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ABSTRACT

To gain a deeper empirical understanding of how developers work

on Android apps, we investigate self-reported activities of Android

developers and to what extent these activities can be classified

with machine learning techniques. To this aim, we firstly create

a taxonomy of self-reported activities coming from the manual

analysis of 5,000 commit messages from 8,280 Android apps. Then,

we study the frequency of each category of self-reported activities

identified in the taxonomy, and investigate the feasibility of an

automated classification approach. Our findings can inform be used

by both practitioners and researchers to take informed decisions or

support other software engineering activities.

CCS CONCEPTS

• Software and its engineering→ Maintaining software;

KEYWORDS

Android, Empirical Study, Mining Software Repositories

1 INTRODUCTION

Developing Android apps is fundamentally different from devel-

oping other types of software [12, 22, 51, 61]: On the one hand,

even the smallest error may have quick and large effects (such as

negative user reviews, with subsequent loss of future users [41]);

on the other hand, Android apps have to deal with potential inter-

action with other apps, heavy usage of sensors like accelerometer

and GPS, limited battery life, limited display size, and so forth. This

inherent difference in the development of Android apps limits the

possibility to use results, off-the-shelf, from software engineering

research done on other kind of software systems. Instead, to use

and guide our research to support the engineering of Android apps,

first we need to gain a novel, deeper empirical understanding of how
developers work on these apps.

Our goal, in line with this need, is to investigate and understand

the various types of activities performed by Android developers

in the context of real projects. We focus on self-reported activities,
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which represent one of the most valid ways to comprehend and

analyze the development process [31]. As done in previous studies,

we tap into the commit messages left by Android developers in

GitHub repositories, as a way to study these self-reported activi-

ties. Past research has focused on specific aspects of Android apps

such as performance [9] and energy consumption [4, 38], here we

continue on this line, but broaden the scope to any type of activity,

as done for open-source software [48].

Our research method follows that of an exploratory investiga-

tion, i.e., we started without hypotheses about the contents of the

GitHub commit messages andmade the types of development activ-

ities emerge from the extracted data [62]. To this purpose, we firstly

built a dataset of 8,280 Android apps (which are both open-source

in GitHub and distributed through the Google Play store) and ran-

domly selected 5,000 commits from their repositories. Then, we (i)

manually inspected and categorized all the commits by conduct-

ing independent content analysis sessions involving 5 researchers,

(ii) collaboratively merged the independently-identified categories

into a single taxonomy, (iii) validated the obtained taxonomy with

external mobile app developers, (iv) analyzed the frequency of each

category in the taxonomy across the 5,000 commits, and (v) investi-

gated how effectively these commits can be automatically classified

via standard machine learning techniques.

Our results show that Android developers reportedly perform a

wide variety of different activities at different levels of abstraction,

ranging from bug fixes, release management, access to sensors,

etc. The most prominent category of activities is app enhancement

(new and updated features), followed by bug fixing (mostly in an

app-specific manner) and project management (mostly by merg-

ing/branching of the repository and by preparing a new app release).

Those results confirm the importance of research related to fea-

ture management and release planning of Android apps, Android-

specific program analyses, and software repository mining. Finally,

the automated classification reaches promising initial results.

Themain contributions of this study are the following:

(1) A taxonomy of self-reported activities performed by Android

developers when developing their apps;

(2) An empirical analysis of the frequency of the self-reported

activities performed by Android developers aimed at under-

standing their main concerns when developing their apps;

(3) An automated approach for classifying commit messages

according to the defined taxonomy.

(4) A comprehensive replication package containing the raw

data, analysis scripts, and the automatic classifier produced

in our research.
1
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2 METHODOLOGY

The goal of the study is to empirically investigate and classify the

activities performed by Android developers reported within commit

messages, with the purpose of understanding the typical actions they
perform and easing a variety of decision making mechanisms (e.g.,
code review triaging or monitoring of the development process).

The perspective is of both researchers and practitioners, interested

in an empirical understanding of the activities performed during

the development process.

The choice of considering self-reported activities is driven by

the recent advances in program comprehension [31], which demon-

strated that the analysis of commit messages represents one of

the most valid strategies to comprehend and analyze the devel-

opment process of a software system. Our study revolves around

three research questions and follows well-established guidelines

on empirical software engineering [56, 62].

In the first place, we aim at categorizing the developers’ self-

reported activities through the analysis of commit messages that

accompany the changes performed while developing Android apps:

RQ1. How can self-reported activities of Android developers be

categorized?

After having categorized the self-reported activities, we analyze

the frequency of each category to quantify the different developers’

concerns when developing Android apps:

RQ2. How often does each category of self-reported activities

occur?

Finally, we investigate how effectively self-reported activities

can be automatically classified from commits via standard machine

learning techniques, so that developers and project managers can

be automatically supported during their decision making processes:

RQ3. How effective is an automated approach, based on ma-

chine learning, in classifying self-reported activities?

In the following subsections, we detail the design choices that

allow us to answer our research questions.

2.1 Context Selection and Dataset Creation

We study self-reported activities based on commit messages au-

thored by developers, thus we need real-world Android applications
for which commit history is available. To ensure the analysis of a

proper set of mobile apps having different size and scope as well as

being published on the Google Play store, we design and conduct

the selection process shown in Figure 1.

