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Quantum channels enable the implementation of communication tasks inaccessible to their classical coun-
terparts. The most famous example is the distribution of secret key. However, in the absence of quantum
repeaters, the rate at which these tasks can be performed is dictated by the losses in the quantum channel. In
practice, channel losses have limited the reach of quantum protocols to short distances. Quantum repeaters have
the potential to significantly increase the rates and reach beyond the limits of direct transmission. However,
no experimental implementation has overcome the direct transmission threshold. Here, we propose three
quantum repeater schemes and assess their ability to generate secret key when implemented on a setup using
nitrogen-vacancy (NV) centers in diamond with near-term experimental parameters. We find that one of these
schemes—the so-called single-photon scheme, requiring no quantum storage—has the ability to surpass the
capacity—the highest secret-key rate achievable with direct transmission—by a factor of 7 for a distance of
approximately 9.2 km with near-term parameters, establishing it as a prime candidate for the first experimental
realization of a quantum repeater.

DOI: 10.1103/PhysRevA.99.052330

I. INTRODUCTION

There exist communication tasks for which quantum re-
sources allow for qualitative advantages. Examples of such
tasks include clock synchronization [1–4], distributed compu-
tation [5], anonymous information transmission [6,7], and the
distribution of secret key [8,9]. While some of these tasks have
been implemented over short distances, their implementation
over long distances remains a formidable challenge.

One of the main hurdles for long-distance quantum com-
munication is the loss of photons, whether it is through fiber
or free space. Unfortunately, the no-cloning theorem [10]
makes the amplification of the transmitted quantum states
impossible. For tasks such as the generation of a shared secret
key or entanglement, this limits the corresponding generation
rate to scale at best linearly in the transmissivity η of the fiber
joining two distant parties [11–13].

Luckily, while quantum mechanics prevents us from over-
coming the effects of losses through amplification, it is possi-
ble to do so using repeater stations [14–16]. Formally, we call
a quantum repeater a device that allows for better performance
than can be achieved over the direct communication channel
alone [17]. This performance is measured differently for dif-
ferent tasks, such as secret-key generation or transmission of
quantum information. Consequently, the optimal performance
that can be achieved over the direct channel without using
repeaters, called the channel capacity, is also different for
these two tasks. Here we will assess our proposed repeater
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schemes for the task of secret-key generation, as it is easier to
realize experimentally. Our formal definition of a repeater—as
opposed to a relative definition with respect to some setup of
reference—endows the demonstration of a quantum repeater
with a fundamental meaning that cannot be affected by future
technological developments in the field.

However, a successful experimental implementation of
a quantum repeater has not yet been demonstrated. This
is mainly due to the additional noise introduced by such
a quantum repeater. While the implementation of a single
quantum repeater does not necessarily imply that that setup
can be scaled up to a larger number of repeater nodes (due to
the effects of noise and decoherence), the first demonstration
of a functioning quantum repeater will form an important step
toward practical quantum communication and the quantum
internet [18].

A multitude of quantum repeater schemes have been put
forward [15,19–29], each with their own strengths and weak-
nesses. It should be noted here that most of the earlier re-
peater proposals aim at overcoming transmission losses using
heralded entanglement generation and compensate for noise
arising in quantum memories using two-way entanglement
distillation. However, some of the schemes, e.g., those in
Refs. [24–26], introduce error correction to overcome opera-
tional errors while those in Refs. [27–29] use error correction
also for dealing with losses. Although a priori it is not clear
which of those schemes will perform best with current or
near-term experimental parameters, it is clear that operating
on large number of qubits in each repeater node, necessary
for the implementation of error correction, is a significant
experimental challenge. Therefore, it is not expected that the
first realizations of quantum repeaters will be based on large
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FIG. 1. Schematic overview of the four quantum repeater
schemes assessed in this paper. From top to bottom: the Single
Sequential Quantum Repeater (SiSQuaRe) scheme (a), the single-
photon scheme (b), the Single-Photon with Additional Detection
Setup (SPADS) scheme (c), and the Single-Photon Over Two Links
(SPOTL) scheme (d). The purple particles represent NV electron
spins capable of emitting photons (red wiggly arrows) while the yel-
low particles represent carbon 13C nuclear spins. Dark blue squares
depict the beam splitters used to erase the which-way information of
the photons, followed by blue photon detectors. For more details on
the different proposals, see Sec. II.

error-correction schemes. Hence, here we will focus on simple
schemes without encoding, leaving out also entanglement dis-
tillation. We will discuss entanglement distillation in the con-
text of our findings in the discussion at the end of the article.

In this work, we propose three such schemes and together
with the fourth scheme analyzed before [17,30], we assess
their performance for generating secret key. We consider
their implementation based on nitrogen-vacancy centers in
diamond (NV centers), a system which has properties making
it an excellent candidate for long-distance quantum commu-
nication applications [31–40].

The four considered schemes are the following: the “single
sequential quantum repeater node” (first proposed and studied
in Ref. [30], then further analyzed in Ref. [17]), the single-
photon scheme (proposed originally in the context of remote
entanglement generation [41], also studied in the context of
secret-key generation without quantum memories [42]), and
two schemes which are a combination of the first two. See
Fig. 1 for a schematic overview of the repeater proposals
considered in this work.

We compare the secret-key rate of each of these schemes
to the highest theoretically achievable secret-key rate using

direct transmission, the secret-key capacity of the pure-loss
channel [13]. We show that one of these schemes, the single-
photon scheme, can surpass the secret-key capacity by a factor
of 7 for a distance of ≈9.2 km with near-term parameters. This
shows the viability of this scheme for the first experimental
implementation of a quantum repeater.

In Sec. II, we discuss and detail the different repeater pro-
posals that will be assessed in this work. In Sec. III, we expand
on how the different components of the repeater proposals
would be implemented experimentally. Section IV details how
to calculate the secret-key rate achieved with the quantum
repeater proposals from the modeled components. In Sec. V,
we discuss how to assess the performance of a quantum
repeater. The comparison of the different repeater proposals
is performed in Sec. VI, which allows us to conclude with our
results in Sec. VII. The numerical results of this article were
produced with a PYTHON script and a MATHEMATICA script,
which are available upon request.

II. QUANTUM REPEATER SCHEMES

In the following section, we present the quantum repeater
schemes that will be assessed in this work. All these schemes
use NV-center-based setups which involve memory nodes
consisting of an electron spin qubit acting as an optical
interface and possibly an additional carbon 13C nuclear spin
qubit acting as a long-lived quantum memory. Specifically, the
optical interface of the electron spin allows for the generation
of spin-photon entanglement, where the photonic qubits can
then be transmitted over large distances. The carbon nuclear
spin acts as a long-lived memory but can be accessed only
through the interaction with the electron spin. Here, we briefly
go over all the proposed schemes, consider why they are
interesting from an experimental perspective, and discuss their
advantages and disadvantages.

A. Single sequential quantum repeater (SiSQuaRe) scheme

The first scheme that we discuss here was proposed and
analyzed in Ref. [30] and further studied in Ref. [17]. The
scheme involves a node holding two quantum memories in the
middle of Alice and Bob (see Fig. 2). This middle node tries
to send a photonic qubit, encoded in the time-bin degree of
freedom, that is entangled with one of the quantum memories,

FIG. 2. Schematic overview of the SiSQuaRe scheme. The NV
center in the middle first attempts to generate an entangled photon-
electron pair, after which it tries to send the photon through the fiber
to Alice. Alice then directly measures the photon, using either a
BB84 or a six-state measurement. Then after the state of the electron
spin is swapped to the carbon 13C nuclear spin, the same is attempted
on Bob’s side. After both Alice and Bob measured a photon, a Bell-
state measurement is performed on the two quantum states held by
the middle node. Alice and Bob can use their measurement outcomes
together with the outcome of the Bell-state measurement to generate
a single raw bit of key.
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through a fiber to Alice. This is attempted repeatedly until
the photon successfully arrives, after which Alice performs a
BB84 [8] or a six-state measurement [43,44]. By performing
such a measurement, the quantum memory will be steered into
a specific state depending on the measurement outcome. Now
the same is attempted on Bob’s side. After Bob has measured
a photon, the middle node performs a Bell-state measurement
on both quantum memories. Using the classical information of
the outcome of the Bell-state measurement, Alice and Bob can
generate a single raw bit. In our model, the middle node has
only one photonic interface (corresponding to the NV electron
spin) and hence has to send the photon sequentially first to
Alice and then to Bob.

While trying to send a photon to Bob, the state stored in
the middle node will decohere. A possible way to compensate
for the effects of decoherence is to introduce a so-called
cut-off [17]. The cut-off is a limit on the number of attempts
we allow the middle node to try and send a photon to Bob.
If the cut-off is reached, the stored state is discarded, and the
middle node attempts again to send a photon to Alice. Since
the scheme starts from scratch, we are effectively trading off
the generation time versus the quality of our state. By opti-
mizing over the cut-off, it is possible to considerably increase
the distance over which secret key can be generated [17].

Setup and scheme

We will now describe the exact procedure of this scheme,
when Alice and Bob use a nitrogen-vacancy center in diamond
as quantum memories and as a photon source. The scheme that
we study is the following:

(1) The quantum repeater attempts to generate an entan-
gled qubit-qubit state between a photon and its electron spin,
and sends the photon to Alice through a fiber.

(2) The first step is repeated until a photon arrives at
Alice’s side, after which she performs a BB84 or a six-state
measurement. The electron state is swapped to the carbon
spin.

(3) The quantum repeater attempts to do the same on
Bob’s side while the state in the carbon spin is kept stored.
This state will decohere during the next steps.

(4) Repeat until a photon arrives at Bob’s side, who will
perform a BB84 or a six-state measurement. If the number of
attempts n reaches the cut-off n∗, restart from step 1.

(5) The quantum repeater performs a Bell-state measure-
ment and communicates the result to Bob.

(6) All the previous steps are repeated until sufficient data
have been generated.

B. The single-photon scheme

Cabrillo et al. [41] devised a procedure that allows for the
heralded generation of entanglement between a separated pair
of matter qubits (their proposal discusses specific implemen-
tation with single atoms, but the scheme can also be applied
to other platforms such as NV centers or quantum dots) using
linear optics. For the atomic ensemble platform, this scheme
also forms a building block of the DLCZ quantum repeater
scheme, named after the authors Duan, Lukin, Cirac, and
Zoller [20]. Here, we will refer to this scheme as a single-
photon scheme as the entanglement generation is heralded

by a detection of only a single photon. This requirement of
successful transmission of only a single photon from one node
makes it possible for this scheme to qualify as a quantum
repeater (see below for more details).

The basic setup of the single-photon scheme consists of
placing a beam splitter and two detectors between Alice and
Bob, with both parties simultaneously sending a photonic
quantum state toward the beam splitter. The transmitted quan-
tum state is entangled with a quantum memory, and the state
space of the photon is spanned by the two states corresponding
to the presence and absence of a photon. Immediately after
transmitting their photons through the fiber, both Alice and
Bob measure their quantum memories in a BB84 or six-state
basis (see the discussion of which quantum key distribution
protocol is optimal for each scheme in Sec. IV B and in
Sec. VI A). Note that this is equivalent to preparing a specific
state of the photonic qubit and therefore is closely linked to
the measurement-device-independent quantum key distribu-
tion (MDI QKD) [45] as discussed in Appendix I. However,
preparing specific states that involve the superposition of the
presence and absence of a photon on its own is generally
experimentally challenging. The NV implementation allows
us to achieve this task precisely by preparing spin-photon
entanglement and then measuring the spin qubit. Afterward,
by conditioning on the click of a single detector only, Alice
and Bob can use the information of which detector clicked to
generate a single raw bit of key; see Appendix E and Ref. [41]
for more information.

The main motivation of this scheme is that, informally, we
only need one photon to travel half the distance between the
two parties to get an entangled state. This thus effectively
reduces the effects of losses, and in the ideal scenario the
secret-key rate would scale with the square root of the total
transmissivity η, as opposed to linear scaling in η (which is
the optimal scaling without a quantum repeater [46]).

However, one problem that one faces when implementing
this scheme is that the fiber induces a phase shift on the
transmitted photons. This shift can change over time, e.g., due
to fluctuations in the temperature and vibrations of the fiber.
The uncertainty of the phase shift induces dephasing noise on
the state, reducing the quality of the state.

To overcome this problem, a two-photon scheme was pro-
posed by Barrett and Kok [47], which does not place such a
high requirement on the optical stability of the setup. Specif-
ically, in the Barrett and Kok scheme the problem of optical
phase fluctuations is overcome by requiring two consecutive
clicks and performing additional spin-flip operations on both
of the remote memories. The Barrett and Kok scheme has seen
implementation in many experiments [48–51]. However, the
requirement of two consecutive clicks implies that a setup
using only the Barrett and Kok scheme with two memory
nodes will never be able to satisfy the demands of a quantum
repeater. Specifically, the probability of getting two consec-
utive clicks will not be higher than the transmissivity of the
fiber between the two parties and therefore will not surpass
the secret-key capacity.

In the single-photon scheme, on the other hand, the dephas-
ing caused by the unknown optical phase shift is overcome
by using active phase stabilization of the fiber to reduce the
fluctuations in the induced phase. This technique has been
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FILIP ROZPĘDEK et al. PHYSICAL REVIEW A 99, 052330 (2019)

FIG. 3. Schematic overview of the single-photon scheme. Alice
and Bob simultaneously transmit a photonic state from their NV
centers toward a balanced beam splitter in the center. This photonic
qubit, corresponding to the presence and absence of a photon, is
initially entangled with the NV electron spin. If only one of the
detectors (which can be seen at the top of the figure) registers a click,
Alice and Bob can use the information of which detector clicked to
generate a single raw bit of key.

used in the experimental implementations of the single-photon
scheme for remote entanglement generation using quantum
dots [52,53], NV centers [31], and atomic ensembles [54].
For experimental details relating to NV implementation, we
refer the reader to Sec. III. This phase-stabilization technique
effectively reduces the uncertainty in the phase, allowing us
to significantly mitigate the resulting dephasing noise; see
Appendix A for mathematical details.

In contrast to the Barrett and Kok scheme, the single-
photon scheme cannot produce a perfect maximally entangled
state, even in the case of perfect operations and perfect phase
stabilization. This is because losses in the channel result in a
significant probability of having both nodes emitting a photon
which can also lead to a single click in one of the detectors,
yet the memories will be projected onto a product state. As we
discuss below, this noise can be traded versus the probability
of success of the scheme by reducing the weight of the photon-
presence term in the generated spin-photon entangled state.
This is discussed in more detail below and the full analysis is
presented in Appendix E.

The single-photon scheme with phase stabilization is a
promising candidate for a near-term quantum repeater with
NV centers. We note here that recently other QKD schemes
that use the MDI framework have been proposed. These
schemes, similar to our proposal, use single-photon detection
events to overcome the linear scaling of the secret-key rate
with η [42,55,56]. In these proposals, in contrast to our single-
photon scheme, no quantum memories are used, but instead
Alice and Bob send phase-randomized optical pulses to the
middle heralding station.

