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Abstract. A family of flux-continuous, locally conservative, finite-volume schemes has
been developed for solving the general tensor pressure equation of petroleum reservoir-
simulation on structured and unstructured grids. These schemes are control-volume dis-
tributed. The schemes are applicable to diagonal and full tensor pressure equation with
generally discontinuous coefficients and remove the O(1) errors introduced by standard
reservoir simulation schemes when applied to full tensor flow approximation. The fam-
ily of flux-continuous schemes is quantified by a quadrature parameterization. Improved
convergence using the quadrature parameterization has been established for the family of
flux-continuous schemes.

When applying these schemes to strongly anisotropic heterogeneous media they can fail
to satisfy a maximum principle (as with other FEM and finite-volume methods) and result
in loss of solution monotonicity for high anisotropy ratios causing spurious oscillations in
the numerical pressure solution. This paper investigates the use of flux-splitting techniques
to solve the discrete system for the problems with high anisotropy ratios and improve
monotonicity of the solution. Flux-splitting schemes are presented together with a series
of numerical results for test-cases with strong anisotropy ratios. In all cases the resulting
numerical pressure solutions are free of spurious oscillations.

1 INTRODUCTION

Subsurface reservoirs generally have a complex description in terms of both geometry
and geology. Rapid variation in permeability with strong anisotropy is common in reser-
voir simulation. Continuous flux and pressure discretization of the reservoir simulation
pressure equation is required in order to honour correct local physical interface conditions
between grid blocks, with strong discontinuities and anisotropy in permeabilities. The
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derivation of algebraic flux continuity conditions for full tensor discretization operators
has lead to efficient and robust locally conservative flux-continuous control volume dis-
tributed (CVD) finite-volume schemes for determining the discrete pressure and velocity
fields in subsurface reservoirs1,2,3,4,5,6,7,8. Schemes of this type are also called as multi-
point flux approximation schemes or MPFA9,10,11,12,13. Further schemes of this type are
presented in14,15,16. All of these schemes are applicable to the diagonal and full tensor
pressure equation with generally discontinuous coefficients and remove the O(1) error
introduced by standard reservoir simulation schemes when applied to full tensor flow ap-
proximation. Other schemes that preserve flux continuity have also been developed using
mixed methods17 and discontinuous galerkin methods18,19,20.

Monotonicity behavior of the family of flux-continuous schemes has been in question
since its early formulation. Conditions for a symmetric positive definite matrix and diag-
onal dominance of the resulting discrete matrix for the family of schemes are presented
in 1,2. The discretization matrices obtained for the family of schemes in the case of a full
tensor are conditionally diagonally dominant and not generally M-matrices1. For high
anisotropic ratios with grid skewness the resulting discrete matrix for these schemes is
found to be non-monotonic (as with more standard methods) and the numerical solution
consequently exhibits spurious oscillations.

The aim of this paper is to address the monotonicity problem encountered in reservoir
simulation and obtain a solution to this problem. The strategy presented here involves
the use of flux-splitting introduced in5 applied to the family of flux-continuous schemes.
Properties of the flux-splitting schemes for the single-phase pressure equation are pre-
sented in 5,21. Here it is shown that careful use of flux-splitting can remove the spurious
oscillations introduced in the numerical pressure solution by highly anisotropic perme-
ability tensors in porous medium. Previous work aimed at preserving monotonic behavior
of the solutions for strong heterogeneity and skew grids is presented in22. Conditions for
monotonicity have previously been derived in1 for an M-matrix and in23 for a monotone
matrix. Grid optimization techniques have also been used to improve monotonicity of the
discrete system24. However these techniques appear to be limited subject to permeabil-
ity anisotropy ratio. In contrast, the flux-splitting techniques presented here are easier
to implement for both structured and unstructured grids and can handle very strong
anisotropic heterogeneity.

