diffusion systems have previ-

ously been analyzed in very large systems (Ouyang et al, 1992),

where the system size exceeded the length scale of the pattern by

two orders of magnitude and the system geometry was rotationally

symmetrical. Here, the various stable states of Min patterns are

defined with reference to the axes of cell shape, and boundary con-

finement is thus required by definition, without being a sufficient

condition, for the emergence of the class of multistability

phenomenon characterized in this study. For instance, an increase

of cell width beyond 3 lm is required to enable the transverse mode

to be sustained in addition to a longitudinal pole-to-pole oscillation.

Most interestingly, our theoretical analysis of the underlying model

shows that increasing the size of a Turing-unstable system alone

does not in itself facilitate the existence of multiple stable patterns

that can be reached from a broad range of initial conditions. In our

previous theoretical work, we had found that the emergence of a

pole-to-pole oscillation in a short cell does not generically imply the

existence of a stable striped oscillation with a characteristic wave-

length in a long filamentous cell (Halatek & Frey, 2012). Instead, the

emergence of a characteristic length scale (which becomes manifest

in striped oscillations) is restricted to a specific regime of kinetic

parameters, where growth and depletion of spatially separated polar

zones become synchronized such that multiple, spatially separated

polar zones can be maintained simultaneously. A key element

among the prerequisites that permit this regime to be reached is that

the nonlinear kinetics of the system (MinD cooperativity) must be

particularly strong. Here, we find the same restriction on the para-

meters for the emergence and selection of stable transverse patterns

in addition to longitudinal pole-to-pole and striped oscillations. For

example, weak nonlinear (cooperative) kinetics can readily give rise

to longitudinal Min oscillations in 2-lm-long cells, but cannot

sustain a transverse mode of oscillation in cells as wide as 4 lm.

These findings hint at an exciting connection between multistability,

the ability of patterns to sense and adapt to changes in system

geometry, and the existence of an intrinsic length scale in the under-

lying reaction–diffusion dynamics. Remarkably—and contrary to

the treatments in the classical literature—the existence of an intrin-

sic length scale is not generic for a Turing instability per se. One

example is the aforementioned selection of pole-to-pole patterns in

arbitrarily long cells where MinD recruitment is weak. In this case,

irrespective of the critical wave number of the Turing instability, the

final pattern is always a single wave traveling from pole to pole.

The selection of a single polar zone is also characteristic in the

context of cell polarity (Otsuji et al, 2007; Klünder et al, 2013),

where it has been ascribed to the finite protein reservoir and a

winner-takes-all mechanism. It will be an interesting task for further

research to elucidate the general requirements for the emergence of

an intrinsic length scale in mass-conserved reaction–diffusion

systems. Here, we have defined the requirements for geometry sens-

ing and multistabilty in the underlying model for Min protein

dynamics.

The dynamic relationship between multistable states is deter-

mined by the robustness of individual stable states when exposed to

large-scale intracellular fluctuations. Our computer simulations

suggest that the Min system can tolerate various degrees of spatial

perturbations imposed by a heterogeneous profile of MinD’s binding

affinity for the membrane. This is consistent with our experimental

observation that a Min oscillation mode can persist in a living cell

for tens of oscillation cycles, even within cell shapes where other

stable states exist. Such persistence was also found to tolerate a

large degree of asymmetry in cell shape, except for cases with low

aspect ratios. Multistable states in the Min system are in essence

independent stable states that do not toggle back and forth except

under the influence of large spatial perturbations. This is experimen-

tally verified by our observation that instances of switching between

multistable states are extremely rare in large rectangular cells.
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These properties show that biological patterns driven by a reaction–

diffusion mechanism can exhibit behaviors similar to classical

bistable systems, in which two states switch from one to the other

upon surmounting an activation energy barrier.

Pattern selection among multistable states can be dependent on

cell growth. Turing patterns have rarely been analyzed in the

context of growth, either experimentally or computationally, largely

due to technical challenges. A recent example is the study of digit

formation during embryonic development (Raspopovic et al, 2014),

where a 3-node Turing network was simulated in a 2D growing

mesh to verify experimental findings. In the present paper, our

study of the Min oscillations throughout the growth history of the

cells revealed a remarkable persistence in the face of boundary

changes induced by cell growth. This phenomenon could not be

deduced from previous studies on the Min system, which showed

various degrees of fluctuations in cells with certain degrees of asym-

metry and enlargement (Corbin et al, 2002; Fange & Elf, 2006;

Varma et al, 2008; Männik et al, 2012; Hoffmann & Schwarz, 2014;

Schulte et al, 2015). Indeed, although Min oscillations do fluctuate

in our experimental settings, they rarely undergo drastic switches

even during periods of growth that increase the cell volume by up

to 20-fold. One essential finding of this study is the persistent direc-

tionality of the oscillations in the case where the long axis and short

axis of a cell have switched during adaptation to the chamber

boundaries. This provides strong evidence that the Min patterns do

not respond to boundary changes per se, but are dictated by the

history and the scale of the cell dimensions. With such a strong

tolerance for physiological and geometrical fluctuations, the patterns

are thus found to be largely predictable when the growth history of

the cell is known, even without explicit computer simulations

involving stochastic effects and boundary growth.