1. Setup and scheme

In the setup of the single-photon scheme, Alice and Bob
are separated by a fiber where in the center there is a beam
splitter with two detectors (see Fig. 3). They will both create
entanglement between a photonic qubit and a stored spin and
send the photonic qubit to the beam splitter.

Alice and Bob thus perform the following:
(1) Alice and Bob both prepare a state |ψ〉 =

sin θ |↓〉 |0〉 + cos θ |↑〉 |1〉 where |↓〉 / |↑〉 refers to the dark
or bright state of the electron-spin qubit, |0〉 / |1〉 indicates the
absence or presence of a photon, and θ is a tunable parameter.

(2) Alice and Bob attempt to both separately send the
photonic qubit to the beam splitter.

(3) Alice and Bob both perform a six-state measurement
on their memories.

(4) The previous steps are repeated until only one of the
detectors between the parties clicks.

(5) The information of which detector clicked gets sent to
Alice and Bob for classical correction.

(6) All the previous step are repeated until sufficient data
have been generated.

The parameter θ can be chosen by preparing a nonuniform
superposition of the dark and bright state of the electron spin
|ψ〉 = sin θ |↓〉 + cos θ |↑〉 via coherent microwave pulses.
This is done before applying the optical pulse to the electron
which entangles it with the presence and absence of a photon.
The parameter θ can then be tuned in such a way as to
maximize the secret-key rate. In the next section, we will
briefly expand on some of the issues arising when losses and
imperfect detectors are present. We defer the full explanation
and calculations until Appendix E.

2. Realistic setup

In any realistic implementation of the single-photon
scheme, a large number of attempts is needed before a photon
detection event is observed. Furthermore, a single detector
registering a click does not necessarily mean that the state
of the memories is projected onto the maximally entangled
state. This is due to multiple reasons, such as losing photons
in the fiber or in some other loss process between the emission
and detection, arrival of the emitted photons outside of the
detection time window and the fact that dark counts generate
clicks at the detectors. Photon loss in the fiber effectively acts
as amplitude damping on the state of the photon when using
the presence or absence state space [13,57]. Dark counts are
clicks in the detectors, caused by thermal excitations. These
clicks introduce noise, since it is impossible to distinguish
between clicks caused by thermal excitations and the photons
traveling through the fiber if they arrive in the same time
window. All these sources of loss and noise acting on the
photonic qubits are discussed in detail in Appendix A. Finally,
we note that we assume here the application of non-number
resolving detectors. This can lead to additional noise in the
low-loss regime, since the event in which two photons got
emitted cannot be distinguished from the single-photon emis-
sion events even if no photons got lost. However, in any
realistic loss regime this is not a problem, since the proba-
bility of two such photons arriving at the heralding station
is quadratically suppressed with respect to events where only
one photon arrives. In the realistic regime, almost all the noise
coming from the impossibility of distinguishing two-photon
from single-photon emission events is the result of photon
loss. Namely, if a two-photon emission event occurs and the
detector registers a click, then with dominant probability it is
due to only a single photon arriving, while the other one being
lost. Hence the use of photon-number-resolving detectors
would not give any visible benefit with respect to the use of the
non-number-resolving ones. For a detailed calculation of the
effects of losses and dark counts for the single-photon scheme,
see Appendix E.
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FIG. 4. Schematic overview of the SPADS scheme. First, the two
NV centers run the single-photon scheme, such that Alice measures
her electron spin directly after every attempt. After success, the
middle node swaps its state to the carbon spin. Then the middle node
generates electron-photon entangled pairs where the photonic qubit
is encoded in the time-bin degree of freedom and sent to Bob. This
is attempted until Bob successfully measures the photon or until the
cut-off is reached. If the cut-off is reached, the scheme gets restarted;
otherwise the middle node performs an entanglement swapping on
its two memories and communicates the classical outcome to Alice
and Bob, who can correct their measurement outcomes to obtain a
bit of raw key.

C. Single photon with additional detection
setup (SPADS) scheme

The third scheme that we consider here is the single-photon
with additional detection setup (SPADS) scheme, which is
effectively a combination of the single-photon scheme and the
SiSQuaRe scheme as shown in Fig. 4. If the middle node is
positioned at two thirds of the total distance away from Alice,
the rate of this setup would scale, ideally, with the cube root
of the transmissivity η.

This scheme runs as follows:
(1) Alice and the repeater run the single-photon scheme

until success; however, only Alice performs her spin mea-
surement immediately after each spin-photon entanglement
generation attempt. This measurement is either in a six-state
or BB84 basis.

(2) The repeater swaps the state of the electron spin onto
the carbon spin.

(3) The repeater runs the second part of the SiSQuaRe
scheme with Bob. This means it generates spin-photon en-
tanglement between an electron and the time-bin-encoded
photonic qubit. Afterward, it sends the photonic qubit to Bob.
This is repeated until Bob successfully measures his photon in
a six-state or BB84 basis or until the cut-off n∗ is reached, in
which case the scheme is restarted with step 1.

(4) After Bob has received the photon and communicated
this to the repeater, the repeater performs a Bell-state mea-
surement on its two quantum memories and communicates the
classical result to Bob.

(5) All the previous steps are repeated until sufficient data
have been generated.

The motivation for introducing this scheme is twofold.
First, we note that by using this scheme we divide the total
distance between Alice and Bob into three segments: two
segments corresponding to the single-photon subscheme and
the third segment over which the time-bin-encoded photons
are sent. This gives us one additional independent segment
with respect to the single-photon or the SiSQuaRe scheme
on their own. Hence, for distances where no cut-off is re-
quired, we expect the scaling of the secret-key rate with the
transmissivity to be better than the ideal square root scaling

FIG. 5. Schematic overview of the setup for the SPOTL scheme.
This scheme is a combination of the SiSQuaRe and single-photon
scheme. Instead of sending photons directly through the fiber as
in the SiSQuaRe scheme, entanglement is established between the
middle node and Alice or Bob using the single-photon scheme.

of the previous two schemes. Furthermore, dividing the total
distance into more segments should also allow us to reach
larger distances before dark counts become significant. When
considering the resources necessary to run this scheme, we
note that the additional third node needs to be equipped only
with a photon detection setup.

Second, we note that the SPADS scheme can also be
naturally compared to the scenario in which an NV center
is used as a single-photon source for direct transmission
between Alice and Bob. Both the setup for the SPADS scheme
and such direct transmission involve Alice using an NV for
emission and Bob having only a detector setup. Hence, the
SPADS scheme corresponds to inserting a new NV node (the
repeater) between Alice and Bob without changing their local
experimental setups at all. This motivates us to compare the
achievable secret-key rate of the SPADS scheme and direct
transmission. We perform this comparison on a separate plot
in Sec. VI.

D. Single photon over two links (SPOTL) scheme

The final scheme that we study here is the single-photon
over two links (SPOTL) scheme, and it is another combination
of the single-photon and SiSQuaRe schemes. A node is placed
between Alice and Bob which tries to sequentially generate
entanglement with their quantum memories by using the
single-photon scheme (see Fig. 5). The motivation for this
scheme is that, while using relatively simple components and
without imposing stricter requirements on the memories than
in the previous schemes, its secret-key rate would ideally scale
with the fourth root of the transmissivity η.

1. Setup and scheme

The setup that we study is the following:
(1) Alice and the repeater run the single-photon scheme

until success with the tunable parameter θ = θA. However,
only Alice performs her spin measurement immediately af-
ter each spin-photon entanglement generation attempt. This
measurement is in a six-state basis.

(2) The repeater swaps the state of the electron spin onto
the carbon spin.

(3) Bob and the repeater run the single-photon scheme
until success or until the cut-off n∗ is reached, in which case
the scheme is restarted with step 1. The tunable parameter is
set here to θ = θB. Again, only Bob performs his spin measu-
rement immediately after each spin-photon entanglement gen-
eration attempt and this measurement is in a six-state basis.
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(4) The quantum repeater performs a Bell-state measure-
ment and communicates the result to Bob.

(5) All the previous steps are repeated until sufficient data
have been generated.

We note that for larger distances the optimal cut-off be-
comes smaller. Then, since we lose the independence of the
attempts on both sides, the scaling of the secret-key rate with
distance is expected to drop to

√
η, which is the same as for the

single-photon scheme. However, the total distance between
Alice and Bob is now split into four segments. Alice and Bob
thus send photons over only one fourth of the total distance.
Thus, this scheme should be able to generate key over much
larger distances than the previous ones, as the dark counts will
start becoming significant for larger distances only.

III. NV IMPLEMENTATION

Having proposed different quantum repeater schemes, we
now move on to describe their experimental implementation
based on nitrogen-vacancy centers in diamond [58]. This
defect center is a prime candidate for a repeater node due to its
packaged combination of a bright optical interface featuring
spin-conserving optical transitions that enable high-fidelity
single-shot readout [59] and individually addressable, weakly
coupled 13C memory qubits that can be used to store quantum
states in a robust fashion [33,60]. Moreover, second-long
coherence times of an NV electron spin have been achieved
recently by means of dynamical decoupling sequences [32].

By applying selective optical pulses and coherent mi-
crowave rotations, we first generate spin-photon entanglement
at an NV center node [50]. To generate entanglement between
two distant NV electron spins, these emitted photons are then
overlapped on a central beam splitter to remove their which-
path information. Subsequent detection of a single photon
heralds the generation of a spin-spin entangled state [50].
For all schemes based on single-photon entanglement genera-
tion, we need to employ active phase-stabilization techniques
to compensate for phase shifts of the transmitted photons,
which will reduce the entangled state fidelity, as introduced
in Sec. II B. These fluctuations arise from both mechanical
vibrations and temperature-induced changes in optical path
length, as well as phase fluctuations of the lasers used during
spin-photon entanglement generation. This problem can be
mitigated by using light reflected off the diamond surface
to probe the phase of an effectively formed interferometer
between the two NV nodes and the central beam splitter, and
by feeding the acquired error signal back to a fiber stretcher
that changes the relative optical path length [31].

The electron spin state can be swapped to a surrounding
13C nuclear spin to free up the single optical NV interface
per node for a subsequent entangling round; a weak (approx.
few kHz), always-on, distance-dependent magnetic hyperfine
interaction between the electron and 13C spin forms the basis
of a dynamical decoupling based universal set of nuclear
gates that allow for high-fidelity control of individual nu-
clear spins [33,34,37,38]. Crucially, the so-formed memory
can retain coherence for thousands of remote entangling at-
tempts despite stochastic electron spin reset operations, qua-
sistatic noise, and microwave control infidelities during the

subsequent probabilistic entanglement generation attempts
[38,61] (see Appendix B for details).

In the NV node containing both the electron and carbon
nuclear spin, it is also possible to perform a deterministic
Bell-state measurement on the two spins. Specifically, a com-
bination of two nuclear-electron spin gates and two sequential
electron spin state measurements reads out the combined
nuclear-electron spin state in the Z and X bases, enabling us
to discriminate all four Bell states [62].

For an NV center in free space, only ≈3% of photons
are emitted in the zero-phonon line (ZPL) that can be used
for secret-key generation. This poses a key challenge for a
repeater implementation, since this means that the probability
of successfully detecting an emitted photon is low. Therefore,
we consider a setup in which the NV center is embedded in
an optical cavity with a high ratio of quality factor Q to mode
volume V to enhance this probability via the Purcell effect
in the weak coupling regime [63]. This directly translates
into a lower optical excited state lifetime that is beneficial to
shorten the time window during which we detect ZPL photons
after the beam splitter, reducing the impact of dark counts
on the entangled state. Additionally, a cavity introduces a
preferential mode into which the ZPL photons are emitted that
can be picked up efficiently. This leads to a higher expected
collection efficiency than the noncavity case [40]. Enhance-
ment of the ZPL has been successfully implemented for
different cavity architectures, including photonic crystal cav-
ities [64–71], microring resonators [72], whispering-gallery-
mode resonators [73,74] and open, tunable cavities [75–77].
However, cavity-assisted entanglement generation has not
yet been demonstrated for these systems, limited predomi-
nantly by broad optical lines of surface-proximal NV cen-
ters. Therefore, we focus on the open, tunable microcavity
approach [78], since it has the potential for incorporating
micron-scale diamond slabs inside the cavity, while allowing
us to keep high Q/V values and providing in situ spatial and
spectral tunability [79]. In these diamond slabs, an NV center
can be microns away from surfaces, potentially allowing us
to maintain bulk-like optical and spin properties as needed for
the considered repeater protocols.

IV. CALCULATION OF THE SECRET-KEY RATE

With the modeling of each of the components of the
different setups in hand, the performance of each setup can
be estimated. The performance of a setup is assessed in this
paper by its ability to generate a secret key between two
parties, Alice and Bob. We note here that the ability of a
quantum repeater to generate a secret key can be measured
in two different ways—in its throughput and its secret-key
rate. The throughput is equal to the amount of secret key
generated per unit time, while the secret-key rate equals
the amount of secret key generated per channel use. In this
paper, we will focus on the secret-key rate only. This is
because it allows us to make concrete information-theoretical
statements about our ability to generate secret key. Moreover,
we note that the secret-key rate is also more universal in the
sense that it can be easily converted into the throughput by
multiplying it with the repetition rate of our scheme (number
of attempts we can perform in a unit time). It must be also
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FIG. 6. The model of photon-loss processes occurring in our
repeater setups. The parameter pce is the photon-collection efficiency,
which includes the probability that the photon is successfully coupled
into the fiber. Only photons emitted at the zero-phonon line (ZPL)
can be used for quantum information processing. All non-ZPL pho-
tons are filtered out, such that a fraction pzpl of the photons remains.
The photons are then transmitted through a fiber with transmissivity
η f . Such successful transmissions are registered by the detector with
probability pdet. Additionally, a significant fraction of photons can
arrive in the detector outside of the detection time window tw. Such
photons will effectively also get discarded. Here we describe the total
efficiency of our apparatus by a single parameter, papp = pce pzpl pdet.

noted here that demonstrating repeater schemes that achieve
higher throughput than the currently available QKD systems
based on direct transmission will be a great challenge. This
is because the sources of photonic states used within those
QKD systems operate at the GHz repetition rates, while the
performance of the repeater schemes will be limited by many
additional factors such as transmission latency and time of
local operations at the memory nodes. These issues are not
captured by the secret-key rate directly. Nevertheless, as men-
tioned before, the universality of the secret-key rate allows
for the interconversion between the two quantities. We further
discuss the differences between the throughput and secret-key
rate in Sec. VI E.

The secret-key rate R is equal to

R = Y r

Nmodes
, (1)

where Y and r are the yield and secret-key fraction, respec-
tively. The yield Y is defined as the average number of raw
bits generated per channel use and the secret-key fraction r is
defined as the amount of secret key that can be extracted from
a single raw bit (in the limit of asymptotically many rounds).
Here Nmodes is the number of optical modes needed to run
the scheme. Time-bin encoding requires two modes while the
single-photon scheme uses only one mode. Hence, Nmodes = 2
for all the schemes that use time-bin encoding in at least one
of the arms of the setup. For the schemes that use only the
single-photon subschemes as their building blocks, we have
that Nmodes = 1.

