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Abstract
While the world we live in becomes more saturated with ubiquitous digital 
displays, and as the threshold for creating digital media continues to 
drop, image quality is an issue that concerns an increasingly large 
segment of the population. Higher resolutions, increased dynamic range, 
and faster frame rates put increasing demands on resources such as disk 
space and transmission bandwidth. Unfortunately, these resources are 
also needed for other functionalities of our digital devices and are often in 
short supply.

To find new ways to optimize the production pipeline of visual media while 
maintaining a good image quality, more knowledge is required about how 
we perceive visual content. In this work, we examine how a specific 
viewing task or content affect the viewing behavior of an observer. We 
then examine how localized differences in image integrity affect the 
overall perceived quality. From these results we gain knowledge on how 
image quality should be optimized for a given viewing behavior. In 
addition, we show that for specific tasks there is a limit to the required 
content integrity. We investigate these research questions empirically 
using eye tracking to scan in real time how the viewing behavior changes 
under different tasks and for different content, while one of the tasks 
involved scoring image quality.

Our results show that the viewing task and image content have a 
significant effect on the viewing behavior. We also find that the region of 
interest has a 5 times stronger effect on perceived quality in still images 
than the rest of the image. In videos, this effect is increased to 10 times. 
This finding can be utilized to optimize digital content once the region of 
interest is identified. We finally find that certain applications can mask 
degradations in image quality, making it redundant to allocate extra 
resources to maintaining content integrity.
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1. 
Introduction
With the rapidly accelerating advancements in multimedia technologies, 
we find ourselves increasingly surrounded by numerous images, apps, 
alerts, adverts, videos, and other stimulating items. All of these items are, 
in a sense, competing for some of our resources, such as our attention, 
money, time, or combinations thereof. Deciding which item(s) to attend to 
and which to ignore is quite a complicated process. Undoubtedly, one 
such element is the quality of items, since good quality tends to be 
appreciated by the receiver. When it comes to images and videos, “good 
quality” entails the visual integrity of the content and how purely it 
conveys its source in nature and/or the vision intended by the content 
creator. This is what this book refers to as Image Quality (IQ). Given this 
definition, we will examine why IQ is such an important notion, and 
explore how it interferes with visual attention.
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1.1. Image Quality (IQ) Perception

As humans, we crave visual stimuli, when looking at a scene in real life, 
admiring a painting or a printed photo, or looking at an image or a video 
on an electronic display. When it comes to displays, IQ is not to be 
ignored. It has been shown before in a number of market studies that IQ 
(along with cost) is one of the top  customer considerations in purchasing 
a product [1]. Achieving good IQ  remains to be a moving target. If we take 
the displays of mobile phones as an example, it is obvious that a high-
end (Nokia) phone with a monochromatic  96x60 pixel display was 
considered to have good IQ  less than a decade ago. Today a typical 
mobile (smart) phone has a display resolution of 1920x1080 pixels 
capable of reproducing millions of colors, and still developments on 
improving IQ  by means of, for example, using OLED displays are 
ongoing. With the advancements in display technologies and related 
changes in the multimedia supply chains, there are many new variables 
that affect the eventual images reaching the viewer. Examples include 
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Figure 1.1 The Image Quality Circle breaks down the quality perception process 
into four different steps represented in the four boxes in the figure. Only the link 
between Steps 1 and 2 is well understood, while the other two require further 
research. 



variables related to compression algorithms (e.g. JPEG, H.264,  HEVC), 
transmission media (e.g. Internet streaming, Blue-ray disks), and display 
specifications (e.g. size, resolution, color depth).

It is vital here to highlight the concept of perception in relation to image 
quality. A lot of work has been put in defining parameters that could 
objectively describe an image. By calculating the amount of current going 
through an LED panel, we are able to accurately predict the amount of 
light it is going to produce, given that we know enough about its 
manufacturing specifications. We know exactly the resolution and the 
refresh rate of each display. Moreover, if we are in doubt of our 
calculations, we can use sophisticated measurement devices (such as 
colorimeters and microdensitometers) to measure the physical 
parameters of the images produced by these display devices. However, 
one should understand that this information only gives us a part of the 
information when we need to determine what perceived IQ  is. In fact, at 
the point we have measured all the physical properties of the image, 
perception has not started yet.

Image quality appreciation starts with the image information entering the 
eye and ends up with the brain forming an opinion regarding the quality of 
a specific image. Initially, the human visual system (HVS) processes the 
image information in order to send it to the brain. In this stage, some 
details of the physical attributes are lost (or simplified) due to limitations 
of the HVS. For example, the finite resolution of the eye (determined by 
the number of cone/rod light receptors in the retina) is only capable of 
capturing details up  to a specific limit [1]. Any details beyond that limit are 
simply filtered out. Similarly, when it comes to subtle differences in image 
aspects (e.g. brightness or contrast), the HVS can only discern these 
differences to a specific level of detail known as the Just Noticeable 
Difference (JND) [2]. Any variations within these JNDs, which may be 
easily measurable using instruments, are completely imperceptible by 
humans.

From the above discussion, it is clear that IQ is more than a collection of 
objectively measured technical specifications. Hence, a more human-
centered approach is needed to improve imaging products in terms of IQ. 
As recently as the year 2000, Peter Engeldrum, in his book 
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“Psychometric Scaling”, pointed out the problems of a disorganized 
approach to researching IQ where there was even disagreement on 
whether perceived quality could be measured or only approximated. At 
the time, IQ  research was largely driven by industry in a fragmented 
manner that “led to confusion and chaos”  [1]. Engeldrum introduced the 
Image Quality Circle (shown in Figure 1.1) as a model to serve as a 
common starting point that researchers can refer back to when 
discussing their work. The circle represents the path between the 
technical variables of the image reproducing system (block 1 in the 
figure) and the eventual quality opinion of the observer (denominated 
“customer” in block 4). Engeldrum illustrates here that finding the relation 
between these two variables is too complex, and proposes another path 
with two intermediate steps (blocks 2 and 3). We already have a path to 
establish the physical image characteristics, though understanding how 
combinations of these characteristics are perceived  in terms of attributes 
and eventually give a quality preference are still illusive affairs. One of the 
most important contributions that the Image Quality Circle model brought 
to the field was that it clearly put a distinction between the physical and 
technological aspects of the process and the human perception aspects. 
Looking at Figure 1.1, one can clearly see that the last two missing links 
in the circle are centered around the human element of the puzzle.

1.2. IQ Assessment

The interest in objective image quality assessment (IQA) has been 
growing at an accelerated pace over the past decade. Objective IQA 
measures aim to predict IQ perceived by human subjects, who are the 
ultimate receivers in most image processing applications. To evaluate the 
accuracy of such measures, large independent databases of images 
have been created where the quality of the images was scored by a 
number of observers [3,4]. By averaging the scores from all observers, 
each image received a, so called, Mean Opinion Score (MOS) which 
represents the ground truth for the quality of these images. The aim of all 
objective IQA metrics is to be able to predict the MOS of images as 
closely as possible.

Depending on the availability of a pristine reference image that is 
presumed to have perfect quality, IQA measures may be classified into 
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full-reference (FR), reduced-reference (RR), and no-reference (NR) 
methods [5-8]. FR measures require full access to the reference image, 
while NR methods assume completely no access to the reference. RR 
methods provide a compromise in-between, where only partial 
information in the form of RR features extracted from the reference image 
are available in assessing the quality of the distorted image. IQA 
measures may also be categorized into application-specific or general-
purpose methods. The former only apply to some specific applications 
where the types of distortions are often known and fixed (e.g. JPEG 
compression). The latter are employed in general applications, where one 
may encounter diverse types and levels of image distortions.

A considerable number of IQA measures have been proposed in the 
literature, exhibiting substantial diversity in the methodologies used. Still, 
they also share some common characteristics. In particular, all of them 
are rooted from certain knowledge in one or more of the following three 
categories:

1. knowledge about the image source, which can be either deterministic 
(when the reference image is fully available) or statistical (when 
certain statistical image models are employed)

2. knowledge about the distortion channel, which is often associated 
with some known facts about the specific distortion process that the 
images underwent, for example, blocking and blurring artifacts in 
JPEG compression, and blurring and ringing effects in wavelet-based 
image compression

3. knowledge about the HVS, where computational models are 
developed based on visual, physiological, and psychological studies.

In general, the available objective IQA approaches utilize either signal 
fidelity measures (i.e., examining only numerical differences from the 
original content), or perceptual quality metrics (i.e., also taking into 
account aspects of the HVS). The signal fidelity measures include the 
traditional MSE (mean square error), PSNR (peak signal to noise ratio), 
or similar approaches [9]. These approaches are quite popular and widely 
used since they are simple, well defined, and have a clear numerical 
meaning. Some of these metrics have been used to evaluate the quality 
of picture transmission channels, such as throughput, jitter, noise, and 
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packet loss rates. However, the same transmission parameters may 
result in different degradation of visual content, and therefore different 
perceived IQ. As predictors to perceived IQ, these signal fidelity 
measures can perform quite poorly since they do not take into account 
any aspect of the HVS [10, 11]. Since perceived quality is determined by 
the viewer’s perception, it is much more complex than the statistics that a 
typical network management system can provide. It has been well 
acknowledged that a signal fidelity measure does not align well with 
human visual perception of images and videos [9,12-15].

To get a better objective prediction of subjective visual quality scores, a 
new generation of perceptual quality metrics is being developed. 
Subjective IQ  is a function of visual content where the change of 
predefined test signals through a system is not necessarily a reliable 
source of visual quality measurement. In spite of the recent progress in 
related fields, objective evaluation of IQ  in line with human perception still 
has a great room for improvement [16-20] due to the complex, 
multidisciplinary nature of the problem. It combines challenges from the 
fields of physiology, psychology, computer science, and (most 
importantly) human vision. A better understanding of the HVS 
mechanisms, and the diversified scope of its applications and 
requirements, are key elements in improving perceptual quality metrics. 
Still, there has been some interesting advances in IQA methods lately. 
For example, a handful of objective IQA measures have been shown to 
significantly and consistently outperform MSE and PSNR in terms of 
correlations with subjective quality evaluations [15]. Until now, the area 
that has achieved the greatest success is FR IQA of gray-scale still 
images. Several newer algorithms [5-8,21,22], significantly outperformed 
MSE and PSNR in a series of tests based on several MOS rated image 
databases. 

When it comes to NR metrics, we need a more clever approach than 
comparing the image to a reference. Most extensively developed in this 
area are algorithms to measure blockiness in compressed images or 
videos. One approach is to use a Fourier transform along the rows and 
columns to estimate the strength of the block edges of the image [23]. An 
alternative approach proposed a nonlinear-model for NR quality 
assessment of JPEG images, where the parameters of the model were 
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determined with subjective test data [19]. Vlachos used cross-correlation 
of subsampled images to compute a blockiness metric [24]. Some 
proposed NR metrics are based on computing gradients along block 
boundaries, where the block edge strength for each frame was computed 
[25]. The general idea behind such metrics is to evaluate the visibility of 
each block (artifact) edge. These approaches utilize the fact that the 
visibility of a block edge may be masked by more spatially active areas 
around it, or in regions of extremities in illumination (very dark or bright 
regions) [10, 26]. 

Just like with the FR metrics mentioned above, some NR metrics also 
attempt to improve their accuracy with a weighting function simulating 
visual attention based on proper ties of the HVS [25]. Therefore, in order 
to understand the value of these new approaches, it is useful to learn 
more about visual attention itself.

1.3. Understanding Visual Attention (VA)

In our everyday perception of our environment, we pay attention to some 
things and ignore others. We decide that it would be interesting or 
necessary to look here but not there. And as we shift our gaze from one 
place to another, we are doing more than just "looking": we are directing 
our attention to specific features of the scene in a way that causes these 
features to become more deeply processed than those features that are 
not receiving our attention. Most of the time we exhibit divided attention 
because we need to focus on a number of things at once. For example, 
as you drive a car, you need to simultaneously attend to the other cars 
around you, traffic signals, road signs and pedestrians, while occasionally 
glancing at the navigation system and checking your rear view mirror. 
Since no mortal entity is limitless, there is naturally a limited amount of 
attention a person can possess. Therefore, in order for a human to 
function properly, it follows that one has to be able to prioritize his 
attention on some stimuli while ignoring others.

One mechanism of selective attention is eye movements. By scanning a 
scene, the fovea is aimed at places we want to process more deeply. The 
human eye is constantly moving to take in information from different 
segments of a scene. A question that one can ask here is whether eye-
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movements can be directly linked to attention. The answer to this 
question is, not always. For example, if you are trying to read a book you 
are not interested in (just to pass an exam), at some point, you become 
aware that although you are moving your eyes across the page and 
"reading" the words, you have no idea what you just read. So, even 
though your eyes were looking at the words, your attention was dedicated 
to something else. Still, despite possible misinterpretation, eye 
movements are the best (currently available) way for measuring where 
attention is allocated. It is therefore beneficial to examine it further and 
establish methods to measure and represent it.

One can wonder how human eyes actually scan the scene when looking 
at images. Tracking the eye movements can help  us understand this 
process. To record eye movements, early researchers resorted to using 
devices such as small mirrors and lenses that were attached to the eyes 
[27]. However, modern researchers use camera-based eye trackers that 
track the position of the eye without attaching anything to the eye, for 
example by using regular cameras or by using light in the infrared 
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Figure 1.2.  A representation of actual eye scan path (from eye tracking data) from 
an observer asked to look at the image casually. The arrows represent saccades 
where the eye is moving from one location to another. The circles represent 
fixations where the eye is focused on a specific part of the scene.



spectrum (invisible to the human eye) reflected at the retina. Such 
devices track the eye movements and remotely determine the gaze 
target, making the process far less intrusive.

Using an eye-tracker results in information as presented in Figure 1.2, 
overlaid with the original image the viewer was looking at. The eye 
movements shown by the arrows in Figure 1.2 are called saccades. The 
saccades are punctuated by pauses, indicated by the circles, where the 
eye stops momentarily to take in information about a specific part of the 
scene. These pauses, called fixations, indicate where the person is 
attending. What determines where we fixate in a scene? The answer to 
this question is complicated because our looking behavior depends on a 
number of factors, including characteristics of the scene and the 
knowledge and task of the observer.

Looking at the scene in Figure 1.3, certain areas stand out because they 
have high contrast, contain easily recognizable features (e.g. a face or a 
car), or entice the viewers curiosity like the clock showing the time the 
picture was taken. These areas have high saliency, as they attract 
attention based on their stimulus properties. This type of saliency usually 
is referred to as natural saliency, i.e., saliency measured when the viewer 
is looking to an image casually, without having a certain task or to 
respond to a certain question.
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Figure 1.3.  On the left  is an image used for an eye tracking experiment. By 
averaging the saliency data from several observers and superimposing it as a 
heat map over the original image (right), it is possible to see where the salient 
regions of the image are located.



By using eye tracking equipment, it is possible to measure natural 
saliency. Figure 1.3 on the right shows the scene overlaid by a saliency 
map  that shows which areas of the image are more salient than others. 
The figure visualizes the saliency map as a heatmap, though in pure 
terms, a normalized saliency map is a matrix of values between 0-1, that 
are associated to the corresponding pixel in the image and characterize 
its probability to be attended (i.e. to attract attention) by an average 
observer.

Previous work has already shown that the observer’s task affects the 
visual attention deployment in a specific scene. The earliest example is 
the work of Yarbus [27] performed in 1967. It involved a series of 
recordings of observers viewing a painting called The Unexpected Visitor 
(Figure 1.4). Yarbus asked the same individual to view the painting seven 
times, each time with a different instruction before starting to view the 
image. These instructions asked the viewer to make a series of 
judgments about the scene depicted, to remember aspects of the scene, 
or simply to look at it freely. The data illustrated compellingly that simply 
altering the instructions given to the observer, and thus their task while 
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Figure 1.4. Yarbus [28] asked the same observer to look at the “unexpected 
visitor” painting several times, each for a duration of 3 minutes. The observer was 
given a different task before each viewing as described above. An eye tracking 
device allows us to see where the viewer was looking with each of the assigned 
tasks. 



viewing, had a profound effect on the viewing behavior of the observer, 
as shown with the different eye movement paths in Figure 1.4. As Yarbus 
observed: “Depending on the task in which a person is engaged (i.e., 
depending on the character of the information which he must obtain) the 
distribution of the points of fixation on an object will vary correspondingly, 
because different items of information are usually localized in different 
parts of an object” [27]. This example shows that the demands of the task 
override the scene’s natural saliency.

Our ability to quickly comprehend a scene even when it is presented 
briefly or off to the side, is an important skill, but there is a great deal of 
evidence indicating that when it comes to determining specific details, 
focused attention is necessary. This has been illustrated in a number of 
ways.

There are even studies showing that task can completely block the 
perception of the observers. Arien Mack and Irvin Rock [28] 
demonstrated this effect using the procedure shown in Figure 1.5. The 
observer's task is to indicate which arm of the cross is longer, the 
horizontal or the vertical. Then, after a few iterations of the trial, a small 
test object, which is within the observer's field of clear vision, is added to 
the display. When observers are then given a recognition test in which 
they are asked to pick the object that was presented, they are unable to 
do so. This shows that concentrating their attention to the vertical and 
horizontal arms apparently made observers blind to the unattended test 
object.
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Figure 1.5. Inattentional blindness experiment [29]: participants were asked to 
judge whether the vertical or horizontal arms are longer in each trial. After a few 
trials, a geometrical object appeared on the screen together with the arms.  The 
participants showed difficulty in recalling the geometrical shape of the object. 



In another example, Daniel Simons and Christopher Chabris [29] created 
a situation in which one part of a scene is attended and the other is not. 
They made a 75-second film that showed two teams of three players 
each. One team was passing a basketball around, and the other that was 
guarding that team by following them around as in a basketball game. 
Observers were told to count the number of passes, a task that focused 
their attention on one of the teams. After about 45 seconds, one of two 
events occurred. Either a woman carrying an umbrella or a person in a 
gorilla suit walked through the "game," an event that took 5 seconds.

After seeing the video, observers were asked whether they saw anything 
unusual happening or whether they saw anything other than the six 
players. Nearly half (46%) of the observers failed to report that they saw 
the woman or the gorilla. In another experiment, when the gorilla stopped 
in the middle of the action, turned to face the camera, and thumped its 
chest, half of the observers still failed to notice the gorilla (Figure 1.6). 
These experiments demonstrate that when observers are given a task 
that consumes their entire attention, they can fail to notice another event, 
even when it is right in front of them. This opens the door for many 
potential questions regarding attention, viewing task, and IQ perception. 
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Figure 1.6. By asking viewers to focus on the basketball being passed around in 
a video, some completely missed a man in a gorilla suit walking across the scene 
and pausing in the middle to beat his chest [30]. 



1.4. Visual Attention and Image Quality

As explained in Section 1.3, there is no doubt that VA plays a central role 
in the HVS. However, there are different (and sometimes contradicting) 
views regarding the role of VA in IQA. Some research has shown 
improvements in IQ prediction by incorporating VA information in their 
algorithms [30-32]. On the other hand, further research argues that 
applying VA data in perceptual quality metrics is not a trivial affair and 
requires some better understanding of how the HVS works [33]. So far, 
the mechanism for incorporating VA data in these IQA metrics has been 
to simply use the saliency map  of the image as a weighting map  for the 
IQA metric values. This meant that the quality of the areas of the image 
with a higher saliency value would have a higher contribution to the 
overall MOS value of the image. 

Let us take the image in Figure 1.7. as an example. This particular image 
was created by applying a strong (lossy) JPEG  compression to the 
original image resulting in a low bitrate file. Note how the sky in the 
background suffers from clear color banding artifacts that betrays the files 
low bitrate. However, the statue in the center of the image contains more 
details that mask the artifacts in the image and make them less 
noticeable. Assuming that the statue is the most salient region of an 
image, an IQA metric that uses simple weighting of VA data may give this 
image a high quality score despite its low bitrate. The artifacts in the sky 
will be weighed down by the low saliency they have. At the same time, 
assuming that the metric accounts for artifact masking, the statue area 
will have a higher quality score which will be weighed up  by its high 
saliency. This results in a high overall quality score.

Here one starts to wonder, is it correct to give an image like the one in 
Figure 1.7. a high quality score? It is true that the statue is the most 
salient region in the image, while the artifacts in the sky are quite visible, 
and so also may attract attention. Will the viewers notice these artifacts 
even though they mostly give attention to the statue? And if they do, how 
much will that affect their judgment of the quality of the image? After all, 
the part of the image that they are most interested in seems to be in good 
quality. So will they give the image a high or low MOS? We simply do not 
know the answers to these questions. Additionally, this makes it clear that 
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a simple weighting of VA data in IQA metrics is quite a naive approach, 
which does not represent the complex process of subjective IQ 
evaluation. 

Another important aspect that should be examined more carefully is how 
VA data pertain to the task of the viewers. As we saw in Section 1.3, the 
task of the observer can completely change his VA deployment on the 
same scene. So what type of VA data should be used for IQA? Some 
IQA metrics that reported improved results using recorded VA data (via 
an eye tracker), observed that greater improvement was found with VA 
recorded in task-free viewing than in the cases of subjects being asked to 
assess the picture quality [34]. On the other hand, all MOS scores 
collected by researchers have been collected while giving the viewers a 
task to score the quality of the images. Does that mean that we have 
changed the viewing behavior of the observers? And to what extent has 
their viewing behavior been changed? It is vital to examine these issues 
closely since they have a direct effect on the reliability of the MOS score 
databases which in turn form the basis for modeling and evaluating IQA 
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Figure 1.7. An image suffering from high JPEG compression resulting in a 
relatively low bitrate file. Note how the artifacts are more visible on the sky in the 
background, while the details on the statue make the artifacts less visible. 



metrics. The answers to these questions will also help  to guide the efforts 
in VA modeling. Most existing computational VA models are bottom-up 
(i.e. based upon contrast evaluation of various low-level features in 
images) in order to determine which locations stand out from their 
surroundings [35]. As to the top-down (or task-oriented) attention, there is 
still a call for more focused research, although some initial work has been 
done [36,37].

Besides the task of the observer, one should also consider how artifacts 
in the image can affect the VA (as we discussed with Figure 1.7). Some 
research has argued that distortions in image compression (e.g. with 
JPEG artifacts) and transmission (e.g. from packet loss) change the 
subject’s eye fixation and the associated duration [38], while other work 
has indicated that there is no obvious difference in the saliency maps 
obtained for a distorted  video sequence and its corresponding pristine 
version [39]. This shows that the influence of the stimulus IQ on VA is still 
an open issue for research as well.

1.5. Research questions and thesis layout

So far we have seen how important IQ is, and learned a bit about IQA 
metrics. We also found out that VA can help  improve the performance of 
these metrics and had a look about its inner workings. Still, we observed 
that the relation between VA and IQ is not completely understood. Due to 
the vast complexity of the HVS and human perception, more work is 
needed to examine this relation. In the following we will formulate a few 
research questions that embody the direction this work is going to head 
towards. The research questions of this thesis are:

1. How does the task given to the observer and quality level of the 
stimulus affect their viewing behavior? And how is that different 
between images and videos?

2. How does the observer evaluate the overall quality of a stimulus if 
different parts of the scene convey a different level of quality? And 
how does that differ between images and videos?

3. Can the task given to the observer mask the perception of artifacts in 
the scene?
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This thesis contains a collection of chapters (Chapter 2 - Chapter 6) that 
take us on a journey to examine these questions from different angles. 
We start with Chapter 2, which looks at how the task and quality level can 
affect VA in images. In Chapter 3 we examine how the global image 
quality of still images is determined when salient parts are shown at a 
different quality level than the background regions. Chapters 4 and 5 
explore the same questions as Chapters 2 and 3 respectively, but in this 
case addressing video content. Great care and effort has been taken to 
keep  the methodology and test equipment as similar as possible in order 
to be able to compare the results between still images and videos. 
Studying the relation between task load and artifact perception is handled 
in Chapter 6. Subsequently, reflecting back on all the previous chapters, 
Chapter 7 discusses the main findings and how they relate to each other. 
Finally Chapter 8 shortly presents the main conclusions of this thesis.
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2. 
Effects of Task and Image Properties 
on Visual Attention Deployment in 
Image Quality Assessment
Abstract

It is important to understand how humans view images, and how their 
behavior is affected by changes in properties of the viewed images and 
the task they are given, particularly the task of scoring the image quality. 
This is a complex behavior that holds great importance for the field of 
image quality research.  This work builds upon 4 years of research work 
spanning three databases studying image viewing behavior. Using eye 
tracking equipment, it was possible to collect information of human 
viewing behavior of different kinds of stimuli and under different 
experimental settings. This work performs a cross-analysis on the results 
from all these databases using state of the art similarity measures.

The results strongly show that asking the viewers to score the image 
quality significantly changes their viewing behavior. Also muting the color 
saturation seems to affect the saliency of the images. However, change 
in image quality was not consistently found to modify visual attention 
deployment, neither under free looking, nor during scoring. These results 
are helpful in gaining a better understanding of image viewing behavior 
under different conditions. They also have important implications on work 
that collects subjective image quality scores from human observers.
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2.1. Introduction

Mean opinion scores (MOS) obtained in subjective image and video 
quality experiments are to date the only widely accepted measure of 
perceived visual quality in terms of reliability [1]. However, to make quality 
assessment practically implementable in real-life applications, e.g., in 
post-processing chains of television sets, objective quality models are 
needed [2]. These models usually start from image or video signal 
features and are then trained to predict the MOS, a process that may be 
improved by including human vision characteristics, such as masking or 
visual attention (VA). Focusing on the latter, many researchers have 
successfully shown an interaction between visual quality preferences and 
VA deployment [3, 4]. As a result, many attempts have been presented in 
literature to integrate VA information into objective quality metrics [5-15], 
yet with mixed results in terms of accuracy improvement. 

