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PREFACE

Manual tracking is considered the gold standard for analysis of fascicle behavior. However, it is time-
consuming, prone to human error, and inconsistent over long sequences. To address these limitations, it is
essential to develop and validate automated tracking algorithms that are both accurate and computationally
efficient.

This thesis evaluates the performance of two algorithms, the semi-automated Kanade-Lucas-Tomasi (KLT)
and the fully automated UltraTimTrack (UTT), in tracking fascicle behavior relative to manual tracking.
It also examines how functional tasks affect fascicle behavior across manual tracking and validated
algorithm(s). While the UTT and KLT algorithms are expected to offer greater efficiency due to faster
computational times, manual tracking is anticipated to perform better in more demanding tasks, such as
functional tasks involving weights or an incline. Validating automated tracking algorithms could enhance
clinical interventions and enable fast, real-time fascicle tracking in clinical settings.

This research was conducted as part of my Master of Science in Biomedical Engineering at Delft
University of Technology. Understanding pediatric biomechanics is especially important, as conditions
like cerebral palsy significantly affect a child’s ability to move and play. Improving tracking algorithms
could contribute to better interventions that help children move more freely and enjoy a more active
childhood. Conducting research in a hospital setting and interacting with these children has made this
work particularly meaningful. The study was conducted under the supervision of Dr. Marjolein van der
Krogt and Babette Mooijekind from the Department of Rehabilitation at Amsterdam University Medical
Center, and Dr. ir. Winfred Mugge from the Department of BioMechanical Engineering at Delft University
of Technology.

Suvi Lotta van Hunen
Delft, April 2025
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Abstract—Manual fascicle tracking from ultrasound
images is the gold standard for assessing fascicle behavior.
However, manual tracking is labor-intensive, prone to
human error, and often inconsistent. The semi-automated
Kanade-Lucas-Tomasi (KLT) and fully automated Ultra-
TimTrack (UTT) algorithms offer potential alternatives,
but their accuracy and computational efficiency require
further evaluation. The current study aimed to deter-
mine which algorithm provides the most accurate fascicle
tracking relative to manual tracking. Furthermore, how
functional tasks including walking and running, while
carrying weights or walking on an incline influence fascicle
behavior across manual tracking and validated tracking
algorithm(s). For the current research, treadmill walking
and running data from typically developing (TD) children
(n = 3) was used. The reliability of manual tracking was
assessed using Root Mean Square Error (RMSE) and In-
traclass Correlation Coefficients (ICC) in five trials, while
computational efficiency was evaluated based on the time
ratio. Gait cycles were time-normalized, and Statistical
Parametric Mapping (SPM) two-way repeated measures
ANOVA with post-hoc comparisons was conducted to
analyze fascicle length differences across manual track-
ing, KLT, UTT and functional tasks. Repeated measures
analysis with post-hoc comparisons in SPSS was conducted
to analyze range values (max-min). Results demonstrated
high reproducibility (RMSE = 4.63 mm and r = 0.78)
of manual tracking, confirming its reliability as the gold
standard. Compared to manual tracking, UTT exhibited
superior computational efficiency and accuracy, while
KLT showed greater limitations in tracking performance.
Further analysis was conducted using manual tracking
and UTT, where functional tasks were compared. The
medial gastrocnemius muscle adapted its neuromechanical
behavior across functional tasks, with walking relying
on passive elastic energy storage, running emphasizing
active fascicle shortening, and tasks involving weights
increasing active force generation. Future research should
expand participant cohorts, refine tracking algorithms,
and evaluate the applicability of automated algorithms in
clinical populations.

1 INTRODUCTION

Gaining insight into the mechanics of skeletal
muscle fascicles using ultrasound imaging is es-
sential for enhancing our understanding of human
movement and improving the effectiveness of clin-
ical interventions by allowing real-time analysis
of fascicle length, pennation angle, and muscle-
tendon dynamics during movement [1]. The medial
gastrocnemius (MG) muscle plays an essential role
in walking and running and has been a key focus
in studies on muscle-tendon dynamics under various
conditions [2, 3]. The human gait cycle, which spans
from 0 % to 100 %, is divided into two main phases:

2

the stance phase and the swing phase, as shown in
Fig. 1. The fascicle behavior of the MG in response
to changes in walking speed and horizontal forces is
displayed in Fig. 2a & Fig. 2b. Accurate analysis of
fascicle behavior is crucial for understanding mobil-
ity outcomes in pediatric and clinical populations,
particularly in children with Cerebral Palsy (CP),
where a toe-walking gait pattern (CP equinus) is
often present [4, 5, 6, 7]. The fascicle behavior of
the MG for CP non equinus, CP equinus and for TD
children is displayed in Fig. 3a, Fig. 3b & Fig. 3c.
Manual fascicle tracking of the MG muscle in ul-
trasound images is considered a benchmark method
due to its reliance on human interpretation, elimi-
nating algorithmic biases and allowing for nuanced
identification of fascicle boundaries [8, 9]. However,
it is labor-intensive, prone to human error, and
lacks consistency over extended sequences, making
it less suitable for large-scale studies [1]. Recent
advancements in ultrasound imaging and automated
fascicle tracking algorithms have revolutionized this
field, yet significant challenges remain in ensuring
the efficiency and accuracy of these algorithms
across diverse populations and movement paradigms
[8, 9, 10, 11, 12].

Dynamic muscle fascicle length changes are typ-
ically estimated using B-mode ultrasound imaging,
with studies leveraging both manual tracking and
automated tracking algorithms to capture their real-
time behavior during functional tasks [5, 15, 16].
Semi-automated approaches, using both manual fas-
cicle length determination in the first frames and au-
tomated Kanade-Lucas (KL) optical flow algorithm
in the other frames, have demonstrated utility. How-
ever, their reliance on the KL optical flow algorithm
introduces variability, particularly during complex
movements [8, 9]. The Kanade-Lucas-Tomasi (KLT)
algorithm improves feature tracking reliability and
robustness to large motions compared to the KL
algorithm, thanks to its pyramidal implementation.
It tracks localized tissue motion by identifying
prominent features and estimating their displace-
ment across image frames, enabling fine-grained
motion analysis and automatic selection of reliable
features [10, 11]. Concurrently, the active shape
model (ASM) statistically models muscle shape
variations using annotated landmarks and principal
component analysis, ensuring anatomically accurate
region-of-interest identification and dynamic adap-
tation to muscle deformations [10]. Together, these
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Fig. 1. One complete gait cycle (1-100 %) with corresponding phases [13, 14].

techniques provide a robust framework for capturing
both detailed motion patterns and global shape
dynamics, advancing automated analysis of muscle
function [10]. However, the KLT algorithm requires
well-defined manual initialization for accurate re-
sults and is both complex to implement and compu-
tationally demanding [10, 11]. The fully automated
UltraTrack algorithm has made strides in reducing
observer bias [2, 17, 18]. However, issues such as
drift during large displacements or inaccuracies in
regions with non-uniform muscle deformation re-
main unresolved [18, 19]. To mitigate drift, the fully
automated TimTrack algorithm was designed to
function independently of image history, effectively
eliminating drift while remaining sensitive to noise.
TimTrack is based on line detection techniques
using filters like Frangi vessel enhancement filter
and Hough Transform [19]. A recently proposed
tracking algorithm, UltraTimTrack (UTT), a hybrid
approach using a Kalman filter combining the drift-
free line detection of TimTrack with the noise-
insensitivity optical flow of UltraTrack [12, 20, 21,
22, 23]. A Kalman filter balances the strengths
and weaknesses of predictions and measurements
to achieve accurate and robust tracking over long
sequences, estimating the state of a dynamic system
over time despite noise and uncertainty [23]. These
advancements in semi and fully automated tracking

algorithms offer increasingly robust and accurate
solutions while addressing challenges such as drift,
noise, computational time and operator dependency.