In the remainder of this section, we will briefly detail how
to calculate the yield and secret-key fraction, from which we
can estimate the secret-key rate of each scheme.

A. Yield

The yield depends not only on the used scheme but also
on the losses in the system. We model the general emission
and transmission of photons through fibers from NV centers in
diamond as in Fig. 6. That is, with probability pce spin-photon
entanglement is generated and the photon is coupled into a

fiber. The photons that successfully got coupled into the fiber
might not be useful for quantum information processing since
they are not coherent. Thus, we filter out those photons that are
not emitted at the zero-phonon line, reducing the number of
photons by a further factor of pzpl. Then, over the length of the

fiber, a photon gets lost with probability 1 − η f = 1 − e− L
L0 ,

where L0 is the attenuation length and η f is the transmissivity.
After exiting the fiber, the photon gets registered as a click
by the detector with probability pdet. Finally, the photon gets
accepted as a successful click if the click happens within the
time window tw of the detector (see Appendix A for more
details).

The yield can then be calculated as the reciprocal of the
expected number of channel uses needed to get one single raw
bit,

Y = 1

E[N]
, (2)

with N being the random variable that models the number of
channel uses needed for generating a single raw bit.

1. Yield of the single-photon scheme

The yield of the single-photon scheme is relatively easy
to calculate, since the single condition heralding the success
of the scheme is a single click in one of the detectors in
the heralding station. Therefore, the yield Y is simply the
probability that an individual attempt will result in a single
click in one of the detectors. This probability will depend on
the losses in the system, dark counts and the angle θ . A full
calculation of the yield is given in Appendix E.

2. Yield of the SiSQuaRe, SPADS, and SPOTL schemes

The SiSQuaRe, SPADS, and SPOTL schemes require two
conditions for the heralding of the successful generation of a
raw bit, namely the scheme needs to succeed both on Alice’s
and Bob’s sides independently. In this case, we are going
to take a very conservative perspective and assume the total
number of channel uses to be the sum of the required channel
uses on Alice’s and Bob’s side of the memory repeater node,

E[N] = E[NA + NB]. (3)

Moreover, every time Bob reaches n∗ attempts, both parties
start the scheme over again. The cut-off increases the average
number of channel uses, thus decreasing the yield. Denoting
by pA and pB the probability that a single attempt of the
subscheme on Alice’s and Bob’s side respectively succeeds,
we find (see Appendix C for the derivation)

E[NA + NB] = 1

pA[1 − (1 − pB)n∗ ]
+ 1

pB
. (4)

B. Secret-key fraction

The secret-key fraction is the fraction of key that can be
extracted from a single raw state. It is a function of the average
quantum bit error rates in the X , Y , and Z basis [80,81]
(QBER), and depends on the protocol (such as the BB84 [8] or
six-state protocol [43,44]) and classical postprocessing used
(such as the advantage distillation postprocessing [81]) .
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Here we consider the entanglement-based version of the
BB84 and six-state protocols. That is, Alice and Bob both
perform measurements on their local qubits which share
quantum correlations. We note that both the BB84 and the
six-state protocol can in principle be run either in a symmetric
or asymmetric way. Symmetric means that the probabilities
of performing measurements in all the used bases are the
same, while for asymmetric protocols they can be different.
We note in the asymptotic regime, which is the regime that
we consider here, it is possible to set this probability bias to
approach unity and still maintain security [82]. Unfortunately,
for technical reasons, within our model it is not possible to
run an asymmetric six-state protocol when time-bin-encoded
photons are used [17].

Moreover, as we mentioned above, it is also possible to
apply different types of classical postprocessing of the raw key
generated through the BB84 or the six-state protocol. In par-
ticular, here we consider two types of postprocessing: the stan-
dard one-way error correction and a more involved two-way
error correction protocol called advantage distillation, which
can tolerate much more errors. Specifically, here we consider
the advantage distillation protocol proposed in Ref. [81], as
this advantage distillation protocol has high efficiency (in
particular, in the scenario of no noise, the efficiency of this
protocol equals unity). Hence, in our model, we effectively
consider two protocols for generating a secret key: BB84 with
standard one-way error correction and a six-state method with
advantage distillation. We refer the reader to Appendix G for
the mathematical expressions for the secret-key fraction for
all the considered protocols.

Now we can state explicitly which QKD protocols will
be considered for each scheme, which in turn depends on
the type of measurements that Alice and Bob perform in
that scheme. There are two physical implementations of mea-
surements that Alice and Bob perform, depending on the
scheme under consideration. That is, they either measure a
quantum state of a spin or of a time-bin-encoded photons.
Since the fully asymmetric six-state protocol with advantage
distillation has higher efficiency than both symmetric and
asymmetric BB84 protocol with one-way error correction,
we will use this six-state protocol for both the single-photon
and SPOTL scheme. The SiSQuaRe and SPADS schemes
involve direct measurement on time-bin-encoded photons.
Hence, for these schemes, we consider the maximum of the
amount of key that can be obtained using the fully asymmetric
BB84 protocol and the symmetric six-state protocol with
advantage distillation (which can tolerate more noise, but has
three times lower efficiency than the fully asymmetric BB84
protocol).

To estimate the QBER, we model all the noisy and lossy
processes that take place during the protocol run. From this,
we calculate the qubit error rates and yield, from which we can
retrieve the secret-key fraction. We invite the interested reader
to read about the details of these calculations in Appendices E
and F. The derivation of the QBER and the yield for the
SiSQuaRe scheme is performed in Ref. [17]. Moreover, in
this work we introduce certain refinements to the model which
we discuss in Appendix D. With the QBER in hand, we can
calculate the resulting secret-key fraction for the considered
protocols as presented in Appendix G.

We note here that we consider only the secret-key rate in
the asymptotic limit and that we thus do not have to deal with
nonasymptotic statistics.

V. ASSESSING THE PERFORMANCE OF QUANTUM
REPEATER SCHEMES

In this section, we will detail four benchmarks that will
be used to assess the performance of quantum repeaters. The
usage of such benchmarks for repeater assessment has been
done in Refs. [17,30], and achieving a rate greater than such
benchmarks can be seen as milestones toward the construction
of a quantum repeater.

The considered benchmarks are defined with respect to the
efficiencies of processes involving photon loss when emitting
photons at NV centers, transmitting them through an optical
fiber and detecting them at the end of the fiber as described in
Sec. IV A and as shown in Fig. 6.

Having this picture in mind, we can now proceed to present
the considered benchmarks. The first three of these bench-
marks are inspired by fundamental limits on the maximum
achievable secret-key rate if Alice and Bob are connected by
quantum channels which model quantum key distribution over
optical fiber without the use of a (possible) quantum repeater.

The first of these benchmarks we consider here is also
the most stringent one, the so-called capacity of the pure-
loss channel. The capacity of the pure-loss channel is the
maximum achievable secret-key rate over a channel modeling
a fiber of transmissivity η f , and is given by [13]

− log2(1 − η f ). (5)

This is the maximum secret-key rate achievable, meaning
that even if Alice and Bob had perfect unbounded quantum
computers and memories, they could not generate secret key
at a larger rate. If, by using a quantum repeater setup, a higher
rate can be achieved than − log2(1 − η f ), we are certain
our quantum repeater setup allowed us to do something that
would be impossible with direct transmission. Surpassing
the secret-key capacity has been widely used as a defining
feature of a quantum repeater [11–13,17,23,30,83–88]. Un-
fortunately, and as could be expected, surpassing the capacity
is experimentally challenging. This motivates the introduction
of other, easier to surpass, benchmarks. These benchmarks are
still based on (upper bounds on) the secret-key capacity of
quantum channels which model realistic implementations of
quantum communications over fibers.

The second benchmark is built on the idea of including the
losses of the apparatus into the transmissivity of the fiber. The
resultant channel with all those losses included we call here
the extended channel. The benchmark is thus equal to

− log2(1 − η f papp). (6)

Here papp describes all the intrinsic losses of the devices
used, that is, the collection efficiency pce at the emitting
diamond, the probability that the emitted photon is within
the zero-phonon line pzpl (which is necessary for generating
quantum correlations), and photon detection efficiency pdet,
so that papp = pce pzpl pdet.

The third benchmark we consider is the so-called thermal
channel bound, which takes into account the effects of dark
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counts. The secret-key capacity of the thermal channel has
been studied extensively [13,86–92]. We consider the follow-
ing bound on the secret-key capacity of the thermal channel,

− log2[(1 − η f papp)(η f papp)n] − g(n), (7)

if n � η f papp

1−η f papp
, and otherwise zero [13]. Here n is the

average number of thermal photons per channel use and
is equal to tw, the time window of the detector, times the
average number of dark counts per second; see Ref. [17] for
more details. The function g(x) is defined as g(x) ≡ (x + 1)
log2(x + 1) − x log2(x). We note here that the time window
of the detector tw is not fixed in our model but is optimized
over for every distance in order to achieve the highest possible
secret-key rate. Hence, in this benchmark we fix tw = 5 ns
which is the shortest duration of the time window that we
consider in our secret-key rate optimization.

Finally, the secret-key rate achieved with direct transmis-
sion using the same devices can be seen as the fourth bench-
mark. Specifically, here we mean the secret-key rate achieved
when Alice uses her electron spin to generate spin-photon
entanglement and sends the time-bin-encoded photon to Bob.
She then measures her electron spin while Bob measures
the arriving photon. However, to take a conservative view,
we will only use this direct transmission benchmark for the
SPADS scheme. This is motivated by the fact that for both
the SPADS scheme and the direction transmission scheme,
the experimental setups on Alice’s and Bob’s side are the
same, ensuring that the two rates can be compared fairly.
We note that similarly as in the modeled secret-key rates
achievable with our proposed repeater schemes, also for this
direct transmission benchmark we optimize over the time
window tw for each distance.

The secret-key capacity stated in Eq. (5) is the main
benchmark that we consider. Surpassing it establishes the
considered scheme as a quantum repeater. The two expres-
sions in Eqs. (6) and (7) and the achieved rate with direct
transmission are additional benchmarks, which guide the way
toward implementation of a quantum repeater. We define all

the considered benchmarks for the channel with the same fiber
attenuation length L0 as the channel used for the correspond-
ing achievable secret-key rate.

VI. NUMERICAL RESULTS

We now have a full model of the rate of the presented
quantum repeater protocols as a function of the underlying ex-
perimental parameters. In this section, we will first state all the
parameters required by our model and then present the results
and conclusions drawn from the numerical implementation of
this model. In particular, in Sec. VI A, we will first provide a
deeper insight into the benefits of using the six-state protocol
and advantage distillation in specific schemes. In Sec. VI B,
we determine the optimal positioning of the repeater nodes for
our schemes and investigate the dependence of the secret-key
rate achievable with those schemes on the photon emission
angle θ and the cut-off n∗ for the appropriate schemes. In
Sec. VI C, we then use the insights acquired in the previous
section to compare the achievable secret-key rates for all the
proposed repeater schemes with the secret-key capacity and
other proposed benchmarks. In particular, we show that the
single-photon scheme significantly outperforms the secret-key
capacity and hence can be used to demonstrate a quantum
repeater. Finally, in Sec. VI D, we determine the duration of
the experiment that would allow us to demonstrate such a
quantum repeater with the single-photon scheme.

The parameters that we will use are either parameters
that have been achieved in an experiment or correspond to
expected parameters when the NV center is embedded in an
optical Fabry-Perot microcavity. The parameters we will use
are listed in Table I.

To be now more specific, the photon collection efficiency
pce and the probability of emitting into the zero-phonon line
pzpl are the two crucial parameters relying on the imple-
mentation of the optical cavity. The quoted value of pce has
not been experimentally demonstrated yet, while the value
of pzpl has not been demonstrated in the context of quantum

TABLE I. Parameters used for the nitrogen-vacancy center setups considered in this paper.

Parameter Notation Value

Dephasing of 13C due to interaction a0 1/2000 per attempt [38,61]
Dephasing of 13C with time a1 1/3 per second [60]
Depolarizing of 13C due to interaction b0 1/5000 per attempt [38]
Depolarizing of 13C with time b1 1/3 per second [60]
Memory-photon entanglement preparation time tprep 6 μs [48]
Depolarizing parameter for the measurement of the electron spin Fm 0.95 [31]
Depolarizing parameter for two qubit gates in quantum memories Fg 0.98 [33]
Dephasing parameter for the memory-photon state preparation Fprep 0.99 [48]
Collection efficiency pce 0.49 [40,48]
Emission into the zero-phonon line pzpl 0.46 [77]
Detector efficiency pdet 0.8 [48]
Dark count rate d 10 per second [48]
Characteristic time of the NV emission τ 6.48 ns [77,93]
Detection window offset toffset

w 1.28 ns [48]
Attenuation length L0 0.542 km [48]
Refractive index of the fiber nri 1.44 [94]
Optical phase uncertainty of the spin-spin entangled state �φ 14.3◦[31]

052330-9



FILIP ROZPĘDEK et al. PHYSICAL REVIEW A 99, 052330 (2019)

communication. All the other independent parameters in the
above list that are not related to the setup with a cavity
have been demonstrated in experiments relevant for remote
entanglement generation. The parameters that have not been
discussed in the main text are discussed in the Appendices.

A. Comparing BB84 and six-state advantage
distillation protocols

We first investigate here when the BB84 or six-state ad-
vantage distillation protocol performs better. It was shown
in Ref. [17] that in the SiSQuaRe scheme there is a trade-
off—for the low-noise regime (small distances) the fully
asymmetric BB84 protocol is preferable, while in the high-
noise regime (large distances) the problem of noise can be
overcome by using a six-state protocol supplemented with
advantage distillation. This technique allows us to increase
the secret-key fraction at the expense of reducing the yield
by a factor of three, since a six-state protocol in which Alice
and Bob perform measurements on photonic qubits does not
allow for the (fully) asymmetric protocol within our model.
Numerically, we find that for the SPADS and SPOTL scheme
advantage distillation is necessary to generate nonzero secret
keys at any distance. This is due to the fact that there is a
significant amount of noise in these schemes. Thus, for the
SPADS (SPOTL) scheme the (a)symmetric six-state protocol
with advantage distillation is optimal.

To provide more insight into the performance of those
different QKD schemes for different parameter regimes, we
plot the achievable secret-key fraction for the SPADS and
SPOTL schemes as a function of the depolarizing parameter
due to imperfect electron spin measurement Fm in Fig. 7
(see Appendix B for the discussion of the corresponding
noise model). Noise due to imperfect measurements is one of
the significant noise sources in our setup, since the SPADS
scheme involves three and the SPOTL scheme four single-
qubit measurements on the memory qubits. The data have
been plotted for a fixed distance of 12.5L0, where L0 =
0.542 km is the attenuation length of the fiber. Moreover, since
on this plot we aim at maximizing only the secret-key fraction
over the tunable parameters, we set the cut-off n∗ to one and
the detection time window tw to 5 ns (the smallest detection
time window we use) for both schemes. Furthermore, within
the single-photon subscheme, the heralding station is always
placed exactly in the middle between the two memory nodes.
We also consider the positioning of the memory repeater node
to be two-thirds away from Alice for the SPADS scheme and
in the middle for the SPOTL scheme, as discussed in the next
section. For the SPOTL scheme, we also assume θA = θB,
which we will justify in the next section.

