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Abstract
This paper is an analysis of the performance and
logic behind different query expansion models.
Query expansion and pseudo relevance feedback
are techniques for adding more terms to a query
based on the results of an initial query and the data
in the body of documents. Four different query ex-
pansion models that are provided in the pyterrier
python library and its extensions have been anal-
ysed, namely Bo1, KL, RM3, and Axiomatic query
expansion. It was found that Axiomatic query ex-
pansion often does not perform any query expan-
sion, and when it does, has no increase in per-
formance. Bo1 and KL, although different in ex-
act logic, have similar results most of the time.
The most significant difference is the execution
time, with Bo1 being faster with larger datasets and
KL being faster with many documents on smaller
datasets. Lastly, RM3 while not having a dominant
performance has a lot of potential for good results
with the right combination or parameters.

1 Introduction
Information retrieval, and more specifically ad-hoc retrieval
— the process of returning a list of relevant documents from
a collection, is a crucial part of the online experience. Search
engines rely on it, and any proper searching function makes
use of it. One of the main challenges of ad-hoc retrieval is
to find relevant documents even when the terms don’t match
exactly, like finding them through synonyms. To improve the
relevance of the results of search queries, methods like Query
Expansion (QE) and Pseudo Relevance Feedback (PRF) can
be used. These methods utilize techniques to add more terms
to the given query based on the data from the corpus as a
whole as well as the top document of an initial query with
a regular information retrieval model. QE and PRF are not
just one model but are abstract concepts, and there are many
different models, each with different ways of calculating the
weighs of the terms of a query. Presumably none of these
models is completely dominant over all the others when it
comes to complexity, speed, and mostly accuracy. In this pa-
per, different well known models will be compared to each
other on a variety of datasets and queries in order to get an
understanding of what these models struggle with and excel
at.

With a better understanding of what the different models do
well and don’t do well with, it could help with deciding which
model to use in a certain scenario. Knowing what makes a
model strong or weak in certain areas might also aid with
designing new implementations in the future, as this area is
still being developed.

One of the most commonly used models for information
retrieval is BM25, so this will also be used as a benchmark
to compare against. The main research question this paper
will therefore be answering is: “What gain in retrieval per-
formance do different QE and PRF methods achieve com-
pared to standard BM25 across different domains and re-

trieval tasks?”. To better answer that question, it can be sub-
divided into subquestions. The first of which is : “How well
do different QE and PRF methods handle ambiguous queries
compared to standard BM25?” and “What kind of queries do
the different QE and PRF methods struggle with the most?”.
And lastly, to measure performance outside just accuracy, the
question of “How do the different QE and PRF methods com-
pare in terms of execution time and resources?” will be an-
swered.

2 Methodology
Firstly, it needs to be decided which models will be used for
the comparisons. The library that will be used for the in-
formation retrieval is called pyterrier [12] and comes with
several already implemented query expansion models. The
tested models will therefore be Bo1, KL, RM3, and Ax-
iomatic. To get a good measure across various different
queries, the tests will be run on multiple datasets. These
datasets are included with pyterrier, but some extra datasets
from the ir datasets [11] will also be used. The golden stan-
dard for these types of datasets are the TREC datasets, but
other datasets will also be used.

To answer the first research question of finding an objective
way of measuring the performance of the different methods,
the ir-measures library [10] will be used. This library allows
for various different statistical measurements to be used and
is well integrated with pyterrier. These different performance
measures include the measures that will be needed for objec-
tive measuring.

To see how well ambiguous queries do as well as what the
different models excel at and struggle with, the best and worst
queries will be extracted to see if there is any observable pat-
tern between them.

In order to understand the later results, it is important to
understand the models first. All models use similar variables,
which mean the following things:

• tf(t, d) = The term frequency of term t in document d,
so the amount of occurrences of a specific word in the
document.

• os(d) = The original score of a document given by the
model that feeds into the current model.

• R = The (pseudo-)relevant documents.
• C = The entire collection of documents (the corpus).
• Q = The original query.

2.1 Bo1
The Bo1 model is the most effective variant of the Diver-
gence From Randomness (DFR) term weighting model [9]
[15]. This weighting model is based on Bose-Einstein prob-
ability [13]. Each candidate expansion term t gets a score,
which is measured with equation 1 as used in [13] rewritten
from the original [1, p. 165].

S(t) =

(∑
d∈R

tf(t, d)

)
· log2

(
1 + favg(t, C)

favg(t, C)

)
+ log2(1 + favg(t, C)) (1)
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where
favg(t, C) =

∑
d∈C

tf(t, d)/|C|

Here, the function favg(t, C) is used to calculate the aver-
age frequency of a term t in some collection of documents C.
The function S(t) can be broken down to be understood bet-
ter. The summation counts up the total amount of occurrences
of the term t in the pseudo-relevant documents. This summa-
tion then acts as a weight for the first logarithm based on how
common the term is in the pseudo-relevant documents. Do
notice that this weight is linear, unlike the rest of the formula,
which has logarithmic scales.

