
REINFORCED HYBRID
CONCRETE BEAMS
WITH A U-SHAPED

SHCC MOULD 
 

DEVELOPING THE SYSTEM
AND EXTENDING THE

MULTI-LAYER MODEL TO
PREDICT ITS BENDING

BEHAVIOUR

Ammar Yassiri

MSc thesis



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
MASTER THESIS 

REINFORCED HYBRID CONCRETE BEAMS 
WITH A U-SHAPED SHCC MOULD 

Developing the system and extending the multi-
layer model to predict its bending behaviour  

by 
Ammar Yassiri 

To obtain the degree of Master of Science 
in Structural Engineering 

at the Delft University of Technology 
 

To be defended publicly 
on the 31st of August, 2020 at 09:00 

 
 
Student number: 
 

4437675  

Project duration: 
 

November 2019 – August 2020
  

 

Thesis committee: 
 

Dr. M. Luković  
(chair + daily supervisor)  
 

TU Delft – Concrete Structures 
 

 Dr. M. Pavlović TU Delft – Steel and Composite  
Structures 
 

 Dr. B. Šavija TU Delft – Materials and  
Environment 
 

 ir. S.A. Sligman Van der Vorm Engineering 





MSc thesis: Ammar Yassiri  I 

Acknowledgements 
Pelé once said: “Success is no accident. It is hard work, perseverance, learning, studying, sacri-
fice and most of all, love of what you are doing or learning to do”. I couldn’t say it any better. 
Hard work really pays off. And to stay in the world of football (Pelé was a great football 
player), that is what made me a big fan of Cristiano Ronaldo. He really inspired me to always 
work hard, whether it is in sport or study. Although our achievements cannot be compared in 
any way, I can definitely say that like him, I also achieved something great.  

I would like to thank many people for this great achievement. Without you all, it would 
only be ‘an’ achievement, not a great one. First of all, I want to thank my daily supervisor, 
Mladena. The best thing I can say about Mladena is that, if I could turn back time, I would 
not hesitate to ask Mladena again to be my supervisor. I honestly could fill this page thanking 
her. She was always ready (like really always; from Sundays to after midnight) to help me if I 
needed it. I never have seen anyone so passionate about his/her job.  
 Next, I want to thank my three other committee members. First of all, Marko, who was 
the first person that inspired me about fibre reinforced structures during his lectures, and ulti-
mately leading to me investigating hybrid structures. Secondly, Branko, who I sincerely want 
to thank for how interested he always was in my subject and explanations. Although we did 
not have many interactions, it always felt good speaking to you. Finally, Sjors, who is the di-
rector of the engineering firm where my first structural engineering job will be. He was a very 
valuable addition to the committee as he always challenged me with practical questions about 
my theoretical model. See you soon in the company!  
 I also want to thank everyone that contributed to making me succeed in my research. 
Ajlal, my new friend, thank you for helping me in the lab (physically and mentally) and your 
AutoCAD skills! Dawei, thank you for the discussions we had about how to calculate deflec-
tions and comparing our codes! Ton and Maiko, you are really the best what can happen in the 
lab! Really the funniest people (in a very positive way of course) of the TU Delft. Shozab, 
thank you for providing me feedback on my report; I hope that the results will also be useful 
for your research. I also want to thank Nikhil, who provided essential data to use for the drying 
shrinkage calculations that I used in the report. We have never met, but thank you! 
 Finally, I want to thank my family, especially my mother, father and my sister (who 
soon will also go through the process of studying at university; so okhti: be ready!). My mother 
once started studying Civil Engineering, but she couldn’t finish it due to circumstances that 
were not in her control. So: “mama, this is for you!”. I really hope my parents are proud of me, 
after raising and supporting me from 1997 until this moment.   
 
 

Ammar Yassiri 
Maassluis, August 2020 



II   

Content 
 

Acknowledgements ....................................................................................................................... I 

List of abbreviations/symbols .................................................................................................... V 

Abstract .................................................................................................................................... VI 

1. Introduction ......................................................................................................................... 1 

1.1. Background information ............................................................................................... 1 

1.2. Research question(s) ..................................................................................................... 7 

1.3. Problem statement ....................................................................................................... 8 

1.4. Research outline ........................................................................................................... 8 

2. U-shaped SHCC mould ........................................................................................................ 9 

2.1. Inspiration .................................................................................................................... 9 

2.2. Advantages .................................................................................................................. 10 

2.3. Production ................................................................................................................... 11 

2.4. Experimental setup ...................................................................................................... 16 

3. Multi-layer model ............................................................................................................... 20 

3.1. Principles and goal ...................................................................................................... 20 

3.1.1. Bending moment resistance .................................................................................. 22 

3.1.1.1 Linear elastic stage ........................................................................................... 24 

3.1.1.2 Non-linear stage ................................................................................................ 24 

3.1.1.3 Effects of hybrid section ................................................................................... 32 

3.2. Possibilities and limitations ......................................................................................... 34 

3.3. Input parameters ......................................................................................................... 35 

3.4. Output ......................................................................................................................... 37 

3.4.1. Applied force ........................................................................................................ 37 

3.4.2. Deflection ............................................................................................................. 38 

3.4.2.1 Method 1: constant curvature .......................................................................... 38 

3.4.2.2 Method 2: momentvlakstellingen ...................................................................... 40 

3.4.2.3 Method 3: forget-me-nots ................................................................................. 46 

3.4.2.4 Comparison of methods .................................................................................... 49 



MSc thesis: Ammar Yassiri  III 

3.4.3. Crack width ......................................................................................................... 49 

3.4.4. Crack opening displacement ................................................................................. 51 

3.4.5. Drying shrinkage .................................................................................................. 52 

3.4.5.1 Background information ................................................................................... 53 

3.4.5.2 Applicability for hybrid beams ......................................................................... 58 

3.4.6. Flexural stress ...................................................................................................... 59 

3.4.7. Longitudinal shear................................................................................................ 60 

4. Verification of multi-layer model ........................................................................................ 64 

4.1. Phase 1: non-hybrid section ......................................................................................... 64 

4.1.1. HSFRC ................................................................................................................. 64 

4.1.2. SHCC ................................................................................................................... 69 

4.2. Phase 2: reinforced non-hybrid section ........................................................................ 73 

4.3. Phase 3: reinforced hybrid section ............................................................................... 80 

4.4. Phase 4: reinforced hybrid section with a U-shaped mould ......................................... 86 

4.5. Drying shrinkage ......................................................................................................... 90 

4.5.1. Calculation of eigen-strains .................................................................................. 90 

4.5.2. Effect of drying time on flexural strength ............................................................ 91 

4.5.2.1 Normal Strength Concrete ................................................................................ 93 

4.5.2.2 High Strength Concrete .................................................................................... 96 

5. Discussion ........................................................................................................................... 99 

5.1. Comparison between MLM’s ....................................................................................... 99 

5.2. Structural contribution of webs in U-shape ............................................................... 102 

5.3. Stress-displacement verification ................................................................................. 103 

5.4. MLM limitations ....................................................................................................... 106 

5.4.1. Crack width ....................................................................................................... 106 

5.4.2. Perfect bond ....................................................................................................... 106 

5.4.3. Applicability ....................................................................................................... 106 

6. Conclusions ....................................................................................................................... 108 

7. Further research ............................................................................................................... 110 

7.1. Verification U-shaped mould ..................................................................................... 110 

7.2. Longitudinal shear resistance .................................................................................... 110 



IV   

7.3. Crack width ............................................................................................................... 111 

7.4. Drying shrinkage ....................................................................................................... 112 

Literature ................................................................................................................................. 113 

Appendix A: MLM script ......................................................................................................... 116 

Appendix B: MLM parameters ................................................................................................ 146 

Appendix C: MLM verification ................................................................................................ 163 

Appendix D: deflection ............................................................................................................. 183 

Appendix E: drying shrinkage .................................................................................................. 197 

Appendix F: U-shaped mould .................................................................................................. 205 

Appendix G: crack width ......................................................................................................... 216 

Appendix H: longitudinal shear................................................................................................ 220 

List of figures ........................................................................................................................... 222 

List of tables ............................................................................................................................ 231 

 

  



MSc thesis: Ammar Yassiri  V 

List of abbreviations/symbols 
 
ABBREVIATION EXPANSION 

c Concrete cover 

δ Deflection 

DIC Digital Image Correlation 

ε Strain 

FEM Finite Element Method 

ϕ Reinforcement bar diameter 

HSC High strength concrete 

HSFRC High strength fibre reinforced concrete 

κ Curvature 

L Span of the beam 

L1 Distance between the support and the force 

L2 Length of the constant bending moment region 

linf Influence length 

MLM Multi-layer model 

n.a. Neutral axis 

NSC Normal strength concrete 

RC Reinforced concrete 

SHCC Strain hardening cementitious composite 

SLS Serviceability limit state 

tbot Thickness of bottom layer 

ttop Thickness of top layer 

tweb Web thickness (U-shape) 

ULS Ultimate limit state 

w Crack opening displacement 

wmax Crack width 

# Number of layers 

Δh Neutral axis steps 



VI   

Abstract 
Hybrid concrete-SHCC beams are a new development in construction techniques. SHCC stands 
for Strain Hardening Cementitious Composite. In such beams, the tension zone could for 
example consist, next to the traditional reinforcement, of a material that shows strain hardening 
behaviour. That helps with controlling the crack width. In traditional (non-hybrid) beams, the 
steel reinforcement would have to control the crack width on its own. This means that there are 
situations that the steel reinforcement fulfills the strength requirements, but additional steel 
reinforcement is needed to limit the crack width. Therefore, a certain amount of steel 
reinforcement is needed for meeting the SLS (Serviceability Limit State) requirements, while it 
is not used for the ULS (Ultimate Limit State) requirements. The use of hybrid beams consisting 
of an SHCC layer applied in the tension zone in which the reinforcement is embedded, solves this 
problem. This was shown in previous MSc studies by Huang and Singh. 

In this study, the concept of the hybrid beam is extended. A design was made of a 
reinforced U-shaped SHCC mould, to be used for casting a hybrid beam. In that way, a reinforced 
hybrid concrete beam is created, in which the webs of the U-shape prevent the need of temporary 
moulds at the side of the beam, which reduces costs. A complete design is presented which is 
ready for further research.  

In this research, it is investigated how the bending behaviour of the extended concept of 
the hybrid beams can be modelled. A model, that has been initially proposed by Hordijk in 1991, 
and is called the multi-layer model, is suitable for this purpose. It enables modelling the non-
linear behaviour, which is exactly what is needed to be able to model the bending behaviour of 
hybrid beams. The initial version of the multi-layer model has been developed with monolithic 
concrete beams in mind. In other words, the model was applied for beams that consisted of one 
material. Using the same principles of the initial version of the multi-layer model, the model is 
extended in this research to be suitable for reinforced hybrid concrete beams containing a U-
shaped SHCC layer. The model was built using VBA (Visual Basic for Applications) in Microsoft 
Excel, and is suitable for extension in future research. Different from the previous built models, 
the model proposed in this thesis includes additional aspects, such as imposed deformations 
caused by drying shrinkage, and the possibility to model hybrid beams (with a U-shape). The 
imposed deformations were investigated, as the different materials in a hybrid section can shrink 
very differently, which could have an effect on the resistance of a hybrid beam. 

The essential assumption of the extended model is that a perfect bond exists between the 
two layers (or, in a more general sense, two materials). In other words, no slipping occurs between 
the two materials in the beam. This lead to the conclusion that the effects of drying shrinkage 
in hybrid beams can not be simulated, as the main effect of drying shrinkage in such beams is 
on the interface between the two materials (the forces due to drying shrinkage have to be 
transferred through the interface). Nevertheless, the drying shrinkage calculations can be applied 
on monolithic beams. 
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Slipping between the steel reinforcement and the concrete is taken into account in the extended 
model in order to calculate the crack width. The model is suitable for simulating the deflection 
of a 3-point or 4-point bending test in which only a bending moment is applied in such a way 
that tension occurs at the bottom, and compression at the top (no normal force is applied). The 
bending resistance of the cross-section is also calculated. In order for the multi-layer model to 
work, it requires stress-strain input (tension and compression) for the material(s) that need(s) to 
be investigated. In return, the moment-to-curvature, force-to-deflection, moment-to-deflection, 
stress-to-deflection, load-to-crack opening displacement and crack width-to-force diagrams are 
found. 

The model has been verified in four steps. In general, the experimental results from 
previous studies were compared to the results that follow from the model. In the first step, the 
results of the extended multi-layer model were compared with two previous studies in which a 
monolithic beam was investigated, and in which the multi-layer model also was used in one of 
the studies. In the second step, a comparison was made with research in which traditionally 
reinforced beams were tested. In this way, the second step consisted of an added element 
(compared to the first step), namely the addition of steel reinforcement. In the third step, one 
more addition was taken into account, namely that of a second layer/material in the beam. In 
the fourth and last step, the proposed experimental setup of a hybrid beam containing a U-shape 
was modelled. However, as this experiment has never been performed before, there were no 
experimental results to verify the model. Therefore, the results for this setup are to be compared 
with the results that follow after experimenting with the presented design of the beam. 
Comparing the force-to-displacement curves for the first three steps showed that the end-
resistance of the beams is predicted well, and that generally the same trend of the curve is 
followed by the extended multi-layer model.  

The other aspect that has been verified was the inclusion of the effect of drying shrinkage. 
It was verified what the effect of drying periods would be on the flexural strength of two different 
materials: NSC (Normal Strength Concrete) and HSC (High Strength Concrete). This was done 
by comparing with previous obtained results in the MSc study of Awasthy. This verification 
showed that the trend of the curve that is predicted by the FEM-model FEMMASSE is predicted 
well by the extended multi-layer model. In FEMMASSE, it is possible to model the stresses due 
to drying shrinkage.  

It is recommended to further expand the proposed model in future research. One of the 
possible expansions is the inclusion of the bond between the two materials (and between the 
bottom layer and the reinforcement) in a hybrid beam in terms of crack width. This could make 
the proposed model more powerful, as it would then be possible to optimize beam configurations 
in terms of crack width control. Such optimizations can currently be performed for traditionally 
reinforced beams in the model. Next to that, it is recommended to investigate how the 
longitudinal shear stress can be calculated for hybrid beams containing a U-shape. 
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1. Introduction 
1.1. Background information 

Concrete has the generally known property that it is strong in compression, but not in tension. 
In order to compensate this weakness, steel reinforcement is applied. Next to taking up the tensile 
forces, steel reinforcement also contributes to limiting the maximum crack width. Taking up the 
tensile forces prevents the construction from failing, which is achieved by meeting ultimate limit 
state (ULS) criteria. Limiting the crack width, or limiting the deflection is something that is 
achieved by meeting serviceability limit state (SLS) criteria. The term ‘serviceability’ indicates 
that failing to meet those requirement will not lead to structural failure. For example, too large 
deflections will not cause structural failure, but will cause discomfort for users. Sometimes there 
is the situation that an element fulfills the ULS requirements, but not the SLS requirements (for 
example because of too large crack widths). That makes that additional steel reinforcement is 
needed, which is not an optimal situation as that additional reinforcement is not needed from 
the ULS criteria. 

Applying materials with strain hardening properties, such as SHCC (which is the 
abbreviation of Strain Hardening Cementitious Composites), is another way to limit the crack 
width. The characteristic of this material is that many microcracks occur instead of a few large 
cracks. This is due to the (metal-like) strain hardening behaviour of SHCC, which is illustrated 
in (Zhou, et al., 2010). SHCC is, as the name also suggests, a composite. Synthetic fibers are 
added to the ‘concrete’ mixture. Those fibers are what results in crack width limitation, as the 
fibers cross the crack openings and transfer stresses. This type of ‘concrete’ is also called 
Engineered Cementitious Composite (ECC). By applying this concept, the amount of needed 
steel reinforcement can be reduced, as this mixture is contributing in controlling the crack width.  

A disadvantage is however that this mixture is rather expensive due to the lack of coarse 
aggregates (that are very cheap). So it is not an economic option to only use SHCC in the cross 
section. By combining regular concrete with SHCC, the disadvantages of both can be addressed. 
In that way, the so called ‘hybrid’ beam is created. By applying the SHCC layer in the tension 
zone, the concrete does not have to perform in tension, and by applying concrete in the 
compression zone, savings can be made on the amount of SHCC. 

This hybrid beam concept has been tested before by (Huang, 2017). In his research, it 
was proven that an addition of an SHCC layer of 70 mm in a beam with a height of 200 mm 
resulted in better controlled cracks. For illustration, a comparison made in the research of 
(Huang, 2017) is used. First of all, it is shown in Figure 1-1 how the results of the crack pattern 
are presented. 



2   Chapter 1: Introduction 
 

 

Figure 1-1: illustration of how the cracking pattern results are presented (Huang, 2017) 

In Figure 1-2 and Figure 1-3, two different cases are presented. The beam in Figure 1-2 is a 
traditionally reinforced beam; the beam in Figure 1-3 is a hybrid beam (SHCC + traditional 
concrete). The blue images in Figure 1-2 and Figure 1-3 are, as is shown in Figure 1-1, the DIC 
(Digital Image Correlation) images. In this images, all colors except blue show the strains that 
lead to cracks. The green colour indicates small strains, while the red colour indicates large 
strains. So the larger the strains, the more visible the cracks are. Note that those images are 
flipped upside down (so the cracks at the top are in reality the cracks at the bottom). 
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Figure 1-2: crack pattern of a traditionally reinforced concrete beam (Huang, 2017) 

 

Figure 1-3: crack pattern of a hybrid reinforced concrete beam (Huang, 2017) 

Not only the crack width is limited; it was shown that the cracks localize later for beams that 
contain SHCC (Luković, Hordijk, Huang, & Schlangen, 2019). This is illustrated in Figure 1-4, 
in which can be seen that the large crack width increase happens earlier for the reference beam 
(traditionally reinforced concrete) compared to the beam containing an SHCC layer. 
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Figure 1-4: load-to-deflection and load-to-crack width diagrams; reference beam=traditionally reinforced 
concrete, SHCC=70mm layer over 200 mm height (Luković, Hordijk, Huang, & Schlangen, 2019) 

In the study of (Huang, 2017), it was recommended to further research the U-shaped moulds 
made of SHCC. In this research, it will be investigated how this mould can be made. An earlier 
concept as was proposed by (Huang, 2017) is shown in Figure 1-5. However, in this thesis, another 
concept is investigated and proposed. The main reason for that is that the proposed method by 
(Huang, 2017) is only suitable for small scale experiments, as the sides of the U-shape have to be 
manually held in place for some time during casting (the sides are casted on a horizontal surface 
and then flipped 90 degrees to form a U-shape). For small U-shaped, this is feasible, but not if 
ultimately the same beams as in (Huang, 2017) are to be tested (which have a length of 1900 
mm). 

 

Figure 1-5: concept of a U-shaped SHCC mould as proposed by (Huang, 2017) 
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The strain hardening effect appears after the linear elastic stage. Modelling the non-linear stage 
is not possible by using analytical expressions such as in the linear elastic stage. To solve that, a 
model was proposed by (Hordijk, 1991), called the ‘multi-layer model’. This model divides the 
cross section of a beam into multiple layers. When the beam is loaded in bending, a curvature is 
applied which leads to a strain diagram. Then, a strain can be assigned to each layer. By using 
the stress-to-strain material input, the corresponding stress for each layer can be found. As each 
layer has an area, the stress can be translated to the force by multiplying with the area. By 
achieving horizontal equilibrium of the forces in the cross-section, the bending resistance of the 
beam can be calculated by multiplying each force with its distance to the neutral axis. By doing 
that, the bending moment corresponding to the considered curvature is found. Doing this for 
multiple curvatures leads to a moment-to-curvature diagram, in which the resistance in the non-
linear stage can be found. This is one of the possible output diagrams.  
 In this thesis, the multi-layer model will be extended. The most noticeable extension is 
the implementation of hybrid beams, in order to be able to model the reinforced hybrid concrete 
beam with a U-shaped mould that will be proposed in this research. If the basic case, which is 
used in the initial multi-layer model, is an SHCC beam, the following extensions are made in this 
research: first of all, steel reinforcement is included. Secondly, a layer of concrete is included on 
top of the SHCC, by which the beam becomes a hybrid beam. Finally, along the height of the 
concrete layer, SHCC webs are added. This makes that the proposed multi-layer can handle 
reinforced hybrid concrete beams containing a U-shape.  

Next to those inclusions, the effect of drying shrinkage is considered, and an attempt is 
made to implement it in the multi-layer model for hybrid beams. The inclusion of drying 
shrinkage effects is of importance in hybrid beams. Normally, SHCC will shrink much more than 
concrete if both are considered separately. This difference is illustrated in Figure 1-6 for a repair 
material instead of regular concrete; for regular concrete the difference is even larger. 
 

 

Figure 1-6: free shrinkage measurements of SHCC and commercial repair material (Luković, 2016) 
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In a hybrid beam, the concrete will be casted after the SHCC. But because the SHCC shrinks 
much more than regular concrete, the SHCC will, although it is casted earlier, shrink more than 
the concrete. This can have an effect on the resistance of the considered beam. 

In the research of (Awasthy, 2019), it was measured how some mechanical properties of 
concrete, like the Young’s modulus and the compressive strength, are affected by eigenstresses 
due to drying shrinkage over time. The way drying shrinkage occurs, which will be further 
investigated in this report, is the case in which a specimen is exposed to a dry environment after 
curing. When exposed to a dry environment, the specimen loses water due to evaporation, as it 
contains more water than the environment (equilibrium needs to be achieved with the 
environment). At some point, water from the small capillary pores of the concrete is lost, which 
generates an under-pressure in the pore system (Awasthy, 2019). This leads to compressive 
(eigen)stresses. These stresses are compensated with the tensile eigenstresses that occur at the 
surface, which could lead to cracks if the tensile strength of the concrete is exceeded (Moris & 
Dux, 2003). An example of the appearance of those cracks is shown in Figure 1-7. 

 

 

Figure 1-7: example of drying shrinkage cracks (Awasthy, 2019) 
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1.2. Research question(s) 
The ultimate goal of this research is to build a reliable model that predicts the bending behaviour 
of reinforced hybrid concrete beams with a U-shaped (SHCC) mould, and to consider the eigen-
strains due to drying shrinkage in the same hybrid beams. To make sure it is a reliable model, it 
needs to be verified. To reach this goal, the following three questions are addressed in this 
research: 

- How can a reinforced U-shaped mould be made to be used in a reinforced hybrid concrete 
beam? 

- How can the principles of the multi-layer model be used to model reinforced hybrid 
concrete beams with a U-shaped mould? 

- How can the eigenstresses due to drying shrinkage be implemented in the multi-layer 
model? 

In order to be able to answer the second and third question, the process that is illustrated in 
Figure 1-8 is followed. 
 

 

Figure 1-8: flow-chart of the process that is to be followed concerning the multi-layer model 

In this research, a procedure is developed of producing a reinforced hybrid concrete beam with a 
U-shaped SHCC mould. This is an essential step, as there has never been any experiments done 
with such beams. And in order to be able to verify the proposed model that predicts the behaviour 
of such beams, experiments have to be performed on them.  
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1.3. Problem statement 
Currently, there are no analytical expressions that address the bending behaviour of hybrid 
beams. As hybrid beams partly consist of a material that shows strain hardening behaviour, it 
is of importance to be able to model the behaviour of such beams in the non-linear stage. In 
1991, the multi-layer model was proposed by (Hordijk, 1991) to model the non-linear behaviour 
of materials. The model was developed for monolithic (unreinforced) concrete beams. In this 
research, its suitability is extended to modelling reinforced hybrid concrete beams with a U-
shaped mould. After this extension, the model needs to be verified. The most advanced availa-
ble experimental results that can be used for verification are in the research of (Huang, 2017), 
in which he experimented with reinforced hybrid concrete beams. However, as there are no ex-
periments that are performed with reinforced hybrid concrete beams with a U-shaped mould, 
the procedure of making this U-shaped mould needs to be developed. After that, experiments 
can be performed to verify the results that follow from the proposed model.  

1.4. Research outline 
Besides this introduction, the report is divided into six chapters. In chapter 2, the U-shaped 
SHCC mould is analyzed, and a proposal is made for an experimental setup. Chapter 3 explains 
the multi-layer model, which will be extended to be able to model hybrid structures such as the 
system that will be proposed in chapter 2. Next, the extended multi-layer model is verified in 
chapter 4 by comparing to previous research and previously made models. In the same chapter, 
an experimental setup with predicted results is presented for the part that cannot be verified in 
this research, namely the reinforced hybrid concrete beam with a U-shaped mould. This can be 
verified in the future by using the experimental procedure that is presented in this research. After 
that, the results are discussed and the limitations of the proposed MLM are analyzed in chapter 
5. Subsequently, the conclusions of this research are presented in chapter 6. Last but not least, 
recommendations of future research are made in chapter 7.  
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2. U-shaped SHCC mould 
This chapter is about the design of a U-shaped SHCC mould, which can ultimately be used in 
a system of a reinforced hybrid concrete beam. Next to that, the advantages of having a U-
shaped mould are discussed. The procedure of making a U-shaped mould was a result of multi-
ple stages, setbacks and successes in the process. However, only the final result is presented in 
this chapter. The rest is described in Appendix F.  

2.1. Inspiration 
In the study of (Huang, 2017), it was proven that a 70 mm layer of SHCC in a reinforced hy-
brid concrete beam helped limiting the occurring crack widths. In this chapter, a next step is 
presented to expand the concept. The cross-section of the ‘ideal’ beam that controlled the crack 
widths best, as was found by (Huang, 2017), is shown in Figure 2-1. 
 

 

Figure 2-1: cross-section of a reinforced hybrid beam containing an SHCC layer (Huang, 2017) 

The beam was tested in a 4-point bending test, according to the setup that is shown in Figure 
2-2. 
 



10   Chapter 2: U-shaped SHCC mould 

 

 

Figure 2-2: 4-point bending test setup in which the reinforced hybrid concrete beam was tested (Huang, 
2017) 

In this chapter, it is proposed to use the same setup, but only add the U-shaped webs to the 
beam. However, the casting process drastically changes with this small addition. The reinforced 
SHCC layer will now not only be casted as a layer; it will be casted as a reinforced U-shaped 
mould in which the concrete can be poured. 

2.2. Advantages 
Applying SHCC, in general, has numerous advantages. As was explained before, the crack width 
is limited when SHCC is applied. This is due to the strain hardening property and the occurring 
microcracks. This property can be recognized from the stress-to-strain diagram that follows from 
a direct tensile test. An example is shown in Figure 2-3. 
 

 

Figure 2-3: strain hardening of SHCC during a direct tensile test (Li & Li, 2011) 

Next to that, the reduced crack widths mean that penetration of water and aggressive ions (such 
as chloride and CO2) into the concrete is more difficult. Durability of the concrete is therefore 
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improved, as there will be less corrosion; freezing damage is also reduced (Paul & Babafemi, 
2017). If a prefabricated SHCC layer is to be used, also savings can be made on formwork (and 
labor costs of setting it up).  

In this chapter, it is proposed to combine all advantages of applying SHCC and include 
the advantage of a U-shape, namely the further savings on formwork. Previously, formwork was 
needed at the sides; that is no longer the case if a U-shaped SHCC mould is chosen. In that way, 
not only formwork costs are saved, but also the labor costs of setting those up. A possible 
advantage is that the moulds, that will be used to produce the U-shape, are reusable. Next to 
the practical advantages, the SHCC webs of the U-shape could contribute to the bending 
resistance of the beam that is considered.  

2.3. Production 
The way to make a U-shape is by having two moulds. One outside mould, and one inside mould. 
By placing the inside mould inside the outside mould, an inversed U-shape is created after casting. 
This is shown in Figure 2-4 and Figure 2-5. 
 

 

Figure 2-4: inside and outside moulds for casting a U-shaped mould 
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Figure 2-5: inverse U-shape after casting 

The most desirable results were obtained when the outside mould was made out of steel and the 
inside mould out of high-quality Styrofoam that is wrapped with tape. Vaseline needs to be 
applied to the surface of both moulds. During demoulding, the result in Figure 2-6 can then be 
obtained (after detaching the SHCC + the Styrofoam in it from the outside mould and flipping 
it upside down): 
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Figure 2-6: demoulding of the SHCC U-shape 

If the procedure in Figure 2-6 is done very carefully, there is a possibility that the Styrofoam 
inside mould stays intact and can be reused. 

The U-shaped mould is not meant to only consist of SHCC. An addition is to include 
steel reinforcement. If shear failure is to be prevented, to force bending failure, also shear 
reinforcement can be added. In order to include the reinforcement, first the reinforcement cage 
has to be completely prepared. The challenge is to place the reinforcement in a way that the 
stirrups would stick out of the SHCC. That was done as is shown in Figure 2-7. To get the 
concrete cover correctly, timber pieces of the required height were placed inside the slots, so that 
the stirrups would rest on them. In that way, traditional spacers that mix with the SHCC after 
casting are prevented. 
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Figure 2-7: slots in the Styrofoam inside mould to place the stirrups in 

To prevent leakage inside those slots, the slots were covered with tape. At the end, this was the 
way to produce the U-shape with reinforcement in it (see Figure 2-8): 
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Figure 2-8: preparation of a U-shaped SHCC mould with steel reinforcement in it 

This procedure should lead to the ‘reinforced U-shaped mould’ that is shown in Figure 2-9. 
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Figure 2-9: end result after demoulding a reinforced U-shaped SHCC mould 

2.4. Experimental setup 
The mixture that was used to produce the U-shaped mould is shown in Table 2-1, and is the 
same mixture as was used in (Huang, 2017).  
 

 

Table 2-1: used SHCC mixture during production of U-shaped mould 

As was explained before, the same setup, apart from the webs of the U-shape, as in (Huang, 
2017) is proposed. For the webs, a thickness of 15 mm is chosen. The web thickness is checked 
on its resistance to the load that follows during casting, as it is acting as a wall that is under 



MSc thesis: Ammar Yassiri   17 
 

pressure. A thickness of 15 mm is safe. The check is shown in Appendix F. The dimensions of 
the proposed experiment are shown in Table 2-2: 

 
Part Dimension [mm] 
Outside mould 1900x150x2000 
Inside mould 1900x120x130 
Web thickness 15 
SHCC bottom layer 70 

Table 2-2: recommended dimensions for system of hybrid beam containing a U-shape 

The dimensions of the moulds are chosen to produce beams that are comparable with the 
previously explained ‘ideal’ beam as was found in (Huang, 2017). 

As for the reinforcement design, it is shown in Figure 2-10. Note that the top 
reinforcement is not included in the reinforcement cage, as it cannot be put into the inside mould 
(see Figure 2-7). Therefore, it has to be mounted afterwards. 
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Figure 2-10: reinforcement design of large scale experiment hybrid beam containing a U-shape 

The reinforcement design was such that shear failure is prevented. The stirrups are placed as 
was done in (Huang, 2017), where shear failure was also prevented. This is shown in Figure 
2-11. 
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Figure 2-11: shear reinforcement placing to prevent shear failure (Huang, 2017) 

In subchapter 4.4, the bending resistance of the proposed experimental setup is modelled and 
shown using the (extended) multi-layer model. 
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3. Multi-layer model 
In this chapter, the originally proposed multi-layer model will be investigated. In this same 
chapter, the inclusions to the model are introduced, which are used to expand the multi-layer 
to be able to model the bending resistance of the experimental setup that was proposed in the 
previous chapter. Ultimately, the multi-layer can be used to model any hybrid beam, as long as 
the material input, that will be shown in this chapter, is available.  

3.1. Principles and goal 
The multi-layer model (also noted as MLM in this thesis) was first proposed by (Hordijk, 1991). 
The theory on which this model is based on, is to divide the cross section of a beam, at the 
location of (expected) fracture, into multiple layers that are schematized as springs. In this way, 
the beam is divided into two section of equal length, that are connected by those springs. The 
behaviour of each layer is represented by its corresponding spring. 

This model is used because the post-linear stage can be analyzed quite accurately. 
Normally, analytical expressions can be used to calculate the resistance of every beam in the 
linear elastic stage. For example, if a simply supported plain concrete beam is considered, the 
moment resistance of the beam can be found using Eq. (3.1):  
 
 𝜎 =

𝑀

𝑊
→ 𝜎 = 𝑓௧ → 𝑀 = 𝑓௧ ∗

1

6
∗ 𝑏 ∗ ℎଶ Eq. (3.1) 

As concrete is weaker in tension than in compression, the tensile stress is governing for the linear 
elastic stage. The strain diagram in Figure 3-1 occurs, and it is assumed that the (plain) concrete 
beam fails.  

 

Figure 3-1: strain diagram at failure for a plain concrete beam 
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The strain diagram in Figure 3-1 can only be linear if the considered beam acts according to 
the Bernoulli hypothesis; if the beam would consist of longitudinal fibres, each cross-section 
that is made should stay straight during bending. The fibres and the cross-sections are illus-
trated in Figure 3-2. It is assumed that the Bernoulli hypothesis always applies in this re-
search. 
 

 

Figure 3-2: Bernoulli hypothesis as is explained by (Hartsuijker, 2001) 

If reinforced beams are considered, more expressions can be used to model the resistance of the 
beam, such as at failure. Then, next to the end of the linear elastic stage that is known, the 
moment of failure will also for example be known. This is illustrated in Figure 3-3. In this figure, 
an example of a moment-to-curvature diagram is shown. The datapoints that can be determined 
using analytical expressions are marked in red.  
 

 

Figure 3-3: example of a moment-to-curvature diagram (Hajializadeh, Eugene, Enright, & Schiels, 2012); 
edited 
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Between zero and the first red marking in Figure 3-3, the behaviour is linear. However, there are 
no (exact) expressions that result in output for the steps in between the red markings. This is 
where the multi-layer model is usable. (Hordijk, 1991) used it for modelling the behaviour of 
plain concrete, while (Kooiman, 2000) used it for fibre-reinforced concrete. As the strain 
hardening behaviour is expressed in the non-linear stage, and as hybrid beams are investigated 
(which contain a material that shows strain hardening behaviour) in this research, the multi-
layer model is the ideal theory to use for modelling the bending behaviour.  

In this research, the goal by using this model is to model every step after the linear elastic 
stage and extract datapoints for the following diagrams: the moment-to-curvature, force-to-
deflection, stress-to-deflection, moment-to-deflection, load-to-crack opening and crack width-to-
force diagrams. How this is done and which limitations there are, is discussed in subchapter 3.4.  

