
Raytracing Mirror Anamorphosis
Riley Jense, Baran Usta, Elmar Eisemann

Mirror anamorphosis is characterised by a distorted projection, where the combination of a mirror and a specific view-
point lets the observer see the undistorted image. The use of this technique and complex perspective in general has gone
from being niche to becoming mainstream. Raytracing poses itself as a solution to solving the math for such construc-
tions, as it is capable of delivering accurate geometric calculations and a high degree of visual realism. There is a strong
connectionbetween thework needed to construct amirror anamorphosis, and the computations done in raytracing. Ray-
tracing has been a major topic of research with applications in high-quality image rendering. We propose an algorithm
which combines raytracing for mirror anamorphosis with texture mapping. We first generate a set of points based on the
desired quality, and triangulate them to a two-dimensional triangle mesh using Delaunay triangulation. Using raytrac-
ing, themesh is projected onto the surface bouncing off themirror. Surface intersections are recorded in amapping with
its respective texture coordinates. Based on this mesh, we do not have to execute our raytracing algorithm again if the
projected image is changed, thus providing us with a significant speedup.

Perspective Artwork using Mirror Anamorphosis (Rex Young)

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

Delft University of Technology

1 Introduction

Mirror anamorphosis is characterised by a distorted pro-
jection, where the combination of a mirror and a specific
viewpoint lets the observer see the undistorted image.
The use of this technique and complex perspective in gen-
eral has gone from being niche to becoming mainstream.
Street art might be the most obvious example for regular
perspective art, but the use of mirrors is rather uncom-
mon. A modern day artist making use of mirrors is István
Orosz. Their anamorphic art often involves some original
image in amirror, which is projected and heavily distorted
on the surrounding surface. Most of the art involves a flat
surface and a simple object, like a cone or cylinder, and
there is a distinct lack of research onmore complex geom-
etry. Generalising calculations for more complex objects
and surfaces, together with digitising the method for cre-
ating such a construction, would be a major step forward
for artists employing these methods.

1.1 Raytracing and Textures

Raytracing poses itself as a solution to solving the math
for such constructions, as it is capable of delivering ac-
curate geometric calculations and a high degree of visual
realism. There is a strong connection between the work
needed to construct amirror anamorphosis, and the com-
putations done in raytracing. Raytracing simulates the in-
teraction between objects and light rays in a virtual en-
vironment, whereas mirror anamorphosis is a projection
using reflected light. The relation is clear, mirror anamor-
phosis heavily relies on thebehaviour of light, and raytrac-
ing can simulate this behaviour. Especially in recent years
raytracing technology has seen major leaps and speed
improvements, and is a solid candidate for constructing
anamorphic projections. Combining raytracing with tex-
ture mapping, which is a method to wrap images around
objects, allows us to create a transformation from origi-
nal to distorted image. In recent decades texture map-
ping has seen multi-pass rendering, multi-texturing and
mipmaps, which significantly reduces the amount of cal-
culations needed to construct near-photorealistic images.

1.2 Key Concepts

There are several key features to projections like these,
manywhich are already core concepts in computer graph-
ics. The original image will be referred to as the pro-
jected image, and is visible in mirror object. The trans-
formed counterpart on the surface is specified as the sur-
face. Combining these aspects, together with a camera
and a projection plane, leads to the definition of a scene.
The scene and the projected image are passed as input to
our algorithm, producinganoutput consistingof themap-
ping from source to surface, and the resulting image.

2 RelatedWork
The use of anamorphosis in art is certainly not new. On
the contrary, the earliest known example was drawn by
Leonardo da Vinci, dating back hundreds of years ago.
These are all constructed in the real world, however, and
involves a lot of manual labour. Only since the digital age
have we been able to create computer generated images
on a massive scale. Raytracing has been a major topic
of research with applications in high-quality image ren-
dering, visual effects and even real-time video gaming.
The combination of anamorphosis and raytracing is not
well-studied, with only a limited amount of properly doc-
umentedmethods available.