Nonlinear kinetics and boundary confinement are general to

Turing patterns in cells and organisms (Vicker, 2002; Goryachev &

Pokhilko, 2008; Kondo & Miura, 2010; Klünder et al, 2013; Raspo-

povic et al, 2014), implying that the multistability phenomenon can

be probed in other reaction–diffusion systems as well. Using the

framework employed in this study to understand the effect of fluctu-

ations and growth in these other systems may facilitate the discov-

ery of general rules governing the spatial adaptation of patterns in

biology.

Materials and Methods

Bacterial strains

In this study, all MinD and MinE proteins or their fluorescent

fusions were expressed from the endogenous genomic minDE locus.

Bacterial strain BN1590 (W3110 [DleuB :: eqFP670 :: frt aph frt,

DminDE :: sfGFP-minD minE :: frt]), constructed and characterized

previously (Wu et al, 2015a,b), was used for all the experiments in

this study, with the exception of the co-imaging of MinD and MinE.

The double-labeled minDE strain used in this study, FW1919

(W3110 [DminDE :: exobrs-sfGFP-minD minE-mKate2 :: frt]), was

constructed using the k RED recombination method (Datsenko &

Wanner, 2000) after we had observed that plasmidborne MinDE

fusions are prone to overexpression in long-term experiments, and

that imaging of CFP rather easily leads to photobleaching and

photodamage to the cells. To obtain this strain, strain FW1554

(W3110 [DminDE :: exobrs-sfGFP-minD minE :: frt]) (Wu et al,

2015a) was transformed with pKD46, and made electro-competent.

A linear fragment containing the chloramphenicol gene amplified

from pKD3 was transformed into the resulting strain to replace the

frt scar, thus yielding strain FW1626 (W3110 [DminDE :: exobrs-

sfGFP-minD minE :: cat]). FW1626 was then transformed with

pKD46, made competent, and transformed with a linear fragment

containing a mKate2::aph frt sequence amplified from plasmid

pFWB019 to produce strain FW1639 (W3110 [DminDE :: exobrs-

sfGFP-minD minE-mKate2 :: aph frt]). FW1639 was then cured of

kanamycin resistance using a pCP20 plasmid as described previ-

ously (Datsenko & Wanner, 2000) to yield the final strain

FW1919. This strain grows in rod shape in both M9 minimal

medium and LB-rich medium, and produces no minicells, indicat-

ing that MinE-mKate2 is fully functional. However, both its fluo-

rescence intensity and photostability in the cells are much lower

than those of sfGFP-MinD, and thus less suitable for long-term

imaging than the latter.

Growth conditions

The M9-rich medium used previously (Wu et al, 2015b) and in the

majority of the experiments in this study (unless specified)

contained M9 salts, 0.4% glucose, and 0.25% protein hydrolysate

amidase. The M9-poor medium contained M9 salts, 0.4% glucose,

and 0.01% leucine. At 30°C, the doubling time of BN1590 cells

during exponential growth was 104 � 9 min in M9-poor liquid

medium, and 69 � 3 min in M9-rich liquid medium.

For cell shaping, cells were first inoculated into M9 liquid

medium supplemented with 4 lg/ml A22 and incubated at 30°C for

3.5 h (rich medium) or 6 h (poor medium). The agarose pad used

to seal the microchambers contained M9 medium supplemented

with 4 lg/ml A22 and 25 lg/ml cephalexin as described previously.

All cell-shaping experiments were carried out at 26°C.

Cell shaping

The cell-sculpting method was used as described previously (Wu

& Dekker, 2015; Wu et al, 2015b), with the following modifi-

cations. Prior to inoculation of the cells, the cover glass with the

PDMS structures was treated with O2 plasma for 10 sec to make

the surface hydrophilic, which facilitates wetting of the surface

and allows for more homogeneous inoculation of the cells into the

microchambers. After the cells had settled into the microchambers,

these were sealed with a small piece of agarose pad, as described

previously (Wu et al, 2015b). We then poured 1 ml of warm

agarose onto the existing agarose, which prevented the agarose

from drying out during the long time course of the imaging. These

two modifications in the cell-sculpting process increased the

throughput of the shaping method, as well as minimizing the

movement of the cells in the chambers due to drag of the drying

agarose.