We see that for the current experimental value of Fm = 0.95
both schemes can generate keys only if the advantage distil-
lation postprocessing is used. As Fm increases, we observe
that for the SPADS scheme first the six-state protocol without
advantage distillation and then the BB84 protocol start gener-
ating keys. For the SPOTL scheme, the value of Fm at which
the six-state protocol without advantage distillation starts gen-
erating keys is much larger than the corresponding value of Fm

for any of the studied protocols for the SPADS scheme. This
is because the SPOTL scheme involves more noisy processes

FIG. 7. Secret-key fraction as a function of the depolarizing
parameter due to noisy measurement Fm for the total distance of
12.5L0. We see that for the current experimental value of Fm = 0.95
(marked with a dashed black vertical line) both schemes can generate
keys only if the advantage distillation postprocessing is used. As Fm

increases, the protocols that do not utilize advantage distillation also
start generating keys. We also see that the curves can be divided
into two groups in terms of their slope in the regime where they
generate nonzero amounts of keys. Those two groups correspond to
the scenarios where a fully asymmetric (bigger slope) or a symmetric
(smaller slope) protocol is used. For all the plotted protocols, the
cut-off n∗ is set to one and tw = 5 ns (the smallest detection time
window we use) to maximize the secret-key fraction. Moreover, for
each value of Fm, we optimize the secret-key fraction over the angle
θ . For the SPOTL scheme, we assume θA = θB. For the SPADS
scheme, we position the repeater node 2/3 of the total distance away
from Alice and in the middle between Alice and Bob for the SPOTL
scheme.

than the SPADS scheme. This also provides an approximate
quantification of the benefit of using advantage distillation.
Specifically, looking at the SPOTL scheme, it can be observed
that while at the current experimental value of Fm = 0.95,
advantage distillation allows for generating keys, but at a
higher value of the depolarizing parameter Fm = 0.97, still no
key can be generated with standard one-way postprocessing.
Moreover, we see that utilizing advantage distillation for the
SPADS scheme allows for the generation of keys, even with
very noisy measurements when Fm = 0.91. We also observe
two distinct scalings of the secret-key fraction with Fm in
the regime where a nonzero amount of keys is generated.
These two scalings depend on whether we use symmetric or
asymmetric protocols. Specifically, for the SPADS scheme,
the symmetric six-state protocol is used. Therefore, the corre-
sponding two curves have a slope that is approximately three
times smaller than the other three curves corresponding to the
protocols that run in the fully asymmetric mode.

B. Optimal settings

We see that the above described repeater schemes include
several tunable parameters. These parameters are the cut-
off n∗ for Bob’s number of attempts until restart, the angle
θ in the single-photon scheme, and the positioning of the
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FIG. 8. Secret-key rate as a function of the relative positioning of
the repeater for few different total distances for the SPADS scheme.
The total distances are expressed in terms of the fiber attenuation
length L0 = 0.542 km. We see that positioning the repeater two-
thirds of the distance away from Alice (marked by the vertical black
dashed line) is a good positioning for all the distances. For each
total distance considered and each positioning, the secret-key rate
is optimized over the cut-off n∗, the angle θ , and the time window of
the detector tw.

repeater. These parameters can be optimized to maximize the
secret-key rate. Here we will approach this optimization in a
consistent way: We gradually restrict the parameter space by
making specific observations based on numerical evidence.

The first claim that we will make is in relation to the opti-
mal positioning of the repeater. In Ref. [17], we have conjec-
tured that for the SiSQuaRe scheme the middle positioning of
the repeater is optimal. For the single-photon scheme, we want
the probability of transmitting the photons from each of the
two nodes to the beam-splitter heralding station to be equal.
This effectively sets the target state between the electron spins
to be the maximally entangled state. Hence, if we restrict
ourselves to the case where the emission angles θ of both
Alice and Bob are the same, then it is natural to position the
heralding station symmetrically in the middle between them.
Hence, the only nonobvious optimal positioning is for the
SPADS and SPOTL scheme.

For the SPADS scheme, positioning the repeater at two-
thirds of the relative distance away from Alice could intu-
itively be expected to be optimal. This is because the single-
photon scheme runs on two segments: Alice–beam splitter,
beam splitter–repeater, while the one half of the SiSQuaRe
scheme runs only over a single segment between the repeater
and Bob. By segment, we mean here a distance over which
we need to be able to independently transmit a photon. In
Fig. 8, we show the secret-key rate as a function of the
relative positioning of the repeater for a set of different total
distances. We see there that despite the fact that positioning
the repeater at two-thirds is not always optimal, it is a good
enough positioning for all distances for our purposes. For each
data point on the plot, we independently optimize over the
cut-off n∗, the angle θ of the single-photon subscheme, and
the duration of the detector time window tw.

FIG. 9. Secret-key rate as a function of the relative positioning of
the repeater for few different total distances for the SPOTL scheme.
The total distances are expressed in terms of the fiber attenuation
length L0 = 0.542 km. We see that positioning the repeater in the
middle between Alice and Bob (marked by the vertical black dashed
line) is a good positioning for all the distances. For each total distance
considered and each positioning, the secret-key rate is optimized over
the cut-off n∗, the angles θA and θB, and the time window of the
detector tw.

The SPOTL scheme has the same symmetry as the
SiSQuaRe scheme, in the sense that the part of the scheme
performed on Alice’s side is exactly the same as on Bob’s
side. This symmetry is only broken by the sequential nature of
the scheme. Since we have already observed that the middle
positioning is optimal for the SiSQuaRe scheme, we expect
to see the same behavior for the SPOTL scheme. Indeed, we
confirm this expectation numerically in Fig. 9. Here for each
data point we independently optimize over the cut-off n∗,
the angle θA (θB) of the single-photon subscheme on Alice’s
(Bob’s) side, and the duration of the detection time window.

To conclude, we will always place the heralding station
within the single-photon (sub)protocol exactly in the middle
between the two corresponding memory nodes. Moreover, we
will also always place the memory repeater node in the middle
for the SPOTL scheme and two-thirds of the distance away
from Alice for the SPADS scheme.

Having established the optimal positioning of the repeater,
we look into the relation between θA and θB for the SPOTL
scheme. We observe that the relative error resulting from
optimizing the secret-key rate over a single angle θA = θB

rather than two independent ones is smaller than 1% for all
distances. Hence, from now on we will restrict ourselves to
optimizing only over one angle θ for the SPOTL scheme.

Having resolved the issues of the optimal positioning of the
repeater for all schemes and reducing the number of angles to
optimize over for the SPOTL scheme to one, we now investi-
gate how our secret-key rate depends on the remaining param-
eters. These parameters are the angle θ , the cut-off n∗, and the
duration of the detection time window tw. The optimal time
window follows a simple behavior for all schemes: For short
distances, the probability of getting a dark count pd is negligi-
ble compared to the probability of detecting the signal photon.
Hence, for those distances we can use a time window of 30 ns
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FIG. 10. Secret-key rate as a function of the θ angle for the
single-photon scheme for the total distance of 12.5L0, where L0 =
0.542 km. We see that there is a relatively large range of angles for
which a nonzero amount of keys can be generated. For each value of
θ , the secret-key rate is optimized over the time window tw. The kink
on the plot is a consequence of the fact that the six-state protocol with
advantage distillation involves optimization over two subprotocols.

to make sure that almost all the emitted photons which are not
polluted by the photons from the optical excitation pulse arrive
inside the detection time window. We always need to sacrifice
the photons arriving within the time toffset

w after the optical
pulse has been applied to filter out the photons from that
pulse; see Appendix A for details. Then, for larger distances
where pd starts to become comparable with the probability of
detecting the signal photon, the duration of the time window
is gradually reduced. This reduces the effect of dark counts
at the expense of having more photons arriving outside of the
time window. See Appendix A for the modeling of the losses
resulting from photons arriving outside of the time window.

The dependence of the secret-key rate on the angle θ , the
tunable parameter that Alice and Bob choose in their starting
state |ψ〉 = sin θ |↓〉 |0〉 + cos θ |↑〉 |1〉 in the single-photon
scheme, is more complex. We observe that the optimal value
of θ is closer to π

2 for schemes that involve more noisy
processes. Informally, this means that Alice and Bob send
fewer photons toward the beam splitter to overcome the noise
coming from events in which both nodes emit a photon. At
π
2 , however, no photons are emitted and the rate drops down
to zero. We illustrate this in Figs. 10, 11, and 12. We see that
for the SPADS and SPOTL scheme, there is only a restricted
regime of the angle θ for which one can generate a nonzero
amount of keys. In particular, the SPOTL scheme requires
a larger number of noisy operations and therefore cannot
tolerate much noise arising from the effect of photon loss in
the single-photon subscheme. This means that there is only
a small range of θ that allows for production of secret key.
The single-photon scheme involves fewer operations and can
tolerate more noise, and so lower values of the parameter θ

still allow for the generation of keys.
We also investigate the dependence of the rate on the

cut-off. Both the SPADS and SPOTL scheme require a lower

FIG. 11. Secret-key rate as a function of the θ angle for the
SPADS scheme for the total distance of 12.5L0, where L0 =
0.542 km. We see that due to more noisy processes the range of
θ that allows us to generate keys is much more restricted than for
the single-photon scheme. For each value of θ , the secret-key rate is
optimized over the cut-off n∗ and the time window tw.

cut-off than the SiSQuaRe scheme; see Figs. 13 and 14. This
is caused by the fact that each of them involves more noisy
operations, and hence less noise tolerance is possible.

C. Achieved secret-key rates of the quantum repeater proposals

Now we are ready to present the main results, the secret-
key rate for all the considered schemes as a function of the

FIG. 12. Secret-key rate as a function of the angle θ = θA = θB

for the SPOTL scheme for the total distance of 12.5L0, where
L0 = 0.542 km. We see that, due to the increased amount of noisy
processes, this scheme requires θ to be in a much narrower regime
than for the single-photon and SPADS schemes, as can be seen
by comparing the plot with the plots in Figs. 10 and 11. This
corresponds to the overwhelming dominance of the dark state of the
spin (no emission of the photon) in order to avoid any extra noise
coming from the photon loss. For each value of θ , the secret-key rate
is optimized over the cut-off n∗ and the time window tw.
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FIG. 13. Secret-key rate as a function of the cut-off for the
SiSQuaRe and SPADS scheme for the total distance of 12.5L0,
where L0 = 0.542 km. We see that the SPADS scheme requires a
lower cut-off than the SiSQuaRe scheme because it involves more
noisy operations. For each value of the cut-off n∗, we optimize the
secret-key rate over the time window tw and for the SPADS scheme
also over the θ angle. The kink for the SiSQuaRe scheme arises
because of the optimization over the fully asymmetric one-way BB84
protocol and symmetric six-state protocol with advantage distillation,
which itself involves optimization over two subprotocols.

total distance when optimized over θ , the cut-off n∗, and the
duration of the time window tw. We compare the rates to the
benchmarks from Sec. V.

In Fig. 15, we plot the rate of all four of the quantum
repeater schemes as a function of the distance between Alice
and Bob. We observe that already for realistic near-term

FIG. 14. Secret-key rate as a function of the cut-off for the
SPOTL scheme for the total distance of 12.5L0, where L0 = 0.542
km. We see that due to the large number of noisy operations, this
scheme requires a low cut-off in order to be able to generate keys.
For each value of the cut-off n∗, we optimize the secret-key rate over
the time window tw and the θ angle.

FIG. 15. Rate of all studied quantum repeater schemes as a
function of the distance between Alice and Bob, expressed in the
units of L0 = 0.542 km. We also plot the different benchmarks
from Sec. V. We see that the single-photon scheme outperforms the
secret-key capacity. For the achievable rates, the secret-key rate is
optimized over the cut-off n∗, the angle θ , and the time window tw

independently for each distance.

parameters, the single-photon scheme can outperform the
secret-key capacity of the pure-loss channel by a factor of 7
for a distance of ≈9.2 km.

We have also investigated what improvements would need
to be done in order for the SPADS and SPOTL schemes to
also overcome the secret-key capacity. An example scenario in
which the SPADS scheme outperforms this repeaterless bound
includes better phase stabilization such that �φ = 5◦ and
reduction of the decoherence effects in the carbon spin during
subsequent entanglement generation attempts such that a0 =
1/8000 and b0 = 1/20 000. Further improvement of these ef-
fective coherence times to a0 = 1/20 000 and b0 = 1/50 000
allows the SPOTL scheme to also overcome the secret-key ca-
pacity. We note that maintaining coherence of the carbon-spin
memory qubit for such a large number of subsequent remote
entanglement-generation attempts is expected to be possible
using the method of decoherence-protected subspaces [38,61].

As mentioned before, the SPADS scheme can be naturally
compared against the benchmark of the direct transmission
using NV as a source. The results are depicted in Fig. 16. We
see that the SPADS scheme easily overcomes the NV-based
direct transmission and the thermal benchmark for larger
distances, for which these benchmarks drop to zero.

In Fig. 15, we observe that for the SPOTL scheme, the
total distance over which key can be generated, is significantly
smaller than for the SPADS scheme. This is despite the fact
that the full distance is divided into four segments. The rather
weak performance of this scheme is because it involves a
larger number of noisy operations. As a result, the scheme
can tolerate little noise from the single-photon subscheme,
requiring the angle θ to be close to π

2 , as can be seen in
Fig. 12. Hence, the probability of photon emission becomes
greatly diminished and so the distance after which dark counts
start becoming significant is much smaller than for the SPADS
scheme. To overcome this problem, one would need to reduce
the amount of noise in the system. One of the main sources of
noise is the imperfect single-qubit measurement. Hence, we
illustrate the achievable rates for the scenario with the boosted
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FIG. 16. Comparison of the SPADS scheme with the rate achiev-
able using the direct transmission, with NV being the photon source.
The secret-key rates for those schemes are plotted as a function of the
distance between Alice and Bob, expressed in the units of L0 = 0.542
km. We also plot the different benchmarks. We see that the SPADS
scheme easily overcomes the direct transmission and the thermal
benchmark (see Sec. V). For the secret-key rate achievable with the
SPADS scheme, we perform optimization over the cut-off n∗, the
angle θ , and the time window tw independently for each distance.
Similarly, we also optimize the secret-key rate achievable with direct
transmission over the time window tw.

measurement depolarizing parameter Fm = 0.98 in Fig. 17.
Additionally, in this plot we also consider the application of
probabilistic frequency conversion to the telecom wavelength
at which L0 = 22 km. Frequency conversion has already been
achieved experimentally in the single-photon regime with
success probability of 30% [95]. This is also the success prob-
ability that we consider here. The corresponding benchmarks
have also been plotted for the new channel with L0 = 22 km.

