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ABSTRACT: One of the major challenges in the growth of
quantum well and quantum dot heterostructures is the
realization of atomically sharp interfaces. Nanowires provide
a new opportunity to engineer the band structure as they
facilitate the controlled switching of the crystal structure
between the zinc-blende (ZB) and wurtzite (WZ) phases. Such
a crystal phase switching results in the formation of crystal
phase quantum wells (CPQWs) and quantum dots (CPQDs).
For GaP CPQWs, the inherent electric fields due to the
discontinuity of the spontaneous polarization at the WZ/ZB
junctions lead to the confinement of both types of charge carriers at the opposite interfaces of the WZ/ZB/WZ structure. This
confinement leads to a novel type of transition across a ZB flat plate barrier. Here, we show digital tuning of the visible emission
of WZ/ZB/WZ CPQWs in a GaP nanowire by changing the thickness of the ZB barrier. The energy spacing between the sharp
emission lines is uniform and is defined by the addition of single ZB monolayers. The controlled growth of identical quantum
wells with atomically flat interfaces at predefined positions featuring digitally tunable discrete emission energies may provide a
new route to further advance entangled photons in solid state quantum systems.
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Q uantum confinement of electrons and holes in semi-
conductors is commonly realized by combining semi-

conductors with different bandgaps in quantum well (QW) and
quantum dot (QD) heterostructures. However, alloy fluctuations
and interface roughness prevent a precise control over the
emission energy. Consequently, fine-tuning of each individual
QD emission energy is required by using the Stark effect or strain
methods,1−4 which severely limits the use of heterostructures as
identical single-photon emission sources in photonic circuits.5

To overcome these limitations, homojunctions made of zinc
blende (ZB) and wurtzite (WZ) crystal phases can be grown with
a high degree of control in semiconductor nanowires (NWs).6−9

This method allows the fabrication of atomically sharp crystal
phase quantum well (CPQW) and quantum dot (CPQD)
structures with monolayer thickness control, allowing digitally
tuning of the emission wavelength.10 In this type of
homojunctions, the band offset between the WZ and ZB phases
results in carrier confinement within the WZ phase at either side
of the ZB barrier7,11−14 while avoiding residual strain and alloy
intermixing as in the case of compositional heterojunctions. We
will refer to this novel charge confinement structure as a CPQW.
Due to the atomically flat confinement potentials in these
CPQWs, the line width of the QW emission can be significantly
reduced as compared to a compositional QW. Optical emission
from confined states in CPQWs with different charge confine-

ment geometries has been shown in InP and GaAs nano-
wires,8,10,11 where the emission of single-photons and cascaded
photon-pairs was demonstrated.15

Recently, highly reproducible crystal-phase switching was
shown in GaP nanowires, with a control over the ZB segment
length approaching the monolayer (ML) level.6 In this material
system, the ZB phase has an indirect band gap,16,17 while a quasi-
direct band gap is observed in theWZ phase, promising a route to
single-photon emission in the visible spectral range.18−20 In
addition, strong spontaneous polarization fields across the WZ/
ZB/WZ segments are predicted for GaP.21 The discontinuity of
the spontaneous polarization PSP induces polarization sheet
charges at the WZ/ZB/WZ interfaces,22 resulting in the
quantum-confined Stark effect (QCSE) where the carrier
confinement is determined by the polarization-induced triangu-
lar potentials.23,24 Since the ZB barrier is atomically flat, the
separation between the positively and the negatively charged
carrier sheets is precisely defined, thus avoiding any broadening
effects due to spatial inhomogeneities in the electrostatic and
confinement potentials. This behavior has been investigated in
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microcrystals and nanowires made of nitride-based semi-
conductors.22,25,26 In our WZ/ZB/WZ structures, the lengths
LZB of the ZB segments are much shorter than the lateral
dimensions, resulting essentially in a simple parallel plate
capacitor. Thus, the polarization sheet charge density σ can be
estimated as22,25

σ
εε

= | | =
Δ

P
V
LSP

0

ZB

where ΔV is the potential difference across the plate capacitor, ε
is the dielectric constant of the material, and ε0 is the permittivity
of free space. The energy shift ΔE for changing the thickness of
the capacitor with a single ZB monolayer isΔE =ΔV/q, where q
is the elementary charge. This relation results in a discrete red-

shift (blue-shift) ΔE of the emission energy upon the addition
(removal) of a single ZB monolayer.
Here, we demonstrate digital tuning of the GaP CPQW

emission energy across a spectral range of 75 meV by varying the
thickness of the ZB segment. The correlation between
photoluminescence measurements and band structure simu-
lations shows that the strong polarization field in GaP induces
carrier confinement in the WZ section of the CPQW. The
presence of atomically sharp interfaces results in emission line
widths well below conventional III−V QW heterostructures.
Therefore, the possibility to tailor the growth of WZ/ZB
homojunctions in nanowires and thereby to digitally tune their
emission energies provides a new tool in the design of solid-state