2.1 Anamorphic Methods
Currently there are only a limited amount of sufficiently
documentedmethods available. Themost recognised ap-
proach is the digitised ’through-hole’ method developed
by Comité in 2010.[1] The transformation from projected
image to surface is based on a set of quadrilaterals us-
ing the pixels in the projected image. This grid of pixels
becomes distorted as it is projected to the surface, due
to the curvature of the mirrors present in anamorphoses
like these. Complex shapes where quadrilaterals overlap
or are projected onto a non-flat surface, makes it rather
tough to determine the appropriate colour for areas on
the surface. While a subset of these issues can be miti-
gated with interpolation, it turns out to be quite costly,
much like how raytracing itself can be quite costly for
quadrilaterals. Another method is to derive the relevant
equations for a certain shape, and compute the result-
ing transformation. As this is not a general method, the
entire process must be repeated for each different mirror
shape.[2][3] Furthermore, deriving the equations for ob-
jectsmore complex than cones, cylinders, or similar, turns
out to be a strenuous task. While approximating shapes
is definitely possible, it is too costly for simulating light-
object interaction in raytracing.

2.2 Point Selection for Raytracing
Raytracing methods are well-defined, and our basic im-
plementation is provided by Shirley[4]. The framework
consists of the architecture for raytracing primitives like
rays and camera, important utility functions such as re-
flection, and simple implementations of common raytrac-
ingmethods. Among thesemethods are anti-aliasing, tex-
ture mapping and bounding volume hierarchies. Some
alternative raytracers are ’pov-ray’, used by Comité[1], or
’yet another raytracer’, which allows for non-classical per-
spectives.[5] The raytracer takes as input a set of points
from which rays should originate, and a straightforward
approach to generating this set is using an equally dis-
tributed set of points. As quadrilaterals are translated to
triangles in modern GPU architecture[6], we will explore
the possibility of using triangles directly. To find a trian-
gulation utilising every point in the given set, we find the

Mirror Anamorphosis Page 2 of 8

Delft University of Technology

Delaunay triangulation. The Delaunay triangulation also
maximises the minimum angle of all the angles in the tri-
angulation. This avoids the inclusion of elongated trian-
gles and provides an optimal mesh to render with.[7][8]
S-hull is a excellent algorithm for finding Delaunay trian-
gulations, and is provided by Sinclair.[9]

2.3 Reconstruction using Texture Mapping

Texture mapping is a novel technique for high-quality im-
age synthesising, and is analogous to creating distorted
images from our mapping based on the original. Apart
from determining surface colour, some uses of texture
mapping are finding specular reflection, bump mapping,
transparency, shadows, and has become a core compo-
nent in fast rendering.[10] Furthermore, more complex
surfaces are made up of triangles as well, and rendering
reliesheavilyoncomputing intersectionsbetween rayand
triangle. We use the the ’in-out’ test for checking these
types of intersections, however, rendering can be sped
up by amortising computation over neighbouring trian-
gles. Amanatides & Choi suggest such an approach us-
ing Plücker coordinates.[11] Texture mapping goes hand-
in-handwith the surfacemesh, as it is highly optimised for
triangles. This is due to the fast computation of barycen-
tric coordinates.[12]

3 Methodology

Overcoming these challenges poses a large roadblock in
adding complexity and improving computation speed for
projections like these. Not only do we explore fitting ap-
proaches for simulatinganamorphoses, but also allow the
raytracing algorithmwe introduce to be optimised specif-
ically for anamorphic art. Moreover, wewouldwant to de-
termine the limitations of various shapes and viewpoints.
In order to start working towards a solution for solv-
ing mirror anamorphosis in raytracing there needs to be
a skeleton implementation of raytracing with its respec-
tive primitives, with a definition of the input and output.
The input consists of a projected image, a mirror object,
and a surface object onto which we project. The scene
is made up of these two objects, together with a cam-
era, fromwhich rayswill originate, and a projection plane.
The rays are cast through this projection plane, reflect-
ing off the mirror and finally intersecting with the sur-
face. Tracing utilises a function for determining where
rays endupwithin the scene, by checking for intersections
with objects. If an intersection occurs, a record of data
is generated with the coordinates of the ray-object inter-
section, together with the normal on the surface of the
intersected object. Rays consist of direction and origin,
whereas records consist of normal, distance and intersec-
tion point, such that

dray = (dx, dy, dz), oray = (ox, oy, oz) Ray
prec = (px, py, pz), nrec = [v1 v2 v3] Record