This paper is organized as follows: Section 2 gives a description of the single phase flow
problem encountered in reservoir simulation with respect to the general tensor pressure
equation. In Section 3 the details of the formulation of the family of flux-continuous finite
volume scheme with discretization in physical space is presented. Section 4 summarizes
conditions required to obtain a monotonic solution and describes performance of the
family of flux-continuous schemes with respect to monotonicity, with the help of numerical
examples. Section 5 describes the flux splitting technique to solve the discrete system and
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shows how it can be used to compute a monotonic solution for the family of flux-continuous
schemes. Section 6 presents numerical examples that demonstrate the use of flux-splitting
techniques for preserving monotonicity. Conclusions follow in section 7.

2 FLOW EQUATION AND PROBLEM DESCRIPTION

2.1 Cartesian tensor

The problem is to find the pressure φ satisfying

−
∫

Ω
∇ • K(x, y)∇φdτ =

∫

Ω
qdτ = M (1)

over an arbitrary domain Ω, subjected to suitable (Neumann/Dirichlet) boundary con-
ditions on boundary ∂Ω. The right hand side term M represents a specified flow rate and
∇ = (∂x, ∂y). Matrix K can be a diagonal or full cartesian tensor with general form

K =

(

K11 K12

K12 K22

)

(2)

The full tensor pressure equation is assumed to be elliptic such that

K2
12 ≤ K11K22 (3)

The tensor can be discontinuous across internal boundaries of Ω. The boundary con-
ditions imposed here are Dirichlet and Neumann. For incompressible flow pressure is
specified at atleast one point in the domain. For reservoir simulation, Neumann bound-
ary conditions on ∂Ω requires zero flux on solid walls such that (K∇φ) · n̂ = 0, where n̂
is the outward normal vector to ∂Ω.

2.2 General tensor equation

The pressure equation is defined above with respect to the physical tensor in the initial
classical Cartesian coordinate system. Now we proceed to a general curvilinear coordinate
system that is defined with respect to a uniform dimensionless transform space with a
(ξ, η) coordinate system. Choosing Ωp to represent an arbitrary control volume comprised
of surfaces that are tangential to constant (ξ, η) respectively, equation 1 is integrated over
Ωp via the Gauss divergence theorem to yield

−
∮

∂Ωp

(K∇Φ) · n̂ds = M (4)

where ∂Ωp is the boundary of Ωp and n̂ is the unit outward normal. Spatial derivatives
are computed using

φx = J(φ, y)/J(x, y), φy = J(x, φ)/J(x, y), (5)
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where J(x, y) = xξyη − xηyξ is the Jacobian. Resolving the x,y components of velocity
along the unit normals to the curvilinear coordinates (ξ, η), e.g., for ξ = constant, n̂ds =
(yη,−xη)dη gives rise to the general tensor flux components

F = −
∫

(T11φξ + T12φη)dη, G = −
∫

(T12φξ + T22φη)dξ, (6)

where general tensor T has elements defined by

T11 = (K11y
2
η + K22x

2
η − 2K12xηyη)/J,

T22 = (K11y
2
ξ + K22xξ − 2K12xξyξ)/J,

T12 = (K12(xξyη + xηyξ) − (K11yηyξ + K22xηxξ))/J (7)

and the closed integral can be written as

∫ ∫

Ωp

(∂ξF̃ + ∂ηG̃)

J
Jdξdη = △ξF + △ηG = m (8)

where e.g. △ξF is the difference in net flux with respect to ξ and F̃ = T11φξ + T12φη,
G̃ = T12φξ + T22φη. Thus any scheme applicable to a full tensor also applies to non-K-
Orthogonal grids. Note that T11, T22 ≥ 0 and ellipticity of T follows from equations 3 and
7. Full tensors can arise from upscaling, and orientation of grid and permeability field.
For example by equation 7, a diagonal anisotropic Cartesian tensor leads to a full tensor
on a curvilinear orthogonal grid.