Figure 1. (a) Plot of the spontaneous polarization fields in III−V semiconductors. The dark blue areas are the values predicted fromDFT, while the dark
red areas are the values determined from experimental measurements. (b) Calculated band diagram for a CPQW in GaP with 5 ZB MLs using 1D
Schrödinger−Poisson simulations. The dashed lines indicate the normalized wave functions for electrons (dark blue) and holes (dark red). Curves are
shifted to allow easier comparison. (c) Enlarged view of panel b showing a capacitor-like charge configuration where the sheet of polarization charges and
the related QCSE are sketched. (d) Digital tuning of the CPQW transition energy for increasing ZB thicknesses of 5, 6, and 7 MLs. By adding
(removing) one monolayer, the resulting transition will be decreased (increased) by an amount of ΔE.
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quantum emitters in small diameter nanowires featuring true QD
emission.
In the WZ unit cell, the bond length between the Ga and P

atoms along the ⟨0001⟩ axis (c-axis) is determined as a fraction u
of the lattice parameter c, where u is called the internal cell
parameter. In an ideal WZ unit cell with tetrahedral bonds, u = 3/
8 = 0.375, and the resulting spontaneous polarization PSP is equal
to zero, which corresponds to the situation in the ZB unit cell. In
WZ GaP nanowires, the measured value for the internal
parameter is u = 0.37385 ± 0.00017,27 resulting in the prediction
of a fairly large polarization PSP

GaP = 9 mC/m2 along the c-axis. For
comparison, calculations by density functional theory predict a
value of PSP

GaP = 3mC/m2,21 which is still higher than in other III−
V semiconductors like GaAs, InAs, or InP, as summarized in
Figure 1a.21,27,28 Similarly, a significant spontaneous polarization
with opposite sign (u > 3/8) is known from nitride-based
materials.21,22 As discussed above, the interface charges at the
WZ/ZB/WZ junctions can be treated as a parallel plate capacitor
to derive the polarization field responsible for the change in
emission energy per monolayer (ML).22 A more precise
estimation of the evolution of the emission energy with ZB
thickness can be performed using one-dimensional (1D)
Schrödinger−Poisson calculations for the CPQWs along the c-
axis (see Supporting Information S1 for more details).29 We note
that, as the exciton Bohr radius in GaP is smaller than 8 nm, no
radial confinement is present in the 100 nm-thick nanowires.19 In
addition, the lattice mismatch between WZ and ZB structures is
very small, and the piezoelectric field PPZ is negligible compared
to the spontaneous polarization field PSP.

30 The type-I band
profile for the WZ/ZB/WZ GaP structures calculated using the
1D Schrödinger−Poisson method is presented in Figure 1b,c.
The calculated electron and hole wave functions depicted in
Figure 1b show a small overlap due to the presence of the ZB
barrier, which implies a longer carrier lifetime. The energy
corresponding to this spatially indirect transition depends on the
thickness of the ZB segment. Every addition of a ZB monolayer
reduces the transition energy by an amount ΔE, as shown in
Figure 1d, enabling digital tuning of the GaP CPQW emission
lines.
For optical characterization of CPQWs, WZ GaP nanowires

incorporating multiple defect-free WZ/ZB/WZ homojunctions
with atomically sharp interfaces were investigated.6 A repre-
sentative WZ GaP nanowire of 100 nm diameter with multiple
ZB segments is shown in the transmission electron microscopy
(TEM) image in Figure 2a, where ZB sections with different
lengths are separated by 200 nm long WZ segments. When
considering the whole statistical ensemble of nanowires used for
optical studies, ZB segments with lengths typically ranging
between 3 and 60 MLs were investigated. As an example, ZB
segments intentionally grown with lengths of 12 MLs and 33
MLs are shown in the high-resolution TEM (HRTEM) images in
Figure 2b,c.
The optical emission of the CPQW is investigated using

photoluminescence (PL) spectroscopy.19,30,31 For this study, a
high density of nanowires is dispersed on a SiOx/Si substrate, and
the optical emission is collected while scanning across the
nanowire ensemble. Three different PL spectra of GaP nanowires
with CPQWs are shown in Figure 3a, together with one PL
spectrum from a pure WZ GaP nanowire. The α and γ peaks at
2.140 and 2.251 eV are related to bound excitons in WZ GaP,19

whereas the additional sharp emission lines appear in a spectral
region below the γ-line. This spectral region does not show any