In step 1 we identify the GitHub repositories containing the

source code of Android applications. Then, to properly link aGitHub

repository to its corresponding app in Google Play, we exploit

the Android manifest file (step 2). In fact, every Android app must

have an AndroidManifest.xml file that includes a package name
that identifies the application and serves as an identifier of the app

on Google Play. The data concerning all open-source repositories

1. Find Android

manifest files

in GitHub

(378 610)

2. Extract package

names from

Android manifest

files (112 153)

3. Select package

names available

on Google Play

(9 478)

4. Match GitHub

repositories to

Google Play

pages (8 431)

bigquery-public-data:

github_repos

Google Play GitHub API v3

5. Filter reposi-

tories with at

least two

commits (8 280)

6. Collect

commits

metadata

(1 727 930)

7. Extract

commits

sample

(5 000)

5 000 commits

Figure 1: Dataset creation process

on GitHub are available in databases on Google BigQuery.
2
Big-

Query list 378,610 AndroidManifest.xml files on GitHub with

112,153 unique package names. Duplication of package names may

occur because of forked projects, the frequent usage of example

names, or inclusion of manifest files from third-party code [23].

In step 3 we remove unpublished and non-existent apps by check-

ing the existence of the corresponding page on Google Play. As a

result, 9,478 package names are listed as apps in Google Play. For

some of these apps, one or more repositories contain a matching

AndroidManifest.xml file, as detailed above. In step 4 we match

the repositories to Google Play entries with an heuristic approach:

(1) if only one repository contains a manifest for a package

name, we assume it hosts the code for the app;

(2) if more than one repository with the manifest file exists,

we search for links from Google Play meta-data of the

app to any of the GitHub repositories. If we find a distinct

repository the app entry linked to, we assume the repository

to be the canonical source for the app;

(3) if no such unique link exists, we select the most popular

repository based on number of (i) forks, (ii) watchers, and

(iii) subscribers, as listed by GitHub.

During step 4, we remove the apps (718) for which we cannot

determine a canonical repository, thus reducing the total number

of apps we investigate (8,432). In step 5, we exclude repositories

with fewer than 2 commits (152) to exclude unmaintained, toy, or

demo projects [23]. Our final dataset consists of a total 8,280 mobile

apps covering all 34 categories of the Google Play store, for a total

of 1,727,930 commits belonging to the main branch of these apps’

GitHub repositories (step 6). The implementation of the dataset

and further details about its creation process are available in [15].

In step 7, we randomly select a sample of 5,000 commits that

cover 30 categories of Google Play, since the manual analysis of

all the collected commits is infeasible. By considering 5,000 com-

mits, we achieve a 99% statistically significant sample of the total

number of commits of our dataset with a 1.82% confidence interval

(assuming a 50% population proportion).

2.2 RQ1. Self-reported activities categorization

To answer our first research question, we conduct three iterative

content analysis sessions [25] involving five software engineering

2
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researchers, all authors of this paper, (2 graduate students, 2 re-

search associates, and 1 faculty member) with at least five years

of programming experience. From now on, we refer to them as

inspectors. We describe the methodology for these three iterative

sessions, followed by the validation method.

Taxonomy Building. Starting from the set of 5,000 commits com-

posing our dataset, overall each inspector independently analyzes

1,000 commits.

Iteration 1: The inspectors analyze an initial set of 300 commit

messages. Then, they open a discussion on the labels assigned

so far and try to reach a consensus on the names and types

of the categories assigned. The output of this step is a draft

taxonomy that contains some obvious categories (e.g., changes
to the Graphical User Interface), while others remain undecided.

Iteration 2: The inspectors firstly re-categorize the 300 initial com-

mits according to the decisions taken during the discussion, then

use the draft taxonomy as basis for categorizing another set of

500. This phase is for both assessing the validity of the codes

coming from the first step—by confirming some of them and

redefining others—and for discovering new codes. After the com-

pletion, the inspectors open a new discussion aimed at refining

the draft taxonomy, merging overlapping categories or character-

izing better the existing codes. A second version of the taxonomy

is produced.

Iteration 3: The inspectors re-categorize the 800 commits previ-

ously analyzed. Afterwards, they complete the final draft of the

taxonomy verifying that each kind of commit message encoun-

tered in the final 200 commits is covered by the taxonomy.

Following this iterative process, we defined a hierarchical taxon-

omy composed of two layers. The top layer consists of 9 categories,

while the inner layer contains of 49 subcategories.

Taxonomy Validation. In addition to the iterative content analy-

sis process, we also externally validate the defined taxonomy. To

this aim, we involved 2 professional developers having 4 and 5 years

of Android programming experience, respectively. They were con-

tacted via e-mail by one of the authors of this paper, who selected

them from her personal contacts.

We provided them with a spreadsheet containing a list of 200

commit messages randomly selected from the total 5,000 in the

dataset and asked to categorize the commits according to the tax-

onomy we previously built. During this step, the developers were

allowed to either consult the taxonomy (provided in PDF format

and containing a description of the commit categories in our tax-

onomy similar to the one we discuss in Section 3.1) or assign new

codes if needed.

Once the task was completed, the developers sent back the

spreadsheet file annotated with their categorization. Moreover, we

gathered comments on the taxonomy and the classification task.

As a result, both the participants found the taxonomy clear and
complete: As a proof of that, the tags they assigned were exactly the
same as the ones assigned during the phase of taxonomy building.

2.3 RQ2. Frequency of self-reported activities

In this research question, we aim at analyzing how frequently each

category of our taxonomy appears. To this aim, we compute the

frequency each category of activities was assigned to a commit

message during the iterative content analysis.

In this way, we can overview the main developers’ concerns

when developing mobile apps and identify the most popular self-

reported activities. In Section 3 we present and discuss bar plots

showing the frequency of each category in the taxonomy.

2.4 RQ3. Automated classification of activities

With our final research question we test standard machine learning

techniques to automatically classify self-reported activities. As a

side effect, the output of this research question poses a baseline

against which future approaches aimed at more accurately classify-

ing commit messages can be tested.

While several techniques can classify text of self-reported activi-

ties (e.g., keyword-based approaches [59]), we use machine learning

since this type of approach can automatically learn the features

discriminating a certain category, thus simulating the behavior of

a human expert [45]. Overall, machine learning is a method (su-

pervised, in our case) where a set of independent variables (the

predictors) are used to predict the value of a dependent variable

(in our case, the commit classification) using a machine learning

classifier (e.g., Logistic Regression [40]). The following subsections

detail the design decisions taken to build and validate our approach.