3 FAMILY OF FLUX-CONTINUOUS FINITE VOLUME SCHEMES

Figure 1: (a)Nine-point continuous pressure support, highlighted dual-cell. (b) Points of Flux-Continuity
(N,S,E,W) on sub-cell faces of a dual-cell (c) Quadrature points on a sub-cell faces q=0.1, q = 0.5 and q

= 1.

Families of flux-continuous locally conservative control-volume distributed (CVD) finite
volume schemes presented in1−8 have been developed for different grid types including cell
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vertex structured and unstructured and cell centred formulations in physical space and
transform space. Numerical convergence rates for a range of quadrature rules in physical
space are presented in7. We present a summary here for structured the cell centred
quadrilateral formulation, although results are presented for structured and unstructured
grids. The nine node support of the scheme is indicated in figure 1(a)). The scheme has
cell centred flow and rock variables, so that the approximation points (or nodes) are at
the centres of the primal grid cells and the primal grid cells are also the control-volumes,
i.e. CVD with respect to the primal grid cells. For each group of four nodes, four triangles
are drawn as in figure 1(a). Each group is defined within a dual-cell which is obtained by
joining cell centres with cell edge mid-points as indicated by the dashed contour in figure
1(b). The dual cells partition the primal cells (or control-volumes) into subcells2. Two
faces of each subcell also define sub faces of two faces of the parent control-volume.

3.0.1 Family of Schemes - Quadrature parameterization

The family of schemes is formed when imposing normal flux and pressure continuity
conditions on the sub-faces where the four shaded triangles meet, at the four positions
(N, S, E, W ), in (or on the perimeter of) the dual cell 1(b)). On each sub-face the point of
continuity is parameterized with respect to the subcell by the variable q, where referring
to figure 1(c) (0 < q ≤ 1]. For a given subcell, the points of continuity can lie anywhere
in the intervals (0 < q ≤ 1] on the two faces of each subcell inside a dual cell, that
coincide with the control-volume sub-faces, and the value of q defines the quadrature
point and hence the family of flux-continuous finite-volume schemes. The different values
of quadrature point considered here are q = 0.1, 0.5 and 1 (figure 1(c)). Cell face pressures
φN , φE, φS, φW are introduced at N, S, E, W locations. Pressure sub-triangles are defined
with local triangular support imposed within each quarter (sub-cell) of the dual-cell as
shown in figure 1(b). Pressure φ, in local cell coordinates, is piecewise linear over each
triangle. The physical space flux-continuity conditions for cells 1 to 4, sharing a common
grid vertex inside the dual-cell are expressed as

FN = −
1

2
(T11φξ + T12φη)|

3
N = −

1

2
(T11φξ + T12φη)|

4
N ,

FS = −
1

2
(T11φξ + T12φη)|

1
S = −

1

2
(T11φξ + T12φη)|

2
S,

FE = −
1

2
(T12φξ + T22φη)|

2
E = −

1

2
(T12φξ + T22φη)|

3
E,

FW = −
1

2
(T12φξ + T22φη)|

1
W = −

1

2
(T12φξ + T22φη)|

4
W (9)

The above system of equations (9) is now expressed as

F = ALΦf + BLΦv = ARΦf + BRΦv (10)
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where F = (FN , FS, FE, FW )T are the fluxes defined in the dual-cell and Φf = (φN , φS, φE,
φW )T are the interface pressures. Similarly Φv = (φ1, φ2, φ3, φ4)

T are the cell centered pres-
sures. Thus the four interface pressures are expressed in terms of the four cell centered
pressures. Using equation 10, Φf is now expressed in terms of Φv to obtain the dual-cell
flux and coefficient matrix

F = (AL(AL − AR)−1(BR − BL) + BL)Φv (11)

Thus the cell-face pressures are eliminated from the flux by being determined locally
in terms of the cell centered pressures in a preprocessing step, avoiding introduction of
the interface pressure equations into the assembled discretization matrix. The equation
11 can also be written as