3.1 Finding Intersections
Using the equation for a given shape of the object, and
the ray equation, we can solve the resulting quadratic for-
mula (withdiscriminantd) todeterminewhether there are
intersections, and find the distance t from oray . Further-
more, a lower bound tmin and upper bound tmax are de-
fined as render distance. Intersection is now given by,

d > 0 Solution Exists
tmin < t < tmax Within Bounds

Using a raytracer based on Shirley’s implementation[4],
we can generate images given a scene description. Us-
ing definitions for material and colour, rays are assigned
a colour on intersection with an object. Finally, all results
arebundled intoanoutput imageonapixel-by-pixelbasis.
This will be the groundwork for the mirror anamorphosis
implementation.
There are various existing solutions using the traditional
approach, with one of themost basic scenes consisting of
a mirror cylinder and a surface plane. Our approach sup-
ports various scenes, but for the sake of simplicity, this el-
ementary scene is set up first. The set-up starts off simi-
lar to the through-hole method, with the cylinder as mir-
ror, plane as surface, and an additional plane situated be-
tween the viewpoint and the mirror object, as the screen.
This screen operates as the location for where in the mir-
ror the source imagewill be visible, if at all. As anexample,
moving the screen further away from the mirror, towards
the viewpoint, results in a larger image similar to zooming
in. Furthermore, moving the screen up to the point rays
will not hit the mirror anymore as they pass through the
screen will effectively crop the image.

Figure 2: Close-up of cylinder and screen.

(a) Large screen (b) Wide screen

Figure 3: Various screen placements in the scene.

Mirror Anamorphosis Page 3 of 8

Delft University of Technology

The key part of the implementation is checking whether a
ray intersects with both the screen, the mirror, and then
hits the surface after reflecting off the mirror. We define
some functions, where normalise(v) converts some vec-
tor v into its unit vector, and intersect(r, o) tests inter-
section between ray r and object o. Now, determining
whether a ray is part of the mirror anamorphosis is given
by,

Algorithm 1 Testing rays for intersection with objects.

intersection_test (ray r, screen e, mirrorm, surface s)
if not intersect(r, e) then

return false
end if
if not intersect(r,m) then

return false
end if
p← intersection point (r,m)
n← normal at mp

v ← normalise(rd)
reflected← 2n ∗ dot(v, n)
if not intersect(reflected, s) then

return false
end if
return true

Cylinder f(x, y, z) = Ax2 +By2 + Cz2 +Dx+ Ey +Gz +H

Plane f(x, y, z) = Ax+By + Cz +D

Triangle f(v1, v2, v3) = v1 +A(v2 − v1) +B(v3 − v1)

Table 1: General equations for various shapes.

3.2 Selecting Points
Before doing any kind of computation, rays need to have
an origin. The naive approach uses a method referred to
as the through-hole method, by constructing a grid based
on the pixels in the source image. This brings forth several
limitations with relation to object shape, surface shape
and computation speed. To support this claim, let us
investigate some differences between these quadrilater-
als and triangles. It is given that any three points, when
non-collinear, determine a unique triangle which lies on a
unique plane. We define the set of triangles to not contain
any triangles with a size of zero, as these describe points
and lines containing three vertices. Transforming these
vertices from image to surface, will almost always result
into a new two-dimensional triangle. The same cannot
be said for quadrilaterals, and issues arise when the sur-
face is a non-flat object. What further imposes the supe-
riority of triangles is the fact that it is the only primitive
that can be described in isolation, due to the aforemen-
tioned property. This is exactly the reason many modern
systems rely on triangles for rendering, and not quadri-
laterals. Lastly, triangles scale linearly, which makes the

computation of various interpolations for shading, textur-
ing andapplyingdepth filters highly optimised. A straight-
forward approach might be splitting every quadrilateral
into two triangles. However, with a curved mirror surface
pointsmight end up quite far apart, producing a lowqual-
ity output. Better quality can be achieved by using more
points, or rather, use a higher sampling rate. Points are
selected in a randomisedmanner per pixel.
Depending on the qualitywewant, weuse a sampling rate
x. The amount of points generated is given by x ∗ pixels
and is computed through the following procedure, where
random_double generates a random value in range [0, 1].