3.1.1. Bending moment resistance 
The procedure in which the bending moment resistance is calculated, is the essential part of the 
MLM, which also shows all the principles of the model. All possible output of the MLM is based 
on this calculation. 

As is explained, the multi-layer model is about dividing the cross section of a beam into 
multiple layers that are schematized as springs. In order to know the resistance of the beam that 
is considered, the springs should be located where failure is expected to occur. This is shown in 
Figure 3-4, in which a 4-point bending test is schematized. Failure is assumed to always occur 
at midspan. This will also be assumed for the 3-point bending test. 
 

 

Figure 3-4: springs at the fracture zone to schematize the layers that are used in the MLM (Hordijk, 
1991); edited 

An example of how the cross-section is divided into layers is shown in Figure 3-5. Each of the 
layers in that figure represents a spring as is schematized in Figure 3-4.  
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Figure 3-5: numbering of layers in a cross-section + reference y-axis 

The strain at the centerline of each layer determines the force in the ‘spring’. Normally, a force 
can be found using Eq. (3.2): 
 
 𝜎 =

𝑁

𝐴
→ 𝑁 = 𝜎𝐴 

 

Eq. (3.2) 

For the linear elastic stage, the stress is found using Hooke’s law. This is shown in Eq. (3.3). 
Here, the relationship between the strain and the force can be recognized, as the stress (that is 
dependent of the strain in the linear elastic stage) is used in Eq. (3.2) to determine the force. 
 
 𝜎 = 𝐸 ∗  𝜀 

 
Eq. (3.3) 

The area in Eq. (3.2) is equal to the area of the layer. Rewriting Eq. (3.2) gives the result in Eq. 
(3.4): 
 
 𝑁 =

ℎ

𝑛
∗ 𝑏 ∗ 𝜎 

 

Eq. (3.4) 

In Eq. (3.4), ‘h’ is the total height of the beam, ‘b’ is the width of the beam, ‘n’ is the number 
of layers and ‘σ’ is the stress according to the ‘centerline strain’. 

Normally, the material properties are affected by size effects, which result in a lower 
bending moment resistance for increasing sizes. There are two size effects: statistical size effects, 
which are characterized by the randomness of the material properties that are considered, and 
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the deterministic size effects, which is partly related to fracture energy and crack localization 
(Kapteijn, 2020). For example, the stress ‘σ’ that should be inserted in Eq. (3.4), can be smaller 
for larger specimens than the input that is assumed. However, those effects are not considered in 
this research; it is assumed that the material properties are not affected by size effects.  

3.1.1.1 Linear elastic stage 
Using Eq. (3.3), the force in the spring can be calculated with Eq. (3.5). As can be seen, there is 
a direct relation between the strain and the force in the spring.  
 
 𝑁 =

ℎ

𝑛
∗ 𝑏 ∗ 𝐸 ∗  𝜀 

 

Eq. (3.5) 

For each spring, all parameters except the strain will be the same (in case the same cross-section 
as in Figure 3-5 is considered). So the force in each spring will be different. The main condition 
that holds for the MLM, is that horizontal equilibrium should be achieved while the beam bends 
according to the Bernoulli hypothesis. So the summation of all forces in the springs should be 
equal to zero. As the force in each layer only differs because of the strain, and as the strain 
diagram that is shown in Figure 3-5 is symmetric (linear elastic stage), this requirement is 
fulfilled. The requirement of horizontal equilibrium of the forces in the springs is only valid if no 
external normal force is applied; so one important assumption is that the beam is only loaded 
in bending, and not by a normal force. 

When this condition is met, the next step can be made, namely that of calculating the 
bending moment. The ultimate desire is to obtain the bending moment and the curvature; the 
curvature is already known, as it is the slope of the strain diagram. The bending moment can be 
determined as follows: as can be seen in Figure 3-5, the neutral axis is located in the middle. For 
each force (in each spring), its magnitude times its distance to the neutral axis is equal to a 
bending moment. Summing this up, for all layers, the internal bending moment is found. It is 
assumed that there is no normal force acting on the beam (which could introduce additional 
bending moments due to possible eccentricity), so this internal bending moment is equal to the 
external (applied) bending moment. 

In the linear elastic stage, there is a linear relation between the start and end of it. 
Therefore, it is only necessary to determine the bending moment of the first point (zero) and of 
the last point (end of the linear stage). A line between those two points can be drawn to find 
how the bending moment develops in the linear elastic stage.  

3.1.1.2 Non-linear stage 
For the non-linear stage, the situation becomes different. It was earlier mentioned that the stress 
could be determined according to Eq. (3.3). This expression is however not valid for the non-
linear stage. Before explaining how the stress is determined for the non-linear stage, the 
previously described procedure of determining the stress in the linear elastic stage is explained 
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in a different way. The bottom layer of Figure 3-5 is now considered separately. This is shown 
in Figure 3-6. 

 

Figure 3-6: bottom layer of a cross-section marked in red 

The strain at the centerline of the layer is taken. To know the stress, the stress-to-strain diagram 
of the material can be used. An example is shown in Figure 3-7.  
 

 

Figure 3-7: matching the strain with its corresponding stress in a linear stress-to-strain diagram 
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Reading the stress from Figure 3-7, and multiplying with the area of the layer gives the force in 
the spring. Doing that for all layers, and following the same procedure as was explained in 
subchapter 3.1.1.1 after that, leads to finding the bending moment resistance. 

Now, the next step, which is the non-linear stage, can be considered. Only the curvature 
is increased with a (very) small step, which gives the situation in Figure 3-8 compared to the 
linear elastic stage. The red line represents the first step after the linear elastic stage. 

 

Figure 3-8: first step of the non-linear stage, in which the strain diagram is given by the red line 

To determine the stresses corresponding to the occurring strains, a stress-to-strain diagram is 
needed. In order to illustrate the calculation procedure, a hypothetical stress-to-strain diagram 
of concrete is presented. It is shown in Figure 3-9. 
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Figure 3-9: assumed stress-to-strain diagram of concrete 

What can be read from Figure 3-9, is that the concrete has more resistance in compression than 
in tension. Next to that, the concrete acts linearly to a much higher stress in compression in 
comparison to tension. To be able to show the important details, a zoomed-in version of the 
stress-to-strain diagram is shown in Figure 3-10. 
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Figure 3-10: zoomed-in version of the assumed stress-to-strain diagram of concrete 

Now, the bottom and top layer of the cross-section are considered. This is shown in Figure 3-11. 
 

 

Figure 3-11: bottom layer of a cross-section marked in red and the top layer marked in green 

Reading the corresponding strains and inserting them to the stress-to-strain diagram gives the 
results in Figure 3-12. 
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Figure 3-12: difference of stress between top (green) and bottom layer (red) after the linear elastic stage 

As can be seen in Figure 3-12, the resistance in compression is higher than in tension. This is 
due to the fact that after the linear elastic stage in tension, there is a decrease in stress. The 
green stippled line indicates what would have been the stress if the material still behaved linearly, 
and it is exactly the same stress that is occurring in compression, as the material is still behaving 
linearly in compression. 

As the neutral axis is still located in the middle of the cross-section, no horizontal 
equilibrium will be achieved if the forces in each spring were calculated. If the neutral axis is 
located in the middle, each spring has to carry the same force as its ‘mirror spring’ (the first 
layer at the top mirrors with the first layer at the bottom etc.). This is clearly not the case. 
Therefore, something has to change besides the curvature. What needs to change is the location 
of the neutral axis position. Note however that the curvature stays the same. What needs to be 
done is that, at each curvature, the neutral axis is moved upwards in small steps until there is 
horizontal equilibrium. An example of such an end result is shown in Figure 3-13. 
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Figure 3-13: neutral axis position moved upwards to achieve horizontal equilibrium in the cross-section 

By doing this, a stress diagram as is shown in Figure 3-14 can be achieved, which results in 
horizontal equilibrium. Note that this is only an example to illustrate the effects.  

 

Figure 3-14: example of a stress diagram corresponding to a neutral axis position that has moved 
upwards 

After the stresses are found, the same procedure as was explained before to find the bending 
moment resistance can be used (multiplying of all forces by their distances to the neutral axis). 
After the bending moment resistance is found, a new datapoint is achieved. The next step is then 
to increase the curvature again by a small step and to repeatedly go through the same process. 
To make the calculation method clear, all steps needed to draw the final moment-to-curvature 
diagram are shown in Figure 3-15.  
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Figure 3-15: flowchart of the multi-layer model procedure 
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The essence of the process is that there has to be equilibrium for each curvature that is applied. 
If that is not the case, the location of the neutral axis will keep going upwards until it is physically 
impossible; the height of the beam is reached. When this happens, the specimen fails. With that, 
the process in Figure 3-15 ends. 

One of the differences with the linear elastic stage is, that an iterative procedure is needed 
to obtain the datapoints. The bottom part of the concrete will have decreased resistance, so the 
neutral axis has to shift up. Doing this by small steps until equilibrium is found is the essence of 
the iterative procedure. 

To summarize the calculation procedure: first, the cross section of the beam is divided 
into multiple layers over its height. After that, the curvature is increased until the end of the 
linear elastic stage is reached. For each layer, the strain at its centerline is taken. From the 
stress-to-strain input, the corresponding stress can be read. This stress times the area of the layer 
gives a force. And if the forces of all layers are summed up, there should be horizontal equilibrium. 
This is the check that a correct result is found. After this, the non-linear stage is entered. To 
find a new datapoint, the curvature is repeatedly increased by a small step. The neutral axis 
moves up until there is horizontal equilibrium of forces (for each curvature). If at some point (for 
a certain curvature) this equilibrium requirement cannot be met by moving up the neutral axis 
(because it reaches the top of the specimen), it means that the beam has failed. The datapoints 
that are found until failure lead to a moment-to-curvature diagram. 

3.1.1.3 Effects of hybrid section 
The calculation process for a hybrid beam is almost the same as was described in the previous 
subchapters. There is however one big difference, which becomes clear in Figure 3-16. A hybrid 
beam is shown with a height of 100 mm. The beam is divided into 10 layers; each layer has 
therefore a thickness of 10 mm. 
 

 

Figure 3-16: possible sublayers in the MLM for hybrid sections; dimensions in [mm[ 
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The grey colour in Figure 3-16 indicates the presence of concrete, while the red colour belongs to 
the other material (SHCC for example). In green, the layers are viewed (in Figure 3-16). What 
can be noticed is, that the interface between the two materials is exactly at the middle of one of 
the layers. To be precise, it is at 25 mm height. This means that the third layer from the bottom 
contains 5 mm of SHCC, and 5 mm of concrete. And as both materials have different properties, 
the strain at the centerline cannot be translated to the right stress. This problem occurs when 
the thickness of one of the materials is not equal to an integer multiplier of the layer thickness. 
In this case, the thickness of the concrete was 75 mm, and that is 7.5 times the layer thickness 
(and 7.5 is not an integer). In this case, the problem could have been solved by using 20 layers. 
The layer thickness would then be 5 mm, and the concrete thickness would be a multiplier of 5. 
However, this problem cannot always be easily solved as in this example.  

The solution to this problem is to isolate the layer in which the problem occurs, and to 
divide it into two sublayers with the corresponding thickness that is needed. If the concrete layer 
had a thickness of 78 mm for example, the sublayers would be 8 mm of concrete, and 2 mm of 
SHCC. The centerline of those two sublayers can then be taken, and the strain can again be 
translated to a stress by using the corresponding material input. After that, the same procedure 
can be followed as was described before to find the desired output. In the proposed MLM, this 
will be called the ‘advanced method’, while the previous method without the sublayers will be 
called the ‘simple method’. Depending on the situation, the corresponding method automatically 
is used. 

Another effect that appears when modelling hybrid sections, is if it is desired to model a 
U-shape. An example of this situation is shown in Figure 3-17. 

 

 

Figure 3-17: example of a U-shape in a hybrid beam; dimensions in [mm] 

If the layer between 190 and 200 mm is considered in Figure 3-17, it can be seen that the layer 
contains two materials (concrete in grey, and SHCC in orange). This means that it is not possible 
to follow the same approach as was explained in subchapter 3.1.1. When the strain is known at 
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the centerline of this layer, the strain cannot be coupled to a stress using the stress-to-strain 
diagram, as there are two different materials in the same layer. This is tackled as follows. The 
strain at the centerline of the layer is taken. For both materials, the stress is determined that 
corresponds to this strain. After that, a weighted average is searched for to determine the stress 
that corresponds to the layer. In Figure 3-17, the width is equal to 150 mm. The webs of the U-
shape each have a thickness of 15 mm, which means that the concrete has a width of 150-2*15= 
120 mm. So, the webs contain 30/150*100= 20% of the layer, while the concrete contains 80%. 
For this example, it means that the (weighted) stress in this layer becomes equal to:  
 
 𝜎௬ = 0.2𝜎௪ + 0.8𝜎௧ 

 
Eq. (3.6) 

Or in general, using the MLM terms: 
 
 𝜎௬ =

2𝑡௪

𝑏
𝜎௪ +

𝑏 − 2𝑡௪

𝑏
𝜎௧ 

 

Eq. (3.7) 

 

3.2. Possibilities and limitations 
Many researchers have used the multi-layer model after (Hordijk, 1991) proposed it. Examples 
are in the research of (Kooiman, 2000), (Grünewald, 2004), (Lappa, 2007) and (Schumacher, 
2006). However, in those studies, the model was only used for monolithic specimens. In this 
research, the multi-layer model is further developed. Table 3-1 describes the limitations of the 
previously developed version of the MLM and briefly introduces the new developments of the 
MLM within the context of the present thesis. 
 

 Previous MLM’s 
 

Proposed MLM 

Simply supported beams  
3-point bending test   
4-point bending test   
Monolithic beams   
Monolithic beams + traditional 
reinforcement 

  

Hybrid beams  
Crack opening input   
Effect of eigenstresses due to 
drying shrinkage 

 

Table 3-1: comparison of MLM’s; red=not implemented, orange=limited implementation, green=fully 
implemented 
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As can be seen in Table 3-1, one of the check marks is coloured orange instead of green. This 
means that although the property is present, it is limited. The effect of eigenstresses due to 
drying shrinkage is implemented in the proposed MLM, but it is only applicable for monolithic 
beams (which will be explained in subchapter 3.4.5.2).    
 One of the strengths of the multi-layer model is that parametric input is used. In this 
way, the thickness of an SHCC layer in a hybrid beam can for example be optimized by modelling 
with different input.  

3.3. Input parameters 
There are multiple input options in the MLM that is proposed in this thesis. The input 
parameters are listed in Figure 3-18.  
 

 

Figure 3-18: MLM input parameters 

The MLM parameters are divided into eight sections: ‘beam input’, ‘materials’, ‘layer specs’, 
‘reinforcement’, ‘points’, ‘drying shrinkage’, ‘crack input’ and finally ‘deflection’. All sections and 
their corresponding parameters are explained in Appendix B. In Figure 3-18, two sections and 
their parameters are not shown, namely the ‘points’ and the ‘drying shrinkage’ sections. The 
reason for this is that both sections only contain one type of input, which is not in ‘symbol’ 
format. In Appendix B, those are explained further.   

The two parameters, that distinguish the MLM, are the ‘number of layers’ and the 
‘influence length’. The first parameter determines by how many ‘springs’ the cross-section is 
represented. The second parameter needs more explanation. The ‘influence length’ parameter 
was first introduced by (Hordijk, 1991) as the ‘fracture zone length’ (given by ‘lf’). It was 
mentioned before that the multi-layer model is about dividing the cross-section into layers that 
are represented by springs. The length over which that happens is this fracture zone length. This 
is visualized in Figure 3-4.  
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The length of this fracture zone is approximated to be equal to half the effective height of the 
beam (Lappa, 2007). However, this is not a fixed value, so other values can be chosen. Other 
researchers called this length the ‘influence length’ (Kooiman, 2000), as it greatly influences the 
results that follow from the MLM. The results are affected because the crack input parameters 
in tension are affected by the influence length (which leads to different behaviour in tension). 
Therefore, the results are only affected when crack input is available. In the study of (Kooiman, 
2000), the influence of this parameter was illustrated. Using the input material relations that are 
shown in Figure 3-19, the load-to-displacement curve was determined. 
 

   
(a) assumed stress-strain 

diagram in compression 
(b) assumed stress-strain 

diagram in tension 
 

(c) assumed tensile stress-crack 
opening diagram (softening) 

Figure 3-19: assumed input material relations by (Kooiman, 2000) 

A plain concrete beam of 150x150x600 [mm] was considered, which lead to the load-to-
displacement curves in Figure 3-20. 
 

 

Figure 3-20: effect of the influence length for plain concrete on the force-to-displacement curve 

If the material input only consists of stress-strain ‘couples’ in tension, which directly lead to a 
stress-to-strain diagram, the influence length is not used at all. When there is crack input 



MSc thesis: Ammar Yassiri   37 
 

available for a material, the influence length is used in accordance with Eq. (3.8) to find the 
strain (Kooiman, 2000): 
 
 𝑙 = 𝑤 ∗ 𝜖 

 
Eq. (3.8) 

Here, ‘linf’ is the influence length [mm], ‘ε’ the strain [-], and wcrack the crack opening displacement 
[mm]. Rewriting Eq. (3.8) gives Eq. (3.9): 
 
 𝜖 =

𝑤

𝑙
 

 

Eq. (3.9) 

From the crack input of the considered material (which is a fixed value), the strain can be found 
using the influence length (which is chosen). So the influence length determines what the strain 
will be equal to. After the strain is calculated, a stress-to-strain diagram is achieved, as the stress 
that corresponds to the strain is also part of the input.   

3.4. Output 
In this subchapter, all available output in the proposed MLM, next to the bending moment re-
sistance, is discussed in detail. 

3.4.1. Applied force 
The applied force can directly be determined using the calculated bending moment resistance 
(for each step). In the proposed MLM, there are two options: a 4-point bending test and a 3-
point bending test. In Figure 3-21, the 4-point bending test scheme is shown with its corre-
sponding parameters that are used in the MLM.  
 

 

Figure 3-21: 4-point bending test scheme 
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The bending moment at midspan is equal to: 
  
 𝑀 =

𝐹

2
𝐿ଵ 

 

Eq. (3.10) 

Rewriting Eq. (3.10) gives Eq. (3.11): 
 
 𝐹 =

2𝑀

𝐿ଵ
 

 

Eq. (3.11) 

For a 3-point bending test, Eq. (3.11) can also be used, as the only difference between the 3-
point and the 4-point bending test is the ‘L2’, which is not present for the 3-point bending test. 
However, that has no influence on the bending moment at midspan and its conversion to the 
applied force. 

3.4.2. Deflection  
The deflection of a beam can be predicted by the MLM. In this subchapter, it is explained how 
this deflection is obtained. In the previous subchapter, it was shown that the moment-to-
curvature relationship was the same for 3- and 4-point bending tests. However, this is not the 
case for the deflection. The calculation of the deflection can be performed based on four different 
methods:  

- Method 1: a method based on constant curvature is presented, which provides 
underestimated results. This method is only suitable for 4-point bending tests.  

- Method 2: the deflection is calculated using the ‘momentvlakstellingen’ theory based on 
(Hartsuijker, 2001). This method is suitable for both bending tests. 

- Method 3: a method based on the ‘forget-me-nots’. This method is suitable for both 
bending tests, and provides an overestimated deflection. 

- Method 4: a method based on small scale geometry. This method provides similar results 
to method 2. It will not be used in this MLM, as for the same input parameters, method 
2 provides more accurate results. The cause for this and the theory itself are presented 
in Appendix D. 

3.4.2.1 Method 1: constant curvature 
The first method is the constant curvature method. It is only suitable for the 4-point bending 
test, as the 3-point bending test does not contain a constant curvature region. The bending 
moment diagram of a 4-point bending test is given in Figure 3-22.  
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Figure 3-22: bending moment diagram of a 4-point bending test 

As can be seen in Figure 3-22, the bending moment is constant in the middle region. The bending 
stiffness is constant for a given bending moment; so that means that if the moment is constant, 
the curvature ‘𝜅’ is also constant. To turn this information into an occurring deflection, the 
curvature is translated into a radius of curvature. That is done by the known expression in Eq. 
(3.12): 
 
 𝑅 =

1

𝜅
 

 

Eq. (3.12) 

Using this relationship, the geometrical situation in Figure 3-23 can be constructed: 
 

 

Figure 3-23: calculating the deflection at midspan using the curvature in the constant bending region 

(Prinsse, 2017) 
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Using the relationships in Figure 3-23, the deflection at midspan is equal to: 
 
 

𝒘𝟏 =
𝟓

𝟕𝟐

𝑳𝟐

𝑹
 

 

Eq. (3.13) 

Note that this expression is different from Figure 3-23, in which the ‘L’ is the length of the 
constant bending moment region (or the ‘L2’ in Figure 3-22). That distance is equal to the total 
span divided by three in normal cases. To avoid any misconceptions, ‘L’ in this thesis is always 
the total span. Eq. (3.13) is however only valid for a typical 4-point bending tests, in which all 
three spans are equal. A generical expression for the deflection is: 
 
 𝒘𝟏 =

𝑳𝟐

𝟐𝑹
൬

𝑳𝟐

𝟒
+ 𝑳𝟏൰ 

 

Eq. (3.14) 

In Eq. (3.14), the ‘L2’ is the length of the constant bending moment region. The derivation of 
Eq. (3.14) is shown in Appendix D. 

A crucial assumption in this method is that only the constant bending moment region 
provides the curvature that contributes to the deflection. In other words, it is assumed that there 
is no bending moment between the force and the support. In reality, that is not the case as the 
bending moment decreases linearly from the location of the application of the force to the support 
(see Figure 3-22). As this bending moment is not taken into consideration in this method, it 
means that the found deflection is lower than the real deflection; the obtained/calculated 
deflection based on the constant curvature is therefore underestimated.  

3.4.2.2 Method 2: momentvlakstellingen 
The ‘momentvlakstellingen’ theory will be applied in this subchapter. First, it is applied for the 
linear elastic stage. After that, the changes in the non-linear stage are explained. For both stages, 
the bending moment line has exactly the same shape. However, the ‘reduced’ moment line, which 
is the bending moment distribution that is scaled by the stiffness, is different. To explain the 
‘momentvlakstellingen’ theory in short: the reduced moment line is needed to determine the 
rotation angels, which are given by the area under the reduced moment line. Those rotation 
angles are needed to calculate the deflection, as the deflection is equal to the rotation angle times 
its corresponding distance to the point of which the deflection is calculated. This theory is 
explained in detail in Appendix D.    

3.4.2.2.1 Linear elastic stage 
In Figure 3-22, the bending moment diagram is shown for a 4-point bending test. In order to 
‘reduce’ this diagram into the reduced moment diagram, it has to be scaled by the stiffness ‘EI’. 
In the linear elastic stage, the stiffness is constant for the whole beam. This leads to a reduced 
moment diagram that has exactly the same shape as the original bending moment diagram. This 
is shown in Figure 3-24. 
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Figure 3-24: the reduced bending moment diagram for a 4-point bending test 

Applying the momentvlakstellingen theory, the diagram in Figure 3-24 is split into 
straightforward geometrical parts. In this case, the diagram is split into two triangles and a 
rectangle. Those lead to the ‘𝜃1’, ‘𝜃2’ and ‘𝜃3’ that are shown in Figure 3-24. As the two triangles 
have exactly the same area, 𝜃1 = 𝜃3. The location of each angle is at the ‘projected center of 
gravity’ of the geometrical shape. So for the triangles, it is at one-third of the width of the 
triangle from the highest point of the triangle; for the rectangle it is in the middle. 

The deflection that is looked for when doing bending tests, is the deflection at midspan. 
However, finding this deflection is not straightforward. The deflection is by definition the angle 
times the distance to the point of deflection. However, from Figure 3-24 it is clear that if this is 
applied for point B (which is a support), there would be a deflection. This cannot be the case. 
Therefore, there has to be a rotation that mitigates this deflection. This rotation is located at 
point A (the first support). This is shown in Figure 3-25. 
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Figure 3-25: rotation φA at point A to compensate for the imaginary displacement at support B 

The equation in this case (with respect to point B) becomes: 
 
 𝜑𝐿 = 𝜃ଵ ൬𝐿 −

2

3
𝐿ଵ൰ + 𝜃ଶ

𝐿

2
+ 𝜃ଷ

2

3
𝐿ଵ   

 

Eq. (3.15) 

In other words, the displacement at B caused by the rotations due to the reduced bending 
moment line has to be compensated by a rotation at the other support. 

After this is found, and after it is known that the deflection at midspan is desired, the 
reduced bending moment diagram can be split in half. This is shown in Figure 3-26. Note that 
the diagram in Figure 3-25 is in theory also suitable to calculate the deflection at midspan. 
However, everything that is at the right of the midspan location cannot be taken into account. 
So ‘𝜃ଷ’ has to be excluded. Not only that: the ‘𝜃ଶ’ also contains the area to the right of the 
midspan location, so it has to be altered. That is why the diagram in Figure 3-26 is introduced.  
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Figure 3-26: part of the reduced moment diagram that is needed for finding the deflection at midspan 

As can be seen in Figure 3-26, a new angle is introduced, namely ‘𝜃2A’, which is the angle along 
L2/2. Its distance from midspan is now ଵ

ଶ
∗

మ

ଶ
= L2/4. Now the deflection is equal to: 

 
 𝑤ௗ௦ = 𝜑

𝐿

2
− 𝜃ଵ ൬

𝐿

2
−

2

3
𝐿ଵ൰ − 𝜃ଶ

𝐿ଶ

4
  

 

Eq. (3.16) 

Note the minus signs because of the different directions of the rotations.  

3.4.2.2.2 Non-linear stage 
After the linear elastic stage is passed, there is an important change. The scaling of the bending 
moment diagram becomes now very difficult, as the stiffness ‘EI’ is not a constant anymore. For 
every location of the beam, the stiffness is different. As the moment and the curvature are related 
by the stiffness, one way to work around this problem is to couple those two values. In this way, 
a reduced bending moment diagram can be found. What is done, is that the values from the 
bending moment diagram are coupled with the corresponding curvature values that are traced 
from the moment-to-curvature diagram. All found curvatures can then be put into a diagram, 
which is in fact the reduced bending moment diagram. 

If the bending moment diagram for a 4-point bending test is taken into account again, it 
can be split into three regions that are shown in Figure 3-27. 
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Figure 3-27: three bending moment diagram regions in the non-linear stage for a 4-point bending test 

Those three regions can be explained as follows: 

 Region 1: linear elastic region. In this region, the undamaged material is taken into 
consideration. The same principle as in subchapter 3.4.2.2.1 is used, as the material is 
acting linearly. The geometrical figure that results in the reduced bending moment 
diagram is a triangle near the support. 

 Region 2: non-linear segments region. Between the location of the end of the undamaged 
material and the location of the applied force, the bending moment varies. Therefore, this 
region has to be split into multiple segments, that have the shape of a rectangle. The 
bending moment at the centerline of each segment is coupled with the corresponding 
curvature. For a large amount of segments, the approximation becomes accurate.   

 Region 3: non-linear constant region. This region contains a constant bending moment 
value, and therefore a constant corresponding curvature value.  

This is all summarized in Figure 3-28. A sketch is shown of a possible configuration.  
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Figure 3-28: a ‘jump’ in the transition between regions 2 and 3 marked in red in the non-linear stage 

As can be seen in Figure 3-28, region two is not a straight line between region 1 and region 3. 
Next to that, region 1 has a very shallow slope. Both observations can be explained. First of all, 
region 1 has a very shallow slope because the stiffness ‘EI’ of a non-damaged part is much higher 
than a cracked part. As region 1 is still in the linear elastic stage, the material is undamaged. 
And as the bending moment diagram is scaled by the stiffness, region 1 results in lower values 
for the reduced bending moment diagram (as it is scaled by a larger stiffness). Therefore, the 
slope of this region is also very shallow. 

As for region 2, it was explained earlier that for every bending moment value, the 
corresponding curvature is coupled with it. For example, a jump can be seen near the location of 
the applied force. It is marked in red in Figure 3-28. This can be the case if the maximum bending 
moment is at the end of a horizontal plateau. This is illustrated in Figure 3-29.  
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Figure 3-29: cause of a jump in the reduced bending moment diagram in the non-linear stage 

As can be seen in Figure 3-29, point 1 marks the maximum bending moment. Suppose that this 
bending moment is the bending moment at region 3 of Figure 3-28. Point 2 marks a slightly 
lower bending moment value. Consider this as the bending moment directly next to region 3 (so 
the start of region 2). Although the bending moment values do not differ by much, the curvature 
that corresponds to point 2 is much lower than the curvature that corresponds to point 1. And 
as the curvature is shown in the reduced bending moment diagram, there will be a jump in the 
diagram. 

This is one of the many possibilities. Not all of them can be taken into account in this 
research, but at least it is clear that the segments at region 2 will vary much in (curvature) value 
and will not be a linear interpolation between region 1 and region 3. 

In order to find the deflection at midspan, all areas that are shown in Figure 3-28 have 
to be found and multiplied with their distance to support B in order to find the rotation at 
support A. After that, the reduced bending moment diagram can be split into two, and all the 
areas including the rotation at support A have to be multiplied with their distance to midspan.  

Calculating the deflection for a 3-point bending test is done in the same way as for the 
4-point bending test, apart from the geometrical differences between the two tests. The same 
procedure that is explained for the 4-point bending test is explained for the 3-point bending test 
in Appendix D. 

3.4.2.3 Method 3: forget-me-nots 
The third method is based on the forget-me-nots. In this subchapter, the application for both 
the 3-point and 4-point bending test is presented. The assumption that is of most importance in 
this method is that the bending stiffness ‘EI’ is equal for the whole beam. This is true in the 
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linear elastic stage, but not after that. The bending stiffness that is used in the expression of the 
displacement is found by rewriting the known expression for the bending moment: 

 
 𝑀 = 𝐸𝐼𝜅 → 𝐸𝐼 =

𝑀

𝜅
 

 

Eq. (3.17) 

In a moment-to-curvature diagram, that is equal to the slope at each point. This slope changes 
for each datapoint. In case of a material with strain hardening properties, the bending stiffness 
keeps decreasing after the linear elastic stage. Therefore, the bending stiffness after the linear 
stage, which is assumed to act over the whole beam, is lower than the real bending stiffness at 
each location between the location of the force and the support. This means that the deflection 
that is found, is higher than the real deflection, as the bending stiffness near the support is for 
example higher than at the constant bending moment region (in which cracks have occurred). 
This all is because the bending stiffness is in the nominator of the expression that calculates the 
deflection. As a result, this method results in a deflection that is overestimated. 

3.4.2.3.1 4-point bending test 
The mechanical scheme that corresponds to the forget-me-not of a 4-point bending test is shown 
in Figure 3-30.   
 

 

Figure 3-30: mechanical scheme for determining the deflection at midspan using the forget-me-nots 
(Prinsse, 2017) 

The deflection that follows from the forget-me-not is equal to (Prinsse, 2017): 
 
 

𝑤ଶ =
𝑀𝐿ଶ

24𝐸𝐼
∗ ቆ3 − 4 ∗

𝑎ଶ

𝐿ଶቇ 

 

Eq. (3.18) 

In which ‘M’ is the maximum bending moment, ‘L’ the total span of the beam and ‘a’ the distance 
between the support and the applied force (equal for both sides). Using the earlier found 
relationship between the curvature and the moment in Eq. (3.17), the forget-me-not can be 
rewritten into: 
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𝒘𝟐 =
𝟐𝟑

𝟐𝟏𝟔

𝑳𝟐

𝑹
 

 

Eq. (3.19) 

Eq. (3.19) is however only valid for the typical 4-point bending tests, in which all three spans 
are equal. A generical expression for the deflection is: 
 
 

𝒘𝟐 =
𝟏

𝟐𝑹
ቆ

𝑳𝟐

𝟒
−

𝑳𝟏
𝟐

𝟑
ቇ 

 

Eq. (3.20) 

In which the ‘L1’ is the distance between the support and the force. The derivation of Eq. (3.19) 
and Eq. (3.20) is shown in Appendix D. 

3.4.2.3.2 3-point bending test 
The forget-me-not for a 3-point bending test setup is show in Figure 3-31. 
 

 

Figure 3-31: forget-me-not to find the midspan deflection in a 3-point bending test (Hartsuijker & 
Welleman, 2013) 

Using the earlier found relationship between the curvature and the moment in Eq. (3.17), and 
using the maximum bending moment that was already shown in Eq. (3.10), the forget-me-not 
can be rewritten into: 
 
 

𝒘𝟑 =
𝟏

𝟐𝟒

𝑳𝟑

𝑳𝟏𝑹
 

 

Eq. (3.21) 

As the ‘L1’ parameter is always half of the total span for a 3-point bending test, Eq. (3.21) can 
be rewritten to: 
 
 

𝒘𝟑 =
𝟏

𝟏𝟐

𝑳𝟐

𝑹
 Eq. (3.22) 
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The derivation of Eq. (3.21) is shown in Appendix D. 

3.4.2.4 Comparison of methods 
Ultimately, the ‘momentvlakstellingen’ method will be used in the MLM to calculate the deflec-
tions. As a result, this method is used in the verification of earlier experimental results in chap-
ter 4. However, to make sure that the deflections that follow from this method are ‘logical’, 
they will be compared to the under- and the overestimated deflections that follow from the first 
method (constant curvature) and the third method (forget-me-nots). If the result from the ‘mo-
mentvlakstellingen’ method lies in between the under- and overestimated deflections, it can be 
concluded that the acquired deflection is logical. For the 3-point bending test, the results can 
only be compared to the overestimated deflection, as the first method (constant curvature) is 
not suitable for calculating an underestimated deflection of a 3-point bending test. 

3.4.3. Crack width 
The crack width at midspan of a beam can be calculated using the expressions from the Eurocode. 
Note that these expressions only apply for traditionally reinforced concrete beams (or in other 
words: non-hybrid concrete beams with steel reinforcement in the tension zone). Therefore, the 
method that is applied in the proposed MLM will also only be applicable for those beams. 

In a traditionally reinforced concrete beam, steel reinforcement is placed in the tension 
zone. For a specimen that is purely loaded in tension, as is shown in Figure 3-32, the 
reinforcement is placed in the middle of the cross-section. 
 