While mathematical algorithms for fascicle
tracking have shown promise in adult populations,

their  translation to pediatric  applications,
particularly in pathological contexts, remains
limited [1, 11, 19, 23]. Therefore, identifying

the most accurate fascicle tracking algorithm and
understanding how functional tasks affect fascicle
behavior in children hold profound medical and
technological implications, including improved
access to high-quality diagnostic tools [I1].
Medically, the development and validation of
advanced tracking algorithms will enable accurate
and dynamic assessments of muscle-tendon
behavior during functional tasks. As well as,
facilitate early detection of musculoskeletal
abnormalities and the implementation of
personalized rehabilitation strategies, particularly
for children with CP, who exhibit altered
muscle-tendon mechanics and atypical fascicle
behaviors [4, 5, 6]. Technologically, the integration
of automated algorithms represents a major
advancement in ultrasound-based motion analysis
by reducing observer bias, improving computational
efficiency, and enabling real-time applications in
both research and clinical settings. Many existing
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Fig. 2. The time series illustrate medial gastrocnemius fascicle behavior, change in fascicle length (left)
and fascicle length (right), in response to changes in walking speed, 1.6 m/s, 1.2 m/s and 0.8 m/s (a) and
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Fig. 3. The time series illustrate medial gastrocnemius fascicle behavior with the normalized (to
corresponding tibia length) length in (a), relative fascicle length (absolute fascicle lengths at initial contact
subtracted from the corresponding values at each point in the gait cycle) (b) and strain in (c) with calculated
mean and standard deviation. Data is shown for TD (n = 12) (grey), CP equinus (n = 6) (blue) and CP
non-equinus (n = 6) (red) groups during a complete gait cycle (0-100 %) [7].



automated algorithms rely on static or passive
movement validation, and high-quality ultrasound
images, often requiring manual initialization and
feature-point tracking, making them sensitive to
user input and image quality (Supplementary Table
5,6, 7, 8,9 and 10). Given these limitations, there
is a critical need to develop and validate robust
tracking algorithms that can accommodate the
distinctive muscle-tendon dynamics of pediatric
populations while addressing the shortcomings of
manual tracking.

The current study aims to assess the accuracy and
efficiency of the semi-automated Kanade-Lucas-
Tomasi (KLT) and fully automated UltraTimTrack
(UTT) fascicle tracking algorithms compared to
manual tracking during treadmill-based walking
and running, with and without weights or on an
incline, in Typically Developing (TD) children. This
will pave the way for more accurate and efficient
tools tailored to pediatric populations and could
potentially enhance diagnostic precision, improve
intervention outcomes, and foster a comprehensive
understanding of muscle-tendon dynamics. Key
research points include: (1) assessing the intra-rater
reliability of manual tracking in TD children to
establish its reliability as a gold standard, (2)
comparing the accuracy and efficiency of the
semi-automated KLT and fully automated UTT
fascicle tracking algorithms with manual tracking
across functional tasks and (3) comparing the
effects of various functional tasks on fascicle
behavior using manual tracking and validated
tracking algorithm(s).

It is hypothesized that the UTT fascicle tracking
algorithm will demonstrate reduced computational
time compared to manual tracking, as well as the
semi-automated KLT algorithm. While the UTT and
KLT algorithms are expected to be more efficient
due to reduced computational time, manual tracking
is anticipated to outperform in challenging cases.
For instance, tasks that involve weights or an in-
cline, as it allows for customized adjustments that
the automated algorithm may not accommodate. In
the second part of the research where functional
tasks are compared to each other, it is hypothesized
that during running and tasks involving weights
or an incline, fascicle lengths in children will be
shorter than in walking tasks. To test these hy-
potheses, several key outcome measures will be ana-

lyzed, including intra-reliability of manual tracking
across five trials, fascicle length, relative fascicle
length, range values and computational time. Fas-
cicle length is directly measured from ultrasound
images over multiple frames, the range is deter-
mined by identifying the maximum and minimum
values within the gait cycle and the relative fascicle
length is determined by subtracting the fascicle
length values with the corresponding initial con-
tact fascicle length values. Together these outcome
measures provide insights into muscle adaptation,
force generation, and the performance of automated
tracking algorithms compared to manual tracking.
Computational time, defined as the time required
for manual tracking and the two algorithms, re-
flects the efficiency of automated algorithms rela-
tive to manual tracking. To assess differences be-
tween manual tracking, KLT and UTT algorithms
and functional tasks, Statistical Parametric Map-
ping (SPM) repeated-measures will be conducted
for time-dependent data and conventional repeated-
measures will be conducted for time-independent
data. This analysis will help evaluate the accuracy
and efficiency of the tracking algorithms and assess
how functional tasks affect fascicle behavior in
children.

2 MATERIALS & METHODS

The current study utilized previously collected
data from dynamic ultrasound measurements of
Typically Developing (TD) children (details on
participant demographics: Supplementary Table 1).
Based on a previous study, a power analysis was
conducted using G*Power [25], with an effect size
of 0.60, a power of 0.95, two groups (TD/CP), and
three conditions (with or without weights or an
incline) [4]. This analysis indicated that a sample
size of ten participants per group is sufficient. Each
participant completed a series of functional tasks
which are presented in Table 1. This study was
conducted in accordance with the Declaration of
Helsinki under approval number ONZ-2023-0356
and both the children and their parents provided
written informed consent prior to participation.

Inclusion Criteria

o Typically developing children: Healthy chil-
dren with no history of neurological disorders.



Table 1. Functional tasks performed by each child.

Functional tasks Description

Walking
Running
Pulley Walking
Pulley Running
Slope Walking

Performed at 70 % of their maximum walking speed

Performed at 70 % of their maximum running speed

Weights (45 % of their body weight) attached to a pulley system connected to the child (safety harness) while walking
Weights (25 % of their body weight) attached to a pulley system connected to the child (safety harness) while running
Performed at 6.9° inclined treadmill and at 70 % of their maximum walking speed

Fig. 4. Part (a) shows the setup for the measurements, where a child can walk and run on a treadmill.
Part (b) displays the ultrasound probe (Probefix Dynamic T, USONO, The Netherlands) positioned at the

gastrocnemius muscle-tendon junction [24].