Independent Variables. Our goal is to classify the nature of

self-reported activities based on commit messages: the basic in-

formation for the classification is therefore given by the words

characterizing the commit message. However, not all the words

in a commit can be actually representative for the classification

of the self-reported activity. For this reason, we need to properly

preprocess them [7].

In the context of our work, we use the widespread Term Fre-
quency - Inverse Document Frequency (TF-IDF) model [52], which

is a weighting mechanism that determines the relative frequency

of words in a specific document (i.e., a commit message) compared

to the inverse proportion of that word over the entire document

corpus (i.e., the whole set of commit messages in our dataset). This

approach measures how characterizing a given word is in a com-

mit message: For instance, articles and prepositions tend to have a

lower TF-IDF since they generally appear in more documents than

words used to describe specific actions [52]. More formally, let C
be the collection of all the commit messages in our dataset, letw
be a word, and let c ∈ C be a single commit message, the TF-IDF

algorithm computes the relevance ofw in c as:

relevance (w, c ) = fw,c · log( |C |/fw,C ) (1)

where fw,c equals the number of timesw appears in c , |C | is the
size of the corpus, and fw,C is equal to the number of documents in

whichw appears. The weighted words given as output from TF-IDF

represent the independent variables for the machine learner.

Dependent Variables. The category of a self-reported activity

is the variable to predict. We set the granularity of the dependent

variable to the top layer of the taxonomy, i.e., the one reporting the
9 main categories of self-reported activities in our taxonomy.

Machine Learners. In our context, a certain self-reported ac-

tivity might refer to more than one category: For instance, suppose

that in a commit a developer performs both an enhancement and a
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bug fix. This is a target for multi-label classifiers [60]. These can be

of two types: (i) problem transformation methods, which transform

the multi-label classification into a more single-label classifications,

and (ii) algorithm adaptation methods, which extend specific classi-

fiers in order to handle multi-label data [60].

Since the two types of multi-label algorithms have similar perfor-

mance [49], we adopt a problem transformation strategy and use the

OneVsRest classifier [21]. Taking as input a standard single-label

algorithm, OneVsRest wraps up the process of training a classifier

for each possible class. As a result, the input classifier assigns a

probability that a certain commit message belongs to each of the

categories of our top layer taxonomy: If the probability is higher

than 0.5, then the commit message is considered as belonging to it.

With the aim of providing a wider overview of the performance

achievable by different single-label classifiers when adopted in

combination with OneVsRest, we consider (i) Naive Bayes, (ii)

Support Vector Machines (SVM), (iii) Logistic Regression, and

(iv) Random Forest. These classifiers make different assumptions

on the underlying data, as well as have different advantages and

drawbacks in terms of execution speed and overfitting [40]. We

rely on the Scikit-Learn and NLTK Python libraries to imple-

ment our model. Before running the models, we identify their best

configuration using the Grid Search algorithm [5].

Evaluation Strategy and Metrics. To assess the performance

of the proposed machine learning approach, we adopt the 10-Fold
Cross Validation [57]. This methodology randomly partitions the

data into 10 folds of equal size, applying a stratified sampling (i.e.,
each fold has the same proportion of self-reported activity cate-

gories). A single fold is used as test set, while the remaining ones

are used as training set. The process is repeated 10 times, using

each time a different fold as test set. Then, the model performance

is reported using the mean achieved over the ten runs.

The performance of the experimented models are reported using

widespread classification metrics such as precision, recall, and F-
Measure (the harmonic mean between precision and recall) [3].

2.5 Threats to Validity

Taxonomy validity. To ensure that the correctness and complete-

ness of the categories of self-reported activities identified, we iter-

atively built the taxonomy by merging and splitting categories if

needed. As an additional validation, we asked 2 professional devel-

opers to classify a set of 200 commits according to the proposed

taxonomy. They assigned to the sampled commits the same cate-

gories as the ones assigned during the phase of taxonomy building,

also reporting the completeness and clarity of the categories we

identified. We cannot exclude the missing analysis of specific com-

mit types out of the categories identified, however the validation

session gives us confidence of the reliability of the taxonomy.

In this study we consider GitHub commit messages as indicators

of the actual activities performed by developers. This assumption

may not hold for all projects, as many active projects do not use

GitHub exclusively [23]. We partly mitigated this potential threat

to validity by carefully selecting projects related to real apps pub-

lished in the Google Play store (e.g., no toy examples) and with at

least two commits. The inclusion of additional data sources other

than GitHub repositories (e.g., project activities and issues on Jira,

developers’ discussions on message boards, etc.) is left for future

work.

Automated approach validity. To build a multi-label clas-

sification technique, we exploited the OneVsRest method [21],

which has been shown to have similar performance than other ap-

proaches [49]. To provide an overview of the performance achieved

when using OneVsRest in combination with different single-label

classifiers, we tested four categories of machine learners.

External validity. As for the generalizability of the results, we

conducted this study on a statistically significant sample of 5,000

commits belonging to 8,280 open-source mobile apps that are pub-

lished on the Google Play store. The proposed taxonomy may

differ when considering closed-source apps; at the same time, the

performance of the experimented automatic approach might be

lower/higher than the one reported herein.

3 RESULTS

We report the results of our study by research question.

3.1 RQ1. Categories of self-reported activities

The manual analysis of the 5,000 commits led to the creation of

the taxonomy of Android developers activities shown in Figure 2.

The taxonomy is composed of two layers: The top layer (9 items)

groups together activities with similar overall purpose (e.g., app en-

hancement, bug fixing), whereas the subcategories (49 items) in the

lower level provide a finer-grained categorization. In the following

we describe each category with the corresponding subcategories.