 

Figure 3-32: reinforced concrete bar subject to a tensile force (Luković & van der Ham, 2020) 

As the tensile load increases, the connection between the steel and the concrete gets loaded 
heavier and heavier. At some point, it will slip. In that case, one of the materials will elongate 
more than the other. The difference between those two elongations is the crack width ‘w’, which 
is illustrated in Figure 3-33.  
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Figure 3-33: definition of crack width due to slip between concrete and steel (Luković & van der Ham, 
2020) 

The crack width in a traditionally reinforced concrete beam can be calculated according to the 
Eurocode. The expression is (NEN, 2011): 
 
 𝑤௫ =

1

2

𝑓௧

𝜏
 

𝜙

𝜌

1

𝐸௦
(𝜎௦ − 𝛼𝜎௦ + 𝛽𝜖௦𝐸௦) 

 

Eq. (3.23) 

Before explaining the parameters, some parameters will be discussed that result in rewriting this 
expression. First, the ‘𝜏’ parameter. If a ribbed steel reinforcement bar is chosen, this 
parameter is equal to ‘2fctm’. Because this parameter only contributes to the rewriting of the 
expression, it will not further be explained. For different types of reinforcement bars this value 
can be different. However, for now it is assumed that we are only dealing with ribbed bars. 
Implementing this into Eq. (3.23) results in Eq. (3.24): 
 
 𝑤௫ =

1

4

𝜙

𝜌

1

𝐸௦
(𝜎௦ − 𝛼𝜎௦ + 𝛽𝜖௦𝐸௦) 

 

Eq. (3.24) 

The other two parameters that will result in a different expression are the ‘𝛼’ and the ‘𝛽’ 
parameters. Their values are given in Figure 3-34. 
 

 

Figure 3-34: values for the ‘𝛼’ and ‘𝛽’ parameters in the crack width equation (Luković & van der Ham, 
2020) 
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In the MLM that is proposed in this report, only short term loading is considered (regular 3-
point or 4-point bending test). Therefore, ‘𝛼’ becomes equal to 0.5, and ‘𝛽’ becomes equal to 
zero. Inserting those values in Eq. (3.24) results in Eq. (3.25): 
 
 𝑤௫ =

1

4

𝜙

𝜌

1

𝐸௦
(𝜎௦ − 0.5𝜎௦) 

 

Eq. (3.25) 

The parameters in Eq. (3.25) are explained in Appendix G. 

3.4.4. Crack opening displacement 
In Figure 3-36, the crack opening displacement is illustrated. In this figure, a beam that is 
deflecting is shown, with the ‘crack’ occurring in the tension zone at midspan. As the beam 
deflects more, the crack opening displacement ‘w’ becomes larger. 
 

 

Figure 3-35: definition of crack opening displacement ‘w’ (Lappa, 2007) 

 
Eq. (3.8) is ultimately used for finding the crack opening displacement. Rewriting this equation 
gives Eq. (3.26): 
 
 

𝑤 =
𝑙

𝜖
 

 

Eq. (3.26) 

The influence length ‘linf’ is used as input, while the strain can be found from the output at each 
step. The way the strain is found is shown in Figure 3-36. It is an arbitrary strain diagram over 
the height of the cross-section. 
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Figure 3-36: strain diagram for finding the strain at the bottom of the cross-section 

The two parameters that are needed here are the curvature ‘κ’ and the height from the bottom 
to the neutral axis ‘h1’. As the neutral axis position that is calculated in the MLM is calculated 
from the bottom, h1 is equal to the neutral axis position that is already calculated in the MLM 
for each step/datapoint. What now rests is finding the strain at the bottom; this is strain is 
found by multiplying the curvature with the neutral axis position. Or in the MLM terms: 
 
 𝜖௧ = 𝜅 ∗ 𝑛. 𝑎. 

 
Eq. (3.27) 

With this, the crack opening displacement for each step/datapoint becomes equal to: 
 
 

𝑤 =
𝑙

𝜅 ∗ 𝑛. 𝑎.
 

 

Eq. (3.28) 

It is assumed that this calculation method holds for all types of cross-sections as long as there is 
no reinforcement involved that has effect on limiting the crack opening displacement, such as 
steel reinforcement in a concrete beam. At the same time, it is assumed that it holds for hybrid 
sections without any additional reinforcement (SHCC + concrete without steel reinforcement for 
example). 

3.4.5. Drying shrinkage 
In this subchapter, more information on the drying shrinkage process is presented in the form of 
calculations. First, the previous research is shown on which the proposed MLM relies in terms of 
implementation of the drying shrinkage. After that, it is shown how the results of previous 
research are implemented in the MLM. Last but not least, the effects of a hybrid section on all 
presented information is investigated.  
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3.4.5.1 Background information 
As was explained before, the drying shrinkage process occurs when a specimen is exposed to an 
environment that contains less water than the specimen itself. This process introduces 
compressive and tensile stresses. However, these compressive and tensile stresses only occur if 
there is any form of restraint. If the specimen is unrestrained, no problems occurs. The restraint 
that occurs in the specimen, which will result in the drying shrinkage stresses, is the difference 
in the moisture gradient. As is mentioned in (van Breugel, 2011), the drying shrinkage of a 
(thick) specimen is not uniform. There is more drying at the surface. Following the earlier 
described process of water loss in the small capillary pores, the stresses are initiated. An example 
of the moisture gradient is shown in Figure 3-37, in which a cube of 150 mm is modelled using a 
finite-element program called FEMMASSE. The result after 28 days of drying is shown. The 
legend of Figure 3-37 shows the relative humidity of the specimen; a relative humidity of one 
(red colour) means that the specimen is saturated.  
     

 

Figure 3-37: relative humidity profile for a cube of 150 mm after 28 days of drying;1=red=saturated 
(Awasthy, 2019) 

While tensile stresses act at outer parts of the specimen, compression stresses occur inside the 
concrete. This is due to the need of horizontal equilibrium of the so called ‘eigenstresses’.  

In the research of (Awasthy, 2019), an attempt was made to model those stresses that 
occur after curing of the specimen. This was done by using a method from (van Breugel, 2011), 
which originally was meant to deal with temperature loads. But like temperature loads, drying 
shrinkage is also a form of an imposed deformation. Therefore, the method could also be used for 
drying shrinkage. The method is shown in Figure 3-38.  
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Figure 3-38: subdividing each shrinkage profile into three sub-profiles and the corresponding calculation: 
average, linear and non-linear (Awasthy, 2019) 

The goal is to find the ‘non-linear’ component that is shown in Figure 3-38, that represents the 
eigen-strains that occur in the cross-section and are used to find the eigen stresses (which should 
lead to equilibrium). Those are the stresses that occur due to the drying shrinkage, and are used 
in the calculation of the MLM.  

For the relative humidities that are shown in Appendix E, which are all symmetric with 
respect to the middle of the cross-section, the ‘linear’ component in Figure 3-38 is equal to zero. 
Proof of that is shown in Appendix E. The ‘eigen-strains’ therefore become (using the same 
notation as in Figure 3-38): 

 
 ∆𝑇 = ∆𝑇(𝑥) − ∆𝑇௩ 

 
Eq. (3.29) 

However, this results in compression stresses at the surface, and tensional stresses in the core. 
As it is known that exactly the opposite is the case, Eq. (3.29) is rewritten to: 
 
 ∆𝑇 = ∆𝑇௩ − ∆𝑇(𝑥) 

 
Eq. (3.30) 

The ‘ΔTave’ is the average humidity along the height. In Appendix E, it is shown for a drying 
period of 28 days how this is formally calculated. Therefore, the drying strain at each location 
along the height is equal to the average humidity minus the actual occurring humidity at the 
same location. In the MLM that is proposed in this thesis, the strains will be used in the 
calculation, and not the stresses directly. The strains will be considered as ‘initial strains’, that 
are present in the layers of the MLM before an external load is applied to the beam. 

Performing the calculations as was proposed by (Awasthy, 2019) leads to the results in 
Figure 3-39 for different drying periods. The drying periods are after 28 days of curing in 
controlled conditions. 
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Figure 3-39: profile of eigen-strains due to drying shrinkage for different drying periods 

The data that is shown in Figure 3-39 is related to a specimen of 150 mm height. As the relative 
humidity profile depends on the specimen size (Awasthy, 2019), this data can only be used for 
this size. So if a calculation needs to be performed of a different specimen size, external input is 
needed of the relative humidity profile (for different drying periods). Another option is to use the 
eigen-strains directly as input.  

The drying shrinkage strains that follow from Figure 3-39 are implemented in the MLM 
as follows. First, the strain at the centerline of each layer of the MLM is calculated. This is done 
by assuming a linear relation between the known datapoints in Figure 3-39. For example, at 90 
days of drying, it is shown in Figure 3-40 what this results in. 

 



56   Chapter 3: Multi-layer model 

 

Figure 3-40: interpolation between known datapoints of drying shrinkage eigen-strains for 90 days of 
drying 

Although the results are not precise, they are acceptable. At the surface, the results are accurate, 
but the more the core is approached, the less accurate the results become. One could argue that 
a parabola is an obvious better option, but as can be seen in Figure 3-39, many of the drying 
shrinkage profiles can certainly not be modelled accurately using a parabola.  

The strains that are found at each layer are considered the ‘initial strains’, that are 
present before the 3-point or 4-point bending test is performed. The first effect on the calculation 
is that the linear elastic stage will be reached earlier than if there was no drying shrinkage. As 
there is already a tensional stress at both surfaces (and thus also at the tension zone of the 
beam), the tension that is needed to reach the end of the linear elastic stage is lower. In other 
words, a lower load in the bending test will be needed to reach the end of the linear stage. The 
initial strains are visualized in Figure 3-41. The strain diagram at the left is the strain diagram 
due to loading; the strain diagram at the right is a hypothetical strain diagram due to drying 
shrinkage. The strain diagram due to drying shrinkage is always present, and the strains due to 
loading are added to those strains.  
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Figure 3-41: superposition of strain due to loading and initial strains due to drying shrinkage 

After the end of the linear elastic stage is found, the same process as was described before is 
followed. The curvature increases with a little step, the neutral axis position that results in 
horizontal equilibrium is searched for, and finally the bending moment resistance is found. 
Repeating that until failure leads to the desired output.  

The second effect that appears due to the drying shrinkage, is a decrease of (general) 
resistance; for the same curvature/displacement, generally a lower force is needed. The most 
extreme situation is illustrated: for plain concrete, the maximum resistance is reached at the end 
of the linear elastic stage; after that, the concrete cracks and the resistance decreases. If the 
tensile strength of a concrete specimen would be 3 N/mm2 with a Young’s modulus of 30 GPa, 
the end of the linear elastic stage would be at 0.1‰ if Eq. (3.3) is used. In bending, the maximum 
tensile stress is reached at the bottom. At this position (for a specimen of 150 mm height), using 
Figure 3-40 for example, the tensile strain due to drying shrinkage is equal to 0.2‰. This means 
that the linear elastic stage is already exceeded without external loading, which means that the 
resistance of plain concrete would be negligible compared to if there was no drying. 

Another example is shown to illustrate the effect of drying shrinkage. An SHCC cross-
section of 150x150 mm is considered. Two beams are simulated, with one beam exposed to 28 
days of drying, and the other not (so no drying). A 4-point bending test is used with equal spans 
of 500 mm; so the total span is equal to 1500 mm. In Figure 3-42, the modelled results are shown. 
The input that is used for this specimen for 28 days of drying is shown in Appendix E. 
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Figure 3-42: no drying vs. 28 days of drying after 28 days of curing; effects on the force-to-displacement 
curve 

As can be seen, the force that is required for the same displacement is higher if there is no drying 
(so there is more resistance). For example, when a force of 13.5 kN is applied, the deflection is 
equal to 2.09 mm for the beam that was not exposed to drying. The other beam deflects 2.90 
mm. That is an increase of 38.8% in this example. The maximum force that can be applied on 
the beam also decreases if there is drying. However, it is around 2.4‰ in this example, which is 
negligible. However, this depends on the experimental setup. 

The described method in this subchapter is suitable for beams consisting of a single material. 
Eigen-strains can directly be used as input, or the relative humidity profile can be used to 
calculate the eigen-strains.    

3.4.5.2 Applicability for hybrid beams 
When a hybrid beam is considered, a material with strain hardening properties is used in the 
tension zone. The behaviour that was shown in Figure 2-3 is of importance to explain the ap-
plicability of the drying shrinkage calculation for such beams. In this subchapter, SHCC is con-
sidered as the material that is applied in the tension zone, in accordance with the proposed sys-
tem in chapter 2. 
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Normally, the SHCC layer will be casted before the concrete layer. As was shown in Figure 1-6, 
SHCC can shrink up to approximately 2500 m/m, which is equal to 2.5‰. In order to illus-
trate what happens, the worst-case scenario is assumed in which the SHCC shrinks, while the 
concrete is not. This is illustrated in Figure 3-43. The SHCC layer is shown in orange, while 
the concrete layer is shown in grey.   
 

 

Figure 3-43: hypothetical situation in which only the SHCC shrinks due to drying 

As can be seen in Figure 2-3, the resistance of SHCC in tension keeps increasing until approxi-
mately 5% = 50‰ (for this particular example). The 2.5‰ that is added due to drying shrink-
age will not affect the SHCC by much. In fact, due to the increasing resistance in tension, the 
drying shrinkage will cause an increase in resistance (as long as the 50‰ strain is not govern-
ing for failure, and as long as a perfect bond is assumed). Therefore, the effect on the bending 
resistance will not be noticeable, which makes the calculation method not suitable for hybrid 
beams. However, the challenge of drying shrinkage in this case is to transfer the force that oc-
curs due to the drying shrinkage from the SHCC to the concrete. This could have a big effect 
on the interface between the two materials. The force due to drying shrinkage could be such 
that it influences the resistance of the beam because the interface cannot (fully) transfer this 
force. But, in the proposed MLM, a perfect bond between the two materials is assumed (in all 
cases), which means that this effect is not considered/modelled.  

3.4.6. Flexural stress 
As the MLM that is proposed in this report only considers tension at the bottom of the beam, 
the flexural stress that will be searched for will automatically also be the stress at the bottom of 
the beam. The method that will be presented in this subchapter will sound counter-intuitive, and 
it will be explained why that is the case and why it does not form a problem. 
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The calculation of the flexural stress will purely be a linear elastic calculation. In case a fully 
symmetric beam is considered, Eq. (3.1) can be used for finding the flexural stress. However, this 
is not a general expression as it is only applicable for fully symmetric beams. The general 
expression is: 
 
 𝜎 =

𝑀𝑧

𝐼
 

 

Eq. (3.31) 

Here, ‘M’ is the occurring bending moment, ‘z’ is the distance from the neutral axis to the bottom 
fibre and ‘I’ is the known ‘ ଵ

ଵଶ
bh3’ value. 

As was mentioned before, the calculation will be purely linear elastic. This means that 
the position of the neutral axis is fixed. Because as was shown before, the neutral axis moves 
upwards in the non-linear stage. This is the first part that feels counter-intuitive, as it is 
assumed that the position of the neutral axis is fixed, while in reality this is not the case. 

The same issue occurs when calculating the second moment of area ‘I’. The general 
expression is ‘ ଵ

ଵଶ
bh3 + d2A’, in which ‘d’ is the distance from the center of mass the cross section 

to the neutral axis. In the linear elastic stage, this distance is equal to zero, which is why the 
‘ ଵ

ଵଶ
bh3’ is directly used. However, in the non-linear stage, the neutral axis position will move, 

which means that there will be a contribution from the ‘d2A’ part. However, it is assumed that 
the neutral axis position is fixed, as was mentioned before. Therefore, only the ‘ ଵ

ଵଶ
bh3’ is used.  

The reason that a purely linear elastic calculation is used, is to be able to compare with 
other regular tests. Traditionally, the non-linear stage is not considered when testing concrete 
specimens, as they show no strain hardening behaviour. The strain hardening behaviour of 
cementitious materials is a rather new development. Therefore, to be able to compare with 
traditional tests, the same calculation model needs to be followed. 

3.4.7. Longitudinal shear 
The main assumption related to the longitudinal shear in the proposed MLM is that a perfect 
bond exists between the two materials of the hybrid section. This is not the case for the bond 
between the steel reinforcement and the concrete, as was explained in subchapter 3.4.3. Therefore, 
slip can occur between steel reinforcement and the concrete, which translates back to a crack 
width. So, a calculation of the longitudinal shear can only be made if a hybrid section is 
investigated. Therefore, this subchapter is only applicable for hybrid sections. 

It is found that the longitudinal shear stress is equal to the vertical shear stress. In other 
words, the expressions for the vertical shear stress can be used to find the shear stress at the 
interface between the two materials; the longitudinal shear stress is then equal to it. Proof of 
that is shown in Appendix H.  
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The vertical shear stress (which is equal to the longitudinal shear stress) is calculated using Eq. 
(3.32). This shear stress is given in [N/mm2]. To translate it to a force per unit length (of the 
beam), it can be multiplied with the length of the interface, which is the width of the beam. 
 
 𝜏 =

𝑉𝑆

𝑏𝐼
 

 

Eq. (3.32) 

In which ‘V’ is the shear force. As can be seen in Figure 3-44, the maximum shear force for a 4-
point bending test is between the support and the location of the force. It is equal to half of the 
applied force. 
 

 

Figure 3-44: shear force diagram for a 4-point bending test (Huijben, van Herweijnen, & Nijsse, 2010) 

For a 3-point bending test, the maximum shear force is the same as for the 4-point bending test. 
The only difference is that there is no constant bending moment region in which the shear force 
is equal to zero. So in the proposed MLM, the maximum shear force can always be taken as half 
of the applied force. 

The parameter ‘b’ is the width of the interface. In a hybrid section, it is equal to the 
width of the beam itself. An example of this is shown in Figure 3-45.  
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Figure 3-45: example of the cross-section of a hybrid beam 

The ‘I’ parameter is again the known ‘ ଵ

ଵଶ
bh3’ value. The last parameter that needs some 

explanation is the ‘S’ parameter, which represents the first moment of area [mm3]. It is calculated 
with respect to the interface,  as that is the location of interest. As a cut is made at the interface, 
the beam is divided into two sections: the concrete (top layer) and the other material (bottom 
layer). One of the areas needs to be chosen to determine the first moment of area of it. It does 
not matter which area is chosen. In the MLM that is proposed in this thesis, the bottom area is 
taken. That is indicated in Figure 3-46. 

 

Figure 3-46: determining the first moment of area of the bottom area in a hybrid beam with respect to 
the n.a. 
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Determining the first moment of area goes as follows: first, the area of the bottom layer in Figure 
3-46 is calculated. It is equal to ‘b*tbot’. After that, this area is multiplied with the distance from 
the center of the area to the location of the neutral axis. This is shown in Figure 3-47. 
 

 

Figure 3-47: distance from the center of the area that is cut to the neutral axis position (Learneasy, 
2020) 

In this case, this distance is, using the MLM parameters, equal to ‘n.a. - tbot/2’. As a result, a 
first moment of area of ‘b*tbot*(n.a. – tbot/2)’ is found. Gathering all information that is found, 
the shear stress becomes equal to (again using the same parameters as in the MLM): 
 
 

𝜏 =
6𝐹 ∗ 𝑡௧ ቀ𝑛. 𝑎. −

𝑡௧
2

ቁ

𝑏ℎଷ
 

 

Eq. (3.33) 

Note that the neutral axis position is not the initial neutral axis position, but the position at 
each iteration.  

This calculation is however not suitable if U-shapes are used in the MLM as the interface 
between the SHCC (for example) and the concrete is much larger and much different. The shear 
stress is not only calculated for a certain position over the width, but also along the height. This 
can in the future be implemented in the MLM. 
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4. Verification of multi-layer model 
In order to use the multi-layer model for further research, it first has to be verified. That will be 
done in this chapter. Two verifications ‘groups’ are considered. One group has the effect of drying 
shrinkage included, while the other group has not.  

The verification of the group that does not contain the drying shrinkage effect is done in 
four phases. The phases are related to the complexness of the verification. In the first phase, two 
previous studies will be used for comparison, in which a beam consisting of a single material is 
considered. In the first research, a previous version of the multi-layer model was used by (Lappa, 
2007). The advantage is that there are both experimental and modelled results to compare with. 
The other study only contains experimental results. In the second phase, a comparable approach 
will be used. Again, both experimental and modelled results are available. Next to that, an 
addition will be in place in the form of steel reinforcement. So although again a single material 
beam is considered, it now also contains reinforcement. In the third phase, a research with hybrid 
(concrete + SHCC + reinforcement) experiments will be used for verification. The added 
difficulty in this phase will be the addition of a material to the model and the verification. Here, 
also modelled results are available. In the last phase, the added difficulty will be the addition of 
the webs of U-shape to the reinforced hybrid beam. As this type of experiment has never been 
performed before, only the modelled results using the MLM will be presented. The same 
experimental setup as in the third phase, apart from the webs of the U-shape, will be used. These 
results can be verified in the future by experiments.     

 The other group, that contains the drying shrinkage effect, is verified by comparing results 
from (Awasthy, 2019), in which the effect of drying periods on the flexural strength of NSC 
(Normal Strength Concrete) and HSC (High Strength Concrete) was investigated. Next to that, 
a verification from the research of (Awasthy, 2019) is shown. 

4.1. Phase 1: non-hybrid section 
4.1.1. HSFRC 

Firstly, the multi-layer model will be compared with previous research (Lappa, 2007). One of the 
materials that was investigated in this research, is HSFRC, which stands for High Strength Fibre 
Reinforced Concrete. This material also shows strain hardening behaviour. Multiple sorts of 
experiments were performed using this material. The type that is of importance in this thesis, is 
the unnotched 4-point bending test on a beam of the following dimensions: 1000x125x125 [mm]. 
The span was equal to 750 mm. For this beam, experimental results were provided that were 
compared with modelled results (also by the multi-layer model). 

In order to model this beam, the input parameters as in Table 4-1 were used by (Lappa, 
2007). Exactly the same input is used for the verification by the proposed MLM. 
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Table 4-1: assumed HSFRC input parameters that was used in the Lappa MLM (Lappa, 2007) 

Note however that the influence length that was used in Table 4-1 was for a notched beam. For 
the unnotched beam, half the height is 0.5*125= 62.5 mm; so that influence length will be used 
in the verification. The compressive input parameters that are listed in Table 4-1 are visualized 
in Figure 4-1.   

 

Figure 4-1: compressive stress-to-strain relation for HSFRC that was used in the Lappa MLM (Lappa, 

2007) 

The tension input parameters are shown in Figure 4-2. The orange line is the line that considers 
a critical crack width of 3.25 mm. This line is drawn in the original figure from (Lappa, 2007). 
As was explained before, and as can be seen in Eq. (3.8), the strain is calculated as the crack 
opening displacement divided by the influence length. 
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Figure 4-2: modified tensile input for HSFRC that was used in the Lappa MLM (Lappa, 2007); edited 

Using all the input in the MLM, it results in the input parameters shown in Figure 4-3.  
 

 

Figure 4-3: input parameters used in the MLM to verify the results from (Lappa, 2007) 

This results in the stress-to-strain diagram in Figure 4-4: 
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Figure 4-4: HSFRC stress-to-strain input to use in the MLM 

Comparing the force-to-displacement diagram that follows from the developed MLM with the 
results from (Lappa, 2007) leads to the comparison in Figure 4-5.  
 

 

Figure 4-5: verification HSFRC force-to-displacement curve by comparing with (Lappa, 2007) 
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As can be seen in Figure 4-5, the behaviour is quite the same in the beginning stages. Up until 
a deflection of approximately 3.2 mm, the behaviour of the proposed MLM is more in line with 
the experiment than the ‘old’ MLM. However, the drop (more displacement with a decreasing 
force) is not present in the shown range. The drop happens later (as can be seen in Appendix 
C). This is not in line with the experiment. However, one of the positives is that nearly the same 
maximum force is achieved, which means that the end resistance is predicted well. Next to that, 
the non-linear part is partly predicted well. A possibility that the ‘drop’ happens earlier in the 
experiment, could be that the casted specimen had certain imperfections, which resulted in earlier 
failure. A parameter that greatly influences the results, is the influence length. If a higher value 
is chosen than half the height, the drop happens earlier. As was explained before, the strain is 
equal to the crack width divided by the influence length. If a larger influence length is chosen, 
the strain in the stress-to-strain diagram will decrease, which means that the considered material 
has less strength. This leads to an earlier drop. In the verification, half the height was chosen as 
the influence length to have exactly the same parameters as was used in (Lappa, 2007). So 
although the results did not match completely with the experimental results, improvements can 
be made if the influence length is changed. However, for the same influence length, the ‘Lappa 
MLM’ performed better for this curve. 

The other diagram from the research of (Lappa, 2007) that is used to verify the MLM, is 
the force-to-crack opening displacement diagram. Using the same input, the comparison in Figure 
4-6 is found. 

 

 

Figure 4-6: verification HSFRC force-to-crack opening displacement curve by comparing with (Lappa, 

2007) 
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As can be seen in Figure 4-6, the results are much more in line with the experiment compared 
to the force-to-displacement curve. Next to that, the same trend as before is noted; the proposed 
MLM is more in line with the experimental results in the beginning stages. In fact, it is more in 
line than the ‘Lappa MLM’ overall. This was different for the force-to-displacement diagram. 

The most positive conclusion from this verification is that the new and old MLM almost 
overlap for the force-to-crack opening displacement diagram, which clearly indicates that the 
same calculation process is behind it (which is the purpose of the verification).  

The input parameters that are used in this subchapter have already been shown in Figure 
4-3. A screenshot of the input and output of the developed MLM for this verification is shown in 
Appendix C. 

4.1.2. SHCC 
In the paper of (Zhou, et al., 2010), SHCC specimens were tested in a flexural test, which lead 
to a stress-to-deflection diagram. Next to that, a direct tension test was performed. The output 
of that test was used as input in the proposed MLM. The direct tension test results are shown 
in Figure 4-7. 
 

 

Figure 4-7: stress-to-strain relation for SHCC according to a direct tensile test (Zhou, et al., 2010) 

Based on this input from the direct tension test, the output from the MLM will be compared 
with the experimental results of the flexural test, as obtained by (Zhou, et al., 2010). In this 
subchapter, the red line in Figure 4-7 will be used for the verification. The compressive input is 
assumed to be equal to conventional concrete. Using all the input in the MLM, it results in the 
input parameters shown in Figure 4-8. 
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Figure 4-8: input parameters used in the MLM to verify the results from (Zhou, et al., 2010) 

Here, three notes need to be made. First of all, the density of SHCC is assumed to be equal to 
2000 kg/m3. As the goal of this verification is not to reach failure, the density value that is used 
has a negligible effect on the results. Secondly, as can be seen in Figure 4-8, there is crack input 
that is used. The reason that this is done, is to be able to have the maximum of four datapoints 
in the material stress-to-strain diagram in tension (shown in Figure 4-10), in order to approximate 
the direct tension results as good as possible. Finally, the Young’s modulus data was not available 
and therefore assumed to be equal to 18,000 N/mm2. This is based on the assumption in (Huang, 
2017).  

This used input in the MLM leads to the stress-to-strain diagrams that are shown in 
Figure 4-9 and Figure 4-10. 
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Figure 4-9: SHCC stress-to-strain input to use in the MLM 

 

 

Figure 4-10: SHCC stress-to-strain input in tension to use in the MLM 

The experiment that was performed is an unnotched 4-point bending test on a beam of the 
following dimensions: 120x30x10 [mm]. The span was equal to 110 mm.  
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Comparing the stress-to-displacement diagram that follows from the proposed MLM with the 
results from (Zhou, et al., 2010) results in the graph that is shown in Figure 4-11. 
 

 

Figure 4-11: verification SHCC stress-to-displacement curve by comparing with (Zhou, et al., 2010) 

As can be seen in Figure 4-11, the results do not overlap at all. The ultimate stress is 
underestimated (12.5 MPa vs. 9 MPa). There is only one stage in which the results completely 
overlap: the very start of the experiment. As can be seen, a very small part near a deflection of 
zero is equal. Or in other words, the initial stiffness is equal. This means that the assumed 
Young’s modulus was accurate. However, the linear elastic stage ends very quickly for the 
experiment. At a deflection of 0.1 mm, the non-linear stage is already reached. This does not 
seem logical, so it could be that there was a problem with the experiment. The lack of match 
concerning the ultimate stress (12.5 MPa vs. 9 MPa) could be explained as follows: as the width 
of the considered beam is three times the height (30 mm width and 10 mm height), the specimen 
is more behaving like a slab. Due to the larger width, there is also some resistance in the other 
direction than in which it is loaded. This is illustrated in Figure 4-12. This behaviour is not 
implemented in the MLM.  
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Figure 4-12: slab like behaviour in which there is additional resistance from the secondary direction 
(Hendriks, 2018) 

In the MLM, the specimen ultimately fails in compression (crushing). This could mean that the 
compressive strength is underestimated; an increase in compressive strength would increase the 
bending moment resistance which would lead to a higher flexural strength. 
  Another reason could be that the tensional input that is assumed is underestimated. To 
obtain the tensional input, the uniaxial test was performed. However, the size of the specimen 
that was used for this test is larger than the specimen that was used for the 4-point bending 
test. This could mean that there were more weak points in the larger specimen, which resulted 
in decreased (assumed) resistance. 
  Next to that, there is also a mismatch in the trend that each line follows in Figure 4-11. 
As can be seen in that figure, the experimental results show small drops with increasing 
deflections. This is due to the strain hardening effect, which can be seen in the direct tension test 
example in Figure 2-3. As the microcracks appear, a small drop in resistance can be seen. This 
behaviour cannot be seen in the modelled results, as the proposed MLM does not take into 
account these microcracks. 

The input parameters have already been shown in Figure 4-8. A screenshot of all the 
input and output of the developed MLM for this verification is shown in Appendix C. 

4.2. Phase 2: reinforced non-hybrid section 
In the second and third phase, the multi-layer model will be compared with the same research 
performed by (Huang, 2017). The reason that this is done, is to have a reference about how 
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comparable the results are for non-hybrid and hybrid sections. As both experiments are 
performed by the same researcher, the way of casting, experimenting, placing reinforcement etc. 
is equal for both experiments. This means that if the results of the non-hybrid experiment, that 
is discussed in this subchapter, are similar to the results of the proposed MLM, the same 
similarity should be expected when comparing with the hybrid sections. If the hybrid section 
would be investigated on its own, it could have been the case that possible differences in results 
become unexplainable. Now, this problem is solved by having both experiments performed by 
the same researcher under the same conditions. 
Additionally, both phases will have another comparison included, namely the modelled results of 
(Jayananda, 2017). In his research, the FEA-program ATENA was used to model the bending 
resistance of the same beams that (Huang, 2017) experimented with. 

The non-hybrid section is a traditionally reinforced concrete beam of the following 
dimensions: 1900x150x200 [mm]. The total span is equal to 1500 mm (which is used as input in 
the MLM). The cross-section is shown in Figure 4-13. 

 

 

Figure 4-13: traditionally reinforced concrete beam setup (Huang, 2017) 

A 4-point bending test was performed; the location of the application of the forces was such that 
three equal spans of 500 mm occurred. The experimental setup was shown before in Figure 2-2. 
For this beam, only the experimental results are available for comparison with the proposed 
MLM. What will be compared in this subchapter are the force-to-displacement and crack width-
to-force curves.  

In order to model this beam, the input parameters are chosen in accordance to what was 
assumed in the research of (Huang, 2017). The compressive input parameters that are assumed 
by (Huang, 2017) for concrete are visualized in Figure 4-14a; the tensional input parameters that 
are assumed by (Huang, 2017) for steel (to model the steel reinforcement bars) are visualized in 
Figure 4-14b. 
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(a) assumed concrete compressive input (b) assumed steel tensile input 

 
Figure 4-14: assumed material properties for concrete and steel (Huang, 2017) 

The tensional input parameter for concrete is a single datapoint, which corresponds to the 
cracking stress and the cracking strain. The cracking stress is assumed to be 4.536 N/mm2, while 
the strain that corresponds to it is assumed to be equal to 0.106 ‰ (which corresponds to a 
Young’s modulus of 34,000 N/mm2). It is assumed that for compression, the same input as in 
tension can be used for the steel reinforcement. However, steel reinforcement will not be governing 
in compression in the setups that are discussed, so this assumption will not influence the results 
at all. Using all the input in the MLM, it results in the input parameters shown in Figure 4-15. 
 

 

Figure 4-15: input parameters used in the MLM to verify the results from (Huang, 2017) 

This used input in the MLM results in the stress-to-strain diagrams that are shown in Figure 
4-16, and Figure 4-17: 
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Figure 4-16: assumed concrete stress-to-strain input to use in the MLM 

 

 

Figure 4-17: assumed steel stress-to-strain input in tension to use in the MLM 

A comparison between the force-to-displacement diagram that follows from the proposed MLM, 
the modelled results with ATENA that follow from (Jayananda, 2017) and the experimental 
result that follows from the research of (Huang, 2017) is shown in Figure 4-18. The recorded 
deflections during the experiment were limited to around 10 mm; this is also the chosen limit in 
the calculations of the MLM. 
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Figure 4-18: verification force-to-displacement curve of reinforced non-hybrid beam by comparing with 

(Huang, 2017) and (Jayananda, 2017) 

Before drawing conclusions about the comparison, a check is presented to verify if the previously 
shown curves in Figure 4-18 are logical. As was presented in subchapters 3.4.2.1 and 3.4.2.3, the 
under- and overestimated deflection can be calculated to check if the modelled deflection lies in 
between those two ‘boundaries’. The underestimated deflection was calculated using the ‘constant 
curvature’ method, while the overestimated deflection was calculated using the ‘forget-me-nots’. 
The first check is performed for the deflection curve that is found using the momentvlakstellingen 
method. This is presented in Figure 4-19. 
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Figure 4-19: comparison of calculated MLM deflection with under- and overestimated deflections 

As can be seen in Figure 4-19, the deflection curve that follows from the momentvlakstellingen 
method is always in between the under- and overestimated deflection. This indicates that the 
deflection that is found is ‘logical’. The calculated deflection is very close to the overestimated 
deflection. The overestimated deflection is based on the assumption that the bending stiffness of 
the whole beam is equal to the bending stiffness at the constant bending moment region. From 
a deflection of 2 mm and onwards, this could mean that, if the bending stiffness between the 
location of the force and the support is calculated, there is not much difference with the bending 
stiffness in the constant bending moment region. Therefore, it becomes almost equal to the 
calculated overestimated deflection.  