FIG. 17. Secret-key rate as a function of distance in units of km
for transmission at telecom channel with L0 = 22 km, along with the
benchmarks from Sec. V. We consider an improved measurement
depolarizing parameter of Fm = 0.98. The frequency conversion
efficiency is assumed to be 0.3. We observe that the SPOTL scheme
allows for the generation of secret key over a distance of more than
550 km. For the achievable rates, the secret-key rate is optimized over
the cut-off n∗, the angle θ , and the time window tw independently for
each distance.

We see in Fig. 17 that with the improved measurement and
using frequency conversion, the SPOTL scheme allows us
now to generate secret key over more than 550 km. We also
see that under those conditions the single-photon scheme can
also overcome the secret-key capacity of the telecom channel.

D. Runtime of the experiment

While the theoretical capability of an experimental setup
to surpass the secret-key capacity is a necessary requirement
to claim a working quantum repeater, it does not necessarily
mean that this can be experimentally verified in practice.
Indeed, if a quantum repeater proposal only surpasses the
secret-key capacity by a narrow margin at a large distance, the
running time of an experiment could be too long for practical
purposes. In this section, we will discuss an experiment which
can validate a quantum repeater setup and calculate the run-
ning time of such an experiment, where we demonstrate that
the single-photon scheme could be validated to be a quantum
repeater within 12 h.

A straightforward way of validating a quantum repeater
would consist of first generating secret key, calculating the
achieved (finite-size) secret-key rate, and then comparing the
rate with the secret-key capacity. However, this requires a
large number of raw bits to be generated, partially due to the
loose bounds on finite-size secret-key generation. What we
propose here is an experiment where the QBER and yield
are separately estimated to be within a certain confidence
interval. Then, if with the (worst-case) values of the yield and
the QBER the corresponding asymptotic secret-key rate still
confidently beats the benchmarks, one could claim that, in
the asymptotic regime, the setup would qualify as a quantum
repeater.

As we show in Appendix H, it is possible to run the
single-photon scheme over a distance of 17L0 ≈ 9.2 km for
approximately 12 h to find with high confidence (�1–1.5 ×
10−4) that the scheme beats the capacity [see Eq. (5)] at that
distance by a factor of at least 3.

E. Discussion and future outlook

It is worth noting that our figure of merit—the secret-key
rate—is weakly impacted by the latency of transmission,
which grows linearly with distance for the SiSQuaRe, SPADS,
and SPOTL schemes. Its only effect on the secret-key rate
is the resulting decoherence time in the quantum memories
while the memory nodes await the success or failure signals.
This decoherence due to the waiting time is negligible in
comparison to the noise due to interaction, arising from sub-
sequent entanglement generation attempts. On the other hand,
this latency would clearly be very visible in low throughput
of these schemes. A single-photon scheme, on the other hand,
has an advantage of the repetition rate being limited only by
the local processing of the memory nodes, which would result
in a higher throughput. We observe this fact in the modest
expected duration of the experiment, even in the high-loss
regime needed for overcoming the secret-key capacity. It
is worth noting that while the single-photon scheme main-
tains constant latency for QKD, there exist schemes where
such constant latency can be maintained also for remote
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entanglement generation; see, e.g., Ref. [96]. It is hence clear
that there are certain important properties of an efficient
quantum repeater scheme that are not captured by the secret-
key rate. However, achieving high throughputs for arbitrary
distances would require almost all the components to be
efficient in terms of rates and memories to be of high quality
in terms of operational and long-storage fidelities. It is clear
that demonstrating all these features together in a single ex-
periment is still a future goal. The advantage of the secret-key
rate is that overcoming the secret-key capacity would form
a crucial step toward an implementation of an efficient and
practical, long-distance quantum repeater architecture whose
validity would carry an information-theoretic significance and
will therefore be totally independent of any hardware-based
reference scenario.

In our model, we have identified a significant amount of
noise arising in the system. As a result, we find that it is not
always beneficial to just divide the fixed distance into more
elementary links. Hence, it is a natural question whether this
noise could be eliminated, e.g., using entanglement distilla-
tion. In fact, for the noise arising due to photon loss in the
single-photon scheme, not only does there exist an efficient
distillation procedure [97,98], but it has also already been
demonstrated in the NV platform [33]. Moreover, in the ideal
case of noiseless operations and storage, a scheme based on
generating two entangled states through the single-photon
scheme and then distilling them as demonstrated in Ref. [33]
should effectively also be able to overcome the secret-key
capacity [35] and provide a significant boost by completely
removing the noise due to photon loss. Furthermore, an imple-
mentation of such a distillation-based remote entanglement-
generation scheme would alleviate the requirement of the
optical phase stabilisation of the system. Therefore, this
distillation-based scheme could be a natural fifth candidate for
a proof of principle repeater. Nevertheless, we believe that the
fidelities of quantum operations and the effective coherence
times of the memories used in this paper might need to be
improved before this distillation would prove useful.

VII. CONCLUSIONS

We analyzed four experimentally relevant quantum re-
peater schemes on their ability to generate secret key. More
specifically, the schemes were assessed by contrasting their
achievable secret-key rate with the secret-key capacity of
the channel corresponding to direct transmission. The secret-
key rates have been estimated using near-term experimen-
tal parameters for the NV center platform. The majority
of these parameters have already been demonstrated across
multiple experiments. A remaining challenging element of our
proposed schemes is the implementation of optical cavities.
These cavities would enable the enhancement of both the
photon emission probability into the zero-phonon line and the
photon collection efficiency to the desired level.

With these near-term experimental parameters, our assess-
ment shows the viability of one of the schemes, the single-
photon scheme, for the first experimental demonstration of a
quantum repeater. In fact, the single-photon scheme achieves
a secret-key rate more than seven times greater than the
secret-key capacity. We also estimated the duration of an

experiment to conclude that a rate larger than the secret-key
capacity is achievable. The duration of the experiment would
be approximately 12 h.

Finally, we show that a scheme based on concatenating the
single-photon scheme twice (i.e., the SPOTL scheme), has the
capability to generate secret key at large distances. However,
this requires converting the frequency of the emitted photons
to the telecom wavelength and modestly improving the fidelity
at which measurements can be performed.
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APPENDIX A: LOSSES AND NOISE
ON THE PHOTONIC QUBITS

In this Appendix, we describe how the losses and noise
affect our photonic qubits. In particular, we first recall how the
two types of encoding result in the losses acting as different
quantum channels on the states. Then, we study the effects
of a finite detector time window. More specifically, we first
show that the arrival of a photon outside the time window
is equivalent to all the other loss processes, and second we
calculate the probability of registering a dark count within
the time window. We also show how to model the noise
arising from those dark counts for the SiSQuaRe and SPADS
schemes. Finally, we calculate the dephasing induced by the
unknown phase shift for the single-photon scheme.

1. Effects of losses for the different encodings

The physical process of probabilistically losing photons
corresponds to different quantum channels depending on the
qubit encoding. In our repeater schemes, we use two types
of encoding: time-bin and presence or absence of a photon.
For a time-bin-encoded qubit in the ideal scenario of no loss,
we always expect to obtain a click in one of the detectors.
Hence, loss of a photon resulting in a no-click event raises an
erasure flag which carries the failure information. Therefore, it
is clear that for this encoding the physical photon loss process
corresponds to an erasure channel with the erasure probability
given by one minus the corresponding transmissivity,

D(ρ) = ηρ + (1 − η)| ⊥〉〈⊥ |. (A1)

Here |⊥〉 is the loss flag, corresponding to the nondetection
of a photon. Since we are only interested in the quantum
state of the system for the successful events when a detection
event has occurred, we effectively postselect on the nonera-
sure events. For presence or absence encoding, the situation
is different since now there is no flag available that could
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explicitly tell us whether a photon got lost or not. In fact,
for this encoding the photon loss results in an amplitude-
damping channel applied to the photonic qubit. Here, the
damping parameter equals one minus the transmissivity of the
channel [99].

2. Effects of the detector time window

The detector only registers clicks that fall within a certain
time window. It is a priori not clear what kind of noisy or
lossy channel should be used to model the loss of information
due to nondetection of photons arriving outside of the time
window. This is because in a typical loss process we have a
probabilistic leakage of information to the environment. In the
scenario considered here, the situation is slightly different as
effectively no leakage occurs, but rather certain part of the
incoming signal effectively gets discarded. Here we will show
that despite this qualitative difference, within our model this
process can effectively be modeled as any other loss process.

Now, let us provide a brief description of the physics of
this process. First, the detection time window is chosen such
that the probability of detecting a photon from the optical
excitation pulse used to entangle the electron spin with the
photonic qubit is negligible [48]. For that reason, the detection
time window is opened after a fixed offset toffset

w with respect
to the beginning of the decay of the optical excited state of the
electron spin. We note that for the considered enhancement of
the ZPL emission using the optical cavity, we predict the char-
acteristic time of the NV emission τ to be approximately half
of the corresponding value of τ if no cavity is used [48,77,93].
Therefore, here we consider the scenario where the duration of
the optical excitation pulse is made twice shorter with respect
to the one used in Ref. [48]. This will allow us to filter out the
unwanted photons from the excitation pulse by setting toffset

w
to half of the offset used in Ref. [48].

Second, we note that the detection time window cannot last
too long; specifically, it needs to be chosen such that there is
a good trade-off between detecting coherent and noncoherent
(i.e., dark counts) photons. In this subsection, we will discuss
the effects of photons arriving outside of this time window and
the effects of registering dark counts within this time window.

a. Losses from the detector time window

The NV center emits a photon through an exponential
decay process with characteristic time τ . Therefore the prob-
ability of detecting a photon during a time window starting at
toffset
w and lasting for tw is

pin(tw) = 1

τ

∫ toffset
w +tw

toffset
w

dt exp

(
− t

τ

)

= exp

(
− toffset

w

τ

)
− exp

(
− toffset

w + tw
τ

)
. (A2)

Clearly the process of a photon arriving outside of the time
window is qualitatively different from the loss process where
the photons get lost to the environment. In the remainder of
this section, we will now look at the difference between these
two phenomena in more detail.

The emission process of the NV center is a coherent
process over time. Consider a generic scenario in which we

divide the emission time into two intervals, denoted by “in”
and “out,” respectively. Coherent emission then means that
the state of the photon emitted by the electron spin in state
|↑〉 will be

|ψ〉 = √
pin |1〉in |0〉out +

√
1 − pin |0〉in |1〉out . (A3)

Now let us come back to our specific model, in which the “in”
mode corresponds to the interval [toffset

w , toffset
w + tw] and the

“out” mode to all the times t � 0 lying outside of this inter-
val (t = 0 is the earliest possible emission time). Here, the
emission into the “in” mode occurs with probability pin(tw).
Hence, the spin-photon state resulting from the emission by
the α |↓〉 + β |↑〉 spin state is

|ψ〉 = α |↓〉 |0〉in |0〉out + β |↑〉 [
√

pin(tw) |1〉in |0〉out

+
√

1 − pin(tw) |0〉in |1〉out]. (A4)

If the presence of absence encoding is used, such a photonic
qubit is then transmitted to the detector. Since only the spin
and the “in” mode of the photon will be measured, we can
now trace out the “out” mode:

ρ = [|α|2 + |β|2 pin(tw)]|φ〉〈φ|
+ |β|2[1 − pin(tw)]|↑〉〈↑| ⊗ |0〉〈0|in, (A5)

where

|φ〉 = 1√
|α|2 + |β|2 pin(tw)

[α |↓〉 |0〉in + β
√

pin(tw) |↑〉 |1〉in].

(A6)

Note that this state can be obtained by passing the photonic
qubit of the state

|ψ〉 = α |↓〉 |0〉 + β |↑〉 |1〉 (A7)

through the amplitude-damping channel with the damping
parameter given by 1 − pin(tw). Hence, we can conclude
that for the photon number encoding, the possibility of the
photon arriving outside of the time window of the detector
can be modeled in the same way as any other photon-loss
process, namely an amplitude-damping channel applied to
that photonic qubit.

In the case of time-bin encoding, we effectively have four
photonic qubits, since now we have “in” and “out” modes for
both the early (denoted by “e”) and the late (denoted by “l”)
time window. We assume here that the slots do not overlap.
That is, a photon emitted in the “out” mode of the early
time window is always distinct from any photon in the late
time window. This can be achieved by making the time gap
between the “in” modes of the early and late window long
enough. In this case, the emission process results in a state

|ψ〉 = α |↓〉 [
√

pin(tw) |1〉e,in |0〉e,out |0〉l,in |0〉l,out

+
√

1 − pin(tw) |0〉e,in |1〉e,out |0〉l,in |0〉l,out] (A8)

+β |↑〉 [
√

pin(tw) |0〉e,in |0〉e,out |1〉l,in |0〉l,out

+
√

1 − pin(tw) |0〉e,in |0〉e,out |0〉l,in |1〉l,out]. (A9)
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Again, tracing out the “out” modes results in a state

ρ = pin(tw)|φ〉〈φ| + [1 − pin(tw)][|α|2|↓〉〈↓| + |β|2|↑〉〈↑|]
⊗|00〉〈00|e,l , (A10)

where

|φ〉 = α |↓〉 |1〉e |0〉l + β |↑〉 |0〉e |1〉l = α |↓〉 |e〉 + β |↑〉 |l〉 .

(A11)

Here |00〉e,l corresponds to the loss flag from which we see
that for the time-bin encoding the possible arrival of a photon
outside of the time window results in an erasure channel with
the erasure probability given by [1 − pin(tw)]. Hence, this
process can be also modeled as any other loss process for this
encoding.

We have just shown that for both photon presence or
absence and time-bin encodings the process of the photon
arriving outside of the time window can be modeled by the
source which prepares photons in a coherent superposition
of the “in” and “out” modes and the detector tracing out
(losing) the “out” modes. We have also shown that those two
elements combined together result effectively in a loss process
corresponding to the same channel as any other loss process
for that encoding (amplitude damping for photon presence or
absence and erasure channel for time-bin encoding).

However, between the source and the detector, there are
other lossy or noisy components resulting in other quantum
channels that need to be applied before the tracing out of the
“out” mode at the detector. Now we show that for all loss and
noise processes that occur in our model, the tracing out of
the “out” mode can be mathematically commuted through all
those additional noise and/or lossy processes. This means that
the tracing out can be applied directly after the source, such
that the above described reductions to amplitude damping or
erasure channel can be applied.

Consider the quantum channels acting on the photonic
qubits of the form

N =
∑

i

piN i
in ⊗ N i

out. (A12)

Effectively, these are the channels that do not couple the
“in” and “out” modes. Since in reality “in” and “out” modes
correspond to different time modes, their coupling would
require some kind of memory inside the channel. Hence, we
can think of the above defined channels as channels without
memory. Now it is clear that for a quantum state ρ that among
its registers includes both the “in” and the “out” mode, we
have that

Trout[N (ρ)] = Trout

[∑
i

piN i
in ⊗ N i

out(ρ)

]
=

∑
i

piN i
in(ρin).