A. App enhancement. This category represents the activities

aimed at adding or improving existing features of the mobile app.

This is clearly at the core of mobile apps development and, as we

will see in Section 3.2, its related commits involve a large number

of changed source code files.

Example commit. "[Wear] Implemented Favourites feature for
wearable companion app." - thecosmicfrog/LuasataGlance (com-

mit: 57c92a8784db5ac003af82b91aaee2135f41c3c4)

A.1 - New feature: Implementation of new app features (e.g., a
new screen for sharing a content on social media). In the commit

messages developers mostly describe the newly added feature,

without implementation details.

A.2 - Feature changes: Activities referring to the change or en-

hancement of already existing features of the mobile app. By look-

ing at the commit messages, these are more related to changes in

the business logic of the mobile app, rather than about bug fixes

or code refactoring.

A.3 - Usability: Activities related to changes aimed at improving

the usability and user experience of the app. This category is

different from the category E since here developers are focusing

on the business logic (e.g., how to share a content with less taps),

whereas in E they are focusing on the presentation (e.g., colors).
A.4 - Language: Activities related to internationalization, trans-

lations of textual contents, etc.. Mostly, the commit messages

explicitly refer to the support of additional languages and the

refinement of existing translations.
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Figure 2: Taxonomy of self-reported activities of Android developers

A.5 - Android lifecycle: Activities about the management of An-

droid components lifecycle events and transitions. In the commit

messages developers refer to technical aspects related to the

Android programming model, such as the onCreate method.

A.6 - Profitability: Developers add/improve profitability aspects

of the app. In the commit messages developers refer to activities

such as adding ways to receive donations and displaying ads.

A.7 - Utility: Developers mention utility classes or methods, po-

tentially used across the whole app, such as those for serializ-

ing/deserializing dates, strings manipulation, and app-specific

exception handlers.

B. Bug fixing. This category represents development activities

where app issues that appear in the mobile app are fixed.

Example commit. "v2.2 Testing new fix for massive bat-
tery usage caused by GPS not being disabled during ap-
plication pause." - GrahamBlanshard/WiseRadar (commit:

7c35abb8512bb89b65750175e4ab07c26a813677)

B.1 - App specific: Bux fixing specific to the domain of the app.

Commits belonging to these category do not relate to generic

software qualities (e.g., performance), yet they have been marked

as bug fixes.

B.2 - Performance: Activities aiming at improving the perfor-

mance. Examples of commits in this category are Android wake

locks, memory leaks and optimization of string operations.

B.3 - Security: Fixing security issues in the app. Example commits

belonging to this category include sanitizing the input provided

by users and removal of unused permissions.

B.4 - Crash: Fixing crash problems. Commits in this category are

at different levels of abstraction, ranging from fixing null pointer

exceptions to correcting issues for specific Android devices.

B.5 - Energy: Optimizing battery consumption optimization and

managing potential energy leaks. Commits included in this cat-

egory mostly include refactoring of the code in terms of better

use of sensors (e.g., GPS) and WiFi as well as Bluetooth scanning.

C. Project management. In this category developers manage app

releases, documentation, the build process, the GitHub repository

itself (e.g., merges), IDE-related issues (e.g., Android Lint configura-

tion).

Example commit. "Merge pull request #4 from RyDroid/readme,
Update of README" - uberspot/AnagramSolver (commit:

322ca43654065ca00d1a8757059154cd1c5d1155)

C.1 - GitHub-related: GitHub-specific aspects of the project. The

commits in this category mostly mention the creation/merging of

branches and the execution of the first commit in the repository.

C.2 - Release management: Activities to prepare a new app re-

lease. The commit messages deal, for example, with changing the

app version number and preparing a new entry in the changelog.

C.3 - TODO: Activities on future actions to be done as potential

enhancements or fixes. In this cases, commit messages deal both

with low-level items (e.g., removal of a code smell) and higher-

level concerns (e.g., implementation of a new feature).

C.4 - Documentation: Activities on the documentation of the

app. Commitmessages in this categorymainly deal with adding/re-

fining comments in the source code and the documentation of the

app (e.g., description of the app functionalities, its requirements,

UI mockups).

C.5 - Build: Activities on improving project compilation. Commit

messages related to these activities usually relate to the creation

of the app binaries (i.e., its APK file), rules for building the app,

and migration to/from building systems.

C.6 - Manifest: Changes in the Android manifest of the app. Usu-

ally, commits belonging to this category concern updating the

target SDK of the app, cleanup of default unused tags in the

manifest,and adding/changing views definitions in the manifest.

C.7 - IDE: Activities related to the configuration of the IDE (e.g.,
Android Studio, Eclipse). Mainly commit messages include the

definition of a new Eclipse project for the app and upgrade of

the latest version of the IDE.

D. Code re-organization. These activities are aimed at improving

the structure, size, and readability of the code (e.g., refactoring,
cleaning, improvement of the code) or of the project organization,

without changing behavior of the app.

Example commit. "Refactored the PlayerService by moving parts
of the code into smaller classes" - bottiger/SoundWaves (commit:

a1911b5229ce1d1c3b5ca11066c8c32e14c5cf68)
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D.1 - Refactoring: Refactoring of the source code. Messages usu-

ally refer to moving code to specific methods of the lifecycle of

Android activities, import statements reorganization and extract-

ing methods from classes.

D.2 - Code cleanup: Source code cleaning activities (lighterweight

than refactoring). Commits include the removal of unused API

keys or unused string resources and deletion of dummy objects.

D.3 - Feature removal: Activities in which some features of the

app are removed. Messages are mostly about what has been
removed, not about why.

D.4 - Reduce app size: Activities aimed at reducing the app size

to make it a more lightweight download. Commit messages be-

longing to this category mostly regard the removal of unused

files or media resources.