The first logarithm is not very intuitive at first sight, but
can be rewritten as log2(1+

1
favg(t,C) ), here, the 1+x is used

to avoid the behaviour of logarithms between 0 and 1 where
they would become negative which could lead to the entire
result of S(t) becoming negative. The fraction within the
logarithm leads to an inverse relationship between the average
frequency of a term and its weight. The less common a word
is, the larger this part of the weight becomes. This acts as a
counterbalance against the summation. A common word like
’the’ would see a large number coming from the summation,
but since this word would be very common across the entire
corpus this logarithm would then act as a counterbalance and
see that the term ’the’ is not a good term to expand with as it
is so common.

The last logarithm like the first logarithm uses the format
of 1 + x to get the desired logarithmic behaviour, but unlike
the first logarithm, the relationship and the term frequency
across the entire corpus is not inverted, giving a higher score
to common words. This is presumably done to improve the
effectiveness of adding a term to the query. If a term is found
once in one of the pseudo-relevant documents but nowhere
else, it would get a decently large weight from the summa-
tion and the first logarithm, but adding this term to the query
would not result in any extra relevant documents. This term
might be relevant to this query but if there are no other doc-
uments containing the term then it wouldn’t yield any better
accuracy and would take up a spot of feedback terms, which
are limited.

So Bo1 selects the least common terms from the total col-
lection with the largest amounts of occurrences in the pseudo
relevant documents, while trying to make sure that the terms
it does select appear enough in the total collection for it to be
worth expanding with.

This function S(t) is then used in equation 3, this score is
part of the equation of calculating the score for candidate ex-
pansion terms. This calculated score is used to merge the
original query with the candidate expansion terms. These
equations 2-4 are as mentioned in [13] are used to calculate
this score, but with equation 2 slightly modified to correspond
to the original in [1, p. 159].

scoreorig(t) =
tf(t, Q)

max
t′∈Q

tf(t′, Q)
(2)

scoreexp(t) =
S(t)

max
t′∈d∈R

S(t′)
(3)

score(t) = scoreorig(t) + scoreexp(t) (4)

Equation 2 is used to get the normalised weight of the term
in the query. Usually this would lead to either a value of 1
or 0 when there is no term that appears more than once in a
query. A 1 if the term appears in the query and 0 if it does not.
If there exists a term in the query that appears more than once
in the query, then this result becomes some fraction. This
scoreorig was presumably added to the score calculation to
ensure that the term from the original query would formally
still appear in the expanded query, although with a term that
appears more than once this effect could backfire.

Equation 3 similarly served to normalize the score to map
the scores to a score between 0 and 1. This is done by dividing
the scores of the candidate terms by the highest scoring term
in the pseudo-relevant documents.

Lastly, equation 4 then combines the scores of equations 2
and 3 to get the final score. This score can range from 0 to
2. Although for terms that do not appear in the original query
this score can only range from 0 to 1 because their scoreorig
will always be 0. This guarantees that the terms of the original
query will appear in the expanded query for queries where all
terms appear once. Queries with terms that appear more than
once will allow for the possibility of a term that appears in the
original query to have a lower score than a term that didn’t
appear in the original query.

This scoring system is also used in the KL query expansion
in section 2.2. When experimenting, it will be interesting to
see if the amount of times a term appears in the query has
any relation to the accuracy measures, as it would be the only
significant way a query can impact the scoreorig component
of the score.

2.2 KL
The KL model is a model based on the Kullback-Leibler di-
vergence approximation [1, p. 164]. This model is similar in
structure to the Bo1 model mentioned in section 2.1, it also
uses the equations 2-4, but it has a different definition for
S(t). Its definition of S(t) is calculated by equations 5-7, as
used in [13].

pr(t) =

∑
d∈R

tf(t, d)∑
d∈R

∑
t′∈d

tf(t′, d)
(5)

pc(t) =

∑
d∈C

tf(t, d)∑
d∈C

∑
t′∈d

tf(t′, d)
(6)

S(t) = pr(t) · log
pr(t)

pc(t)
(7)

Equations 5 and 6 are very similar in structure, the only dif-
ference between them being the collection of documents they
use. Equation 5 calculates the unigram probability distribu-
tion of the pseudo relevance documents, while 6 calculates it
for the entire collection of documents in the corpus. These
equations calculate the percentage of the amount of occur-
rences of the term t compared to the total amount of terms
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in the collection R or C depending on the equation. The fi-
nal step in equation 7 then calculates the Kullback-Leibler
divergence of the pr compared to pc. The Kullback-Leibler
calculates how different two distributions are from each other
[8].

To break this down, the equation mostly relies on its loga-
rithm. This logarithm compares the 2 percentages, if the term
t takes up a larger percentage in the pseudo-relevant docu-
ments than in the entire corpus, then the fraction is going to
be greater than 1. Likewise, when the term is less common
in the pseudo-relevant documents than in the rest of the cor-
pus, this fraction will be less than 1. The logarithm then maps
this fraction to have anything less than 1 become less than 0
and anything greater than 1 to be greater than 0 while also
putting it on a logarithmic scale. But because weights cannot
be negative in these weighting models, any result less than 0
gets clamped to 0. So any document where the term is less
common in the pseudo relevant documents than the rest of
the corpus always gets a weight of 0. After this logarithm is
applied the weights will be somewhat normalised, so then the
multiplication with pr serves as a weight for the term.