AF = −∆Φv (12)

where the entries of matrix A are accumulated inverse tensor elements and ∆Φv =
(φ21, φ32, φ34, φ41)

T are the differences of vertex pressures, see2,6 for details. The phys-
ical space formulation does not posses a symmetric discretization matrix for arbitrary
quadrilaterals, however transform space (cell and sub-cell) formulations that are sym-
metric positive definite are presented in1,3,4,6. Flux continuity in the case of a general-
tensor is obtained while maintaining the standard single degree of freedom per cell. Since
the continuity equations depend on both φξ and φη(unless a diagonal tensor is assumed
with cell-face midpoint quadrature resulting in a 2-point flux), the interface pressures
Φf = (φN , φS, φE, φW )T are locally coupled and each group of four interface pressures
is determined simultaneously in terms of the group of four cell centered pressures whose
union contains the continuity positions. Finally for a structured grid the scheme is defined
by

Fi+1/2,j − Fi−1/2,j + Fi,j+1/2 − Fi,j−1/2 = M (13)

where i, j are the integer coordinates of the central quadrilateral cell, figure 1(a)) and

Fi+1/2,j = FSi+1/2,j+1/2
+ FNi+1/2,j−1/2

,

Fi,j+1/2 = FEi−1/2,j+1/2
+ FWi+1/2,j+1/2

(14)

where i+1/2, j+1/2 denote the ”integer” coordinates of the top right hand side dual-cell,
figure 1(a)). The unstructured formulation is presented in2−5,7

4 MONOTONICITY

The family of flux-continuous schemes results in a discrete matrix which forms 5-9 row
entries in 2D and 7-27 row entries in 3D. The discrete system can be written as

Aφ = b (15)
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Where A is the discrete matrix operator, φ is the unknown pressure and b is the source
term. Ideally the discrete system of equation 15 should be monotone, and satisfy a max-
imum principle that is analogous to that of the continuous counterpart of the discrete
problem and hence ensuring that the numerical solution is free from nonphysical oscilla-
tions. The discrete matrix operator A is monotone if and only if A is non-singular and
it obeys the following condition25

A−1 ≥ O (16)

where O is a zero matrix. While a monotone discretization matrix ensures that a non-
negative source and boundary data yields a non-negative pressure field, it has not been
proven that a monotone discretization matrix will prevent discrete spurious local extrema
occuring in the discrete solution of the general tensor pressure equation. A sufficient
condition for a maximum principle (which can ensure that no spurious extrema occur in
the discrete solution) is that A is a M− matrix, i.e. monotone positive definite with
ai,j ≤ 0. The following conditions (often easier to verify) also define an M− matrix:

ai,i > 0, ∀i

ai,j ≤ 0, ∀i, j, i 6= j

Σjai,j ≥ 0, ∀i (17)

In addition A must either be strictly diagonally dominant,i.e.

Ai,i >
n
∑

j=1,j 6=i

| Ai,j |, i = 1, 2, ..., n (18)

or else A must be irreducible and

Ai,i ≥
n
∑

j=1,j 6=i

| Ai,j |, i = 1, 2, ..., n (19)

with strict inequality for at least one row. Conditions (derived in1) for nine-node flux
continuous schemes to be an M-Matrix are

min(T1,1, T2,2) ≥ η(q)(T1,1 + T2,2) ≥ T1,2 (20)

where η(q) is a function of quadrature point. One of the essential conditions here is
that T1,2 ≤ min(T1,1, T2,2), which is particularly limiting on the range of tensors that are
applicable, so that in the general case these schemes do not possess M-Matrices.