D.5 - Dead code elimination: Elimination of source code never

executed at run-time. Commit messages refer mostly to removing

legacy Android activities, unused layouts and variable assign-

ments, as well as redundant initialization code.

E. User experience improvement. This category represents the

activities related to the user experience of the app, including screen

layouts, elements colors and padding, text boxes appearance, but-

tons, messages shown to the user, as well as gestures support.

Example commit. "Increase the opacity of the show-
case background to 96% (in line with material guide-
lines)" - ccomeaux/boardgamegeek4android (commit:

016ea1ee32dea3351be49c12bcc215f231039380)

E.1 - GUI: Changes to the graphical user interface aimed at im-

proving the user experience. Commit messages in this category

are mostly about color schemes, buttons and UI layout.

E.2 - Strings: Activities related to the management of strings in

the app. In the commit messages in this category usually devel-

opers discuss about static strings shown to the user.

E.3 - Images: Activities related to graphic elements such as icons,

images, and graphics shown to the user. Commit messages are

usually about changes of icon sets, addition or change of fixed

images shown to the user, and logos.

E.4 - Gesture: Management of gestures of the users. Messages

are mostly about features such as scroll to refresh, swipe for

performing some action, and disabling scroll in some specific

parts of the app.

E.5 - Orientation: Management of device orientation. Messages

are mostly about the detection of orientation change (e.g., for
playing a video), the creation of a dedicated layout for landscape

orientation, and the margins when in landscape mode.

E.6 - Dialog: Activities related to dialogs, toasts, and pop-ups used

to show notifications to the user. Messages usually concern

adding/removing confirmation dialogs, adding toasts for giving

feedback to the user, and fixing the style of pop-ups.

E.7 - Menu: Activities related to menus and navigation bars in

the UI. Commit messages usually regard adding/removing menu

items, reordering items in navigation bars as well as menus, and

adding contextual menus where needed.

F. Storage management. This category of activities concerns

changes involving archives, access to the file system, files storage,

local settings, and persisting data via local database.

Example commit. "Don’t overwrite DB Status LOCAL_CREATED
with LOCAL_EDITED. To prevent errors on synchronization (create
-> edit -> sync)" - stefan-niedermann/nextcloud-notes (commit:

eb6e2b0d74e7c283d6f7921f8cee1ed4191193d7)

F.1 - Settings: Activities on locally-stored user settings and prefer-

ences. Commits related to this category aremostly about adding/re-

moving specific items in user preferences and the integration

with the Android system settings or with its Preference API.
3

F.2 - Local database: Activities related to data management via

local databases (e.g., SQLite). Commit messages are usually about

improving the queries to a SQLite database defined locally in the

app and the addition of a local SQLite database in the app.

F.3 - File system: Activities related to the management of files in

the local file system of the mobile device. Messages are usually

about storing files in the SD card, cleaning up old temporary files,

and checking if some locally stored configuration files exist.

G. Sensing & Communication Activities belonging to this cat-

egory are related to (i) access to the device sensors (e.g., camera),

recording and playing media streams (e.g., making a video), and (ii)

communication features of the device (e.g., access to the WiFi/4G

networks, making calls, messaging).

Example commit. "Flip gray image as well, so the image is not ro-
tated when the phone is rotated. This caused a bug when switching
between front and back camera" - Lauszus/FaceRecognitionApp
(commit: 71210a870755e384d35b66e1272abd2c44480b05)

G.1 - Network: Activities related to the usage of the network.

Commit messages usually include management of different levels

of available bandwidth, switching to secure protocols, manage-

ment of network errors, and management of TCP sockets leaks.

G.2 - Audio: Activities related to audio playback. Commit mes-

sages are usually about the management of the Android audio

focus for playing sounds when in background,
4
and the manage-

ment of audio playback sessions.

G.3 - Image: Activities about the management of images in the

app. Commit messages in this category are usually about backup,

elaboration, and download of images.

G.4 - Sensor: Activities aimed at accessing device sensors. Com-

mit messages regard mostly the interaction with the GPS sensor,

the accelerometer, and the gyroscope.

G.5 - Camera: Activities related to the usage of the device camera.

Commit messages in this category are usually about taking a

picture when using the app, when and how to show the preview

of a taken picture, usage of the flash light, switching between

front and rear camera.

G.6 - Messaging: Activities related to SMS/MMS messages. Com-

mit messages in this category are usually about sending/receiving

messages and developing fallbacks when SMS/MMS messages

cannot be handled.

3
https://developer.android.com/guide/topics/ui/settings.html

4
http://developer.android.com/guide/topics/media-apps/audio-focus.html

https://developer.android.com/guide/topics/ui/settings.html
http://developer.android.com/guide/topics/media-apps/audio-focus.html
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G.7 - Call: Activities related to making and receiving phone calls.

Messages usually regardmaking a call to a specific phone number,

receiving calls, and silencing calls.

G.8 - Microphone: Activities related to the usage of the device mi-

crophone. Commit messages in this category are about recording

audio and controlling the microphone settings.

H. API management This category regards the activities related

to the interaction of the app with external APIs. In this context,

by external API we mean the software used by the app, but not

owned/developed by the app developers themselves (e.g., the APIs
of the Android platform or REST APIs).

Example commit. "Upgrade to broken-out Google
Play Services v8.4.0" - zulip/zulip-android (commit:

ae2992f67dfec003e11cd1073b6e1f71849fd235)

H.1 - Library: Activities related to usedAndroid libraries. Commit

messages in this category are mostly about library substitution

and usage of a new library.

H.2 - Android API: Activities related to the interaction of the app

with the Android platform APIs. Messages refer to code changes

for supporting new Android versions, retrofitting the code for

supporting older Android versions, and fallbacks for fixing bugs

manifesting only when the app is running on one specific version

of the Android platform.