(A13)

Now, first tracing out the “out” modes and then applying the
channel N (only the “in” part can be applied now) also results
in

∑
i piN i

in(ρin) at the output. Hence, the tracing out of the
“out” modes commutes with all the channels that are of the
form (A12), which correspond to channels without memory.
Clearly, the noise and loss processes that occur before the
detection, such as photon loss or dephasing due to uncertainty

in the optical phase of the photon, belong to this class of
channels. In particular, this means that for photon presence
or absence the amplitude damping due to photon loss in the
channel and that due to photon arrival outside of the time
window can be both combined into one channel with the sin-
gle damping parameter given by 1 − ηpin(tw) (η denotes the
transmissivity due to the loss process, e.g., the transmissivity
of the fiber). The same applies to time-bin encoding where
we now have a single erasure channel with erasure probability
1 − ηpin(tw).

To conclude, the arrival of the photon outside of the time
window can be modeled in the same way as any other loss
process for both photon encodings used and therefore we
can now redefine the detector efficiency p′

det = pdet pin(tw)
and the total apparatus efficiency p′

app = pce pzpl p′
det. We can

then define ηtotal = p′
appη f as the total transmissivity, with

probability ηtotal a photon will be successfully transmitted
from the sender to the receiver.

b. Dark counts within the detector time window

Photon detectors are imperfect, and due to thermal exci-
tations, they will register clicks that do not correspond to
any incoming photons. These undesired clicks are called dark
counts and can effectively be seen as a source of noise. The
magnitude of this noise depends on the ratio between the
probability of detecting the signal photon and measuring a
dark count. Clearly, dark counts become a dominant source
of noise when the probability of detecting the signal photon
becomes comparable to the probability of a dark count click.
The probability pd of getting at least one dark count within
the time window tw of awaiting the signal photon is given by
pd = 1 − exp(−twd ), where d is the dark count rate of the
detector [17].

In the SiSQuaRe scheme, Alice and Bob perform mea-
surements on time-bin-encoded photons. The same applies
to Bob in the SPADS scheme. Since at least two detectors
are required to perform this measurement, the presence of
dark counts means that the outcome may lie outside of
the qubit space. Moreover, this measurement needs to be
trusted. In consequence, a squashing map needs to be used
to process the multiclick events in a secure way. Here, as
an approximation, we consider the squashing map for the
polarization encoding [100] in the same way as described in
Ref. [17]. Hence, this measurement can also be modeled as a
perfect measurement preceded by a depolarizing channel with
parameter α, which depends on whether the BB84 or six-state
protocol is used. The parameter α is given by [17]

αA/B, BB84 = p′
appηB(1 − pd )

1 − (1 − p′
appηA/B)(1 − pd )2

, (A14)

αA/B, six-state = p′
appηA/B(1 − pd )5

1 − (1 − p′
appηA/B)(1 − pd )6

. (A15)

Here ηA/B denotes the transmissivity of the fiber between
the memory repeater node and Alice’s and/or Bob’s detector
setup. Finally, we note that dark counts increase the proba-
bility of registering a successful measurement event. For the
optical measurement schemes utilizing the squashing map, the
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probability of registering a click in at least one detector is
given by [17]

pA/B, BB84 = 1 − (1 − p′
appηA/B)(1 − pd )2, (A16)

pA/B, six-state = 1 − (1 − p′
appηA/B)(1 − pd )6. (A17)

The effect of dark counts in the single-photon scheme, which
carries over to the SPOTL scheme, is analyzed in Appendix E.

3. Noise due to optical phase uncertainty

Another important noise process affecting photonic qubits
is related to the fact that for the photon presence or absence
encoding the spin-photon entangled state will also depend on
the optical phase of the apparatus used. Specifically, it will
depend on the phase of the lasers used to generate the spin
photon entanglement as well as the optical phase acquired by
the photons during the transmission of the photonic qubit.
Knowledge about this phase is crucial for being able to
generate entanglement through the single-photon scheme. In
any realistic setup, however, there would be a certain degree
of the lack of knowledge about this phase acquired by the
photons. Since in the end what matters is the knowledge about
the relative phase between the two photons, we can model
this source of noise as the lack of knowledge of the phase on
only one of the incoming photonic qubits. This noise process
can be effectively modeled as dephasing. In this section, we
will show that the phase uncertainty induces dephasing with a
parameter λ equal to

λ =
I1

(
1

(�φ)2

)
2I0

(
1

(�φ)2

) + 1

2
, (A18)

where �φ is the uncertainty in the phase and I0/1 is the Bessel
function of order 0/1. Let us assume that for Alice, the local
phase of the photonic qubit has a Gaussian-like distribution on
a circle, with standard deviation �φ as observed in Ref. [31].
This motivates us to model the distribution as a von Mises
distribution [101]. The von Mises distribution reads

f (φ) = eκ cos(φ−μ)

2π I0(κ )
. (A19)

Here μ is the measure of location, i.e., it corresponds to the
center of the distribution, κ is a measure of concentration and
can be effectively seen as the inverse of the variance, and I0 is
the modified Bessel function of the first kind of order 0. One
can then show [101] that∫ π

−π

dφ f (φ)e±iφ = I1(κ )

I0(κ )
e±iμ. (A20)

Since we are only interested in the noise arising from the lack
of knowledge about the phase rather than the actual value of
this phase, without loss of generality we can assume μ = 0.
Moreover, the experimental parameter that we use here is
effectively the standard deviation of the distribution �φ and
therefore we can write κ = 1

(�φ)2 .
Hence, let us write the spin-photon entangled state that

depends on the optical phase φ:

|ψ±(φ)〉 = sin(θ ) |↓0〉 ± eiφ cos(θ ) |↑1〉 . (A21)

Now, the lack of knowledge about this phase leads to a
mixed state:∫ π

−π

f (φ)|ψ±(φ)〉〈ψ±(φ)|dφ

= sin2(θ )|↓0〉〈↓0| + cos2(θ )|↑1〉〈↑1|
± sin(θ ) cos(θ )

∫ π

−π

f (φ)(eiφ |↑1〉 〈↓0|

+ e−iφ |↓0〉 〈↑1|)dφ. (A22)

Let us now try to map this state onto a dephased state:

λ|ψ±(0)〉〈ψ±(0)| + (1 − λ)|ψ∓(0)〉〈ψ∓(0)|
= sin2(θ )|↓0〉〈↓0| + cos2(θ )|↑1〉〈↑1|

± sin(θ ) cos(θ )(2λ − 1)(|↑1〉 〈↓0| + |↓0〉 〈↑1|).
(A23)

Hence, we observe that

2λ − 1 =
I1

(
1

(�φ)2

)
I0

(
1

(�φ)2

) , (A24)

→ λ =
I1

(
1

(�φ)2

)
2I0

(
1

(�φ)2

) + 1

2
. (A25)

APPENDIX B: NOISY PROCESSES IN NV-BASED
QUANTUM MEMORIES

In our setups, we use 13C nuclear spins in diamond as
long-lived memory qubits next to a nitrogen vacancy (NV)
electron spin taking the role of a communication qubit. In this
Appendix, we will detail our model of the noisy processes in
the NV.

The electron spin can be manipulated via microwave pulses
and an optical pulse is used to create and send a photon
entangled with it. This operation is noisy and can be modeled
as having a dephasing noise of parameter Fprep. This means
that, if the desired generated target state between the photon
and the electron spin was |ψ+〉, we actually have a mixture
Fprep|ψ+〉〈ψ+| + (1 − Fprep)(I⊗Z )|ψ+〉〈ψ+|(I⊗Z ).

Information can be stored via a swapping of the elec-
tron spin state to the long-living nuclear 13C spin. Through
this swap operation we also free the communication qubit
to be used for consecutive remote entanglement generation
attempts. Because of interaction with its environment, a quan-
tum state stored in a 13C spin quantum memory undergoes an
evolution that we model with a dephasing and a depolarizing
channel with noise parameters λ1 = (1 + e−an)/2 and λ2 =
e−bn, respectively. The form of the parameters a and b in
general depends on the scheme. For the SiSQuaRe, SPADS,
and SPOTL schemes, there are two distinct effects that cause
this decoherence: one induced by the time it takes to generate
entanglement between the middle node and Bob, and one
induced by the always-on hyperfine coupling between the
electron spin and the carbon spin inside the middle NV node.
This coupling becomes an additional source of decoherence
for the carbon spin during probabilistic attempts to generate
remote entanglement using the electron spin [38,61]. We
model the decoherence effect on the qubit stored in the
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carbon spin of the middle node by a dephasing channel with
parameter λ1,

Dλ1
dephase(ρ) = λ1ρ + (1 − λ1)ZρZ, (B1)

and depolarizing channel with parameter λ2,

Dλ2
depol(ρ) = λ2ρ + (1 − λ2)

I

D
, (B2)

where λ1 and λ2 quantify the noise. The parameters depend as
follows on the number of attempts n,

λ1 = FT2 = 1 + e−an

2
, (B3)

λ2 = FT1 = e−bn, (B4)

where a and b are given by

a = a0 + a1

(
Ls

nri

c
+ tprep

)
, (B5)

b = b0 + b1

(
Ls

nri

c
+ tprep

)
. (B6)

Here nri is the refractive index of the fiber, c is the speed
of light in vacuum, tprep is the time it takes to prepare for
the emission of an entangled photon, and Ls is the distance
the signal needs to travel before the repeater receives the
information about failure or success of the attempt. Let LB

denote the distance between the memory repeater node and
Bob. Then for the SiSQuaRe and SPADS schemes Ls = 2LB,
as in each attempt, first the quantum signal needs to travel to
Bob, who then sends back to the middle node the classical
information about success or failure. For the SPOTL scheme
Ls = LB, as in this case, both the quantum and the classical
signals need to travel only half of the distance between the
middle node and Bob since the signals are exchanged with
the heralding station, which is located halfway between the
middle memory node and Bob. The parameters a0 and b0

quantify the noise due to a single attempt at generating an
entangled spin photon, induced by stochastic electron spin
reset operations, quasistatic noise, and microwave control in-
fidelities. The parameters a1 and b1 quantify the noise during
storage per second.

Gates and measurements in the quantum memory are also
imperfect. We model those imperfections via two depolarizing
channels. The first one acts on a single qubit with depolar-
izing parameter λ2 = Fm corresponding to the measurement
of the electron spin. The second one acts on two qubits with
depolarizing parameter λ2 = Fg corresponding to applying a
two-qubit gate to both the electron spin and the 13C spin.
This means that every time a measurement is done on a e−
qubit of a quantum state ρ, it is actually done on DFm

depol(ρ).
Also a swapping operation between the e− spin and the
nuclear spin (done experimentally via two two-qubit gates;
see main text) leads to an error modeled by a depolarizing
channel of parameter Fswap = F 2

g . Following the same logic,
a Bell state measurement will cause the state to undergo
an evolution given by a depolarizing channel. Specifically,
following the decomposition of the Bell measurement into
elementary gates for the NV implementation as described in
Sec. III, this evolution will consist of a depolarizing channel

with parameter F 2
g acting on both of the measured qubits and

the depolarizing channel with parameter F 2
m acting only on the

electron spin qubit.

APPENDIX C: EXPECTATION OF THE NUMBER
OF CHANNEL USES WITH A CUT-OFF

In this Appendix, we derive an analytical formula for the
expectation value of the number of channel uses between
Alice and Bob needed to generate one bit of raw key for the
SiSQuaRe, SPADS, and SPOTL schemes,

E[N] = 1

pA[1 − (1 − pB)n∗ ]
+ 1

pB
. (C1)

For these three schemes, we implement a cut-off which is
used to prevent decoherence. Each time the number of channel
uses between the repeater node and Bob reaches the cut-off
n∗, the entire protocol restarts from the beginning. Here, we
take a conservative view and define the number of channel
uses N between Alice and Bob as the sum NA + NB, where
NA (NB) corresponds to the number of channel uses between
Alice (Bob) and the middle node. From the linearity of the
expectation value, we have that

E[NA + NB] = E[NA] + E[NB]. (C2)

We denote by pA and pB the probability of a successful
attempt on Alice’s and Bob’s side respectively. Bob’s number
of channel uses follows a geometric distribution with param-
eter p = pB, so that E[NB] = 1

pB
. Without the cut-off, Alice’s

number of channel uses would follow a geometric distribution
with parameter p = pA. However, the cut-off parameter adds
additional channel uses on Alice side. Since the probability
that Bob succeeds within n∗ trials is psucc = 1 − (1 − pB)n∗

,
we in fact have that Alice’s number of channel uses follows a
geometric distribution with parameter p′

A = pA psucc. Hence, it
is straightforward to see that

E[NA + NB] = 1

p′
A

+ 1

pB
(C3)

= 1

pA[1 − (1 − pB)n∗ ]
+ 1

pB
. (C4)

APPENDIX D: SISQUARE SCHEME ANALYSIS

The analysis of the SiSQuare scheme has been performed
in Ref. [17]. In this work, we use the estimates of the yield
and QBER as derived in Ref. [17] with the following modifi-
cations:

(1) For the calculation of the yield, we now adopt a
conservative perspective and calculate the number of chan-
nel uses as E[NA + NB], as derived in Appendix C, rather
than E[max(NA, NB)]. Note that E[max(NA, NB)] � E[NA +
NB] � 2E[max(NA, NB)].

(2) The total depolarizing parameter for gates and mea-
surements Fgm defined in Ref. [17] is now decomposed into
individual operations as described in Appendix B. That is, in
this work depolarization due to imperfect operations on the
memories is expressed in terms of depolarizing parameter due
to imperfect measurement, Fm, and imperfect two-qubit gate,
Fg. Since in the analysis of the SiSQuaRe scheme we only deal
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with Bell diagonal states, the overall noise due to imperfect
swap gate and the Bell measurement leads to Fgm = F 4

g F 2
m .

(3) In Ref. [17], we have assumed the duration of the
detection time window to be fixed to 30 ns and assumed
that all the emitted photons will fall into that time window.
Here, similarly as for other schemes, we perform a more
refined analysis in which we include the trade-off between the
duration of the time window and the dark count probability as
described in Appendix A.

APPENDIX E: SINGLE-PHOTON SCHEME ANALYSIS

In this Appendix, we provide a detailed analysis of the
single-photon scheme between two remote NV-center nodes.
This section is structured as follows. First, we describe the
creation of the spin-photon entangled state followed by the
action of the lossy channel on the photonic part of this state,
including the noise due to the uncertainty in the phase of the
state induced by the fiber. Second, we apply the optical Bell
measurement. Then we evaluate the effect of dark counts,
which introduce additional errors to the generated state. Fi-
nally, we calculate the yield of this scheme and extract the
QBER from the resulting state.