We will now present numerical examples which demonstrate the loss of monotonicity
and violation of maximum principle when using the finite volume formulation (note that
standard schemes also fail on this example). In these examples a point source is introduced
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Figure 2: (a) Numerical Pressure solution with isotropic permeability tensor. (b) Numerical Pressure
solution with Anisotropy ratio 1:1000 and angles between grid and principal permeability axes = 30
degrees.

at the corner of a square domain with orthogonal grid and zero Dirichlet pressure holds
elsewhere on the boundary. Two different permeability tensor fields are tested and the
results are shown in figure 2. It can be seen from figure 2(a) that the numerical pressure
solution in the first case (isotropic) has a maximum principle. In the second case (with
high anisotropy ratio, with grid non-aligned with the principal axes leading to a full-
tensor) the tensor field violates Eq.20 and the numerical pressure solution shown in figure
2(b) clearly violates the maximum principle resulting in spurious oscillations with negative
pressure, hence equation 16 is not valid in this case. The spurious oscillations in pressure
do not disappear even with mesh refinement. A similar test with Green’s function was
presented in23. The violation of the maximum principle by the family of flux-continuous
finite-volume schemes and standard CVFE for high anisotropy ratios presents a major
challenge for numerical approximation of elliptic PDE’s.

5 FLUX-SPLITTING TECHNIQUE

Flux-splitting for the family of flux-continuous finite volume schemes is presented in5,
where unconditional stability is proven for constant coefficients and its benefits were
discussed with respect to computational efficiency. Further properties of flux-splitting
discretization are also given in 5 where flux-splitting is defined so as to maintain local
conservation at any iterative level, so that non-converged solutions are still locally con-
servative. A further study of iterative performance of flux-splitting is presented in21. In
this section a brief overview of flux-splitting is presented and a modification is given to
obtain monotonic solutions for cases with high anisotropy ratio. Following5 fluxes are
cast in the form of a leading two-point flux corresponding to the diagonal tensor together
with cross-flow terms. The flux is now split so as to generate a semi-implicit scheme
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that retains an implicit approximation of the diagonal tensor contribution and employs
an explicit approximation of all flux cross-flow terms, thereby retaining standard diagonal
tensor Jacobian inversion, and preserves existing simulator code design and efficiency.

5.1 Splitting at Matrix Level

First we consider splitting at matrix level. Let the fully implicit nine-point discretiza-
tion matrix be denoted by A(9) and the discrete solution by φh. Now the matrix A(9)

can be decomposed into a leading pentadiagonal matrix A(5) and a residual matrix A(9−5)

where

A(9) = A(5) + A(9−5) (21)

the respective split matrices are denoted symbolically by

A(5) =









0 A
(9)
i,j+1 0

A
(9)
i−1,j A

(9)
i,j A

(9)
i+1,j

0 A
(9)
i,j−1 0









(22)

A(9−5) =









A
(9)
i−1,j+1 0 A

(9)
i+1,j+1

0 0 0

A
(9)
i−1,j−1 0 A

(9)
i+1,j−1









(23)

and give rise to a semi-implicit schemes of the form

A(5)φn+1 + A(9−5)φn = b (24)

5.2 Splitting at Flux level

The splitting is illustrated as follows: Let A denote the Jacobian matrix for the nine-
point flux-continuous system of equations, and B denote the Jacobian matrix for the
classical two-point system of equation. The basic principle behind flux splitting is to
express the nine-point flux in terms of two-point flux evaluated at (iterate or time) level
(n + 1) and a remainder term at level n, written as:

FNP = FTP
n+1

+ (FNP
n

− FTP
n

) (25)

where FNP is the consistent split-flux, NP is a 9-point operator in this case and TP
is 2-point. First we rewrite the original discrete system of equations (Eq. 15) as:

Bφ + (A − B)φ = b (26)

where

B(5) =









0 B
(5)
i,j+1 0

B
(5)
i−1,j B

(9)
i,j B

(5)
i+1,j

0 B
(5)
i,j−1 0









(27)
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(a)

Transfinite Mesh 16x16

(b)