H.3 - REST API: Activities related to the interaction with REST

APIs. Commit messages in this category regard changing URLs

and ports of REST endpoints, adapting to new formats of the

payloads of HTTP responses produced by REST endpoints, and

management of authentication as well as sessions.

H.4 - Deprecation: Activities regarding reaction to deprecation,

e.g., by moving to supported versions. Commit messages are

about removing or changing calls to deprecated code.

I. Testing&Debugging. This category covers the activities related

to logging information about the app at run-time, testing (e.g., test
cases implementation, tests execution), and debugging.

Example commit. "test: ensure tests for retrieval of all persons in
local database and repository passes" - chikecodes/Debt-Manager

(commit: a4bc070540c2b2726f42a78d0afa86d13d6c333f)

I.1 - Testing: Activities related to testing. Commit messages in

this category are about adding, fixing, or updating test cases, and

ensuring that all tests are passing.

I.2 - Logging: Activities related to logging information at run-

time and to reporting crashes. Commit messages in this cate-

gory mention removing logging messages before publishing the

app, adding logging statements for inspecting app behaviour at

development time, logging errors in the IDE console, and inte-

grating third-party logging as well as crash reporting libraries

(e.g., Crashlytics,5 Timber
6
).

5
http://fabric.io/kits/android/crashlytics

6
http://github.com/JakeWharton/timber

I.3 - Debugging: Activities related to the debugging of the app.

Commit messages refer to finding not-yet-localized bugs, manu-

ally checking test results, and raising the need for debugging a

specific feature.

Discarded commits. During our manual analysis, we identified

115 commits with non-informative commit messages, which we

discarded when building the taxonomy. There are three types of

discarded commits: (i) 105 commits without any informative com-

mit message (e.g., just one single character, three dots, one generic
word), (ii) 9 commits with funny but non-informative commit mes-

sage, and (iii) 1 commit reporting about an easter egg in the app.

This low number of discarded commits (i.e., 2% over the total) gives

more credibility to the completeness of the proposed taxonomy.

Result 1: Our taxonomy comprises 9 top layer and 49 subcat-

egories reporting a large variety of developers’ self-reported

activities.

3.2 RQ2. Frequency of self-reported activities

After having categorized and described the diversity of activities

that Android app developers report to do while developing their

apps, we now focus on determining how each of these activities is

prevalent in our dataset.

Figure 3 shows the distribution of the commit messages across

the categories of self-reported development activities. Each block

in the figure reports the cumulative value for its corresponding

top level category (e.g., 1,690 commits are in the category A - App
enhancement) and the absolute value for its subcategories (e.g., of
the 1,690 commits belonging to category A, 623 belong to the A.1 -
New feature category and 581 to the A.2 - Feature changes category).

App enhancement is the most frequent among the high-level

self-reported activities. This result can be explained by the highly

dynamic ecosystem like the Google Play store, where developers

are involved in very rapid release cycles [33], which are mainly

driven by user ratings and reviews [18, 32, 43, 55]. In fact, the two

most frequent subcategories are the development of new features

(New feature) and their improvement (Feature changes). Other quite
recurring types of app enhancement include the improvement of

usability and internationalization of the apps. Specially the latter

is a likely consequence of the global nature of the Google Play

store, which imposes to take the language spoken by the app users

in consideration.

Bug fixing is the second most frequent category of self-reported

activities of Android developers. We conjecture that this high fre-

quency is linked to how the app quality can have a dramatic impact

on the success of an Android app [41], thus forcing developers to

pay special attention to continuously correct bugs [26, 33]. Also,

this frequency may be explained by Android bug reports being

of high quality [6], thus easing the bug fixing process, mainly via

long textual descriptions of the bug, the steps to reproduce the bug,

and explanations of the difference between expected and the actual

outputs. In the majority of the cases, fixed bugs are about aspects

specific to the app domain (e.g., fixing the value shown in a specific

card), whereas in other cases they are related to well-known key

dimensions of the quality of a mobile app, such as performance [47],
security [36], presence of crashes [16], and energy efficiency [12].

http://fabric.io/kits/android/crashlytics
http://github.com/JakeWharton/timber
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Figure 3: Frequencies of self-reported activities.

Project management aspects of the app covers almost a fifth

of all self-reported activities. In those cases, developers are mostly

referring to GitHub-related activities (e.g., merging a branch) or

about a new releases of the app (e.g., changing the app version

number, changing app-store-related metadata). Developers also use

GitHub for leaving todo items for keeping note of what should be

done/fixed in future iterations. Interestingly, documentation seems

to be not really a prominent activity of Android developers (only

56 activities reported in our study). This result may be due to the

fact that developers do not use GitHub for storing and managing

the documentation of their apps, maybe in favour of more flexible,

easy-to-use, and designer-friendly document sharing platforms.

Code re-organization activities are reported in 560 cases (11%

on the total) by developers, with a strong predominance of refac-
toring and code cleanup. Those activities seem to be regarded as

important by developers, despite the noticeable lack of refactoring

approaches working in the context of Android applications [35].

This may also be a result of the need for quick release cycles for

Android apps, where it may be the case that maintainability-related

activities like code refactoring and cleanup might overlap with

more functional evolutions of the app [39]. Other less-recurrent

activities are feature removal, app size reduction, and dead code

elimination. All of them aim at making the app more lightweight

both at run-time and during the initial download of the app binary

(i.e., the APK file) from the Google Play store.

User experience improvement activities are almost as preva-

lent as code re-organization and this is aligned with previous re-

search findings. In fact, past research has provided evidence that

Android developers are aware of the importance of the user expe-

rience they are providing with their apps and are putting a huge

emphasis on it [22]. In this area, according to our study, developers

activities are mostly dedicated to the GUI of the app (e.g., layout,
animations, views), followed by a proper formatting and phrasing

of textual feedback shown to the user (i.e., strings), and the proper

management of images (e.g., images size, asynchronous loading).