In part, the lack of a clear consensus on the extent to which visual 
attention is beneficial to visual quality assessment may be related to the 
fact that different types of VA information have been used in the different 
studies. VA information obtained by tracking the eye-movements of 
people while either freely observing images (e.g., [9]) or scoring their 
quality [5] was interchangeably used in literature. Furthermore, visual 
attention data were either recorded or extrapolated through models (e.g. 
[16-18]) from both unimpaired and quality impaired images. Because of 
its intrinsic nature, both viewing task and quality level of the image may 
significantly alter the deployment of visual attention. Consequently, the 
type of information to be integrated in the quality metrics may be very 
diverse. It is therefore interesting to verify and quantify to what extent 
visual attention deployment changes depending on the experimental 
conditions under which it is captured. This work aims at doing so by 
analyzing visual attention data obtained through eye-tracking of image 
observation under a number of different tasks and visual quality 
conditions.

Visual attention is a prominent characteristic of the human visual system 
(HVS) and as such it has been investigated for a long time. When 
observing a scene, the human brain exploits visual attention mechanisms 
to reduce the complexity of the visual information to be processed by the 
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visual system [19]. Scene awareness is built by shifting the eye gaze 
from one part of the scene to the next, gradually learning more about it 
one piece at a time. Since the processing resources of the brain are 
limited, the visual stimuli are constantly competing for these resources 
and the most relevant stimuli in a given context are favored over the less 
relevant ones. 

An effective tool for studying visual attention is eye tracking. Eye-trackers 
record eye movements of observers attending at scenes or images, 
delivering then a profile of the viewing behavior in the form of a collection 
of fixations and saccades. Fixations represent the viewing location at a 
moment when the pupil has seized to move, while a saccade is an 
abrupt, rapid, small movement of the pupil while the eye shifts the 
viewing location from one fixation to the next. The analysis of the duration 
of both fixation and saccades is already useful in the analysis of viewing 
behavior (e.g., [26, 31]). However, since visual perception is active only 
during fixations and is largely suppressed during saccades [20], often 
fixation data are further analyzed to better understand visual attention. 
Fixation paths [21] can reveal important insights in the spatial nature of 
visual attention deployment. The further transformation of fixation data 
into saliency maps [22, 23], representing the probability that a certain 
location in the image content gets attention, can also bring detailed 
information on the spatial deployment of visual attention. In particular, 
discrepancies in the saliency distribution between images as obtained 
under different viewing conditions (e.g., while scoring image quality or 
freely observing the image) can indicate dissimilarities in VA deployment 
due to the change in viewing condition. The analysis of eye-tracking data 
is therefore a rich source of information for our purpose to detect to what 
extent VA data collected under different tasks and visual quality 
conditions are (in)consistent.

Reasons for possible inconsistency can be found by looking at the basic 
functioning of VA. Two processes contribute to the deployment of visual 
attention: bottom-up  attention and top-down attention. In general, bottom-
up  is rapid, saliency-driven, and task independent, while top-down is 
slower and task dependent [22]. Such dependency has been studied 
extensively in the past. Already in 1935 G. Buswell [24] proved, by means 
of eye tracking, that the task had a substantial effect on how viewers 

    27



looked at the image. Buswell even referred to comments by other 
researchers pondering over this issue as early as 1907 [25]. In 1967, a 
famous experiment by Yarbus involved asking an observer to look at the 
painting “The Unexpected Visitor” by I.E. Repin [21]. The observer was 
given 7 different tasks while looking at the painting and the eye 
movement patterns were recorded. The results showed a clear difference 
in viewing behavior. For example, when given the task of judging the 
ages of the people in the photo, the observer concentrated on their faces, 
while when asked about what they were doing the observer shifted the 
focus to what they were holding in their hands. These conclusions are not 
surprising since the given tasks basically convert the viewing process 
from bottom-up to top-down. In a similar way, a visual quality scoring task 
might alter the natural deployment of visual attention when observing an 
image. Some evidence in this sense has been shown already [26]. 
However, no consistent meta-analysis has been carried out so far across 
data collected from different experiments that shows the effect of a visual 
quality scoring task on (top-down) visual attention.

Visual attention mechanisms might be altered by the presence of 
impairments in the image as well. Bottom-up attention is deployed in the 
very first stage of the observation of a scene, and drives the selection of 
eye gaze locations (fixations) based on the visual (physical) 
characteristics of the scene. Color, texture and motion contrast strongly 
influence this selection, in a way that is largely independent of the 
semantic value of the elements placed at that location [22]. Visual 
impairments due to signal distortions (e.g., blockiness due to 
compression, noise) introduce singularities in the image; as a 
consequence, it is possible that their visible presence alters the natural 
VA deployment, and the resulting saliency distribution. A few studies have 
reported preliminary information in this sense, yet without a clear 
consensus. In the work by Vuori and others [27] the quality of the judged 
image was shown to have an impact on the saccades’ duration. 
Researchers in [28] and [29] looked at this aspect from the computational 
saliency point of view. Some researchers [3] showed that saliency maps 
of unimpaired images obtained from free-looking eye-tracking data were 
poorly correlated to the maps derived from the image quality scoring of 
slightly impaired versions of the same images. This effect was shown, 
though, to decrease with the increase of the amount of impairment visible 
in the images. In videos, quality was shown to have an impact on the 
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dispersion of fixations (increasing with the decrease of video quality) and 
to be positively correlated with the duration of the fixations [30]. 
Furthermore, the correlation among saliency maps corresponding to eye-
movements recorded while scoring videos affected by packet-loss 
artifacts was found to increase along with the quality [31], whereas this 
was not the case for videos affected by blocky artifacts only [32]. In 
general, no clear conclusion can be drawn from the above studies. 

A factor contributing to the lack of agreement in the results presented 
above could be the fact that different indicators were used to detect an 
effect of visual quality and viewing task on visual attention (correlation of 
saliency maps, duration of fixations, dispersion of fixations, etc.). This 
research builds further on earlier work [3, 9, 23, 33] and aims at analyzing 
the impact of task and quality on visual attention, by (1) using a collection 
of databases of VA data collected at Delft University of Technology over 
four years of research and (2) investigating trends and attention 
deployment shifts through a large and consistent set of saliency similarity 
measures [23]. By using four different similarity measures and a 
collection of diverse datasets, we aim as well at comparing the 
soundness of the different similarity indicators and at giving 
recommendations on which to use to more precisely unveil trends in 
visual attention data.

The remainder of this chapter is organized as follows. Section 2.2 
describes the problem and data analysis setup. Details on experimental 
visual attention data collection are provided in Section 2.3. Section 2.4 
gives more details on how we implemented the similarity measures to 
compare the saliency maps. Section 2.5 starts with an overview of the 
results using different similarity measures. These results are then used to 
closely examine how scoring task and quality losses affect visual 
attention deployment. Section 2.6 looks again at the data using different 
analysis techniques to discern how task changes viewing behavior. 
Finally, the conclusions of this research are summarized in Section 2.7.

2.2. Analyzing similarities in visual attention 
deployment: problem setup

To analyse the effect of factors such as task and visual quality on visual 
attention, we first define the concepts of reference  (control) and test 
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viewing situation. In a typical experiment, eye movements of a number of 
observers are first recorded for different images in a reference setting, 
e.g., during task-free image observation. Then, one or more factors are 
introduced to modify the reference condition (e.g., the viewing task, an 
impairment of the visual quality of the images used in the reference 
condition, or a combination of the two), and the eye movements are 
recorded again with the new setup. We will refer to this experimental 
condition as the test condition.

To observe the effect of a (set of) factor(s) on visual attention, we process 
two collections of eye-movement data recorded via an eye-tracker. Given 
a set of images, in the most general setting we have, for every image I in 

the dataset, a collection of eye movement data , recorder under the 

reference condition, and a collection of eye movement data , 
obtained under the test condition, i.e. under the effect of the factor(s) of 

interest. We then study similarities between the two collections and

.This can be approached in multiple ways, from the analysis of 
frequency of fixations and saccades [26, 28, 34] to a more complex 
analysis of the spatial deployment of fixations. In this study, we privilege 
the latter, for two main reasons: (1) a spatial analysis can reveal shifts in 
the locations attended, perhaps due to the presence of quality 
impairments, and (2) VA information is often integrated in objective quality 
metrics as a local weighting factor (pixel-by-pixel or region-by-region) for 
metric values [5-15]; as a consequence, its spatial distribution is of major 
interest for visual quality research.

We study the spatial deployment of visual attention by means of saliency 
maps. These maps [22] are a visual representation of the probability that 
a location of the scene is attended by the average observer. Although 
originally intended to represent spatial deployment of bottom-up  visual 
attention, in this study we are going to use the term “saliency map” to 
indicate the distribution of gaze probability resulting from bottom-up  and 
top-down attention jointly. To create saliency maps from the raw eye-

tracking data , k = 1,…, K , each corresponding to a different image I 
and observer k, the following procedure can be applied:
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1. Extract the set of fixation locations on the image F(I,k)=[(x1,y1), (x2,y2), 

…, (xn,yn)], where n is the number of fixations included in 

2. Create the fixation map for observer k

3. Create a global fixation map over all observers:

FM ( I )(x, y) = 1
K

FM ( I ,k )(x, y)
k=1

K

∑

4. Apply a Gaussian patch having a standard deviation σ of the 
amplitude of the fovea (about 2º of visual angle) to each fixation point 
in FM(I)(x,y) to obtain the saliency map, SM(I)(k,l):

where T is the total number of fixations over all observers. Note that 
in this formulation, no temporal information is considered (e.g. the 
duration of the fixations or their order).

As a result, each element of SM(I) expresses the probability that the 
average observer attends location (k,l) in image I over the observation 

period. Thus, given two saliency maps and , the 
impact of a specific (combination of) factor(s) on visual attention can be 
assessed by evaluating (dis)similarities among the two distributions

By now, many ways to quantify similarity among saliency maps have 
been reported in the literature [23, 34, 35, 36]. Some widely used 
examples of those so-called similarity measures are: linear correlation 
coefficient (LCC), Kullback-Leibler divergence (KLD), normalized 
scanpath saliency (NSS) [34], and structural similarity index (SSIM) [37]. 
The LCC is traditionally the most commonly used measure. A value of 
LCC = 1 indicates identical maps, while LCC = 0 indicates uncorrelated 
maps. The same holds for the SSIM measure. This measure was 
originally introduced as a full-reference objective quality metric, but has 
recently shown its merits in comparing saliency maps as well [23]. The 
rationale behind its usage lays in the ability of SSIM to capture structural 
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similarity among two images. In comparing saliency maps, we are 
interested in checking whether the structure of the saliency distribution 
has changed: in this sense, SSIM offers a valuable tool to quantify the 

extent to which the structure of the saliency in  is preserved 

in . The NSS returns a value greater than zero if the 
correspondence between two saliency maps is greater than what can be 
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Table 2.1. An overview of all the data used in this research with details about the 
number of  participants and the experimental setup. In terms of databases: LC 
refers  to the “complete LIVE dataset”, LS to the “LIVE subset dataset” and RS to 
the “ROI image set”. In terms of viewing tasks: FL refers to “free looking” and SC 
to “scoring”. In terms of stimuli quality and attributes: ORIG refers to the “original 
stimuli”, BW to “grayscale stimuli”, DIS to the “distorted stimuli”,  LQ to “low 
quality”, MQ to “medium quality” and HQ to “high quality”. Note that the data set 
RS FL DIS LQ is used once as test  data (i.e., Test-Data-7) and once as reference 
data (i.e., Reference-Data-4)

Eye Tracking Data Partic-
ipants Stimuli Stimuli Quality or 

Attributes Task

Reference-Data-1: 
LC FL ORIG

20 29 images from LIVE Database Full quality Free Looking

Test-Data-1: 
LC FL BW

20 29 images from LIVE Database Grayscale 
converted

Free Looking

Test-Data-2: 
LC SC DIS

20 29 images from LIVE Database JPEG distorted Scoring 
Quality

Test-Data-3: 
LC FL DIS

10 29 images from LIVE Database JPEG distorted Free Looking

Reference-Data-2: 
LS FL ORIG

20 6 images from LIVE Database Full quality Free Looking

Test-Data-4: 
LS SC DIS LQ

14 6 images from LIVE Database Heavy JPEG, Blur, 
or noise distortions

Scoring 
Quality

Test-Data-5: 
LS SC DIS MQ

14 6 images from LIVE Database Medium JPEG, Blur, 
or noise distortions

Scoring 
Quality

Test-Data-6: 
LS SC DIS HQ

14 6 images from LIVE Database Slight JPEG, Blur, 
or noise distortions

Scoring 
Quality

Reference-Data-3: 
RS FL DIS HQ

10 40 Images with clear ROI JPEG distorted Free Looking

Test-Data-9: 
RS SC DIS HQ

20 40 Images with clear ROI JPEG distorted Scoring 
Quality

Test-Data-7:
RS FL DIS LQ

10 40 Images with clear ROI JPEG distorted Free Looking

Reference-Data-4 
RS FL DIS LQ

10 40 Images with clear ROI JPEG distorted Free Looking

Test-Data-8: 
RS SC DIS LQ

20 40 Images with clear ROI JPEG distorted Scoring 
Quality



expected by chance. A NSS value of zero means that there is no such 
correspondence, and a value of less than zero means that there is anti-
correspondence between the saliency maps. Finally, the KLD is a 
measure of divergence of two distributions. The further away from zero 
the value is, the more dissimilar are two maps, in this particular case the 
maps being two-dimensional distributions of saliency. More details on the 
definition of these measures and how to calculate them can be found in 
the literature [23]. Each of these similarity measures has its advocates, 
but so far evidence in literature is too limited to clearly favor one similarity 
measure over the others. They capture different properties while being 
coherent in predicting the similarity between saliency maps [38]. For this 
reason, all measures are deployed in our analysis to give a multifaceted 
yet consistent analysis of effects of task and visual attention deployment 
throughout different eye-tracking databases. For the further investigation 
with a large-scale analysis, as a convention in the literature [3], [38], 
SSIM and NSS are employed.

2.3. Visual attention data collection

Our analysis is deployed on an ensemble of three databases that spans a 
wide range of stimuli and test conditions. All data used in this study can 
be retrieved from the Delft Image Quality Lab  repository [39]. Although 
the environmental conditions differed slightly from one experiment to the 
next (small variations in lighting condition and viewing distance, exact 
form of the scoring scale), all experiments were conducted in the same 
lab, using the same equipment. In this section, we describe the 
equipment used to collect the data as well as the experimental 
methodology used to collect each of the three databases. An overview of 
all data used and the details about the experimental setup  are given in 
Table 2.1; samples of the image content are shown in Figure. 2.1.

2.3.1 The eye tracker and related equipment 

All experiments were carried out with a SMI REDIII camera at sampling 
rate of 50 Hz and a tracking resolution of ± 0.1 deg. The iView X system 
developed by SMI provided the framework for the data recording, and the 
stimuli were shown via the Presentation Software from NeuroBehavioral 
Systems.  During the experiment, viewers were asked to place their head 
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on a head rest in order to avoid head movements and get the highest 
accuracy. The height of the head rest was adjusted to suit the viewer and 
ensured a comfortable and non-confining seating position while 
performing the experiment. The stimuli were displayed on a CRT monitor 
with a resolution of 1024x768 pixels and an active screen area of 
365x275mm. In order to avoid outside elements interfering with the 
results, the experiment was carried out in the User-Experience Lab of 
Delft University of Technology, which provides an experimental 
environment compliant to ITU BT.500 recommendations [40].

2.3.2 General experimental protocol

The protocol essentially consisted of a short introduction, after which the 
eye tracking system was calibrated by means of a 13-point calibration 
grid. For experiments involving multiple viewing sessions, calibration was 
repeated at the beginning of each new session. In all experiments, 
participants were briefed about the intent of the experiment and then 
went through a short training session, showing the participants a few 
example pictures and asking them to score a few stimuli when 
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Figure 2.1.  Subsets of  the images involved in the eye-tracking experiments.  LC 
(also named as complete LIVE dataset) is based on the entire 29 original images 
of the LIVE database [41]; LS (also named as LIVE subset dataset) is based on 6 
original images chosen from the LIVE database;  RS (also named as ROI image 
set) is based on 40 original images with clear region of interest [30].



appropriate. In the experiments collecting free looking VA data, 
participants were asked to look at the images as they would do when 
exploring new image content. The images were simply displayed one 
after the other for a time of 8 to 10 seconds (as will be detailed later in 
this chapter). All scoring sessions followed a no reference, single stimulus 
protocol [40]. In all experimental sessions, the images were shown to 
each participant in a different random order. Table 2.1 illustrates an 
overview of all the data used in this research, including details about the 
number of participants, the stimuli and the viewing tasks.

2.3.3 Complete LIVE dataset (LC)

The first dataset we examine is the LC data, also known as TUD LIVE 
eye-tracking database [9]. The dataset includes eye-tracking data in the 
form of saliency maps corresponding to the observation of the 29 original 
images provided by the LIVE database [41] under different experimental 
conditions, namely:

1. Reference-Data-1: LC FL ORIG free looking of the unimpaired 
images

2. Test-Data-1: LC FL BW free looking of grayscale versions of the 
unimpaired images

3. Test-Data-2: LC FL DIS free looking of impaired versions of the 
unimpaired images

4. Test-Data-3: LC SC DIS image quality scoring of impaired versions of 
the unimpaired images

2.3.3.1 Data collection for unimpaired images (LC FL ORIG and LC FL 
BW)

Forty students, being twenty-four males and sixteen females, 
inexperienced with eye-tracking recordings, were recruited as 
participants. After passing the Ishihara Test for Color Blindness, they 
were assigned to two groups of equal size, each with twelve males and 
eight females. The unimpaired versions of the LIVE images were 
evaluated along with grayscale versions of the same images; the latter 
were obtained after gray-scale conversion, using only the luminance-
component of the original content. The test stimuli were divided over two 

    35



groups of mixed original and grayscale images; thereby each group  saw 
half of the images in a random order. Each stimulus was shown for 10s 
followed by a mid-gray screen during 3s. The participants were requested 
to look at the images in a natural way (“view it as you normally would”).

2.3.3.2 Data collection for impaired images (LC FL DIS and LC SC DIS)

To create the images employed in conditions (3) and (4), the unimpaired 
images were altered by applying JPEG  compression with the quality 
parameter Q varying between 5 and 40, to cover a broad range of quality. 
To avoid that the recorded saliency was biased by viewing a scene 
multiple times, each of the unimpaired images was compressed at only 
one particular quality level (see [9] for more detail). A group  of 20 
observers, consisting of 12 males and 8 females, scored the quality of the 
impaired images on an ACR scale [40]. Since all unimpaired images were 
only compressed at one particular quality level, they were viewed only 
once per subject, and for each subject in a different random order. Each 
image was shown for a fixed time of 10s. 

2.3.4 LIVE SUBSET dataset (LS)

The second dataset we consider was designed to evaluate the effect of 
different types of visual impairments on viewing behavior. The TUD 
interactions dataset [3], here referred to as LIVE SUBSET or LS, includes 
various distorted versions of 6 original images chosen from the LIVE 
Database Release [41] (see Figure 2.1). These images were impaired by 
applying three types of distortions, namely JPEG  compression, White 
noise and Gaussian Blur; for each original image and distortion type, 
three different quality levels were selected. 

A total of 14 observers assessed all images in the dataset, while scoring 
their quality using the Single Stimulus method with a continuous 
numerical scale [40]. The scoring scale ranged from 0 to 10, where “0” 
represented very low quality and “10” indicated very high quality. The 
observation time was not constrained. To limit memory effects, all 54 
stimuli were divided in 18 groups of 3 stimuli, sharing both content and 
distortion type, and so differing only in quality level. The experiment was 
then structured in 3 sessions, where in each session only one image from 
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each of the 18 groups was selected. The selection was done randomly, 
but in such a way that each of the 3 images per group  was presented in 
only one of the 3 sessions. In the remainder of this paper, images and 
corresponding eye-tracking data from the LS dataset are divided into 
three test conditions according to the three quality levels of the images, 
i.e.:

1. Test-Data-4: LS SC DIS LQ low quality, for which images present 
strong visible impairments

2. Test-Data-5: LS SC DIS MQ medium quality, for which images 
present moderately visible impairments

3. Test-Data-6: LS SC DIS HQ high quality, for which the quality of the 
images is just minimally compromised

Each of the three subsets includes 18 images. As the experiment itself 
did not include a free looking session to be used as reference condition, 
in the following analysis we use a subset of Reference-Data-2: LC FL 
ORIG, namely that part including eye-tracking data obtained from free 
looking at the 6 unimpaired contents from which the images included in 
LS were derived (see Table 2.1).

2.3.5 ROI image set (RS)

The ROI (Region of Interest) dataset (also known as TUD Task Effect 
dataset [33]) was built to study the joint effects of quality and task on 
visual attention. The stimuli used in the experiment were created from 40 
original images. All images in this database were chosen to contain a 
clear ROI in the form of a human face, an animal, or an object that clearly 
stood out from the rest of the image. The size of the images was 600 × 
600 pixels (see examples in Figure 2.1). Each image was processed to 
produce 4 different versions, for a total of 160 stimuli. The four different 
versions of each image were obtained by compressing it (through JPEG 
compression) at four different quality levels, with quality factors ranging 
between Q=10 and Q=100. Two different experiments were carried out 
based on this image material, the first one involving free looking of the 
stimuli, and the second one involving a quality scoring task.
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2.3.5.1 Free looking data collection (RS FL DIS HQ and LQ)

The free-looking experiment had a total of 40 participants. They saw each 
image content only once, albeit at a different quality level. As such, they 
only saw 40 stimuli, and the combination of all 160 stimuli was seen by a 
group  of 4 participants. Participants were given a fixed observation time 
of 8 seconds. In the following, the data derived from the free-looking 
observation of the stimuli is divided into two subsets, according to their 
compression level:

1. Reference-Data-3: RS FL DIS HQ, including eye tracking data 
corresponding to the two versions of each image with the two highest 
quality levels

2. Test-Data-7: RS FL DIS LQ, including eye tracking data 
corresponding to the two versions of each image with the two lowest 
quality levels

2.3.5.2 Image quality scoring data collection (RS SC DIS HQ and LQ)

20 participants took part in the experiment, each of which judged all 160 
stimuli. The experiment was split in 4 sessions requiring the participants 
to evaluate 40 images in each session. Every session contained one 
compressed version of each original image content. The system chose 
the image at random ensuring that at the end of the session, the 
participant saw one version of each of the 40 original image contents in 
the database. In the subsequent sessions, the participant was shown one 
of the remaining versions of each image, such that at the end of the 
fourth session all versions were seen once by each participant (as in the 
data collection for the LS dataset). The order in which the stimuli were 
shown in each session was also chosen randomly by the system. Images 
were rated on a 10-point continuous quality scale (identical to that used 
for collecting the LS SC DIS sets), and the viewing time was 
unconstrained. As for the free-looking data, the scoring data for the RS 
image set is divided into two subsets, according to their compression 
level:

1. Test-Data-9: RS SC DIS HQ, including eye tracking data 
corresponding to the two versions of each image with the two highest 
quality levels
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2. Test-Data-8: RS SC DIS LQ, including eye tracking data 
corresponding to the two versions of each image with the two lowest 
quality levels, hereafter indicated as low quality images (LQ)

As a result, RS SC DIS HQ and RS FL DIS HQ hold data corresponding 
to the same images, but in the first case collected during a scoring task, 
and in the second during free looking of the images. The same holds for 
RS SC DIS LQ and RS FL DIS LQ.

2.4. Analyzing similarity between saliency maps
2.4.1 Setting a benchmark: the saliency Empirical 
Similarity-Limit 

To measure the effect of changes in visual attention with, for example 
task, a benchmark is needed. How dissimilar do two saliency maps need 
to be to prove that the change in testing condition had an effect on the 
viewing behavior? As a term of comparison, we use in this paper the 
Empirical Similarity Limit (ESL, [23, 42]). The idea behind the 
establishment of an ESL is that, even under the same viewing conditions 
and looking at the same image, there are always differences in how 
individuals deploy their visual attention. So, if we record the eye-
movements of two groups of people under the same experimental 
conditions, the resulting saliency maps will not be identical, due to inter-
observer variability. We can, however, set the similarity of those saliency 
maps, collected under the same conditions, as an upper limit for saliency 
map similarity, accounting in this way for inter-observer variability.

To determine the Empirical Similarity Limit, we took the eye-tracking data 
of all observers for a given (reference) condition, and divided them into 
two disjoint groups, each containing the data of half of the observers. 
Then, for each group, we computed the corresponding saliency maps for 
all images, following the procedure outlined in Section 2.2. This produced 
two saliency maps per image (and reference condition), each 
representing the saliency distribution of the image as observed by one of 
the two subgroups of observers. We then measured the similarity 
between these two maps with the four similarity measures described in 
section 2.2: LCC, KLD, SSIM and NSS. In this way, we could measure 
how dissimilar the viewing behavior was because of inter-observer 
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variability, and use it as an empirical limit for (dis)similarity between 
saliency maps recorded under different experimental conditions. This 
process was repeated 50 times by randomly changing the composition of 
the subgroups, in order to ensure robustness of the estimate. By 
calculating the average similarity value over the 50 runs and the 
confidence interval for each of the images, an Upper Empirical Similarity 
Limit (UESL) [23] was obtained. This UESL value equals the limit of 
similarity the saliency data can achieve without a change in viewing 
conditions. Note that, since the KLD has a reversed scale, the Similarity 
Limit value in this case is the lowest value that the similarity data is 
expected to reach. This KLD limit is therefore called the Lower Empirical 
Divergence Limit (LEDL). In the rest of this paper UESL and LEDL are 
referred to as similarity limits.