Exclusion Criteria
« Severe joint deformities or physical conditions
preventing walking or running.
« Severe cognitive impairments that interfere
with task completion.

2.1 Data collection protocol

Dynamic ultrasound imaging was utilized to cap-
ture real-time images of the medial gastrocnemius
muscle during dynamic movements (Fig. 4a & Fig.
4b). The ultrasound probe was positioned longitudi-
nally along the mid-calf region, oriented parallel to
the muscle fibers to optimize visualization of fasci-
cle dynamics, allowing movements in five degrees-
of-freedom. The probe (111 g) and probe-holder
(219 g) have a total mass of 330 g. A coupling
gel was applied to ensure acoustic transmission and
minimize impedance. Imaging was performed using
Dynamic 2D B-mode Ultrasonography, with a 59

mm linear US probe (Telemed SmartUS, Lithuania),
a frequency of 8 MHz, a low line density and
a frame rate of 60 fps optimized for dynamic
musculoskeletal imaging. Participants performed a
set of functional tasks on a split-belt treadmill
(GRAIL, Motek ForceLink BV, The Netherlands)
listed in Table 1. Each trial lasted approximately
20 s, ensuring at least ten valid steps, five selected
steps were randomly selected. Atypical steps show-
ing large variations from the expected gait cycle
were excluded as well as the first and last steps
as they might reflect acceleration or deceleration.
Ultrasound images were recorded continuously dur-
ing each trial and securely stored for subsequent
analysis. Changes to probe placement and parameter
calibration adjustments were made to accommo-
date individual anatomical variations, ensuring high-
quality data acquisition across all participants.
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Fig. 5. Workflow for validating automated fascicle tracking algorithms across functional tasks in children.
Manual tracking serves as the gold standard (green dot), with criteria of » > 0.68 and RMSE < 10 %.
Automated tracking algorithms were included (green dot), if they showed no significant difference from
manual tracking across multiple (at least two) tasks, while also demonstrating time efficiency. Red dots
indicate instances where the specified criteria are not met.

2.2 Data processing

Ultrasound images were analyzed using manual
tracking, the semi-automated Kanade-Lucas-Tomasi
(KLT) algorithm and the fully automated Ultra-
TimTrack (UTT) algorithm. For manual tracking,
fascicle lengths were marked every two frames
using the ImageJ 1.54g software [26]. Key con-
siderations for manually tracking fascicle length
include the placement of tracking lines along the
inner edge of the aponeurosis. Additionally, utilizing
bright white reflections from the perimysium along
the predominantly dark fascicle edges, caused by
low echogenicity, ensures consistent tracking across
frames. Finally, observing the upper aponeurosis
before the lower aponeurosis improves the identifi-
cation of medial gastrocnemius movement direction,
thereby enhancing fascicle tracking precision [27].
For the semi-automated algorithm, a point distri-
bution model was created using data trained by
manually labeling the first frames of the ultrasound
image sequences collected from each participant

[10]. Image segmentation was performed using the
ASM model, which identified regions containing
muscle fascicles, located the aponeuroses, and di-
vided the region into longitudinal segments. The
final step involved a dynamical model with Gaussian
noise, which predicts shape changes across frames,
with noise variance estimated from local movements
tracked using the KLT feature tracker [10, 28].
The fully automated UTT refines estimates of fas-
cicle length correcting them based on Kalman gain
for improved accuracy [23]. Before data analysis,
preprocessing was performed to ensure consistency
in statistical evaluation. Fascicle length data were
time-normalized and segmented into gait cycles
using the Gait Off-line Analysis Tool (GOAT v4.2,
Motek Medical, The Netherlands) and MATLAB
(R2024b) algorithms.

2.3 Data analyses
Data analyses assessed the accuracy and ef-
ficiency of manual tracking, the semi-automated



Table 2. Characteristics of participants whose data were successfully processed without errors.

Characteristics ™D (n = 3)
Age (years) 11.00 + 1.00
Weight (kg) 34.47 £4.97
Height (cm) 148.67 £ 1.86
Max treadmill walking speed (m/s) 2.35+0.21
Max treadmill running speed (m/s) 3.90 £0.61

Kanade-Lucas-Tomasi (KLT) algorithm, and the
fully automated UltraTimTrack (UTT) algorithm.
The workflow for the current research is displayed
in Fig. 5. Intra-reliability of manual tracking was
determined by assessing the consistency of fascicle
length measurements across the entire gait cycle
obtained by the same operator across five trials
using Intraclass Correlation Coefficient (ICC) and
Root Mean Square Error (RMSE). Previous studies
have classified correlations as weak (r < 0.35),
moderate (0.36 to 0.67), and strong (0.68 to 1), a
classification that will also be applied in the current
study [1, 29]. To evaluate performance, previous
studies that analyzed fascicle images of similar
lengths (e.g., the human soleus, approximately 30
to 50 mm at rest) reported RMSE values below 10
% of the mean fascicle length. Based on this, 10
% RMSE, considered a low error, was applied in
the current study [11, 30]. Each trial was analyzed
twice, with an additional analysis performed on
randomly selected frames, approximately on flexion
points of the gait cycle, to measure fascicle length
independently. Tracking efficiency was evaluated by
recording the time required to complete fascicle
tracking from pre-processing to final analysis. Data
was checked for normality, before conducting SPM
two-way repeated measures ANOVA to compare
absolute and relative fascicle lengths across manual
tracking and the two algorithms and functional
tasks. Post-hoc pairwise comparisons were per-
formed when significant differences were detected
(p < 0.05). To account for temporal correlations
across the time series data, Random Field Theory
(RFT) correction is applied in SPM. For post-hoc
comparisons, a False Discovery Rate (FDR) correc-
tion (time-dependent data) was applied to control
for Type I errors while maintaining an appropriate
balance between sensitivity and statistical power.
ICC and RMSE were also calculated for the two
automated tracking algorithms compared to man-

ual tracking and across functional tasks. Repeated
measures analysis was conducted in SPSS 29.0.2.0
(IBM Corp. in Armonk, NY) on the range values
(defined as the difference between the maximum
and minimum absolute fascicle lengths). All range
values are displayed in Supplementary Table 2, 3
and 4. Post-hoc pairwise comparisons, with Bonfer-
roni correction (time-independent data), were per-
formed when significant differences were detected
(p < 0.05).

3 RESULTS

The results evaluate the accuracy and efficiency
of manual tracking, KLT, and UTT, as well as differ-
ences in fascicle behavior across various functional
tasks. Participant characteristics used in the current
study are presented in Table 2.

3.1 Reliability of manual tracking and efficiency
of automated tracking algorithms

Ultrasound data from seven TD children and
slope running data (running with an incline) were
excluded from the analysis due to the KLT algo-
rithm failing to produce reliable fascicle tracking
data, resulting in errors and poor tracking quality.

Manual fascicle tracking was assessed for intra-
rater reproducibility to establish a reliable gold
standard. The method demonstrated high repro-
ducibility, with an average correlation coefficient
of 0.78 and an average Root Mean Square Error
(RMSE) of 4.63 mm (10 % of the mean fascicle
length) across five trials. Computational efficiency
was evaluated by calculating the time ratio between
the computational time of the algorithms (KLT:
60 £ 10 min; UTT: 35 £ 5 s) and the time required
for manual tracking (60 £ 15 min) per trial. Table
3 presents the computational efficiency of the al-
gorithms, illustrating their substantial time savings
compared to manual tracking.