emission lines in pure WZGaP nanowires, clearly demonstrating
that these peaks originate from the embedded CPQW segments.
The CPQW emission lines show an average full width at half-
maximum (fwhm) of 387 ± 13 μeV (see Figure 3b), reaching
values as small as the setup resolution limit of about ∼200 μeV
(see Supporting Information Figure S2). This line width is
remarkably sharp for a III−V semiconductor QW and is the
direct consequence of the presence of atomically sharp
interfaces.32 Once inhomogeneous broadening due to interface
roughness is absent, the remaining broadening mechanism is due
to charge fluctuations,33 either due to nonresonant excitation in
the CPQW barrier or due to charged impurities,which are
unintentionally incorporated within the NW or at the NW
surface. As a confirmation that the emission lines originate from
the WZ sections of the CPQW, we performed polarization-
dependent PL measurements on a single NW, as shown in the
inset of Figure 3b. The emission from the CPQW is polarized
perpendicular to the long nanowire c-axis ⟨0001⟩. This is in
contrast to the isotropic behavior expected for carriers confined
within a ZB GaP segment.34,35 This observation strengthens the
assumption of a type-IWZ/ZB junction with carrier confinement
in the WZ segments, as predicted from band structure
calculations.12 A clear indication of the presence of different
CPQWs in the PL spectra of Figure 3a is the regular spacing
between multiple emission lines. To determine the emission
energies of segments with a specific thickness in view of the
variable emission energy, we performed a statistical analysis of
the emission energy of hundreds of nanowires with CPQWs as
summarized in the histogram in Figure 3c. Due to the occasional
presence of the bound exciton β-line at 2.164 eV in WZ GaP,19

the investigated energy range has been limited to 2.168−2.246

Figure 2. (a) TEM image of a WZ GaP nanowire with 100 nm diameter
and multiple CPQWs of different ZB lengths separated by 200 nm long
WZ segments. (b,c) HRTEM images of CPQWs with ZB segments of
12 MLs (b) and 33 MLs (c) in length.
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eV. Strikingly, from the multi-Gaussian peak fit of the histogram
in Figure 3c, we observe up to 15 clear peaks, with additional
peaks at 2.170 and 2.244 eV with low statistical counts. The
presence of peaks in the histogram clearly shows that the CPQW
emission lines are not random but instead exhibit a constant
spacing of ∼5 meV (see Figure 3d). This confirms that the
position of the CPQW peaks is indeed governed by the
respective number of ZB monolayers. Therefore, by tailoring the
length of the ZB segments during growth,6 CPQWs emitting at
the same energy can be designed with a high degree of control.
Since the shortest ZB segment in a WZ wire has a length of 3
MLs,6 the first observable Gaussian peak should be associated
with a ZB section of at least 3 MLs. The values for the standard
deviation σG of the Gaussian peaks are in the range of 1−5 meV
(inset Figure 3c). We tentatively explain the increased
broadening of the histogram peak with increasing barrier
thickness by a non-negligible number of charged impurities
located within the ZB barrier at our background impurity
concentration of 6 × 1017 cm−3 (see below). Charged impurities

will locally change the confinement potential resulting in
fluctuations of the emission energy, as reported for stacking
faults in GaN36 or InP QDs.37 We note that the standard
deviation of σG = 1−2 meV for the shorter segments is
comparable to state-of-the-art QD samples38 and probably can
be further reduced by lowering the background impurity
concentration.
The constant spacing of ∼5 meV/ML is proportional with the

polarization charge minus the compensating free charges due to
background doping, which tend to accumulate near the ZB
interface. For this reason, the energy shift per monolayer was
calculated using the 1D Schrödinger−Poisson calculations as
shown by the dashed line in Figure 3d. An unintentional
background doping level of 6 × 1017 cm−3 as estimated from
atom−probe tomography measurements on WZ GaP nanowires
was considered in the model.19 At this doping level, the
calculations reproduce the experimentally observed trend for a
spontaneous polarization of PSP = 4.6 mC/m2 (see Supporting
Information S1 for more details). For a doping level of 1 × 1017