Figure 3: (a) Medium Discontinuity. (b) Mesh aligned along the discontinuity.

results from the 2-point flux and

A(9) − B(5) =









X
(9)
i−1,j+1 X

(9)
i,j+1 X

(9)
i+11,j+1

X
(9)
i−1,j X

(9)
i,j X

(9)
i+1,j

X
(9)
i−1,j−1 X

(9)
i,j−1 X

(9)
i+1,j−1









(28)

then the flux-split iteration is defined by:

Bφk+1 = (B− A)φk + b (29)

The above equation results in the following iterative method:

φk+1 = (I − B−1A)φk + B−1b (30)

The iteration is stable if ‖(I −B−1A)‖ ≤ 1 and L2 stability for a constant full-tensor
is proven in 5. The above iteration scheme converges with a specified tolerance. The
flux-splitting formulations presented here are equally applicable to both structured and
unstructured5 control volume distributed formulations.

6 NUMERICAL RESULTS

In this section numerical results are presented with application of flux-splitting to the
family of flux-continuous finite volume schemes. The matrix splitting methods presented
in section 5 have been tested and the flux splitting scheme is found to yield the best
performance (with fewer iterations) and is therefore used here. Flux-splitting techniques
are also equally applicable to structured and unstructured grids.

6.1 Flux-splitting on structured grids

First we test the flux-splitting technique on a piecewise linear case where the exact
solution is well known and monotonic. This example involves uniform flow over a rectan-
gular domain. The medium is divided in two parts as shown in the figure 3(a). The grid
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(a) (b)

(c) (d)

Figure 4: (a)Converged Solution. (b) Uncorrected Solution. (c) Solution after 4th iteration. (d) Solution
after 6th iteration.

aligned along the discontinuity was used to obtain the numerical solution as shown in
figure 3(b). The permeability field is discontinuous and permeability ratio is 1/100 across
the discontinuity. The analytical pressure is piece-wise linear and is given by

φ(x, y) =

{

200/3(x + y/2), x + y/2 < 3/4,
2/3(x + y/2) + 99/2, x + y/2 ≥ 3/4,

(31)

A full discontinuous permeability tensor is defined as

K =























(

1 −1/4
−1/4 1/2

)

, x + y/3 < 3/4,
(

100 −100/4
−100/4 100/2

)

, x + y/2 ≥ 3/4,

The flux-splitting technique presented in section 5.2 is used to obtain the numerical
solution, figure 4. As the iteration proceeds the kth iterate is stored and solution at
iteration k+1 is computed and tested for local extrema, if the test fails numerical solution
at kth iteration is selected otherwise solution at kth iteration is overwritten with solution

11



Mayur Pal and Michael G. Edwards

obtained after k + 1 iteration. Using this criteria it is possible to obtain a solution after
6th iteration with O(h3) error compared to the numerically converged solution, shown in
figure 4(c) and figure 4(d).

Next we apply the method to a Green’s function on a Cartesian grid, using the flux-
splitting technique to obtain a monotonic solution for a case with high anisotropic ratio.
The problem in consideration has a anisotropy ratio of 1/1000, with angle between grid
and principal permeability axes is π/6 and thus violates Eq. 20. As with the direct
discrete solution, the final converged solution is non-monotonic as shown in figure 5(a)
because of high anisotropy and oscillations in numerical solution can be seen clearly in
figure 5(b). Now, in order to obtain a monotonic solution the iteration proceeds unless
a local extrema is detected. At each iterate a test for local extrema is conducted, away
from sources and sinks, if for all nodes j connected to node i

minjφj ≤ φi ≤ maxjφj (32)

the iteration proceeds, otherwise it is terminated before any non-monotonic behavior with
spurious oscillations occurs. Thus the solution process is in effect non-linear. Further
iteration strategies are currently being explored. The numerical results after the 7th and
20th iterations are presented for this case in figure 5(c) and 5(d) respectively. These non-
converged solutions are monotonic and free from spurious oscillations as shown in solution
contours (figure 5(d),5(e) ) compared to the non-monotonic converged solution in figure
5(a).