So the KL expansion model gives high weight to terms that
are a lot more common within the pseudo relevant documents,
and further boosts terms that appear more often in the pseudo
relevant documents compared to other terms in those same
documents.

2.3 RM3
RM3 is different from Bo1 and KL query expansion, because
it actually uses the scores from the model that feeds into it,
rather than just a set of the most relevant documents. This
can be seen in equation 8, as it uses the os(d) function, which
gets the score of a document assigned by the model that feeds
into this model. This equation is not the exact equations from
the original paper [5] but rather what is in the actual imple-
mentation of pyterrier PRF library [12].

S(t) =
1

|R|
∑
d∈R

tf(t, d)

|d|
· os(d) (8)

Equation 8 mostly relies on the original score, which gets
weighted by the percentage of the document that the current
term makes up. This weight is calculated for every document
in the pseudo-relevant documents and then averaged. So this
model gives the largest weights to the terms that come from
a high scoring document from the initial query, that also take
up a significant portion of that document.

Ideally, the set R would include the entire collection of doc-
uments, but that would be feasible due to computational lim-
its [5, p. 4]. This really highlights the difference between
this model and the ones mentioned before, which rely on set
R being the most relevant documents only. However, this
does mean that RM3 is highly dependent on the quality of
the scores of the model that feeds into it, and the difference in
even the distribution of the scores could impact its effective-
ness.

RM3 calculates its final score differently from the methods
before, it uses equation 9.

score(t) = α · scoreorig(t) + (1− α) · scoreexp(t) (9)

where
0 ≤ α ≤ 1

scoreorig(t) =
tf(t, Q)

|Q|

scoreexp(t) =
S(t)∑

d∈R

∑
t′∈d

S(t′)

Here, the constant α is a property of the RM3 model that
can be defined when first initialising the model. This con-
stant is then used to linearly interpolate between scoreorig
and scoreexp. With an alpha of 1, candidate terms only get
weighted by their term frequency in the original term, so no
query expansion will take place. With an alpha of 0, candi-
date terms fully rely on the S function, and thus the score
calculated by the model that feeds into the RM3 model.

2.4 Axiomatic
Axiomatic query expansion, like other query expansion mod-
els, receives a set of the most relevant documents from an
initial query. But unlike other models, the Axiomatic model
adds irrelevant documents to the set of pseudo-relevant doc-
ument. An Axiomatic model has a property R which is the
amount of non-relevant documents it analyses. The model’s
core functionality comes from the Mutual Information equa-
tion, see equation 12. This was possibly done to remedy
erroneous query expansion for common terms by adding
non-relevant document that likely also contain those com-
mon terms and thereby make them less correlated within the
pseudo-relevant set. The definition of S(t) for the Axiomatic
model is defined in equation 10. These equations are slightly
modified from the original [18] to be more consistent with the
rest of the equations.

S(t) =
∑
q∈Q

s(q, t)/|Q| (10)

where

s(q, t) =

{
idf(q) if t = q
idf(q) · β · MI(q,t)

MI(q,q) if t ̸= q
(11)

MI(q, t) =
∑

Xq,Xt∈{0,1}

p(Xq, Xt|R) · log p(Xq, Xt|R)

p(Xq|R)p(Xt|R)

(12)
This model uses a quite different set of equations compared
to the other models, including some new variables. The
idf of q, which is the inverse document frequency, so how
rare the term is within the corpus. β is some defined con-
stant in the model which indicates the ’trustworthiness’ of
the semantically-related term. Equation 12 calculates the se-
mantic distance between two terms using mutual information
(MI) within the pseudo-relevant documents. Within equation
12 Xq and Xt denotes the presence or absence of terms q and
t respectively with a 1 or a 0 [18, p. 371]. The function p
is used to calculate the probabilities of seeing either 2 terms
together or just a single term within a set of documents.

Equation 10 is used to simply calculate the average score s
of term t for every term q within the original query. Equation
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11 then, if t matches with the term q, simply takes inverse
document frequency. However, if the terms t and q do not
match exactly, the score can still be used by weighting the
inverse document frequency by its semantic distance. If the
terms have a low semantic distance, which is a high score
MI , the terms are most likely related, and adding it to the
query would potentially improve the accuracy. This semantic
distance is calculated between the current term and the term
in the query and is normalized against the query term against
itself, because that would be the maximum semantic distance
possible. But since the initial query results are not perfect and
there are almost always errors in the ranking of the pseudo-
relevant set, this semantic distance is weighted with β to try
to account for these inaccuracies.

Equation 12 is used to calculate the mutual information be-
tween two terms q and t. It does this by going through all
the combinations of Xq and Xt that are either 0 or 1. For
each combination, it calculates how related they are by di-
viding the probability of seeing the terms together within the
pseudo-relevant set of document by the probabilities of see-
ing the individual terms multiplied together. If the 2 terms
were completely uncorrelated, then the following would hold:
E[XqXt] = E[Xq] · E[Xt] [14]. Therefore, E[XqXt]

E[Xq ]·E[Xt]

would tend to 1, and the logarithm of that fraction would tend
to 0, so unrelated terms would get very low scores for their
MI. However, if they are related, their probabilities would
be correlated and E[XqXt] would be higher or lower than
E[Xq] ·E[Xt]. This deviation is then weighted by the chance
of the terms appearing together in the pseudo-relevant set,
because the higher that probability is, the more relevant the
value of the fraction is.