Algorithm 2 Generating points to cast from.

generate_points (height h, widthw, samples x)
Let A[1...h][1...w] be a new array
for i← h to 0 do

for j ← 0 to w do
for k ← 0 to x do

u← (j+ random_double) / (w − 1)
v ← (i+ random_double) / (h− 1)
A[i][j]← (u, v)

end for
end for

end for
returnA

3.3 Triangulation

Generating a set of non-overlapping edge-adjoined trian-
gles using all points is not a new problem. Almost a cen-
tury ago, Delaunay laid the foundations for a general so-
lution maximising the minimum angle of all the triangles,
which in modern days is referred to as the Delaunay tri-
angulation. Various different implementations of such a
triangulation exist in modern days, with one of the algo-
rithms being sweep-hull, having a runtime complexity of
O(nlog(n)). The novelty is reflected in the radially prop-
agating sweep-hull, based on a radial sort of the points,
together with the flipping of triangles to compute the De-
launay triangulation. For further reading, we refer to Sin-
clair’s work describing the full routine. The initial set of
points are now transformed into triangles with vertices
[v1...v3] and surface normal [n1...n3], such that,

vtr = [v1 v2 v3], ntr = [n1 n2 n3] Triangle

Figure 4: Triangulating a randomised set of points.

Mirror Anamorphosis Page 4 of 8

Delft University of Technology

3.4 Texture Mapping
Once the triangulation is constructed it needs to be linked
to the projected image. This can be achieved by treating
the projected image as a texture, and finding colour val-
ues for each point in the triangle mesh. The range for tex-
ture coordinates is [0, 1], as this is the standard for graph-
ics. The projected image has its width and height pixel
coordinates mapped and scaled to fit this range. Further-
more, the point coordinates have been deliberately con-
structed with this same range, allowing a connection be-
tween source and mesh to be set-up without performing
additional transformations. To determine the colour of
some pixel, we sample from the texture with source coor-
dinates s such that,

c = texture(u = sx, v = sy) Colour

A seemingly simple solution like this does not comewith-
out a cost, however, as plain texture mapping often pro-
duces images with a diminished quality. This is a clear
drawback, as for mirror anamorphosis curvature in mir-
rorsmakes this issue evenmore apparent as it distorts the
triangles. Luckily, improving quality in rendering is a clas-
sic graphics conundrum, and there exists an abundance
of interpolation techniques. For intersections with trian-
gle meshes, given that the colour data of all vertices are
known, barycentric coordinates of the intersection point
p can be used to interpolate its colour. For some triangle
with vertices [v1...v3], and edges [p − v1...p − v3] subdi-
viding the triangle into areas [a1...a3], it holds that,

cp = a1v1 + a2v2 + a3v3 Barycentric Coordinates

3.5 Generating Mappings
In order to re-use any raytracing results, the output first
needs to be stored. For now, let us define a basic struc-
ture capturing all relevant output that has been produced
so far. This structure contains both triangles, the orienta-
tion of the triangle on the surface bymeans of the normal
vector, and our set of colours. In addition, a boolean is
defined to describe whether a triangle registers intersec-
tions on one or both sides. Our mapping contains a list of
instances of this new structure, with the our routine so far
being,

Mapping

Triangle Surface

Vector Surface Normal

Colour[3] Colours

bool Doublesided

Triangle Source

The conditions for the render are now satisfied. Sum-
marising the process so far; we define points and cre-
ate triangles from them, and determine the colour for
each point. Next, we cast and trace a ray for each point

and record the intersectionswith the surface after passing
through the screen and bouncing off themirror. The com-
plete procedure for computing a mapping from a source
image is as follows,