In Figure 4-19, the calculated deflection becomes more and more in line with the 
overestimated deflection towards the end stage. This should happen as the ‘undamaged’ part of 
the beam (between the support and the application of the force), with a high bending stiffness, 
becomes smaller with an increasing load. So towards the end, most of the beam will be damaged, 
and have a small bending stiffness, equal to the bending stiffness in the constant bending moment 
region.  

If the same comparison is made with the experimental result, it results in the curves that 
are shown in Figure 4-20. 
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Figure 4-20: comparison of experimental deflection with under- and overestimated deflections 

Now, the situation becomes different. The experimental results are not in line of what 
theoretically should be the case. The first noticeable part is the end resistance, which is higher 
than the two boundaries. This can have two explanations. The first explanation is that the input 
material parameters are assumed by (Huang, 2017); they are not based on experimental results. 
Those parameters have a massive influence on the results. The second possible explanation is 
that the steel reinforcement bars were not placed accurately during preparation of the beam; it 
could be the case that the reinforcement was placed a little bit lower, which increases the lever 
arm between the concrete compression zone and the steel reinforcement and therefore increases 
the resistance. A misplacement of 1 mm could already have a (noticeable) effect. Both causes 
can also explain the reason that the ATENA-model also does not correctly predict the end 
resistance. 

Going back to the comparison shown in Figure 4-18, it can be noted that the beginning 
stage is exactly the same for the MLM, ATENA and experimental results; the initial stiffness is 
equal. After that, the MLM underestimates the resistance of the beam. Or in other words, the 
deflection for the same force is overestimated. This can be due to the earlier explained causes. 
However, the trend that both curves follow matches a lot. If a slope would be calculated for both 
curves, they would be quite similar; especially for the end phase (deflection > 5 mm). The 
ATENA-results show much more compatibility with the experimental results in this stage.  
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Next, the crack widths that are obtained by (Huang, 2017) during the experiment are modelled 
in the MLM in order to also verify this part of the proposed MLM.  

Using the same input as is shown in Figure 4-15, a comparison is made between the crack 
width-to-force diagram that follows from the proposed MLM and the experimental result that 
follows from the research of (Huang, 2017). This is shown in Figure 4-21. 
 

 

Figure 4-21: reinforced concrete crack width verification by comparing with (Huang, 2017) 

In Figure 4-21, it can be seen that four cracks were measured during the experiment. The reason 
that this is done, is that those four cracks all occurred in the constant bending moment region. 
And as this region is large (500 mm), multiple cracks can occur. 

One important conclusions can be drawn from the comparison; the MLM underestimates 
the crack width in the beam. For the same force, a larger crack width occurs in the experiment. 
A modification that can result in more aligned results, is the choice of the ‘𝜏bm’ parameter. For 
lower values than ‘𝜏bm=2fctm’, the crack width increases. However, this is only a possible cause. 

The input parameters have already been shown in Figure 4-15. A screenshot of all the 
input and output of the developed MLM for this verification is shown in Appendix C. 

4.3. Phase 3: reinforced hybrid section 
The third phase is again related to the experiments performed by (Huang, 2017) and the modelled 
results of (Jayananda, 2017). The hybrid section that was tested is a beam with a bottom layer 
of SHCC, and a top layer of conventional concrete. It has the same dimensions as the non-hybrid 
beam: 1900x150x200 [mm]. Again, the span is equal to 1500 mm. The SHCC layer has a thickness 
of 70 mm, while the concrete layer has a thickness of 130 mm. The steel reinforcement is of the 
same configuration as the previous subchapter. The cross-section was shown in Figure 2-1. The 
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same 4-point bending test as was explained in the previous subchapter (4.2) was performed. As 
for the beam that was discussed in the previous subchapter, only the experimental results are 
available for comparison with the proposed MLM. What will be compared in this subchapter is 
the force-to-displacement curve. 

In order to model this beam, the input parameters are chosen in accordance to what was 
assumed in the research of (Huang, 2017). The compressive input parameters that are assumed 
by (Huang, 2017) for concrete, and the tensional steel input parameters, were already discussed 
and are visualized in Figure 4-14.  

The tensional input parameter for concrete was also discussed, but will be repeated. It is 
a single datapoint, which is the cracking stress and the cracking strain. The cracking stress is 
assumed to be 4.536 N/mm2, while the strain that corresponds to it is assumed to be equal to 
0.106 ‰. 

The additional aspect that will be discussed in this subchapter, is the inclusion of SHCC 
as a material. Its tensional input parameters that are assumed by (Huang, 2017) are visualized 
in Figure 4-22. 

 

 

Figure 4-22: assumed tensional stress-to-strain relation for SHCC (Huang, 2017) 

It is assumed that for compression, the same input as for concrete in compression can be used. 
This assumption was necessary because no other input was known. And as SHCC is only used 
as a bottom layer, it will only be loaded in tension. This input will therefore not affect the results 
at all. Using all the input in the MLM, it results in the input parameters shown in Figure 4-23. 
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Figure 4-23: input parameters used in the MLM to verify the results from (Huang, 2017) 

This used input in the MLM results in the same stress-to-strain diagrams for concrete and steel 
that are previously shown in Figure 4-16 and Figure 4-17 are used again. Additionally, the stress-
to-strain diagram in Figure 4-24 is found for SHCC. 
 

 

Figure 4-24: assumed SHCC stress-to-strain input in tension to use in the MLM 

A comparison between the force-to-displacement diagram that follows from the proposed MLM, 
the modelled results with ATENA that follow from (Jayananda, 2017) and the experimental 
result that follows from the research of (Huang, 2017) is shown in Figure 4-25. Again, the recorded 
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deflections during the experiment were limited to around 10 mm, which is why the MLM results 
are also limited to 10 mm. 
 

 

Figure 4-25: verification force-to-displacement of reinforced hybrid beam curve by comparing with 

(Huang, 2017) and (Jayananda, 2017) 

As was done in the previous subchapter, a check is presented to verify if the curves shown in 
Figure 4-25 are logical. This was done by comparing with the under- and overestimated curves, 
in which the underestimated deflection was calculated using the ‘constant curvature’ method, 
and the overestimated deflection using the ‘forget-me-nots’. The first check is performed for the 
deflection curve that is found using the momentvlakstellingen method. This is presented in Figure 
4-26. 
 



84   Chapter 4: Verification 
 

 

Figure 4-26: comparison of calculated MLM deflection with under- and overestimated deflections 

As can be seen in Figure 4-26, the deflection curve that follows from the momentvlakstellingen 
method is always in between the under- and overestimated deflection. This indicates that the 
deflection that is found is logical. If the same comparison is made with the experimental result, 
it results in the curves that are shown in Figure 4-27. 
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Figure 4-27: comparison of experimental deflection with under- and overestimated deflections 

For the experimental results, the situation is completely different. The experimental results are 
not in line of what theoretically should be the case. This is the case for almost the entire curve. 
The deflection is higher than the theoretical overestimated deflection. The most plausible 
explanation for this behaviour is that the interface bond plays a huge role; in the MLM, it is 
assumed that the interface is perfect. In reality, this could have not been the case. If so, there 
will surely be a higher deflection than if the bond was perfect. 

Going back to the comparison shown in Figure 4-25, it can be noted that the beginning 
stage is nearly the same for the MLM and the experiment; the initial stiffness is therefore also 
nearly the same. However, the initial stiffness is not predicted well by the ATENA-model. After 
that, the MLM overestimates the resistance of the beam. Or in other words, the deflection for 
the same force is underestimated. This is also the case for the ATENA-model. It is expected that 
this is due to the earlier mentioned interface effect. However, the trend that the MLM-curve 
follows matches a lot with the curve that follows from the experimental results. The most positive 
result that can be taken from this verification, is that the end resistance is predicted well; it is 
exactly the same for the MLM and the experiment. In this case, it is even reached at the same 
deflection for both curves. As was the case in phase 1 of the verification, the resistance of the 
beam itself is predicted very accurately. As for the ATENA-model, this end resistance is not 
predicted well. In this verification it is shown that the MLM performs better than the ATENA-
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model for reinforced hybrid beams; for the reinforced non-hybrid beams, the ATENA-model 
performed better.  

The input parameters have already been shown in Figure 4-23. A screenshot of all the 
input and output of the developed MLM for this verification is shown in Appendix C. 

4.4. Phase 4: reinforced hybrid section with a U-shaped mould 
In the last phase, a configuration will be proposed of which the experimental results can be ob-
tained in future research. The reason that the experimental results can only be obtained in fu-
ture research, is that no experiments have been performed before with such a configuration. In 
this subchapter, the bending resistance of this experimental setup will be modelled using the 
MLM. These results can then later be compared and verified by experimental results. The 
cross-section of the proposed configuration is a small alteration on the cross-section that has 
been shown before in Figure 2-1; the only difference is the addition of the 15 mm thick side 
webs of the U-shape. This is shown in Figure 4-28. 
 

 

Figure 4-28: cross-section of reinforced hybrid concrete beam with a U-shaped SHCC mould 

Not only the cross-section is very similar to the experiment that has been verified in the previ-
ous subchapter (4.3); in fact, the rest of the parameters are exactly the same. A 4-point bend-
ing test is proposed with a total span of 1500 mm (with three equal sub-spans of 500 mm), as 
was shown in Figure 2-2. The parameters are shown in Figure 4-29. 
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Figure 4-29: input parameters used in the MLM to model the bending resistance of the reinforced hybrid 
concrete beam with a U-shaped SHCC mould 

This leads to the earlier shown stress-to-strain diagrams as material input. The diagrams were 
shown in Figure 4-16, Figure 4-17 and Figure 4-24. Using this input, the moment-to-curvature 
diagram that follows from the MLM is shown in Figure 4-30. Note however that a perfect bond 
between the SHCC and the concrete (also along the U-shaped mould) is a prerequisite for 
achieving the resistance that is shown in Figure 4-30. 
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Figure 4-30: moment-to-curvature curve reinforced hybrid concrete beam with a U-shaped SHCC mould 

Next to that, the force-to-displacement diagram that is found by modelling using the MLM is 
shown in Figure 4-31. Note that the deflection on the diagram is not limited as in the previous 
verifications; the diagram until failure is shown.  
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Figure 4-31: force-to-displacement curve reinforced hybrid concrete beam with a U-shaped SHCC mould 

As was done in the previous subchapters, a check is presented to verify if the curve shown in 
Figure 4-25 is logical. This was done by comparing with the under- and overestimated curves, in 
which the underestimated deflection was calculated using the ‘constant curvature’ method, and 
the overestimated deflection using the ‘forget-me-nots’. The results of this check are presented 
in Figure 4-32. 
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Figure 4-32: comparison of calculated MLM deflection with under- and overestimated deflections 

As can be seen in Figure 4-32, the deflection curve that follows from the momentvlakstellingen 
method is always in between the under- and overestimated deflection. This indicates that the 
deflection that is found is logical. 

4.5. Drying shrinkage 
In subchapter 3.4.5, it was presented how the eigen-strains due to drying shrinkage can be 
calculated using the relative humidity profile. These strains could then be used to calculate the 
eigenstresses (in the linear elastic stage) that occur due to drying shrinkage. In the MLM, the 
eigen-strains are added as initial strains that effect the resistance of the specimen. In this 
subchapter, two verifications are shown. First of all, the calculation method of the eigen-strains 
using the relative humidity profile is verified. This is done by ultimately calculating the 
eigenstresses, and compare them with a finite-element program. This verification was made before 
by (Awasthy, 2019). The second verification that is shown is that of the results that follow if the 
eigen-strains are used as input in the MLM. For a specimen, the effect of the drying time on the 
flexural strength is verified.  

4.5.1. Calculation of eigen-strains 
For verification of the calculation method to obtain the eigen-strains, (Awasthy, 2019) used a 
finite-element program called FEMMASSE. First, it was checked whether the relative humidity 
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that was obtained with FEMMASSE was comparable with the results of (Hanson, 1968). That 
was the case. Note that the humidity data that was used in the analytical model of (Awasthy, 
2019) was the same data that was obtained by FEMMASSE. Next, the stresses were calculated 
and compared to the stresses that follow from the earlier described analytical model. The result 
in Figure 4-33 was obtained.  
 

  
(a) 28 days of drying (b) 1 year of drying 

 
Figure 4-33: comparison of eigenstresses between FEM and an analytical model (Awasthy, 2019) 

The author (Awasthy, 2019) noted that the difference between the results was mainly due to the 
assumption of linear elastic behaviour in the analytical model. The stresses were calculated by 
multiplying the obtained strains by the linear Young’s modulus (Awasthy, 2019). Even then, 
both lines in Figure 4-33 follow the same trend. 

4.5.2. Effect of drying time on flexural strength 
In the proposed MLM, the eigen-strains are calculated using the relative humidity profile. How-
ever, if those strains are known beforehand, they can directly be used as input. In this subchap-
ter, the effect of the eigen-strains of different drying periods on the flexural strength will be 
verified. Again, a comparison will be made with results that follow from FEMMASSE. Two dif-
ferent specimens will be used in the verification: NSC (Normal Strength Concrete) and HSC 
(High Strength Concrete). The specimen size is 400x100x100 [mm].  

The material properties that are used in the calculation, are based on experimental re-
sults that are obtained by (Awasthy, 2019). Three material properties are available: the 
Young’s modulus (shown in Figure 4-34), the compressive strength (shown in Figure 4-35) and 
the splitting tensile strength (shown in Figure 4-36). In the MLM, the direct tensile strength is 
needed to be able to model the specimen. As is assumed by (Awasthy, 2019), the direct tensile 
is assumed to be equal to 85% of the splitting tensile strength. As for the compressive strength, 
it is assumed that a bi-linear stress-to-strain diagram occurs, with failure at 3.5‰ (similar to 
conventional concrete). This holds for both NSC and HSC. 
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Figure 4-34: experimental results of compressive strength of NSC and HSC  

 

Figure 4-35: experimental results of splitting tensile strength strength of NSC and HSC 

 

Figure 4-36: experimental results of Young’s modulus of NSC and HSC 
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Two more assumptions are made. First of all, it is assumed that linear interpolation is possible 
between property quantities of known drying periods to calculate the quantities of untested 
drying periods. For example, if the Young’s modulus at an age of 42 days is needed, the aver-
age value of the (mean) Young’s modulus at 28 days and 56 days is taken. The second assump-
tion is related to the material properties after an age of 155 days of the concrete. As there is no 
data available after this age, it is assumed that the material properties stay equal after this 
age.  
 In order to be able to compare with the results that follow from FEMMASSE, the same 
input has to be used. Therefore, the same tensile softening curve is used that is defined in 
FEMMASSE, which is shown in Figure 4-37.  
 

 

Figure 4-37: tensile softening curve as is defined in FEMMASSE (Awasthy, 2019) 

The results that were available from (Awasthy, 2019) are the eigenstresses along the height, 
which were calculated using the linear elastic Young’s modulus. To find the eigen-strains, the 
Young’s modulus for each drying period was determined, after which the eigenstress was di-
vided by the acquired Young’s modulus to find the eigen-strain. The conversion from stresses 
to strains for NSC and HSC is shown in Appendix C.  

4.5.2.1 Normal Strength Concrete 
For this specimen, the used drying periods are listed in Table 4-2. These drying periods occur 
after the curing period of 28 days. So for 0 days of drying, the concrete age is 28 days. 
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Table 4-2: drying periods after 28 days of curing of NSC specimen 

In Figure 4-38, the input parameters that are used for NSC in the MLM are shown for 10 days 
of drying. Twelve different drying periods are defined in Table 4-2, but only the input for 10 
days of drying is shown. 
 

 

Figure 4-38: input parameters used in the MLM for 10 days of drying of NSC to verify the results from 
(Awasthy, 2019) 

In the study of (Awasthy, 2019), the eigenstresses were known for this specimen (for all drying 
periods). These eigenstresses were translated to eigen-strains by dividing by the Young’s 
modulus. This is correct as the material was still in the linear elastic stage. As an example, the 
eigenstresses for 10 days of drying (concrete age: 38 days) are shown in Figure 4-39. The 
eigenstresses for other drying periods are shown in Appendix C.   
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Figure 4-39: eigenstresses along the height for Normal Strength Concrete (Awasthy, 2019) 

Comparing the results that follow from the developed MLM with the results from FEMMASSE 
(Awasthy, 2019) leads to the comparison in Figure 4-40.  
 

 

Figure 4-40: comparison of effect of drying periods on flexural strength of NSC between MLM and 
FEMMASSE (Awasthy, 2019) 
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Before comparing the results, it has to be noted that the eigen-strains in the top and bottom 5 
mm were unknown (the distribution between 5 and 95 mm height was known). This could have 
an effect on the modelled results. 

As can be seen in Figure 4-40, the trend that both lines follow is very similar. For both 
calculations, the flexural strength initially goes down, but starts increasing again after approxi-
mately 20 days of drying. The flexural strength keeps increasing with time to an extent that 
the initial flexural strength is exceeded. This is true for both sets of results. A difference be-
tween the two calculations is however the starting flexural strength (age of concrete of 28 
days). Although the two lines in Figure 4-40 do not overlap, it can clearly be seen that the ef-
fect of drying on the flexural strength is similar. 

The input parameters have already been shown in Figure 4-38. A screenshot of all the 
input and output of the developed MLM for this verification is shown in Appendix C. 

4.5.2.2 High Strength Concrete 
The same approach that is shown in the previous subchapter (4.5.2.1) is followed in this sub-
chapter. First of all, the used drying periods are listed in Table 4-2.  
 

 

Table 4-3: drying periods after 28 days of curing of HSC specimen 

In Figure 4-38, the input parameters that are used for HSC in the MLM are shown for 10 days 
of drying. Again, only the parameters for this period of drying are shown. 
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Figure 4-41: input parameters used in the MLM for 10 days of drying of HSC to verify the results from 
(Awasthy, 2019) 

In the study of (Awasthy, 2019), the eigenstresses were also known for this specimen. These 
eigenstresses were translated to eigen-strains by dividing by the Young’s modulus. As an example, 
the eigenstresses for 10 days of drying (concrete age: 38 days) are shown in Figure 4-42. The 
eigenstresses for other drying periods are shown in Appendix C.   
  

 

Figure 4-42: eigenstresses along the height for High Strength Concrete (Awasthy, 2019) 

Comparing the results that follow from the developed MLM with the results from FEMMASSE 
(Awasthy, 2019) leads to the comparison in Figure 4-43.  
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Figure 4-43: comparison of effect of drying periods on flexural strength of HSC between MLM and 
FEMMASSE (Awasthy, 2019) 

Similarly to the NSC comparison, the eigen-strains in the top and bottom 5 mm were unknown 
(the distribution between 5 and 95 mm height was known). This could have an effect on the 
modelled results. 

As can be seen in Figure 4-43, the trend that both lines follow is again similar. For both 
calculations, the flexural strength initially goes down, but starts increasing again. Different 
from the comparison in the previous subchapter, the flexural strength starts going up again af-
ter approximately 60 days of drying. Again, the flexural strength keeps increasing with time to 
an extent that the initial flexural strength is exceeded. This is true for both sets of results. The 
difference between the two calculations is similar to the previous subchapter: the initial flexural 
strength is not equal. What also is noticeable, is that for both the FEMMASSE and MLM re-
sults, the decrease and increase in flexural strength is described by a shallow curve. This was 
not the case for NSC; the decrease and increase at the start was described by a steep curve. 
What can be concluded from the results is, that the MLM predicts the trend that is followed 
well. For NSC, a steep curve was predicted, while for HSC, a shallow curve was predicted. 
That was in line with the predicted results in FEMASSE.  

The input parameters have already been shown in Figure 4-41. A screenshot of all the 
input and output of the developed MLM for this verification is shown in Appendix C.
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5. Discussion  
5.1. Comparison between MLM’s 

In subchapter 4.1.1, the extended MLM, proposed in this research, was verified by comparing 
the results to previous research. In that research, also the results from an older version of the 
MLM were presented. The force-to-crack opening displacement curves of both MLM’s over-
lapped, which indicates that the same input and calculation method is used. This also suggests 
that the force-to-displacement curve should be similar, but that was not the case. In order to 
be able to explain the difference, a similar check as was presented in subchapter 4.2 is used to 
verify if the previously found deflection curves are logical. This check will be done for the two 
MLM’s, by comparing with the under- and overestimated deflection curves. First, the check is 
made for the calculated deflection using the extended MLM. This is shown in Figure 5-1. 

 

 

Figure 5-1: comparison of calculated MLM deflection with under- and overestimated deflections 

When looking at the results in Figure 5-1, it seems like the under- and overestimated deflection 
curves cross each other in a way that the overestimated deflection becomes smaller than the 
underestimated deflection (from a deflection of approximately 5.3 mm and onwards), which 
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cannot be the case. To explain this, a larger part of the under- and overestimated deflection 
curves are shown in Figure 5-2. 

 

 

Figure 5-2: comparison between the under- and overestimated deflection curves 

Now it becomes clear that both curves are correct. For the same force, the overestimated de-
flection curve is always on the right of the underestimated deflection curve, which means that 
the overestimated deflection is always larger than the underestimated deflection. 
 To go back at the deflection curve that is calculated using the MLM of this research; 
the curve always lies in between the under- and overestimated curve, so the acquired deflection 
is logical. Doing the same check for the deflection curve that is found by the MLM that was 
used by (Lappa, 2007), results in the comparison that is shown in Figure 5-3. 
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Figure 5-3: : comparison of under- and overestimated deflections with (Lappa, 2007) 

As can be seen in Figure 5-3, the deflections as found by (Lappa, 2007) only lie in between the 
two curves for the beginning stage. After that, this is not the case anymore. As the verification 
in Figure 4-6 showed that the exact same curves were obtained for the force-to-crack opening 
displacement curves, it can be concluded that the same input was used in both MLM’s. And 
using this input, the under- and overestimated deflections as in Figure 5-2 are found, which 
means that the ‘real’ deflection should lie in between those two curves. That is not the case for 
the results that are found by (Lappa, 2007). 
 The deflection is calculated differently in (Lappa, 2007). It is based on rigid body kine-
matics. Using Figure 3-35, the relationship in Eq. (5.1) is found (Lappa, 2007): 
 
 

 

Eq. (5.1) 

 
The rotation depth ‘H’ is a variable that is determined by testing. For an unnotched bending 
test, it was found that this rotation depth can be assumed to be a constant value in the deflec-
tion hardening phase. The author notes that the deflection calculation is mainly suitable for 
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notched specimens, which could explain the difference that is found when calculating the de-
flection for the unnotched specimen. Next to that, it is noted that the deflection calculation is a 
curve fitting approach, which is not the case for the proposed MLM.  

5.2. Structural contribution of webs in U-shape 
The experimental setups presented in subchapters 4.3 and 4.4, of which the bending resistance 
was modelled using the MLM, were very similar. The presence of the U-shaped webs is the only 
difference. Because of that, the results can be compared to investigate the structural contribu-
tion of the webs of the U-shape. In both phases, the force-to-displacement diagram was mod-
elled. These diagrams can be used for comparison. The only change is that the diagram that 
was found for the hybrid beam without a U-shape is not limited anymore by the 10 mm deflec-
tion (in the comparison with the experimental results). The comparison is shown in Figure 5-4.  
 

 

Figure 5-4: comparison between (MLM) modelled phase 3 & phase 4 force-to-displacement diagram 

As can be seen in Figure 5-4, the effect on the ultimate force is not large; adding two webs of 
15 mm thickness in a beam with a total width of 150 mm does not increase the resistance of 
the beam by much. The increase comes from the tensile properties of the SHCC (the material 
that was used in the webs). In the non-linear stage, the neutral axis moves upwards. At some 
point, the neutral axis reaches a position in which the webs are loaded in tension, and the 
cracking strain of concrete is exceeded. Then, only the SHCC contributes to the bending re-
sistance. That happens at a deflection of approximately 5 mm in Figure 5-4. 
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The compressive material input parameters were assumed to be exactly the same for the con-
crete and the SHCC, so there is no contribution of the SHCC there. That is also why no effect 
is noticeable in the starting stages of the force-to-displacement curve, as the webs are mostly 
loaded in compression due to the location of the neutral axis.  

However, there is a noticeable effect after a deflection of 5 mm. Because of the shallow 
slope after this deflection, the small difference in resistance causes a noticeable difference in de-
flection. As can be seen in Figure 5-4, the difference in deflection can be up to 5 mm when a 
force of approximately 73 kN is applied (marked in blue). 
 In short, before failure, the webs in the U-shape contribute by limiting the deflection. 
The ultimate force that the beam can carry is affected; the webs cause an increased resistance. 
However, this is not by much. 

5.3. Stress-displacement verification 
As was shown in subchapter 4.1.2, the verification of the stress-to-displacement diagram was 
not successful. In order to explain this, a comparison was made with results from an ongoing 
MSc thesis of Arif. A part of his research is about modelling the bending behaviour of beams in 
DIANA. One of the specimens that was modelled, was the same specimen that was verified in 
subchapter 4.1.2. In the MSc thesis, different tensile input is assumed to model this beam. This 
is shown in Figure 5-5.  
 

 

Figure 5-5: assumed tensile input for modelling using DIANA 

In this subchapter, the blue line from Figure 5-5 is taken as input for the MLM, to compare 
with the results that follow from DIANA for this same input. The compressive input is also dif-
ferent from what is assumed in the MLM. This is shown in Figure 5-6. 
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Figure 5-6: assumed compressive input for modelling using DIANA 

This results in the input for the MLM that is shown in Figure 5-7.  
 

 

Figure 5-7: input parameters used in the MLM to compare with the results using DIANA 

This used input in the MLM results in the stress-to-strain diagram that is shown in Figure 5-8. 
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Figure 5-8: assumed SHCC stress-to-strain input to use in the MLM 

A comparison with the results that follow from DIANA is shown in Figure 5-9. 

 

Figure 5-9: comparison between MLM and DIANA results with results from (Zhou, et al., 2010) 
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As is shown in Figure 5-9, the results from the MLM are very comparable with the results that 
follow from DIANA. Apart from the flexural strength, the behaviour is exactly the same. It 
could be the case that the DIANA model accounted for the resistance in the other direction, 
which explains the difference in strength. However, the result supports the statement that 
something might have been wrong in the experiment. Performing comparisons with the other 
input from Figure 5-5 leads to the same conclusion. 

The input parameters have already been shown in Figure 5-7. A screenshot of all the 
input and output of the developed MLM for this comparison is shown in Appendix C. 

5.4. MLM limitations  
5.4.1. Crack width 

The main added value of hybrid beams is the limitation of the crack width. As was explained 
before, the proposed MLM is able to calculate crack widths, but only for traditionally rein-
forced concrete beams, as the expressions that are needed for that calculation are known. For 
other materials, this is unknown, which means that the MLM cannot be used to determine this 
effect of limiting the crack width. If that would have been possible, the MLM could be used to 
find the optimal configurations of a hybrid beam in terms of crack width control. This is a limi-
tation of the model, that could be solved if the expressions for calculating the crack width of 
other materials become known. The MLM will then be more powerful, as it will not only be 
able to model the bending resistance of each configuration, but also show what the effects are 
on crack width control. If these expressions become known, they can directly be implemented 
in the MLM, as the calculation process is already implemented in the MLM; only the expres-
sions have to be changed. 

5.4.2. Perfect bond 
In the proposed MLM, a perfect bond between two materials in a hybrid beam is assumed. In 
reality, this will not always be the case. Next to that, a beam could start the experiment with a 
perfect bond, but after that lose this property. In a way, that is a limitation of the proposed 
model. Not only because of the dependency of a perfect bond in the experiment, but also be-
cause of calculations that are not suitable in the MLM because of the perfect bond. For exam-
ple, the drying shrinkage calculation is not suitable for hybrid beams due to the assumed per-
fect bond. 

5.4.3. Applicability 
The proposed MLM is, as it stands now, suitable for experimental purposes. The calculation 
method that is applied to calculate the deflections is only useable for 3-point and 4-point bend-
ing tests, which typically are only used in experiments. However, the cross-sectional bending 
moment resistance is independent of the type of loading, so that could be used in practical ap-
plications, such as in the construction world.   
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The implementation of compressive reinforcement in the MLM is something that is very usable 
as it is also used at the construction site. However, it is assumed that only one row of reinforce-
ment is used as (tensional or compressive) reinforcement. In reality, that is not always the case. 
Next to that, prestressed reinforcement is not taken into consideration in the MLM, which is 
used often in practice.  
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6. Conclusions 
The main goal of this report was to be able to develop the ‘reinforced hybrid concrete beams 
with a U-shaped SHCC mould’ system and to be able to model the bending behaviour of it using 
the multi-layer model, including imposed deformations due to drying shrinkage. In order to do 
that, the basic multi-layer model for non-hybrid beams was rebuilt and expanded to be useable 
for hybrid beams. Next to that, several calculations were added. The following can be concluded 
after this research: 

 The added value of an SHCC U-shaped mould with concrete poured in it in comparison 
to a hybrid section is that formwork at the sides is not needed anymore. This leads to 
savings of costs.  

 The procedure of making such a U-shaped mould was developed. It consists of two 
moulds; the smaller mould is placed inside the larger mould, which results in an inverted 
U-shape after casting.  

 As long as the material input parameters in tension and compression are available, any 
material can be used as input in the multi-layer model. The proposed multi-layer model 
can handle four datapoints in tension, and three datapoints in compression. Each 
datapoint is a ‘couple’ of a stress and a strain to obtain a stress-to-strain input curve. 
However, the material input parameters are assumed to be unaffected by size effects. 

 The deflection that occurs is calculated using a theory called ‘momentvlakstellingen’. 
The same model is also able to calculate the underestimated deflection based on 
curvature and the overestimated deflection based on ‘forget-me-nots’. For the same 
input, the deflection curve that follows from the momentvlakstellingen is always 
between the under- and overestimated curve. This means that the obtained deflection is 
‘logical’.  

 Verification of the model showed that the end resistance of the beams (maximum force 
in the bending test) is predicted very accurately; also for hybrid beams. The initial 
stiffness of the beams is equal if the results of the model are compared with the results 
from the previous research. The differences are mainly in the stages in between. 
Generally, the same trend is found by the proposed multi-layer model. Or in other words, 
the slope of the curve that follows from the multi-layer model is very comparable to the 
slope that follows from the experimental results from previous research. However, the 
curves do not overlap. So the MLM can be used to accurately predict the end resistance 
of any (hybrid) beam, as long as the assumptions are the same as for the model. Until 
the MLM is verified for the hybrid beam containing a U-shaped mould, the results of for 
these configurations are not reliable.   

 Comparing the modelled results of the proposed experimental setup with a U-shaped 
mould to a very similar setup in which the only difference was the presence of the U-
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shaped webs, showed that the structural contribution of the U-shaped webs is modest in 
terms of ultimate resistance. The main effect can be seen in the deflection at the end 
stage; for the same force, the beam containing a U-shape deflects up to 5 mm less than 
the beam that does not contain a U-shape.   

 Eigenstresses due to drying shrinkage were successfully implemented in the MLM. The 
results were verified with results obtained by a FEM-model called FEMMASSE. The 
implementation of the eigen-strains (that result in the eigenstresses) is only suitable for 
monolithic beams, of which the relative humidity profile is known (external input). The 
eigen-strains are calculated using the relative humidity profile, or they can directly be 
used as input. Hybrid beams are not suitable for the drying shrinkage calculation, as the 
main effect of drying shrinkage would be on the interface between the two materials, 
which is assumed to be a perfect interface in the proposed MLM.  

 The eigenstresses due to drying shrinkage have a negligible effect on the end resistance 
of a monolithic beam. The biggest effect is on the beginning stages; for the same force, 
there is a larger deflection of up to 39% for the same force when a specimen without 
drying is compared with a specimen that was exposed to 28 days of drying (the specimen 
that dried for 28 days deflects more).  

 The longitudinal shear calculation is not suitable for hybrid beams containing a U-shape, 
as the interface between the SHCC (for example) and the concrete is much larger and 
much different compared to a ‘standard’ hybrid beam. The shear stress is not only 
calculated for a certain position over the width, but also along the height. This can be 
improved in the future.   

 The crack width calculation in the proposed multi-layer model is only applicable for 
traditionally reinforced concrete beams. This was implemented by using the Eurocode 
expressions. It is recommended to expand the applicability of the calculation to the 
interface between the two layers in a hybrid section and to the interface between the 
bottom layer and the reinforcement (SHCC-steel for example) to be able to calculate the 
occurring crack width.  

 Implementing the crack width calculations for SHCC for example could lead to a 
powerful addition to the MLM. It can then also be used to find the most optimal 
configurations in terms of crack width control. In that way, the most optimal design 
that (Huang, 2017) found for the SHCC layer thickness could be found by the MLM 
without performing any experiments. That saves a lot of time. For now, this can already 
be done for traditionally reinforced beams to determine the most optimal reinforcement 
amount for reaching a certain bending moment resistance while at the same time meet 
the crack width requirements.    
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7. Further research 
In this chapter, multiple subjects are proposed for future research.  

7.1. Verification U-shaped mould 
In chapter 2, an experimental setup was proposed containing a reinforced U-shaped SHCC mould. 
In subchapter 4.5, the bending resistance of the proposed experimental setup was calculated using 
the proposed MLM. However, as this type of experiment has never been performed before, the 
results could not be verified.  

It is recommended to use the MLM results to compare with the results that follow from 
experimenting with this setup. The model can then also be improved and extended. The inclusion 
of webs in the MLM is already implemented, but again by assuming perfect bond between the 
SHCC and the concrete.  

7.2. Longitudinal shear resistance 
As was shown before in subchapter 3.4.7, a calculation of the maximum longitudinal shear stress 
between the two interfaces (SHCC and concrete for example) was implemented into the MLM. 
However, the resistance of this bond is not exactly known. If a perfect bond between the two 
layers is the goal, it should be further investigated what the maximum allowable shear stress is 
in different configurations. By comparing with the results of the MLM, it can then be stated 
whether there is a perfect bond or not. The maximum allowable shear stress is then the stress 
that causes any slip between the two layers. This is illustrated in Figure 7-1. 
 

 

Figure 7-1: property differences between a hybrid beam with no bond and a perfect bond (Abspoel, 2019) 
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As can be seen in Figure 7-1, there are two extremes. One is a full shear connection, and the 
other is when there is no connection at all. It is clear that the resistance of the two extremes 
differs. That also means that the resistance for all situations between the two extremes are 
different. Therefore, if slip occurs, the resistance will go down. Because of this, the maximum 
allowable shear stress should be the stress at which slip occurs.  