1. Spin-photon entanglement and action of a lossy
fiber on the photonic qubit

First, both Alice and Bob generate spin-photon entangled
states, parameterized by θ . As we will later see, this parameter
allows for trading off the quality of the final entangled state of
the two spins with the yield of the generation process. The
ideal spin-photon state would then be described as

|ψ+〉 = sin(θ ) |↓〉 |0〉 + cos(θ ) |↑〉 |1〉 . (E1)

The preparation of the spin-photon entangled state is not ideal.
That is, the spin-photon entangled state is not actually as
described above, but rather of the form (see Appendix B)

ρ = Fprep|ψ+〉〈ψ+| + (1 − Fprep)(I⊗Z )|ψ+〉〈ψ+|(I⊗Z )

= Fprep|ψ+〉〈ψ+| + (1 − Fprep)|ψ−〉〈ψ−|. (E2)

Here,

|ψ−〉 = sin(θ ) |↓〉 |0〉 − cos(θ ) |↑〉 |1〉 . (E3)

For the next step, we need to consider two additional
noise processes that affect the photonic qubits before the
optical Bell measurement is performed. The first one is the
loss of the photonic qubit. This can happen at the emission,
while filtering the photons that are not of the required ZPL
frequency, in the lossy fiber, in the imperfect detectors, or due
to the arrival outside of the time window in which detectors
expect a click. All these losses can be combined into a single
loss parameter

η = ηtotal = pce pzpl
√

η f p′
det, (E4)

with η f = exp(− L
L0

), where L is the distance between the
two remote NV-center nodes in the scheme (see Fig. 6 and
Appendix A). Hence, a photon is successfully transmitted
through the fiber and detected in the middle heralding station
with probability η. Now we note that the action of the pure-
loss channel on the qubit encoded in the presence or absence

of a photon corresponds to the action of the amplitude-
damping channel with the damping parameter 1 − η [99].

The second process that effectively happens at the same
time as loss is the dephasing noise arising from the optical in-
stability of the apparatus as described in Appendix A. We note
that the amplitude-damping and dephasing channel commute;
hence, it does not matter in which order we apply the two
noise processes corresponding to the loss of the photonic qubit
and unknown drifts of the phase of the photonic qubit in our
model. Here, we first apply the dephasing due to the lack of
knowledge of the phase on Alice’s photon and then amplitude
damping on both photons due to all the loss processes.

Following the model in Appendix A, the lack of knowledge
about the optical phase will effectively transform Alice’s state
to

ρA = [Fprepλ + (1 − Fprep)(1 − λ)]|ψ+〉〈ψ+|
+ [(1 − Fprep)λ + Fprep(1 − λ)]|ψ−〉〈ψ−|, (E5)

where

λ =
I1

(
1

(�φ)2

)
2I0

(
1

(�φ)2

) + 1

2
. (E6)

Now we can apply all the transmission losses modeled as
the amplitude-damping channel. The action of this channel on
the photonic part of the state ρ results in the state that we can
describe as follows. First, let us introduce two new states:

|ψ±
η 〉 = 1√

sin2(θ ) + η cos2(θ )
(sin(θ ) |↓〉 |0〉

±√
η cos(θ ) |↑〉 |1〉). (E7)

Then, after the losses and before the Bell measurement, the
state of Alice can be written as

ρ ′
A = [sin2(θ ) + η cos2(θ )]

× (
[Fprepλ + (1 − Fprep)(1 − λ)]|ψ+

η 〉〈ψ+
η |

+ [(1 − Fprep)λ + Fprep(1 − λ)]|ψ−
η 〉〈ψ−

η |)
+ (1 − η) cos2(θ )|↑〉〈↑||0〉〈0|, (E8)

and for Bob as

ρ ′
B = [sin2(θ ) + η cos2(θ )]

× [Fprep|ψ+
η 〉〈ψ+

η | + (1 − Fprep)|ψ−
η 〉〈ψ−

η |]
+ (1 − η) cos2(θ )|↑〉〈↑||0〉〈0|. (E9)

2. States after the Bell measurement

Now we need to perform a Bell measurement on the pho-
tonic qubits within the states ρ ′

A and ρ ′
B. Here we consider the

scenario with non-photon-number-resolving detectors. As-
suming for the moment the scenario without dark counts,
we have at most two photons in the system. Hence, we can
consider three possible outcomes of our optical measurement:
left detector clicked, right detector clicked, and none of the
detectors clicked. The measurement operators can be easily
derived by noting that in our scenario without dark counts,
each of the detectors can be triggered either by one or two
photons and no cross clicks between detectors are possible due
to the photon-bunching effect. Then we can apply the reverse
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of the beam splitter mode transformations to the projectors on
the events with one or two photons in each of the detectors to
obtain these projectors in terms of the input modes. Finally,
we truncate the resulting projectors to the qubit space since in
our scenario it is not possible for more than one photon to be
present in each of the input modes of the beam splitter. In this
way, we obtain the following measurement operators:

A0 = |�+〉〈�+| + 1√
2
|11〉〈11|,

A1 = |�−〉〈�−| + 1√
2
|11〉〈11|, (E10)

A2 = |00〉〈00|.
These outcomes occur with the following probabilities:

p0 = p1 = η cos2(θ )

[
1 − η

2
cos2(θ )

]
, (E11)

p2 = [1 − η cos2(θ )]2. (E12)

The postmeasurement state of the two spins for the outcome
A0 is

ρ0 = 2 sin2(θ )

2 − η cos2(θ )
(a|�+〉〈�+| + b|�−〉〈�−|)

+ cos2(θ )(2 − η)

2 − η cos2(θ )
|↑↑〉〈↑↑|. (E13)

Here,

|�±〉 = 1√
2

(|↓↑〉 ± |↑↓〉), (E14)

a = λ
[
F 2

prep + (1 − Fprep)2
] + 2Fprep(1 − Fprep)(1 − λ),

(E15)

b = (1 − λ)
[
F 2

prep + (1 − Fprep)2] + 2Fprep(1 − Fprep)λ.

(E16)

For the outcome A1, the postmeasurement state of the spins is
the same up to a local Z gate which Bob can apply following
the trigger of the A1 outcome. The postmeasurement state of
the spins for the outcome A2, that is, when none of the detector
clicked, is

ρ2 = 1

[1 − η cos2(θ )]2
[sin4(θ )|↓↓〉〈↓↓|

+ (1 − η) cos2(θ ) sin2(θ )(|↓↑〉〈↓↑| + |↑↓〉〈↑↓|)
+ (1 − η)2 cos4(θ )|↑↑〉〈↑↑|]. (E17)

This is a separable state and so events corresponding to
outcome A2 (that is, no click in any of the detectors) will be
discarded as failure. However, dark counts on our detectors
can make us draw wrong conclusions about which of the three
outcomes we actually obtained.

The effect of dark counts can be seen as follows:
We measured A2 (no actual detection) but one of the

detectors had a dark count. This event will happen with
probability 2p2 pd (1 − pd ) and will make us accept the state
ρ2. Note that this is a classical state so application of the Z
correction by Bob does not affect this state at all.

We measured A1 or A2 but we also got a dark count in the
other detector. This event will happen with probability (p0 +
p1)pd . This will effectively lead us to rejection of the desired
state ρ0. Hence, effectively ρ0 will only be accepted if we
measured A1 or A2 but the other detector did not have a dark
count, which will happen with probability (p0 + p1)(1 − pd ).

3. The yield and QBER

Taking dark counts into account, we see that the yield of
the single-photon scheme, which is just the probability of
registering a click in only one of the detectors, will be

Y = (p0 + p1)(1 − pd ) + 2p2 pd (1 − pd )

= 2(1 − pd )

{
η cos2(θ )

[
1 − η

2
cos2(θ )

]

+ [1 − η cos2(θ )]2 pd

}
. (E18)

The effective accepted state after a click in one of the detectors
will then be

ρout = 1

Y
[(p0 + p1)(1 − pd )ρ0 + 2p2 pd (1 − pd )ρ2]. (E19)

Note that both Alice and Bob perform a measurement on
their electron spins immediately after each of the spin-photon-
entanglement generation events. This measurement causes an
error modeled as a depolarizing channel of parameter Fm on
each qubit, which means that after a successful run of the
single-photon protocol, the effective state shared by Alice and
Bob including the noise of their measurements will be given
by

ρAB = F 2
mρout + (1 − Fm)

×Fm

[
I2,A

2
⊗ TrA[ρout] + TrB[ρout] ⊗ I2,B

2

]

+ (1 − Fm)2 I4,AB

4
. (E20)

One can then extract the QBER for this state in all the three
bases using the appropriate correlated/anticorrelated projec-
tors such that

ez = Tr[(|00〉〈00| + |11〉〈11|)ρAB], (E21)

exy = Tr[(| + −〉〈+ − | + | − +〉〈− + |)ρAB]

= Tr[(|0y1y〉〈0y1y| + |1y0y〉〈1y0y|)ρAB]. (E22)

Here |+〉 and |−〉 denote the two eigenstates of X and |0y〉
and |1y〉 denote the two eigenstates of Y . We note that for
our model of the single-photon scheme the QBER in X and
Y bases are the same and therefore we denote both by a single
symbol exy.

APPENDIX F: SPADS AND SPOTL SCHEMES ANALYSIS

In order to compute the quantum bit error rate (QBER)
of the single-photon with additional detection setup (SPADS)
scheme and the single-photon over two links (SPOTL)
scheme, we derive step by step the quantum state shared
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between Alice and Bob. The following results have been
found using MATHEMATICA. Finally, we also calculate the
yield of the SPADS and SPOTL schemes.

1. Generation of elementary links

a. Single-photon scheme on Alice side

The application of the single-photon scheme on Alice’s
side leads Alice and the quantum repeater to share a state
given in Eq. (E19). This state can be rewritten as

ρA-QRe = A1|�+〉〈�+| + B1|�−〉〈�−| + C1(|10〉〈10|
+ |01〉〈01|) + D1|11〉〈11| + E1|00〉〈00|, (F1)

with A1 = A(θA,YA), B1 = B(θA,YA), C1 = C(θA,YA), D1 =
D(θA,YA), and E1 = E (θA,YA). Here, we have that

A(θ,Y ) = 1

Y
2 cos2(θ ) sin2(θ )η(1 − pd )

×{[
F 2

prep + (1 − Fprep)2]λ
+ 2Fprep(1 − Fprep)(1 − λ)

}
, (F2)

B(θ,Y ) = 1

Y
2 cos2(θ ) sin2(θ )η(1 − pd )

×{[
F 2

prep + (1 − Fprep)2
]
(1 − λ)

+ 2Fprep(1 − Fprep)λ
}
, (F3)

C(θ,Y ) = 2

Y
cos2(θ ) sin2(θ )pd (1 − pd )(1 − η), (F4)

D(θ,Y ) = 1

Y
cos4(θ )[2(1 − η)η(1 − pd ) + η2(1 − pd )

+ 2(1 − η)2 pd (1 − pd )], (F5)

E (θ,Y ) = 2

Y
sin4(θ )pd (1 − pd ). (F6)

In the above Y denotes the yield or the probability of success
of the single-photon scheme and is given by Eq. (E18). Sub-
script A indicates that in that expression for the yield and for
each of the above defined coefficients we use θ = θA. More-
over, we have made here the following change of notation with
respect to the Appendix E, |↓〉 → |0〉 and |↑〉 → |1〉.

b. SWAP gate in the middle node

In the next step, a SWAP gate is applied in the middle node
to transfer the electron state to the nuclear spin of the NV
center. This causes a depolarizing noise of parameter Fswap =
F 2

g (see Appendix A). The resulting state can then be written
as

ρA-QRC = FswapρA-QRe + (1 − Fswap)TrQR[ρA-QRe ] ⊗ I2,QR

2
.

(F7)

c. The procedure on Bob’s side

We now use the electron spin of the quantum repeater to
generate the second quantum state. Here, the procedures for
the SPADS and SPOTL schemes diverge.

In the procedure for the SPADS scheme, the quantum
repeater generates a spin-photon entangled state where the
photonic qubit is encoded in the time-bin degree of freedom.
Since the spin-photon entangled state is imperfect, the elec-
tron and the photon share a state

ρQRe−B = Fprep|�+〉〈�+| + (1 − Fprep)|�−〉〈�−|. (F8)

Here, we use the following labeling for time-bin-encoded
early and late modes of the photon: |e〉 = |1〉 , |l〉 = |0〉. This
photon is then sent toward Bob’s detector. The lossy channel
acts on such a time-bin-encoded qubit as an erasure channel
and so the quantum spin-photon state of the successful events
in which the photonic qubit successfully arrives at the detector
is unaffected by the lossy channel.

For the SPOTL scheme, the repeater’s electron spin and
Bob’s quantum memory generate a second state of the form
given in Eq. (E19). We can rewrite this state as

ρQRe−B = A2|�+〉〈�+| + B2|�−〉〈�−| + C2(|10〉〈10|
+ |01〉〈01|) + D2|11〉〈11| + E2|00〉〈00|, (F9)

with A2 = A(θB,YB), B2 = B(θB,YB), C2 = C(θB,YB), D2 =
D(θB,YB), and E2 = E (θB,YB).

d. Decoherence in the quantum memories

Decoherence of the carbon spin in the middle node can be
modeled identically for both the SPADS and SPOTL scheme.

During the n < n∗ attempts to generate the state ρQRe−B,
the carbon spin in the middle node holding half of the state
ρA-QRC will decohere. Using the decoherence model discussed
in Appendix B, decoherence of the carbon spin will thus give
us

ρ ′
A-QRC = FT1

[
FT2ρA-QRC + (

1 − FT2

)
(I2 ⊗ Z )ρA-QRC (I2 ⊗ Z )†]

+ (
1 − FT1

)
TrQR[ρA-QRC ] ⊗ I2,QR

2
. (F10)

For key generation, Alice (SPADS and SPOTL schemes) and
Bob (SPOTL scheme) can actually measure their electron
spin(s) immediately after the generation of spin photon en-
tanglement, preventing the effect of decoherence on these
qubit(s).