2.4.2 Calculating similarity for test data

In order to measure the difference in viewing behavior between test data 
(data collected when some experimental factors were changed) and the 
corresponding reference data, we computed, per image, the similarity 
between the saliency map obtained under reference and test conditions. 
When both the reference and the test saliency maps were obtained 
based on the same number of participants, the similarity values could be 
calculated directly. However, when one dataset was based on more 
participants than the other (e.g., LS FL ORIG based on 20 participants and LS 
SC DIS LQ based on 14 participants), the comparison between saliency 
maps would be unfair. As a consequence, saliency maps for the dataset 
with a higher number of participants were created by randomly selecting 
a subsample of participants, so that their number was equal to that of the 
participants in the other condition. In the case of the LS datasets, 
therefore, the saliency maps for the reference conditions (LS FL ORIG) 
were computed based on a random subset of 14 participants out of the initial 20. 
This process was then repeated 10 times with 10 random subsets, and 
an average value for the similarity was used in order to avoid any bias by 
chance in the data. Table 2.2 lists all the pairs of reference data versus 
test data analyzed in this study. The table also identifies which factors the 
comparison aims to examine. It should be noted that the comparison of 
saliency between free looking and scoring on the reference data is not 
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obvious from Table 2.2, since the participants were not deliberately 
requested to rate the quality of the original (full quality) images. This 
comparison, however, could be reasonably speculated from the 
comparison between Test-Data-6(LS SC DIS HQ) and Reference-Data-2 
(LS FL ORIG), and between Test-Data-9 (RS SC DIS HQ) and 
Reference-Data-3 (RS FL DIS HQ), where high quality images without 
visible artifacts were used.
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Figure 2.2. An overview of the similarity analysis for all tested subsets using all 
four similarity measures (i.e., SSIM, NSS, LCC and KLD); the green line (with 
circles) represents the Similarity Limit based on the reference data, while the blue 
line (with diamonds) represents the similarity of the test data with the reference 
data.  Higher values represent higher similarity except for the KLD where the 
reverse is true. The error bars indicate the 95% confidence interval.



2.5. Impact of experimental conditions on saliency 
similarity
2.5.1 Overview of results and similarity measures

Figure 2.2 gives an overview of the similarity between reference and test 
data for all combinations mentioned in Table 2.2. Points in the graphs 
represent the averaged value of the similarity over all images in that 
specific set, while the error bar represents the 95% confidence interval. 
The two values given for each point on the horizontal axis represent the 
ESL based on the reference data (green circles) and the similarity value 
between the test data and its corresponding reference data (blue 
diamonds, see Table 2.2). The green circle points represent therefore 
how similar saliency maps collected under identical conditions are, while 
the blue diamond points show similarity resulting from comparing two 
different sets of saliency maps, one of which collected under test 
conditions.

In principle, it should be expected to have the blue diamond points either 
overlapping or below the green circle points (except for the KLD since it is 
inverted), for which we expect the test data to diverge more from the 
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Figure 2.3. Similarity analysis (based on SSIM and NSS) of test conditions for 
which only quality  of the images (Test-Data-3 and Test-Data-7) or viewing task 
(Test-Data-8 and Test-Data-9) were changed when collecting the VA data. The 
error bars indicate the 95% confidence interval.
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Table 2.2.  An overview of the tested effect, including a list of all tested-datasets 
and their corresponding reference-dataset,  and the difference in task and/or 
distortion between both datasets.

Tested-Data Reference-Data Tested effect
Test-Data-1: 
LC FL BW

Reference-Data-1: 
LC FL ORIG Colored versus grayscale images

Test-Data-2: 
LC SC DIS

Reference-Data-1: 
LC FL ORIG Task + JPEG compression quality

Test-Data-3: 
LC FL DIS

Reference-Data-1: 
LC FL ORIG JPEG compression quality

Test-Data-4: 
LS SC DIS LQ

Reference-Data-2: 
LS FL ORIG

Task + Quality level with 
miscellaneous distortions

Test-Data-5: 
LS SC DIS MQ

Reference-Data-2: 
LS FL ORIG

Task + Quality level with 
miscellaneous distortions

Test-Data-6: 
LS SC DIS HQ

Reference-Data-2: 
LS FL ORIG

Task + Quality level with 
miscellaneous distortions

Test-Data-7: 
RS FL DIS LQ

Reference-Data-3: 
RS FL DIS HQ JPEG compression quality

Test-Data-8: 
RS SC DIS LQ

Reference-Data-4: 
RS FL DIS LQ Task 

Test-Data-9: 
RS SC DIS HQ

Reference-Data-3: 
RS FL DIS HQ Task 

Figure 2.4. Similarity analysis (based on SSIM and NSS) of the Test-Data sets 
obtained by varying both task and quality level in the experimental conditions. 
The error bars indicate the 95% confidence interval.



reference data than the reference data diverge from itself. However, the 
results obtained with the LCC and KLD similarity measures indicate that 
for some comparisons (e.g. for Test Data 7, 8 and 9) the reference data 
are less similar to themselves than to the test data. It is obvious that this 
result is unlikely a true representation of how the viewing behavior is 
affected by the test condition, since the tested factor is not likely to make 
the similarity between the test data and the reference data higher than 
the theoretical upper limit as defined as UESL in [23]. These 
unreasonable findings in LCC and KLD can be considered as noise in 
these measures, which might occur since a purely pixel-based metric as 
LCC does not necessarily properly capture the characteristics of the 
saliency distributions [38].

To examine the influence of image content on the similarity values, it is 
useful to look at the confidence interval of the mean similarity values. 
Wide confidence intervals indicate that similarity between reference and 
test data considerably varies across image content in the dataset. The 
SSIM similarity measure seems to have the lowest dependency on image 
content, thus possibly capturing differences in viewing behavior 
independent on the specific content of the image. When searching for 
significant differences between UESL and the similarity between 
reference and test data, the SSIM and KLD seem to be most sensitive 
(most differences between green circle points and blue diamond points 
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Figure 2.5.  Similarity analysis (based on SSIM and NSS) of  the LS Test-Data sets 
using NSS and SSIM. The error bars indicate the 95% confidence interval.
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Table 2.3. Results of paired-samples T-tests performed comparing the similarity 
between test and reference data with their respective UESL. Rows indicating 
statistical significance are shown in bold font. M indicates the mean difference in 
the pair, SD the standard deviation of  the differences,  and N gives the number of 
pairs in the T-test.

 !  
 !  
 !  
 !  

NSSNSSNSSNSSNSS !  
 !  
 !  
 !   M SD N t p
Tested-Data-1:
LC FL BW

Reference-Data-1: 
LC FL ORIG 0.0117 0.0699 29 0.903 0.374

Tested-Data-2:
LC SC DIS

Reference-Data-1: 
LC FL ORIG 0.0656 0.0780 29 4.533 < 0.001

Tested-Data-3:
LC FL DIS

Reference-Data-1: 
LC FL ORIG 0.0339 0.0710 29 2.571 0.016

Tested-Data-4:
S SC DIS LQ 

Reference-Data-2: 
LS FL ORIG 0.3090 0.3007 18 4.360 < 0.001

Tested-Data-5: 
LS SC DIS MQ

Reference-Data-2: 
LS FL ORIG 0.2749 0.2167 18 5.383 < 0.001

Tested-Data-6: 
LS SC DIS HQ

Reference-Data-2: 
LS FL ORIG 0.3526 0.4475 18 3.343 0.004

Test-Data-7: 
RS FL DIS LQ

Reference-Data-3: 
RS FL DIS HQ -0.1514 0.3215 80 -4.315 < 0.001

Test-Data-8: 
RS SC DIS LQ

Reference-Data-4: 
RS FL DIS LQ 0.1136 0.3252 80 3.203 0.002

Test-Data-9: 
RS SC DIS HQ

Reference-Data-3: 
RS FL DIS HQ 0.2569 0.3443 80 6.839 < 0.001

 !  
 !  
 !  
 !  

SSIMSSIMSSIMSSIMSSIM !  
 !  
 !  
 !   M SD N t p
Tested-Data-1:
LC FL BW

Reference-Data-1: 
LC FL ORIG 0.0165 0.0268 29 3.330 0.002

Tested-Data-2:
LC SC DIS

Reference-Data-1: 
LC FL ORIG 0.0627 0.0449 29 7.521 < 0.001

Tested-Data-3:
LC FL DIS

Reference-Data-1: 
LC FL ORIG 0.0146 0.0204 29 3.854 0.001

Tested-Data-4:
S SC DIS LQ 

Reference-Data-2: 
LS FL ORIG 0.2994 0.0876 18 14.493 < 0.001

Tested-Data-5: 
LS SC DIS MQ

Reference-Data-2: 
LS FL ORIG 0.2518 0.0573 18 18.654 < 0.001

Tested-Data-6: 
LS SC DIS HQ

Reference-Data-2: 
LS FL ORIG 0.2054 0.0777 18 11.223 < 0.001

Test-Data-7: 
RS FL DIS LQ

Reference-Data-3: 
RS FL DIS HQ -0.0013 0.0261 80 -0.447 0.656

Test-Data-8: 
RS SC DIS LQ

Reference-Data-4: 
RS FL DIS LQ 0.0369 0.0212 80 15.967 < 0.001

Test-Data-9: 
RS SC DIS HQ

Reference-Data-3: 
RS FL DIS HQ 0.0330 0.0207 80 14.609 < 0.001
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Table 2.4.  One-way ANOVA statistical analysis testing for significant differences 
among the various datasets within a given image database; the first three rows 
refer to LC, the next three rows to LS, and the final row to RS. Rows indicating 
statistical significance are highlighted bold. The first three columns give the 
ANOVA statistics, whereas the next four columns represent post-hoc results

 
 NSSNSSNSSNSSNSSNSSNSS 
 

F df Sig M 95%95% p

     Tested-Data-1
VS Tested-Data-2

0.28 2. 84 0.750

0.054 -0.118 0.226 0.735

     Tested-Data-1
VS Tested-Data-3 0.28 2. 84 0.750 0.022 -0.150 0.194 0.949

     Tested-Data-2
VS Tested-Data-3

0.28 2. 84 0.750

-0.032 -0.204 0.140 0.898

     Tested-Data-4
VS Tested-Data-5

0.05 2. 51 0.950

0.261 -0.231 0.179 0.949

     Tested-Data-4
VS Tested-Data-6 0.05 2. 51 0.950 0.129 -0.218 0.192 0.987

     Tested-Data-5
VS Tested-Data-6

0.05 2. 51 0.950

0.026 -0.179 0.231 0.987

     Tested-Data-7
VS Tested-Data-8

33.80 2.00 < 0.001

0.275 0.155 0.394 < 0.001

     Tested-Data-7
VS Tested-Data-9 33.80 2.00 < 0.001 0.408 0.289 0.528 < 0.001

     Tested-Data-8
VS Tested-Data-9

33.80 2.00 < 0.001

0.134 0.014 0.253 0.024

 
 

SSIMSSIMSSIMSSIMSSIMSSIMSSIM 
  F df Sig M 95%95% P

     Tested-Data-1
VS Tested-Data-2

23.35 2. 84 <0.001

0.046 0.027 0.065 < 0.001

     Tested-Data-1
VS Tested-Data-3 23.35 2. 84 <0.001 -0.002 -0.021 0.017 0.966

     Tested-Data-2
VS Tested-Data-3

23.35 2. 84 <0.001

-0.048 -0.067 -0.029 < 0.001

     Tested-Data-4
VS Tested-Data-5

6.67 2. 51 0.030

-0.045 -0.103 0.014 0.170

     Tested-Data-4
VS Tested-Data-6 6.67 2. 51 0.030 -0.889 -0.148 -0.030 0.002

     Tested-Data-5
VS Tested-Data-6

6.67 2. 51 0.030

-0.044 -0.103 0.014 0.173

     Tested-Data-7
VS Tested-Data-8

85.60 2.00 <0.001

0.039 0.032 0.047 < 0.001

     Tested-Data-7
VS Tested-Data-9 85.60 2.00 <0.001 0.034 0.027 0.042 < 0.001

     Tested-Data-8
VS Tested-Data-9

85.60 2.00 <0.001

0.005 -0.003 0.013 0.251



are significant, see section 2.5.2). Taking all the above into consideration, 
SSIM and NSS are considered as the most useful measures to perform a 
more detailed analysis. The SSIM similarity measure has a very stable 
performance illustrated by the small confidence intervals and consistent 
results. It is also capable of detecting the largest number of significant 
differences among the data sets. NSS also seems to perform well, only 
with a wider variance in the data representing different image content. 
Therefore the in-depth analysis presented in section 2.5.2, investigating 
the effect of task and distortion on VA, only looks at the SSIM and NSS 
results.

2.5.2 Detailed statistical analysis

Figures 2.3, 2.4, and 2.5 take a closer look at the similarity values for the 
NSS and SSIM measures. These figures segment the data into 3 groups 
from which the effect of task and quality loss separately (Figure 2.3) and 
combined (Figure 2.4) may be deduced. Figure 2.5 examines the effect of 
color on visual attention deployment. Tables 2.3 and 2.4 show the results 
of a statistical analysis on the similarity measures. Table 2.3 shows the 
results of paired-samples T-tests performed with the similarity values of 
the test versus reference data, on the one side, and the UESL obtained 
from the corresponding reference data, on the other side of the pair. 
Table 2.4 shows the results of a one-way ANOVA test followed by a 
Tukey Post-Hoc comparison for significant differences among the 
different test datasets within each image database (i.e., LC, LS, and RS).

2.5.2.1. Scoring task effect on viewing behavior

To look at the effect of task on saliency, we first focus on Test-Data-8 and 
Test-Data-9. Saliency maps in these datasets were collected for a scoring 
task, and then compared to the corresponding saliency maps collected 
for the same image material, but under a free looking task (Reference-
Data-4 and Reference-Data-3, respectively). Thus, in this comparison, 
the factor under investigation is only the task (images are unchanged). 
Figure 2.3 shows that both for SSIM and NSS the test-reference similarity 
is significantly lower than the UESL, thereby indicating an effect of task 
on the viewing behavior, i.e., spatial attention deployment is different 
when observers are scoring or just freely looking at an image. Table 2.3 
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indicates that the difference in attention deployment as a consequence of 
task is significant for both NSS and SSIM. The effect of task on saliency 
can also be deduced by directly comparing Test-Data-2 (scoring of 
distorted LC images) with Test-Data-3 (free looking of distorted LC 
images). As shown in Table 2.4, Test-Data-2 maps are significantly more 
different from Reference-Data-1 than Test-Data-3 maps (at least in terms 
of SSIM). Since the difference between Test-Data-2 and Test-Data-3 is in 
the task and not in the images, we can compute the variation in viewing 
behavior to the scoring task. These results show that, across different 
experimental settings and using different image databases, a change in 
task repeatedly resulted in a significant difference in viewing behavior 
indicated by at least one similarity measure. In particular, when scoring 
images, observers attend image locations that they would not attend in 
regular, free looking of images. This finding agrees with findings available 
in literature [26], and can be explained by the fact that when scoring 
quality, observers may inspect more thoroughly peripheral locations in the 
image in order to evaluate the annoyance of artifacts appearing across 
the whole content [3]. 

2.5.2.2. Effect of visual quality losses on viewing behavior

When it comes to changes in image quality level, our results are less 
clear. We first look at the effect of visual quality losses on free looking 
visual attention. We therefore examine the results of Test-Data-3 and 
Test-Data-7, collected for free looking of impaired images, while 
compared to their respective reference data, collected for free looking of 
the corresponding high quality images. As visible from Figure 2.3, SSIM 
detects a significant decrease in similarity with respect to the UESL for 
Test-Data-3, but not for Test-Data-7 (see also Table 2.3). NSS data seem 
to indicate (almost) no effect of quality on the saliency maps of Test-
Data-3 (Table 2.3 also indicates that the difference is not significant). 
Interestingly, the NSS data suggest that for Test-Data-7 the variability 
induced by the loss in quality is less pronounced than the UESL. As a 
result, it is not possible to conclude that quality has a well-defined effect 
when observers freely look at images.

Looking at the UESL (green line) in Figure 2.3, and especially at data 
points corresponding to Reference-Data-3 and Reference-Data-4 (two 

48     



rightmost points in the graphs) one can see that they fall within each 
other’s confidence interval. These data-points represent self-similarity of 
free-looking saliency data. They are generated from the same original 
image content but just slightly compromised in quality for Reference-
Data-3 and heavily impaired for Reference-Data-4 (see Table 2.2). The 
lack of a significant difference between these two values indicates that, 
independent on the quality level of the images assessed, observers are 
similarly consistent in visually inspecting them. As a result, in terms of the 
RS dataset, it tends to show that inter-observer consistency in viewing 
behavior is not sensitive to visual quality losses, under the free looking 
condition.

Finally, the similarity values for Test-Data-8 and Test-Data-9 (rightmost 
blue diamonds in Figure 2.3) could also provide useful insight on the 
impact of visual quality losses in attention deployment. Each of these 
data points indicates the similarity of saliency maps corresponding to the 
viewing of the same image, but under different task. The difference 
between the two points is given by the quality level of the images: low for 
Test-Data-8 and high for Test-Data-9. SSIM shows that when the quality 
of the images is high, scoring saliency maps are closer to free-looking 
saliency maps. The trend however is not repeated in the NSS data.

In general, saliency of an image does not change consistently 
significantly with changes of visual quality. There are small changes in 
saliency for some images and some metrics, but they may depend on the 
image content, the type of distortion, and the level of degradation. In 
terms of the application of saliency, such as investigating whether the 
small difference in saliency due to the change of quality is sufficient to 
yield a consistent difference when using saliency in image quality 
assessment algorithms, the results are detailed in [9], though for a subset 
of the images evaluated here.

2.5.2.3. How a combination of factors affects viewing behavior

Looking at the combined effect of changing both task and quality, as 
provided by the results of Test-Data-2, Test-Data-4, Test-Data-5 and Test-
Data-6 in Table 2.3 and Figure 2.4, we found a significant difference both 
with the SSIM and NSS similarity measures. It is likely that each of the 

    49



two factors (i.e., both task and quality) somewhat influenced the viewing 
behavior. Once the two effects are accumulated, the difference in 
saliency becomes easily detectable with both similarity measures. We 
can also examine in more detail the effect of changing the quality level in 
scoring tasks, by comparing the datasets Test-Data-4, Test-Data-5 and 
Test-Data-6, as given in Table 2.4 (see also Figure 2.4). Only one 
comparison yields a significant difference, and only using SSIM. In 
particular, this is the case for the Low Quality versus the High Quality LS 
images, where the saliency maps of the latter are significantly more 
similar to the free looking maps than the saliency maps for the former. 
This may be due to the fact that the presence of artifacts, in combination 
with a quality scoring task does indeed distract attention to background 
areas (see also Section 2.6 for a more detailed analysis), and possibly 
does so most pronounced for images in which artifacts are most evident. 
In general, though, as already observed by [28], it is still difficult to 
precisely quantify the effect of distortions on visual attention.

2.5.2.4. How color affects viewing behavior

Test-Data-1 compares free-looking saliency of gray-scale images to free-
looking saliency of the same colored images. To our own surprise Table 
2.3 gives a significant difference when using the SSIM similarity measure 
(as also visible from Figure 2.5). Color might also have an impact when 
looking at a combination effect of saturation, quality, and task, i.e., by 
comparing Test-Data-1 with Test-Data-2 (see first row of Table 2.4). 
However, since in that comparison the quality and task are also changed, 
it is not possible to draw conclusions on the effect of color saturation 
separately. Nonetheless, the quantitative comparison of color and 
grayscale saliency has implications for the application of saliency in 
image quality assessment algorithms, where most of the existing metrics 
are based on only the luminance component of the image material. 
Modeling visual attention based on luminance only might be used to 
simplify the attention model, which could be plausibly added to image 
quality metrics [43]. It is worth investigating whether the observed 
difference between color and grayscale saliency is sufficiently large to 
actually affect the performance gain when adding both types of saliency 
to image quality metrics, which, however, is outside the scope of this 
paper.
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Figure 2.6. Difference in saliency maps between free looking and scoring tasks in 
the RS dataset (top) and the LS dataset (bottom).



2.5.2.5. Comparing similarity measures

The results in Section 2.5.1 show that the performance of similarity 
measures varies greatly from one metric to the next. Dependency on 
content seemed to be more prominent in LCC, KLD, and NSS than for 
SSIM. The capability of spotting significant differences between the 
tested data and the reference data was highest with SSIM and KLD. 
However, both LCC and KLD showed in some cases that the tested data 
was more similar to the reference data than the reference data to itself, 
which is somewhat unlikely. Therefore, similarity results given by the LCC 
and KLD are both considered unreliable, at least when examining the 
data used here. Judging by how many significant differences are 
detected and how possible it was to explain similarity trends in the data, 
the SSIM and NSS seemed to give the best results out of the used 
similarity measures.

Looking at the above analysis in Section 2.5.2, Figure 2.3 shows that the 
viewing behavior is significantly less similar to the Reference-Data when 
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Figure 2.7.The percentage of fixations in the ROI for the images in the RS 
dataset for both the scoring and free viewing tasks. The error bars indicate the 
95% confidence interval.



both task and color-saturation are changed compared to when only the 
color-saturation is changed. This effect is logical and only visible with 
SSIM. The other example is in Figure 2.4 which shows the viewing 
behavior becoming more similar to the Reference data as the quality of 
the images get higher (and thereby closer to the reference images). This 
is again only the case when SSIM is used. It is therefore difficult to argue 
that the SSIM is detecting significant differences where none actually 
exist.

2.6. Saliency changes with scoring task

In Section 2.5.1 we identified a clear impact of task on visual saliency. 
Nevertheless, whereas a change has been detected, its nature has not 
been explored. We are interested now in understanding whether there 
are systematic changes in the saliency distribution when a quality scoring 
task is in place. We examine here images from the RS dataset and from 
the LS set more in detail. The images from the first set have a clear ROI, 
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whereas those in the second set don’t necessarily have a clear attentive 
focus. By examining both, we aim at accounting for content differences in 
our analysis.

We first start by visualizing the saliency maps in heat maps, where the 
areas of the map with the lower saliency values are colored in blue, while 
higher saliency gradually becomes green and yellow, and finally ends 
with red for the areas with the highest saliency values. Figure 2.6 shows 
eight example images with their corresponding heat maps. The four 
images on the top  are from the RS dataset, and the four images on the 
bottom from the LS dataset. The second row in the figure shows heat 
maps from viewers looking freely at the images, while the third row does 
the same but for maps collected under the scoring task. 

Looking at the example images of the RS dataset, it is clear from the 
figure that viewers looking freely at the images have their attention 
concentrated more on the ROI of the images. The size of the ROI for 
each of the images is different, which shows that the content has a great 
effect on the viewing behavior. When we compare the heat maps in rows 
2 and 3, we can start to understand the difference in the viewing 
behavior. Even though the majority of the visual attention is still dedicated 
to the ROI when scoring, more attention is given to other parts of the 
image when scoring as compared to when freely looking. The viewer is 
clearly scanning the image for clues to determine its quality level. This 
behavior is more difficult to see on the examples from the LS dataset 
(Figure 2.6 bottom). Since there is no clear ROI, the visual attention is 
already more dispersed around the image for the free looking task. 
Therefore it is difficult to see a clear difference in behavior with the 
scoring task.

To quantify how much the ROI captured the viewer’s attention, we start 
by identifying the ROI for each image. As the saliency maps have values 
between 0 (no attention) and 1 (maximum attention), a value of 0.2 was 
chosen as an attention threshold, indicating that at least one fifth of the 
observers attended the location. As a consequence, all pixels in the 
saliency maps with a value above 0.2 were considered to belong to the 
ROI. Subsequently, we defined a percentage of fixations in the ROI as 
the sum of the duration of the fixations inside the ROI divided by the total 
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duration of all fixations (multiplied by 100) [44]. For example, if the 
percentage of fixations of a given participant was 70 for a particular 
stimulus, this would mean that this participant fixated for 70% of the time 
inside the ROI for that particular stimulus and for 30% on other areas in 
the image outside the ROI.

Figure 2.7 shows the percentage of fixations in the ROI for all the images 
in the RS dataset, for the free looking and scoring tasks separately. The 
figure clearly shows that, for almost all images, the percentage of 
fixations in the ROI is higher when freely looking than when scoring the 
images. This indicates that the tendency we observed when examining 
the heat maps in Figure 2.6 (top) applies to most images in the RS 
dataset. The viewer generally looks more at the ROI of the image when 
looking freely. When they are asked to score the images, the attention 
deviates from the ROI to other regions of the image, possibly to evaluate 
the presence and annoyance of artifacts in less obvious regions of the 
image. 

Figure 2.8 presents similarly calculated values, but for the images in the 
LS dataset. The first noticeable difference is that the fixation ratios here 
are much higher than for the images in the RS dataset. This may be due 
to the fact that images of this set were more cluttered, with multiple 
locations competing for attention. As a result, fixations may have been 
more spread to begin with, generating therefore larger ROIs (including in 
turn most of the fixations). One can also see that there is less of a clear 
difference in behavior of the percentage of fixations in the ROI between 
the free looking and scoring tasks. This also reflects the tendency 
observed in Figure 2.6, and confirms that when the ROI of an image is 
less defined, the difference in viewing behavior becomes less discernible.

2.7. Conclusions

In order to understand whether it matters which type of VA information to 
incorporate in objective quality metrics, we evaluated whether there are 
differences in VA depending on the viewing task under which the data are 
collected and depending on the quality level of the images observed. To 
this end, this paper examines a corpus of eye-tracking data collected 
over 4 years of work by the TU Delft IQ-Lab group  [39]. All data used in 
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this article have been made available online at the TU Delft IQ-Lab 
repository for use by other researchers in the field.

We analyzed visual attention data in the saliency domain, using four 
different measures of saliency similarity [23]. Differences in saliency 
distribution were analyzed among VA data collected under different 
experimental conditions, i.e. when viewing task (scoring or free looking), 
quality level (presence or absence of impairments) and color saturation 
level (greyscale or color) were changed. Throughout the analysis, we 
evaluated different similarity measures, reported earlier in literature. We 
based our selection of most appropriate similarity measure on criteria as 
reliability with respect to self-similarity, sensitivity to image content 
variability and ability to detect differences in spatial distribution of 
saliency. The similarity measures performing well on these criteria are the 
Structural SIMilarity index (SSIM, [37]) and the Normalized Scanpath 
Saliency measure (NSS [34]).