Initialisation

1. Initialise output size (w, h), samples per pixel spp and
our output files contained in files.

2. Set up the camera c with rays originating from vfrom
and being casted to vat.

3. Create our scene in theworldwith objects (e,m, s) for
screen, mirror and surface respectively.

Points and Triangles

1. Generate a set of points pa based on the dimensions
of the requested output with sizew ∗ h ∗ spp.

2. Drop points from the set if they do not intersect with
objects (e,m, s) to construct pt.

3. Find theDelaunay triangulation tr for the set of points
pt.

3.6 Image Reconstruction
Texture coordinates are part of a discrete spacewith range
[0, 1], where (u, v) represents horizontal and vertical lo-
cations respectively. Our implementation of a texture
reading from an image translates pixel locations to tex-
ture coordinates, andmakes use of the stb_image library
for parsing the image.[13] The current output to the ren-
der provides some arbitrary world space coordinates, and
also need to be translated to texture coordinates. We find
the minimum and maximum values for the world coordi-
nates of both the projected image and the distorted sur-
face image. We map some coordinate u or v to scale and
fit all values to the appropriate range. The function for v is
analogous to that of u, and the latter is given by,

unew =
1

(umax − umin) ∗ (uold − umin)
Mapping u

Next we iterate over the set of triangles, and determine
which of the pixels it overlaps with. This is done by cre-
ating a bounding box around the triangle based on its ex-
tremes, and testing which points in this bounding box are
in the triangle using the ’in-out’ test. This test relies on
theuseofbarycentric coordinates (u, v, w), whichexpress
a location on a triangle using scalars for each vertex.[12]
In short, for every edge we check whether the point is to
the left or right, and if all edges match up, the point must
be inside the triangle. If the point turns out to be part of
the triangle, the respective pixel has its colour updated.
If there are multiple colours assigned to a pixel, we incre-
ment the value for colour, and later average this by divid-
ing by the total amount of samples. For testing purposes
we currently only sample one timewhenapixel is part of a
triangle, however, by using more sample points the qual-
ity can be greatly increased. After computing colour for
every pixel the data is converted to a portable pixel map
(PPM) image file. This type of format takes an input of

Mirror Anamorphosis Page 5 of 8

Delft University of Technology

three colours per pixel in the range [0, 255], and we use a
utility function to convert and write the result to the file.
Taking as input the image size, set of triangles and a loca-
tion towrite output towe implement the remainder of the
algorithm as,

Rendering and Mapping

1. For each unique vertex in triangle set tr trace a ray
such that,

(a) It propagates from camera to surface with the
path being c→ e→ m→ s.

(b) We find theworld coordinates of the ray intersect-
ing with surface s.

(c) These coordinates are written to files.
2. Assign colours to vertices in tr based on the source

texture and readjust sizing if necessary.
3. Rasterise the output image using the coordinates in

files.
4. For all points we find barycentric coordinates in its re-

spective triangle to determine its colour.
5. Write result to files as ppm image format.
6. Render the scene using classic raytracing. (Optional)

4 Results
The algorithm was developed in C++ and executed on
a machine with the a Nvidia GeForce GTX 1070 graphics
card, AMD Ryzen 7 3800X processor and 16GB of RAM. Re-
sults werewritten to text files and images in portable pixel
maps (PPM) format, containing RGB values for each indi-
vidual pixel. A Python script was used for visualising tri-
anglemeshes. The input parameters for the algorithmare
[input_image, world, camera] with some additional
settings [dimensions, max_depth, samples] for ren-
dering. Results are composedof components involving ei-
ther the projected image or the projection on the surface,
and reflect various stages of the solution. We provide a
visualisation for the set of points we generate, the result-
ing triangle mesh and a set of morphed images using the
mapping derived from this mesh. In addition, we provide
a set of classic renders to illustrate various scenes.

4.1 Basic Scene
For a frontal view on themirror our algorithmperforms as
expected, and matches up with similar existing anamor-
phic art installations. The scene is set-up with a surface
in checkerboard-style, a screen in purple and a mirror
cylinder. The screen has full overlap with the mirror from
the observer’s perspective. After selecting points, the set
is trimmed down such that any non-relevant points are
omitted when finding the Delaunay triangulation. As ref-
erence, the full set of points is later used to generate im-
ages of the full scene. For each unique vertex in the trian-
gle we cast a ray into our scene, and record the location
of the intersection. This results in a correspondent trian-
gle mesh present on the surface, with an obvious level of

distortion visible. By sampling from two source textures,
we create transformations of projected image to projec-
tion on the surface, and show that they transform distinct
textures as equivalent.

Figure 5: Scene from simple rendering viewpoint.