Table 3. Presents a comparison of the processing speeds of KLT and UTT relative to manual tracking.

Time

Manual Tracking/KLT

Manual Tracking/UTT

Time ratio 1.00 £0.44

102.86 £ 29.60

Table 4. Average ranges (max-min) across manual tracking, KLT, and UTT algorithms for functional
tasks where significant differences are denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001.

Functional Tasks = Manual Tracking KLT UTT
Range (Mean £+ SD) Range (Mean £ SD) Range (Mean £ SD)
(mm) (mm) (mm)

Walking 13.71 (4.10) 20.51 (3.81)%*** 21.76 (3.31)***

Running 15.34 (4.19) 19.93 (4.38)* 21.28 (5.19)

Pulley Walking 15.27 (5.19) 17.17 (4.98) 20.91 (3.52)**

Pulley Running 10.53 (2.19) 13.87 (4.24) 19.67 (15.31)

Slope Walking 11.96 (2.49) 17.45 (4.80)* 19.78 (2.50)%***

3.2 Accuracy across KLT and UTT compared to
manual tracking

A significant overall difference (p < 0.001) in
fascicle length and range values were found across
manual tracking and the two algorithms. Further
analysis revealed that the KLT algorithm signifi-
cantly underestimated fascicle length and exhibited
greater shortening values compared to manual track-
ing. Comparisons between the UTT algorithm and
manual tracking showed no significant differences in
fascicle length for the running and pulley running
tasks showing the accuracy of UTT for dynamic
movements.

Table 4 displays the average ranges, while Fig.
6 shows the average fascicle length, across manual
tracking, KLT, and UTT algorithms for functional
tasks. The fascicle length of each child across
manual tracking and the two algorithms can be
found in Supplementary Fig. 1, 2 and 3.

3.2.1 Walking trials

When comparing manual and KLT data, sig-
nificant differences in fascicle length were found
between the loading response and terminal stance
phase (841 % of the gait cycle; p < 0.001;
RMSE = 7 and r = 0.61). A significant difference
was also found when comparing the range values
(p = 0.001).

When comparing manual and UTT data,
significant differences were found from heel rise
to toe-off (31-68 % of the gait cycle; p < 0.001;
RMSE = 4.9 and r = 0.82). A significant difference

was also found when comparing the range values
(p < 0.001).

3.2.2  Running trials

When comparing manual and KLT data,
significant differences in fascicle length were
found throughout the loading response and terminal
stance phase (14-51 % of the gait cycle; p < 0.001;
RMSE = 6.8 and r = 0.61). A significant difference
was also found when comparing the range values

(p = 0.03).

3.2.3 Pulley walking trials

When comparing manual and KLT data, signifi-
cant differences in fascicle length were found from
initial contact to loading response (3—15 % of the
gait cycle; p < 0.001) and from heel rise to toe-off
(30-64 % of the gait cycle; p < 0.001) (RMSE =
6.7 and r = 0.74).

When comparing manual and UTT data,
significant differences were found from the
terminal stance phase to feet adjacent (44-67 %
of the gait cycle; p < 0.001; RMSE = 5.2 and r
= 0.83). A significant difference was also found
when comparing the range values (p = 0.008).

3.2.4 Pulley running trials

When comparing manual and KLT data,
significant differences in fascicle length were found
throughout the entire stance phase (11-66 % of the
gait cycle; p = 0.002; RMSE = 6 and r = 0.62).
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Fig. 6. Average fascicle length across the gait cycle for three children, with standard deviation calculated
across five steps per child. Data are shown for five functional tasks for manual tracking compared to
KLT (above) and UTT (below). Significantly different parts of the curves are highlighted in light grey.
Significant differences are denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001. The x-axis represents
the normalized gait cycle (0-100 %), while the y-axis indicates the fascicle length. The dotted vertical
line at 60 % of the gait cycle marks the separation between the stance and swing phase.
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3.2.5 Slope walking trials

When comparing manual and KLT data, signifi-
cant differences in fascicle length were found during
the terminal stance phase (48-53 % of the gait cycle;
p = 0.038) and between toe-off and feet adjacent
(6371 % of the gait cycle; p = 0.016) (RMSE =
7.7 and r = 0.52). A significant difference was also
found when comparing the range values (p = 0.02).

When comparing manual and UTT data, signif-
icant differences were found at toe-off (59-60 %
of the gait cycle; p = 0.047) and when the feet
were adjacent (64-69 % of the gait cycle; p = 0.03)
(RMSE =4.9 and r = 0.81). A significant difference
was also found when comparing the range values
(p < 0.001).

3.3 Gait cycle analysis across various functional
tasks

The KLT fascicle tracking algorithm was ex-
cluded from the gait cycle analysis across the func-
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tional tasks due to its low tracking accuracy, as
demonstrated in Section 3.2.

A significant overall difference (p < 0.001)
in fascicle length between the functional tasks
across both manual and UTT tracking was found.
However, range values between the functional tasks
did not show any significant difference. Further
analysis of the manual tracking data revealed
significant differences in fascicle length between
functional tasks, except for the comparisons
between walking and slope walking, running
and pulley walking, running and slope walking,
and finally pulley running and slope walking.
UTT results revealed significant differences in
fascicle length between functional tasks, except
for the comparisons between pulley walking and
slope walking and lastly pulley running and slope
walking. Fig. 7 and Fig. 8 show the average fascicle
length using manual tracking and UTT algorithm
for the comparison between the functional tasks.



3.3.1 Walking compared to running

When looking at manual tracking data, significant
differences in fascicle length were found from heel
rise to feet adjacent (25-74 % of the gait cycle;
p < 0.001; RMSE = 59 and r = 0.79), whereas
UTT data, revealed significant differences at heel
rise only (34-39 % of the gait cycle; p = 0.026;
RMSE = 7.4 and r = 0.51). Fascicle length values
are consistently higher during walking than during
running.

3.3.2 Walking compared to pulley walking

When looking at manual tracking data, significant
differences in fascicle length were found at mid-
swing phase (81-92 % of the gait cycle; p = 0.003;
RMSE = 39 and r = 0.8) whereas UTT data,
revealed significant differences during the entire
swing phase (76-95 % of the gait cycle; p < 0.001;
RMSE = 5 and r = 0.84). Fascicle length values
are consistently higher during walking than during
pulley walking.

3.3.3 Walking compared to pulley running

When looking at manual tracking and UTT data,
significant differences in fascicle length were found
during the entire gait cycle (manual: 0-100 %;
p < 0.001; RMSE = 8.2 and r = 0.79; UTT: 4-6
%, 14-37 %, 38-53 % and 70-98 %; p = 0.04,
p < 0.001, p < 0.001, p < 0.001; RMSE = 7.8 and
r = 0.75). Fascicle length values are consistently
higher during walking than during pulley running.