When looking at the effect of task on saliency, we found a significant 
effect on saliency distribution across the three datasets. The analysis 
provides strong evidence that asking the viewers to score the image 
quality significantly changes their viewing behavior. Completely muting 
the color saturation also showed a significant change in saliency when 
analyzed with SSIM. This conclusion, however, is based only on data 
from a single image set, and therefore warrants further investigation. 
Quality losses were not found to consistently modify visual attention 
deployment, neither under free looking, nor during scoring. In some 
cases we found an effect using the SSIM measure, but this effect was not 
consistent over all data sets and was generally not confirmed with the 
NSS measure.

Examining in more detail how the change in task affected the viewing 
behavior shows that when looking freely at images viewers give most of 
their attention to the most prominent region of interest. When viewers are 
asked to score images, their attention deviates to other regions of the 
image scanning it for clues to the image quality level. This change in 
attention is stronger when the image has a clearly defined region of 
interest.
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These conclusions show that it is not fair to compare the effect of adding 
saliency in objective metrics without specifying how the saliency was 
measured. Additionally, the differences in saliency reported here provide 
insights for designing objective metrics as it seems important to consider 
which saliency information they should incorporate.
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3. 
Studying the Effect of Optimizing 
Image Quality in Salient Regions
Abstract

Manufacturers of commercial display devices continuously try to improve 
the perceived image quality of their products. By applying post-
processing techniques on the incoming signal, they aim to enhance the 
quality level perceived by the viewer. These post-processing techniques 
are usually applied globally over the whole image, but may cause side-
effects, the visibility and annoyance of which differ with local content 
characteristics. To better understand and utilize this, a three-phase 
experiment was conducted where observers were asked to score images 
which had different levels of quality in their regions of interest and in the 
background areas. The results show that the region of interest has a 
greater effect on the overall quality of the image than the background. 
This effect increases with the increasing quality difference between the 
two regions. Based on the subjective data we propose a model to predict 
the overall quality of images with different quality levels in different 
regions. This model. which is constructed on empirical bases, can help 
craft weighted objective metrics which can better approximate subjective 
quality scores.
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3.1. Introduction

In today's competitive market, commercial display manufacturers are 
striving to find new features to help them overtake competition. Since 
consumers find Image Quality (IQ) one of the deciding factors when 
choosing a display [1], research and development effort has been 
concentrated on improving image quality using various techniques. For 
some applications, however, the quality of the content is one of the 
bottlenecks. It has become quite common today to view video material on 
devices such as personal computers and mobile phones. Regardless of 
whether the video material is stored on the device itself or streamed from 
a remote server, the limitations that such devices have in storage 
capacity and data transfer bandwidth make it desirable to reduce the 
video data size as much as possible by means of data compression 
algorithms [2-4]. Unfortunately compression algorithms also introduce 
artifacts in the content.

It is possible to compensate for some of the artifacts caused by 
compression algorithms. For example, areas which have become blurred 
after compression can benefit from a sharpening filter [5, 6]. On the 
contrary, the impact of blocking artifacts may be reduced by applying a 
blur filter [7]. Since the visibility of each artifact may vary depending on 
the image content, one part of an image may be effected more by a 
specific artifact than others parts [8,9]. Therefore, applying an image 
enhancement filter may improve the perceived IQ  in some areas of an 
image while making other areas worse. For example, applying a 
sharpening filter will enhance areas affected by blur, while it will make 
blocking artifacts more visible [10-16]. It is therefore important to know 
how the viewer evaluates the overall quality of the image if different 
regions of the image differ in their quality level. A more specific question 
is whether improving the quality of the Region Of Interest (ROI) results in 
a higher IQ  rating for the entire image even if the quality of some 
background (BG) regions has become worse.

The work discussed in this article shows that subjectively measured MOS 
is different from an estimated score obtained by averaging the quality of 
all image regions. Nonetheless, the latter is what most quality estimation 
algorithms do; they locally estimate (based on pixel values) a quality 
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score, and then average these scores over the entire image [17-32]. As 
such, the calculated overall quality is an (area weighted) average of the 
local quality in different regions of the image. More advanced quality 
estimation algorithms include saliency weighting; i.e., the local quality 
values are weighted with the local saliency, as such giving more value to 
quality in the ROI than to quality in the BG [33-38]. So far, however, the 
weighting strategy for adding saliency has not been determined. Attempts 
to determine this weighting strategy have largely depended on trial and 
error [34-38]. As such, this chapter contributes in quantifying the optimal 
weighting strategy. 

This paper describes a three-phase experiment that examines the 
significance of the ROI in determining the quality of the entire image. A 
database of images with a clear ROI was compromised in quality to 
different degrees using JPEG  compression. The IQ levels of these 
images, as well as their natural ROI, were subjectively determined with 
the help  of an eye-tracking system. The images were then manipulated to 
have different quality levels in the ROI and the BG regions. The overall IQ 
of the manipulated images was subjectively evaluated as well. These 
scores were then compared to the subjective IQ  scores of the non-
manipulated images to determine whether the ROI had a stronger effect 
on IQ than the rest of the image. 

The methodology and the experimental protocol are discussed in 
Sections 3.2 and 3.3, respectively. Section 3.4 lists the results of the 
experiment, which are then discussed in Section 3.5. Finally Section 3.6 
summarizes the conclusions and mentions some possibilities for future 
research.

3.2. Experimental set-up
3.2.1 Stimuli

The stimuli used in the experiment were created from 40 original images. 
All were natural images containing humans, animals, or structures. 
Considering the goal of the experiment, we only chose images which 
contained a clear ROI in the form of a face, an animal, or an object that 
clearly stood out from the rest of the image. Images were cropped to 600 
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by 600 pixels (corresponding to a viewing angle of 20.2°) in order to have 
a standard size for all images.

Each image was further processed to produce 4 different versions, which 
resulted in a total of 160 stimuli used in the experiment. These versions 
were created with the JPEG  compression function (imwrite), defined in 
MATLAB. The compression parameter for the (imwrite) function in the 
four compression levels used to process the images ranged between 10 
(low quality) and 100 (high quality), and were different for the 40 different 
originals. Some example images are shown in Figure 3.1.

3.2.2 The eye tracker

To record the gaze location of the users viewing the images, an eye-
tracking system (i.e., iView X system developed by SMI) was adopted. It 
tracks the eye movements of the users with an infrared camera, 
recording the reflections of a small infrared source at the eye’s retina. 
Since infrared falls outside the spectral range of sensitivity of the human 
visual system, the viewers were not distracted by the infrared light 
emitted by the eye-tracker. The REDIII camera used by the eye-tracker 
had a sampling rate of 50 Hz and a tracking resolution of ± 0.1 deg. 
Viewers were asked to place their head on a head rest as recommended 
by the system’s manual. The head rest restrained head movements and 
kept the viewer at a distance of 60cm from the screen, which represented 
a typical viewing distance and fell in the system's recommended 
operating distance of 40-60 cm. The eye-tracker was calibrated using a 
13-points grid, and resulted in a gaze position tracking accuracy of ± 1 
deg. The height of the head stand was adjusted to suit the viewer and 
insured a comfortable and non-confining seating position while 
performing the experiment.
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Figure 3.1. Four examples of the images used in the experiment.



3.2.3 Facilities

The experiment was carried out in an isolated room. Only the 
experimenter and participant were present during the experiment. All 
stimuli were displayed on a CRT monitor with a resolution of 1024 by 768 
pixels and an active screen area of 365x275mm. The experiment was 
controlled from a remote computer with its monitor positioned so that its 
content was not visible to the participant to avoid distractions (see Figure 
3.2).

3.2.4 The participants

The experiment had a total of 75 participants. They were collected from 
the faculty of Computer Science at the Delft University of Technology, and 
were either students or staff members. It is therefore estimated that all 
participants possessed some experience with the type of degradation and 
artifacts caused by JPEG compression. When asked whether they 
suffered from any vision problems, they all expressed having sound 
(corrected) vision. This was considered sufficient to ensure that they were 
able to observe the differences in image quality.

The participants were informed that they would carry-out an experiment 
on image quality research. They were told that their eye-movements 
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Figure 3.2. Participants place their head on a chin-rest positioned at a fixed 
distance from the display.  The eye-tracker is positioned next  to the display.  The 
experimenter controls the eye tracker and runs the experiment using another 
monitor not visible to the participant.



would be recorded using an eye-tracking device. However, they were not 
informed about the goal of the experiment or how the data is going to be 
analyzed in order not to reduce the influence on their viewing behavior. 
After they gave their consent, a quick test was performed to check 
whether the eye-tracker locked on the participant's pupil. The latter was 
occasionally not possible due to reflections from eye glasses or to poor 
contrast between the pupil and the iris in the infrared spectrum. These 
participants had to be excluded from the experiment, and were replaced 
by new ones.

3.3. Experimental protocol

As mentioned before, the experiment included 3 separate phases. 
Phases 1 and 3 required people to examine images and to give each 
image a score based on the perceived quality. Participants in phase 2 
were only asked to look at the images without a predefined task. The 
participants were divided such that we had 20 participants in phase 1, 40 
in phase 2, and 15 in phase 3. A larger number of participants was 
needed in phase 2 to identify the natural ROI of the images (see Section 
3.4.1). Phase 3 required less participants since the eye-tracking data was 
not going to be analyzed and the number of images was lower than that 
of phase 1. Each phase of the experiment adopted a within-subject 
design, where changes in the dependent variable (that is, IQ  in phases 1 
and 3 and VA deployment in phase 2) are analyzed as they appear 
across different images rather than across groups of different test 
subjects . However, different participants were recruited for each phase.

Participants who passed the check with the eye-tracker were asked to 
start the experiment. In order to insure consistency, the instructions for 
the experiment were given to the participants through the computer 
screen, together with examples of how to perform each step. After having 
read all instructions, the subjects were allowed to ask clarifying 
questions. Once they were ready to start, the experimenter started the 
eye-tracking calibration process, and then started showing them the 
stimuli. To avoid introducing a bias in the results, each participant saw the 
corresponding stimuli in a different random order.
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3.3.1 Phase 1

Participants in phase 1 were shown all 160 stimuli of the experiment. The 
experiment was split in 4 sessions requiring the participants to evaluate 
40 images in each session. Every session contained one version of each 
original image presented at a certain level of compression. The system 
chose the image at random insuring that at the end of the session, the 
participant saw one version of each of the 40 original images in the 
database. In the subsequent sessions, the participant was shown one of 
the remaining versions of each image. The order in which the images 
were shown in each session was chosen randomly by the system. 
Between the sessions, the participants were given a short break where 
they could take their head off the chin-rest and have something to drink. 
This was done to avoid strain developing in the neck and back muscles, 
and in order not to exhaust the eyes of the participants.

The experiment followed the single-stimulus protocol set by the ITU39. 
The participants were shown a 50% gray screen (R,G, and B  values set 
to 127) with a white dot in the center. They were asked to focus their 
gaze on that dot while it remained on the screen for 3 seconds. The eye-
tracking data collected during these three seconds were later used to 
refine the eye-tracker’s calibration (see also section 3.3.4). Subsequently, 
a randomly selected image was displayed on the screen centered on a 
50% gray background. Participants were allowed to examine the image 
until they decided on the quality score. They could then use the left 
mouse button to go to the scoring screen, where they saw a horizontal 
slider bar separated into 10 equal segments with the words "Poor" on the 
left and "Excellent" on the right. The slider could be controlled by moving 
the mouse to choose the required score. Then a click on the left mouse 
button saved the chosen score and took the participant again to the 50% 
gray screen with the white dot in the center. These steps were repeated 
until the end of the session, in which the participants had to score 40 
different images. After a short break, the participants started the following 
session by first completing the 13-points calibration step described 
earlier, followed by another 40 images randomly chosen. This process 
was repeated in 2 more sessions taking each participant through the 
entire database of 160 stimuli.
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3.3.2 Phase 2

In this phase the viewers were not given any task and were only asked to 
view the images in a casual manner. The data collected from this phase 
was later used to subjectively identify the natural ROI of the images. To 
avoid any deviation in the measured saliency due to a learning effect 
from viewing the same image content multiple times, participants only 
viewed one (compressed) version of each original image.

The second phase was performed concurrently with phase 1, taking 
place at the same lab  and using the same equipment and setup. 
Participants were told to simply look at the images as if they were viewing 
a photo album. Before the experiment started, two sample images were 
shown to the participants. These images were separated by the 50% gray 
screen with the white dot in the center, similarly as in phase 1. 
Participants were instructed to focus on the white dot while it appeared 
on the screen, which again gave us a uniform starting gaze position for all 
images and provided us with data which could be used to refine the eye-
tracker's calibration.

After completing the training, the participants went through the 13-points 
calibration step as before and then started viewing the stimuli. Each 
stimulus was displayed on the screen for 8 seconds followed by the 50% 
gray screen. Basically, each participant saw a selection of all 160 stimuli 
as if he completed just one session of phase 1. As a result, every 4 
participants saw the entire set of the 160 images presented at a random 
order. As a consequence, by the end of phase 2 we gathered the free 
looking gaze data of 10 participants for each compressed version of the 
40 original images.

3.3.3 Phase 3

The last step  of the experiment used stimuli generated from the same 
original content, but with a different level of quality for the ROI and 
background. Data collected from phase 2 of the experiment were used to 
identify the ROI of the images. In order to avoid that the size of the ROI 
region affected the results, only 20 of the original images with a similarly 
sized ROI, were used in phase 3. The size of the ROI ranged from 
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10-16% of the entire image area corresponding to a viewing angle of 
2.0°-3.2° (see Figure 3.2).

From the original 160 image used in this experiment, only 80 were 
chosen for phase 3 (20 of the 40 original images) which had the most 
clear and uniquely identifiable ROI. Each stimulus in phase 3 contained 
data from two stimuli of phase 1. Basically, from every two versions of an 
image with different levels of quality in phase one, the contents of the 
ROI was swapped between the two images. This created two combined 
images with different levels of quality inside and outside the ROI (see 
Figure 3.3). The edge between the two regions was softened using a 3x3 
pixel Gaussian function. In total, 80 stimuli were used in phase 3. They 
were shown to each participant in 4 sessions in a similar manner as used 
in phase 1. Figure 3.4 shows an example of the resulting combined 
images.

To ensure consistency, the experiment was conducted in the same lab 
and under the same conditions as the two previous phases. The same 
scoring protocol was used as the one described in phase 1. The eye-
tracker was also used to ensure uniformity in the experimental conditions 
to make sure any change in the data is not caused by not using the eye 
tracker in phase 3. The data collected from the eye-tracker were not 
needed for this phase of the experiment.

3.3.4 The eye-tracking data

The eye-tracker collected the coordinates of the participant's gaze 
locations throughout each session. These data were then sorted into 
fixations and saccades by the eye-tracking system based on the gaze 
dispersion within a specified amount of time. For the experiment, the 
system was set to consider a gaze that remained within an area of 100 
pixels (viewing angle of 3.4°) for 80 ms or longer as a fixation. Its location 
was calculated as the mean of the coordinates over the entire length of 
the fixation. If the eye dispersion exceeded 100 pixels, the tracker 
indicated the movement as a saccade. So all fixations had a duration of 
at least 80 ms, and all saccades spanned a distance of at least 100 
pixels.
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While testing the eye-tracker, we noticed that the recorded fixations were 
occasionally shifted from their correct location. This shift tended to be a 
constant displacement in horizontal and vertical direction of all fixations in 
a test session. To compensate for this error in the collected data, an 
additional calibration step  was added to the experiment. Between each 
two images displayed on the screen, the system displayed a 50% gray 
screen with a white dot in the center. The participants were instructed to 
keep  their eyes fixed on at the dot. As such, we aimed at having a 
uniform starting gaze location for each participant. Since the eye-tracker 
recorded where the participants were looking at, and we knew the 
coordinates of the dot that they were supposed to look at, it was possible 
to compensate for the possible shifts in fixations. The correction was 
performed in MATLAB by taking the mean coordinates of all fixation 
points collected on the gray screen for the entire session, and then 
applying an opposite shift to the rest of the fixation points recorded by the 
system.

The iView X eye-tracking system mainly collects fixations that need to be 
converted into saliency maps. These maps show a visual representation 
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Figure.3.3.  Illustrating how images were created for phase 3. Each image 
combined parts from two different  images inside and outside the ROI. In this 
hypothetical example, the BG region is taken from the image on the left scored 
with MOS=90, and the ROI is taken from the image on the left with an MOS=30, 
giving the combined image in the center. The figure also shows how the ES is 
calculated for the resulting combined image.



of the probability that a location of the scene is attended by the average 
observer. To create the saliency map  for a given image i, first a fixation 
map  is created that includes all the fixation locations from all observers 
recorded for that image. These fixation maps are then converted to 
saliency maps by applying a Gaussian patch with a width σ to each 
fixation in the map. The width σ of the Gaussian patch is chosen to be 2° 
of visual angle, approximating the size of the fovea of the human eye and 
sufficiently accounting for inaccuracy in the measurement of the fixations. 
A mean saliency map  that takes into account all fixations of all subjects is 
then calculated as follows:

(1)

where Si(k, l) indicates the saliency map for stimulus i, (k,l) refers to a 
pixel in the saliency map  of size MxN pixels (i.e. k∈[1, M] and l∈ [1, N]), 
(xj, yj) indicates the spatial coordinates of the jth fixation (j=1…T), T is the 
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Figure 3.4.  A sample of the combined stimuli with the blown up region A inside 
the ROI with quality of 77 and region B in the BG with quality of only 11.



total number of all fixations over all subjects, and σ indicates the standard 
deviation of the Gaussian. The intensity of the resulting saliency map is 
linearly normalized to the range [0, 1].

3.4. Results
3.4.1 Natural  Region Of Interest

As mentioned earlier, the images selected for this experiment were 
deliberately chosen to have a clearly identifiable ROI. It is expected that 
when observing the images without a specific task, the viewer's attention 
is mainly drawn towards the natural ROI of each image. For example, in a 
picture of a man standing on the beach, one would expect his head to be 
the ROI of the picture, while for a picture of a face features such as the 
eyes usually attract viewers’ attention [40].

The ROI for each image was determined by the eye-tracking data 
collected in phase 2 of the experiment. For each of the 160 stimuli, the 
data of all 10 participants were averaged into one saliency map. Since 
the viewers saw compressed versions of the images in phase 2, we 
needed to determine whether the quality level effected their viewing 
behavior. To that effect, the highest and lowest quality version of each 
image were distributed into two separate sets. Then an independent 
sample t-test was performed to see whether the difference in quality 
resulted in a difference in the viewing behavior with the independent 
variable being the quality level (high or low) and the dependent variable 
being the similarity score that shows how similar the saliency maps are to 
each other [41]. The test showed no significant difference in the similarity 
of the saliency maps between the high and low quality images (p = 0.48, 
F = 5.94). This shows that when the observers were looking at the stimuli, 
they were not distracted by the compression artifacts and their viewing 
behavior did not change with the change in compression level. Therefore, 
the 4 saliency maps for each original content were averaged, giving us 40 
saliency maps. 

3.4.2 Defining the Region Of Interest

The ROI for each image is extracted from the saliency maps. Since these 
maps were normalized on a scale of 0-1 representing the level of 
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intensity of the saliency heat-maps. The ROI was identified as the area 
with the top 25% of the range (i.e. scoring 0.75-1 on the heat-map scale).

3.4.3 Significance of ROI on IQ

The IQ  scores collected in phases 1 and 3 of the experiment were 
processed to calculate the Mean Opinion Scores (MOS). First the Z-
scores where calculated for each image. Then the standard normal 
distribution of the resulting Z-scores was taken to give a score in the 
range (0-1). From the MOS scores obtained in phase 1, it is possible to 
estimate the Expected Score (ES) of a combined stimulus in phase 3, 
assuming that the observer will average out the overall quality of the 
image without giving more importance to the quality of a specific region. 
In that case, the ES is the weighted sum of the MOS scores of each 
stimulus, as obtained in phase 1, weighted only with the percentage of 
area of the ROI and background, respectively. Hence, under this 
assumption, we would calculate the ES as follows:

ES= MOSROI . AROI  + MOSBG . ABG  (2)

With MOSROI and  MOSBG being the scores of the images used in the 
ROI and in the background regions respectively, and AROI  and ABG  are 
the ratios of the area of the ROI and the background regions respectively 
to the entire image. The way the ES is calculated is also illustrated in 
Figure 3.3. By comparing the collected MOS values of all stimuli of phase 
3 to their estimated ES, it is possible to extract the effect the ROI has on 
the overall quality of an image. Figure 3.5 presents these data, split up  in 
two data groups: one with images which have a higher IQ  in the ROI than 
in the BG (A), and one with images which have a lower IQ in the ROI 
than in the BG (B). Figure 3.5(A) clearly shows that the images with 
higher quality in the ROI have a tendency to get a higher MOS than what 
would be expected from the ES. Looking at the trend line, this effect 
seems to be stronger for images located in the central region of the 
quality range. The effect diminishes when the quality of the image is too 
high or too low.  A similar tendency is seen in Figure 3.5(B); images with 
a lower quality in the ROI tend to get a lower MOS than what would be 
expected from the ES. The latter effect, however, seems to be weaker 
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than the one found for images with a higher quality in the ROI. Figure 
3.5(B) shows that the effect is less prevalent for images that have the 
higher quality in the BG area of the image. Occasionally these images 
even gain a MOS that exceeds the ES.

It is also interesting to see whether the size of the quality difference 
between the ROI and the BG plays a role on the overall MOS of the 
combined stimulus. Figure 3.6 shows a scatter plot that attempts to 
illustrate this effect. In this figure, the horizontal axis represents the 
difference in quality between the ROI and the BG of the stimulus. All 
stimuli fall either in the negative half or the positive half of the graph, 
depending on whether the ROI region or the BG  had a higher quality. The 
vertical axis represents the difference between the MOS collected from 
phase 3 and the ES.

If the effect of the ROI and BG on overall IQ was equal, all data points in 
Figure 3.6 would lay horizontally on the Y=0 axis, since the difference 
between the MOS and the ES would then be zero for all stimuli. It is clear 
that this is not the case. Instead, values tend to be negative when the 
ROI has a lower quality than the BG and positive when the situation is 
reversed. Moreover, this effect appears to be stronger as the difference in 
quality between the ROI and BG  increases, the latter being especially the 
case for images with a higher quality in the BG than in the ROI (so, at the 
negative side of the X-axis in Figure 3.6). This trend is weaker when the 
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Figure 3.5 . Comparing the calculated ES to the subjectively collected MOS. 
Figure 3.5 (A) on the left represents images which had a higher IQ level in the 
ROI than in the BG, while those in Figure 3.5 (B) on the right had a lower quality 
in the ROI than in the BG.



quality of the background is strongly compromised in comparison to the 
quality of the ROI.

3.4.4 Modeling the influence of ROI on overall IQ 

Using the data collected from the experiment, it is possible to estimate 
how much more important the ROI is in determining the overall quality of 
an image. To do that, we again look at equation (2) used to calculate the 
ES. Since we now know that there is a difference in how much each 
region affects the overall perceived quality, we calculated a more 
accurate Weighted Expected Score (WES) by introducing two weighting 
parameters to the equation, resulting in:

WES= MOSROI . AROI . wROI + MOSBG . ABG . wBG  (3)
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Figure 3.6 .  The horizontal axis represents the difference in quality between the 
ROI and the BG regions, with the left side containing images with lower quality in 
the ROI than in the BG and right side images with higher quality in the ROI than 
in the BG. On the vertical axis, the difference between the MOS and the 
calculated ES is given. On the lower half,  viewers scored the images lower than 
what  would be expected from the ES, while in the upper half, viewers scored the 
images higher than what would be expected from the ES.



where wROI determines the weight of the ROI and wBG the weight of the 
background region on the overall perceived quality. To calculate the 
values of these weights, a linear regression analysis was performed. The 
analysis used the MOS of the combined images as the dependent 
variable and the quality of each region multiplied by its corresponding 
area as the independent variables. The analysis returned the values wROI 
= 3.80 (p < 0.001, 95% confidence interval 3.34 to 4.27), and wBG = 0.65 
(p < 0.001, 95% confidence interval 0.58 to 0.71). The overall model fit 
had a R2 = 0.975. The resulting relation is depicted in Figure 3.7, again 
for the two groups of data separately; i.e., in Figure 3.7(A) for the images 
with a higher IQ in the ROI than in the BG, and in Figure 3.7(B) for the 
images with a lower IQ in the ROI than in the BG.

To test the stability of this fit, the 80 stimuli of experimental phase 3 were 
split into two subgroups of 40 stimuli each. Both subgroups spanned the 
entire range of the quality scale. The two counterparts of each combined 
picture (i.e., one with a higher IQ  in the ROI and the other with a higher 
IQ  in the background) were joined in the same subgroup  in order to avoid 
having the same image content repeated in both subgroups and thereby 
influencing the analysis. We then conducted a linear regression analysis 
in the same manner as described above on one of the two sub-groups. 
This analysis yielded the values wsg-ROI = 3.54 (p < 0.001, 95% 
confidence interval 2.85 to 4.25), and wsg-BG = 0.68 (p < 0.001, 95% 
confidence interval 0.58 to 0.78). The overall model fit had a R2 = 0.974.
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Figure 3.7. Comparing the calculated WES to the subjectively collected MOS. 
Figure 3.7 (A) on the left represents images which had a higher IQ level in the 
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had a lower quality in the ROI than in the BG.



Both weighting factors were close in value to the ones found for the 
whole ensemble of stimuli, indicating that the result of the fit was not very 
sensitive to the particular selection of stimuli used. Subsequently, the new 
values of wsg-ROI and wsg-BG were used in equation (3) to calculate the 
WES of the second subgroup of stimuli (see Figure 3.8). 

Finally, a similar plot as the one shown in Figure 3.6 is generated using 
the WES scores from the second subgroup  of stimuli and the result is 
shown in Figure 3.9. The data points are now scattered around the Y=0 
axis, indicating that with the proper weighting factors for the quality of the 
ROI and the BG, the overall quality of an image, locally varying in quality, 
can be predicted. By examining the values of wsg-ROI and wsg-BG, we can 
conclude that the quality of the ROI is about 5 times as important than the 
quality of the BG.