(a) Checkers (Few Triangles) (b) Blocks (Few Triangles)

(c) Checkers (Many Triangles) (d) Blocks (Many Triangles)

(e) Checkers (Textured) (f) Blocks (Textured)

Figure 6: Applied texture mapping in various stages.

4.2 Advanced Viewpoints

For more obscured viewpoints our algorithm performs
less optimal, and is usually not desired for reflection art
in general. Due to heavy distortion images can stretch out
far, and a standard canvas is usually smaller than a stan-
dard football field. Distortion can be accounted for with
interpolation, but for areas too large this technique takes
a performance hit. Certain angles also produce various ar-
tifacts such as overlapping colours creating a blur, streaks
of black pixels or boundary issues. This is not a scientific
limitation and rather one of our own, and we are certain
that issues like these can be resolved in due time.

Mirror Anamorphosis Page 6 of 8

Delft University of Technology

5 Discussion

While our approachprovides full support for rendering tri-
angle meshes, but presenting mirror objects and surface
objects consisting of triangles fell out of scope. This is
due to the complexity of constructing such a scene in the
first place. There are tools to generate such objects, but
this brings difficulty in translating the output from a tool
to an input for our own algorithm. Selecting a suitable
viewing angle for the observer can be quite problematic,
as anamorphosis is inherent to strong viewpoint depen-
dence. Ouroutput imagealso shows someartifacts, as the
implementation for reconstruction is quite low-level and
might be susceptible to rounding errors. As reconstruc-
tion is currently slow, real-time rendering is not possible.
Still, wehandle imagesatamuch faster rate thanwhatone
would achieve with raytracing the entire scene again, and
believe that real-time rendering can be achieved with an
optimised implementation of reconstruction.

5.1 Responsible Research

The set-up for this research is fully reproducible as there
are many different implementations of raytracing. Our
method is standardised and does not rely on very specific
conditions, and thus similar results are attainable even
if the set-up slightly differs. Regardless, the bulk of the
techniques used have their traditional, non-anamorphic
analogue represented in the academicworld already. The
same holds for a variety of different artworks, which were
used as reference solutions. As for the transparency of the
results, the figures are a one-to-one visualisation of the
underlying numbers generated by our algorithm. The de-
velopment of the technique was conducted in an ethical
and fair manner, and we hope to broaden the perspective
on anamorphosis of prospective artists and researchers
alike.

6 Conclusion

We introduced a solution to generating mappings from
projected image to surface in mirror anamorphosis. Our
approach implements and algorithmwhich starts by gen-
erating a set of points based on the desired quality. It tri-
angulates them to a two-dimensional triangle mesh us-
ing Delaunay triangulation. Using raytracing, the mesh
is projected onto the mirror through a screen, bounding
the proportions of the output. Any ray intersecting with
the surface after being reflected off the mirror object is
recorded in a mapping with its respective texture coor-
dinates. Based on this mesh, we do not have to exe-
cute our raytracing algorithm again if the projected im-
age is changed. We use texture mapping to transform
any projected image into the distorted projection on the
surface and achieve speeds much faster than initial ray-
tracing. This makes on the fly changes to new artworks
possible, and provides a baseline for rendering real-time

anamorphoses in industries such as film and video gam-
ing. Futureworkwould involve optimising the current im-
plementation for faster triangle intersection, texturemap-
ping and point selection. Lastly, we want to test mesh-
division[14], point sampling[15] and nested level of de-
tail[16] as adaptive strategies for anamorphic raytracing.

References
[1] F. De Comité, “A general procedure for the construc-

tion of mirror anamorphoses,” in Bridges 2010, Jul.
2010.

[2] J. Hunt, B. Nickel, and C. Gigault, “Anamorphic im-
ages,” American Journal of Physics - AMER J PHYS,
vol. 68, Mar. 2000. DOI: 10.1119/1.19406.

[3] C. Gabriel-Randour and J. Drabbe. (2001). Cabri et
les anamorphoses, [Online]. Available: http://www
g.uni-klu.ac.at/stochastik.schule/ICTMT_5/ICTMT_
5_CD/Special%20groups/Gabriel_frz.htm (visited
on 06/25/2021).