3.3.4 Walking compared to slope walking

When looking at UTT data, significant differences
in fascicle length were found at terminal swing
phase (91-96 % of the gait cycle; p = 0.007;
RMSE = 4.2 and r = 0.86). Fascicle length values
at terminal swing phase are higher during walking
than during slope walking.

3.3.5 Running compared to pulley walking

When looking at UTT data, significant differences
in fascicle length were found from toe-off to mid-
swing phase (67-88 % of the gait cycle; p < 0.001;
RMSE = 8.7 and r = 0.42). Fascicle length values
are higher during running than during pulley
walking from toe-off to mid-swing phase.

3.3.6 Running compared to pulley running

When looking at manual tracking data, significant
differences in fascicle length were found from
initial contact to loading response (0-16 % of
the gait cycle; p < 0.001), at mid-stance phase
(24-27 % of the gait cycle; p = 0.042) and at
terminal stance phase (75—-100 % of the gait cycle;
p < 0.001) (RMSE = 5.3 and r = 0.82) whereas
UTT data, also revealed significant differences
from initial contact to loading response (4—16 %
of the gait cycle; p < 0.001) and at terminal stance
phase (64-96 % of the gait cycle; p < 0.001)
(RMSE = 9 and r = 0.47). Fascicle length values
are consistently higher during running than during
pulley running.

3.3.7 Running compared to slope walking

When looking at UTT data, significant differences
in fascicle length were found from toe-off to mid
stance phase (64—80 % of the gait cycle; p < 0.001;
RMSE = 7.5 and r = 0.46). Fascicle length values
are higher during running than during slope walking
from toe-off to mid stance phase.

3.3.8 Pulley walking compared to pulley run-
ning

When looking at manual tracking data, significant
differences in fascicle length were found during
the entire gait cycle (0-100 %; p < 0.001; RMSE
= 8.5 and r = 0.72), whereas UTT data, revealed
significant differences from loading response to
terminal stance phase (7-54 % of the gait cycle;
p < 0.001) and at mid-swing phase (82-86 % of
the gait cycle; p = 0.036) (RMSE = 9.1 and r =
0.66). Fascicle length values are consistently higher
during pulley walking than during pulley running.

3.3.9 Pulley walking compared to slope walking

When looking at manual tracking data, significant
differences in fascicle length were found from ter-
minal stance phase to toe-off (55-61 % of the gait
cycle; p = 0.030; RMSE = 4.5 and r = 0.76).
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4 DISCUSSION

4.1 KLT and UTT compared to manual tracking

As hypothesized, the findings indicate that the
UTT algorithm demonstrates significantly greater
computational efficiency while maintaining a high
level of agreement with manual tracking (no sig-
nificant difference for the running trials). However,
discrepancies in fascicle length measurements sug-
gest inherent limitations within both UTT and KLT
algorithms, that warrant further investigation.

Manual tracking remains the gold standard for
fascicle length estimation due to its ability to
incorporate human interpretation and account for
challenging tracking conditions [8, 9]. The results
confirm high intra-rater reliability (RMSE = 4.63
mm (10 %) and r = 0.78), reinforcing its valid-
ity as a benchmark method [8, 9]. However, its
time-intensive nature limits its feasibility for large
datasets. Additionally, it remains susceptible to hu-
man error and some variability across trials [1]. It
is recommended that future research incorporates
advanced validation techniques. For instance, incor-
porating a manual tracking analysis conducted by a
second rater could help reduce potential biases and
improve inter-rater reliability. Additionally, the use
of statistical tests to quantify statistical difference,
for example Coefficient of Multiple Determination
(CMD) which is the square of the coefficient of
multiple correlation (CMC), would provide robust
validation of manual tracking [9].

The performance of KLT compared to manual
tracking revealed a significant underestimation of
fascicle length during the stance phase (0-60 %
of the gait cycle; p < 0.05) across all functional
tasks, including walking (RMSE = 7 mm, r
0.61), running (RMSE = 6.8 mm, r = 0.61), pulley
walking (RMSE = 6.7 mm, r = 0.74), pulley running
(RMSE = 6 mm, r = 0.62), and slope walking
(RMSE = 7.7 mm, r = 0.52). The range of fascicle
length (max-min) revealed significant differences
between manual tracking and KLT, with values of
13.71 £ 4.10 and 20.51 £+ 3.81 mm for walking,
15.34 £4.19 and 19.93 + 4.38 mm for running and
11.96£2.49 and 17.454+4.80 mm for slope walking.
KLT showed greater fascicle excursion compared to
manual tracking. This indicates its tendency to un-
derestimate fascicle length during the stance phase
due to smaller minimum values, despite exhibiting
relatively high or comparable maximum values to
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manual tracking. This finding reinforces the sys-
tematic underestimation of fascicle length by KLT
throughout the gait cycle, as not all significant dif-
ferent clusters are detected when evaluating fascicle
range, excluding offset values (smaller minimum
and maximum values). The underestimation of fas-
cicle length by KLT during the stance phase is
likely due to a combination of factors, including its
sensitivity to rapid fascicle movements, increased
pennation angles and tracking drift [28]. During the
stance phase, the higher muscle activation and rapid
fascicle shortening may cause feature loss, leading
to tracking errors [28, 31]. In contrast, during the
swing phase, where forces are lower and movement
is smoother, tracking remains more stable, reducing
the likelihood of underestimation of fascicle length
[31].

The exclusion of seven TD children (out of the
ten available data from TD children) due to un-
reliable KLT tracking further underscores its lim-
itations in robustness and accuracy. It is important
to note that correlation coefficients provide infor-
mation about the overall strength and direction of
the linear relationship between manual tracking and
KLT algorithm, while RMSE quantifies the absolute
differences between the two by measuring the mag-
nitude of error. While these numerical metrics are
essential, analyzing the significant differences along
the gait cycle provides additional biomechanical in-
sights by identifying specific clusters where the two
diverge significantly. Although KLT demonstrates
acceptable correlation and RMSE values (average
for functional tasks RMSE = 6.84 mm and r =
0.62) when compared to manual tracking across
all functional tasks, significant clusters in fascicle
length are evident, highlighting limitations in the
accuracy of KLT.

The KLT algorithm showed high tracking error,
leading to the exclusion of datasets and a signifi-
cant underestimation of fascicle length, highlight-
ing the need for further optimization. The KLT
algorithm has several limitations, including its re-
liance on a weak Gaussian Process prior, which
assumes that fascicle shapes are locally smooth.
Although this assumption facilitates stable tracking,
it may reduce accuracy in cases of sharp or abrupt
shape changes. Its high computational time may
also limit its suitability for real-time applications
without further optimization [28]. Additionally, the
low line density used in the current study likely



resulted in poor texture and low contrast in ultra-
sound images, further impairing the performance
of KLT and contributing to increased tracking drift
over time [28]. Future work could integrate more
adaptive shape constraints to improve flexibility in
capturing rapid or irregular fascicle deformations in
low-quality ultrasound images. Approaches such as
deep neural networks (e.g., U-net architectures) or
Kalman filtering could enhance tracking robustness
[23, 32].