3.5. Discussion

The results of the experiment clearly show that when people assess 
image quality, they give greater significance to some regions of the image 
over others. It is not possible to obtain the overall image quality by simply 
averaging the quality of the different regions of the image. The 
subjectively measured MOS is clearly different from the estimated score 
obtained by averaging the quality of all image regions, even when taking 
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into account their relative area in the image.  Results of phase 3 of the 
experiment demonstrated that there is a relation between the ROI quality 
and the MOS given to a combined stimulus. Stimuli which had a higher 
quality in the ROI mostly scored higher than expected. Stimuli with a 
lower IQ  in the ROI scored lower than expected, though this effect was 
less clear. The extent to which the subjectively determined MOS differed 
from the ES was affected by the amount of quality difference between the 
two image regions, as was shown in Figure 3.6. Looking at the lower left 
corner of the figure, one can see that as the quality of the ROI gets more 
degraded, the MOS shifts further away below the ES. In the center of the 
figure, where the quality level in both image regions is very close, the 
MOS and the ES are very close as well. One can notice, however, that 
the MOS is slightly higher than the ES, where equality is expected. The 
shift may be attributed to differences in scoring between the first and third 
phases of the experiment, for example as a consequence of the different 
groups of participants used. As such, this shift may be considered as an 
estimation of the reproducibility of the quality scores over the whole 
experiment. Since this shift is considerably smaller than the difference 
between the MOS and ES measured at both ends of the quality 
(difference) range, we are convinced that the impact of the quality of the 
ROI on the overall quality is not an artifact of the limited reproducibility of 
the quality scores. As the quality of the ROI continues to increase 
(towards the right side of the graph), the difference between the MOS 
and the ES stops growing and even seems to diminish at the extreme 
end of the graph. This seems to suggest that even if the degradation is 
only present at the BG region, at a certain point the degradation becomes 
so bad that it plays a bigger role in determining the MOS for the entire 
image.

We also quantified the effect of the quality of the ROI on the overall 
quality using linear regression. The resulting values, i.e., wROI = 3.803 
and wBG = 0.648, suggest that the ROI region is more than 5 times more 
significant in determining the overall quality of an image than the BG 
region. This is even more impressive when one takes into account that 
the ROI in the used images occupied only 10-16% of the entire image 
area. Subsequent analysis also proved that this simple linear regression 
model already resulted in a considerable improvement in predicting the 
MOS value of stimuli with a different quality level in different areas of the 
image. 
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At this point, one can wonder whether changing how the ROI is defined 
will influence how much more significant it will be in determining the 
overall image quality [42]. Since we used in our experiment only images 
with a clear ROI which was always occupied by a human or an animal, 
the ROI was well defined. One should keep  in mind that during the 
experiment, we used a white dot in the intermediate screen between 
stimuli and asked the participants to focus on this dot. This procedure 
helped us to refine the calibration of the eye-tracker, but may have 
introduced a center-bias in the saliency map  as well. The effect of a fixed 
starting point on a center-bias in a saliency map  may have occurred in 
the first fixations, but is expected to rapidly disappear over time (as 
extensively discussed in the literature [43]). Indeed, the example given in 
Figure 3.3 clearly illustrates that the saliency map calculated over the full 
presentation time of 8 seconds results in the expected ROI, away from 
the image center. Hence, we are convinced that we were able to 
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accurately find the ROI in all images of our data set. In real practice, 
however, not all images have a clear ROI and the ROI has to be 
determined with an algorithm. Both aspects will reduce the accuracy with 
which the ROI is defined, and most probably the resulting ROI will be 
more scattered than what we used to establish our model. As a 
consequence, the importance of the quality of the ROI may be 
overestimated in real applications. Nonetheless, most images taken for 
entertainment purposes contain a main subject which constitutes an ROI, 
and the performance of ROI estimation algorithms is expected to further 
improve. Thus, the quality of the ROI being 5 times more important than 
the quality of the BG is a ratio that may be used for a wide variety of 
images uploaded online today. One can even consider an alternative 
approach in which the importance factor is decreased when the area of 
the ROI becomes bigger, but this approach would need further research 
to establish the relationship.

A limitation of our study is that all images in the database were degraded 
using JPEG  compression. JPEG is still one of the de facto formats used 
to save digital imagery, but its specific nature may have affected the low 
importance of the quality of the BG to the overall quality score. Since the 
human eye is not good in detecting details in the periphery, it is possible 
that the observers are not capable of detecting the lower (or higher) 
quality as a consequence of blockiness or blur in the BG  region. It is, 
however, good to realize that most post-processing manipulations 
address spatially detailed information, and so, the relative importance of 
the quality of ROI and BG is expected to hold for a broad range of signal 
processing algorithms. An exception may be artifacts with a temporal 
nature, since our peripheral vision is more sensitive to temporal artifacts 
than our foveal vision. Hence, temporal artifacts in the BG  may be more 
easily detected or may be more annoying than temporal artifacts in the 
ROI, and so, these artifacts may change the relative importance in overall 
quality of ROI and BG.

Finally, it is good to realize that there are already several algorithms and 
image formats available that can encode different regions of an image at 
different quality levels [44-47]. There are also mechanisms available 
which can objectively estimate the ROI [48, 52]. It is therefore already 
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possible to implement the functionality that would optimize the encryption 
of different regions of images while predicting how it will affect the overall 
quality. This can be practical for saving content on mobile devices where 
memory-space is limited, or when making content for the web  to save 
bandwidth.

3.6. Conclusions

Our results have proven that it is important to take the ROI of an image 
into consideration when trying to apply any manipulation to original image 
content with the aim of improving its overall IQ. If the manipulation lowers 
the quality of the ROI, then the perceived IQ  of the entire image will be 
lower even if the majority (84% to 90%) of the image area has benefited 
from the manipulation. It is therefore risky to apply naive image 
enhancement algorithms which do not take the ROI into consideration.

When the quality of the ROI is higher than that of the BG, the viewers 
tend to give the image a higher quality score than its average quality 
level. We propose a simple model to estimate the overall perceived 
quality from the different quality levels of ROI and BG regions. This model 
illustrates that the quality of the ROI is about 5 times more important for 
the overall quality judgment than the quality of the BG.

It would be interesting to extend this study to video content. Since the 
dynamic nature of video lends greater significance to the ROI, we would 
expect the results to be more pronounced. On the other hand, video is 
expected to be more prone to temporal artifacts which may be more 
annoying in the BG  (our peripheral vision) than in the ROI (our foveal 
vision). Further research is needed to establish which of the two video 
related aspects dominate the relative importance of quality in the ROI and 
BG.
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4. 
Examining the Effect of Task on 
viewing Behavior in Videos Using 
Saliency Maps
Abstract

Research has shown that when viewing still images, people will look at 
these images in a different manner if instructed to evaluate their quality. 
They will tend to focus less on the main features of the image and, 
instead, scan the entire image area looking for clues for its level of 
quality. It is questionable, however, whether this finding can be extended 
to engulf videos considering their dynamic nature. One can argue that 
when watching a video the viewer will always focus on the dynamically 
changing features of the video regardless of the given task. To test 
whether this is true, an experiment was conducted where half the 
participants viewed videos with the task of quality evaluation while the 
other half were simply told to watch the videos as if they were watching a 
movie on TV or a video downloaded from the internet. The videos 
contained content which was degraded with compression artifacts across 
a wide range of quality. An eye tracking device was used to record the 
viewing behavior in both conditions. By comparing the behavior during 
each task, it was possible to observe a systematic difference in the 
viewing behavior which seemed to correlated to the video quality.
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4.1. Introduction 

Researchers have been studying visual attention deployment for many 
decades now [1,2]. This knowledge has been shown to be useful in a 
number of applications (e.g. [3,4]), especially when extracting image 
saliency information [5] through attention prediction models (e.g. [6,7,8]). 
One example is its implication in visual quality perception, which has 
been largely studied in images [9,10,11]. However, when it comes to 
videos there have been few efforts in trying to understand the relation 
between task, quality, and viewing behavior [12]. 

This research expands on earlier work performed on still images, focused 
on the effect that a task given to the observers can have on their viewing 
behavior [13]. In that work it was shown that the task does impact several 
spatial and temporal characteristics of the viewing behavior. On the other 
hand, similar work conducted on video material [12] has suggested that 
the viewing behavior is not affected by the given viewing task. Therefore, 
here we extend that study [13] to video material and focus on the task of 
scoring the quality of videos.

By following a similar methodology as the one used on still images, it is 
interesting to see whether the results are duplicated or whether the 
viewing task indeed has no effect on the viewing behavior. Furthermore, 
this study also looks at the interaction effects between the video encoding 
quality and the viewing behavior. The goal is to better understand how 
humans watch videos for entertainment. This information can then be 
used to optimize the video encoding algorithms to produce the best 
viewing experience while consuming less resources. For analyzing the 
viewing behavior, the methodology used here again extends on previous 
work done on still images [13] and, therefore, employ the use of saliency 
maps. The paper explores different algorithms for studying saliency maps 
[14] in an effort to determine which are more suitable for use in videos.

We designed a psychometric experiment to investigate the effects of task 
and visual quality on humans viewing behavior. We recorded the eye 
movements of a panel of observers while they were watching a set of 
distorted videos. These videos were degraded with compression artifacts 
across a wide range of video qualities. Half of the viewers was instructed 
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to evaluate the visual quality of each video. The other half was asked to 
watch the videos (as much as possible) as if they were freely watching 
them in a home setting.  In the following we analyze the resulting eye-
tracking data across different tasks and visual quality levels. To do so, we 
first convert them into saliency information, producing saliency maps 
averaged across all participants for each video and under each viewing 
condition. From (dis)similarities in saliency, we are able to detect 
analogies and differences in viewing behavior depending on task and 
visual quality level. The experimental methodology and the protocol are 
discussed in Section 4.2. The methodology followed to analyze the data 
is described in Section 4.3. Section 4.4 reports on the analysis of the eye-
tracking data, which is then discussed in Section 4.5. Conclusions and 
future research are prospected in Section 4.6.

4.2. Methodology
4.2.1 Stimuli

A video database was created which consisted of 25 video segments with 
a duration of 20 seconds each. Since the main purpose of the experiment 
is to detect if there was a difference in viewing behavior, we wanted to 
use stimuli that have clearly identifiable natural saliency regions in order 
to make it easier to detect any differences that may result from changing 
the viewing task. It was assumed that highly dynamic scenes can seize 
the focus of the viewers under natural viewing conditions. Therefore, the 
video segments were extracted from action based movies (some sample 
frames are shown in Figure 4.1). From each video, two distorted versions 
were produced using an H.264 video encoder. These two versions were 
degraded to two different levels of quality. The x264 encoder was used as 
provided by the ffmpegX software [16]. The resulting videos had a 
resolution of 1280x720 pixels, and a frame rate of 25 frames per second. 
The coding parameters were not uniform across the videos, to allow a 
variety of quality levels to be judged by the observers. Eventually, the 
database included 50 distorted videos spanning a wide range of quality.

Two collections of stimuli were generated (collections I and II), each 
including only one of the two distorted versions generated for each video. 
The assignment of videos to collections was made randomly, therefore 
the videos in each collection spanned roughly the same range of quality. 
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To give an idea of the wealth of this quality range, Figure 4.1 shows a 
sample frame on the left of one of the videos encoded with the highest 
bitrate (1237 bit/s), and another on the right which is among those 
encoded with the lowest bitrate (209 bit/s).

4.2.2 The experiment setup

Given that the focus of the experiment was on the viewing task, a 
between subjects design was chosen, where half the participants looked 
freely at the videos and the other half was asked to evaluate their visual 
quality. This meant that every viewer saw each video segment only once, 
and ensured that there was no memory effect influencing the viewing 
behavior. With 2 viewing conditions and 2 viewing tasks, the experiment 
took the form of a 2x2 design requiring 4 groups of observers, as shown 
in Table 4.1. Each group counted 12 participants, for a total of 48. 
Participants included master, graduate, and postgraduate students of the 
Electrical Engineering, Mathematics and Computer Science (EEMCS) 
faculty building at the Delft University of Technology (TU Delft).

90     

Figure 4.1. Video segments used for the experiment were taken from action 
movies and were chosen to have highly dynamic sequences. Varying the bitrate 
used to compress the videos from higher bitrates (left 1237 bit/s) to lower ones 
(right 209 bit/s) gave a wide range of quality for the generated videos.

Table 4.1. Between-subjects design of  experiment to determine the impact of task 
on viewing behavior

TaskTask
Scoring Free looking

Collection
I Group 1 Group 3

Collection II Group 2 Group 4



The videos were displayed using a late 2008 MacBook on a 17-inch CRT 
monitor with a resolution of 1280x960 pixels. The experiment was 
controlled from a remote computer with its monitor positioned so that it 
would not interfere with the participant’s task. In order to avoid outside 
elements interfering with the results, the experiment was carried out in a 
controlled environment inside the Delft Experience Lab  located in the 
EEMCS faculty building at the TU Delft. Only the experimenter and the 
viewer were present while performing the experiment. The illumination 
level was kept constant. Eye movements were recorded binocularly at 
250 Hz with a video-based infrared eye tracker (SR-Research, EyeLink-
II). The eye-tracker data was saved to disk for off-line analysis. The 
experiment setup is shown in Figure 4.2.

4.2.3 The experiment protocol

Of the four groups of participants (Table 4.1), the first two groups (1 and 
2) as well as the last two (3 and 4) went through identical protocols but 
watching a different collection of videos. In all cases, participants were 
given a printed description of the experiment and a list of the instructions 
they needed to follow. They were then seated so that their viewing 
distance measured 60 [cm] from the display plain. After being fitted with 
the head mounted eye tracker, the experimenter ran a 9-point calibration 
for the gaze location.
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Figure 4.2.  Experimental setup. The viewer watched the videos on a CRT monitor 
while wearing a head mounted eye tracking device. The experimenter ran the 
experiment from a non-intrusive position.



Groups 1 and 2 watched the first and second collection of videos 
respectively. The performed a scoring task which used a single stimulus 
numerical scaling setup  [15]. After the calibration, observers were shown 
4 training videos (Which were not a part of the collections I and II), which 
were representative of the entire range of quality used in the video 
collections. The training videos helped the participants in getting 
acquainted with the user interface of the experiment and gave them an 
idea of the range of quality they could use for scoring the videos. For 
every video to be evaluated, during both the training and actual 
experiment, the following steps were performed. The participants first 
saw a drift correction screen, which helped the head mounted eye tracker 
compensate for any shifts in its position. To do that, they simply had to 
fixate their gaze at a red dot in the center of the screen and press the 
space bar. They were then shown a 20 second video segment. This was 
followed by a scoring window with a continuous slider going from 0 to 10 
with the labels ‘poor’ at the lower end and ‘excellent’ at the other. Once a 
score was chosen, the process was repeated with the drift-correction 
screen followed by another video. After the first four videos, a dialog 
window was shown indicating that the training session was over and the 
process then continued with the videos from one of the collections. 
Participants from each group always saw the same 25 video segments 
from the assigned collection, but the order in which the videos were 
shown was randomized in order to avoid any bias (i.e., learning or fatigue 
effects) in the results.

Participants in groups 3 and 4 were again shown collections I and II 
respectively. They followed the same protocol described above except 
that they were not given the scoring window after each video. Of course, 
the experiment instructions they had were also adjusted so that they were 
told to only watch the videos as if they were watching TV or a video 
downloaded from the Internet.

4.3. Analyzing the data

The eye tracker collected fixation and saccade information. Smooth 
pursuit eye behavior exhibited when the viewer followed the movements 
of objects on the screen was registered by the eye tracker as fixations. In 
order to perform a precise spatial analysis of attention deployment, we 
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decided to transform fixation data into saliency information, adapting the 
procedure proposed in [14]. First, per each video sampling point we 
grouped in a single fixation map  all the fixation locations of all observers. 
This resulted into as many fixation maps as sampling points per each 
video, giving a too fine granularity for the purposes of our analysis. Thus, 
videos were divided in coarser slots of 1 second each, and fixation maps 
were averaged over these time slots, resulting in 20 fixation maps per 
video. These fixation maps were finally converted to saliency maps to 
better reflect the characteristics of human vision. In particular, a Gaussian 
patch with a width σ approximating the size of the fovea (about 2° visual 
angle) was applied to each fixation. A mean saliency map  that takes into 
account all fixations of all subjects was calculated as follows:
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where St,i(k, l) indicates the saliency map  for stimulus Ii for the time slot 
tϵ[1,20] of size MxN pixels (i.e. kϵ[1, M] and lϵ[1, N]), (xj, yj) indicates the 
spatial coordinates of the jth fixation (j=1…T), T is the total number of all 
fixations over all subjects in that time period, and σ indicates the standard 
deviation of the Gaussian. The intensity of the resulting saliency map is 
linearly normalized to the range [0, 1]. Each of these maps specifies the 
saliency distribution over a specific time slot of a specific video. In other 
words, it is a representation of the probability, pixel by pixel, that at a 
given time slot, for a given video and task, the average observer will 
fixate on a specific pixel. This process was repeated for each 1 second 
time slot for each video sequence. Hence, we obtained in total 20 (slots) 
x 25 (videos) x 2 (collections) x 2 (tasks) = 2000 saliency maps.

4.4. Results

The scores collected from groups 1 and 2 for each encoded video 
sequence were processed to calculate one mean-opinion-score (MOS) 
[17] representing the subjective quality level of that video segment. 
Graphs shown in Figure 4.3 illustrate the range of subjective quality used 
in the videos. The top  graph shows the MOS values for the two degraded 
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versions of each video segment included in collections I and II. The graph 
clearly shows that the videos in both groups were well distributed across 
the used range of quality. It also conveys that the difference in quality 
between the two encoded versions of each video segment varies across 
the generated collections. The graph on the bottom of Figure 4.3 plots the 
MOS as a function of the video bitrate. Despite the wide spread that can 
be observed in the middle of the scale, a linear relation can be observed 
between the two values approximated by the stapled line plotted in the 
graph. 

As previously stated, we are interested not only in the impact of task on 
visual attention but also on that of the quality level. Thus, It is useful for 
the analysis to sort the collected data into groups depending on the MOS 
quality levels. We redistributed the videos from the two collections into a 
High Quality (HQ) and Low Quality (LQ) groups. For each video, the 
version that received the lower MOS is collected in the LQ  group  and the 
one with the higher quality is assigned to the HQ group. By taking the 2 
tasks into consideration, we end up  with 4 sets of data as shown in Table 
4.2.

In order to see whether the quality scoring task (the independent 
variable) affected the viewing behavior, the saliency maps collected 
under each task are compared to measure the level of similarity among 
them. Many approaches for analyzing similarities between saliency maps 
have been proposed in similar research studying attention data in still 
images [14]. In the sake of being thorough, 4 of the measures proposed 
in the literature [14] are computed here for the saliency maps in order to 
find the most appropriate measures capable of highlighting differences in 
the viewing behavior in videos. These approaches are: Linear Correlation 
Coefficient (LCC), Kullback-Leibler divergence (KLD), Normalized 
Scanpath Saliency (NSS), and the Structure Similarity Index (SSIM) [18]. 
A value of LCC = 1 indicates identical maps, while LCC = 0 indicates 
uncorrelated maps. This is also the case for SSIM with a range of [0-1] 
and higher scores indicating more similarity. The NSS will return a value 
greater than zero if there is a greater correspondence between the two 
saliency maps than expected by chance. The NSS value of zero would 
mean there is no such correspondence and a value of less than zero 
would mean there is anti-correspondence between the saliency maps. 
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Table 4.2. The redistributed data sets used in the analysis of the results
TaskTask

Scoring Free looking

Quality
Higher S-HQ F-HQ

Quality Lower S-LQ F-LQ

Figure 4.3. Two graphs illustrating the range of quality in the used videos. On the 
top are the MOS values for the two versions of videos in each collection sorted by 
the difference in MOS. On the bottom the MOS for all 50 videos is plotted against 
the bitrate used to encode the videos. 
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Figure 4.4.  Four different similarity measures are applied on 50 videos. They 
compared the saliency maps collected while scoring and free-looking, plotted 
against  the MOS values.  LCC and SSIM have the range [0-1] with higher values 
indicating more similarity. With NSS,  a value of 0 represents no similarity with 
higher values representing more similarity. KLD is the opposite starting at 0 for 
perfect similarity, with higher values meaning less similarity. 
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Figure 4.5. By taking the free looking high quality as a reference. The similarity 
with the low quality videos is measured for both the free looking and the scoring 
conditions



Finally, the KLD is a positive quantity that increases with the dissimilarity 
of the maps, and KLD = 0 only in the case of identical maps. More details 
on what each of these method measures and how they are calculated 
can be found in the literature [14].

First the LCC was computed for each pair of saliency maps 
corresponding to the same video and time slots for each of the two tasks. 
In other words, the LCC was calculated for each video for each saliency 
map  in S-HQ and the corresponding saliency map in the F-HQ  dataset. 
The same process is then repeated for the S-LQ vs F-LQ, S-HQ vs S-LQ, 
and F-HQ vs F-LQ data sets. In this way, we had, per each second and 
per each encoded video, an indication of the similarity of viewing 
behavior under different tasks and under different quality levels. This 
process was then repeated using the other three similarity measures 
(SSIM, KLD, and NSS). Figure 4.4 shows the similarity values for the task 
effect for all 4 similarity measures. Each data point represents the 
average value over 20 time slots for each of the 50 encoded video. The 
error bars represent the 95% confidence interval for the 20 time slots for 
each video segment. The similarity scores are plotted against the 
subjective MOS quality and a trend line is plotted representing the best 
linear function fitting the data.

Since the KLD scale is reversed (higher values indicate less similarity), 
the trend lines of the SSIM, KLD, and NSS seen in Figure 4.4 indicate 
that the viewing behavior becomes less similar as the quality level 
increases. The trend line for the LCC values is virtually flat and neither 
support nor oppose this observation. When it comes to explaining the 
effect of the task however, it may be helpful to have a reference measure 
to compare the data against.

We next take the free-looking data collected while viewing the high 
quality segments (F-HQ) as a reference. With no assigned task and the 
relatively higher level of quality, it represents the closest saliency data to 
the natural saliency of the original 25 video segments. We use this 
reference data to examine the similarity of the viewing behavior for the 
lower quality versions of the same video segments under free-looking (F-
LQ) and scoring (S-LQ) conditions. Figure 4.5 shows this comparison 
using the 4 similarity measures.
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As all observers are human, It is possible that there are differences 
between observers and how they would view the same stimulus in a 
different manner. This difference is known in the literature as inter- 
observer variability [14]. In order to determine whether the observed 
differences in viewer behavior were a result of inter observer variability or 
whether they are the results of a systematic shift in viewing behavior, 
saliency maps collected under the same viewing conditions are analyzed 
against each other for similarity to establish a so called upper empirical 
similarity limit. (UESL) [14]. 

Since the free looking high quality data is used as a reference for the 
analysis, this data is also chosen to be used for calculating the UESL. 
The data collected from the 12 participants is split in two subgroups. Two 
groups of saliency maps are constructed from each subgroup  of viewing 
data. The similarity scores between the saliency maps are then 
calculated. This process is repeated 10 times and the average similarity 
score is calculated to establish the UESL. In order to keep  the analysis 
fair, the rest of the similarity scores shown in Figure 4.5 are recalculated 
with half of the number of participants as well. The results of this analysis 
for the four different similarity measures is shown in Figure 4.6. Statistical 
analysis of the S-LQ and F-LQ revealed no significant difference viewing 
behavior between the two conditions. 

4.5. Discussion

Looking at the graphs shown in Figure 4.4 one can safely say that all 
similarity measures have a similar level of performance considering the 
spread of the data points and the size of the resulting confidence 
intervals. It is therefore difficult to single out any of them as the best or 
worst. Hence, the analysis of the results looks at all the four similarity 
measures. 

Figure 4.4 also shows that there is a trend of lower similarity in behavior 
as the quality of the videos increases. In other words, when looking at a 
better quality video, the viewing task has a greater influence on behavior. 
One possible explanation is that higher quality videos contain less 
artifacts, and therefore requires the viewers to actively search for clues of 
quality by ignoring the natural salient regions and scanning the entire 
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Figure 4.6.  Smilar analysis  to that in Figure 5,  but now with the UESL analysis. By 
taking the free looking high quality as a reference, the similarity with the low 
quality videos is measured for both the free looking and the scoring conditions



video area. This trend, however, is not visible when analyzing the data 
using LCC (represented by the flat trend line in Figure 4.4 top), which 
may be an indication that it is not a very strong trend.

As mentioned before, freely viewing the higher quality versions of the 
video segments (F-HQ) gives the closest viewing characteristics to 
natural saliency. For that reason it is used as the reference value for the 
analysis shown in Figure 4.5. To see whether the task has an effect on 
the viewing behavior, we measure the similarity of the reference data (F-
HQ) to that collected with F-LQ. This is then repeated for the reference 
data (F-HQ) and S-LQ to see if changing the task gives a different result. 
Since the difference of quality is equal in both cases, we assume that it 
does not play a significant role in this comparison.

The similarity analysis is then repeated for all data taking the UESL into 
account. The results of that analysis are shown in Figure 4.6. In the 
figure, it is possible to see that the UESL does not fall above all other 
data points as expected. This is the case for all four similarity measures 
and is more apparent with NSS where the UESL values mainly fall below 
the other values of the analysis. This result does not fall in line with what 
is expected from a UESL analysis. It simply seems that the data collected 
within the parameters of this experiment are not suitable for a UESL 
analysis.

A statistical analysis of the results showed no significant difference 
between the free looking and scoring tasks. It was therefore not possible 
to replicate the results found in earlier research performed on still images 
[13] This may be due to the highly dynamic character of the video 
segments used in this experiment which makes it difficult to deviate 
attention from the natural scene saliency. It may also be the result of the 
different method used for analyzing the data, since even within this data 
set not every used similarity measure was able to detect the difference in 
viewing behavior.