If the previously mentioned U-shaped mould is to be investigated, considering the 
longitudinal shear could add a challenging feature as there will be a much larger interface area 
between the two materials (SHCC and concrete for example). Next to that, the shear stress is 
not only calculated for a certain position over the width, but also along the height. It is 
recommended to implement this in the proposed MLM. 

7.3. Crack width 
In subchapter 7.2, it was explained that a perfect bond between the two layers is desired, as the 
current version of the MLM is only suitable for that situation. In future research, it could however 
be implemented in the MLM how the resistance decreases with increased slip. This also means 
that the effect of the bond on the crack width can be implemented in the MLM. In this research, 
it was shown how the bond between the steel reinforcement and the concrete was translated into 
the crack width in the tension zone. An example of those cracks is shown in Figure 7-2 as a DIC-
image. In this image, all colors except blue show the strains that lead to cracks. The green colour 
indicates small strains, while the red colour indicates large strains. So the larger the strains, the 
more visible the cracks are. 
 

 

Figure 7-2: regular concrete cracks in a DIC-image (Singh, 2019) 

If the bond between the two layers is translated into a crack width, it means that the crack 
width at the interface between the two layers can be found. Such cracks are illustrated in Figure 
7-3. Again, a DIC-image is shown. 
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Figure 7-3: interface cracks in a DIC-image (Singh, 2019) 

In this thesis, the bond between the steel reinforcement and the concrete was implemented by 
using an existing expression from the Eurocode. However, those expressions do not exist for the 
bond between SHCC and concrete, or between SHCC and steel reinforcement. Therefore, future 
research could be to find such expressions and propose them.  

7.4. Drying shrinkage 
In this research, the imposed deformations due to drying shrinkage were implemented in the 
MLM. This was done according to the findings of (Awasthy, 2019). The concept of the U-shaped 
mould can also be tested in combination with drying shrinkage. For example, what will be the 
effect of drying shrinkage on the resistance of the beam that is ultimately casted? Those are 
possible future research questions. This could then also be implemented in the MLM if the 
recommendation in the previous subchapter is implemented (cases in which there is no perfect 
bond, as that is a requirement to investigate the effect of drying shrinkage in hybrid beams).  
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Appendix A: MLM script 
First, the programming code is shown of the proposed MLM. After that, the calculations that 
are made separately by Excel are shown. The programming code is shown in the original font 
that is used in VBA Excel: 
 
Private Sub Layers() 
 
'IMPORTANT NOTE: webs are of the same material as the bottom layer 
 
'#PARAMETERS 
Border1 = 42 
Points = Range("H23") 
L = Range("D3") 
NofLayers = Range("D7") 
b = Range("D9") 
L1 = Range("D4") 
L2 = Range("D5") 
Segments = Range("M31") 
h = Range("D6") 
 
'INITIAL NEUTRAL AXIS POSITION (neutral axis will go up in non-linear stage) 
NA = Range("D11") 
 
Density = Range("K15") 
DensitySHCC = Range("K17") 
DensityS = Range("K19") 
E = Range("D15") 
ESHCC = Range("D17") 
ES = Range("D19") 
 
tTOP = Range("D24") 
tBOT = Range("D25") 
tWEB = Range("D26") 
Pi = Application.WorksheetFunction.Pi() 
 
PhiBOT = Range("D29") 
PhiTOP = Range("F29") 
 
'The 'SH' below is the 500 data points limit. To change the limit, expand this + expand the 
data in the 'Input' worksheet 
 
'#CLEAR everything before filling the cells again. Note that the numbers below are the parame-
ters + 1 
 
'Don't use "Range(Range("E17"), Range("E24").End(xlToRight)).Clear" instead of line below! 
Gaps will then not be taken into consideration 
Range("C34:SH41").Clear 
Range("C34:SH41").HorizontalAlignment = xlCenter 
 
'When everything is finished, substitute 'SH46' below by 'C46' 
Range(Range("B46"), Range("SH46").End(xlDown)).ClearContents 
 
Range(Range("E44"), Range("E44").End(xlToRight)).ClearContents 
Range(Range("E42"), Range("E42").End(xlToRight)).ClearContents 
Range(Range("E42"), Range("E42").End(xlToRight)).Borders.LineStyle = xlNone 
 
Cells(26, 9).Value = 0 
 
Dim i As Integer 
 
'#LAYERS DEFINITION 
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SHCCLayers = Int(tBOT / Range("D8")) 
 
'Choose between the simple and the advanced method 
If tBOT / Range("D8") = Int(tBOT / Range("D8")) Then 
    For i = 1 To NofLayers 
        Cells(Border1 + 3 + i, 2).Value = i 
        Cells(Border1 + 3 + i, 3).Value = i * Range("D8") - Range("D8") / 2 
    Next i 
Else 
    For i = 1 To SHCCLayers 
        Cells(Border1 + 3 + i, 2).Value = i 
        Cells(Border1 + 3 + i, 3).Value = i * Range("D8") - Range("D8") / 2 
    Next i 
     
    Cells(Border1 + 3 + (SHCCLayers + 1), 2).Value = SHCCLayers + 1 & "A" 
    Cells(Border1 + 3 + (SHCCLayers + 1), 3).Value = tBOT - (tBOT - SHCCLayers * Range("D8")) 
/ 2 
     
    Cells(Border1 + 3 + (SHCCLayers + 2), 2).Value = SHCCLayers + 1 & "B" 
    Cells(Border1 + 3 + (SHCCLayers + 2), 3).Value = tBOT - (tBOT - SHCCLayers * Range("D8")) 
/ 2 + Range("D8") / 2 
     
    For i = SHCCLayers + 2 To NofLayers + 1 
        Cells(Border1 + 4 + i, 2).Value = i 
        Cells(Border1 + 4 + i, 3).Value = i * Range("D8") - Range("D8") / 2 
    Next i 
End If 
 
'#START 
For i = 1 To 5 
    Cells(Border1 - i, 3).Value = 0 
Next i 
 
'Manually insert the n.a. value 
Cells(Border1 - 6, 3).Value = NA 
 
'#SELF-WEIGHT 
q = Density * (tTOP / 1000) * ((b - tWEB) / 1000) * 9.81 / 1000 'N/mm 
qSHCC = DensitySHCC * ((tTOP / 1000) * (tWEB / 1000) + (tBOT / 1000) * (b / 1000)) * 9.81 / 
1000 'N/mm 
qS = DensityS * (Pi / 4 * PhiBOT ^ 2 / 1000000) * 9.81 / 1000 + DensityS * (Pi / 4 * PhiTOP ^ 
2 / 1000000) * 9.81 / 1000 'N/mm 
 
qtot = q + qSHCC + qS 
 
'Additional moment at all times due to self-weight 
MG = 1 / 8 * qtot * L ^ 2 
 
'Iy is considered the moment of inertia around the STRONG axis 
Iy = 1 / 12 * (b - 2 * tWEB) * tTOP ^ 3 + ((tBOT + 1 / 2 * tTOP) - NA) ^ 2 * (tTOP * (b - 2 * 
tWEB)) 
IySHCC = 1 / 12 * b * tBOT ^ 3 + (1 / 2 * tBOT - NA) ^ 2 * (tBOT * b) 
IyWEB = 2 * (1 / 12 * tWEB * tTOP ^ 3 + ((tBOT + 1 / 2 * tTOP) - NA) ^ 2 * (tTOP * tWEB)) 
IySBOT = Range("D31") * ((Pi / 4 * (PhiBOT / 2) ^ 4) + (Range("D32") - NA) ^ 2 * (Pi / 4 * 
PhiBOT ^ 2)) 
IySTOP = Range("F31") * ((Pi / 4 * (PhiTOP / 2) ^ 4) + (Range("F32") - NA) ^ 2 * (Pi / 4 * 
PhiTOP ^ 2)) 
 
EIlinear = (E * Iy + ESHCC * (IySHCC + IyWEB) + ES * (IySBOT + IySTOP)) 
 
'Initial displacement due to self-weight 
wG = 5 / 384 * qtot * L ^ 4 / EIlinear 
 
Cells(Border1 + 2, 3).Value = MG 
Cells(Border1 + 2, 4).Value = MG 
 
Cells(Border1 - 7, 3).Value = wG 
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'Show progess in % 
Cells(26, 9).Value = 1 / (Points + 2) 
'--------------------------------------------------------------------------------------------- 
'#INITIAL STRAIN DUE TO DRYING SHRINKAGE 
 
'Determine the slopes between the regions for interpolation: 
region1slope = (Range("O12") - Range("O13")) / (Range("N12") - Range("N13")) 
region2slope = (Range("O11") - Range("O12")) / (Range("N11") - Range("N12")) 
region3slope = (Range("O10") - Range("O11")) / (Range("N10") - Range("N11")) 
region4slope = (Range("O9") - Range("O10")) / (Range("N9") - Range("N10")) 
region5slope = (Range("O8") - Range("O9")) / (Range("N8") - Range("N9")) 
region6slope = (Range("O7") - Range("O8")) / (Range("N7") - Range("N8")) 
region7slope = (Range("O6") - Range("O7")) / (Range("N6") - Range("N7")) 
region8slope = (Range("O5") - Range("O6")) / (Range("N5") - Range("N6")) 
 
'Determine for each layer what the strain is: 
 
'Choose between the simple and the advanced method 
If tBOT / Range("D8") = Int(tBOT / Range("D8")) Then 
    For i = 1 To NofLayers 
        center = Cells(Border1 + 3 + i, 3) 
        If center >= 0 And center < Range("N12") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O13") + center * region1slope 
        ElseIf center >= Range("N12") And center < Range("N11") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O12") + (center - Range("N12")) * re-
gion2slope 
        ElseIf center >= Range("N11") And center < Range("N10") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O11") + (center - Range("N11")) * re-
gion3slope 
        ElseIf center >= Range("N10") And center < Range("N9") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O10") + (center - Range("N10")) * re-
gion4slope 
        ElseIf center >= Range("N9") And center < Range("N8") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O9") + (center - Range("N9")) * re-
gion5slope 
        ElseIf center >= Range("N8") And center < Range("N7") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O8") + (center - Range("N8")) * re-
gion6slope 
        ElseIf center >= Range("N7") And center < Range("N6") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O7") + (center - Range("N7")) * re-
gion7slope 
        ElseIf center >= Range("N6") And center <= Range("N5") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O6") + (center - Range("N6")) * re-
gion8slope 
        End If 
    Next i 
Else 
    For i = 1 To NofLayers + 1 
        center = Cells(Border1 + 3 + i, 3) 
        If center >= 0 And center < Range("N12") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O13") + center * region1slope 
        ElseIf center >= Range("N12") And center < Range("N11") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O12") + (center - Range("N12")) * re-
gion2slope 
        ElseIf center >= Range("N11") And center < Range("N10") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O11") + (center - Range("N11")) * re-
gion3slope 
        ElseIf center >= Range("N10") And center < Range("N9") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O10") + (center - Range("N10")) * re-
gion4slope 
        ElseIf center >= Range("N9") And center < Range("N8") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O9") + (center - Range("N9")) * re-
gion5slope 
        ElseIf center >= Range("N8") And center < Range("N7") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O8") + (center - Range("N8")) * re-
gion6slope 
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        ElseIf center >= Range("N7") And center < Range("N6") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O7") + (center - Range("N7")) * re-
gion7slope 
        ElseIf center >= Range("N6") And center <= Range("N5") Then 
            Cells(Border1 + 3 + i, 4).Value = Range("O6") + (center - Range("N6")) * re-
gion8slope 
        End If 
    Next i 
End If 
 
'Determine what the strain is for the reinforcement: 
 
'bottom reinforcement: 
If Range("D32") >= 0 And Range("D32") < Range("N12") Then 
    epsSDRYBOT = Range("O13") + Range("D32") * region1slope 
ElseIf Range("D32") >= Range("N12") And Range("D32") < Range("N11") Then 
    epsSDRYBOT = Range("O12") + (Range("D32") - Range("N12")) * region2slope 
ElseIf Range("D32") >= Range("N11") And Range("D32") < Range("N10") Then 
    epsSDRYBOT = Range("O11") + (Range("D32") - Range("N11")) * region3slope 
ElseIf Range("D32") >= Range("N10") And Range("D32") < Range("N9") Then 
    epsSDRYBOT = Range("O10") + (Range("D32") - Range("N10")) * region4slope 
ElseIf Range("D32") >= Range("N9") And Range("D32") < Range("N8") Then 
    epsSDRYBOT = Range("O9") + (Range("D32") - Range("N9")) * region5slope 
ElseIf Range("D32") >= Range("N8") And Range("D32") < Range("N7") Then 
    epsSDRYBOT = Range("O8") + (Range("D32") - Range("N8")) * region6slope 
ElseIf Range("D32") >= Range("N7") And Range("D32") < Range("N6") Then 
    epsSDRYBOT = Range("O7") + (Range("D32") - Range("N7")) * region7slope 
ElseIf Range("D32") >= Range("N6") And Range("D32") <= Range("N5") Then 
    epsSDRYBOT = Range("O6") + (Range("D32") - Range("N6")) * region8slope 
End If 
 
'top reinforcement: 
If Range("F32") >= 0 And Range("F32") < Range("N12") Then 
    epsSDRYTOP = Range("O13") + Range("F32") * region1slope 
ElseIf Range("F32") >= Range("N12") And Range("F32") < Range("N11") Then 
    epsSDRYTOP = Range("O12") + (Range("F32") - Range("N12")) * region2slope 
ElseIf Range("F32") >= Range("N11") And Range("F32") < Range("N10") Then 
    epsSDRYTOP = Range("O11") + (Range("F32") - Range("N11")) * region3slope 
ElseIf Range("F32") >= Range("N10") And Range("F32") < Range("N9") Then 
    epsSDRYTOP = Range("O10") + (Range("F32") - Range("N10")) * region4slope 
ElseIf Range("F32") >= Range("N9") And Range("F32") < Range("N8") Then 
    epsSDRYTOP = Range("O9") + (Range("F32") - Range("N9")) * region5slope 
ElseIf Range("F32") >= Range("N8") And Range("F32") < Range("N7") Then 
    epsSDRYTOP = Range("O8") + (Range("F32") - Range("N8")) * region6slope 
ElseIf Range("F32") >= Range("N7") And Range("F32") < Range("N6") Then 
    epsSDRYTOP = Range("O7") + (Range("F32") - Range("N7")) * region7slope 
ElseIf Range("F32") >= Range("N6") And Range("F32") <= Range("N5") Then 
    epsSDRYTOP = Range("O6") + (Range("F32") - Range("N6")) * region8slope 
End If 
'--------------------------------------------------------------------------------------------- 
'#LINEAR ELASTIC STAGE 
 
'If the web thickness is equal to half the width, it means that there is no concrete (theoret-
ical situation): 
If tWEB = b / 2 Then 
    tTOP = 0 
End If 
 
'SHCC + CONCRETE: 
epsLIM1 = Range("F15") 
epsLIM1SHCC = Range("F17") 
 
'Find the curvature that marks the end of the linear elastic stage: 
If Range("N22") <> "NONE" Then 
 
    'Choose between the simple and the advanced method 
    If tBOT / Range("D8") = Int(tBOT / Range("D8")) Then 
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        kappa0 = 9999 
        For i = 1 To NofLayers 
            epsDRY = Cells(Border1 + 3 + i, 4) 
             
            'Implement bottom layer 
            If Cells(Border1 + 3 + i, 3) < tBOT Then 
                epsMAX = epsLIM1SHCC 
            Else 
                epsMAX = epsLIM1 
            End If 
             
            epsPOSSIBLE = epsMAX - epsDRY 
            kappaMAX = epsPOSSIBLE / (NA - Cells(Border1 + 3 + i, 3)) 
             
            If kappaMAX > 0 Then 
                If kappaMAX < kappa0 Then 
                    kappa0 = kappaMAX 
                End If 
            End If 
        Next i 
         
    Else 
        kappaPOSSIBLESHCC = 9999 
        For i = 1 To SHCCLayers 
            epsDRY = Cells(Border1 + 3 + i, 4) 
            epsMAX = epsLIM1SHCC 
            epsPOSSIBLE = epsMAX - epsDRY 
             
            kappaMAX = epsPOSSIBLE / (NA - Cells(Border1 + 3 + i, 3)) 
             
            If kappaMAX > 0 Then 
                If kappaMAX < kappaPOSSIBLESHCC Then 
                    kappaPOSSIBLESHCC = kappaMAX 
                End If 
            End If 
        Next i 
                 
        kappaPOSSIBLECON = 9999 
        For i = SHCCLayers + 2 To NofLayers + 1 
            epsDRY = Cells(Border1 + 4 + i, 4) 
            epsMAX = epsLIM1 
            epsPOSSIBLE = epsMAX - epsDRY 
             
            kappaMAX = epsPOSSIBLE / (NA - Cells(Border1 + 4 + i, 3)) 
             
            If kappaMAX > 0 Then 
                If kappaMAX < kappaPOSSIBLECON Then 
                    kappaPOSSIBLECON = kappaMAX 
                End If 
            End If 
        Next i 
         
        kappa0 = WorksheetFunction.Min(kappaPOSSIBLECON, kappaPOSSIBLESHCC) 
    End If 
Else 
 
    If tTOP <> 0 Then 
         
        If tBOT >= NA Then 
            kappaPOSSIBLESHCC = epsLIM1SHCC / NA 
             
            kappa0 = kappaPOSSIBLESHCC 
        Else 
            kappaPOSSIBLECON = epsLIM1 / (NA - tBOT) 
            kappaPOSSIBLESHCC = epsLIM1SHCC / NA 
             
            kappa0 = WorksheetFunction.Min(kappaPOSSIBLECON, kappaPOSSIBLESHCC) 
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        End If 
         
    ElseIf tTOP = 0 Then 
        kappa0 = epsLIM1SHCC / NA 
    ElseIf tBOT = 0 Then 
        kappa0 = epsLIM1 / NA 
    End If 
     
End If 
     
Cells(Border1 - 1, 4).Value = kappa0 
     
'Manually insert the n.a. value 
Cells(Border1 - 6, 4).Value = NA 
 
'Slopes of stress-strain diagrams (both are also for compression in the first part, so rc1 = 
rc1min!) 
rc1 = Range("E15") / epsLIM1 
rc1SHCC = Range("E17") / epsLIM1SHCC 
 
'+3 below is to include steel reinforcement (one for bottom layer; one for top layer) + 
'if advanced method is used (if the simple method is used, there will be one empty cell) 
Dim arrN() As Long 
ReDim arrN(0 To NofLayers + 3) 
Dim arrM() As Long 
ReDim arrM(0 To NofLayers + 3) 
 
'Choose between the simple and the advanced method 
If tBOT / Range("D8") = Int(tBOT / Range("D8")) Then 
    For i = 1 To NofLayers 
        eps = (NA - Cells(Border1 + 3 + i, 3)) * kappa0 
     
        'Implement bottom layer 
        If Cells(Border1 + 3 + i, 3) < tBOT Then 
            Sigma = rc1SHCC * eps 
        Else 
            'SigmaSHCC below also includes compressive resistance: 
            SigmaSHCC = rc1SHCC * eps 
            SigmaCON = rc1 * eps 
            Sigma = (2 * tWEB) / b * SigmaSHCC + (1 - (2 * tWEB) / b) * SigmaCON 
        End If 
     
        arrN(i) = Sigma * Range("D8") * b 
        arrM(i) = arrN(i) * (NA - Cells(Border1 + 3 + i, 3)) 
    Next i 
Else 
    'SHCC: 
    For i = 1 To SHCCLayers 
        eps = (NA - Cells(Border1 + 3 + i, 3)) * kappa0 
        Sigma = rc1SHCC * eps 
     
        arrN(i) = Sigma * Range("D8") * b 
        arrM(i) = arrN(i) * (NA - Cells(Border1 + 3 + i, 3)) 
    Next i 
     
    'Partial SHCC: 
    eps = (NA - Cells(Border1 + 3 + (SHCCLayers + 1), 3)) * kappa0 
    Sigma = rc1SHCC * eps 
     
    arrN(SHCCLayers + 1) = Sigma * (tBOT / Range("D8") - SHCCLayers) * Range("D8") * b 
    arrM(SHCCLayers + 1) = arrN(SHCCLayers + 1) * (NA - Cells(Border1 + 3 + (SHCCLayers + 1), 
3)) 
     
    'Partial CONCRETE (+WEBS): 
    eps = (NA - Cells(Border1 + 3 + (SHCCLayers + 2), 3)) * kappa0 
    SigmaSHCC = rc1SHCC * eps 
    SigmaCON = rc1 * eps 
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    Sigma = (2 * tWEB) / b * SigmaSHCC + (1 - (2 * tWEB) / b) * SigmaCON 
     
    arrN(SHCCLayers + 2) = Sigma * (1 - (tBOT / Range("D8") - SHCCLayers)) * Range("D8") * b 
    arrM(SHCCLayers + 2) = arrN(SHCCLayers + 2) * (NA - Cells(Border1 + 3 + (SHCCLayers + 2), 
3)) 
     
    'CONCRETE (+WEBS): 
    For i = SHCCLayers + 2 To NofLayers + 1 
        eps = (NA - Cells(Border1 + 4 + i, 3)) * kappa0 
        SigmaSHCC = rc1SHCC * eps 
        SigmaCON = rc1 * eps 
        Sigma = (2 * tWEB) / b * SigmaSHCC + (1 - (2 * tWEB) / b) * SigmaCON 
     
        arrN(i + 1) = Sigma * Range("D8") * b 
        arrM(i + 1) = arrN(i + 1) * (NA - Cells(Border1 + 4 + i, 3)) 
    Next i 
End If 
 
'STEEL REINFORCEMENT: 
epsLIM1S = Range("F19") 
rc1S = Range("E19") / epsLIM1S 
 
'Bottom reinforcement: 
AreaSBOT = Pi / 4 * PhiBOT ^ 2 * Range("D31") 
epsSBOT = (NA - Range("D32")) * kappa0 
SigmaSBOT = rc1S * epsSBOT 
arrN(NofLayers + 2) = SigmaSBOT * AreaSBOT 
arrM(NofLayers + 2) = arrN(NofLayers + 2) * (NA - Range("D32")) 
 
Cells(Border1 - 8, 4).Value = SigmaSBOT * AreaSBOT 
 
'Top reinforcement: 
AreaSTOP = Pi / 4 * PhiTOP ^ 2 * Range("F31") 
epsSTOP = (NA - Range("F32")) * kappa0 
SigmaSTOP = rc1S * epsSTOP 
arrN(NofLayers + 3) = SigmaSTOP * AreaSTOP 
arrM(NofLayers + 3) = arrN(NofLayers + 3) * (NA - Range("F32")) 
 
'----------------------------------- 
''Show Delta - N'S FOR FIRST STEP 
'For n = 1 To NofLayers + 3 
'    Cells(50 + n, 5).Value = arrN(n) 
'Next n 
 
''Show Delta - M'S FOR FIRST STEP 
'For n = 1 To NofLayers + 3 
'    Cells(50 + n, 6).Value = arrM(n) 
'Next n 
'----------------------------------- 
 
'#SUM OF N 
Cells(Border1 - 3, 4).Value = WorksheetFunction.Sum(arrN) 
 
'#CALCULATE MOMENT 
Mlinear = WorksheetFunction.Sum(arrM) 
Cells(Border1 - 5, 4).Value = Mlinear 
 
'#CALCULATE APPLIED FORCE; note that moment due to selfweight is reduced from occuring moment 
If Range("M30") = "4-point" Then 
    'M=FL/6 
    Flinear = 6 * (Cells(Border1 - 5, 4) - MG) / L 
Else 
    'M=FL/4 
    Flinear = 4 * (Cells(Border1 - 5, 4) - MG) / L 
End If 
 
Cells(Border1 - 4, 4).Value = Flinear 
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'#CALCULATE DISPLACEMENT (using Momentvlakstellingen): 
If Range("M30") = "4-point" Then 
    'Reduced moment diagram consists of ONLY 3 constant parts: Area1 and Area7 are triangles; 
Area4 is a rectangle 
    Theta1 = 1 / 2 * (Mlinear - MG) / EIlinear * L1 
    Theta4 = (Mlinear - MG) / EIlinear * L2 
    Theta7 = Theta1 
     
    Distance1 = L - 2 / 3 * L1 
    Distance4 = L / 2 
    Distance7 = 2 / 3 * L1 
     
    'All thetas times their distances are equal to PhiA times L (so that the displacement at 
the second support = 0 
    PhiA = (Theta1 * Distance1 + Theta4 * Distance4 + Theta7 * Distance7) / L 
     
    'Split Theta4 in two to get the deflection at midspan 
    Theta4B = Theta4 / 2 
     
    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) - Theta4B * L2 / 4 
Else 
    'Reduced moment diagram consists of ONLY 2 constant parts: Area1 and Area7 are triangles 
    Theta1 = 1 / 2 * (Mlinear - MG) / EIlinear * L1 
    Theta7 = Theta1 
     
    Distance1 = L - 2 / 3 * L1 
    Distance7 = 2 / 3 * L1 
     
    'All thetas times their distances are equal to PhiA times L (so that the displacement at 
the second support = 0 
    PhiA = (Theta1 * Distance1 + Theta7 * Distance7) / L 
     
    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) 
End If 
 
Cells(Border1 - 7, 4).Value = w + wG 
 
''#CALCULATE STRAIN AT TOP 
'Cells(Border1 - 8, 4).Value = -kappa0 * (h - NA) 
 
'Show progess in % 
Cells(26, 9).Value = 2 / (Points + 2) 
 
'Implement the case that the initial drying shrinkage strain is exceeding the linear elastic 
stage: 
epsDRYmax = Range("O13") 
 
If tTOP = 0 And epsDRYmax >= epsLIM1SHCC Then 
    Cells(Border1 - 7, 4).Value = wG 
     
    For i = 1 To 5 
        Cells(Border1 - i, 4).Value = 0 
    Next i 
     
    kappa0 = 0 
ElseIf tBOT = 0 And epsDRYmax >= epsLIM1 Then 
    Cells(Border1 - 7, 4).Value = wG 
     
    For i = 1 To 5 
        Cells(Border1 - i, 4).Value = 0 
    Next i 
     
    kappa0 = 0 
ElseIf tBOT <> 0 Then 
    If epsDRYmax >= epsLIM1SHCC Then 
        Cells(Border1 - 7, 4).Value = wG 
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        For i = 1 To 5 
            Cells(Border1 - i, 4).Value = 0 
        Next i 
         
        kappa0 = 0 
    Else 
        'Note that tBOT is used as that marks the bottom of the top layer 
        If tBOT >= 0 And tBOT < Range("N12") Then 
            epsDRYmax = Range("O13") + tBOT * region1slope 
        ElseIf tBOT >= Range("N12") And tBOT < Range("N11") Then 
            epsDRYmax = Range("O12") + (tBOT - Range("N12")) * region2slope 
        ElseIf tBOT >= Range("N11") And tBOT < Range("N10") Then 
            epsDRYmax = Range("O11") + (tBOT - Range("N11")) * region3slope 
        ElseIf tBOT >= Range("N10") And tBOT < Range("N9") Then 
            epsDRYmax = Range("O10") + (tBOT - Range("N10")) * region4slope 
        ElseIf tBOT >= Range("N9") And tBOT < Range("N8") Then 
            epsDRYmax = Range("O9") + (tBOT - Range("N9")) * region5slope 
        ElseIf tBOT >= Range("N8") And tBOT < Range("N7") Then 
            epsDRYmax = Range("O8") + (tBOT - Range("N8")) * region6slope 
        ElseIf tBOT >= Range("N7") And tBOT < Range("N6") Then 
            epsDRYmax = Range("O7") + (tBOT - Range("N7")) * region7slope 
        ElseIf tBOT >= Range("N6") And tBOT <= Range("N5") Then 
            epsDRYmax = Range("O6") + (tBOT - Range("N6")) * region8slope 
        End If 
     
        If epsDRYmax >= epsLIM1 Then 
            Cells(Border1 - 7, 4).Value = wG 
             
            For i = 1 To 5 
                Cells(Border1 - i, 4).Value = 0 
            Next i 
             
            kappa0 = 0 
        End If 
    End If 
End If 
 
'--------------------------------------------------------------------------------------------- 
'NON-LINEAR STAGE 
 
'+3 below is to include steel reinforcement (one for bottom layer; one for top layer) + 
'if advanced method is used (if the simple method is used, there will be one empty cell) 
Dim arrN1() As Long 
ReDim arrN1(0 To NofLayers + 3) 
Dim arrN2() As Long 
ReDim arrN2(0 To NofLayers + 3) 
 
If tTOP <> 0 Then 
    'Choose between crack inclusion or exclusion for concrete: 
    If Range("L26") = "NO" And Range("G15") <> "" Then 
        epsLIM2 = Range("H15") 
     
        'Slope of stress-strain diagram (rcmin1 = rc1 -> see L.E. stage) 
        rc2 = (Range("G15") - Range("E15")) / (epsLIM2 - epsLIM1) 
         
        'Add possible third point in tension 
        If Range("I15") <> "" Then 
            epsLIM3 = Range("J15") 
            rc3 = (Range("I15") - Range("G15")) / (epsLIM3 - epsLIM2) 
        End If 
    ElseIf Range("L26") = "YES" And Range("G15") <> "" And Range("N26") = "" Then 
        epsLIM2 = Range("H15") 
         
        'Slope of stress-strain diagram (rcmin1 = rc1 -> see L.E. stage) 
        rc2 = (Range("G15") - Range("E15")) / (epsLIM2 - epsLIM1) 
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        epsLIM3 = Range("S26") 
        rc3 = (Range("R26") - Range("G15")) / (epsLIM3 - epsLIM2) 
    ElseIf Range("L26") = "YES" And Range("G15") = "" And Range("N26") <> "" Then 
        epsLIM2 = Range("P26") 
         
        'Slope of stress-strain diagram (rcmin1 = rc1 -> see L.E. stage) 
        rc2 = (Range("O26") - Range("E15")) / (epsLIM2 - epsLIM1) 
         
        epsLIM3 = Range("S26") 
        rc3 = (Range("R26") - Range("O26")) / (epsLIM3 - epsLIM2) 
    ElseIf Range("L26") = "YES" And Range("G15") <> "" And Range("N26") <> "" Then 
        epsLIM2 = Range("H15") 
         
        'Slope of stress-strain diagram (rcmin1 = rc1 -> see L.E. stage) 
        rc2 = (Range("G15") - Range("E15")) / (epsLIM2 - epsLIM1) 
         
        epsLIM3 = Range("P26") 
        rc3 = (Range("O26") - Range("G15")) / (epsLIM3 - epsLIM2) 
         
        epsLIM4 = Range("S26") 
        rc4 = (Range("R26") - Range("O26")) / (epsLIM4 - epsLIM3) 
    ElseIf Range("L26") = "YES" And Range("G15") = "" And Range("N26") = "" Then 
        epsLIM2 = Range("S26") 
         
        'Slope of stress-strain diagram (rcmin1 = rc1 -> see L.E. stage) 
        rc2 = (Range("R26") - Range("E15")) / (epsLIM2 - epsLIM1) 
    End If 
End If 
 
If tBOT <> 0 Or tWEB <> 0 Then 
    'Choose between crack inclusion or exclusion for SHCC: 
    If Range("L27") = "NO" And Range("G17") <> "" Then 
        epsLIM2SHCC = Range("H17") 
         
        'Slope of stress-strain diagram 
        rc2SHCC = (Range("G17") - Range("E17")) / (epsLIM2SHCC - epsLIM1SHCC) 
         
        'Add possible third point in tension 
        If Range("I17") <> "" Then 
            epsLIM3SHCC = Range("J17") 
            rc3SHCC = (Range("I17") - Range("G17")) / (epsLIM3SHCC - epsLIM2SHCC) 
        End If 
    ElseIf Range("L27") = "YES" And Range("G17") <> "" And Range("N27") = "" Then 
        epsLIM2SHCC = Range("H17") 
         
        'Slope of stress-strain diagram 
        rc2SHCC = (Range("G17") - Range("E17")) / (epsLIM2SHCC - epsLIM1SHCC) 
         
        epsLIM3SHCC = Range("S27") 
        rc3SHCC = (Range("R27") - Range("G17")) / (epsLIM3SHCC - epsLIM2SHCC) 
    ElseIf Range("L27") = "YES" And Range("N27") <> "" Then 
        epsLIM2SHCC = Range("P27") 
         
        'Slope of stress-strain diagram 
        rc2SHCC = (Range("O27") - Range("E17")) / (epsLIM2SHCC - epsLIM1SHCC) 
         
        epsLIM3SHCC = Range("S27") 
        rc3SHCC = (Range("R27") - Range("O27")) / (epsLIM3SHCC - epsLIM2SHCC) 
    ElseIf Range("L27") = "YES" And Range("G17") <> "" And Range("N27") <> "" Then 
        epsLIM2SHCC = Range("H17") 
         
        'Slope of stress-strain diagram 
        rc2SHCC = (Range("G17") - Range("E17")) / (epsLIM2SHCC - epsLIM1SHCC) 
         
        epsLIM3SHCC = Range("P27") 
        rc3SHCC = (Range("O27") - Range("G17")) / (epsLIM3SHCC - epsLIM2SHCC) 
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        epsLIM4SHCC = Range("S27") 
        rc4SHCC = (Range("R27") - Range("O27")) / (epsLIM4SHCC - epsLIM3SHCC) 
    ElseIf Range("L27") = "YES" And Range("G17") = "" And Range("N27") = "" Then 
        epsLIM2SHCC = Range("S27") 
         
        'Slope of stress-strain diagram (rcmin1 = rc1 -> see L.E. stage) 
        rc2 = (Range("R27") - Range("E17")) / (epsLIM2 - epsLIM1) 
    End If 
End If 
 
epsLIMmin1 = -Range("F16") 
 
epsLIMmin1SHCC = -Range("F18") 
 
epsLIMmin1S = -Range("F20") 
epsLIMmin2S = -Range("H20") 
epsLIM2S = Range("H19") 
 
'Slopes of stress-strain diagrams 
rcmin2S = (-Range("E20") - -Range("G20")) / (epsLIMmin1S - epsLIMmin2S) 
rc2S = (Range("G19") - Range("E19")) / (epsLIM2S - epsLIM1S) 
 
'Use conditions for second and/or third compression point (in case it is not necessary so the 
code does not crash): 
 