3 Experimental Setup and Results
3.1 Metrics
To measure the accuracy of a model, experiments have to be
run on it, in this case pyterrier provides a built-in solution for
these experiments. Each dataset that will be used also has a
set of topics, which are queries where the ’correct’ rankings
of documents have already been decided, which are stored
as so called qrels. Since the ’correct’ rankings are already
known, it is then only a matter of how to measure how close a
model’s results are to that ranking. There are many measures
provided in the ir measures library, and the following will be
used in this paper:

• nDCG is the Discounted Cumulative Gain [6]

• (M)AP is the (Mean) Average Precision, which like the
name implies gives the average precision score averaged
over all queries [3].

• (M)RR is the (Mean) Reciprocal Rank with values rang-
ing from 0 to 1, where 1 is a perfect result [7]. It is a
commonly used measure

Each metric is tested at different cut-offs, namely 10, 100,
and 1000. This entails that the metric is only calculated for
the top n documents. This can give a better idea of where a
model gains or loses the most accuracy. The lower cut-offs
show how well a model performs in getting the absolute most

relevant documents, while lower cut-offs show how well it
performs in the overall query result. These cut-offs values are
noted with an ’@’ symbol.

In order to get an idea of the execution time, the experi-
ments have been executed separately for each model, so the
time could be tracked. This execution time does however also
include the time it took to run the BM25 model twice for the
input and output of the query expansion model. To account
for this, there is also a corrected time column in the experi-
ment results, which is the time it took to run that model minus
two times the time it took to run the BM25 model on the same
dataset. This isn’t a perfect way to account for it because it
doesn’t take into consideration the overhead of running the
experiment. If the time it takes to run the query expansion
model is less than 2 times the overhead time of running the
experiment, this corrected time could be negative.

3.2 Datasets
There are many datasets included within the ir datasets li-
brary, however not every dataset has the right requirements
to be tested. The dataset needs to have a corpus or index as
well as topics and qrels. If a dataset has neither a corpus nor
an index, then it is significantly more difficult to use with the
pyterrier library, so for convenience’s sake the datasets were
not viable options. Otherwise, if a dataset does not have top-
ics or qrels then it is not possible to run experiments on these
datasets, as they require them to calculate the accuracy mea-
sures, as well as the library code not knowing what queries to
test. Considering these requirements, the following datasets
have been selected:

• MS MARCO-passage [2], which is described as “A pas-
sage ranking benchmark with a collection of 8.8 mil-
lion passages and question queries.”1. More specifically,
the “trec-dl-2019/judged”, “trec-dl-2020/judged”, and
“trec-dl-hard” datasets have been used. These are sub-
sets of TREC Deep Learning queries that were judged
by NIST assessors.

• Beir ArguAna [17; 16] or “beir/arguana”, “A version
of the ArguAna Counterargs dataset, for argument re-
trieval.”2.

• Antique [4], “ANTIQUE is a non-factoid question an-
swering dataset based on the questions and answers of
Yahoo!”3

• Deep TREC Learning Docs [2], another dataset from
MS MARCO. For this paper the training variant of this
dataset was used, this dataset is very large and is in this
case used as a stress test.

Because some of these datasets are very large and would
take an incredibly long time to run, the amount of topics that
are tested have been limited to the first 1000 topics. All the
datasets have been tested with the stated metrics, models, and
datasets. The RM3 does have an extra parameter, in pyterrier

1https://ir-datasets.com/msmarco-passage.html#
msmarco-passage/

2https://ir-datasets.com/beir.html#beir/arguana
3https://ir-datasets.com/antique.html#antique/test
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it’s called the lambda, but in the equations it’s stated as α.
After some trial and error, it was found that an α value of 0.8
seemed to achieve good results in different data sets.

Each query expansion pipeline is performed the same way,
which is BM25 >> QE model >> BM25. This means that
it first does a BM25 query, the results of that query will then
be fed into the query expansion model. The query expansion
model only takes the top document from that query, the exact
amount depends on the fb docs constant defined in the model.
The query expansion model then adds a number of terms to
the query with a specified weight. The amount of terms that
get added to the query is decided by the fb terms constant
defined in the model. Then, this new query is run with the
second BM25 model.

3.3 Results
The Axiomatic query expansion in all results except for the
ArguAna dataset has the exact same results as the BM25
model. Here the results are still extremely similar to the
baseline (±0.3) and the measures are still identical with each
other no matter what combination fb docs/fb terms it has. It
is also notable that the execution time is also negligible in all
datasets except for ArguAna, where it has a similar execu-
tion time to the other models. Even though this is the only
dataset where it seems to be working, it is still outperformed
by BM25.