4.6. Conclusions

In this paper we examined the effect of the given task on the viewing 
behavior when watching videos. By tracking the eye movements of the 
observers under both conditions it was possible to generate saliency 
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maps representing the viewing characteristics under each condition. A set 
of different possible measures for saliency similarity [14] was used to 
analyze the data. From these measures, the SSIM was the only one 
sensitive enough to detect all observed effects. 

Using these similarity measures, it was possible to see a trend of the task 
having a stronger effect on viewing behavior if the video has a higher 
level of encoding quality. Viewers seem to focus more on searching for 
clues of the image quality if no clear artifacts are present. However, it was 
not possible to detect a systematic difference in the viewing behavior 
when viewers were given the task of scoring the quality of the videos. 
The UESL analysis did not yield any solid conclusions other than that the 
analysis is not suitable for analyzing the data of this type of experiments. 

With regards to future work, we are looking deeper into the video 
segments using the calculated similarity measures to find specific scenes 
that exhibit higher sensitivity to the given task and try to identify common 
characteristics in these scenes. Additionally, it may be interesting to look 
into applying other image saliency analysis techniques to see how they 
perform on this data. The saliency data generated in this experiment has 
also been made available on the Internet for other researchers in the field 
[19] to offer them the chance to use it in related research.
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5. 
Quantifying the Importance of 
Preserving Video Quality in Visually 
Important Regions
Abstract

Advances in digital technology have allowed us to embed significant 
processing power in everyday video consumption devices. At the same 
time, we have placed high demands on the video content itself by 
continuing to increase spatial resolution while trying to limit the allocated 
file size and bandwidth as much as possible. The result is typically a 
trade-off between perceptual quality and fulfillment of technological 
limitations. To bring this trade-off to its optimum, it is necessary to 
understand better how people perceive video quality. In this work, we 
particularly focus on understanding how the spatial location of 
compression artifacts impacts visual quality perception, and specifically in 
relation with visual attention. In particular we investigate how changing 
the quality of the region of interest of a video affects its overall perceived 
quality, and we quantify the importance of the visual quality of the region 
of interest to the overall quality judgment. A three stage experiment was 
conducted where viewers were shown videos with different quality levels 
in different parts of the scene. By asking them to score the overall quality 
we found that the quality of the region of interest has 10 times more 
impact than the quality of the rest of the scene. These results are in line 
with similar effects observed in still images, yet in videos the relevance of 
the visual quality of the region of interest is twice as high than in images. 
The latter finding is directly relevant for the design of more accurate 
objective quality metrics for videos, that are based on the estimation of 
local distortion visibility.
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5.1. Introduction

With the booming of digital video [1], and especially of its distribution via 
IP networks, compression algorithms that can reduce the video size have 
become crucial for video distribution and delivery to the user. Video 
coding is indeed essential to allow storing and transmitting, within existing 
bandwidth and storage  constraints, the huge amount of video material 
available in online communities ad repositories. Despite the remarkable 
progress that video coding has made in the past few years (i.e., first 
MPEG-2 [2], then H.264/AVC [3] and the most recent HEVC codec [4] for 
ultra-high definition video), most commercially used compression 
schemes are lossy, invariably causing a decrease in the perceptual 
quality of the eventually delivered video. Post-processing algorithms, 
such as sharpening or deblocking filters [5,6], can to some extent 
compensate for the quality loss. However, though generally beneficial, 
these filters also may cause visible artifacts, e.g., by introducing blur 
when reducing the visibility of blocking artifacts. In fact, these filters are 
usually designed to be applied uniformly to entire video frames. So, even 
if local video texture masks the visibility of compression artifacts, still 
post-processing filters are used, possibly hampering the video quality in 
regions where it was still acceptable.

Hence, for quality control and enhancement to be effective it is necessary 
to have some mechanisms in place that allow us to estimate as 
accurately as possible the visibility and the annoyance of artifacts, on a 
local basis. A wide amount of research is currently dedicated to the 
automated estimation of artifact annoyance and related perceived quality 
of video, by means of so-called Objective Quality Metrics. These typically 
estimate artifact visibility and/or annoyance depending on image/video 
characteristics and the related perceptual processes in the human visual 
system [7,8]. Lately, there have been attempts at designing objective 
quality metrics that also include information on the visual importance of 
the position of the artifacts in the video. It has been commonly assumed 
that artifacts in visually important areas of the image/video may be more 
noticeable and weigh more in the overall quality judgment. Similarly, 
artifacts in background regions may be less visible and thus neglected by 
users [9]. 
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The notion of visual importance is tightly coupled to that of visual 
attention. Research has shown that humans have limited resources to 
allocate to the perception of visual stimuli [10]. In order to cope with the 
high level of complexity that visual scenes can contain, the human visual 
system directs the focus of vision to conspicuous regions in the scene, 
deemed to carry the most relevant visual information [11,12]. Two types 
of visual attention mechanisms are distinguished: driven by scene 
saliency (bottom-up  mechanisms) or visual importance (top-down 
mechanisms). Bottom-up  saliency refers to the fact that (local) contrast in 
scene features such as luminance, color and orientation can attract 
people’s attention, typically unconsciously. Top-down mechanisms are 
instead triggered by a more conscious process and may require 
understanding of the scene. They regulate the phenomenon according to 
which scene elements with a prominent semantic connotation (such as a 
human face or a single dog in a picture of an empty field) receive more 
attention than other regions of that scene [13]. Visually important regions, 
also known as Regions Of Interest (ROI), can be considered as the 
scene elements carrying the most relevant visual information, while the 
remaining regions contain simply background information that is there to 
support the ROI or provide context. 

The link between visual importance and artifact annoyance has been 
thoroughly investigated and proved for images [14-17]. In multiple cases, 
the integration of visual importance information into objective quality 
metrics for images has been shown to be beneficial in terms of improving 
the quality prediction accuracy. These results are hardly generalizable to 
video, though. When attending video material, the viewing behavior is 
different from that deployed when viewing images. When looking at still 
images, humans rapidly fixate on a specific region in the image, scan it, 
and then move on to other regions. In videos, fixations on moving objects 
are enabled through smooth pursuit eye movements [18]. This allows for 
longer fixation durations, which may also be needed to follow the gradual 
change of the content in the ROI. As a result, the ROI tends to capture 
most of the visual attention [9], and that leaves less time to scan the 
background regions of the scene. However, since video artifacts are also 
dynamic in nature, one can also assume that they will be more distracting 
than artifacts in still images, thereby becoming salient. One would 
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therefore wonder whether the quality of the ROI in videos has in fact a 
larger influence on overall perceived quality, or whether the appearance 
of distracting artifacts in background regions is instead most disruptive for 
overall quality perception [17]. 

Research in [19] has actually shown that packet-loss artifacts, which are 
strongly localized in space and time, are more annoying when appearing 
in the ROI than when appearing in the background of the same video. 
The extent to which distortions in the ROI would be more annoying than 
those in the background was, however, not quantified, nor was the 
difference in annoyance proven to be true for diffused artifacts such as 
blockiness or blur. Evidence of a reduced distraction power of 
background artifacts in videos with respect to images was also found. 
Salient video areas were found to be mostly unaltered when compression 
artifacts would appear outside the ROI [20]. To the best of the authors’ 
knowledge, however, it is still unclear whether this reduced distracting 
power has an influence on the overall quality assessment, and if it does, 
to what extent background artifacts contribute to the formulation of the 
overall quality judgment in the user. Unclear results in this sense have 
also been found when attempting at incorporating visual importance 
information in objective quality metrics for videos. This has been typically 
done by weighing estimated blockiness strength depending on the visual 
importance of its location. This practice has led to marginal if any 
improvement [9,21], leaving unclear the role played by visual importance 
in video quality perception, when dealing with distributed, compression-
generated artifacts.
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Table 1. Between-subjects design of experiment to determine the impact of task 
on viewing behavior

TaskTaskTaskTask
ScoringScoring Free lookingFree looking

Video 
Collection

I
Phase 1

Group 1
Phase 2

Group 3
Video 

Collection
II

Phase 1 Group 2 Phase 2 Group 4Video 
Collection Comp I Phase 3 Group 5 ——

Video 
Collection

Comp II
Phase 3

Group 6 ——



Therefore, the current study aims at shedding some light on the 
relationship  between the annoyance of blocking artifacts and the visual 
importance of their spatial location. In particular, we are interested in 
determining: (1) whether artifacts located in the ROI of the video are 
significantly more annoying than those in the background and, if so (2) to 
what extent their annoyance contributes to the final quality evaluation, 
compared to the annoyance of artifacts located in background areas. We 
investigate these two questions by using a similar methodology as 
applied to images in [17]. We first determine the visual importance of 
different spatial regions in a video by means of eye-tracking. We then 
create a video database containing videos with a different compression 
level in the ROI and in the background. Based on subjective evaluations 
of these videos, we establish a model for the annoyance of artifact 
visibility in regions with prominent visual importance. The resulting model 
illustrates how, for a ROI as small as 10% of the video size, the artifacts 
located in it have a 10 fold higher importance in the determination of the 
final video quality than those located in the background. 

Section 5.2 of this chapter explains how the videos were created and 
which experimental methodology was used. We also explain how the eye 
tracker data were used to identify the ROI of the shown videos. Section 
5.3 lists the results, which are then discussed in Section 5.4, followed by 
the conclusions and further thoughts in Section 5.5. 
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Figure 5.1. Illustration of the experimental setup, showing on the left-hand side a 
participant watching the videos on a CRT monitor while wearing a head mounted 
eye tracking device. The experimenter ran the experiment from a non-intrusive 
position, and assisted the experimental task without moving or interfering with it, 
in order to prevent causing distractions to the participant.



5.2. Methodology

Visual attention mechanisms can be studied via the analysis of eye 
movements. Eye-trackers are typically used to this purpose; they track 
fixations and saccades during scene observation. Fixations are known to 
be driven by bottom-up saliency. Recent literature has shown that for 
most images there is also a relation between visual fixation patterns and 
ROI or visual importance, with the early fixations being more predictive 
for the ROI than later fixations [22,23]. Hence, these findings justify the 
use of fixation density maps to determine the ROI, as is exploited in this 
paper. In the following, we provide the required details for all the three 
phases of the experiment.

5.2.1 Experimental setup

Our study was conducted based on a three-phase experiment using a 
between-subject design (see Table 1). Participants in Phase 1 and Phase 
3 were asked to evaluate the visual quality of the videos while those in 
Phase 2 were simply instructed to look freely as if they were watching the 
videos on a TV or in a movie theater. All participants who took part in 
Phase 2 were seeing the videos for the first time to ensure that no 
memory effect influenced their viewing behavior. In all phases, the eye 
movements of the participants were recorded binocularly at 250 Hz with a 
video-based infrared eye tracker (SR-Research, EyeLink-II). The eye-
tracking data were saved to disk for off-line analysis.

In total, 6 groups of participants were divided over the assigned tasks and 
collections of video stimuli as shown in Table 1. Groups 1, 3 and 5 
performed exactly the same task as Groups 2, 4 and 6, respectively, 
albeit on a different set of stimuli, as will become clear in Section 5.2.2. 
The reason for splitting up  videos over two groups of people was not only 
to keep  the experimental sessions short, but also (mainly) to take care 
that all participants saw each video only once (i.e., either for scoring or 
free-looking, and with only one quality level). Groups 1 to 4 included 12 
participants each, while Groups 5 and 6 included 9 participants each. 
Since no analysis on the eye-tracking data collected in Phase 3 (Groups 
5 and 6) was planned, a lower number of participants was sufficient to 
quantify the perceived quality of the video stimuli. In total, 66 participants 
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took part in the experiment. They included master, graduate, and 
postgraduate students of the Electrical Engineering, Mathematics and 
Computer Science (EEMCS) faculty building at the Delft University of 
Technology (TU Delft).

The videos were displayed using a late 2008 MacBook connected to a 
17-inch CRT monitor with a resolution of 1280x960 pixels. The 
experiment was controlled from a remote computer with its monitor 
positioned so that it would not interfere with the participant’s task. In order 
to avoid outside elements interfering with the results, the experiment was 
carried out in a controlled environment inside the Delft Experience Lab 
located in the EEMCS faculty building at the TU Delft. Only the 
experimenter and the viewer were present while performing the 
experiment. The experimental setup is shown in Figure 5.1.

5.2.2 Creating the video stimuli
5.2.2.1 Uniformly Degraded Video Collections

A video database was created which consisted of 25 video segments with 
a duration of 20 seconds each. The goal of the study was to detect 
whether the quality of the ROI had an impact on the overall perceived 
quality; thus, we wanted to use stimuli that had clearly identifiable regions 
of interest, in order to make it easier to detect any differences that may 
result from changing the video quality in a spatially localized way. This 
peculiarity is not always retrievable in video quality databases (e.g., LIVE 
[24]); therefore, we opted for creating a dataset specific to our purpose.
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Figure 5.2. Video segments used for the experiment were taken from action 
movies and were chosen to have highly dynamic sequences. Varying the bitrate 
used to compress the videos from higher bitrates (left 1237 bit/s) to lower ones 
(right 209 bit/s) gave a wide range of quality for the generated videos.



We assumed that highly dynamic scenes can seize the focus of the 
viewers under natural viewing conditions. Therefore, the video segments 
were extracted from action based movies (some sample frames are 
shown in Figure 5.2, the full dataset can be found at [25]). We opted for 
25 different contents to make sure that, although related to videos with a 
clear region of interest, our results would be independent on specific 
content semantics. From each video, two distorted versions were 
produced using an H.264 video encoder (specifically, the x264 encoder 
provided by the ffmpegX software [26]). The resulting videos had a 
resolution of 1280x720 pixels, and a frame rate of 25 frames per second. 
From each video, two versions of it were created. Each was degraded to 
a different level of quality. We deemed it sufficient to analyze effects of 
only two quality levels in this experiment, as we were interested in 
proving that the quality of the ROI was more relevant to that of the 
background, and for this proof of concept, the comparison of two quality 
levels was enough. Furthermore, the coding parameters were constant 
over the whole length of one video, but were not uniform across the 25 
different videos, to allow a variety of quality levels to be judged by the 
participants. Eventually, the database included 50 distorted videos 
spanning a wide range of quality. To give an idea of the breadth of this 
quality range, Figure 5.2 shows a sample frame on the left of one of the 
videos encoded with the highest bitrate (1237 bit/s), and another on the 
right which is among those encoded with the lowest bitrate (209 bit/s). 
Bitrate values are also displayed in Figure 5.3.

Two collections of stimuli were generated (Collections I and II, as 
indicated in Table 1). Each collection included only one of the two 
distorted versions generated for each of the 25 videos. The assignment 
of the distorted videos to the two collections was made randomly, so that 
the videos in each collection spanned roughly the same range of quality. 
Hence, the participants in Group  1 and Group  2 saw the same 25 original 
videos, but at a different quality level. Exactly the same holds for the 
participants in Group  3 and Group  4. All videos included in Collections I 
and II, along with their corresponding saliency maps, are available for 
further use and can be retrieved from the Delft IQLab repository [25,27].
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5.2.2.2 Identifying the Region Of Interest

As mentioned earlier, the videos selected for this experiment were 
deliberately chosen to have a clearly identifiable ROI. It is expected that 
when observing the videos without a specific task (as in our experiment 
participants belonging to Groups 3 and 4 did), the viewer's attention is 
mainly drawn towards the ROI of each scene shown, as suggested by the 
research of Engelke et al. [22] and Wang et al. [23]. Smooth pursuit eye 
behavior exhibited when the viewer followed the movements of objects 
on the screen was registered by the eye tracker as fixations [18]. In order 
to perform a precise spatial analysis of attention deployment, fixation data 
were transformed into saliency information [28]. First, for each video 
frame we grouped in a single fixation map all the fixation locations of all 
participants. This resulted into as many fixation maps as frames for each 
video, giving a too fine granularity for the purpose of our analysis. Thus, 
videos were divided in coarser timeslots of 1 second each, and fixation 
maps were averaged over these timeslots, resulting in 20 fixation maps 
per video. These fixation maps were finally converted to saliency maps to 
better reflect the characteristics of human vision. In particular, a Gaussian 
patch with a width σ approximating the size of the fovea (about 2° visual 
angle) was applied to each fixation. A mean saliency map  that takes into 
account all fixations of all subjects was calculated as follows:

(1)

where St,i(k, l) indicates the saliency map  for video Vi, i = 1,… 50, at 
timeslot t∈[1,20] , given that Vi has a spatial resolution of MxN pixels (i.e. 
k∈[1, M] and l∈[1, N]); (xft,i, yft,i) indicates the spatial coordinates of the f-th 
fixation (f=1...F) performed on video Vi at timeslot t, where F is the total 
number of all fixations recorded for Vi from all subjects during timeslot t. 
The intensity of the resulting saliency map is linearly normalized to the 
range [0, 1]. Each of these maps specifies the saliency distribution over a 
specific timeslot of a specific video. In other words, it is a representation 
of the probability, pixel by pixel, that at a given timeslot, for a given video 
and task, the average participant fixates on a specific pixel. This process 
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was repeated for each 1 second timeslot for each video sequence. 
Hence, we obtained in total 20 (timeslots) x 25 (videos) x 2 (collections) x 
2 (tasks) = 2000 saliency maps. Eventually, we decided to define the ROI 
as the region including all areas with a saliency value of 0.2 or more on 
the normalized range of [0, 1]. This threshold was chosen to ensure that 
the ROI occupied less than 10% of the entire video area (see Section 
5.2.2.3)

5.2.2.3 Composite Video Creation

With the process described above we obtained for each timeslot of each 
video 2 ROIs from the free-looking data (i.e., from Groups 3 and 4). Each 
ROI was extracted from a video with a different quality level. To construct 
composite videos we first averaged these two ROIs by averaging the 
saliency maps and extracting a new ROI. Once the averaged ROI was 
identified, we created composite versions of the videos where the ROI 
area (which turned out to be 6 to 9% of the video size) and the 
background area (the remaining 91 to 94% of the video size) 
corresponded to a different version of the original video. As a result, 
within the same composite video, the encoding bitrate of the ROI was 
different from the bitrate used in the background area. 

To better explain how we built our composite videos, we describe here an 
example. Let us consider the original video Vo, from which two distorted 
version Vo1 and Vo2 (included in Collection 1 and Collection 2 
respectively) were created. Let us also assume that Vo1 was compressed 
at a higher bitrate than Vo2. By analyzing the eye-tracking data with the 
procedure explained in Section 5.2.2.2, we were able to identify an 
averaged ROI for every timeslot of Vo1 and Vo2 , which we indicate with 
ROI(Vo,t). From Vo1 and Vo2 we created two new composite videos, 
namely Vc1 and Vc2, with the following characteristics:
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with (x,y) representing a pixel in the video at timeslot t. Thus, this process 
resulted in two new composite versions; one version (Vc1) contained the 
ROI region of the video with the higher bitrate (Vo1) and the background 
region of the video with the lower bitrate (Vo2), while the second version 
(Vc2) contained the ROI region of Vo2 and the background region of Vo1. 
As such, Vc1 had a higher level of quality in the ROI than in the 
background, while Vc2 had a lower level of quality in the ROI than in the 
background. A 3x3 pixel Gaussian smoothing filter was applied only to the 
pixel boundary between ROI and background in these composite videos 
to avoid a jarring transition in quality, which could distract the viewer or 
provoke annoyance. After applying this filter the presence of the 
boundary between both regions was hardly noticeable for most videos. 
Nonetheless, 5 of the resulting videos had to be discarded because the 
clash between the composite ROI and background regions was too 
intrusive on the video content. Therefore only 40 videos were included in 
the rest of the experiment and analysis. These 40 composite videos of 
the types (Vc1) and (Vc2) were distributed between the new Collections 
Comp I and Comp  II, where each group contained one randomly selected 
version of the video (see Table 1).

5.2.3 Experimental protocol

Of the six groups of participants (again see Table 1), Groups 1, 2, 5, and 
6 went through identical protocols, but watching a different collection of 
videos. Groups 3 and 4 followed a similar protocol except they were not 
asked to score videos in quality. In all cases, participants were given a 
printed description of the experiment and a list of the instructions they 
needed to follow. They were then seated so that their viewing distance 
measured 60 cm from the display screen. After being fitted with the head 
mounted eye tracker, the experimenter ran a 9-point calibration for the 
gaze location.

Groups 1 and 2 watched the first and second collection of videos 
respectively. They were requested to score each video, after it ended, in 
a single stimulus set-up with a continuous scale, ranging from 0 to 10, 
including the labels ‘poor’ at the lower end of the scale and ‘excellent’ at 
the higher end [29]. The choice of a continuous scale rather than a 
discrete, categorical one (often used in literature [29]), was dictated by 
the need of obtaining clear interval values for the quality scores, to be 
directly employed in the follow-up  analysis. Categorical scales such as 
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the widely used 5-point Absolute Category Rating (ACR, [29]) are known 
for returning evaluations that cannot be immediately translated into 
interval values, due to the fact that the width of the categories may be 
variable and subject to the participants’ interpretation (e.g. the ‘poor’ 
category may refer to a larger quality range than the ‘fair’ category) 
[30,31]. Continuous interval scales allow instead the user to express 
judgments that map linearly to the quality scale [30].

After the calibration of the eye-tracker, participants were shown 4 training 
videos (that were not part of Collections I and II), which were 
representative for the entire range of quality used in the video collections. 
The purpose of this separated training session was twofold: (1) it would 
help the participants in getting acquainted with the user interface of the 
experiment, and (2) gave them an idea of the range of quality used in the 
experiment, as such limiting contextual effects [32], as shown in previous 
work [33]. For every video to be evaluated, during both the training and 
actual experiment, the following steps were performed. Participants first 
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Figure 5.3. The relation between the H.264 bitrate and the MOS given by the 
viewers in Phase 1. Yellow, round  markers identify the MOS scores for both 
versions of the five videos excluded from the video composite creation (see 
Section 5.2.2.3). The figure also visualizes the 95% confidence intervals for each 
MOS score using error bars.



saw a drift-correction screen, which helped the head mounted eye tracker 
to compensate for any shift in its position. They were then shown a 20-
seconds video segment. This was followed by a scoring window 
presenting a slider to be moved on the continuous rating scale. Once a 
score was given, the process was repeated with the drift-correction 
screen followed by another video. After the first four videos, a dialog 
window was shown indicating that the training session was over and the 
process then continued with the videos from one of the collections. 
Participants from each group always saw the same 25 video segments 
from the assigned collection, but the order in which the videos were 
shown was randomized in order to avoid any bias (i.e., learning or fatigue 
effects) in the results.

Participants in Groups 3 and 4 were also shown Collections I and II, 
respectively. They followed the same protocol described above except 
that they were not given the scoring window after each video. Of course, 
the experiment instructions they had were also adjusted so that they were 
told to only watch the videos as if they were watching TV or a video 
downloaded from the Internet. 

Finally, participants in Groups 5 and 6 also followed the exact same 
protocol explained above. The only difference was that participants were 
shown videos from Collections Comp  I and Comp  II instead. The training 
videos were also replaced by composited videos created with the same 
method as the composited videos in the collections. It is worthwhile 
mentioning that the eye movements of participants in Groups 5 and 6 
were also tracked during their quality evaluation. Although these data 
were not directly analyzed in this study, we considered it necessary to 
collect them anyway, to keep experimental conditions as similar as 
possible throughout the three experimental phases.

5.3. Results
5.3.1 Scoring experiments

The video quality scores collected in Phases 1 and 3 of the experiment 
were processed to extract one Mean Opinion Score (MOS) for each video 
[29,34]. First the Z-score of each video was calculated using the mean 
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and standard deviation over all videos (so, both including Phases 1 and 
3). Then the standard normal distribution of the resulting Z-scores was 
scaled to the range [0, 100]. For the collected MOS values in Phase 1, 
the relation between the level of H.264 bitrate that the videos had and the 
MOS is shown as an error bar plot in Figure 5.3.

The plot shows good distribution of the data points across the bitrate and 
the quality ranges. Yellow, round markers indicate the MOS scores 
obtained by both versions of the five videos excluded for the creation of 
composite videos (Section 5.2.2.3). It can be observed that those five 
videos span a quality range overlapping with those of the remaining 
videos included in the experiment (blue diamonds). Thus, we can assume 
their exclusion from the third phase of the experiment did not bring any 
context effect [32] possibly distorting the mean opinion scores. 

Figure 5.4 shows an overview of the scores obtained for all four 
categories of videos: (1) Vo1 encoded with high bitrate, (2) Vo2 encoded 
with lower bitrate than Vo1, (3) Vc1 composite with higher bitrate in the 
ROI than in the background, and (4) Vc2 composite with higher bitrate in 
the background than in the ROI. Scores for Vo1 and Vo2 are derived from 
the first experimental phase (i.e., participants of Groups 1 and 2), while 
scores for Vc1 and Vc2 are derived from the third experimental phase (i.e., 
participants of Groups 5 and 6). It can be seen that, as expected, scores 
for videos in the Vo1 category are significantly higher than scores of 
videos in the Vo2 category. Also as expected, scores for Vc1 and Vc2 are 
somewhere in between, i.e., significantly higher than Vo2 and significantly 
lower than Vo1 (as confirmed by an ANOVA with video category as 
independent variable and quality score as a dependent one: df = 3, F = 
43,935, p < 0.001). A post-hoc Tukey test confirmed the significance of 
the difference between all pairs of categories, besides between the mean 
scores for categories Vc1 and Vc2, as also visible in the graph. This hints 
that videos with high quality in a small (about 9% of the whole area) but 
visually important region (Vc1) have just as high quality as videos whose 
largest part is of high quality, but are highly degraded in the ROI (Vc2). If 
we compare the corresponding used file sizes we find that Vc1 videos are 
only 5% larger than their original, low quality counter-part Vo2. 
Conversely, videos in category Vc2 (with higher bitrate in the background) 
required a file size of about 60% larger than Vo2. Still both Vc1 and Vc2 
have an increase in overall quality of about 30% (blue bars in Figure 
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5.4(B)). The remainder of this section further investigates and quantifies 
the impact of the ROI quality to the overall quality evaluation in more 
detail.