Figure 3. (a) PL spectra acquired for different CPQWs and compared with the emission fromWZGaP. (b) Enlarged view of a CPQWpeak with a fwhm
of∼320 μeV. Inset: polarization-dependent PLmeasurement on a single NWwith CPQWs. (c) Statistical analysis of the emission energy of hundreds of
nanowires with CPQWs. Fifteen Gaussian peaks are used for fitting, with additional peaks at 2.170 and 2.244 eV, with low statistical count being visible.
A bin size of 0.5 meV is used for the histogram. Inset: width σG of the different Gaussian histogram peaks as a function of the ZB thickness. (d) Emission
energy as a function of the number of ZB MLs (red spheres). The low statistical count peaks at 2.170 and 2.244 eV are indicated with hollow grey
spheres. The 1D Poisson simulations using theWZ band gap of 2.19 eV (dashed dark green line) and γ-line bound exciton level at 2.25 eV (blue dashed
line) are shown.
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(1 × 1018) cm−3, the experimental data would be reproduced for
a polarization value of 2.8 (5.5) mC/m2, which gives an estimate
of the accuracy of the derived value. As the charge distribution
due to doping is not taken into account, the plate capacitor
approximation is not fully sufficient−in contrast to GaN, where
the spontaneous polarization is 5 times larger.22 A first
calculation has been performed considering the WZ GaP
bandgap of 2.19 eV, as shown by the green dashed line in Figure
3d.19 However, despite the agreement with the trend of the
experimental data, a clear offset in energy is present. Therefore,
we performed a second calculation considering the γ-line bound
exciton level at 2.25 eV for the WZ phase.19 In this case, the
resulting agreement with the experimental energies shows that
the CPQW emission is related to a very efficient recombination
channel associated with the localized γ-transition inWZGaP. For
comparison, the value we find for the spontaneous polarization
PSP is slightly higher than the 3 mC/m2 predicted by DFT
calculations,21 but a factor of 2 lower than the estimate from the
internal cell parameter u measured by X-ray diffraction.27

Power-dependent PL measurements were performed on
emission lines at different energies to confirm that the emissions
originate from different CPQWs. The two CPQW peaks in
Figure 4a are separated by 7.3 meV, which differs from the
expected shift of ∼5 meV for the addition/removal of a ZB ML
(see Figure 3d) possibly due to local fluctuations in doping
concentrations. Looking at the excitation power dependence of
the PL intensity as shown in Figure 4b, a linear scaling with slope
∼1.0 is observed for both CPQW lines, followed by a saturation
regime above 100 W/cm.2 Furthermore, the absence of a blue-
shift of the emission energy with increasing power (see inset
Figure 4b) indicates that the number of photogenerated carriers
is very small compared to the number of polarization charges,
thus avoiding a blue shift due to compensation of the
spontaneous polarization field by the photoinjected carriers. As
a confirmation of the carrier separation in CPQWs, we
performed time-resolved PL (TRPL) measurements, as shown
in Figure 4c. The measured lifetime for different CPQW
emission lines ranges between 20 and 30 ns. A clear correlation
between increase in lifetime with increasing emission energy was

Figure 4. (a) PL spectra from two different QWs with a difference in thickness of 1 ZB ML. (b) Integrated PL intensity as a function of the excitation
power density for the peaks in panel a. Inset: peak energy as a function of the excitation power density. (c) Time-resolved PLmeasurements on a CPQW
peak at 2.221 eV compared with the time decay for the γ-exciton line. (d) Integrated PL intensity as a function of the reciprocal temperature for a CPQW
at 2.220 eV. The fit is performed considering one active nonradiative recombination channel. Inset: PL spectra for increasing temperature.
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not observed. These values are much larger than the lifetime of
0.5−1.0 ns observed in WZ GaP in the same energy range and of
the 0.70 ns lifetime for the γ-line.19 Since the charge carriers are
spatially separated and the transition is across a quantum barrier,
the overlap of the electron and hole wave functions is reduced,
which results in a decrease of the oscillator strength for the
CPQW transition and hence in an increase of the radiative
lifetime. However, we note that the presence of nonradiative
recombination channels could affect the estimation of the
lifetime from TRPL measurements, limiting our observations to
a more qualitative picture. When the temperature of the system is
increased, the emission from the CPQWs is quenched due to the
thermal escape of holes out of the WZ confinement potential, as
shown in Figure 4d. From fitting the temperature dependence of
the integrated PL intensity of a CPQW at 2.200 eV using a single
nonradiative recombination channel,19 we find an activation
energy EA = 82 ± 16 meV. In GaP, the WZ/ZB valence band
offset is ∼135 meV (see Figure 1),12 and considering the
presence of quantized levels that reduce the energy barrier, the
good agreement with EA confirms the confinement of both
electrons and holes in the WZ segment of the CPQW.
In this work, we have provided experimental evidence for the

presence of a spontaneous polarization in WZ GaP, which has a
strong effect on the optical properties of crystal phase
homojunctions in this material system. We demonstrated digital
tuning of the emission energy associated with WZ−ZB−WZ
crystal phase quantum well structures by tailoring the length of
the ZB segments. This approach will allow to grow crystal phase
quantum dots (CPQDs) by decreasing the NW diameter, which
is a step toward the controlled fabrication of multiple CPQDs
emitting identical photons. Identical single photon emitters are a
key ingredient for the realization of entangled states in quantum
information processing.
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