The query expansion performed best on the “msmarco-
passage/trec-dl-2019/judged” dataset, in this dataset it gained
the most over the BM25 model, specifically in the @10 cut-
off. Especially the RM3 model performed well in the RR
metric, while Bo1 and KL both excelled at the nDCG and AP
scores. These results can be seen in table 1

The worst performing query expansion dataset is the “trec-
deep-learning-docs” dataset. Here the RM3 model only
slightly underperforms compared to BM25, but Bo1 and
KL both have significantly lower scores in all metrics and
only seems to get worse with more feedback documents and
scores. These results can be found in table 2.

Bo1 and RM3 are very close in execution time through the
entire experiment, KL is close in execution time on smaller
datasets with a small amount of feedback documents and
feedback terms but has a significantly faster execution time
on those same smaller datasets but with more feedback doc-
uments. On large datasets like “trec-deep-learning-docs” the
KL model is slower with 966 seconds compared to around
650-700 seconds for Bo1 and RM3 with 50 feedback docu-
ments and 50 feedback terms.

The full results of the entire experiment can be found in
appendix A.

4 Responsible Research
4.1 Reproducability
For ensuring reproducibility, this paper has described in detail
the datasets, models, and measures used to obtain all the re-
sults, allowing the verification and further development upon
these findings. The inner logic and motivation behind ev-
ery model has been explained in detail, informing future re-
searchers of their functionality and applicability. The code

Model RR@10 nDCG@10 AP@10

BM25 0.6397 0.4795 0.1083

fb docs = 3, fb terms = 10

Bo1 0.6245 0.5086 0.1210
KL 0.6152 0.5057 0.1197

RM3 0.6582 0.5072 0.1189
Axiomatic 0.6397 0.4795 0.1083

fb docs = 10, fb terms = 40

Bo1 0.5859 0.5031 0.1201
KL 0.6118 0.5039 0.1216

RM3 0.6488 0.4853 0.1073
Axiomatic 0.6397 0.4795 0.1083

fb docs = 50, fb terms = 50

Bo1 0.6720 0.5120 0.1239
KL 0.6789 0.5048 0.1218

RM3 0.6605 0.4975 0.1150
Axiomatic 0.6397 0.4795 0.1083

Table 1: Experiment results for dataset “msmarco-passage/trec-dl-
2019/judged”

written to produce the results has also been uploaded to an
online private repository, where the exact results in this paper
can be reproduced.

4.2 Plagiarism
All the used papers and origins of the models, datasets, and
measures that have helped with obtaining relevant results
have been properly attributed, as well as papers that aided
in notation or understanding of the models. Information and
ideas derived from other works have been paraphrased appro-
priately and cited accordingly to give credit to the original
authors.

5 Discussion
From all the results, the most curious seems to be the Ax-
iomatic query expansion model. Its scores are identical to
the baseline model BM25 in all experiments except for the
ArguAna dataset. Even if the model performed a minimal
amount of query expansion, it would have some difference is
metrics and from further manual testing it was confirmed that
in most cases the model does not perform any query expan-
sion. This is also in line with the execution times, where in
almost all cases the execution times are negligible. Looking
through the source code of this library, nothing seems too off.
The only thing of note is that the code that is equivalent to
the function s(q, t) from equation 11 is missing the normal-
isation score of MI(q, q). It could also have to do with the
mutual information function itself. It looks for any correla-
tion between the query and the term, no matter if it’s negative
correlation. However, a term with a negative correlation to
the query term does not seem like the kind of term that would
be semantically relevant in a search query. The results of the
Axiomatic query expansion should likely be disregarded.
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Model RR@10 nDCG@10 AP@10

BM25 0.2271 0.2868 0.2285

fb docs = 3, fb terms = 10

Bo1 0.2043 0.2643 0.2069
KL 0.2034 0.2628 0.2053

RM3 0.2041 0.2643 0.2057
Axiomatic 0.2271 0.2868 0.2285

fb docs = 10, fb terms = 40

Bo1 0.1664 0.2217 0.1678
KL 0.1663 0.2234 0.1677

RM3 0.2129 0.2714 0.2148
Axiomatic 0.2271 0.2868 0.2285

fb docs = 50, fb terms = 50

Bo1 0.1312 0.1723 0.1326
KL 0.1429 0.1870 0.1444

RM3 0.2088 0.2643 0.2101
Axiomatic 0.2271 0.2868 0.2285

Table 2: Experiment results for the “train” variant of the dataset
“trec-deep-learning-docs”

The RM3 model like was stated in [5] performs better with
a larger amount of feedback documents, but it doesn’t always
necessarily perform better with the most amount of feed-
back documents. In “msmarco-passage/trec-dl-2019/judged”
and “msmarco-passage/trec-dl-2020/judged” it performs very
well with the least amount of document, but besides those
datasets it seems to perform best somewhere between the 10
and 50 documents. RM3 is highly reliant on the actual score
that are fed into it, in these experiments it was only tested with
BM25 as input model. It could be that different input models
could lead to better performance, a more exhaustive exper-
iment would have to be run with multiple input and maybe
output models, and then also with multiple lambda/α con-
stants.