The performance of UTT compared to manual
tracking revealed significant differences in fascicle
length from heel rise to toe-off (30-60 % of the
gait cycle; p < 0.05) in walking (RMSE = 4.9
mm and r = 0.82), pulley walking (RMSE = 5.2
mm and r = 0.83), and, to a lesser extent, slope
walking (RMSE mm = 4.9 and r = 0.81). The range
values with significant differences between manual
tracking and UTT were 13.71+4.10 and 21.76+3.31
for walking, 15.27 £ 5.19 and 20.91 £ 3.52 for
pulley walking and 11.96 4 2.49 and 19.78 + 2.50
for slope walking. UTT captured greater fascicle
excursion than manual tracking, emphasizing its
tendency to underestimate fascicle length from heel
rise to toe-off due to smaller minimum values and
relatively high maximum values compared to man-
ual tracking. During heel rise and toe-off, relatively
high muscle contractions lead to a rapid increase in
pennation angle and fascicle shortening, which may
have contributed to feature loss in walking trials.
During dynamic movements fascicles contract at
higher speeds, leading to more extreme changes in
length compared to walking trials which may have
amplified tracking noise in UTT (average range val-
ues: 21.28 +5.19 for running and 19.67 + 15.31 for
pulley running) [31]. UTT may inconsistently track
fascicle lengths, resulting in measurement fluctua-
tions, particularly when low line density ultrasound
images are used [23]. Furthermore, the constant
noise assumptions in the UTT algorithm can lead
to tracking instability. During dynamic tasks, where
fascicle behavior is highly variable, these assump-
tions may reduce the reliability of feature tracking.
As a result, the algorithm may overcompensate for
noise, causing exaggerated variations in measured
fascicle length [23].

UTT demonstrates strong correlation and low
RMSE values (r > 0.68 and RMSE close to 10 %)
when compared to manual tracking across all func-
tional tasks but significant clusters in fascicle length
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are evident in walking trials, highlighting limitations
in its accuracy. In past studies, RMSE and correla-
tion coefficients were used to evaluate the accuracy
of machine learning (ML) models and personalized
musculoskeletal models in tracking muscle fascicle
length changes and mechanical behavior [1, 33].
RMSE and correlation coefficients were used to
validate an ML-based approach for real-time muscle
fascicle tracking from ultrasound images [1]. The
best-performing model, Support Vector Machine
(SVM), achieved an average RMSE of 2.86 4 2.55
mm for direct training and 3.28+2.64 mm for cross-
participant conditions, with correlation coefficients
of 0.70 £ 0.34 and 0.65 £ 0.35, respectively, in-
dicating strong agreement with ground-truth data
from UltraTrack tracking software [1]. Similarly,
RMSE and correlation coefficients were used to
assess the ability of a personalized musculoskeletal
model to capture plantarflexor mechanics in children
with Cerebral Palsy (CP) [33]. RMSE measured
discrepancies between simulated and experimental
torque—angle and fascicle length—angle curves, with
initial RMSE values of 0.12 Nm/kg for torque in CP
and 0.31 Nm/kg in TD children, while for fascicle
length, RMSE was 0.035 in CP and 0.021 in TD
(normalized to tibia length). After personalization,
RMSE decreased by over 88 % for torque and 98 %
for fascicle length, demonstrating significant model
accuracy improvements [33]. In both studies, RMSE
and correlation coefficients were essential validation
metrics, ensuring that computational models accu-
rately reflected real-world muscle dynamics. While
significant clusters were detected in UTT fascicle
length data, the relevance of strong correlations and
low RMSE values remains important.

UTT demonstrated superior computational effi-
ciency (35 £ 5 s per trial) and greater accuracy in
fascicle length estimation compared to KLT (60+10
min). While discrepancies arose in specific gait
phases (walking trials), UTT closely approximated
manual tracking (no significant difference) in run-
ning and pulley running trials (RMSE = 6.7 mm, r
= 0.62 and RMSE = 4.4 mm, r = 0.81), suggesting
its effectiveness for faster movements. Since UTT
assumes that aponeuroses are straight lines, it may
not account for their curvature in certain tasks, such
as at rest or during low muscle activation levels.
This assumption may have affected the accuracy of
walking trials, making them less precise compared
to manual tracking [23].



Although the UTT algorithm demonstrated strong
agreement with manual tracking in dynamic func-
tional tasks, high tracking noise suggests that fur-
ther refinement is necessary. Incorporating dynamic
noise estimation based on Hough angle variance
would allow the UTT algorithm to adapt in real-
time to changing conditions, improving its robust-
ness to high variability during fast movements [23].
Future research should explore additional optimiza-
tion strategies such as develop more sophisticated
finite element models that account for fascicle and
aponeurosis curvature, to enhance the robustness
and adaptability of the UTT algorithm for a wider
range of movement types [23, 28]. This includes
slower or more complex gait patterns, such as those
observed in neurological disorders (e.g., Parkin-
son disease and CP), where altered gait mechanics
and muscle coordination may challenge tracking
accuracy [7, 34]. The computational efficiency of
UTT compared to KLT and manual tracking sug-
gests strong potential for real-time clinical appli-
cations, particularly in settings that require imme-
diate feedback, such as rehabilitation and sports
science [1, 35]. Future research should investigate
its integration into wearable ultrasound systems,
facilitating continuous muscle monitoring during re-
habilitation protocols, neuromuscular assessments,
and biofeedback-based therapies. This would en-
able real-time tracking of muscle dynamics, helping
clinicians and researchers better understand muscle
function in both clinical and high-performance con-
texts [1, 35].

The first part of the current study compared the
accuracy and efficiency of KLT and UTT with
manual tracking for fascicle length estimation across
the gait cycle. UTT showed more computationally
efficiency while maintaining strong agreement with
manual tracking, though some noise in tracking was
observed. KLT, however, showed systematic under-
estimation of fascicle length, likely due to tracking
drift and sensitivity to rapid movements, limiting
its accuracy. UTT performed well in dynamic tasks,
whereas manual tracking remains the most accurate
but time-intensive tracking.

4.2  Manual and UTT tracking across various func-
tional tasks

The present findings provide valuable insights

into the neuromechanical behavior of the Me-
dial Gastrocnemius (MG) under various functional
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tasks, reinforcing and extending existing evidence
on muscle-specific contributions to propulsion [2].
During walking, fascicles in the MG operate near
their resting length at initial contact and remain
relatively isometric throughout the stance phase,
facilitating efficient absorption and release of elastic
energy by the tendons [2, 7, 36]. In contrast, dur-
ing running, fascicles are shorter at initial contact
and actively shorten throughout the stance phase,
increasing strain on the series elastic elements and
enabling rapid force production [2]. The greater
fascicle length during walking compared to run-
ning, particularly from heel rise to toe-off based on
manual tracking data, confirms that walking relies
more on passive elastic energy storage and release,
whereas running depends more on active fascicle
shortening for propulsion [2]. However, analysis us-
ing UTT data revealed significant differences only at
heel rise. This discrepancy between manual tracking
and UTT underscores potential differences in the
sensitivity and resolution of manual and automated
techniques in detecting subtle variations in fascicle
behavior across gait tasks (Section 4.1). Range
values did not differ significantly between functional
tasks for both manual tracking and UTT, suggesting
that the muscle-tendon unit adapts to maintain con-
sistent fascicle behavior despite variations in speed
and force. This highlights the conserved strategies
that regulate fascicle length changes across func-
tional tasks [2, 7, 36].