Next we present a case with a source at x = 0 and y = 0 and a sink having the same
strength but located at x = a and y = b is given as

φ =
Q

2π
ln

(x2 + y2)1/2

[(x − a)2 + (y − b)2]1/2
(33)

The analytical solution for the above equation along with numerical solution for a
homogeneous diagonal permeability tensor is shown in figure 6(a) and 6(b). For a homo-
geneous diagonal permeability tensor the numerical solution obtained with flux-splitting
is converging towards the analytical solution. However, for high anisotropy ratio the
discrete finite volume approximation leads to an oscillatory solution as shown in figure
6(c) and 6(d) and hence loss of general monotonicity. Now on using the flux-splitting
technique on this problem the results obtained after 6th and 14th iteration are shown in
figure 7(a) and 7(b). It can be seen from the contour plots shown in figure 7(c) and 7(d)
that the numerical solutions obtained are free of spurious oscillations and satisfy a general
monotonicity condition.

6.2 Unstructured grids

The final test case involves applying the methods to a Green’ function as before, now
solved on an unstructured grid figure 8(a). The (direct method) discrete solution and
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(a) (b)

(c) (d)

(e) (f)

Figure 5: (a)Converged Solution of a Green’s Function on anisotropic medium with anisotropic ratio of
1/1000, angle between grid and principal permeability axes π/6. (b)Numerical solution contours showing
the oscillations. (c) Solution after 7th iteration. (d) Solution after 20th iteration. (e)Oscillation free
Numerical Pressure Contours after 7th iteration. (f)Oscillation free Numerical Pressure Contours after
20th iteration.
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(a) (b)

(c) (d)

Figure 6: (a)Analytical solution for source and sink problem. (b)Numerical solution for source and sink
problem with homogeneous diagonal permeability tensor. (c) Numerical solution for source and sink
problem with high anisotropic medium with anisotropic ratio of 1/1000, angle between grid and principal
permeability axes π/6. (d)Numerical solution contours showing the oscillations.

(a) (b)

(c) (d)

Figure 7: (a)Numerical Solution after 6th iteration. (b)Numerical Solution after 14th iteration.(c) Nu-
merical Pressure contours after 6th iteration.(d)Numerical Pressure contours after 14th iteration.
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Figure 8: (a)Unstructured Mesh aligned with anisotropy. (b)Oscillatory Numerical Solution con-
tours.(c)Oscillation free Numerical solution after 14th iteration.(d)Numerical Pressure contours after 14th

iteration.

monotonic-split method solution are shown in figure 8(b), 8(c) and 8(d), which demon-
strates the effectiveness of the method on unstructured grids.

6.2.1 Summary

A key component of this solution procedure is in obtaining a predicted monotonic
solution computed by the two-point flux approximation, where the resulting M-matrix is
used as a driver and the (deferred) correction to the iteration (in this case) is added at
each iterative step until a local extrema is detected.

7 CONCLUSIONS

- In this paper two different kinds of splitting techniques are presented, which can be
broadly classified into Flux-splitting and Matrix-splitting.

- The splitting techniques yield monotonic numerical solutions for full-tensor
permeability fields with high principal anisotropy ratios.

- The flux-splitting technique is found to be most efficient as its convergence to final
solution is faster compared to other splitting techniques. Flux-splitting also maintains
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local conservation at any level of iteration.
- These splitting techniques are equally applicable to structured and unstructured

grids in two and three dimensions.
- Splitting techniques may be more suitable for obtaining monotonic numerical solutions

when compared to grid optimization, which appear to be applied at lower anisotropy
ratio. The splitting technique is used here for anisotropy ratios of 1/1000 and higher.
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