5.3.2 Significance of the visual quality of the ROI for the 
overall video quality

If we assume that the quality in the ROI has the same impact on the total 
video quality as that of the background region, it is possible to calculate 
an Expected Score (ES) indicating the quality level of each composite 
video used in Phase 3. This is possible since we have the MOS scores 
for the two videos used to create each composite video (from Phase 1), 
as well as the percentage of the area that each of these videos occupied 
in the combined video. The ES of the video is then calculated as the area 
weighted average of the MOS scores of the two videos as follows:

ES= ( MOSROI . AROI ) + ( MOSbackground . Abackground )! (3)

where MOSROI is the MOS for the video from Phase 1 used in the ROI 
region of the composite video, MOSbackground is the MOS for the video 
used in the background region, AROI and Abackground are size percentages 
of the ROI and background region to the total area of the video 
respectively. In other words, we assume that people evaluate the quality 
of all regions of the video and then average their scores without giving a 
higher value to one region over another.

By comparing the collected MOS values to the calculated Expected 
Scores, it is possible to see the effect the ROI has on the overall quality 
of the video. In Figure 5.5 we have split the data in two groups: one 
containing videos which have higher quality in the ROI than in the 
background (A) and one with videos which have lower quality in the ROI 
than in the background (B). From Figure 5.5(A) it is clear that the videos 
with a higher quality in the ROI have a tendency to get a higher MOS 
than what the ES suggests. The figure shows a fairly consistent positive 
trend throughout the quality range. In addition, the size of the deviation is 
in most cases larger than the confidence intervals around the MOS. 
Figure 5.5(B) shows that the effect is more prevalent for videos that have 
the higher quality in the background area of the video. The majority of the 
MOS lies far below the ES calculated values. This is also highlighted by 
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the strongly skewed 2nd order fitting line in the graph. We only have a 
tentative explanation to this observation. Both in Figure 5.5(A) and 5.5(B) 
we observe a ‘halo effect’ [35], where overall video quality is rewarded or 
punished depending on the quality of the ROI. If the discrepancy between 
MOS and ES was only due to this ‘halo effect’ we would expect a 
symmetrical behavior in both figures. Instead, videos with severe artifacts 
in the ROI (Figure 5.5(B)) show a saturation towards the low part of the 
evaluation scale. It seems therefore that the presence of such artifacts in 
the ROI enhances the halo effect, whereas the absence of artifacts in the 
ROI (Figure 5.5(A)) does not affect it. Thus we can hypothesize that, not 
only the quality of the ROI plays a dominant role in the overall quality 
perception, but also that the presence of strong artifacts in the ROI 
makes this role even more prominent. 

It is also interesting to evaluate whether the size of the quality difference 
between the ROI and the background plays a role on the overall MOS of 
the combined videos. Figure 5.6 shows a scatter plot that attempts to 
illustrate this effect. In this figure, the horizontal axis represents the 
difference in quality between the ROI and the background of the video as 
determined from the difference in MOS found in Phase 1 of the 
experiment for the two videos used in the composite video. The videos 

120     

A B
Figure 5.4. (A) Mean Quality scores for the videos in the four categories 
evaluated in Phase 1 and Phase 3 of the experiment: Vo1 = encoded with high 
bitrate, Vo2 = encoded with lower bitrate than Vo1,  Vc1 = composite with higher 
bitrate in the ROI than in the background, and Vc2 = composite with higher bitrate 
in the background than in the ROI. (B) comparison of the difference in increase in 
video size (green columns) and corresponding increase in video quality (blue 
columns) for both categories of composite videos.



used in the experiment either fall in the negative half or the positive half 
of the graph depending on whether the ROI region or the background had 
a higher quality. The vertical axis represents the difference between the 
MOS collected in Phase 3 of the experiment (composite videos) and the 
ES. If there was no effect of the difference in quality between the ROI and 
background on the quality of the composite video, we would find a 
horizontal line in this graph. Moreover, if there was no difference between 
the effect the ROI and the background had on the overall quality, all data 
points would lay horizontally on the Y=0 axis, since the difference 
between the MOS and the ES would then be zero for all videos. It is clear 
that both are not the case. Instead, values tend to be negative when the 
ROI has a lower quality than the background and positive when the 
situation is reversed. Moreover, this effect appears to be stronger as the 
quality of the ROI (in relation to the quality of the background) becomes 
lower. This trend is weaker when the quality of the background is strongly 
compromised in comparison to the quality of the ROI.

5.3.3 Modeling the influence of ROI on overall VQ

Using the data collected from the experiment, it is possible to estimate 
how much more important the ROI is in determining the overall quality of 
a video. To do that, we again look at equation (3) used to calculate the 
ES. Since we now know that there is a difference in how much each 
region affects the overall perceived quality, we calculated a more 
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Figure 5.5. Comparing the calculated ES to the subjectively collected MOS. 
Figure 5.5(A) on the left represents videos with higher quality in the ROI than in 
the background, while videos in Figure 5.5(B) on the right  have lower quality in 
the ROI.



accurate Weighted Expected Score (WES) by introducing two weighting 
parameters to the equation, resulting in:

WES = MOSROI.AROI.wROI + MOSbackground.Abackground.wbackground! (4)

where wROI determines the weight of the ROI and wbackground the 
weight of the background region on the overall perceived quality. To 
calculate the values of these weights, a linear regression analysis was 
performed. The analysis used the MOS of the composite videos as the 
dependent variable and the averaged quality of each region multiplied by 
its corresponding area as the independent variables. The analysis 
returned the values wROI = 6.17 (p < 0.001, 95% confidence interval 4.65 
to 7.69), and wbackground = 0.57 (p < 0.001, 95% confidence interval 0.46 to 
0.69). The overall model fit had a R2 of 0.96. The resulting relation is 
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Figure 5.6. The horizontal axis represents the difference in MOS between the 
ROI and the background region, where the left side contains videos with lower 
quality  in the ROI than in the background and vice versa. On the Y axis, the 
difference between the MOS and the calculated ES is represented. On the lower 
half, viewers scored the videos lower than what the ES expected and vice versa.



depicted in Figure 5.7, again for the two groups of data separately; i.e., in 
Figure 5.7(A) for the images with higher quality in the ROI than in the 
background, and in Figure 5.7(B) for the images with lower quality in the 
ROI than in the background.

To test the stability of this fit, the 40 videos of Phase 3 of the experiment 
were split into two subgroups of 20 videos each. Both subgroups 
spanned the entire range of the quality scale. The two counterparts of 
each composite video (i.e., one with higher quality in the ROI and the 
other with a higher quality in the background) were joined in the same 
subgroup  in order to avoid having the same video content repeated in 
both subgroups and thereby influencing the analysis. We then conducted 
a linear regression analysis in the same manner as described above on 
one of the two subgroups to calculate a subgroup  weight for the ROI (wsg-

ROI) and the background (wsg-background) regions. This analysis yielded 
the values wsg-ROI = 5.96 (p < 0.001, 95% confidence interval 3.64 to 
8.27) and wsg-background = 0.60 (p < 0.001, 95% confidence interval 0.42 to 
0.79). The overall model fit had a R2 of 0.96. Both weighting factors were 
close to the ones found for the whole ensemble of videos, indicating that 
the result of the fit was not very sensitive to the particular selection of 
videos used. Subsequently, the new values of wsg-ROI and wsg-background 
were used in equation (4) to calculate the WES of the second subgroup 
of videos, the results of which are shown in Figure 5.8. 
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Figure 5.7 Comparing the calculated WES to the subjectively collected MOS. 
Figure 5.7(A) on the left  represents images which had higher quality in the ROI 
than in the background, while Figure 5.7(B) on the right represents images which 
had lower quality in the ROI than in the background.



The latter figure illustrates that for most videos the calculated WES is a 
good prediction of the MOS (R2 of the fit was 0.852 for Figure 5.8(A) and 
0.859 for Figure 5.8(B)), showing that the quality prediction model can 
generalize well on unseen video content. There are some exceptions 
though; for some videos the predicted WES falls outside the confidence 
interval of the perceived MOS. To check whether these deviations were 
systematically related to the quality difference between ROI and 
background in the composite video, we constructed Figure 5.9. 

Figure 5.9 is a similar plot as the one shown in Figure 5.6, but now 
generated using the WES scores from the second subgroup  of videos. 
The data points are now scattered around the Y=0 axis, indicating that 
with the proper weighting factors for the quality of the ROI and the 
background, the overall quality of a video, locally varying in quality, can 
be reasonably well predicted. There are still videos for which the 
deviation of the predicted score from the perceived MOS is about 1/5 to 
1/4 of the total scoring scale. For these videos a linear weighting of the 
perceived quality of the ROI with the perceived quality of the background 
may be too simple.

5.4. Discussion

Our results clearly show the importance of the contribution of the quality 
of the ROI to the overall quality judgment. This finding may have two 
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Figure 5.8. Comparing the calculated WES to the subjectively collected MOS for 
the stimuli belonging to the second subgroup.  Figure 5.8(A) on the left represents 
images which had higher quality in the ROI than in the background (R2 of the fit 
was 0.852), while Figure 5.8(B) on the right represents images which had lower 
quality in the ROI than in the background (R2 of the fit was 0.859).



important spin-offs: (1) it may be used to further improve coding 
schemes, and (2) it may increase the accuracy of visual-importance-
based objective quality measures. The latter application is clearly more 
straightforward than the former. Because most coding schemes are 
block-based, a pixel-wise weighting of saliency in the compression 
scheme may become impractical, and so, a different approach should be 
designed. In addition, videos with a mostly flat background (e.g., 
landscapes) already require less bits for compressing the background, 
and as such compromising the quality of the background at the expense 
of the quality of the ROI is not very practical. The latter though becomes 
relevant for videos with a highly textured background (e.g., woods, 
sports, architectural environments). More straightforward is the 
application of our findings in the design of objective quality metrics, and 
so, this application gets further attention in the rest of the discussion.
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Figure 5.9. Illustration of how well the WES estimated from equation (4) predicts 
the subjectively obtained MOS for the second subgroup of composite videos 
used in Phase 3 of the experiment. The horizontal axis represents the difference 
in quality between the ROI and the background, while the vertical axis gives the 
difference between the MOS and the calculated WES.



5.4.1. Effect of ROI on perceived quality

From the results presented in Section 5.3, it seems possible to conclude 
that, when people assess video quality, they give greater significance to 
some regions of the video over others. Thus, it would be unwise to 
assess the overall video quality by simply averaging the quality of the 
different regions of that video. This is shown in Figure 5.6 where 
participants gave the video a score (MOS) different from the one we 
calculated (ES) by simply averaging the quality of all video regions. The 
latter observation explains why objective quality assessment algorithms 
can benefit from utilizing saliency information [36, 37]. Moreover, from our 
results, we would expect that the latter is even the case for quality 
prediction of videos degraded with diffused coding artifacts, contrary to 
what has been suggested in [9, 21, 38]. However, deciding on how 
exactly to use this saliency data has largely remained an arbitrary 
process. In that respect, this paper provides insight in how humans 
perceive visual quality in relation to the saliency of the content. 
Additionally, it makes a first attempt in creating an empirical based model 
for using saliency information in calculating overall perceived visual 
quality.

Indeed, the results of Phase 3 of the experiment have clarified the 
relation between the ROI quality and the overall perceived quality of a 
composite video as expressed with a MOS. Videos that have a higher 
quality in the ROI tend to be scored higher than expected. Reversely, 
videos that have lower quality in the ROI than in the background area are 
scored lower than expected. Figure 5.6 illustrates how the difference 
between the subjectively collected MOS and the calculated ES is affected 
by the amount of quality difference between the two video regions. 
Looking at the lower left corner of the figure, one can see that as the 
quality of the ROI gets more degraded, the MOS shifts further away 
below the expected score. In the center of the figure, where the quality 
level in both video regions is very close, the MOS and ES are very close 
as well. As the quality of the ROI continues to increase (i.e., towards the 
right side of the figure), the difference between the MOS and the ES 
stops growing and even tends to diminish again. The latter observation 
seems to suggest that even if the degradation is only present at the 
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background region, at a certain point the degradation becomes so bad 
that it plays an equally important role in determining the MOS for the 
entire video. Literature has indeed shown that excessive background 
distortions can be strong attractors of attention and are perceived as 
highly annoying [26]. In other words, the distortion artifacts become ROI 
themselves and thereby decrease the importance of the natural ROI of 
the videos.

5.4.2. An ROI sensitive video quality assessment model

In an attempt to quantify the impact of the quality of the ROI to the overall 
video quality we performed a linear regression analysis. The resulting 
values, i.e., wROI = 6.17 and wbackground = 0.57, suggest that the ROI 
region is about 10 times more significant in determining the overall quality 
of a video than the background region. This is even more impressive 
when one takes into account that the size of the ROI in the used videos 
occupied only 6% to 9% of the entire video area. Subsequent analysis 
also proved that this simple linear regression model already results in a 
considerable improvement in predicting the perceived overall quality of a 
video with different quality levels in different areas. Still the model is not 
perfect; for some videos the predicted quality deviates 1/5 to 1/4 of the 
total scoring scale from the perceived quality. The latter is not so 
surprising if we realize that we simply linearly weighted the contributions 
of ROI and background to the overall predicted quality, whereas multiple 
figures in this paper show strong non-linear behavior. Figure 5.5, for 
example, shows that the difference between the perceived and expected 
quality scores depends in a non-linear way on the quality difference 
between the ROI and background region of the video. This observation is 
not taken into account in the linear weighting model. Despite this 
simplification in the model, we still believe that the current model may be 
applied in the spatial pooling step  of objective quality metrics based on 
estimating local distortion visibility (e.g. [39]), to further improve their 
accuracy. In most metrics, spatial pooling is done by either averaging 
across the whole image or by weighting distortion visibility proportional to 
saliency. With our model, it would be possible to simply average distortion 
visibility values within and outside the ROI, and then take a weighted 
combination (based on wROI and wbackground) as an estimate of the MOS.
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5.4.3. Significance of ROI to overall quality for images 
and videos

Comparing our current findings to similar work previously reported on still 
images [17] reveals great similarities. The latter is particularly impressive 
if one keeps in mind that there were some differences in the experimental 
setup  between both studies. One of these differences was the eye-
tracker hardware used in both experiments. Additionally, the resolution of 
the content used changed from 600x600 pixels for the images to 
1280x720 pixels for the videos. Finally, only 40 videos were used in the 
current study instead of the 80 images used in the previous study. 
Nonetheless, the methodology used to process the data and the 
statistical analysis was identical between both studies.

Figure 5.10(A) mirrors the analysis shown in Figure 5.6 but then on still 
images. The similarities between the two figures are undeniable. Both 
show that when the quality of the ROI is lower than that of the 
background, the subjectively measured MOS is lower than the Expected 
Score, calculated assuming an equal importance of the quality of the ROI 
and background. This trend is more pronounced in videos than in images 
as the curve in Figure 5.6 is steeper than the curve in Figure 5.10(A). 
Both figures approach zero when the quality of the ROI and the 
background get close. When the ROI quality is higher than the 
background quality, both figures show a rise in the deviation between the 
perceived quality and predicted quality that rapidly levels off and then 
tends to decrease as the quality of the background region becomes very 
low. This level of similarity in the results is quite surprising. Given the 
dynamic nature of video content and how that may affect the significance 
of the ROI and the annoyance level of compression artifacts, one would 
have expected more pronounced differences in the results.

It is also interesting to compare the ROI of the still images to the ROI of 
the videos. For the images, the ROI covered 10 - 16% of the entire image 
area. However, using the same methodology, the ROI for the videos 
occupied only 6 - 9% of the video area. This difference may probably be 
attributed to the timeslots over which the ROI was calculated. For the 
videos, frame related saliency maps were combined into saliency maps 
over 1 second of video (as explained in Section 5.2.2.2). For the images, 
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on the other hand, viewers saw each image for 8 seconds, and so, the 
saliency maps cover visual attention over a longer timeslot. With that in 
mind, it becomes even more impressive that Figure 5.6 shows the same 
trends as Figure 5.10(A). Moreover, given that the size of the identified 
ROI in the videos is smaller than the size of the ROI in images, one 
would expect that the relative contribution of the quality of the ROI to the 
overall quality in videos is also smaller than in images. However, the 
latter is not the case; the ROI in images is only 5 times more important 
than the background region, while for videos the ROI is 10 times more 
important than the background. Apparently, in videos the viewing 
behavior of people is much more concentrated in a smaller area of the 
video, which then also gets a higher impact on the overall quality 
judgment. 

Finally, Figure 5.10(B) shows a graph equivalent to Figure 5.8, but again 
now for images instead of videos. So, half of the data from Figure 5.10(A) 
were used in a linear regression analysis to establish a Weighted 
Expected Score model, and this model was then applied to the other half 
of the data. Using Weighted Expected Scores, taking into account the 
relative importance to VQ of the ROI and the background, the curved 
trend shown in Figure 5.10(A) disappears. When comparing Figures 
5.10(B) and 5.8, we can see that the use of Weighted Expected Scores 
delivers similar performance for both images and videos. The data points 
in both graphs are mostly contained within the -25 to 25 range of the y-
axis.

The similarity between images and videos is also impressive in view of 
the fact that different content was used: the still images evaluated in [17] 
were not just stills from the videos used in the current study. What all 
content shared though was an obvious ROI. For content with a less 
pronounced ROI, the weighting coefficients will change, with the 
weighting coefficient of the background quality ultimately becoming zero 
when the ROI covers the whole image, but this obviously is not a relevant 
condition for the current research. The evaluation of the model in terms of 
generalization towards different content (as presented in Section 5.3.3) 
showed that the weighting coefficients are rather stable over variable size 
of the ROI within reasonable limits (i.e., for images up to 16% of the size).
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Figure 5.10. The results of similar work performed on still images [17]. Figure 
5.10(A) (on the left) shows the relation between the expected scores and the 
subjective MOS in a similar fashion to Figure 5.5.  While Figure 5.10(B) (on the 
right) represents how the calculated weighted expected score performs after 
performing a similar regression analysis as illustrated here in Figure 5.8.



5.5. Conclusions

In this article we examined whether the visual quality in the Region of 
Interest of a video has more impact on the overall video quality than that 
of the background region. We found that when the quality of the ROI 
(kept to an extension corresponding to 6-9% of the video area) is higher 
than that of the background, the viewers tend to give the video a higher 
quality score than its average quality level. The collected data was used 
to create a simple model to estimate the overall perceived video quality 
from the different quality levels of ROI and background region. This 
model illustrates that the quality of the ROI is about 10 times more 
important for the overall quality judgment than the quality of the 
background. This answers our first research question showing that 
artifacts located in the ROI of the video are indeed significantly more 
annoying than those in the background region.

The extent to which the annoyance of the artifacts in the ROI contributes 
to the final quality evaluation is dependent on a number of variables. One 
of those is the size of the ROI which in turn is dependent on the nature of 
the video content. For the highly dynamic videos used in our study, it was 
shown that the quality judgment was marginally affected by the 
background region occupying 91% to 94% of the scene. Viewers based 
their quality judgment mainly on the visual quality of the ROI, 10 times 
more so than on the quality of the background. Though these values will 
defer with different types of video content, it is encouraging evidence that 
objective video quality assessment metrics should incorporate 
information on visual importance of video regions. The results also show 
that it is risky to apply naive video enhancement algorithms which do not 
take the location of the ROI into consideration.

When comparing the significance of the ROI in videos to that in images, 
our data show remarkable similarities in the findings. Still when identifying 
the region of interest in videos, we found that it was much more focused 
than in images. The size of the calculated ROI in images ranged between 
10 - 16% of the entire image area, while it only occupied 6 - 9% of the 
video area. Nevertheless, when modeling the significance of the ROI on 
overall quality, it came out that in images it is only 5 times more 
significant than the background region, while in videos it is 10 times more 
so. 
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Further work can still look at the effect of different types of artifacts (such 
as blur or desaturation), which are more difficult to perceive with human 
peripheral vision. This makes these artifacts less distracting while at the 
same time offering reduction in used bandwidth. This may make the 
trends observed in this article even stronger, especially in videos. It may 
also be interesting to see whether the same results can be replicated in 
video content with a less prominent ROI. 
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6 
Effect of Image Quality on Disaster 
Response Applications
Abstract

There has been a significant amount of research investigating how image 
quality is evaluated in a home setting for entertainment purposes. It is, 
however, still unclear how different tasks can impact the perception of 
image quality. In turn it is interesting to understand whether image quality 
can affect the performance for such tasks. In this paper we use the 
setting of a disaster situation to study the relation between image quality 
and performance. An experiment was conducted where participants 
viewed slideshows of disaster situations using different levels of image 
quality. By measuring how well they were able to reconstruct the events 
they saw, we show that the reduced image quality did not have an effect 
on their performance.
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6.1. Introduction

When using lossy compression algorithms to reduce the size of image 
files, a part of the original image information is permanently lost. As a 
result, only a distorted version of the original image can be reconstructed 
for the viewer. People perceive such distorted images as being of lower 
image quality (IQ) than the originals. This effect has been studied 
extensively to try and understand how much such distortions affect the 
perceived IQ  [1-3]. However, this work mainly focuses on a viewing task 
for the purposes of entertainment in a home setting.

When taking other tasks into consideration, research has shown that, 
images which have been greatly distorted (and therefore have a 
significantly lower IQ score) can still be considered of high quality with 
respect to the desired application [4]. Images used as means to transfer 
information, for example, can withstand a considerable level of 
degradation with its content still being recognizable [5]. For some 
applications where data transmission bandwidth is limited and the main 
focus is the exchange of information through images, highly compressed 
images are desired for their small files sizes. It is however still unclear 
whether the degradation of the IQ has a hindering effect on the exchange 
of information. We are interested in studying whether a significant loss in 
image quality can cause a drop in performance even if the required task 
is not directly impacted by the image distortions.
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Figure.  6.1. One of the water disaster scene images showing a freight boat 
colliding with a bridge causing it  to collapse and sending a car into the water 
channel. 



This paper focuses on using images in the emergency response 
application domain, where resources are extremely limited but ,at the 
same time, having a clear and undisturbed transfer of information is of 
vital importance [6]. We constructed an experiment where a set of images 
was used to identify the events that took place in a disaster situation. By 
compromising the quality of the displayed images and measuring the 
resulting effect on the performance in the required task we saw whether 
the reduction in IQ  had an adverse effect on performance. The paper 
starts in Section 6.2 by explaining how the disaster scenes were 
simulated in order to create the image slideshows. Section 6.3 goes 
through the steps of the experiment showing the task the test participants 
needed to perform using these slideshows. The paper then shows how 
the data was analyzed in Section 6.4. The generated results are 
discussed in Section 6.5 and the main conclusions of the paper are listed 
in Section 6.6.

6.2. Methodology
6.2.1. The stimuli

The participants were meant to play the role of witnesses of a disaster 
simulation. They would see the events of this disaster through a series of 
static images. To create these images, a miniaturized disaster situation 
model was created using Playmobil toy sets. Two models were built that 
depicted disaster scenes involving fire and water accidents. Photos of 
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High quality images Low quality images

Figure 6.2. Two examples showing the difference between the low and high 
quality images shown in the slideshows.



these worlds were taken using 2 Canon cameras (Models 30D, and 40D), 
with the first using a 50mm fixed focal length lens and the other using a 
17-85mm zoom lens. Wide angle photos were taken to help the viewers 
see their surroundings and orient their location, while long focal lengths 
were used for photos zooming in on specific locations to simulate the 
viewer focusing on specific events. All images were taken from two 
specific locations representing the viewpoints of two different observers 
looking at the disaster from different angles. The disaster models were 
adjusted while shooting the pictures to represent the development of the 
accident situation. Some of the images were later manipulated using 
Adobe Photoshop  to add fire effects. Figure 6.1 shows one of the wide 
angle images from the water disaster scene. 

For each of the two scenes, two slideshows (from different view points) 
were created from the photo shoots, giving us 4 different slideshows. As 
shown in Table 1, the number of images that were needed to show the 
events of the disasters scene  sometimes differed between the two view 
points.

The slideshow that showed the events of the disaster unfolding. Each 
image was displayed on the screen for a duration of 5 seconds, and each 
slideshow was shown only once.

The slideshows were created using the Adobe Photoshop  Lightroom 
(version 2.5) application. Two versions of the slideshows were created 
that contained the same images but under different quality levels. The 
high quality (HQ) version contained images in their original quality with a 
resolution of 1200x800 pixels. The low quality (LQ) Slideshow contained 
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Table 1. The number of images each slideshow included for each view point of 
the created scenes.

Scene View point Images

Fire
A 15

Fire
B 9

Water
A 11

Water
B 11



images which were scaled down to a resolution of 480x320 pixels. This 
resolution was chosen since it is the native resolution of mobile device 
currently being evaluated for use in the field of disaster response [7]. The 
compression quality of the generated images was also compromised to 
reflect low bandwidth data transfer in real-life networks for mobile 
devices. The low resolution images were compressed with the JPEG 
codec at a quality level of 50 (on a scale of 0 to 100, implemented via the 
Lightroom software). This level of quality produced clearly visible 
compression artifacts in the images (see Figure 6.2), but nonetheless 
ensured that all the information which the participants needed to 
remember during the experiment was still clearly visible. Since originally 
4 slideshows were constructed for the two scenarios (fire and water) from 
two view points, having two levels of quality from each slideshow meant 
that the experiment involved 8 slideshows in total.

6.2.2. The experimental setup

All experimental sessions were held in the Pi-lab  located in the Electrical 
Engineering, Mathematics and Computer Science (EEMCS) faculty 
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Figure.  6.3.  A test participant indicating the events of the disaster scenario using 
the magnetic board.



building at the Delft University of Technology. The lighting conditions were 
controlled and kept at a lighting setting of typical office conditions. The 
images were displayed on the screen of an Apple MacBook computer 
with a 13.3” widescreen and a native resolution of 1280x800 pixels. The 
viewing distance was kept to 60 cm with the screen directly facing the 
viewer.