'CONCRETE: 
If Range("G16") <> "" And Range("I16") = "" Then 
    epsLIMmin2 = -Range("H16") 
    rcmin2 = (-Range("E16") - -Range("G16")) / (epsLIMmin1 - epsLIMmin2) 
ElseIf Range("G16") <> "" And Range("I16") <> "" Then 
    epsLIMmin2 = -Range("H16") 
    rcmin2 = (-Range("E16") - -Range("G16")) / (epsLIMmin1 - epsLIMmin2) 
 
    epsLIMmin3 = -Range("J16") 
    rcmin3 = (-Range("G16") - -Range("I16")) / (epsLIMmin2 - epsLIMmin3) 
End If 
 
'SHCC: 
If Range("G18") <> "" And Range("I18") = "" Then 
    epsLIMmin2SHCC = -Range("H18") 
    rcmin2SHCC = (-Range("E18") - -Range("G18")) / (epsLIMmin1SHCC - epsLIMmin2SHCC) 
ElseIf Range("G18") <> "" And Range("I18") <> "" Then 
    epsLIMmin2SHCC = -Range("H18") 
    rcmin2SHCC = (-Range("E18") - -Range("G18")) / (epsLIMmin1SHCC - epsLIMmin2SHCC) 
     
    epsLIMmin3SHCC = -Range("J18") 
    rcmin3SHCC = (-Range("G18") - -Range("I18")) / (epsLIMmin2SHCC - epsLIMmin3SHCC) 
End If 
 
'MAXIMUM NUMBER OF STEPS 
deltah = Range("D2") 
Steps = (h - NA) / deltah 
deltakappa = Range("D10") 
 
'n.a. before the first iteration (end of LE-stage) 
naSTEP = NA 
 
For n = 1 To Points 
    Cells(Border1, 4 + n).Value = n 
    Cells(Border1 + 2, 4 + n).Value = MG 
 
    kappa = kappa0 + n * deltakappa 
    For j = 1 To Steps 
        NA1 = naSTEP + (j - 1) * deltah 
        NA2 = naSTEP + j * deltah 
 
        'Choose between the simple and the advanced method 
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        If tBOT / Range("D8") = Int(tBOT / Range("D8")) Then 
            For i = 1 To NofLayers 
     
            'SHCC + CONCRETE: 
                'First of two parts that will be compared 
                epsDRY = Cells(Border1 + 3 + i, 4) 
                epsLOAD = (NA1 - Cells(Border1 + 3 + i, 3)) * kappa 
                 
                eps = epsDRY + epsLOAD 
     
                If Cells(Border1 + 3 + i, 3) < tBOT Then 
                    'SHCC bottom layer: 
                    If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                        Sigma = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
                    ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                        Sigma = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
                    ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                        Sigma = rc1SHCC * eps 
                    ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                        Sigma = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
                    'ElseIf below only fulfilled if there is a third point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                        Sigma = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
                    'ElseIf below only fulfilled if there is a fourth point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                        Sigma = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
                    Else 
                        Sigma = 0 
                    End If 
                Else 
                    'SHCC web (if present): 
                    If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                        SigmaSHCC = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
                    ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                        SigmaSHCC = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
                    ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                        SigmaSHCC = rc1SHCC * eps 
                    ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                        SigmaSHCC = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
                    'ElseIf below only fulfilled if there is a third point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                        SigmaSHCC = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
                    'ElseIf below only fulfilled if there is a fourth point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                        SigmaSHCC = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
                    Else 
                        SigmaSHCC = 0 
                    End If 
     
                    'CONCRETE: 
                    If eps >= epsLIMmin3 And eps < epsLIMmin2 Then 
                        SigmaCON = -Range("G16") + rcmin3 * (eps - epsLIMmin2) 
                    ElseIf eps >= epsLIMmin2 And eps < epsLIMmin1 Then 
                        SigmaCON = -Range("E16") + rcmin2 * (eps - epsLIMmin1) 
                    ElseIf eps >= epsLIMmin1 And eps <= epsLIM1 Then 
                        SigmaCON = rc1 * eps 
                    ElseIf eps > epsLIM1 And eps <= epsLIM2 Then 
                        SigmaCON = Range("E15") + rc2 * (eps - epsLIM1) 
                    'ElseIf below only fulfilled if there is a third point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM2 And eps <= epsLIM3 Then 
                        SigmaCON = Range("G15") + rc3 * (eps - epsLIM2) 
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                    'ElseIf below only fulfilled if there is a fourth point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM3 And eps <= epsLIM4 Then 
                        SigmaCON = Range("O26") + rc4 * (eps - epsLIM3) 
                    Else 
                        SigmaCON = 0 
                    End If 
     
                    Sigma = (2 * tWEB) / b * SigmaSHCC + (1 - (2 * tWEB) / b) * SigmaCON 
     
                End If 
     
                arrN1(i) = Sigma * Range("D8") * b 
     
                'Second of two parts that will be compared 
                epsDRY = Cells(Border1 + 3 + i, 4) 
                epsLOAD = (NA2 - Cells(Border1 + 3 + i, 3)) * kappa 
                 
                eps = epsDRY + epsLOAD 
     
                If Cells(Border1 + 3 + i, 3) < tBOT Then 
                    'SHCC bottom layer: 
                    If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                        Sigma = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
                    ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                        Sigma = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
                    ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                        Sigma = rc1SHCC * eps 
                    ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                        Sigma = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
                    'ElseIf below only fulfilled if there is a third point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                        Sigma = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
                    'ElseIf below only fulfilled if there is a fourth point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                        Sigma = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
                    Else 
                        Sigma = 0 
                    End If 
                Else 
                    'SHCC web (if present): 
                    If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                        SigmaSHCC = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
                    ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                        SigmaSHCC = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
                    ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                        SigmaSHCC = rc1SHCC * eps 
                    ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                        SigmaSHCC = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
                    'ElseIf below only fulfilled if there is a third point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                        SigmaSHCC = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
                    'ElseIf below only fulfilled if there is a fourth point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                        SigmaSHCC = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
                    Else 
                        SigmaSHCC = 0 
                    End If 
     
                    'CONCRETE: 
                    If eps >= epsLIMmin3 And eps < epsLIMmin2 Then 
                        SigmaCON = -Range("G16") + rcmin3 * (eps - epsLIMmin2) 
                    ElseIf eps >= epsLIMmin2 And eps < epsLIMmin1 Then 



MSc thesis: Ammar Yassiri   129 
 
                        SigmaCON = -Range("E16") + rcmin2 * (eps - epsLIMmin1) 
                    ElseIf eps >= epsLIMmin1 And eps <= epsLIM1 Then 
                        SigmaCON = rc1 * eps 
                    ElseIf eps > epsLIM1 And eps <= epsLIM2 Then 
                        SigmaCON = Range("E15") + rc2 * (eps - epsLIM1) 
                    'ElseIf below only fulfilled if there is a third point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM2 And eps <= epsLIM3 Then 
                        SigmaCON = Range("G15") + rc3 * (eps - epsLIM2) 
                    'ElseIf below only fulfilled if there is a fourth point in tension (other-
wise the statement is never fulfilled) 
                    ElseIf eps > epsLIM3 And eps <= epsLIM4 Then 
                        SigmaCON = Range("O26") + rc4 * (eps - epsLIM3) 
                    Else 
                        SigmaCON = 0 
                    End If 
     
                    Sigma = (2 * tWEB) / b * SigmaSHCC + (1 - (2 * tWEB) / b) * SigmaCON 
                End If 
     
                arrN2(i) = Sigma * Range("D8") * b 
     
            Next i 
        Else 
            'First of two parts that will be compared 
             
            'SHCC: 
            For i = 1 To SHCCLayers 
                epsDRY = Cells(Border1 + 3 + i, 4) 
                epsLOAD = (NA1 - Cells(Border1 + 3 + i, 3)) * kappa 
                 
                eps = epsDRY + epsLOAD 
             
                If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                    Sigma = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
                ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                    Sigma = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
                ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                    Sigma = rc1SHCC * eps 
                ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                    Sigma = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
                'ElseIf below only fulfilled if there is a third point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                    Sigma = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
                'ElseIf below only fulfilled if there is a fourth point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                    Sigma = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
                Else 
                    Sigma = 0 
                End If 
                 
                arrN1(i) = Sigma * Range("D8") * b 
            Next i 
         
            'Partial SHCC: 
            epsDRY = Cells(Border1 + 3 + (SHCCLayers + 1), 4) 
            epsLOAD = (NA1 - Cells(Border1 + 3 + (SHCCLayers + 1), 3)) * kappa 
             
            eps = epsDRY + epsLOAD 
             
            If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                Sigma = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
            ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                Sigma = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
            ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
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                Sigma = rc1SHCC * eps 
            ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                Sigma = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
            'ElseIf below only fulfilled if there is a third point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                Sigma = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
            'ElseIf below only fulfilled if there is a fourth point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                Sigma = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
            Else 
                Sigma = 0 
            End If 
 
            arrN1(SHCCLayers + 1) = Sigma * (tBOT / Range("D8") - SHCCLayers) * Range("D8") * 
b 
 
            'Partial CONCRETE (+WEBS): 
            epsDRY = Cells(Border1 + 3 + (SHCCLayers + 2), 4) 
            epsLOAD = (NA1 - Cells(Border1 + 3 + (SHCCLayers + 2), 3)) * kappa 
             
            eps = epsDRY + epsLOAD 
             
            'SHCC web (if present): 
            If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                SigmaSHCC = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
            ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                SigmaSHCC = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
            ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                SigmaSHCC = rc1SHCC * eps 
            ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                SigmaSHCC = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
            'ElseIf below only fulfilled if there is a third point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                SigmaSHCC = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
            'ElseIf below only fulfilled if there is a fourth point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                SigmaSHCC = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
            Else 
                SigmaSHCC = 0 
            End If 
 
            'CONCRETE: 
            If eps >= epsLIMmin3 And eps < epsLIMmin2 Then 
                SigmaCON = -Range("G16") + rcmin3 * (eps - epsLIMmin2) 
            ElseIf eps >= epsLIMmin2 And eps < epsLIMmin1 Then 
                SigmaCON = -Range("E16") + rcmin2 * (eps - epsLIMmin1) 
            ElseIf eps >= epsLIMmin1 And eps <= epsLIM1 Then 
                SigmaCON = rc1 * eps 
            ElseIf eps > epsLIM1 And eps <= epsLIM2 Then 
                SigmaCON = Range("E15") + rc2 * (eps - epsLIM1) 
            'ElseIf below only fulfilled if there is a third point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM2 And eps <= epsLIM3 Then 
                SigmaCON = Range("G15") + rc3 * (eps - epsLIM2) 
            'ElseIf below only fulfilled if there is a fourth point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM3 And eps <= epsLIM4 Then 
                SigmaCON = Range("O26") + rc4 * (eps - epsLIM3) 
            Else 
                SigmaCON = 0 
            End If 
             
            Sigma = (2 * tWEB) / b * SigmaSHCC + (1 - (2 * tWEB) / b) * SigmaCON 
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            arrN1(SHCCLayers + 2) = Sigma * (1 - (tBOT / Range("D8") - SHCCLayers)) * 
Range("D8") * b 
 
            'CONCRETE (+WEBS) 
            For i = SHCCLayers + 2 To NofLayers + 1 
                epsDRY = Cells(Border1 + 4 + i, 4) 
                epsLOAD = (NA1 - Cells(Border1 + 4 + i, 3)) * kappa 
                 
                eps = epsDRY + epsLOAD 
                 
                'SHCC web (if present): 
                If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                    SigmaSHCC = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
                ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                    SigmaSHCC = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
                ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                    SigmaSHCC = rc1SHCC * eps 
                ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                    SigmaSHCC = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
                'ElseIf below only fulfilled if there is a third point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                    SigmaSHCC = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
                'ElseIf below only fulfilled if there is a fourth point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                    SigmaSHCC = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
                Else 
                    SigmaSHCC = 0 
                End If 
 
                'CONCRETE: 
                If eps >= epsLIMmin3 And eps < epsLIMmin2 Then 
                    SigmaCON = -Range("G16") + rcmin3 * (eps - epsLIMmin2) 
                ElseIf eps >= epsLIMmin2 And eps < epsLIMmin1 Then 
                    SigmaCON = -Range("E16") + rcmin2 * (eps - epsLIMmin1) 
                ElseIf eps >= epsLIMmin1 And eps <= epsLIM1 Then 
                    SigmaCON = rc1 * eps 
                ElseIf eps > epsLIM1 And eps <= epsLIM2 Then 
                    SigmaCON = Range("E15") + rc2 * (eps - epsLIM1) 
                'ElseIf below only fulfilled if there is a third point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM2 And eps <= epsLIM3 Then 
                    SigmaCON = Range("G15") + rc3 * (eps - epsLIM2) 
                'ElseIf below only fulfilled if there is a fourth point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM3 And eps <= epsLIM4 Then 
                    SigmaCON = Range("O26") + rc4 * (eps - epsLIM3) 
                Else 
                    SigmaCON = 0 
                End If 
 
                Sigma = (2 * tWEB) / b * SigmaSHCC + (1 - (2 * tWEB) / b) * SigmaCON 
 
                arrN1(i + 1) = Sigma * Range("D8") * b 
            Next i 
             
            'Second of two parts that will be compared 
             
            'SHCC: 
            For i = 1 To SHCCLayers 
                epsDRY = Cells(Border1 + 3 + i, 4) 
                epsLOAD = (NA2 - Cells(Border1 + 3 + i, 3)) * kappa 
                 
                eps = epsDRY + epsLOAD 
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                If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                    Sigma = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
                ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                    Sigma = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
                ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                    Sigma = rc1SHCC * eps 
                ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                    Sigma = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
                'ElseIf below only fulfilled if there is a third point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                    Sigma = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
                'ElseIf below only fulfilled if there is a fourth point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                    Sigma = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
                Else 
                    Sigma = 0 
                End If 
                 
                arrN2(i) = Sigma * Range("D8") * b 
            Next i 
         
            'Partial SHCC: 
            epsDRY = Cells(Border1 + 3 + (SHCCLayers + 1), 4) 
            epsLOAD = (NA2 - Cells(Border1 + 3 + (SHCCLayers + 1), 3)) * kappa 
             
            eps = epsDRY + epsLOAD 
             
            If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                Sigma = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
            ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                Sigma = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
            ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                Sigma = rc1SHCC * eps 
            ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                Sigma = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
            'ElseIf below only fulfilled if there is a third point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                Sigma = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
            'ElseIf below only fulfilled if there is a fourth point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                Sigma = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
            Else 
                Sigma = 0 
            End If 
 
            arrN2(SHCCLayers + 1) = Sigma * (tBOT / Range("D8") - SHCCLayers) * Range("D8") * 
b 
 
            'Partial CONCRETE (+WEBS): 
            epsDRY = Cells(Border1 + 3 + (SHCCLayers + 2), 4) 
            epsLOAD = (NA2 - Cells(Border1 + 3 + (SHCCLayers + 2), 3)) * kappa 
             
            eps = epsDRY + epsLOAD 
             
            'SHCC web (if present): 
            If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                SigmaSHCC = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
            ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                SigmaSHCC = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
 
            ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                SigmaSHCC = rc1SHCC * eps 
            ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
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                SigmaSHCC = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
            'ElseIf below only fulfilled if there is a third point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                SigmaSHCC = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
            'ElseIf below only fulfilled if there is a fourth point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                SigmaSHCC = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
            Else 
                SigmaSHCC = 0 
            End If 
 
            'CONCRETE: 
            If eps >= epsLIMmin3 And eps < epsLIMmin2 Then 
                SigmaCON = -Range("G16") + rcmin3 * (eps - epsLIMmin2) 
            ElseIf eps >= epsLIMmin2 And eps < epsLIMmin1 Then 
                SigmaCON = -Range("E16") + rcmin2 * (eps - epsLIMmin1) 
            ElseIf eps >= epsLIMmin1 And eps <= epsLIM1 Then 
                SigmaCON = rc1 * eps 
            ElseIf eps > epsLIM1 And eps <= epsLIM2 Then 
                SigmaCON = Range("E15") + rc2 * (eps - epsLIM1) 
            'ElseIf below only fulfilled if there is a third point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM2 And eps <= epsLIM3 Then 
                SigmaCON = Range("G15") + rc3 * (eps - epsLIM2) 
            'ElseIf below only fulfilled if there is a fourth point in tension (otherwise the 
statement is never fulfilled) 
            ElseIf eps > epsLIM3 And eps <= epsLIM4 Then 
                SigmaCON = Range("O26") + rc4 * (eps - epsLIM3) 
            Else 
                SigmaCON = 0 
            End If 
             
            Sigma = (2 * tWEB) / b * SigmaSHCC + (1 - (2 * tWEB) / b) * SigmaCON 
 
            arrN2(SHCCLayers + 2) = Sigma * (1 - (tBOT / Range("D8") - SHCCLayers)) * 
Range("D8") * b 
 
            'CONCRETE (+WEBS) 
            For i = SHCCLayers + 2 To NofLayers + 1 
                epsDRY = Cells(Border1 + 4 + i, 4) 
                epsLOAD = (NA2 - Cells(Border1 + 4 + i, 3)) * kappa 
                 
                eps = epsDRY + epsLOAD 
                 
                'SHCC web (if present): 
                If eps >= epsLIMmin3SHCC And eps < epsLIMmin2SHCC Then 
                    SigmaSHCC = -Range("G18") + rcmin3SHCC * (eps - epsLIMmin2SHCC) 
                ElseIf eps >= epsLIMmin2SHCC And eps < epsLIMmin1SHCC Then 
                    SigmaSHCC = -Range("E18") + rcmin2SHCC * (eps - epsLIMmin1SHCC) 
                ElseIf eps >= epsLIMmin1SHCC And eps <= epsLIM1SHCC Then 
                    SigmaSHCC = rc1SHCC * eps 
                ElseIf eps > epsLIM1SHCC And eps <= epsLIM2SHCC Then 
                    SigmaSHCC = Range("E17") + rc2SHCC * (eps - epsLIM1SHCC) 
                'ElseIf below only fulfilled if there is a third point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM2SHCC And eps <= epsLIM3SHCC Then 
                    SigmaSHCC = Range("G17") + rc3SHCC * (eps - epsLIM2SHCC) 
                'ElseIf below only fulfilled if there is a fourth point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM3SHCC And eps <= epsLIM4SHCC Then 
                    SigmaSHCC = Range("O27") + rc4SHCC * (eps - epsLIM3SHCC) 
                Else 
                    SigmaSHCC = 0 
                End If 
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                'CONCRETE: 
                If eps >= epsLIMmin3 And eps < epsLIMmin2 Then 
                    SigmaCON = -Range("G16") + rcmin3 * (eps - epsLIMmin2) 
                ElseIf eps >= epsLIMmin2 And eps < epsLIMmin1 Then 
                    SigmaCON = -Range("E16") + rcmin2 * (eps - epsLIMmin1) 
                ElseIf eps >= epsLIMmin1 And eps <= epsLIM1 Then 
                    SigmaCON = rc1 * eps 
                ElseIf eps > epsLIM1 And eps <= epsLIM2 Then 
                    SigmaCON = Range("E15") + rc2 * (eps - epsLIM1) 
                'ElseIf below only fulfilled if there is a third point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM2 And eps <= epsLIM3 Then 
                    SigmaCON = Range("G15") + rc3 * (eps - epsLIM2) 
                'ElseIf below only fulfilled if there is a fourth point in tension (otherwise 
the statement is never fulfilled) 
                ElseIf eps > epsLIM3 And eps <= epsLIM4 Then 
                    SigmaCON = Range("O26") + rc4 * (eps - epsLIM3) 
                Else 
                    SigmaCON = 0 
                End If 
 
                Sigma = (2 * tWEB) / b * SigmaSHCC + (1 - (2 * tWEB) / b) * SigmaCON 
 
                arrN2(i + 1) = Sigma * Range("D8") * b 
            Next i 
        End If 
         
        'STEEL REINFORCEMENT: 
        'Continuation of first of two parts 
 
        'Bottom reinforcement: 
         
        epsSBOT = (NA1 - Range("D32")) * kappa 
 
        If epsSBOT >= epsLIMmin2S And epsSBOT < epsLIMmin1S Then 
            SigmaSBOT = -Range("E20") + rcmin2S * (epsSBOT - epsLIMmin1S) 
        ElseIf epsSBOT >= epsLIMmin1S And epsSBOT <= epsLIM1S Then 
            SigmaSBOT = rc1S * epsSBOT 
        ElseIf epsSBOT > epsLIM1S And epsSBOT <= epsLIM2S Then 
            SigmaSBOT = Range("E19") + rc2S * (epsSBOT - epsLIM1S) 
        Else 
            SigmaSBOT = 0 
        End If 
 
        arrN1(NofLayers + 2) = SigmaSBOT * AreaSBOT 
 
        'Top reinforcement: 
        epsSTOP = (NA1 - Range("F32")) * kappa 
 
        If epsSTOP >= epsLIMmin2S And epsSTOP < epsLIMmin1S Then 
            SigmaSTOP = -Range("E20") + rcmin2S * (epsSTOP - epsLIMmin1S) 
        ElseIf epsSTOP >= epsLIMmin1S And epsSTOP <= epsLIM1S Then 
            SigmaSTOP = rc1S * epsSTOP 
        ElseIf epsSTOP > epsLIM1S And epsSTOP <= epsLIM2S Then 
            SigmaSTOP = Range("E19") + rc2S * (epsSTOP - epsLIM1S) 
        Else 
            SigmaSTOP = 0 
        End If 
 
        arrN1(NofLayers + 3) = SigmaSTOP * AreaSTOP 
 
        'Sum up the whole array, so CONCRETE + SHCC + STEEL (sum of horizontal forces first 
step) 
        SumN1 = WorksheetFunction.Sum(arrN1) 
 
        'Continuation of second of two parts 
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        'Bottom reinforcement: 
        epsSLOADBOT = (NA2 - Range("D32")) * kappa 
        epsSBOT = epsSLOADBOT + epsSDRYBOT 
 
        If epsSBOT >= epsLIMmin2S And epsSBOT < epsLIMmin1S Then 
            SigmaSBOT = -Range("E20") + rcmin2S * (epsSBOT - epsLIMmin1S) 
        ElseIf epsSBOT >= epsLIMmin1S And epsSBOT <= epsLIM1S Then 
            SigmaSBOT = rc1S * epsSBOT 
        ElseIf epsSBOT > epsLIM1S And epsSBOT <= epsLIM2S Then 
            SigmaSBOT = Range("E19") + rc2S * (epsSBOT - epsLIM1S) 
        Else 
            SigmaSBOT = 0 
        End If 
 
        arrN2(NofLayers + 2) = SigmaSBOT * AreaSBOT 
 
        'Top reinforcement: 
        epsSLOADTOP = (NA2 - Range("F32")) * kappa 
        epsSTOP = epsSLOADTOP + epsSDRYTOP 
 
        If epsSTOP >= epsLIMmin2S And epsSTOP < epsLIMmin1S Then 
            SigmaSTOP = -Range("E20") + rcmin2S * (epsSTOP - epsLIMmin1S) 
        ElseIf epsSTOP >= epsLIMmin1S And epsSTOP <= epsLIM1S Then 
            SigmaSTOP = rc1S * epsSTOP 
        ElseIf epsSTOP > epsLIM1S And epsSTOP <= epsLIM2S Then 
            SigmaSTOP = Range("E19") + rc2S * (epsSTOP - epsLIM1S) 
        Else 
            SigmaSTOP = 0 
        End If 
 
        arrN2(NofLayers + 3) = SigmaSTOP * AreaSTOP 
 
        'Sum up the whole array, so CONCRETE + SHCC + STEEL (sum of horizontal forces first 
step) 
        SumN2 = WorksheetFunction.Sum(arrN2) 
         
        'When one of the two steps is positive and the other negative, it means, that sum of 
forces = 0 is in between (so equilibrium) 
        If SumN1 > 0 And SumN2 < 0 Or SumN1 < 0 And SumN2 > 0 Then 
            Cells(Border1 - 1, 4 + n).Value = kappa 
 
            '#MEAN/INTERPOLATION METHOD: in this method, the step that is closest to zero con-
tributes relatively more to the result 
            TotalSum = Abs(SumN1) + Abs(SumN2) 
 
            'The interpolated n.a. position that will also be used in the next iteration 
            naSTEP = (1 - Abs(SumN1) / TotalSum) * NA1 + (1 - Abs(SumN2) / TotalSum) * NA2 
 
            Cells(Border1 - 6, 4 + n).Value = naSTEP 
 
            SumSTEPmax = WorksheetFunction.Max(Abs(SumN1), Abs(SumN2)) 
 
            If SumSTEPmax = Abs(SumN1) Then 
                Cells(Border1 - 2, 4 + n).Value = SumN1 
                Cells(Border1 - 3, 4 + n).Value = SumN2 
            Else 
                Cells(Border1 - 2, 4 + n).Value = SumN2 
                Cells(Border1 - 3, 4 + n).Value = SumN1 
            End If 
 
            '#CALCULATE MOMENT 
             
            'SHCC + CONCRETE: 
             
            'Choose between the simple and the advanced method 
            If tBOT / Range("D8") = Int(tBOT / Range("D8")) Then 
                For i = 1 To NofLayers 
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                    'Take the seperate contributions into account. Therefore, NA1 and NA2 are 
used and not naSTEP! 
                    MofN1 = (1 - Abs(SumN1) / TotalSum) * arrN1(i) * (NA1 - Cells(Border1 + 3 
+ i, 3)) 
                    MofN2 = (1 - Abs(SumN2) / TotalSum) * arrN2(i) * (NA2 - Cells(Border1 + 3 
+ i, 3)) 
     
                    arrM(i) = MofN1 + MofN2 
                Next i 
            Else 
                'SHCC: 
                For i = 1 To SHCCLayers 
                    'Take the seperate contributions into account. Therefore, NA1 and NA2 are 
used and not naSTEP! 
                    MofN1 = (1 - Abs(SumN1) / TotalSum) * arrN1(i) * (NA1 - Cells(Border1 + 3 
+ i, 3)) 
                    MofN2 = (1 - Abs(SumN2) / TotalSum) * arrN2(i) * (NA2 - Cells(Border1 + 3 
+ i, 3)) 
                     
                    arrM(i) = MofN1 + MofN2 
                Next i 
             
                'Partial SHCC: 
                MofN1 = (1 - Abs(SumN1) / TotalSum) * arrN1(SHCCLayers + 1) * (NA1 - 
Cells(Border1 + 3 + (SHCCLayers + 1), 3)) 
                MofN2 = (1 - Abs(SumN2) / TotalSum) * arrN2(SHCCLayers + 1) * (NA2 - 
Cells(Border1 + 3 + (SHCCLayers + 1), 3)) 
                 
                arrM(SHCCLayers + 1) = MofN1 + MofN2 
                 
                'Partial CONCRETE (+WEBS): 
                MofN1 = (1 - Abs(SumN1) / TotalSum) * arrN1(SHCCLayers + 2) * (NA1 - 
Cells(Border1 + 3 + (SHCCLayers + 2), 3)) 
                MofN2 = (1 - Abs(SumN2) / TotalSum) * arrN2(SHCCLayers + 2) * (NA2 - 
Cells(Border1 + 3 + (SHCCLayers + 2), 3)) 
                 
                arrM(SHCCLayers + 2) = MofN1 + MofN2 
     
                'CONCRETE (+WEBS): 
                For i = SHCCLayers + 2 To NofLayers + 1 
                    'Take the seperate contributions into account. Therefore, NA1 and NA2 are 
used and not naSTEP! 
                    MofN1 = (1 - Abs(SumN1) / TotalSum) * arrN1(i + 1) * (NA1 - Cells(Border1 
+ 4 + i, 3)) 
                    MofN2 = (1 - Abs(SumN2) / TotalSum) * arrN2(i + 1) * (NA2 - Cells(Border1 
+ 4 + i, 3)) 
                     
                    arrM(i + 1) = MofN1 + MofN2 
                Next i 
            End If 
 
            'STEEL REINFORCEMENT: 
            'Take the seperate contributions into account. Therefore, NA1 and NA2 are used and 
not naSTEP! 
 
            'Bottom reinforcement: 
            MofN1 = (1 - Abs(SumN1) / TotalSum) * arrN1(NofLayers + 2) * (NA1 - Range("D32")) 
            MofN2 = (1 - Abs(SumN2) / TotalSum) * arrN2(NofLayers + 2) * (NA2 - Range("D32")) 
 
            arrM(NofLayers + 2) = MofN1 + MofN2 
            NinSteel = (1 - Abs(SumN1) / TotalSum) * arrN1(NofLayers + 2) + (1 - Abs(SumN2) / 
TotalSum) * arrN2(NofLayers + 2) 
 
            'Top reinforcement: 
            MofN1 = (1 - Abs(SumN1) / TotalSum) * arrN1(NofLayers + 3) * (NA1 - Range("F32")) 
            MofN2 = (1 - Abs(SumN2) / TotalSum) * arrN2(NofLayers + 3) * (NA2 - Range("F32")) 
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            arrM(NofLayers + 3) = MofN1 + MofN2 
 
            Mtotal = WorksheetFunction.Sum(arrM) 
            Cells(Border1 - 5, 4 + n).Value = Mtotal 
 
            '#CALCULATE APPLIED FORCE; note that moment due to selfweight is reduced from oc-
curing moment 
 
            'M=(F/2)*L1 
            F = 2 * (Mtotal - MG) / L1 
            If F < 0 Then 
            'When the force is displayed as zero, it means that failure has occured (MG > M); 
            'the beam cannot carry its own weight anymore 
                Cells(Border1 - 4, 4 + n).Value = 0 
            Else 
                Cells(Border1 - 4, 4 + n).Value = F 
            End If 
 
            '#CALCULATE STRAIN AT TOP 
'            Cells(Border1 - 8, 4 + n).Value = -kappa * (h - naSTEP) 
            Cells(Border1 - 8, 4 + n).Value = NinSteel 
 
            '#CALCULATE DISPLACEMENT: 
            If Range("M30") = "4-point" Then 
                If Mtotal > Mlinear Then 
 
                    'MOMENTVLAKSTELLINGEN: 
                    'Reduced moment diagram consists of 3 constant parts and a non-linear 
part; Area1 and Area7 are triangles; 
                    'Area4 is a rectangle 
                    Llinear = (Mlinear / Mtotal) * L1 
 
                    Theta1 = 1 / 2 * kappa0 * Llinear 
                    Theta4 = kappa * L2 
                    Theta7 = Theta1 
 
                    Distance1 = L - 2 / 3 * Llinear 
                    Distance4 = L / 2 
                    Distance7 = 2 / 3 * Llinear 
 
                    'Define segments between constant parts (non-linear) 
                    SegLength = (L1 - Llinear) / Segments 
 
                    PhiSeg0B = 0 
                    PhiSeg0A = 0 
                    DispSeg0 = 0 
 
                    For a = 1 To Segments 
                        Mslope = (Mtotal - Mlinear) / (L1 - Llinear) 
                        'Moment at centerline of segment: 
                        MSeg = Mlinear + Mslope * (a - 1 / 2) * SegLength 
 
                        For s = 1 To n 
                            Mcell = Cells(Border1 - 5, 4 + (s - 1)) 
 
                            If Mcell <> "" And Mcell <= MSeg Then 
                                C = s 
                            End If 
                        Next s 
 
                        kappaSeg = Cells(Border1 - 1, 4 + (C - 1)) 
 
                        Theta = kappaSeg * SegLength 
 
                        'For finding phiA (A is the left support; B is the right support): 
                        DisToB = L1 + L2 + (Segments + 1 / 2 - a) * SegLength 
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                        'Ditance to A = Distance to B for the other non-linear part of the di-
agram 
                        DisToA = L - DisToB 
 
                        PhiSegB = PhiSeg0B + Theta * DisToB 
                        PhiSeg0B = PhiSegB 
 
                        PhiSegA = PhiSeg0A + Theta * DisToA 
                        PhiSeg0A = PhiSegA 
 
                        'For finding deflection at midspan 
                        DisToMid = L2 / 2 + (Segments + 1 / 2 - a) * SegLength 
 
                        DispSeg = DispSeg0 + Theta * DisToMid 
                        DispSeg0 = DispSeg 
 
                    Next a 
 
                    'All thetas times their distances are equal to PhiA times L (so that the 
displacement at the second support = 0 
                    PhiA = (Theta1 * Distance1 + Theta4 * Distance4 + Theta7 * Distance7 + 
PhiSegB + PhiSegA) / L 
 
                    'Split Theta4 in two to get the deflection at midspan 
                    Theta4B = Theta4 / 2 
 
                    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) - Theta4B * L2 / 4 - 
DispSeg 
 
                Else 
                    'Reduced moment diagram consists of ONLY 3 constant parts: Area1 and Area7 
are triangles; Area4 is a rectangle 
                    Theta1 = 1 / 2 * (Mtotal / EIlinear) * L1 
                    Theta4 = kappa * L2 
                    Theta7 = Theta1 
 
                    Distance1 = L - 2 / 3 * L1 
                    Distance4 = L / 2 
                    Distance7 = 2 / 3 * L1 
 
                    'All thetas times their distances are equal to PhiA times L (so that the 
displacement at the second support = 0 
                    PhiA = (Theta1 * Distance1 + Theta4 * Distance4 + Theta7 * Distance7) / L 
 
                    'Split Theta4 in two to get the deflection at midspan 
                    Theta4B = Theta4 / 2 
 
                    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) - Theta4B * L2 / 4 
 
                End If 
                 
'                'UNDERESTIMATED DEFLECTION: 
'                R = 1 / kappa 
'                w = L2 ^ 2 / (8 * R) + L1 * L2 / (2 * R) 
 
'                'OVERESTIMATED DEFLECTION 
'                R = 1 / kappa 
'                w = L ^ 2 / (8 * R) - L1 ^ 2 / (6 * R) 
                 
            Else    '3-point bending' 
                If Mtotal > Mlinear Then 
                    'MOMENTVLAKSTELLINGEN: 
                    'Reduced moment diagram consists of 2 constant parts and a non-linear 
part; Area1 and Area7 are triangles 
                    Llinear = (Mlinear / Mtotal) * L1 
 
                    Theta1 = 1 / 2 * kappa0 * Llinear 
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                    Theta7 = Theta1 
 
                    Distance1 = L - 2 / 3 * Llinear 
                    Distance7 = 2 / 3 * Llinear 
 
                    'Define segments between constant parts (non-linear) 
                    SegLength = (L1 - Llinear) / Segments 
 