Other less recurrent activities are about users gestures, the the

device orientation, dialogs and toasts, and (navigation) menus. The

difference of the frequencies of the above described activities may

be due to the fact that the GUI, strings, and images are in the vast

majority of Android apps and can strongly vary across apps and

projects. Differently, (i) gestures, dialogs and menus are quite stan-

dard today, both from a design and Android APIs perspectives, and

(ii) the explicit management of device orientation is not widespread.

Developers store andmanage their data locally in the app,mainly

for keeping app’s functionalities reliable and responsive even when

the mobile device does not have a reliable connection [28]. Android

settings and access to local databases (e.g., SQLite) are the most

recurrent subcategories, followed by access to the file system. This

result is quite surprising since the Android settings system is based

on a single class, Preference, that provides a relatively basic API

to developers. Intuitively, Android developers can store settings as

key-value pairs, where (i) the value of each setting can be only a

primitive type (e.g., boolean, integer, string) and (ii) the graphical

representation of each setting is managed by the Android platform.

It will be interesting to (empirically) assess how Android developers

interact with the Android settings system and why such a relatively

high number of settings-related activities are performed.

Sensing & communication activities are reported in 148 cases.

Among them, developers mostly interact with the network (e.g.,

by making HTTP requests, managing cached results, or managing

situations where the device does not have an Internet connection).

Other less common activities are related to multimedia features of
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mobile devices (e.g., audio recording, camera) and other sensors (e.g.,
GPS, accelerometer). Sending and receiving messages and making

phone calls are in the lower part of our ranking of activities, sug-

gesting that they are becoming less and less used by developers in

favour of their Internet-based alternatives (e.g., VoIP, push notifica-

tions, etc.). Surprisingly, the usage of the microphone is reported in

only 2 cases and this is in contrast with the current trend of voice-

operated apps, such as Amazon Alexa, Apple Siri, and various

Google products (e.g., Google Translate, Google Map).
7

API management activities are predominated by access to

third-party libraries and the interaction with official Android APIs.
This results is a confirmation that using third-party libraries is a

common practice for Android developers [24, 37]; moreover, it is

reasonable to find a non-negligible number of commit messages re-

ferring to the interaction with the Android API, since Android apps

are by their nature tightly integrated with the Android platform

(e.g., for managing activities’ lifecycle events, accessing sensors,

and showing views in the device display). The interaction with

REST APIs is less prominent as it is the management of deprecated
methods. The latter shows that app developers are little influenced

by deprecation, similarly to developers of other systems [53, 54].

Testing and debugging are the least reported activities (only

124). Among them, testing is leading with 58 activities, followed

by logging (43) and debugging (23). We suspect that those activi-

ties are so infrequent in our dataset, because developers may have

embedded them into other self-reported activities (that is, when a

developer implements a new feature, testing and debugging may

also be present, but are not referred to). Future studies can investi-

gate whether this is confirmed and it has an impact on developers’

perception of the importance of these tasks.

Result 2: Enhancement and bug fixing operations are the most

popular self-reported activities, followed by project manage-

ment and code re-organization ones. Interestingly, the least

reported activity is related to testing and debugging.

3.3 RQ3. Automated classification of activities

Our third research question seeks to understand to what extent

it is possible to use traditional machine learning approaches to

automatically classify commit messages into our taxonomy.

Table 1 reports the results achieved by the four different multi-

label classification approaches we experimented. The models re-

lying on SVM and Logistic Regression provide the best balance

between precision and recall (on average, the F-Measure is 68%).

This is possibly due to the use of Grid Search as technique for

setting the parameters of the classifiers: as shown by recent work

[10, 58], a proper configuration of these algorithms strongly im-

prove their performance. The other classifiers, i.e., Naive Bayes

and Random Forest, have a lower ability to correctly classify self-

reported activities. Their average F-Measure is 13 and 7 percentage

points lower than SVM, respectively. Thus, in our scenario, the

choice of the machine learning algorithm has an impact on the

classification performance.

7
http://info.localytics.com/blog/voice-activated-apps-are-changing- everything.-heres-

how

Considering the classification for the single categories, self-

reported activities related to Bug Fixing are better classified by

all the classifiers. A possible explanation is related to the char-
acteristics words used by developers when reporting this type of

activities. In fact, in the commit messages in our dataset, we often

found the use of specific words like ‘fix’ and ‘bug’, or references
to issue reports (e.g., ‘#19823’), which give a strong signal that the

classifiers are able to capture.

Similarly, the Project Management and Enhancement categories
are classified with a similar accuracy by SVM and Logistic Regres-

sion, possibly because of the specificity of the activities performed

by developers during these tasks.

Other categories have a higher variability, thus showing that

there is no set of words that can be easily used as features to discrim-

inate them. For instance, considering the cases of Storage, API Man-
agement, SVM is 14 and 26 percentage points more effective than

Logistic Regression, respectively. At the same time, in the classi-

fication of UI activities, Logistic Regression has an F-Measure 19

percentage points higher than SVM. This indicates that for some

particular categories the underlying classification algorithm makes

some difference and allows an improved categorization of self-

reported activities. As part of our future research agenda, we aim at

further investigating how the classifiers can be used as an ensemble

to improve the results [44] (e.g., by means of a dynamic switching

based on the characteristics of the commit messages [11]).

Finally, the investigated classifiers are not able to identify any

of the commit messages related to Sensing & Communication. We

further looked at the prediction results to investigate the reasons

behind this result: we found that the misclassification is mainly due

to the overlap between the terms used in Sensing & Communication
and Enhancement. In other words, discriminating the two categories

represents an arduous task for a machine learning algorithm since

it cannot properly learn the words characterizing the two types

of self-reported activities. This final result highlights a limitation

of our approach. The machine learning algorithm is based on the

implicit assumption that commit messages are representative of

the action performed by developers, because as humans we have

been able to classify them. However, a human analysis—as the one

conducted in RQ1—may often be able to correctly characterize

commits because of external factors that are often implicit (e.g.,
experience or information contextualization [17]); these external

implicit factors are not available to the machine learning approach,

hence it may fail in cases where the overlap between terms in two

categories is high [2, 42, 43, 46].