Differences in fascicle length between walking
and running, and pulley-based tasks support the
hypothesis that increased loading elicits a task-
specific neuromechanical response [2]. The signif-
icantly shorter fascicle length during pulley-based
tasks compared to walking and running, particularly
during the stance and/or swing phase (detected
using both manual tracking and UTT), suggests that
pulley-based tasks increases mechanical demand for
active force generation. This highlights the adap-
tive capacity of the MG to accommodate increased
propulsive requirements [2, 7, 36]. However, the
absence of significant differences in shortening and
lengthening patterns (Supplementary Fig. 4, 5, 6,
7, 8 and 9), across most pulley-based tasks com-
parisons suggests that motor strategies governing
fascicle length change (neural activation, muscle-
tendon interaction, and elastic energy) remain con-
served despite increased mechanical demand [7].
These findings have important implications for gait



rehabilitation and assistive device design. Pulley-
based tasks may serve as a targeted intervention to
enhance MG function and propulsion, particularly in
populations with gait impairments, where increasing
loading capacity and active force generation are
critical for functional mobility [7].

The second part of the current study provides
insights into the neuromechanical behavior of the
MG across functional tasks. Walking relies more
on passive elastic energy storage, while running
emphasizes active fascicle shortening for propul-
sion. Pulley-based tasks further alter contractile
behavior, increasing the demand for active force
generation. Despite differences in fascicle length
across tasks, motor strategies governing fascicle
behavior remain largely conserved. These findings
highlight the adaptive capacity of the gastrocnemius
and have implications for gait rehabilitation and
assistive device design.

Finally, while the study included a diverse range
of functional tasks, only a small number (see power
analysis in Section 2) of TD children were analyzed
and no clinical populations. The small sample size
may have failed to capture the variability across dif-
ferent ages, genders and measured leg, which makes
it difficult to control for individual differences such
as body composition, muscle fiber distribution, or
motor ability. All could influence fascicle behavior
during functional tasks and introduce variability into
the data, this is especially varying in a pediatric
population [37]. KLT should have been excluded
from the analysis earlier due to its high computa-
tional time and tracking errors, which limited the
inclusion of more children and slope running data
for the comparison between manual tracking, UTT,
and functional tasks. Consequently, the study lacks
an explicit validation framework for its key findings.
Comparing data between TD and CP children would
provide a valuable assessment of the accuracy of
UTT in both dynamic tasks and clinical populations
while offering insight into muscle dynamics differ-
ences between these groups. Furthermore, important
to note is the dynamic nature of treadmill-based
tasks which may have introduced motion artifacts,
such as probe displacement or participant move-
ment, potentially degrading the tracking quality
data [24]. Even slight misalignment or perturbations
during movement could affect the accuracy of fas-
cicle length data, further contributing to potential
measurement errors. In summary, key limitations
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included KLT tracking errors, UTT discrepancies
in walking trials, high tracking noise in running
trials and small sample size. Future research should
focus on refining tracking algorithms, increasing
sample diversity and size, and investigating real-
time clinical applications.

5 CONCLUSION

The current study evaluates the accuracy and
efficiency of the Kanade-Lucas-Tomasi (KLT)
and UltraTimTrack (UTT) algorithms compared
to manual tracking for assessing muscle fascicle
behavior. While manual tracking remains the gold
standard in accuracy, its time-intensive nature limits
real-time applications.

Key Findings
o Manual Tracking: Highly accurate but time-
consuming.
o KLT: High tracking error and time-inefficient.
o UTT: Time-efficient but shows discrepancies
in walking trials and high tracking noise in
running trials.

Specific Findings when comparing various func-
tional tasks

o UTT maintains trend consistency with manual
tracking across functional tasks, highlighting
its potential for real-time medical and biome-
chanical applications.
Walking: Associated with longer fascicle
lengths and greater reliance on passive elastic
energy storage.
Running: Emphasizes active fascicle shorten-
ing.
Pulley-Based Tasks: Further increase the de-
mand for active fascicle shortening.

UTT emerges as the most accurate and efficient
alternative to manual tracking, particularly for dy-
namic movements (running and pulley-based run-
ning tasks). However, further validation is necessary
to enhance its accuracy in biomechanics research.
Future studies should focus on expanding partici-
pant cohorts, refining tracking algorithms, and ex-
ploring automated tracking applications in clinical
populations.
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SUPPLEMENTARY MATERIALS

Supplementary Table 1. Details on participant demographics of data collected in Gent.

Number Sex Date of Birth Age Weight Height Tibial Length Non-preferred Weight walk Weight run

(years) (kg) (cm)  (cm) leg (kg) (kg)
TDO2 Vo 12/19/16 7.15 2120  127.10  30.00 L 425 2.25
TDO3 M 12213 1020  40.10  150.00 38.00 L 8.25 6.25
TDO4 VvV 9/20/13 1041 3790 14350 32.00 L 8.25 6.25
TDO5 vV 2/713 13.00 2950  140.50 32.00 L 8.25 475
TDO6 M 1/29/12 1205 3290 14950 36.00 R 8.25 6.25
TDO7 vV 3/18/13 1092 3220  149.50 34.50 L 8.25 6.25
TDOS VvV 3/18/13 1092 3040  146.50 33.00 L 8.25 6.25
TD09 M 1/6/14 1027 4030 15350 40.30 L 10.25 8.25
TD10 M 9/16/14 9.58 3070  138.00 30.00 L 8.25 6.25
TD11 M 12/11/12 1135 4950 14940 34.00 L 10.25 8.25

Supplementary Table 2. Range values (mm) using manual tracking data.

Number Steps Walking Running Pulley Walking Pulley Running Slope Walking

TDO03 1 14.54 12.20 9.88 10.74 11.46
TDO03 2 14.35 14.70 12.39 14.34 9.37

TDO03 3 12.16 13.27 12.25 14.54 9.34

TDO03 4 13.86 16.98 9.36 6.47 11.03
TDO03 5 11.97 21.32 8.49 9.32 9.34

TD06 1 14.21 12.44 20.53 11.73 16.66
TD06 2 9.78 16.16 11.97 11.62 10.35
TD06 3 5.90 11.71 8.80 9.43 10.56
TD06 4 8.51 12.97 17.88 9.11 15.90
TD06 5 9.56 6.60 21.56 13.15 10.38
TDO8 1 18.88 21.54 17.17 9.65 11.27
TDO8 2 18.05 20.32 19.36 9.29 16.26
TDO08 3 18.97 13.19 20.20 10.02 12.60
TDO8 4 15.70 19.39 24.08 8.86 11.75
TDO8 5 19.20 17.25 15.08 9.73 13.10
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Supplementary Table 3. Range values (mm) using KLT data.