The Bo1 and KL model seem to perform very similarly in
almost all cases. This seems to align with the similarity in
logic that is behind them. There doesn’t seem to be much
of a rhyme or reason behind which model performs better
in certain situations. The difference in execution time that
was observed on large models could be due to the amount of
dependence the different models have on the pseudo-relevant
set. Bo1 only requires the term frequency of the term in the
document, an amount that is score in the index. However,
the KL model has to recalculate the percentage of the term in
the pseudo-relevant set of documents every time, which is not
stored directly in the index.

6 Conclusions and Future Work
In conclusion, in a lot of cases query expansion models don’t
add much accuracy to search results and often even perform
worse. Both the Bo1 and KL models work decently and have
a chance to improve the accuracy of query results. In respects
to execution time, KL is quite a bit faster than Bo1 is smaller
datasets with a larger number of feedback documents, but KL

is significantly slower with large datasets. RM3 is not neces-
sarily the best or the fastest, but it has many parameters that
can be tweaked, like its lambda/α constant, the model that
feeds into it, the amount of documents it analyses, and the
amount of terms it adds. This balance of parameters can be
very difficult to solve, and there is not just one answer that
works for every dataset. Axiomatic query expansion in its
current form seems to have some issues in the library imple-
mentation of pyterrier.

6.1 Future Work
For future work, the performance of Axiomatic query expan-
sion can be analysed with a better version of the code and
could be tried with a mutual information equation that doesn’t
reward negative correlation. RM3 could be tested with many
more configurations to extract the most potential. All mod-
els could be tested more using different models for the initial
query, adding a whole new dimension to fitting a search en-
gine to a specific dataset.
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A Full Experiment Results

A.1 MS MARCO passage

Metrics RR(rel=2) nDCG AP(rel=2) Corrected

@10 @100 @1000 @10 @100 @1000 @10 @100 1000 Time Time

BM25 0.6397 0.6402 0.6402 0.4795 0.4874 0.5934 0.1083 0.2322 0.2864 2.1775 -

fb docs = 3, fb terms = 10

Bo1 0.6245 0.6267 0.6267 0.5086 0.5001 0.6109 0.1210 0.2488 0.3085 5.3382 0.9831
KL 0.6152 0.6176 0.6176 0.5057 0.4984 0.6082 0.1197 0.2472 0.3066 5.2921 0.9370

RM3 0.6582 0.6588 0.6588 0.5072 0.5065 0.6103 0.1189 0.2492 0.3069 5.2456 0.8905
Axiomatic 0.6397 0.6402 0.6402 0.4795 0.4874 0.5934 0.1083 0.2322 0.2864 3.4263 -0.9288

fb docs = 10, fb terms = 40

Bo1 0.5859 0.5907 0.5907 0.5031 0.5160 0.6251 0.1201 0.2587 0.3199 18.3040 14.9763
KL 0.6118 0.6162 0.6162 0.5039 0.5136 0.6221 0.1216 0.2576 0.3180 17.3504 14.0227

RM3 0.6488 0.6494 0.6494 0.4853 0.4999 0.6041 0.1073 0.2400 0.2973 15.4450 12.1173
Axiomatic 0.6397 0.6402 0.6402 0.4795 0.4874 0.5934 0.1083 0.2322 0.2864 3.3676 0.0400

fb docs = 50, fb terms = 50

Bo1 0.6720 0.6753 0.6753 0.5120 0.5111 0.6273 0.1239 0.2555 0.3190 16.3530 13.0163
KL 0.6789 0.6824 0.6824 0.5048 0.5072 0.6223 0.1218 0.2519 0.3148 13.2181 9.8814

RM3 0.6605 0.6631 0.6631 0.4975 0.5030 0.6082 0.1150 0.2432 0.3007 21.0050 17.6682
Axiomatic 0.6397 0.6402 0.6402 0.4795 0.4874 0.5934 0.1083 0.2322 0.2864 3.3477 0.0110

Table 3: Experiment results for the dataset “msmarco-passage/trec-dl-2019/judged”

Metrics RR(rel=2) nDCG AP(rel=2) Corrected

@10 @100 @1000 @10 @100 @1000 @10 @100 1000 Time Time

BM25 0.6147 0.6183 0.6184 0.4936 0.5026 0.5981 0.1827 0.2753 0.2930 2.1133 -

fb docs = 3, fb terms = 10

Bo1 0.6133 0.6197 0.6197 0.4947 0.5325 0.6311 0.1837 0.2928 0.3141 6.6708 2.4443
KL 0.6140 0.6203 0.6203 0.4927 0.5320 0.6301 0.1817 0.2910 0.3124 6.6096 2.3830

RM3 0.6044 0.6091 0.6091 0.5005 0.5241 0.6217 0.1897 0.2901 0.3099 6.6984 2.4718
Axiomatic 0.6147 0.6183 0.6184 0.4936 0.5026 0.5981 0.1827 0.2753 0.2930 4.6291 0.4025

fb docs = 10, fb terms = 40

Bo1 0.5724 0.5789 0.5789 0.4864 0.5299 0.6270 0.1769 0.2910 0.3117 23.5284 19.3824
KL 0.5699 0.5762 0.5762 0.4866 0.5237 0.6227 0.1760 0.2878 0.3087 22.5851 18.4390