Result 3: While for categories like Bug Fixing and Project Man-
agement the classification performance is up to 80%, machine

learning approaches can classify developers’ self-reported activ-

ities with an average F-Measure of 68%. However, our analysis

revealed some possible points of improvement (e.g., exploiting
the complementarity among classifiers).

4 RELATEDWORK

Classifying commits by intent with machine learners has been a

popular research area [13, 27, 30, 34]. Robles et al. [50] conducted a
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Table 1: Performance of the Experimented Machine Learning Approaches when combined with OneVsRest

Category

SVM Logistic Regression Naive Bayes Random Forest

Precision Recall F-M Precision Recall F-M Precision Recall F-M Precision Recall F-M

Project Management 81% 76% 78% 80% 72% 76% 87% 64% 74% 85% 72% 78%

Storage 71% 50% 59% 50% 42% 45% 67% 25% 36% 86% 38% 52%

UI 41% 35% 38% 39% 54% 46% 42% 15% 22% 61% 20% 30%

Debug 58% 54% 56% 55% 61% 58% 71% 18% 29% 67% 7% 13%

Code Re-Organization 70% 69% 69% 68% 68% 68% 75% 47% 58% 79% 50% 61%

Bug Fixing 87% 74% 80% 87% 73% 79% 71% 47% 57% 87% 71% 78%

Enhancement 70% 66% 68% 66% 77% 71% 65% 52% 58% 72% 54% 62%

API Management 72% 74% 73% 44% 52% 48% 55% 19% 29% 33% 3% 6%

Sensing & Communication 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Average 71% 66% 68% 69% 68% 68% 69% 46% 55% 75% 55% 61%

preliminary investigation in that direction confirming the impor-

tance to consider in software projects all kind of files tracked by

versioning systems other than source files. These files may bring

evidence of the self-reported activities documenting technical and

human-related aspects. Later, Hattori et al. [19] conducted a study

aimed at enhancing the knowledge of the nature of commits in

terms of size and meaning. Similarly, Alali et al. [1] and Maalej

et al. [29] proposed two studies aimed at characterizing commit

messages by intents. Moreover, Hindle et al. [20] applied a ma-

chine learning technique to classify commits by considering only

metadata and commit messages without inspecting the source code.

Oppositely, Fu et al. [14] adopted Latent Dirichlet Allocation (LDA)

to classify change messages by semi-supervised topic semantic

analysis.

The analysis of self-reported activities represents one of the most

valid ways to comprehend and analyze the development process of

a software system [31]. Despite this, so far self-reported developers’

activities have been investigated only by targeting different type

of systems, e.g., generic open-source software [48], or by focusing

on specific aspect of Android apps, such as performance [9] and

energy consumption [4, 38].

Ray et al. [48] analyzed a large dataset from GitHub to under-

stand the effect of programming languages on software quality,

finding that language design has modest effect on software quality.

Das et al. [9] investigate to what extent developers take care

of performance issue analyzing commit messages. The analysis,

conducted on 2,443 open source Android apps, showed that most

of the commits that lead to performance issue are related to GUI,

code smell fixing, network related code, and memory management.

Moura et al. [38] conducted a study similar to ours on an initial

sample of 2,189 commits from the Github repository to analyze

energy-aware commits. Analyzing a final dataset of 371 commits

from 317 real world apps, they found that software developers

heavily rely on low-level energy management approaches, such as

frequency scaling and multiple levels of idleness. Moreover, energy

saving techniques can impact the application correctness. With

the same aim, Bao et al. [4] extended Moura et al. by analyzing

468 commits from 154 Android apps. They discovered six power

management activities for Android apps and discovered that power

management activities vary with respect to the Android store cate-

gory of the app. With respect to these works, we analyzed commits

related not only on performance issues and energy management.

5 CONCLUSIONS AND IMPLICATIONS

Our work aimed at understanding and classifying self-reported

activities of Android developers.

Our results showed that changes applied by developers are

mostly related to enhancement or bug fixing operations: These

categories are clearly the ones for which more automatic support

would be needed. A very few commits are instead related to the

management of APIs and testing, possibly highlighting the lack

of specific tools supporting developers during these operations.

Finally, a machine learning approach can correctly classify self-

reported activities with an average F-Measure of 68%.

Our findings have a number of implications for both Android

developers and researchers. Android developers can use our taxon-

omy of development activities for taking more informed decisions

when assigning code reviews to team members. For example, com-

mits related to the Rest API category may be assigned to those

members who are also involved in the development of the back-end

of the mobile app (who potentially are more knowledgeable of the

interaction between the app and its back-end). Also, categorized

commits can be used (i) for getting a clear idea about which activi-

ties are being performed by developers during the whole project

lifecycle, (ii) for identifying potential blocking activities where

developers are spending the majority of their working time, or

(iii) as decision support system when allocating resources to the

project. Finally, developers can use our classifier for automatically

categorizing code commits according to our taxonomy of activities.

We support researchers by increasing our empirical understand-

ing of the types of (self-reported) activities performed by Android

developers in real projects. This is a key step to guide future re-

search in the area. Specifically, the most recurrent activities may be

a good indicator for future research on Android apps development.

Moreover, both the taxonomy and our automatic classifier have the

potential to strengthen the reliability of other mining approaches

that use commit messages as input (e.g., [4, 8, 9, 38, 41]). It is our

hope that our results and the shared dataset will help and guide

future research on support the engineering of Android apps.
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