Number Steps Walking Running Pulley Walking Pulley Running Slope Walking

TDO03 1 14.04 22.17 12.64 11.00 15.10
TDO03 2 17.65 20.33 15.23 10.84 11.76
TDO03 3 17.66 21.30 9.33 14.92 11.24
TDO03 4 16.29 17.32 12.16 12.33 15.40
TDO03 5 17.65 23.53 10.71 10.12 16.32
TD06 1 17.03 20.47 13.62 11.04 10.33
TD06 2 22.38 14.94 20.79 10.31 14.23
TD06 3 18.92 13.98 14.43 9.20 17.84
TD06 4 21.98 11.08 18.03 12.29 16.34
TD06 5 21.62 15.88 18.02 10.52 19.13
TDO8 1 24.55 23.72 25.21 17.27 25.42
TDO8 2 28.18 23.63 21.09 17.88 26.17
TDOS 3 23.12 23.69 20.68 18.03 19.82
TDO8 4 23.16 20.31 24.31 18.99 21.64
TDO8 5 23.44 26.55 21.24 23.33 20.95

Supplementary Table 4. Range values (mm) using UTT data.

Number Steps Walking Running Pulley Walking Pulley Running Slope Walking
TDO03 1 24.04 28.59 15.40 13.88 18.02
TDO03 2 18.73 22.94 19.97 56.81 16.77
TDO03 3 21.84 29.56 15.97 55.93 18.75
TDO03 4 25.78 24.46 16.53 15.09 22.54
TDO03 5 25.16 24.33 17.13 2242 17.43
TD06 1 19.38 14.41 21.28 16.80 18.54
TDO06 2 18.81 16.35 24.52 17.70 16.47
TDO06 3 13.18 13.74 23.68 12.71 21.28
TDO06 4 21.53 17.23 23.28 10.27 19.21
TDO06 5 20.40 20.36 18.28 13.06 16.63
TDO08 1 23.60 19.11 2242 12.00 20.38
TDOS 2 24.27 19.10 23.86 7.57 22.60
TDO8 3 21.75 19.57 26.31 11.78 23.82
TDOS 4 22.94 19.70 24.14 11.79 21.84
TDO08 5 24.98 29.80 20.90 17.31 22.48
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Supplementary Table 7. First part of the comparison between fascicle tracking techn

hod

-automated and fully automated algorithms (each color representi

ing, semi

manual track
approach).
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Supplementary Table 8. Second part of the comparison between fascicle tracking techn

manual tracking, sem

-automated and fully automated algorithms.
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Supplementary Table 9. Second part of the comparison between fascicle tracking

-automated and fully automated algorithms.

ing, semi

manual track
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Supplementary Table 10. Second part of the comparison between fascicle tracking techn

-automated and fully automated algorithms.

ing, semi

manual track
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Supplementary Fig. 1. Graphs above show the fascicle length of child TDO03 across all functional tasks,
manual tracking, KLT and UTT.
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Supplementary Fig. 2. Graphs above show the fascicle length of child TD0O6 across all functional tasks,
manual tracking, KLT and UTT.
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Supplementary Fig. 3. Graphs above show the fascicle length of child TDOS across all functional tasks,
manual tracking, KLT and UTT.
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Supplementary Fig. 4. Relative to Initial Contact (IC) fascicle length across the gait cycle for three
children, with standard deviation calculated across five steps per child. Data are shown for five functional
tasks for manual tracking and KLT. Significantly different parts of the curves are highlighted in light
grey. Significant differences are denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001. The x-axis
represents the normalized gait cycle (0-100 %), while the y-axis indicates the fascicle length. The dotted
vertical line at 60 % of the gait cycle marks the separation between the stance and swing phase.
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Supplementary Fig. 5. Relative to Initial Contact (IC) fascicle length across the gait cycle for three
children, with standard deviation calculated across five steps per child. Data are shown for five functional
tasks for manual tracking and UTT. Significantly different parts of the curves are highlighted in light
grey. Significant differences are denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001. The x-axis
represents the normalized gait cycle (0—100 %), while the y-axis indicates the fascicle length. The dotted
vertical line at 60 % of the gait cycle marks the separation between the stance and swing phase.
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Supplementary Fig. 6. Relative to Initial Contact (IC) fascicle length across the gait cycle for three
children, with standard deviation calculated across five steps per child. Data are shown for two different
comparisons between functional tasks for manual tracking and UTT. Significantly different parts of the
curves are highlighted in light grey. Significant differences are denoted as follows: *p < 0.05, **p < 0.01,
*#*k%p < (0.001. The x-axis represents the normalized gait cycle (0—100 %), while the y-axis indicates the
fascicle length. The dotted vertical line at 60 % of the gait cycle marks the separation between the stance
and swing phase.

34



10 : 10
Walking
Pulley Running

Walking
Slope Walking

Manual Tracking
Relative to IC Fascicle Length (mm)
=)

-10
-20 -20
-30 : -30
0 50 100 0 50 100
Step Gait Cycle (%)
10 : 10 :
Walkihg Walking

Pulley Runni Slope Walking

o

-10

-20

o
o

@
o
1
w
o

utr
Relative to IC Fascicle Length (mm)
=)

o

50 100 0 50 100
Step Gait Cycle (%)

Supplementary Fig. 7. Relative to Initial Contact (IC) fascicle length across the gait cycle for three
children, with standard deviation calculated across five steps per child. Data are shown for two different
comparisons between functional tasks for manual tracking and UTT. Significantly different parts of the
curves are highlighted in light grey. Significant differences are denoted as follows: *p < 0.05, **p < 0.01,
#*F%p < 0.001. The x-axis represents the normalized gait cycle (0-100 %), while the y-axis indicates the
fascicle length. The dotted vertical line at 60 % of the gait cycle marks the separation between the stance
and swing phase.
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Supplementary Fig. 8. Relative to Initial Contact (IC) fascicle length across the gait cycle for three
children, with standard deviation calculated across five steps per child. Data are shown for three different
comparisons between functional tasks for manual tracking and UTT. Significantly different parts of the
curves are highlighted in light grey. Significant differences are denoted as follows: *p < 0.05, **p < 0.01,
**%p < 0.001. The x-axis represents the normalized gait cycle (0—100 %), while the y-axis indicates the
fascicle length. The dotted vertical line at 60 % of the gait cycle marks the separation between the stance

and swing phase.
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Supplementary Fig. 9. Relative to Initial Contact (IC) fascicle length across the gait cycle for three
children, with standard deviation calculated across five steps per child. Data are shown for three different
comparisons between functional tasks for manual tracking and UTT. Significantly different parts of the
curves are highlighted in light grey. Significant differences are denoted as follows: *p < 0.05, **p < 0.01,
#*k%p < 0.001. The x-axis represents the normalized gait cycle (0—100 %), while the y-axis indicates the
fascicle length. The dotted vertical line at 60 % of the gait cycle marks the separation between the stance

and swing phase.
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