                    PhiSeg0 = 0 
                    DispSeg0 = 0 
 
                    For a = 1 To Segments 
                        Mslope = (Mtotal - Mlinear) / (L1 - Llinear) 
                        'Moment at centerline of segment: 
                        MSeg = Mlinear + Mslope * (a - 1 / 2) * SegLength 
 
                        For s = 1 To n 
                            Mcell = Cells(Border1 - 5, 4 + (s - 1)) 
 
                            If Mcell <> "" And Mcell <= MSeg Then 
                                C = s 
                            End If 
                        Next s 
 
                        kappaSeg = Cells(Border1 - 1, 4 + (C - 1)) 
 
                        Theta = kappaSeg * SegLength 
 
                        'For finding phiA: 
                        DisToB = L1 + (Segments + 1 / 2 - a) * SegLength 
                        PhiSeg = PhiSeg0 + Theta * DisToB 
                        PhiSeg0 = PhiSeg 
 
                        'For finding deflection at midspan 
                        DisToMid = (Segments + 1 / 2 - a) * SegLength 
                        DispSeg = DispSeg0 + Theta * DisToMid 
                        DispSeg0 = DispSeg 
 
                    Next a 
 
                    'All thetas times their distances are equal to PhiA times L (so that the 
displacement at the second support = 0 
                    PhiA = (Theta1 * Distance1 + Theta7 * Distance7 + PhiSeg) / L 
 
                    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) - DispSeg 
                     
                Else 
                    'Reduced moment diagram consists of 3 constant parts: Area1 and Area7 are 
triangles; 
                    'Area4 is a rectangle (the damaged region) 
                    'Assume that the damaged region has a length of  5 mm 
                    Damage = 5 'mm 
 
                    Mslope = Mtotal / L1 
 
                    'Maximum moment just before damaged region: 
                    Mundamaged = Mslope * (L1 - Damage / 2) 
 
                    Theta1 = 1 / 2 * (Mundamaged / EIlinear) * (L1 - Damage / 2) 
                    Theta4 = kappa * Damage 
                    Theta7 = Theta1 
 
                    Distance1 = L - 2 / 3 * (L1 - Damage / 2) 
                    Distance4 = L / 2 
                    Distance7 = 2 / 3 * (L1 - Damage / 2) 
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                    'All thetas times their distances are equal to PhiA times L (so that the 
displacement at the second support = 0 
                    PhiA = (Theta1 * Distance1 + Theta4 * Distance4 + Theta7 * Distance7) / L 
 
                    'Split Theta4 in two to get the deflection at midspan 
                    Theta4B = Theta4 / 2 
 
                    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) - Theta4B * (Damage / 2) 
 
                End If 
            End If 
             
            Cells(Border1 - 7, 4 + n).Value = w 
             
            Exit For 
        'In the case all material properties are symmetrical (so no difference between tension 
and compression): 
        ElseIf Abs(SumN1) = 0 Then 
         
            '#CALCULATE MOMENT 
             
            'SHCC + CONCRETE: 
            'Choose between the simple and the advanced method 
            If tBOT / Range("D8") = Int(tBOT / Range("D8")) Then 
                For i = 1 To NofLayers 
                    arrM(i) = arrN1(i) * (naSTEP - Cells(Border1 + 3 + i, 3)) 
                Next i 
            Else 
                'SHCC: 
                For i = 1 To SHCCLayers 
                    arrM(i) = arrN1(i) * (naSTEP - Cells(Border1 + 3 + i, 3)) 
                Next i 
             
                'Partial SHCC: 
                arrM(SHCCLayers + 1) = arrN1(SHCCLayers + 1) * (naSTEP - Cells(Border1 + 3 + 
(SHCCLayers + 1), 3)) 
                 
                'Partial CONCRETE (+WEBS): 
                arrM(SHCCLayers + 2) = arrN1(SHCCLayers + 2) * (naSTEP - Cells(Border1 + 3 + 
(SHCCLayers + 2), 3)) 
     
                'CONCRETE (+WEBS): 
                For i = SHCCLayers + 2 To NofLayers + 1 
                    arrM(i + 1) = arrN1(i + 1) * (naSTEP - Cells(Border1 + 4 + i, 3)) 
                Next i 
            End If 
             
            'STEEL REINFORCEMENT: 
            arrM(NofLayers + 2) = arrN1(NofLayers + 2) * (naSTEP - Range("D32")) 
            arrM(NofLayers + 3) = arrN1(NofLayers + 3) * (naSTEP - Range("F32")) 
             
            Mtotal = WorksheetFunction.Sum(arrM) 
            Cells(Border1 - 5, 4 + n).Value = Mtotal 
             
            '#CALCULATE APPLIED FORCE; note that moment due to selfweight is reduced from oc-
curing moment 
            'M=(F/2)*L1 
            F = 2 * (Mtotal - MG) / L1 
            If F < 0 Then 
            'When the force is displayed as zero, it means that failure has occured (MG > M); 
            'the beam cannot carry its own weight anymore 
                Cells(Border1 - 4, 4 + n).Value = 0 
            Else 
                Cells(Border1 - 4, 4 + n).Value = F 
            End If 
             
            '#CALCULATE DISPLACEMENT: 
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            If Range("M30") = "4-point" Then 
                If Mtotal > Mlinear Then 
 
                    'MOMENTVLAKSTELLINGEN: 
                    'Reduced moment diagram consists of 3 constant parts and a non-linear 
part; Area1 and Area7 are triangles; 
                    'Area4 is a rectangle 
                    Llinear = (Mlinear / Mtotal) * L1 
 
                    Theta1 = 1 / 2 * kappa0 * Llinear 
                    Theta4 = kappa * L2 
                    Theta7 = Theta1 
 
                    Distance1 = L - 2 / 3 * Llinear 
                    Distance4 = L / 2 
                    Distance7 = 2 / 3 * Llinear 
 
                    'Define segments between constant parts (non-linear) 
                    SegLength = (L1 - Llinear) / Segments 
 
                    PhiSeg0B = 0 
                    PhiSeg0A = 0 
                    DispSeg0 = 0 
 
                    For a = 1 To Segments 
                        Mslope = (Mtotal - Mlinear) / (L1 - Llinear) 
                        'Moment at centerline of segment: 
                        MSeg = Mlinear + Mslope * (a - 1 / 2) * SegLength 
 
                        For s = 1 To n 
                            Mcell = Cells(Border1 - 5, 4 + (s - 1)) 
 
                            If Mcell <> "" And Mcell <= MSeg Then 
                                C = s 
                            End If 
                        Next s 
 
                        kappaSeg = Cells(Border1 - 1, 4 + (C - 1)) 
 
                        Theta = kappaSeg * SegLength 
 
                        'For finding phiA (A is the left support; B is the right support): 
                        DisToB = L1 + L2 + (Segments + 1 / 2 - a) * SegLength 
 
                        'Ditance to A = Distance to B for the other non-linear part of the di-
agram 
                        DisToA = L - DisToB 
 
                        PhiSegB = PhiSeg0B + Theta * DisToB 
                        PhiSeg0B = PhiSegB 
 
                        PhiSegA = PhiSeg0A + Theta * DisToA 
                        PhiSeg0A = PhiSegA 
 
                        'For finding deflection at midspan 
                        DisToMid = L2 / 2 + (Segments + 1 / 2 - a) * SegLength 
 
                        DispSeg = DispSeg0 + Theta * DisToMid 
                        DispSeg0 = DispSeg 
 
                    Next a 
 
                    'All thetas times their distances are equal to PhiA times L (so that the 
displacement at the second support = 0 
                    PhiA = (Theta1 * Distance1 + Theta4 * Distance4 + Theta7 * Distance7 + 
PhiSegB + PhiSegA) / L 
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                    'Split Theta4 in two to get the deflection at midspan 
                    Theta4B = Theta4 / 2 
 
                    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) - Theta4B * L2 / 4 - 
DispSeg 
 
                Else 
                    'Reduced moment diagram consists of ONLY 3 constant parts: Area1 and Area7 
are triangles; Area4 is a rectangle 
                    Theta1 = 1 / 2 * (Mtotal / EIlinear) * L1 
                    Theta4 = kappa * L2 
                    Theta7 = Theta1 
 
                    Distance1 = L - 2 / 3 * L1 
                    Distance4 = L / 2 
                    Distance7 = 2 / 3 * L1 
 
                    'All thetas times their distances are equal to PhiA times L (so that the 
displacement at the second support = 0 
                    PhiA = (Theta1 * Distance1 + Theta4 * Distance4 + Theta7 * Distance7) / L 
 
                    'Split Theta4 in two to get the deflection at midspan 
                    Theta4B = Theta4 / 2 
 
                    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) - Theta4B * L2 / 4 
 
                End If 
 
'                'UNDERESTIMATED DEFLECTION: 
'                R = 1 / kappa 
'                w = L2 ^ 2 / (8 * R) + L1 * L2 / (2 * R) 
 
'                'OVERESTIMATED DEFLECTION 
'                R = 1 / kappa 
'                w = L ^ 2 / (8 * R) - L1 ^ 2 / (6 * R) 
                 
            Else    '3-point bending' 
                If Mtotal > Mlinear Then 
                    'MOMENTVLAKSTELLINGEN: 
                    'Reduced moment diagram consists of 2 constant parts and a non-linear 
part; Area1 and Area7 are triangles 
                    Llinear = (Mlinear / Mtotal) * L1 
 
                    Theta1 = 1 / 2 * kappa0 * Llinear 
                    Theta7 = Theta1 
 
                    Distance1 = L - 2 / 3 * Llinear 
                    Distance7 = 2 / 3 * Llinear 
 
                    'Define segments between constant parts (non-linear) 
                    SegLength = (L1 - Llinear) / Segments 
 
                    PhiSeg0 = 0 
                    DispSeg0 = 0 
 
                    For a = 1 To Segments 
                        Mslope = (Mtotal - Mlinear) / (L1 - Llinear) 
                        'Moment at centerline of segment: 
                        MSeg = Mlinear + Mslope * (a - 1 / 2) * SegLength 
 
                        For s = 1 To n 
                            Mcell = Cells(Border1 - 5, 4 + (s - 1)) 
 
                            If Mcell <> "" And Mcell <= MSeg Then 
                                C = s 
                            End If 
                        Next s 
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                        kappaSeg = Cells(Border1 - 1, 4 + (C - 1)) 
 
                        Theta = kappaSeg * SegLength 
 
                        'For finding phiA: 
                        DisToB = L1 + (Segments + 1 / 2 - a) * SegLength 
                        PhiSeg = PhiSeg0 + Theta * DisToB 
                        PhiSeg0 = PhiSeg 
 
                        'For finding deflection at midspan 
                        DisToMid = (Segments + 1 / 2 - a) * SegLength 
                        DispSeg = DispSeg0 + Theta * DisToMid 
                        DispSeg0 = DispSeg 
 
                    Next a 
 
                    'All thetas times their distances are equal to PhiA times L (so that the 
displacement at the second support = 0 
                    PhiA = (Theta1 * Distance1 + Theta7 * Distance7 + PhiSeg) / L 
 
                    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) - DispSeg 
                     
                Else 
                    'Reduced moment diagram consists of 3 constant parts: Area1 and Area7 are 
triangles; 
                    'Area4 is a rectangle (the damaged region) 
                    'Assume that the damaged region has a length of  5 mm 
                    Damage = 5 'mm 
 
                    Mslope = Mtotal / L1 
 
                    'Maximum moment just before damaged region: 
                    Mundamaged = Mslope * (L1 - Damage / 2) 
 
                    Theta1 = 1 / 2 * (Mundamaged / EIlinear) * (L1 - Damage / 2) 
                    Theta4 = kappa * Damage 
                    Theta7 = Theta1 
 
                    Distance1 = L - 2 / 3 * (L1 - Damage / 2) 
                    Distance4 = L / 2 
                    Distance7 = 2 / 3 * (L1 - Damage / 2) 
 
                    'All thetas times their distances are equal to PhiA times L (so that the 
displacement at the second support = 0 
                    PhiA = (Theta1 * Distance1 + Theta4 * Distance4 + Theta7 * Distance7) / L 
 
                    'Split Theta4 in two to get the deflection at midspan 
                    Theta4B = Theta4 / 2 
 
                    w = PhiA * L / 2 - Theta1 * (Distance1 - L / 2) - Theta4B * (Damage / 2) 
 
                End If 
            End If 
 
'            Cells(Border1 - 8, 4 + n).Value = -kappa * (h - naSTEP) 
            Cells(Border1 - 8, 4 + n).Value = arrN1(NofLayers + 2) 
            Cells(Border1 - 7, 4 + n).Value = w 
            Cells(Border1 - 6, 4 + n).Value = naSTEP 
            Cells(Border1 - 3, 4 + n).Value = SumN1 
            Cells(Border1 - 1, 4 + n).Value = kappa 
             
            Exit For 
        End If 
    Next j 
'Show progress in % 
Cells(26, 9).Value = (n + 2) / (Points + 2) 
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Next n 
 
'----------------------------------- 
''SHOW DELTA-N'S FOR LAST STEP (not necessarily a correct step!) 
'For n = 1 To NofLayers + 3 
'    Cells(50 + n, 7).Value = arrN1(n) 
'    Cells(50 + n, 8).Value = arrN2(n) 
'Next n 
' 
''SHOW DELTA-M'S FOR LAST STEP (not necessarily a correct step!) 
'For n = 1 To NofLayers + 3 
'    Cells(50 + n, 10).Value = arrM(n) 
'Next n 
'----------------------------------- 
 
'#DRAW BORDERS 
Range(Cells(Border1 - 5, 2), Cells(Border1 - 5, 2 + Points + 2)).BorderAround (xlDouble) 
Range(Cells(Border1 - 1, 2), Cells(Border1 - 1, 2 + Points + 2)).BorderAround (xlDouble) 
 
With Range(Range("C42"), Range("C42").End(xlToRight)).Borders(xlEdgeBottom) 
.LineStyle = xlContinuous 
.Weight = xlMedium 
End With 
 
End Sub 
 
Private Sub CommandButton1_Click() 
 
Call Layers 
 
End Sub  
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Excel calculations 
 

 

Appendix figure 1: Excel calculations in the MLM 
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Appendix B: MLM parameters 
In this Appendix, all available parameters in the proposed MLM are explained. This is done by 
going through all the presented sections of Figure 3-18. In this Appendix, the parameters will be 
shown as they are shown in the proposed MLM itself. All possible input is shown in Appendix 
figure 2. In this figure, also the cross-section that follows from the input is shown. Although there 
is some explanation in some sections, it is not always enough to fully understand the purpose of 
the corresponding parameter. 
 

 

Appendix figure 2: MLM parameters as in the MLM itself 

Every cell in Appendix figure 2 that is marked in yellow corresponds to an input parameter that 
the user needs to define. Some parameters are not marked; they are determined based on the 
other parameters.  
 
Section 1: points 
The first section that is explained, is the ‘points’ section, which is the section that needs the 
shortest explanation. It is marked in blue in Appendix figure 2. The input that is used here is 
the desired number of datapoints in the output diagrams. The number of datapoints is by default 
limited to 500 datapoints, but it can be extended. The reason that it is limited, is that there are 
processes that are performed in the background and are dependent on the maximum number of 
datapoints. The more points there are, the more time those processes will take, and therefore 
increase the computation time.  
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Section 2: beam input 
The second section that is explained, is the ‘beam input’ section. The required parameters are 
shown in Appendix figure 3. 
 

 

Appendix figure 3: beam input section parameters in the developed MLM 

The ‘Δh’ represents the magnitude of the ‘neutral axis steps’. In the non-linear stage, the neutral 
axis will move upwards in order to assure that there is horizontal equilibrium in the cross-section. 
In the iterative process, the neutral axis is moved up (by this ‘neutral axis steps’) in each iteration 
until horizontal equilibrium is found. That was explained more in detail in subchapter 3.1.1.2. 
With this parameter, it can be determined how big or small these steps are. The larger the step, 
the less the probability is that equilibrium is found. This is because it might be the case that the 
position that would have led to equilibrium is missed because of the larger steps. 

The ‘L’, ‘L1’ and ‘L2’ parameters are related to the span of the beam that is considered. 
If a 4-point bending test is considered, both ‘L1’ and ‘L2’ are present. This was shown before in 
Figure 3-21. In a 3-point bending test, the ‘L2’ is not present. When this type of bending test is 
chosen in the MLM, the ‘L2’ automatically disappears.  

The cross-sectional dimensions are also input in this section, and are given by ‘h’ and ‘b’. 
Those are already drawn in Appendix figure 2. 

Next, the ‘Δκ’ parameter is explained. This parameter determines how much the difference 
is between the curvature of two datapoints in the moment-to-curvature diagram. The larger this 
difference is, the less fluent/accurate the diagram becomes. This was explained more in detail in 
subchapter 3.1.1.2. 

Moreover, the ‘n.a’ parameter is present in this section. This gives the initial neutral axis 
position of the cross-section, which is calculated automatically. Although this means that this is 
not really ‘input’, it is used as input for the calculation process of the MLM. Here, it will be 
explained how the initial neutral axis position is calculated. This location is determined with 
respect to the bottom axis, and its magnitude is determined as follows: 
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 𝑦 =
𝐸 ∗ 𝑆

𝐸 ∗ 𝐴
 

 

Appendix eq. (1) 

In this expression, ‘E’ is the Young’s modulus [N/mm2], ‘S’ is the first moment of area [mm3] and 
‘A’ the area [mm2]. In this expression, it seems that the ‘E’ parameter can be left out because it 
is present in both the nominator and the denominator. That is true for homogeneous sections. 
However, when dealing with inhomogeneous sections, the situation becomes different. Different 
materials have different contributions. That is described in the different Young’s moduli. 

Last but not least, the parameters that form the core of the MLM are explained: the ‘n’ 
and the ‘t’, which are related to the layers. ‘n’ gives the number of layers. This is illustrated in 
Appendix figure 4; in this figure, 20 layers in a beam of 200 mm height are shown. The thickness 
‘t’ of the layer therefore becomes 200/20 = 10 mm.  

 

 

Appendix figure 4: visualization of the layers (green lines) in the MLM; dimensions in [mm] 

As the number of layers is in fact the core of the multi-layer model, its effects are also explained 
here. 
 
Effect of number of layers 
The number of layers that is used in a multi-layer model has to be chosen wisely. Choosing a 
small number of layers gives inaccurate results, while a large number will require more computing 
time. The concept of inaccurate results is illustrated in Appendix figure 5. To show the extent 
of the possible error, only two layers are used. The internal lever arm is in reality equal to ଶ

ଷ
 

times the height. When there are only two layers, this internal lever arm becomes equal to half 
the height. For increasing number of layers, this effect is reduced.  



MSc thesis: Ammar Yassiri   149 
 

 

Appendix figure 5: comparing two layers to an infinite amount of layers in the MLM 

For different numbers of layers, the results of the cracking force were recorded. This was done 
for a hypothetical case of which the input is shown in Appendix figure 6. In this hypothetical 
case a cross section consisting of only concrete is considered. As only the cracking force is 
recorded, only the linear elastic behaviour is of importance.  
 

 

Appendix figure 6: material properties in an MLM calculation to determine the effect of the number of 
layers 
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In Appendix figure 7, the assumed concrete properties of concrete in tension are shown. The 
softening behaviour could also be defined, but in this case, only the cracking force is searched 
for, so only the linear elastic input is needed. 
 

 

Appendix figure 7: assumed (linear) concrete properties in tension 

As can be seen, the cracking stress is at around 4.5 N/mm2. The ‘true’ cracking force is calculated 
and compared with different numbers of layers. Using Eq. (3.1), the true cracking force is 
calculated: 
 

𝜎 =
𝑀

𝑊
→ 𝜎 = 𝑓ଵ → 𝑀ோௗ = 𝑓ଵ ∗ 𝑊 = 4.536 ∗

1

6
∗ 150 ∗ 200ଶ = 4.54 𝑘𝑁𝑚 

 
This bending moment follows from the static scheme in Appendix figure 8. For the sake of 
simplicity, it is assumed in this case that there are three equal spans. From that, the cracking 
force can be calculated back. It is equal to: 
 

𝑀 =
1

6
∗ 𝐹 ∗ 𝐿 → 𝐹 =

6 ∗ 𝑀

𝐿
=

6 ∗ 4.54

1.5
= 𝟏𝟖. 𝟏𝟒 𝒌𝑵 
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Appendix figure 8: bending moment distribution of a 4-point bending test 

In Appendix figure 9, a comparison is made between this result and the result that follows from 
the proposed MLM for different numbers of layers.   
 

 

Appendix figure 9: comparison between the real cracking force and what follows from the MLM 

As can be seen in Appendix figure 9, the results are very inaccurate for small numbers of layers. 
But after that, the results quickly converge. When using 10 layers, the difference with the ‘true’ 
value is only 1%. From this, it can be concluded that a relatively small number of layers can give 
accurate results. Although this difference of 1% is found for this particular example, the main 
message that can be drawn from this result is that using much more layers will not improve the 
accuracy much. It will only cost extra computation time for a slight improvement in results. At 
the other hand, using two or three layers in total would result in very inaccurate results. To 
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conclude, a balance needs to be found when modelling with the MLM, depending on the desired 
accuracy.  
 
Section 3: materials 
The third section that is explained, is the ‘materials’ section. The required parameters are shown 
in Appendix figure 10. 
 

 

Appendix figure 10: materials section parameters in the developed MLM 

In the proposed MLM, the material input parameters can be defined tension and compression. 
That can be seen in the screenshot of the model that is shown in Appendix figure 11. The ‘+’ 
sign in that figure stands for ‘tension’, and the ‘-‘ sign stands for ‘compression’. In Appendix 
figure 11, concrete, SHCC and steel are used as materials. The steel indicates the material of the 
reinforcement; the other two are what the cross-section is composed of. It is not necessary to use 
SHCC and concrete; any material of which the material input is known can in theory be modelled 
in the MLM. 
 

 

Appendix figure 11: materials section in the developed MLM 

First, the parameters that require no explanation are mentioned, namely the Young’s modulus 
‘E’ and the density ‘𝜌’. The density is used to calculate the self-weight of the beam, which 
ultimately is translated into a deflection that is presented in the MLM before any other 
calculation is made. The most noticeable effect of the density is when the moment of failure of 
the specimen needs to be specified. The self-weight causes a certain bending moment. If at some 
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point the resistance of the beam is smaller than this moment, it means that no force is needed 
to reach this bending moment; the beam has then failed.   

After that, the ‘f’ and the ‘ε’ parameters are explained, which in fact form a couple as 
they are the input of the stress-to-strain diagrams that show the material input. The best way 
to illustrate this is by showing the diagrams that correspond to the input in Appendix figure 11. 
This is done for concrete, and it is shown in Appendix figure 12 and Appendix figure 13. Note 
that this is only an example to illustrate the input parameters. 

 

 

Appendix figure 12: assumed stress-to-strain input diagram of concrete 

 

Appendix figure 13: assumed stress-to-strain input diagram of concrete in tension 

For the first ‘couple’, which are ‘f1’ and ‘ε1’ it can be seen in Appendix figure 11 that the strain 
is not marked yellow, which means that it is calculated automatically. This is true because for 
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the linear elastic stage, Eq. (3.3) holds, which means that the strain can be calculated from the 
stress and the Young’s modulus. For the second and third couple, this is not the case anymore 
because the non-linear stage is entered. Therefore, both components of the couple are marked 
yellow. 

The purpose of those input diagrams is to relate the strains that occur in each layer of 
the cross-section to its corresponding stress, and then use it to find the force that occurs in each 
layer. Therefore, this is crucial input which greatly affects the output. 

As can be seen in Appendix figure 11, there are up to three possible stress-to-strain 
couples possible for use in the stress-to-strain diagrams (not for the reinforcement as the third 
couple is not marked yellow; only two couples are possible). If there is also crack input available 
(see explanation in ‘crack input’ section), this number can be increased up to four. If an 
experimental stress-strain curve is to be used as input, this experimental stress-strain curve can 
be approximated best if many ‘couples’ are used. However, this number is limited up to four in 
the proposed MLM.  
 
Section 4: layer specifications 
The fourth section that will be explained is the ‘layer specifications’ section. The required 
parameters are shown in Appendix figure 14.  
 

 

Appendix figure 14: layer specifications section parameters in the developed MLM 

There are two important notes that have to be made here. First of all, the top layer always 
corresponds to the input of the concrete in the materials section. The bottom layer always 
corresponds to the SHCC input from the materials section. This also holds for the web in case a 
U-shape is modelled. 

Two of the three parameters that are shown in Appendix figure 14 were mentioned earlier, 
namely the Young’s modulus ‘E’ and the density ‘𝜌’. The parameter ‘t’ shows the thickness of 
the material layer that is considered. For the top and bottom layer, it is the thickness of the 
layers themselves. If the two thicknesses are summed up, they should result in the total height 
of the beam that was entered in the ‘beam input’ section. The thickness of the web however, is 
the width of one web of a U-shape. So if a thickness of 10 mm is used, each web of the U-shape 
has a thickness of 10 mm.  



MSc thesis: Ammar Yassiri   155 
 

Section 5: reinforcement 
The fifth section that is explained, is the ‘reinforcement’ section. Note that this section is purely 
related to the steel. In other words, the reinforcement that is meant here is composed of the steel 
of which the input comes from the materials section. Theoretically, other materials can be used 
as reinforcement. However, the reinforcement should then consist of circular bars, as the 
calculation is based on that type of reinforcement. The material should then be specified in the 
materials section. The required parameters for the reinforcement section are shown in Appendix 
figure 15.  
 

 

Appendix figure 15: reinforcement section parameters in the developed MLM 

Note that two different reinforcement types are present, which can be seen in Appendix figure 
16: tension reinforcement at the bottom of the beam (denoted as ‘bottom’), and compression 
reinforcement at the top of the beam (denoted as ‘top’).   
 

 

Appendix figure 16: reinforcement section in the developed MLM 

First of all, the reinforcement bar diameter can be specified. However, only the practically used 
bar diameters can be chosen. Those are shown in Appendix figure 17.  
 

 

Appendix figure 17: practical bar diameters 



156  Appendix B: MLM parameters 
 

The other two parameters are the concrete cover ‘c’, and the number of bars that are used in the 
beam. This parameters is defined as ‘#’. The final parameter that is present is the ‘y’, which is 
the location of the bar center. This parameter is calculated automatically from the other input, 
and is of importance because it is a necessary part of the bending moment resistance calculation 
(it determines the lever arm to the neutral axis). 

A limitation in the proposed MLM is that only one row of reinforcement is allowed. So if 
there are too many bars that are inserted, it is not an option to have two layers of reinforcement 
instead. This can be extended in the future. The maximum quantity of reinforcement bars is 
determined according to the Eurocode (NEN, 2011). This code prescribes that the minimum 
distance between reinforcement bars should be equal to: 

 
 𝑑∅, = 𝑚𝑎𝑥൛𝑘ଵ∅; 𝑑 + 𝑘ଶ; 20ൟ in mm 

 
Appendix eq. (2) 

The ‘k1’ and ‘k2’ parameters are dependent on the region. For the Netherlands, ‘k1’ is equal to 1, 
and ‘k2’ is equal to 5 (NEN, 2016). That gives the following expression: 
 
 𝑑∅, = 𝑚𝑎𝑥 {∅; 𝑑 + 5; 20} in mm 

 
Appendix eq. (3) 

The ‘dg’ parameter is the maximum aggregate size of the mixture. No coarse aggregates are 
present if SHCC is made, so in that case, this parameter can be neglected. However, for 
traditionally reinforced beams, this is not true. However, this is dependent on the beam. For 
now, it is assumed that the aggregate size is not governing, and the expression that is used in 
this MLM is: 
 
 𝑑∅, = 𝑚𝑎𝑥 {∅; 20} in mm 

 
Appendix eq. (4) 

Now that the minimum required distance is known, it can be compared with the actual distance. 
An important assumption here is that the horizontal concrete cover is assumed to be equal to 
the vertical concrete cover. So the concrete cover that is inserted is normally the cover from the 
bottom of the beam; it is now assumed that it is also equal to the cover from the side. This is 
made clear in Appendix figure 18. 
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Appendix figure 18: needed scheme for calculating the distance between the reinforcement bars 

With this, the distance between the center of the two outer reinforcement bars becomes ‘b - 2c - 
ϕ’. To find the distance between the center of two bars next to each other, it should be divided 
by ‘the number of bars minus one’. The last step is to find the distance between the bars. This 
is the last found distance minus two times half the diameter of the bar. That leads to: 
 
 𝑑∅ =

ିଶିథ

#ିଵ
− 𝜙 in mm 

 

Appendix eq. (5) 

In the MLM, this distance is compared to the maximum allowable distance. If it exceeds it, a 
warning is prompted in the model.  
 
Section 6: drying shrinkage 
The sixth section that is explained, is the ‘drying shrinkage’ section. This section is marked in 
red in Appendix figure 2. The parameter in this section gives how long the specimen has been 
drying since curing. Here, the curing period is set to be 28 days. If ‘NONE’ is chosen, it means 
that the bending test is performed on the same day that the specimen is taken out of the curing 
room. However, the options are limited. The choices in Appendix table 1 can be made. However, 
those are only for a specimen height of 150 mm. If a different specimen size is to be tested, the 
relative humidity profile (or the eigen-strains) for different drying periods has to be provided in 
the MLM.  
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Appendix table 1: time of drying options in the proposed MLM 

If drying has occurred before testing, internal strains/stresses develop that affect the bending 
test results. Those are taken into consideration in the MLM. An example of this is shown in 
Appendix figure 19 (for 3 days of drying). 

 

 

Appendix figure 19: drying shrinkage profile including eigen-strains for 3 days of drying of concrete 

This drying shrinkage profile is determined by (Awasthy, 2019) for the drying periods that are 
shown in Appendix table 1. The other drying shrinkage profiles were shown in Figure 3-39. How 
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those drying profiles are found, how they affect the results, and how the drying shrinkage is 
implemented in the MLM, was explained in subchapter 3.4.5. 
 
Section 7: crack input 
The next section that is explained, is the ‘crack input’ section. The input in this section ulti-
mately leads to the same stress-to-strain diagrams that are explained in the ‘materials section’. 
The required parameters are shown in Appendix figure 20.   
 

 

Appendix figure 20: crack input section in the developed MLM 

Two parameters have been explained before, namely the stress ‘f’ and the strain ‘ε’. Also the 
crack opening displacement and the influence length were explained before, although it was in 
different subchapters. The crack opening displacement was explained in subchapter 3.4.4, while 
the influence length was explained in subchapter 3.3. 

If the critical crack opening displacement is known, it can be inserted in Eq. (3.8) and 
translated to the strain by dividing by the influence length; this leads to the strain that is used 
in the calculations. Normally, the critical crack opening displacement is found in the stress-to-
crack opening relation (in tension). An example is shown in Appendix figure 21. The starting 
point of the horizontal axis is a crack opening of zero, which marks the start of the non-linear 
stage. So, there is also linear input that comes before this. That is covered in the materials section 
that was explained before in this Appendix. 
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Appendix figure 21: example of a stress-to-crack opening relation (Kooiman, 2000); edited 

As is shown in Appendix figure 21, two stress-crack opening couples can be formed (marked in 
red) if a bi-linear softening curve is assumed. That can also be used as input in the proposed 
MLM. As was explained in subchapter 3.3, these couples can be translated to stress-strain 
couples. An important note that needs to be made here, is that the strains that are found by 
translating the crack opening are only the non-linear strains. In the stress-to-strain diagrams, 
the total strains are used. To find the total strain, the non-linear strain has to be added up to 
the maximum corresponding (tensile) strain from the materials section. This is illustrated in 
Appendix figure 22. On the left, the stress-to-strain input is shown. On the right, the stress-to-
crack opening input is shown. So first, the stress-to-crack opening input is translated to stress-
to-strain input, then it is added up to the stress-to-strain input on the left.  
 

 

Appendix figure 22: stress-to-strain added with the stress-to-crack opening diagram (Kooiman, 2000) 

The stress-to-strain input on the left in Appendix figure 22 can also be bilinear in the proposed 
MLM. That means that there can be two manually inserted couples (for example as is shown in 
Appendix figure 23 for SHCC; marked in blue). This leads to a maximum of four couples in the 
stress-to-strain diagram that forms the input.  
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Appendix figure 23: two manual stress-to-strain couples for SHCC marked in blue 

An example of a case in which there are four couples in tension is shown in Appendix figure 23. 
Currently, this is the maximum amount of datapoints in tensional properties that the proposed 
MLM can handle. If more datapoints are desired, the proposed MLM should be expanded. 
 

 

Appendix figure 24: maximum amount of four stress-to-strain couples in tension 

As was explained before, only three datapoints can be used as input if there is no crack input 
available. If there is crack input available, this increases to four datapoints. This can be explained 
as follows: the crack input section is added to the materials section if there is crack input. This 
means that two datapoints can be added. That would suggest that five datapoints are possible 
in total, as the materials section already contains three datapoints. However, the proposed MLM 
is programmed such that if there is crack input, the materials section can only produce two 
datapoints. That results in four possible datapoints in total. 
 
Section 8: deflection 
Finally, the parameters of the ‘deflection’ section are explained. The required parameters are 
shown in Appendix figure 25.  
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Appendix figure 25: deflection section in the developed MLM 

First of all, it can be chosen which type of bending test is performed. The two options are a 3-
point and a 4-point bending test. The reason that the type of bending test is input in this section, 
is that mainly the deflection is affected by different types of bending tests.  

The next parameter is the number of segments ‘#seg’. Because this parameter cannot be 
explained on its own, only the visualization of it is shown. That is shown in Figure 3-28. In short, 
it prescribes the number of segments between the maximum bending moment and the maximum 
linear elastic moment. This is needed for determining the deflection. This was explained more in 
detail in subchapter 3.4.2.2.2. 