The experiment had a total of 32 participants. They were collected from 
the faculty of Computer Science at the Delft University of Technology, and 
were either students or staff members. When asked whether they 
suffered from any vision problems, they all expressed having sound  
(corrected) vision. This was considered sufficient to ensure that they were 
able to observe the differences in image quality. All participants were 
naive to the purpose of the experiment.

6.3. The experimental protocol

The experiment started by giving the participant written instructions 
explaining the steps of the experiment. The participant was then shown 
one of the slideshows showing one of the accident situations (fire or 
water accident scenario). The order of which scenario was shown first 
was alternated to avoid any systematic effect on the results. Table 2 
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Teble 2. The complete scheme of the experiment showing which viewpoint (V), 
session, and image quality (IQ) was shown to each participant

Participant # V
Scenario 1Scenario 1 Scenario 2Scenario 2

Participant # V
IQ Session IQ Session

1, 3, 17, 20 A L Fire H Water

5, 7, 22, 24 A L Water H Fire

9, 11, 26, 28 A H Fire L Water

13, 15, 30, 32 A H Water L Fire

2, 4, 18, 19 B L Fire H Water

6, 8, 21, 23 B L Water H Fire

10, 12, 25, 27 B H Fire L Water

14, 16, 29, 31 B H Water L Fire



shows the complete plan of the experiment sessions.

After viewing the slideshow, the test participants were presented with a 
magnetic board containing a bird’s-eye-view map  of the disaster area 
(see Figure 6.3). They were also provided with magnetic icons 
representing objects and characters from the disaster. The task given to 
the participants was to construct a situation map reflecting the events that 
took place in the slideshow. The participants were given an unlimited 
amount of time to adjust the created map  until they were convinced that 
they could not make any further improvements. A photo of the created 
map was then taken for later evaluation as shown in Figure 6.4.

Consequently, the second slideshow was displayed to the test subject 
showing images of the second disaster situation. As shown in Table 2, 
this slideshow was shown in a different level of quality than the first one. 
In other words, if the first slideshow was shown in the HQ  version then 
the second one was shown in the LQ version, and vice-versa.

Finally, the experiment was concluded by asking the participant to fill in a 
Likert-scale questionnaire. Since the participants were not informed 
beforehand that there was a difference in image quality between the 
slideshows, we asked them whether they noticed any difference in the 
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Figure.  6.4.  An example of a situation map created by a test participant 
representing the events of the disaster scenario



image quality and whether it affected their ability to complete the required 
task. This was followed by an interview discussing general impressions of 
the experiments and the motivation behind the answers given in the 
questionnaires.

6.4. Results

Test participants were asked to create situation maps that represented 
the main events of the disaster situation they saw. In order to evaluate 
their performance, key-maps were created for each slideshow 
representing the ideal recreation of the events shown in the displayed 
images. The maps created by the users were then compared to those 
key-maps, and points were subtracted based on whether the actors, 
objects, and events were included in the map  in the correct way. The 
location indicated on the map  was also taken into consideration, 
subtracting points if it deviated from the positions on the key-maps. After 
taking all these aspects into account, the performance resulted in a ratio 
score that ranges from 0 (map is completely wrong) to 1 (an exact match 
of the key-map).
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Figure.  6.5. Participant response to the question: ”Do you think the picture quality 
affected your ability to perform the required task?”, with 1=Very Uninfluential, and 
7= Very Influential.



By comparing the performance with respect to the image quality in the 
slideshows we saw that the mean performance was higher for the HQ 
images (M=0.65, SD=0.18) than for the LQ images (M=0.61, SD=0.20). 
However, when we applied a one-way ANOVA test, the difference in the 
means was not found to be statistically significant (F= 0.67, df=1, 
p=0.41). This indicates that no significant effect of image quality on 
performance was detected using a sample size of 32 participants.

The subjective responses given to the questionnaire confirmed that test 
participants indeed did not think that the quality of the images affected 
their performance (see Figure 6.5). 

A more surprising result was that the majority of the participants even 
indicated that they did not notice the difference in the image quality as 
shown in Figure 6.6.

6.5. Discussion

Looking at the sample mean performance of remembering details of a 
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Figure 6.6.  Participant  response to the question: ”Did you notice a difference in 
the image quality between the two scenarios?”, with 1= No Difference and 
7=Strong Difference.



disaster situation with respect to quality of images representing the 
disaster situation, there is indeed a slight increase in the accuracy of the 
generated maps when higher quality images are used. However, the 
relatively low statistical significance for a group of 32 participants 
suggests that if any effect is present, it cannot be considered as highly 
relevant. We therefore assume that the image quality did not hinder the 
performance of these non-expert participants in remembering the disaster 
situation. This assumption is supported by the subjective data collected at 
the end of the experiment, where most participants stated that the image 
quality did not influence their ability to complete the task.

A more surprising result was that the majority of the participants who 
completed the experiment did not notice the difference in quality between 
the sideshows in the two scenarios. As shown in Figure 6.2 above, the 
difference in quality was quite significant. In addition, the slides that 
contained text had sharp  high contrast edges, which significantly 
deteriorated in the JPEG compressed images. Despite this huge 
difference in quality, people did not notice it, mainly because they were 
fully concentrated on the task. Information gathered in the interviews 
indeed confirmed that the experiment had put participants under high 
stress. This was caused by the difficulty of the task, and the relatively 
short time the images were displayed on the screen with respect to the 
amount of information participants needed to notice and remember. With 
their attention focused solely on the given task, they were mostly 
oblivious to the quality of the displayed images.

6.6. Conclusions

This paper shows that the performance in reconstructing disaster 
situations does not suffer from the sharp  reduction in the quality of 
images representing the situation. As long as the necessary information 
is visible, low quality images are sufficient to give the viewer an 
understanding of the situation map of the disaster location. This can allow 
administrators to save resources (such as transmission bandwidth and 
data storage space) which are always in limited supply during rescue 
operations.

Another important conclusion is that the task performed by the viewers 

146     



can mask obvious flaws in image quality. This can have implications for 
media generated for specific uses (such as instructional videos or 
educational lectures). In such applications, high image quality is not only 
unnecessary, but also unnoticeable by the viewers. This implies that while 
generating such content, it is possible to ignore the image quality aspect 
and concentrate solely on the content.
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7. 
Thesis discussion 
In this research we explored the way humans generate a subjective 
opinion about the quality of image content, taking into account how they 
divide attention over the content. Considering the complicated interplay of 
the human visual system (HVS) and the subsequent perceptual and 
cognitive processes, image and video quality assessment is by far not 
fully understood, and including how attention affects quality assessment 
is just at the beginning of being explored. More particularly, our research 
focused on three research questions. First, we wanted to know how the 
task given to the observer and the quality level of the stimulus affected 
their viewing behavior, and how that would be different between images 
and videos. Second, we were interested in understanding how the 
observer would evaluate the overall quality of a stimulus if different parts 
of the scene conveyed a different level of quality, and whether that would 
differ between images and videos. Finally, we also wanted to know 
whether the task given to the observer could mask the perception of 
artifacts in the scene.

We determined from previous work in the field that a good way to build a 
better understanding of consumers' viewing behavior and subsequent 
quality assessment is through the concept of visual attention (VA). This 
research has therefore centered around subjective experiments 
conducted with the aid of an eye tracking system. In order to have 
comparable data between image and video content, the research tried, 
as much as possible, to follow the same approach for the experiments 
investigating still images and the experiments investigating video.

The impact of task on viewing behavior was evaluated for two tasks often 
occurring in this type of research: freely looking at the images or scoring 
the quality of the images. The quality of the stimuli varied by compressing 
the content at different quality levels. The resulting sets of visual stimuli 
were shown to the participants, while collecting data about their viewing 
behavior with the help  of the eye tracking equipment. This same setup 
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was used for both still images and video content. The outcome of this first 
part of the research is discussed in more detail below.

In order to determine the role different parts of the visual scene played in 
determining the overall perceived quality, special content was created 
that combined visual stimuli with different levels of visual degradation in 
different regions. These regions were carefully selected based on eye 
tracking data. These data were used to identify the region of interest 
(ROI) in the scene and the remaining background (BG) region of the 
scene. Subsequently, for the combined stimuli the ROI was given either a 
higher or lower quality level than the BG region. From the scores given to 
the overall quality of the scene, it was possible to determine how much 
each region affected the quality judgment. Again, this approach was 
repeated for both image and video content, and also these results are 
discussed in more detail below.

Finally, we wanted to know whether a task inflicting a high cognitive load 
on the viewer affected how this viewer would perceive visual quality. We 
therefore simulated a disaster situation in a miniaturized world and 
created a scenario where the viewer would play the role of a witness 
assisting the rescue services. By showing the viewer a slideshow of 
images for a limited time and with a highly demanding cognitive task, we 
were interested in knowing whether that viewer spotted the difference in 
visual quality between different of these images and how that would affect 
how well he or she performed the required task. Also, these results are 
shortly discussed below.

7.1. Using eye tracking for visual analysis 

Using eye-tracking to analyze viewing behavior is not a novel approach. It 
has already been shown to be an effective way to understand how we 
look at images under different circumstances [1]. Here we expanded on 
this basic premise by using the eye tracker under controlled conditions in 
different experimental settings. These experimental settings spanned 
differences in task, image properties, and dynamics (i.e., by including 
videos). Analyzing viewing behavior was accomplished by first 
constructing saliency maps representing the viewer's attention to different 
regions in the image content, and by then studying their mutual similarity. 
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This approach proved useful in providing insights in how visual attention 
differed with task and image quality level for static images. The visual 
attention was concentrated more in the ROI when observers were looking 
freely at the images. For dynamic videos, however, we didn't find an 
effect of task or quality level on ROI, implying that in videos people more 
constantly look to the natural ROI, independent of the task or the quality 
level. 

When studying the effect of task and content integrity on the viewing 
behavior, we tried to keep  the approach as consistent as possible 
between still images and videos. Yet, it is still difficult to say why the 
conclusions differ between still images and videos. One thing is clear 
though, the dynamic nature of the video content introduces extra levels of 
complexity in the analysis of viewing behavior via saliency maps. The 
content of the scene changes 24 times a second providing only 0.04 
seconds of saliency information per frame. At this speed, an eye tracker 
running at 50 Hz only has two samples, a hardly large enough sample for 
proper analysis. Therefore averaging saliency from several frames is 
necessary, but the question is how to do that. One may argue that frames 
with similar visual properties should be grouped together, meaning that 
the duration of each time stamp  should depend on the changes in 
characteristics of the video content. Clearly, scene cuts may be used for 
this purpose, but scenes may also change considerably in characteristics 
between scene cuts. Hence, such grouping of scenes is not uniquely 
defined, and so, carries the risk of influencing the results by the 
subjective selection of segmentation. Additionally, if various time stamps 
have a different duration, different parts of the video get saliency maps 
with a different level of accuracy, which also may influence subsequent 
analysis. The other approach is to split the data into constant time 
segments (i.e., the approach we followed in this book). The question then 
is how big should this segment be? Keep in mind that the scene is 
changing and that stimuli in the previous scene may still influence the 
viewer. Also, human reaction causes delay, which results in a 
corresponding delay in the gathered saliency data. What would be an 
appropriate way to compensate for such a delay? These questions are 
still unanswered, and the particular choices made in this research may 
have affected the observed difference in the effect of task and image 
integrity on saliency between images and video.
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An additional difference is the lower number of people that participated in 
the experiment with video than in the experiment with still images. The 
latter was simply due to the longer duration of the experiment with videos 
and the logistics of securing test participants to take part in such a time 
consuming experiment. As such, the saliency maps obtained with video 
may still suffer from more inter-observer variability.

One way to address inter-observer variability is by using the Upper 
Empirical Similarity Limit (UESL) [2], an analysis used in different parts of 
this thesis. This analysis seems to be sound in theory, and has become 
the de-facto approach to examine saliency data. The upper limit is the 
similarity in saliency between data collected under the same conditions 
from different participants, and as such is a measure for the difference in 
saliency caused by inter-observer variability. Therefore, as the name 
implies, it should fall above the similarity in saliency between two 
datasets collected under different conditions. In this work, we applied the 
UESL approach on saliency data collected for still images and videos in 
chapters 2 and 4, respectively. In both chapters, the UESL analysis was 
performed for four different similarity measures used to compare the level 
of similarity between two saliency maps. These similarity measures are: 
Linear Correlation Coefficient (LCC), Kullback-Leibler divergence (KLD), 
Normalized Scanpath Saliency (NSS), and the Structural Similarity Index 
(SSIM). When utilized to our data, the UESL did not function as expected. 
When analyzing videos, the UESL repeatedly was smaller than the 
similarity calculated between saliency maps measured under different 
conditions, i.e. task and video integrity, for each of the 4 similarity 
measures applied. So far, we have no explanation for this unexpected 
result.

One advantage of having a large corpus of data like the one used in 
Chapter 2 is that it allows us to examine the analysis methodology across 
a large sample of data collected and processed in the same manner. 
Interestingly, the UESL did not work properly with the LCC and KLD, 
again giving values falling below those comparing saliency maps 
collected under different conditions. It therefore seems from this work that 
UESL is, at best, not always reliable to analyze visual attention data. At 
least not with the used methodology.
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7.2. Task effect on viewing behavior

It has long been known that changing the task of the observer can 
fundamentally change his or her viewing behavior [3]. Here we focus on 
the task of scoring visual quality. This task is important for the field of 
image quality perception since it is needed to collect subjective scores for 
test images and videos. These scores are then collected in reference 
databases and considered to be the “ground truth” which objective 
models should aspire to match. 

Our results show that the scoring task indeed affects the viewing 
behavior significantly. The region of interest of the image is no longer the 
face or the animal shown in the picture. Instead the task has introduced 
new interesting features that the viewer is attentive to, namely the noise 
and artifacts. The natural region of interest is still important and initially 
captures the attention of the observer, but that attention quickly deviates 
to the background region. 

The above finding is clearly observed when asking people to view still 
images, but what happens in the case of videos? First, one should keep 
in mind that videos are different from images since they are dynamic. As 
explained above, this means that the way we analyze how viewers look 
at the region of interest over time is different in nature from the approach 
used for images. Having said that, we still have to state that the type of 
analysis that we were able to perform did not yield conclusive results. 

One way to interpret the lack of finding a change in the region of interest 
with task for videos is to say that the scoring task did distract the viewer 
less when watching video content than when watching still images. The 
continuously changing region of interest in videos is difficult to ignore, 
and therefore, the viewer does not have a chance to start scanning the 
scene for artifacts. Indeed, the video segments we chose for the 
experiment were of action scenes selected specifically to have a clear 
and active ROI. Since we already saw in still images that the natural ROI 
initially captured the attention of the viewer regardless of the task, we can 
argue that a continuously changing ROI continues to capture the 
attention of the observer. 
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On the other hand, we should remember that the results obtained with 
videos exhibited peculiar outcomes with respect to the comparison of 
similarity in saliency maps with the UESL. For all four similarity measures 
used in the analysis, the UESL occasionally was lower than the similarity 
between saliency maps measured under different conditions, as 
explained above. This may be an indication that the results are not 
reliable and that modifications are needed in the analysis or in the 
experimental setup for videos.

Since this research was originally initiated to improve the visual 
experience of watching TV, it is interesting to point out a design dilemma 
that the results indicate. When people are shopping for a new TV set, 
they are usually interested in evaluating the image quality of different sets 
in order to choose the one with the best picture quality. However, this is 
probably the only time that they examine the image quality of the TV set 
this closely. Since this work shows that there are differences in viewing 
behavior caused by viewing tasks, TV manufacturers are left with a 
critical choice. They can either optimize their TV sets for the viewing 
behavior during quality assessment, meaning that they will outperform 
other TV sets in the showroom and sell more units. Or, they can optimize 
for the free looking viewing behavior, and thereby giving their clients a 
better home viewing experience. An ideal solution is to have a showroom 
mode that optimizes the TV settings for the former condition and a normal 
mode for the latter condition. Such a showroom mode currently is 
included in high-end TVs, but basically focuses on brightness and color 
rendering. Taking care that image integrity is high over the whole TV-
screen in the showroom mode, while mainly focusing all post-processing 
capacity on the natural ROI in the normal-use mode may be considered 
as an option to further improve a TV's overall perceived quality. 

7.3. Importance of ROI

The region of interest in visual stimuli is a recurring point of focus in this 
thesis. Moreover, the results from most of the experiments show that the 
ROI is worth our attention. We saw that the ROI is the first thing that the 
viewers' gaze gravitates to. It is the first part of the scene examined by 
the viewers, thereby becoming the first element that shapes the viewing 
experience. Moreover, even when the scene is a static image and the 

154     



viewers are given the freedom to look at it for as long as they want, we 
see that they keep  coming back to the ROI and examine it throughout 
their visual experience. This is a clear indication that the ROI is indeed 
the most important part of the scene.

When it comes to visual quality assessment, the results from this 
research leave little room for doubt. When assessing the visual quality of 
a scene, the quality judgment of the observers is mainly based on the 
visual quality of the ROI. No matter whether it has a higher or lower 
quality than the rest of the image, the quality judgment tends to follow the 
quality level of the ROI. This effect is found to be twice as strong in 
videos as in images, and so supports the above findings that the viewer 
is more drawn to the natural saliency of the scene when viewing videos 
than when viewing images.

An interesting point of discussion raised by these findings is whether 
there is a direct relation between viewing behavior and quality judgment. 
We have seen before that the viewing behavior changes when the 
observer is given a scoring task. Yet, here we see that the quality score 
given to an image mainly follows the quality of the ROI. Keep  in mind that 
these ROI areas were identified using natural scene saliency. However, 
we showed that when scoring compromised images, the viewers' 
attention shifts from the natural scene saliency in search for image 
artifacts, making such artifacts a new ROI. Nevertheless, when giving a 
quality score, viewers seem to base their scoring on the quality of the 
natural ROI. 

These findings also allow for a great potential to apply lossy compression 
intelligently. Since the quality judgment of the viewer is mainly based on 
the ROI, it means that it is possible to compromise the quality of the rest 
of the scene without losing much of the “perceived” quality. One 
challenge that immediately comes to mind is how to obtain the natural 
saliency information, so that compression can be applied to the 
background region. A possible solution is to gather this saliency 
information, when the content is created. There are many points during 
the creation of image and video content that allow for collecting saliency 
information. For example, it can be collected while the content is being 
recorded from the camera operator, or while the images or videos are 
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being culled and edited. There are also opportunities to collect saliency 
data before the content is prepared for consumption. The collected 
information on the ROI can then be added as metadata to the video 
stream. With this additional information, there is a great potential for 
compression optimization with little loss in perceived quality.

7.4. Quality masking by task

One interesting conclusion of this work is the realization that there is a 
limit to how much image integrity is required depending on the viewing 
conditions. The amount of time the viewer is allowed to look at images, 
and the task the viewer is requested to perform have the ability to 
suppress their quality perception. Even if the region of interest is 
degraded in quality, the viewer may not bother by it as long as he or she 
is not impaired in performing a task, the latter being proven for at least 
tasks with a high cognitive load. So, high cognitive loads and time 
limitations may mask quality perception of image content, making an 
otherwise disturbing loss of image quality completely unperceivable.  This 
uncovers yet another dimension in the way we look at images. It is clearly 
a complicated process that we are just starting to understand.
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8. 
Conclusions and Recommendations 
8.1 Thesis conclusions

The different experiments described in the separate chapters of this 
thesis contribute to a better understanding of how humans look at images 
and videos. We know that scenes have a naturally salient region. The 
attention of the viewers is initially gravitated towards this region, no 
matter what task the viewers are given. Moreover, they keep  examining 
this salient area repeatedly even after starting to explore the rest of the 
scene. However, how the rest of the scene is subsequently explored is 
affected by the task the viewers are given. If they are given the task of 
scoring the quality of the scene, their attention shifts to areas with visible 
artifacts. However, even then the salient part of the image content 
remains important, since that is what they focus on to make sense of the 
scene and try to comprehend and understand it. The background area of 
the scene is of little importance, and mainly gets attention only for scoring 
an image that is visibly degraded in the background area. 

In addition to the above, we have also shown that the viewer tends to 
score the visual quality of images based on the quality of its most 
important regions. In a similar manner, the viewer tends to score the 
visual quality of videos based on the quality of its most important regions. 
Hence, understanding the region of interest of an image or video may 
allow more optimal data compression by keeping the quality of the 
important regions high, while degrading the background more. Finally, we 
have seen that putting a high cognitive load on the viewer can mask 
visible artifacts in images, and hence, in these applications having 
efficient information transfer is most important.

8.2 Thesis recommendations

Despite the interesting findings related to the research presented in this 
thesis, there are still a number of open endings that might require 
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additional research. These open endings relate to the way we analyzed 
our results, but also to further fine-tune some of the relations we found.

Time duration in video analysis.

In order to analyze the eye tracking data for the video content, we chose 
to average each one second of eye tracking data together in one saliency 
map. This choice of a fixed time interval is by no means optimal. It does 
not correspond to the changes in video content, and therefore a saliency 
map  can combine saliency information of multiple scenes not fitting 
logically together (e.g., split by a scene cut). We suggest that similar 
research in the future generates video clips that remain consistent for 
equal time intervals, which can then be used to segment the eye tracking 
data. Filming video material specifically for the experiment will also allow 
for having fewer variables in the scene that can affect the outcome of the 
experiment (e.g. camera movements, activity in the background of the 
scene). On the other hand, creating such controlled content may skew 
the results in a way that using realistic content, as we did in this 
work ,would not.

The Upper Empirical Similarity Limit Approach 

To compensate for the inter-observer variability, the research community 
has adopted the Upper Empirical Similarity Limit as an approach. This 
approach examines two sets of data collected under the same conditions 
to determine what the upper limit of similarity between viewers can be. 
The assumption is that comparing the similarity of data collected under 
different conditions will always fall below that limit. 

In this thesis, we have applied the UESL approach to a huge set of data, 
which included images and video, and while using various similarity 
measures. In some cases we saw that similarity between saliency maps 
obtained under different conditions was larger than the UESL similarity 
between saliency maps obtained for the same content and task. We 
should remember that both similarities are statistical measures. 
Therefore, it may be possible that one indeed is higher than the other. 
The question then is how accurately should the UESL be measured to 
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assure that it would be a more reliable upper limit. 

We recommend further research to investigate the UESL approach in 
order to define how to apply it reliably. So far, the approach is not 
standardized in terms of how many participants to use for having an 
accurate UESL and which similarity measure to use. It would be helpful to 
apply the UESL analysis on large sets of data using the same approach 
in order to define when stability in UESL is used and to determine which 
similarity measure gives the most reliable information. The approach 
used in Chapter 2 of this book can serve as a good example for such a 
study. 

Stimuli with less apparent ROI

In the presented studies, the chosen images and videos contained a 
clear ROI that captures the viewer’s attention. Images contained 
something like a face of a human or an animal, while the videos showed 
fast action sequence as a ROI. Such stimuli was chosen to be a proof of 
concept in order to explore if there is any merit to this line of work. As a 
result, the conclusions we reached and the models we constructed all 
apply for stimuli with similar visual properties. It is now important to 
expand the work to include other type of stimuli such as images with 
uniform textures or a news broadcast where a person remains central in 
the scene. It will be interesting to see how much the results will differ 
when no clear ROI is present.

The threshold of cognitive load and quality perception

In Chapter 6 we saw that the cognitive load of the observer can mask bad 
quality of the shown images. The experiment, however, was limited to 
one specific level of cognitive load and image quality. We expect a 
relation between cognitive load of the image material and image 
degradation that is affordable. We recommend that further studies 
investigate a larger range of quality levels and cognitive load levels to 
establish a reference range. It will also be interesting to see how the task 
load affects quality perception in video content.
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Thesis Propositions
English list of propositions

1. Asking to evaluate the visual integrity of images or videos 
significantly changes how an observer looks at this content.

2. A viewer's judgment of visual integrity is mainly based on a region of 
interest in images or videos.

3. High cognitive load masks degradation in visual integrity in images.

4. Convincing people that "Trickle Down Economics" is a sound 
economic principle is not an indication of economical skills.

5. The extensive use of SPSS by usability experts has not resulted in 
improved usability of SPSS.

6. Science dissemination is just as important as science generation.

7. Changes of our own values from one decade to the other do not 
result in more tolerance for the values of other cultures.

8. The fact that the educational system has hardly changed in the past 
few decades is an indication of woeful deficiencies.

9. Discussing the existence of God will never reach a definitive 
conclusion.

10. It is ironic that researchers keep  complaining about how the scientific 
community recognizes their achievements, even though the 
community is run by the researchers.

    165



Dutch list of propositions (proefschrift stellingen)

1. Gevraagd worden om de kwaliteit van beelden te beoordelen, 
beinvloedt aanzienlijk de wijze waarop we die beelden waarnemen.

2. Ons oordeel over beeldkwaliteit wordt hoofdzakelijk bepaald door de 
plek op de foto of video waar we ons op focussen. 

3. Hoge cognitieve belasting maskeert de verslechterde kwaliteit van 
beelden.

4. In staat zijn om mensen te overtuigen dat “Trickle Down Economics” 
een gezond economisch beginsel is, impliceert geen economische 
vaardigheden.

5. Het is ironisch dat veelvuldig gebruik van SPSS door usability experts 
niet heeft geresulteerd in het verbeteren van gebruiksvriendelijkheid 
van het programma.

6. Wetenschap overbrengen is even belangrijk als wetenschap 
creeeren. 

7. Veranderingen van onze eigen waarden door de tijden heen hebben 
niet geresulteerd in meer tolerantie voor waarden van andere 
culturen. 

8. Het feit dat het onderwijssysteem nauwelijks is veranderd in de 
afgelopen tientallen jaren impliceert verschrikkelijke tekortkomingen 
ervan.

9. Discussies over het bestaan van God zullen nooit leiden tot een 
eenduidige conclusie. 

10. Het is ironisch dat onderzoekers klagen over de wijze waarop zij 
erkend worden in de wetenschap terwijl zijzelf de wetenschap 
aansturen. 
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