RM3 0.6168 0.6212 0.6212 0.5004 0.5209 0.6185 0.1878 0.2865 0.3061 19.6396 15.4936
Axiomatic 0.6147 0.6183 0.6184 0.4936 0.5026 0.5981 0.1827 0.2753 0.2930 4.0406 -0.1054

fb docs = 50, fb terms = 50

Bo1 0.6223 0.6300 0.6302 0.4897 0.5208 0.6218 0.1713 0.2844 0.3041 19.3580 15.2179
KL 0.6250 0.6319 0.6321 0.4922 0.5172 0.6176 0.1741 0.2811 0.3006 15.0699 10.9298

RM3 0.6103 0.6161 0.6163 0.4951 0.5097 0.6092 0.1783 0.2765 0.2958 27.3637 23.2237
Axiomatic 0.6147 0.6183 0.6184 0.4936 0.5026 0.5981 0.1827 0.2753 0.2930 4.0379 -0.1021

Table 4: Experiment results for the dataset “msmarco-passage/trec-dl-2020/judged”
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Metrics RR(rel=2) nDCG AP(rel=2) Corrected

@10 @100 @1000 @10 @100 @1000 @10 @100 1000 Time Time

BM25 0.4151 0.4216 0.4221 0.2743 0.3098 0.3905 0.0944 0.1358 0.1471 2.8805 -

fb docs = 3, fb terms = 10

Bo1 0.3987 0.4082 0.4087 0.2666 0.3114 0.3992 0.1028 0.1461 0.1586 7.3460 1.5850
KL 0.3927 0.4022 0.4027 0.2641 0.3101 0.3966 0.1007 0.1444 0.1569 7.1923 1.4313

RM3 0.4063 0.4128 0.4133 0.2720 0.3127 0.3983 0.0998 0.1415 0.1538 7.3763 1.6152
Axiomatic 0.4151 0.4216 0.4221 0.2743 0.3098 0.3905 0.0944 0.1358 0.1471 5.0742 -0.6869

fb docs = 10, fb terms = 40

Bo1 0.3903 0.3969 0.3972 0.2725 0.3218 0.4058 0.1061 0.1503 0.1631 22.8186 17.7488
KL 0.3870 0.3955 0.3958 0.2636 0.3156 0.3990 0.1000 0.1439 0.1565 22.0163 16.9464

RM3 0.4287 0.4360 0.4365 0.2745 0.3185 0.4019 0.0996 0.1425 0.1547 19.3910 14.3212
Axiomatic 0.4151 0.4216 0.4221 0.2743 0.3098 0.3905 0.0944 0.1358 0.1471 4.7172 -0.3527

fb docs = 50, fb terms = 50

Bo1 0.4010 0.4108 0.4111 0.2634 0.3067 0.3990 0.0930 0.1346 0.1482 20.1438 15.4198
KL 0.4012 0.4127 0.4130 0.2577 0.3056 0.3979 0.0935 0.1343 0.1480 16.0436 11.3197

RM3 0.4132 0.4221 0.4225 0.2649 0.3077 0.3933 0.0924 0.1347 0.1466 27.1663 22.4423
Axiomatic 0.4151 0.4216 0.4221 0.2743 0.3098 0.3905 0.0944 0.1358 0.1471 4.7169 -0.0070

Table 5: Experiment results for the dataset “msmarco-passage/trec-dl-hard”

A.2 Arguana

Metrics RR(rel=1) nDCG AP(rel=1) Corrected

@10 @100 @1000 @10 @100 @1000 @10 @100 1000 Time Time

BM25 0.1766 0.1836 0.1837 0.2603 0.2902 0.2924 0.1759 0.1829 0.1829 20.2789 -

fb docs = 3, fb terms = 10

Bo1 0.1708 0.1793 0.1794 0.2510 0.2862 0.2885 0.1701 0.1786 0.1787 70.1550 29.5972
KL 0.1703 0.1790 0.1791 0.2499 0.2862 0.2884 0.1696 0.1783 0.1784 69.9291 29.3712

RM3 0.1664 0.1752 0.1753 0.2438 0.2814 0.2839 0.1658 0.1745 0.1747 69.4420 28.8841
Axiomatic 0.1764 0.1834 0.1835 0.2602 0.2900 0.2922 0.1757 0.1826 0.1827 69.7353 29.1775

fb docs = 10, fb terms = 40

Bo1 0.1506 0.1592 0.1593 0.2330 0.2698 0.2715 0.1499 0.1585 0.1586 73.7515 34.4521
KL 0.1546 0.1633 0.1634 0.2366 0.2729 0.2751 0.1539 0.1626 0.1627 72.5635 33.2641

RM3 0.1648 0.1731 0.1732 0.2459 0.2810 0.2831 0.1641 0.1723 0.1724 71.7110 32.4116
Axiomatic 0.1764 0.1834 0.1835 0.2602 0.2900 0.2922 0.1757 0.1826 0.1827 69.5169 30.2176

fb docs = 50, fb terms = 50

Bo1 0.1426 0.1527 0.1528 0.2181 0.2624 0.2646 0.1420 0.1521 0.1522 74.5036 35.1375
KL 0.1520 0.1621 0.1621 0.2287 0.2710 0.2732 0.1515 0.1614 0.1615 75.1204 35.7543