Fluorescence microscopy

Fluorescence imaging was carried out with the same set-up as

previously described (Wu et al, 2015b), but the following
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modifications were introduced to facilitate long-term tracking. We

used an upgraded perfect focus system (PFS3) on the Nikon Ti

microscope, which has a larger z-range than the PFS2 system.

While PFS3 was optimized for detecting the glass–water interface,

we find that it can be used to locate the interface between glass

and PDMS, which was then used to correct for the drift in z over

time and keep the cells in focus. The PDMS layer with a thickness

of 5–10 lm is within the sampling range for the PFS3, such that we

can define the position of the cell with reference to the glass–PDMS

interface. To track sfGFP-MinD during the whole course of cell

growth, we used a time interval of 2 min. To monitor in detail the

symmetry-breaking process that permits sfGFP-MinD patterns to

emerge from homogeneity, we took fluorescence images sfGFP-

MinD at intervals of 5–20 s, and only imaged the cytosol before

and after this acquisition period. To examine the stability of the

transverse oscillations, we used a 20-s time interval. To sample the

effect of cell width on the final oscillation patterns in cells, we

imaged every 5 min to obtain a larger dataset per experiment.

Despite the fact that sfGFP is relatively resistant to photobleaching,

it is critical to use low-intensity light for excitation in order to avoid

photodamage to the cells, which reduces oscillation frequencies

and eventually causes cell lysis.

Image analysis

The cytosolic fluorescence images of the cells were processed in

Matlab as described previously for boundary determination (Wu

et al, 2015b). The binary image was used to define the lengths of

the Feret diameters along the full 360° angular coordinates. From

these data, the maximum and minimum Feret diameters were

determined. The center of the MinD cluster was determined as

described previously using a Matlab script (Wu et al, 2015b), and

its angle was determined from its location relative to the cell

center. The Feret diameter along this angle was used to compare

the oscillation distance with the Feret diameters. Note that we use

the Feret diameter along the oscillation angle as a measure of how

well oscillations align with long or short axes, but this does imply

that it represents a fair estimate of the distance traversed by each

MinD protein. All the angle values extracted above are folded to

between 0° and 90° due to the multifold symmetry of rectangles.

Note that this MinD tracking method is restricted to the analysis

of two-node oscillations and is not suitable for striped oscillations.

The analyses of the final patterns in cells with various widths

were carried out manually. The Matlab scripts used in this study

are provided as Computer Code EV1.

Analytical and numerical methods

All simulations were performed using the FEM method as imple-

mented in the software Comsol Multiphysics 4.4. The linear stability

analysis was performed with Wolfram Mathematica 10 in elliptical

geometry as introduced in Halatek and Frey (2012). We define the

non-degeneracy of even and odd modes as:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1
Reðrei Þ � Reðroi Þ
� �2r

where Re rei
� �

and Re roi
� �

denote the growth rate of the i-th even

and odd mode, respectively.

The model is based on bulk–boundary coupling through a reac-

tive boundary condition as introduced in Halatek and Frey (2012).

For the cytosol, model equations read:

@tuDD ¼ DDr2uDD � kuDD

@tuDT ¼ DDr2uDT þ kuDD

@tuE ¼ DEr2uE

Here, uDD denotes the density of cytosolic MinD-ADP, uDT
cytosolic MinD-ATP, and uE cytosolic MinE; ∇ the Nabla/Del opera-

tor in the cytosol (coordinate-free); DD the diffusion coefficient for

cytosolic MinD, DE the diffusion coefficient for cytosolic MinE, and

k the cytosolic nucleotide exchange rate.

At the membrane, we have

@tud ¼ Dmr2
mud þ kD þ kdDudð ÞuDT � kdEuduE

@tude ¼ Dmr2ude þ kdEuduE � kdeude

Here, ud denotes the density of membrane-bound MinD, and ude
membrane-bound MinDE complexes; ∇m the Nabla/Del operator on

the membrane (coordinate-free); Dm the diffusion coefficient for the

membrane, kD the MinD attachment rate constant, kde the MinDE

detachment rate, kdD the MinD recruitment rate constant, kdE the

MinE recruitment rate constant. Membrane and cytosolic dynamics

are coupled by a system of reactive boundary conditions:

DDrnuDD ¼ kdeude

DDrnuDT ¼ � kD þ kdDudð ÞuDT

DErnuE ¼ �kdEuduE þ kdeude

Here, ∇n denotes the (outer) normal derivative at the boundary

of the cytosol (membrane). Unless noted otherwise, all system

parameters are taken from Halatek and Frey (2012), cf. listing in the

Appendix.

Expanded View for this article is available online.
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