The final parameter is the width of those segments (given by ‘bseg’). Note that a ‘smaller 
than’ sign is used in Appendix figure 25, and not an ‘equal to’ sign. This is done because the 
length of the non-linear region (region 2 in Figure 3-28) is different for each iteration. Therefore, 
the maximum possible value is chosen, namely: 
 
 𝑏௦ =

𝐿ଵ

#௦
 

 

Appendix eq. (6) 

The L1 is the total left span as was described earlier. In this way, the ‘smaller than’ sign is al-
ways true as the length of the region always has to be smaller than the total left/right span. 
This parameter is only included in the model to give an indication of how wide each segment is 
to have an idea of the accuracy that can be expected from the results. 
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Appendix C: MLM verification 
Phase 1: HSFRC 
 

 

Appendix figure 26: input parameters verification phase 1; HSFRC 
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Appendix figure 27: output verification phase 1; HSFRC 
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Phase 1: SHCC 
 

 

Appendix figure 28: input parameters verification phase 1; HSFRC 
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Appendix figure 29: output verification phase 1; HSFRC   
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Phase 2 
  

 

Appendix figure 30: input parameters verification phase 2 
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Appendix figure 31: output verification phase 2 

 

 

Appendix figure 32: crack width calculation output phase 2 
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Phase 3 
 

 

Appendix figure 33: input parameters verification phase 3 
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Appendix figure 34: output verification phase 3 
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Phase 4 
 

 

Appendix figure 35: input parameters verification phase 4 
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Appendix figure 36: output verification phase 4 
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Drying shrinkage: NSC 

 

 

Appendix figure 37: eigenstresses along the height for Normal Strength Concrete (Awasthy, 2019) 
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Appendix figure 38: conversion from eigenstresses to eigen-strain for a NSC specimen of 100 mm 
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Appendix figure 39: input parameters NSC drying shrinkage verification 
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Appendix figure 40: output NSC drying shrinkage verification 
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Drying shrinkage: HSC 

 

 

Appendix figure 41: eigenstresses along the height for High Strength Concrete (Awasthy, 2019) 
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Appendix figure 42: conversion from eigenstresses to eigen-strain for an HSC specimen of 100 mm 
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Appendix figure 43: input parameters HSC drying shrinkage verification 



180  Appendix C: MLM verification 
 

 
 

 

Appendix figure 44: output HSC drying shrinkage verification 
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Comparison with DIANA 
 

 

Appendix figure 45: input parameters comparison with DIANA 
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Appendix figure 46: output comparison with DIANA
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Appendix D: deflection 
Method 1: constant curvature 
First, the derivation of the general expression is shown for the constant curvature method. In 
Figure 3-23, the geometrical properties were visualized. The ‘f’ was considered, which is equal to: 
 
 

𝑓 =
𝐿ଶ

8𝑅
 

 

Appendix eq. (7) 

  

Using the terms that are used in this thesis, Appendix eq. (7) translates into: 
 
 

𝑓 =
𝐿ଶ

ଶ

8𝑅
 

 

Appendix eq. (8) 

  

Zooming in Figure 3-23 gives the situation as in Appendix figure 47: 
 

 

Appendix figure 47: edited version of Figure 3-23 

By using geometry, the ‘x’ in Appendix figure 47 can be expressed as: 
 
 𝑥 = 2𝑓

𝐿ଵ

𝐿ଶ
2

= 4𝑓
𝐿ଵ

𝐿ଶ
 

 

Appendix eq. (9) 

  

That gives a total deflection of: 
 
 

𝑤ଵ = 𝑓 + 𝑥 =
𝐿ଶ

ଶ

8𝑅
+ 4𝑓

𝐿ଵ

𝐿ଶ
=

𝐿ଶ
ଶ

8𝑅
+ 4

𝐿ଶ
ଶ

8𝑅

𝐿ଵ

𝐿ଶ
=

𝐿ଶ
ଶ

8𝑅
+

𝐿ଵ𝐿ଶ

2𝑅

=
𝑳𝟐

𝟐𝑹
൬

𝑳𝟐

𝟒
+ 𝑳𝟏൰ 

Appendix eq. (10) 

  

 
Method 2: momentvlakstellingen; theory 
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The ‘momentvlakstellingen’ method is based on the information from (Hartsuijker, 2001). It only 
holds for structures of which the bending moment distribution is known. For a 3-point or 4-point 
bending test, the bending moment distribution is known. This method is based on translating 
the known bending moment line into a ‘reduced’ bending moment line, by dividing the bending 
moment line by the stiffness. This is shown in Appendix figure 48. 
 

 

Appendix figure 48: definition of the reduced bending moment line (Hartsuijker, 2001) 

Note that this reduced bending moment line is in fact a line that shows the curvature at each 
point. This theory is split into two parts: the first momentvlakstelling and the second 
momentvlakstelling. The first one is related to the rotation angle; the second one is related to 
the deflection. In this Appendix, the generic case is explained. The specific application was shown 
in subchapter 3.4.2.2. 
 
First momentvlakstelling 
From mechanics, it is known that: 
 
 𝜅 =

𝑑𝜑

𝑑𝑥
 

 

Appendix eq. (11) 

 

Substituting this in Appendix eq. (12) gives the result in Appendix eq. (13): 
 
 𝑀 = 𝐸𝐼𝜅 → 𝜅 =

𝑀

𝐸𝐼
 

 

Appendix eq. (12) 
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 𝑑𝜑

𝑑𝑥
=

𝑀

𝐸𝐼
→ 𝑑𝜑 =

𝑀

𝐸𝐼
𝑑𝑥 

 

Appendix eq. (13) 

 

Integrating this over the length AB in Appendix figure 48 gives that the increase of the angle 
‘Δ𝜑’ between A and B is equal to the area of the reduced bending moment line. This angle is 
required for finding the deflection (Hartsuijker, 2001).  
 
Second momentvlakstelling 
From mechanics, it is also know that: 
 
 𝜑 = −

𝑑𝑤

𝑑𝑥
→ 𝑑𝑤 = −𝜑𝑑𝑥 

 

Appendix eq. (14) 

 

Integrating this over the length AB in Appendix figure 48 gives that the increase of the deflection 
Δ𝑤 between A and B is equal to the previously found angle times the distance from the 
centerpoint of part AB to B. Next to that, if there is a known angle at A, the so called 
‘kwispeleffect’ appears. That is equal to the angle at A times the distance to B. Those two 
together determine the deflection at B (Hartsuijker, 2001). This is shown in Appendix figure 49. 
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Appendix figure 49: calculation of the deflection according to the momentvlakstellingen (Hartsuijker, 
2001)  
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Method 2: momentvlakstellingen; 3-point bending test 
Here, the same procedure of subchapter 3.4.2.2 will be explained for a 3-point bending test.  
 
Linear elastic stage 
In Appendix figure 50, the bending moment diagram is shown for a 3-point bending test. 
 

 

Appendix figure 50: bending moment diagram for a 3-point bending test 

The reduced moment diagram has exactly the same shape as the original bending moment 
diagram. This is shown in Appendix figure 51. 
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Appendix figure 51: reduced bending moment diagram for a 3-point bending test 

The beam is split into straightforward geometrical parts. In this case, the diagram is split into 
two triangles. Those lead to the ‘𝜃1’ and ‘𝜃2’. As the two triangles have exactly the same area, 
𝜃1 = 𝜃2. The location of the angles is at one-third of the width of each triangle from the highest 
point. 

Again, first the rotation at support A has to be found, in order to mitigate the deflection 
at support B that would occur if there was no rotation at A. This rotation is shown in Appendix 
figure 52. 
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Appendix figure 52: rotation φA at point A to compensate for the imaginary displacement at support B 

The equation in this case (with respect to point B) becomes: 
 
 𝜑𝐿 = 𝜃ଵ ൬𝐿 −

2

3
𝐿ଵ൰ + 𝜃ଶ

2

3
𝐿ଵ   

 

Appendix eq. (15) 

After this is found, and after it is known that the deflection at midspan is desired, the reduced 
bending moment diagram could be split in half again. However, in this case, taking out ‘𝜃ଶ’ is 
sufficient as ‘𝜃ଵ’ already is equal to the area of half of the beam. Now the deflection at midspan 
becomes: 
 
 𝑤ௗ௦ = 𝜑

𝐿

2
− 𝜃ଵ

1

3
𝐿ଵ  

 

Appendix eq. (16) 

Note the minus signs because of the different directions of the rotations.  
 
Non-linear stage 
Following the same approach as in subchapter 3.4.2.2.2, the bending moment diagram for the 3-
point bending test is taken into account again. it can be split into two regions that are shown in 
Appendix figure 53. 
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Appendix figure 53: two regions in the bending moment diagram in the non-linear stage for a 3-point 
bending test 

Those two regions can be explained as follows: 

 Region 1: linear elastic region. In this region, the undamaged material is taken into 
consideration; the material is acting linearly. The geometrical figure that results in the 
reduced bending moment diagram is a triangle near the support. 

 Region 2: non-linear segments region. Between the location of the end of the undamaged 
material and the location of the applied force, the bending moment varies. Therefore, this 
region has to be split into multiple segments, that have the shape of a rectangle. The 
bending moment at the centerline of each segment is coupled with the corresponding 
curvature. For a large amount of segments, the approximation is accurate.   

This is all summarized in Appendix figure 54. A sketch is shown of a possible configuration. 
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Appendix figure 54: reduced bending moment diagram regions in the non-linear stage for a 3-point bend-
ing test 

As can be seen in Appendix figure 54, region two is not a straight line between region 1 and the 
location of the applied force. Next to that, region 1 has a very shallow slope. Both observations 
are explained in subchapter 3.4.2.2.2. 

In order to find the deflection at midspan, all areas that are shown in Appendix figure 54 
have to be found and multiplied with their distance to support B in order to find the rotation at 
support A. After that, the reduced bending moment diagram can be split into two, and all areas 
including the rotation at support A have to be multiplied with their distance to midspan. 
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Method 3: small scale geometry 
In this method, the total beam is split into small segments. Because of symmetry around the 
midpoint, only half of the beam needs to be considered. Therefore, only half of the beam is di-
vided into segments. Each segment is under a certain rotation, which can be approximated. 
The approximations are shown in Appendix figure 55. 

 

 

Appendix figure 55: small scale geometrical approximations (Welleman, 2018) 

The angle ‘𝜙’, which is related to the curvature, can be approximated by: 
 
 𝑑𝜙 = 𝜅 ∗ 𝑑𝑥 

 
Appendix eq. (17) 

The angle ‘𝜙’ is only equal to ‘d𝜙’ for very small rotations. Translating this all to words, it 
means that the angle of a segment is equal to the curvature of the segment times the width of 
the segment. The width is translated from ‘dx’, which again, is only equal to the width of the 
segment for very small ‘x’. This angle is, as can be seen in Appendix figure 55, equal to the angle 
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‘𝛼’, which is related to the deflection. Multiplying this angle with the distance to a certain point 
gives the deflection at that point (Hartsuijker, 2001). 

As was discussed before, only half of the span needs to be considered. The typical 
deflection of half a span is shown in Appendix figure 56. 

 

 

Appendix figure 56: deflection of half a span for a simply supported beam (Welleman, 2018) 

In this method, the calculation is started from midspan, as the angle there is equal to zero. It is 
assumed that this is also the origin of a reference axis ‘y’, as is shown in Appendix figure 57. So 
the deflection is zero at this location. Now, the support is taken as a reference point to multiply 
the angles with (to find the deflection). However, the deflection that follows is located at the 
support, which never can be satisfied as the deflection at the support must be equal to zero. This 
is shown in Appendix figure 57. In this figure, the imaginary deflection line is shown in red (which 
follows from the calculation).  
 

 

Appendix figure 57: imaginary deflection of half a span for a simply supported beam (Welleman, 2018) 

As is explained, this deflection cannot happen. Therefore, the whole red line has to be move 
downwards by the same (deflection) amount that is found. Therefore, the deflection at midspan 
is exactly the deflection that was calculated at the support. In this way, the deflection at midspan 
is found. 

For segments that are infinitesimal, this method provides the exact and real deflection. 
However, in reality, each segment will have a certain length. Therefore, the provided deflection 
is an approximation of the deflection. 
 

y 
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Although the small scale geometry theory is applicable for a 4-point bending test, it provides less 
accurate results compared to the momentvlakstellingen method if the same parameters are used. 
This has to do with the number of segments and will be explained below. 

As was explained before, the bending stiffness is different for each segment between the 
force and the support after the linear elastic stage. So the scaling of the bending moment diagram 
to the curvature is not by a constant factor (as is the case in the linear elastic stage). This step 
is exactly the same as in the momentvlakstellingen method. Therefore, for each segment, the 
occurring bending moment has to be matched with the corresponding curvature. The more 
datapoints (in the moment-to-curvature diagram) there are, the more accurate this process 
becomes. This also implies that having a limited amount of datapoints can give inaccurate 
deflections as incorrect curvatures are used (because they are approximated due to the lack of a 
match). This implies that this method is only accurate if very small curvature steps and very 
small segments are used. 

As the 4-point bending test consists of a constant bending moment region, and therefore 
it is unnecessary to split that part into segments, it means that the second method 
(momentvlakstellingen) is more accurate. The ‘momentvlakstellingen’ method only splits the 
non-linear part between the force and the support into segments, while this method splits the 
whole half span into segments. So for the same number of segments, the momentvlakstellingen 
method performs better. Note that this holds for the 4-point bending test only. For the 3-point 
bending test, the two methods show similar behaviour. Therefore, the small scale geometry 
method can better only be used in case of 3-point bending tests. But as the two methods show 
similar behaviour, and the ‘momentvlakstellingen’ method is already used for the 4-point bending 
test in the proposed MLM, the latter method will also be used for the 3-point bending test.  
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Method 4: forget-me-nots; 4-point bending 
Here, the derivation of Eq. (3.19) and Eq. (3.20) is shown for the forget-me-not method. As was 
shown before, the deflection for a 4-point bending test is calculated using Eq. (3.18). By rewriting 
Eq. (3.12), the curvature can be found: 
 
 𝜅 =

1

𝑅
 

 

Appendix eq. (18) 

  

By using Appendix eq. (18), Eq. (3.17) can be rewritten as: 
 
 𝐸𝐼 = 𝑀𝑅 

 
Appendix eq. (19) 

  

Using a = L/3 in Eq. (3.18), and entering the found expression for the bending stiffness into the 
same equation gives:  
 
 

𝑤ଶ =
𝐿ଶ
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ቀ
𝐿
3

ቁ
ଶ
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Appendix eq. (20) 

  

To find the general expression for the deflection, ‘a’ is substituted with ‘L1’. This gives: 
 
 

𝑤ଶ =
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Appendix eq. (21) 
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Method 4: forget-me-nots; 3-point bending 
The derivation of Eq. (3.21) is shown here. The deflection for a 3-point bending test is calculated 
by: 
 
 

𝑤ଷ =
1

48

𝐹𝐿ଷ

𝐸𝐼
 

 

Appendix eq. (22) 

  

Using the expression in Appendix eq. (19), and using the maximum moment that was given in 
Eq. (3.11), the stiffness can be rewritten to: 
 
 𝐸𝐼 =

𝐹

2
𝐿ଵ𝑅 Appendix eq. (23) 

  

Using the expression in Appendix eq. (23), the deflection in Appendix eq. (22) can be rewritten 
to: 
 
 

𝑤ଷ =
1

48

𝐹𝐿ଷ

1
2

𝐹𝐿ଵ𝑅
=

𝟏

𝟐𝟒

 𝑳𝟑

𝑳𝟏𝑹
   

 

Appendix eq. (24) 
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Appendix E: drying shrinkage 
In Appendix figure 58, the eigen-strains due to drying shrinkage profile for different drying 
periods are shown for a specimen of 150 mm.  
 

 

Appendix figure 58: calculated eigen-strains along the height due to drying shrinkage for different drying 
periods  
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Proof of linear component equal to zero 
The drying shrinkage profiles that are shown in Figure 3-39 are all symmetric around the 
midpoint. That leads to a ‘linear component’ that is equal to 0. The derivation of this is shown 
here. The linear component is calculated as follows: 
 
 

∆𝑇 =
ℎ

𝐼
න 𝑇(𝑥) ∗ 𝑏(𝑥) ∗ 𝑥 𝑑𝑥

௫మ

௫భ

 

 

Appendix eq. (25) 

  

The T(x) is the function of the relative humidity in this case, and the b(x) is the width that can 
be a function of the location (varying width). The limit values ‘x1’ and ‘x2’ are equal to 0 and ‘h’ 
respectively. The ‘I’ is the known ‘ ଵ

ଵଶ
bh3’ value. As a constant width is assumed in the proposed 

MLM, and as it is also possible to calculate per unit of width, it is assumed that b(x) = b = 1. 
That gives the following expression for the linear component: 
  
 

∆𝑇 =
ℎ

1
12

ℎଷ
න 𝑇(𝑥) ∗ 𝑥 𝑑𝑥





=
12

ℎଶ
න 𝑇(𝑥) ∗ 𝑥 𝑑𝑥





 
Appendix eq. (26) 

  

 

It is assumed that the vertical axis is the y-axis, and not the x-axis as is shown in the expression. 
The integral should be over the height, and not over the width. Therefore, the expression 
becomes: 
 
 

∆𝑇 =
12

ℎଶ
න 𝑇(𝑦) ∗ 𝑦 𝑑𝑦





 

 

Appendix eq. (27) 

  

Now, an expression needs to be found for the relative humidity distribution. In this proof, the 
profile for 28 days of drying is taken. The result in Appendix figure 59 is obtained. 
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Appendix figure 59: fourth-order polynomial trendline of relative humidity profile for 28 days of drying 

Based on the profile, a fourth-order polynomial fitting line was needed to approximate the 
humidity profile correctly. As is shown in Appendix figure 59, the axes are flipped compared to 
what was shown earlier. This was necessary to obtain the expression of the trendline. It is now 
as a function of ‘x’, but it can be flipped, which leads to the following expression: 
 
 ∆𝑇(𝑦) = −4.1483 ∗ 10ିଽ𝑦ସ + 6.2342 ∗ 10ିଵଽ𝑦ଷ − 2.6081

∗ 10ିହ𝑦ଶ + 2.0074 ∗ 10ିଵସ𝑦 + 1.1011 
 

Appendix eq. (28) 

  

As the height is now described relative to the center of the cross-section, the integral limits also 
have to change. The integral becomes: 
 
 

∆𝑇 =
12

ℎଶ
න 𝑇(𝑦) ∗ 𝑦 𝑑𝑦


ଶ

ି

ଶ

 

 

Appendix eq. (29) 

  

The calculation of the integral is shown in Appendix figure 60. 
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Appendix figure 60: calculation of the linear component integral for symmetric drying profiles 
(Symbolab, 2020) 

As is shown in Appendix figure 60, the integral is equal to zero. Therefore, it is proven that the 
linear component does not contribute to the eigen-strains that are used in the MLM. This is true 
for all symmetric profiles. And as is shown in Figure 3-39, all profiles are symmetric. If different 
input is used, the drying shrinkage profile has to be symmetric in order to follow the calculation 
method that is used in the proposed MLM. 
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Average component calculation example 
Again, the humidity profile of 28 days drying is used for the calculation. Now, it is shown how 
the mean component is calculated. The relative humidity data that is available is given in the 
form of datapoints for a specimen of 150 mm height. The data is shown in Appendix table 2. 
 

 

Appendix table 2: relative humidity input data for a specimen of 150 mm height and a drying period of 
28 days 

To know the average component, the specimen is divided into segments. The segments are the 
regions between the datapoints. That gives the regions as in Appendix table 3. 
 

 

Appendix table 3: regions of humidity input data 

For each region, the average relative humidity is calculated. For example, the average of the 
region between 75 to 69 mm is equal to (0.74+0.78) / 2= 0.76. Then, the average has to be 
multiplied with the height of the region. That needs to be done because the regions all have 
different heights. If all heights were the same, this was not necessary. Now, every region 
contributes differently to the total average. So for the region between 75 to 69 mm, the 0.76 
value still needs to be multiplied with (75-69)= 6, which gives 0.76*6= 4.56. Doing this for all 
regions gives the results as is shown in Appendix table 4. 
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Appendix table 4: average contribution of each region to the total average 

The final step is to sum up all the individual contributions, which is in this case the sum of the 
‘MEAN’ column. That is equal to 139.52. Dividing this number by the total height gives the 
total average, or in other words: the average component. In this case, it is equal to: 139.52/150= 
0.93. So the average relative humidity of a beam exposed to 28 days of drying is equal to 0.93. 
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Appendix figure 61: calculation of eigen-strains due to drying shrinkage in the MLM 
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Input of drying shrinkage calculation example 
 

 

Appendix figure 62: input in MLM of drying shrinkage calculation example for 28 days of drying 
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Appendix F: U-shaped mould 
The process of finding the easiest way of producing a U-shaped mould was done in two stages. 
In the first stage, an outside mould of 400x100x100 mm was used (called ‘small scale experiment’ 
in this Appendix). In the second stage, an outside mould of 600x150x150 mm was used (called 
‘medium scale experiment’ in this Appendix). The design of the U-shaped mould is meant to be 
used in future experiments at the TU Delft. When that happens, beams of 1900x150x200 mm 
are recommended to be used in the experiments (called ‘large scale experiment’ in this Appendix). 
Those are also the dimensions that were used in (Huang, 2017). Furthermore, additional 
information on the large scale experiment is presented in this Appendix. 
 
Small scale experiment 
The goal of the small scale experiments was to find a way of making a U-shape.  
 
Step 1 
The inside and outside mould that were chosen were based on the availability of materials in the 
TU Delft concrete lab. The moulds are shown in Figure 2-4. The dimensions of the outside mould 
are 400x100x100 mm, and the dimensions of the inside mould are 400x75.5x47.2 mm. The outside 
mould was made out of steel, and the inside mould was made out of wood. Oil was applied to 
the surface of both moulds. However, the inside mould was not made to be used as an inside 
mould, as the outside surface (that was used as the inside mould) was not smooth. That gave 
some implications during demoulding, which resulted in some cracks. Those cracks were the 
result of excessive hammering during demoulding. Because of the wood surface that was not 
smooth (and even cross-laminated), the oil was absorbed by the wood, which made the SHCC 
stick to the wood. The results are shown in Appendix figure 63 and Appendix figure 64. Note 
that a different SHCC mixture was used compared to the experiments of (Huang, 2017) for this 
experiment; a mixture which consisted of blast-furnace slag and Portland cement CEM I was 
used while a mixture with Portland cement CEM III was desired (more practical for structural 
applications).  
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Appendix figure 63: U-shape made out of SHCC 

 

 

Appendix figure 64: longitudinal cracks as a result of excessive hammering during demoulding 
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Step 2 
In this step, the same mixture as (Huang, 2017) was used (as is shown in Table 2-1). Next to 
that, the goal was to prevent cracking as in the previous step from happening. The hypothesis 
was that the hammering caused the cracking, so when demoulding this time, the usage of the 
hammer was limited to a minimum. Those were the only differences compared to the previous 
step. The SHCC was however still stuck because of the wood that was not smooth, so that also 
needed to be solved in future experiments. The result is shown in Appendix figure 65 and 
Appendix figure 66. As can be seen, there are no cracks, so the hypothesis was correct.  
 

 

Appendix figure 65: U-shape made out of the correct SHCC mixture 
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Appendix figure 66: top view of the SHCC U-shape 

 

Step 3 
The next step was to try a different material for the inside mould. Styrofoam was used, but it 
was of a low quality. Seven plates of Styrofoam were stacked up to reach a desirable height. The 
stacking resulted however in the problem that SHCC slipped in between the plates, which made 
demoulding much harder. Although this was not a very successful experiment, the hypothesis 
was that high quality Styrofoam would perform better. The results of this experiment are shown 
in Appendix figure 67 and Appendix figure 68. Everything except the inside mould was kept the 
same compared to the previous step.  
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Appendix figure 67: demoulding of an SHCC U-shape with Styrofoam as the inside mould 

 

 

 

Appendix figure 68: the effect of Styrofoam plates on the demoulding process 
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Medium scale experiment 
The next stage was about performing the medium scale experiments. The meaning of this step 
was to try everything that could be thought of before presenting a design for a large scale 
experiment. That included for example  thinking of how to prevent leakage or how to prevent 
the usage of spacers to not make it mix up with the ‘fresh’ mixture. When these experiments 
were finished, it was known exactly how the large scale specimens should be casted. Therefore, a 
useful guide is left in this thesis, so that the experiments in the future can easily be performed. 

Note that in the description of the large scale experiments in this thesis, it is assumed 
that exactly the same setup as the experiment of (Huang, 2017) will be used. The steel 
reinforcement can be tweaked a bit so that it fits better in the U-shaped mould, but everything 
that has effect on the resistance should stay the same. The concrete cover (31 mm) and the 
thickness of the SHCC layer (70 mm) are examples of parameters that should stay the same.   

 
Step 1 
As was explained before, high-quality Styrofoam could be a better option than the Styrofoam 
that was used before. Therefore, high-quality Styrofoam was ordered via the TU Delft. It 
consisted of plates of 60 mm thickness, which made it very suitable for the large scale testing, as 
two plates would make a thickness of 120 mm, which was exactly the required width of the inside 
mould. In this step, also steel reinforcement was added. The main challenge was with the stirrups. 
The dimension of the outside mould was now 600x150x150 mm. Although this seems much 
smaller than the large scale dimensions (1900x150x200 mm), the width and height were 
comparable. The most important dimension was however the width, and that was exactly the 
same (150 mm). The reason that this is the most important dimension, is that the webs and 
stirrups have to fit in this small space. If that would work, the rest would not be an issue. The 
inside mould was also cut in a way to get an SHCC layer of 70 mm, as that would be the case 
in the large scale beam. Also, the reinforcement cover was set to 31 mm (as the large scale beam). 
The reinforcement that was prepared, is shown in Appendix figure 69. 
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Appendix figure 69: prepared reinforcement for medium scale experiment 

Although everything seemed correct, there were some problems after casting. As the Styrofoam 
was cut (from the top and the bottom) using a manual saw, it was not completely flat. That 
caused leakage which made the demoulding very difficult. Next to that, the Styrofoam contained 
a certain texture which made it stick to the SHCC. That needed to be solved in the next step. 
The problem of the texture is shown in Appendix figure 70. The result after the demoulding was 
completed was shown before in Figure 2-9. 
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Appendix figure 70: Styrofoam sticking to the SHCC 

 
Step 2 
The last step was to solve the problems that occurred in the previous step. The cutting was not 
done by hand anymore, but by the timber shop at the university. Machines were used which 
meant that the cutting was precise. To solve the problem of the texture of the Styrofoam, the 
Styrofoam was wrapped in tape (see Appendix figure 71). And to make sure that there was no 
leakage from below the inside mould, the inside mould was taped to the bottom of the outside 
mould. That gave the result that was shown before in Figure 2-6. As can be seen, the result was 
much better. It was even so promising that there is a possibility to reuse the Styrofoam that was 
used as an inside mould. 
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Appendix figure 71: inside Styrofoam mould wrapped in tape 
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Pressure check 
When concrete is casted in the U-shaped mould, it is pressuring the webs of the mould. It is 
comparable with the load from water on a water lock. An overview of that is shown in Appendix 
figure 72. 
 

 

Appendix figure 72: front view U-shape mould pressured by casted concrete 

The pressure is equal to: 
 

𝑝 = 𝜌𝑔ℎ = 2018 ∗ 9.81 ∗ 0.13 = 2573 𝑁/𝑚ଶ 
 
In which ‘h’ is not the total height, but only the height over which there is pressure by the 
concrete. The pressure can be translated into a force, by calculating the area of the triangle in 
Appendix figure 72. Its resultant is on one third of the height of the triangle. 
 

𝐹 =
1

2
∗ ℎ ∗ 𝑝 = 0.5 ∗ 0.13 ∗ 2573 = 167.3 𝑁/𝑚 

 
Note that this force is per unit meter depth (into the paper if looking at Appendix figure 72). 
The force results in a bending moment that acts on point A in Appendix figure 72. It is equal 
to: 
 

𝑀 = 𝐹 ∗
1

3
ℎ = 167.3 ∗

1

3
∗ 0.13 = 7.25 𝑁𝑚/𝑚 = 7250 𝑁𝑚𝑚/𝑚 

 
As this load is acting per unit meter depth, the cross section that can be considered for calculation 
of the stresses has a height of 15 mm and a width of 1000 mm. That gives: 
 

𝜎 =
𝑀

𝑊
=

7250

1
6

∗ 1000 ∗ 15ଶ
= 0.19 𝑁/𝑚𝑚ଶ 
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As this is considerably lower than the cracking stress of SHCC (3 N/mm2), the SHCC webs will 
not crack when concrete is casted into the U-shaped mould. In fact, this stress will only be 
reached if the web has a height of 3.25 m (and pressured by concrete along this height). 

If the webs had a thickness of 10 mm, the stress would be equal to 0.43 N/mm2, and it 
would only crack if a web height of 2.47 m was used. 
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Appendix G: crack width 
In this Appendix, the parameters in Eq. (3.25) are explained. The first parameter is ‘𝜙’, which 
represents the bar diameter of the (ribbed) steel reinforcement bar. Secondly, the ‘Es’ parameter 
is the Young’s modulus of the steel that is used. The final parameter is the ‘𝜎s’, which is the 
stress in the steel reinforcement bar. This stress is calculated using Appendix eq. (30): 
 
 𝜎௦ =

𝑁௦

𝐴௦
 

 

Appendix eq. (30)  

Or in other words, the stress is equal to the force in the bar divided by the area of the bar. The 
two remaining parameters are ‘𝜌eff’ and ‘𝜎sr’, which need more explanation. 
 
Effective area  
The ‘𝜌’ parameter normally indicates the reinforcement ratio of a specimen. In this case, it is not 
different. However, now the subscript ‘eff’ comes in to play, which stands for ‘effective’. In a 
beam, the reinforcement only controls the cracks in a certain area. For a beam loading in bending, 
where tensions occurs at the bottom of the beam, it is shown in Appendix figure 73 how this 
effective area looks like (marked in red). 
 

 

Appendix figure 73: effective area in which the reinforcement controls the crack width (Luković & van 
der Ham, 2020) 

The height of this effective area can be calculated using the Eurocode (NEN, 2011): 
 
 ℎ, = min {2.5(ℎ − 𝑑); (ℎ − 𝑥)/3} Appendix eq. (31)  

Here, ‘d’ is the distance between the center of the reinforcement bars to the top of the beam, 
and ‘x’ is the height of the concrete compression zone. The height of the compression zone will 
be covered in the next subchapter. The parameters are illustrated in Appendix figure 74. 
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Appendix figure 74: determining the effective tension area for a beam loading in bending (NEN, 2011) 

Using this information, the effective area becomes equal to:  
 
 𝐴, = ℎ, ∗ 𝑏 

 
Appendix eq. (32)   

In which ‘b’ is the width. Now, the effective reinforcement ratio can be calculated, and is equal 
to: 
 
 𝜌 =

𝐴௦

𝐴,
 Appendix eq. (33)   

 
Here, ‘As’ is equal to the steel reinforcement area in the effective concrete area.  
 
Steel rupture stress 
The final parameter that needs explanation is the steel rupture stress ‘𝜎sr’. Immediately after the 
traditionally reinforced concrete beam cracks, it is assumed that the steel reinforcement bars take 
over all tensile forces. Although this is not necessarily what happens in the proposed MLM, it is 
assumed that it is the case. In the proposed MLM, the tensile stresses can also be taken by the 
concrete, depending on the tensile resistance that is used as input. The strain at the centerline 
of some of the layers of the MLM will still correspond to a stress that is not equal to zero (be it 
in the linear elastic stage, or in the softening regime), so some layers will provide some resistance. 
However, this means that the steel rupture stress calculated using the MLM will not be accurate, 
as not all tensile forces are taken by the steel reinforcement. In order to use the Eurocode 
expressions, the assumption needs to be made that the forces are only taken by the reinforcement. 
This leads to the situation shown in Appendix figure 75. 
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Appendix figure 75: the forces in steel & concrete right after cracking of the concrete (Luković & van 
der Ham, 2020) 

The cracking moment ‘Mcr’ indicated in Appendix figure 75, divided by the lever arm ‘z’, which 
is the distance between ‘Nc’ and ‘Ns’, gives the force ‘Ns’ in the steel. Dividing that value by the 
area of the steel, the stress at rupture is found. The expression becomes: 
 
 𝜎௦ =

𝑀

𝑧𝐴௦
 

 

Appendix eq. (34)   

The moment ‘Mcr’ is the cracking moment which marks the end of the linear elastic stage, and 
‘As’ is the total steel reinforcement area in the tension zone. The lever arm ‘z’ can be found using 
Appendix eq. (35): 
 
 𝑧 = 𝑑 −

1

3
𝑥 

 

Appendix eq. (35)   

The height of the compression zone can be found using Appendix eq. (36) (Luković & van der 
Ham, 2020): 
 
 𝑥 = 𝑑 ∗ ቀඥ(𝛼𝜌)ଶ + 2𝛼𝜌 − 𝛼𝜌ቁ 

 

Appendix eq. (36)   

In this expression, ‘𝛼e’ is the ration between the Young’s modulus of steel and concrete: 
 
 𝛼 =

𝐸௦

𝐸
 

 

Appendix eq. (37)   
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The ‘𝜌l’ parameter is now the reinforcement ratio, and not the effective reinforcement ratio. So 
in other words, it is equal to: 
 
 𝜌 =

𝐴௦

𝐴
 

 

Appendix eq. (38)   
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Appendix H: longitudinal shear 
In order to be able to determine the longitudinal shear, the relationship between longitudinal 
and vertical shear needs to be found. If a small piece of the beam in Appendix figure 76 is isolated, 
the relationship between the vertical and longitudinal shear becomes clear. 

 

 

Appendix figure 76: relationship between vertical and longitudinal shear when a cut is made (Learneasy, 
2020) 

For any point, three equilibrium requirements need to be fulfilled. First, horizontal equilibrium 
is required. In the enlarged view in Appendix figure 76, ‘τh’ points both leftwards and rightwards. 
However, ‘τh’ is a stress. To translate it to a force, it is multiplied with the length over which it 
acts, which gives ‘τh*a’. Formally, it also needs to be multiplied with the width ‘b’, but for now 
the calculation is made per unit width. There are no other forces, so the horizontal equilibrium 
requirement is satisfied. In the same way, vertical equilibrium is found. The vertical force is equal 
to ‘τv*c’. 

Finally, the moment equilibrium should be checked. As the vertical forces are equal to 
each other, and so are the horizontal forces, only one in each direction is needed for the moment 
calculation (because it forms a couple with the other equal force). If the anti-clockwise direction 
is taken as the positive direction, the moments become: 

 
 𝜏 ∗ 𝑎 ∗ 𝑐 − 𝜏௩ ∗ 𝑐 ∗ 𝑎 = 0 → 𝜏 − 𝜏௩ = 0 → 𝝉𝒉 = 𝝉𝒗 

 
Appendix eq. (39)   
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This final expression is what is searched for; the longitudinal shear stress is equal to the verti-
cal shear stress.
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