[4] P. Shirley, Ray tracing in one weekend, Dec. 2020.
[Online]. Available: https : / / raytracing . github . io /
books/RayTracingInOneWeekend.html.

[5] N. Farenc, M. Roelens, and C. Fauriel, “Creating spe-
cial effects by ray-tracing with non classical per-
spectives,” Oct. 2000.

[6] K. Hormann, “A quadrilateral rendering primitive,”
Jan. 2004, pp. 7–14. DOI: 10.1145/1058129.1058131.

[7] B. Delanue, “Sur la sphere vide. a la memoire de
georges voronoi,” News of the Academy of Sciences,
no. 6, pp. 793–800, 1934.

[8] J. Sjoholm. (Jun. 2020). Creatingoptimalmeshes for
ray tracing, [Online]. Available: https://developer.
nvidia .com/blog/creating- optimal -meshes - for -
ray-tracing/ (visited on 06/26/2021).

[9] D. Sinclair, “S-hull: A fast radial sweep-hull routine
for delaunay triangulation,” Mar. 2016.

[10] P. S. Heckbert, “Survey of texture mapping,” IEEE
Computer Graphics and Applications, vol. 6, no. 11,
pp. 56–67, 1986. DOI: 10.1109/MCG.1986.276672.

[11] J. Amanatides and K. Choi, “Ray tracing triangular
meshes,” in Proceedings of the Eighth Western Com-
puter Graphics Symposium, vol. 43, 1997.

[12] Scratchapixel, Ray tracing: Rendering a triangle,
2016. [Online]. Available: https : / /www.scratchapi
xel.com/.

[13] S. T. Barrett, Stb, https://github.com/nothings/stb,
2021.

[14] Y.-M. Ji, H. Yeom, and J.-H. Park, “Efficient tex-
ture mapping by adaptive mesh division in mesh-
based computer generatedhologram,”Opt. Express,
vol. 24, no. 24, pp. 28 154–28 169, Nov. 2016. DOI: 10.
1364/OE.24.028154.

Mirror Anamorphosis Page 7 of 8

https://doi.org/10.1119/1.19406
http://wwwg.uni-klu.ac.at/stochastik.schule/ICTMT_5/ICTMT_5_CD/Special%20groups/Gabriel_frz.htm
http://wwwg.uni-klu.ac.at/stochastik.schule/ICTMT_5/ICTMT_5_CD/Special%20groups/Gabriel_frz.htm
http://wwwg.uni-klu.ac.at/stochastik.schule/ICTMT_5/ICTMT_5_CD/Special%20groups/Gabriel_frz.htm
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://doi.org/10.1145/1058129.1058131
https://developer.nvidia.com/blog/creating-optimal-meshes-for-ray-tracing/
https://developer.nvidia.com/blog/creating-optimal-meshes-for-ray-tracing/
https://developer.nvidia.com/blog/creating-optimal-meshes-for-ray-tracing/
https://doi.org/10.1109/MCG.1986.276672
https://www.scratchapixel.com/
https://www.scratchapixel.com/
https://github.com/nothings/stb
https://doi.org/10.1364/OE.24.028154
https://doi.org/10.1364/OE.24.028154

Delft University of Technology

[15] G. Schaufler and H. W. Jensen, “Ray tracing point
sampled geometry,” in Proceedings of the Euro-
graphics Workshop on Rendering Techniques 2000,
Berlin, Heidelberg: Springer-Verlag, 2000, pp. 319–
328, ISBN: 3211835350.

[16] J. Xia, J. El-Sana, and A. Varshney, “Adaptive real-
time level-of-detail-based rendering for polygonal
models,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 3, pp. 171–183, May 1997. DOI:
10.1109/2945.597799.

Mirror Anamorphosis Page 8 of 8

https://doi.org/10.1109/2945.597799

	Introduction
	Raytracing and Textures
	Key Concepts

	Related Work
	Anamorphic Methods
	Point Selection for Raytracing
	Reconstruction using Texture Mapping

	Methodology
	Finding Intersections
	Selecting Points
	Triangulation
	Texture Mapping
	Generating Mappings
	Image Reconstruction

	Results
	Basic Scene
	Advanced Viewpoints

	Discussion
	Responsible Research

	Conclusion