RM3 0.1542 0.1640 0.1641 0.2305 0.2725 0.2745 0.1535 0.1633 0.1634 78.3234 38.9573
Axiomatic 0.1764 0.1834 0.1835 0.2602 0.2900 0.2922 0.1757 0.1826 0.1827 71.9999 32.6338

Table 6: Experiment results for the dataset “beir/arguana”
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A.3 Antique

Metrics RR(rel=3) nDCG AP(rel=3) Corrected

@10 @100 @1000 @10 @100 @1000 @10 @100 1000 Time Time

BM25 0.5086 0.5142 0.5143 0.5104 0.5559 0.6068 0.1242 0.1924 0.1976 3.4733 -

fb docs = 3, fb terms = 10

Bo1 0.4830 0.4900 0.4901 0.5034 0.5484 0.6029 0.1214 0.1902 0.1956 8.1113 1.1646
KL 0.4838 0.4907 0.4908 0.5012 0.5460 0.6014 0.1209 0.1891 0.1945 8.0029 1.0563

RM3 0.4540 0.4609 0.4609 0.4993 0.5490 0.6019 0.1152 0.1860 0.1912 8.0551 1.1085
Axiomatic 0.5086 0.5142 0.5143 0.5104 0.5559 0.6068 0.1242 0.1924 0.1976 7.7308 0.7842

fb docs = 10, fb terms = 40

Bo1 0.5082 0.5158 0.5159 0.5050 0.5514 0.6067 0.1230 0.1931 0.1984 12.2745 5.3358
KL 0.5033 0.5108 0.5109 0.5013 0.5482 0.6042 0.1213 0.1906 0.1960 11.4169 4.4782

RM3 0.4848 0.4916 0.4917 0.5012 0.5539 0.6056 0.1175 0.1884 0.1935 10.7715 3.8327
Axiomatic 0.5086 0.5142 0.5143 0.5104 0.5559 0.6068 0.1242 0.1924 0.1976 7.2732 0.3345

fb docs = 50, fb terms = 50

Bo1 0.5029 0.5110 0.5111 0.4967 0.5429 0.6037 0.1211 0.1908 0.1965 13.0175 6.4048
KL 0.4880 0.4962 0.4963 0.4945 0.5381 0.5996 0.1175 0.1852 0.1908 11.4017 4.7890

RM3 0.5024 0.5084 0.5084 0.5020 0.5499 0.6044 0.1197 0.1889 0.1941 12.8409 6.2282
Axiomatic 0.5086 0.5142 0.5143 0.5104 0.5559 0.6068 0.1242 0.1924 0.1976 7.4684 0.8557

Table 7: Experiment results for the dataset “antique/test”

A.4 TREC Deep Learning

Metrics RR(rel=1) nDCG AP(rel=1) Corrected

@10 @100 @1000 @10 @100 @1000 @10 @100 1000 Time Time

BM25 0.2271 0.2387 0.2394 0.2868 0.3479 0.3670 0.2285 0.2402 0.2409 87.2624 -

fb docs = 3, fb terms = 10

Bo1 0.2043 0.2175 0.2183 0.2643 0.3303 0.3510 0.2069 0.2199 0.2207 303.7460 129.2211
KL 0.2034 0.2161 0.2168 0.2628 0.3286 0.3493 0.2053 0.2181 0.2189 360.2182 185.6934

RM3 0.2041 0.2174 0.2181 0.2643 0.3318 0.3513 0.2057 0.2190 0.2197 300.8879 126.3631
Axiomatic 0.2271 0.2387 0.2394 0.2868 0.3479 0.3670 0.2285 0.2402 0.2409 224.2310 49.7061

fb docs = 10, fb terms = 40

Bo1 0.1664 0.1811 0.1819 0.2217 0.2964 0.3171 0.1678 0.1825 0.1833 717.8090 551.0606
KL 0.1663 0.1804 0.1812 0.2234 0.2966 0.3165 0.1677 0.1818 0.1825 987.8933 821.1448

RM3 0.2129 0.2264 0.2271 0.2714 0.3400 0.3589 0.2148 0.2283 0.2290 667.9981 501.2497
Axiomatic 0.2271 0.2387 0.2394 0.2868 0.3479 0.3670 0.2285 0.2402 0.2409 219.2020 52.4536

fb docs = 50, fb terms = 50

Bo1 0.1312 0.1480 0.1489 0.1723 0.2586 0.2842 0.1326 0.1494 0.1503 813.8171 646.2700
KL 0.1429 0.1588 0.1597 0.1870 0.2690 0.2942 0.1444 0.1604 0.1613 1134.0844 966.5372

RM3 0.2088 0.2224 0.2230 0.2643 0.3347 0.3539 0.2101 0.2237 0.2244 867.2030 699.6559
Axiomatic 0.2271 0.2387 0.2394 0.2868 0.3479 0.3670 0.2285 0.2402 0.2409 218.6392 51.0920

Table 8: Experiment results for the dataset “trec-deep-learning-docs”
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