2. Noise due to measurements

a. Measurement of the qubits of Alice and Bob

In the SPADS scheme, Alice performs a measurement on
her electron spin immediately after each of the spin-photon
entanglement generation events to prevent any decoherence
with time of this qubit. This measurement causes an error
modeled as a depolarizing channel of parameter Fm. Bob, on
the other hand, performs a measurement on a photonic qubit
that is encoded in the time-bin degree of freedom. His mea-
surement utilizes the squashing map so that we can model the
noise arising from this measurement as a depolarizing channel
with parameter αB as described in Appendix A. Hence, the
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total state just before the Bell measurement is given by

ρA−QR−B = FmαBρ ′
A-QRC ⊗ ρQRe−B + (1 − Fm)αB

I2,A

2
⊗ TrA[ρ ′

A-QRC ] ⊗ ρQRe−B + (1 − αB)Fmρ ′
A-QRC ⊗ TrB[ρQRe−B] ⊗ I2,B

2

+ (1 − Fm)(1 − αB)TrAB[ρ ′
A-QRC ⊗ ρQRe−B] ⊗ I4,AB

4
. (F11)

For the SPOTL scheme, both Alice and Bob perform a measurement on their electron spins immediately after each of the
spin-photon entanglement generation events. This measurement causes an error modeled as a depolarizing channel of parameter
Fm on each qubit, which means that after both Alice and Bob succeeded in performing the single-photon scheme with the
repeater, the total, four-qubit state just before the Bell-measurement and including the noise of the measurements of Alice and
Bob will be given by

ρA−QR−B = F 2
mρ ′

A-QRC ⊗ ρQRe−B + (1 − Fm)Fm

[
I2,A

2
⊗ TrA[ρ ′

A-QRC ] ⊗ ρQRe−B + ρ ′
A-QRC ⊗ TrB[ρQRe−B] ⊗ I2,B

2

]

+ (1 − Fm)2TrAB[ρ ′
A-QRC ⊗ ρQRe−B] ⊗ I4,AB

4
. (F12)

b. Bell state measurement

Before the entanglement swapping, we have a total state
ρA−QR−B. We now perform a Bell state measurement on the
two qubits in the middle node. The error coming from this
measurement is modeled by concatenation of depolarizing
channels (see Appendix A), which means that the measure-
ment is actually performed on

ρfin = F 2
g F 2

mρA−QR−B + F 2
g

(
1 − F 2

m

)
TrQRe [ρA−QR−B] ⊗ I2,QRe

2

+(
1 − F 2

g

)
TrQR[ρA−QR−B] ⊗ I4,QR

4
. (F13)

While ρ ′
A-QRC is not Bell diagonal for the SPADS scheme,

ρQRe−B is, and so we find that taking into account the classical
correction (which will be performed on the measured

bit-value by Alice and Bob) the four cases corresponding
to different measurement outcomes are equivalent. This
means that if we model the correction to be applied to the
quantum state rather than the classical bit, then the four
postmeasurement bipartite states shared between Alice and
Bob are exactly the same.

For the SPOTL scheme, both ρ ′
A-QRC and ρQRe−B are not

Bell diagonal, which means that the resulting state of qubits of
Alice and Bob after the Bell state measurement depends on the
outcome of this Bell measurement and those four correspond-
ing states are not equivalent under local unitary corrections.
In fact, the two states corresponding to the �± outcomes and
the two states corresponding to the �± outcomes are pairwise
equivalent under local Pauli corrections. Hence, we will derive
two different QBER corresponding to the following different
resulting states shared between Alice and Bob,

ρ�,AB = (IA ⊗ U�±,B)TrQR

[
(I ⊗ |�±〉〈�±| ⊗ I)ρfin(I ⊗ |�±〉〈�±| ⊗ I)†

Tr(ρfin(I ⊗ |�±〉〈�±| ⊗ I))

]
(I ⊗ U�±,B)†, (F14)

ρ�,AB = (IA ⊗ U�±,B)TrQR

[
(I ⊗ |�±〉〈�±| ⊗ I)ρfin(I ⊗ |�±〉〈�±| ⊗ I)†

Tr(ρfin(I ⊗ |�±〉〈�±| ⊗ I))

]
(I ⊗ U�±,B)†. (F15)

Here U�±,B and U�±,B denote the four Pauli corrections
implemented by Bob after the corresponding outcome of
the Bell measurement. Note that for the SPADS scheme
ρ�,AB = ρ�,AB.

3. The yield and QBER

a. Yield

For both SPADS and SPOTL scheme, we calculate the
yield as the inverse of the number of channel uses required to
generate one bit of raw key, Y = 1/E[N], where E[N] is given
by Eq. (C1). For the SPOTL scheme in that formula, we use
pA/B = YA/B, where YA/B denotes the yield of the single-photon
scheme on Alice’s or Bob’s side given by Eq. (E18). For the
SPADS scheme, pA takes the same form as for the SPOTL

scheme (but is now calculated for two thirds of the total
distance between Alice and Bob rather than half), while pB is
the probability of registering a click in Bob’s optical detection
setup as in the SiSQuaRe scheme.

b. Extraction of the qubit error rates

By projecting these final corrected states onto the correct
subspaces, we can obtain the qubit error rates ez and exy (with
our model we find that for both SPADS and SPOTL schemes
the error rates in X and Y bases are the same). The state shared
between Alice and Bob after the Pauli correction will always
be the same for the SPADS scheme. Thus, there is only a
single QBER ez and exy independently of the outcome of the
Bell measurement. For the SPOTL scheme that is not the case,
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FILIP ROZPĘDEK et al. PHYSICAL REVIEW A 99, 052330 (2019)

there will be two set of QBER corresponding to the states
ρ�,AB and ρ�,AB:

ez,� = Tr[(|00〉〈00| + |11〉〈11|)ρ�], (F16)

ez,� = Tr[(|00〉〈00| + |11〉〈11|)ρ�], (F17)

exy,� = Tr[(| + −〉〈+ − | + | − +〉〈− + |)ρ�]

= Tr[(|0y1y〉〈0y1y| + |1y0y〉〈1y0y|)ρ�], (F18)

exy,� = Tr[(| + −〉〈+ − | + | − +〉〈− + |)ρ�]

= Tr[(|0y1y〉〈0y1y| + |1y0y〉〈1y0y|)ρ�]. (F19)

Again, for the SPADS scheme ez,� = ez,� = ez and exy,� =
exy,� = exy.

c. Averaging the qubit error rates

We have now derived the qubit error rates as a function
of the experimental parameters. For the SPOTL scheme, we
now average the QBER over the two outcomes to get the final
average QBER,

〈ez〉 = 〈p�ez,� + p�ez,�〉, (F20)

〈exy〉 = 〈p�exy,� + p�exy,�〉, (F21)

where p� (p�) is the probability of measuring one of the |�〉
(|�〉) states in the Bell measurement and 〈· · · 〉 is found by
averaging the expression over the number of Bob’s attempts n
with the geometric distribution within the first n∗ trials. For the
SPADS scheme, 〈ez〉 and 〈exy〉 can be averaged directly. The
dependence on n arises from the decoherence terms FT1 and
FT2 . Indeed, those terms correspond to the decoherence in the
middle node during the attempts on Bob’s side. Denoting by
pB the probability that in a single attempt Bob generates en-
tanglement with the quantum repeater using the single-photon
scheme for the SPOTL scheme and using direct transmission
of the time-bin-encoded qubit from the repeater to Bob for
the SPADS scheme, we have that the exponentials in those
expressions can be averaged as follows [17]:

〈e−cn〉 = pBe−c

1 − (1 − pB)n∗
1 − (1 − p)n∗

e−cn∗

1 − (1 − pB)e−c
. (F22)

APPENDIX G: SECRET-KEY FRACTION
AND ADVANTAGE DISTILLATION

In this section, we review the formulas for the secret-key
fraction for the QKD protocols used in our model as a function
of the QBER.

1. One-way BB84 protocol

For the fully asymmetric BB84 protocol with standard one-
way postprocessing, the secret-key fraction is given by [80,82]

r = 1 − h(ex ) − h(ez ), (G1)

where h(x) is the binary entropy function. Note that this
formula is symmetric under the exchange of ex and ez; that
is, the secret-key fraction is the same independent of whether
we extract the key in the Z or X basis. As we will see later in
this section, this is not the case for the six-state protocol with
advantage distillation.

2. Six-state protocol with advantage distillation

Now we shall examine the six-state protocol with advan-
tage distillation of Ref. [81]. For the purpose of this section,
following the notation of Ref. [81], we shall denote the four
Bell states as

|ψ (x, z)〉 = 1√
2

(|0〉 |0 + x〉 + (−1)z |1〉 |1 + x (mod 2)〉),

(G2)

for x, z ∈ {0, 1}. We then write the Bell-diagonal state as

ρAB =
∑

x,z∈{0,1}
pxz |ψ (x, z)〉 〈ψ (x, z)| . (G3)

The considered advantage distillation protocol is described in
Ref. [81]. It is shown there that if the key is extracted in the Z
basis, then the secret-key fraction for the fully asymmetric six-
state protocol supplemented with this two-way postprocessing
technique is given by

rsix-state = max

{
1 − H (PXZ) + PX̄(1)

2
h

[
p00 p10 + p01 p11

(p00 + p01)(p10 + p11)

]
,

PX̄(0)

2
[1 − H (P′

XZ)]

}
, (G4)

where

PX̄(0) = (p00 + p01)2 + (p10 + p11)2, (G5)

PX̄(1) = 2(p00 + p01)(p10 + p11), (G6)

p′
00 = p2

00 + p2
01

(p00 + p01)2 + (p10 + p11)2
, (G7)

p′
10 = 2p00 p01

(p00 + p01)2 + (p10 + p11)2
, (G8)

p′
01 = p2

10 + p2
11

(p00 + p01)2 + (p10 + p11)2
, (G9)

p′
11 = 2p10 p11

(p00 + p01)2 + (p10 + p11)2
, (G10)

PXZ (P′
XZ) is the probability distribution over the coefficients

pxz (p′
xz) and H (PXZ) [H (P′

XZ)] is the Shannon entropy of this
distribution.

Now let us have a look at how to link the Bell coefficients
pxz with our QBER ez and exy (for all our schemes, the
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estimated QBER in the X basis is the same as in the Y basis).
In this section, we assume the target state that Alice and Bob
want to generate is |ψ (0, 0)〉. Note that in the analysis in
Appendices E and F it is the state |ψ (1, 0)〉 that is a target,
but of course the secret-key fraction analysis is independent
of which Bell state is a target state as they are all the same
up to local Pauli rotations. Hence, the relation between the
Bell-diagonal coefficients and the QBER is

p10 + p11 = ez, (G11)

p01 + p11 = exy, (G12)

p01 + p10 = exy, (G13)

p00 + p01 + p10 + p11 = 1. (G14)

Therefore,

p00 = 1 − ez

2
− exy,

p01 = exy − ez

2
,

p10 = p11 = ez

2
.

(G15)

And so,

PX̄(0) = 1 − 2ez + 2e2
z , (G16)

PX̄(1) = 2(1 − ez )ez. (G17)

It is important to note that for the above described advan-
tage distillation, the amount of generated secret key depends
on the basis in which they are extracted, as has been shown in
Ref. [102]. Let us now have a look at the amount of keys that
can be extracted in the X and Y bases. As has been shown in
Ref. [102], the secret-key fraction in these cases is also given
by Eq. (G4) but now the Bell coefficients depend on QBER in
the following way:

p00 = 1 − ez

2
− exy,

p10 = exy − ez

2
,

p01 = p11 = ez

2
.

(G18)

And so,

PX̄(0) = 1 − 2exy + 2e2
xy,

PX̄(1) = 2(1 − exy)exy. (G19)

We note that we have assumed here that in the case of key
extraction in Y basis, either Alice or Bob applies a local bit flip
in the Y basis to the shared state, as the target state |ψ (0, 0)〉
is anticorrelated in that basis.

In Ref. [102], it has been also observed that in the consid-
ered case of having the QBER in the X and Y bases being
equal, the six-state protocol with advantage distillation allows
us to extract more keys if they are extracted in the basis
with higher QBER. This observation determines the basis
that we use for extracting key for the single-photon and the
SPOTL schemes that use fully asymmetric six-state protocol
with advantage distillation. Specifically, for the single-photon

scheme we observe higher QBER in the Z basis, while for
the SPOTL scheme the QBER is higher in the X and Y
bases. Therefore, these are the bases that we choose to use
for extracting keys for those schemes.

For the SiSQuaRe and SPADS schemes, the symmetric six-
state protocol is used. Hence, for those schemes we group the
raw bits into three groups corresponding to three different key-
extraction bases, and we extract the key separately for each of
these bases. Finally, to obtain the final secret-key fraction, we
note that for the symmetric six-state protocol we also need
to include sifting; that is, only one third of all the raw bits
were obtained by Alice and Bob measuring in the same basis
(the raw bits for the protocol runs in which they measured
in different bases are discarded). Hence, if we denote by ri

the secret-key fraction obtained from the group of raw bits
in which both Alice and Bob measured in the basis i, the final
secret-key fraction for the six-state protocol for those schemes
is given by

r = 1
3

(
1
3 rx + 1

3 ry + 1
3 rz

)
. (G20)

Clearly, in our case we have rx = ry = rxy.

3. One-way six-state protocol

In Fig. 7, we have also plotted the secret-key fraction
for the one-way six-state protocol. For the fully asymmetric
protocol and the case in which the key is extracted in the
Z-basis, it is given by [80]

r = 1 − ezh

[
1 + (ex − ey)/ez

2

]

− (1 − ez )h

[
1 − (ex + ey + ez )/2

1 − ez

]
− h(ez ). (G21)

Although this formula does not appear to be symmetric under
the permutation of ex, ey, ez, it is in fact invariant under
this permutation [103]. This means that for the symmetric
one-way six-state protocol, in our case the final secret-key
fraction is given by the expression in Eq. (G21) multiplied
by the sifting efficiency of one-third.

APPENDIX H: RUNTIME OF THE EXPERIMENT

In this section, we will detail how to perform an experiment
that will be able to establish that a setup can surpass the
capacity of a quantum channel modeling losses in a fiber
[see Eq. (5)]. This experiment can validate a setup to qualify
as a quantum repeater, without explicitly having to generate a
secret key. We show then that, for the listed parameters in the
main text, the single-photon scheme can be certified to be a
quantum repeater within approximately 12 h.

The experiment is based on estimating the yield of the
scheme and the individual QBER of the generated states.
More specifically, here we will calculate the probability that,
assuming our model is accurate and each individual run is in-
dependent and identically distributed, the observed estimates
of the yield and the individual QBER are larger and smaller,
respectively, than some fixed threshold values. If, with these
threshold values for the yield and QBER, the calculated
asymptotic secret key still surpasses the capacity, we can
claim a working quantum repeater. The experiment consists of
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first performing n attempts at generating a state between Alice
and Bob, from which the yield can be estimated by calculating
the ratio of the successful attempts and n. Then, the QBER in
each basis is estimated by Alice and Bob measuring in the
same basis in each of the successful attempts.

Central to our calculation is the fact that, for n instances of
a Bernoulli random variable with probability p, the probability
that the number of observed successes S(n) is smaller or equal
than some value k is equal to

P[S(n) � k] =
k∑

i=0

(
n

i

)
pi(1 − p)n−i. (H1)

Assuming the outcomes of our experiment are independent
and identically distributed, the observed yield Ȳ satisfies

P[Ȳ � (Y − tY )] = P[nȲ � n(Y − tY )]

=
�n(Y −tY )�∑

i=0

(
n

i

)
Y i(1 − Y )n−i, (H2)

where Y − tY is the lower threshold. Let us make this more
concrete with a specific calculation. For a distance of 17L0

the yield is equal to ≈5.6×10−6. Setting the maximum de-
viation in the yield to Ȳ = Y − tY with tY = 2.0×10−7 and
the number of attempts to n = 5×109 (which corresponds to
approximately a runtime of 12 h, assuming a single attempt
takes 8.5×10−6 s, corresponding to tprep and a single-shot
readout lasting 2.5×10−6 s), we find that

P[Ȳ � (Y − tY )] � 9.2×10−10. (H3)

Similarly, for the individual errors {ek}k∈{x,y,z} in the three
bases, we have that

P[ēk � (ek + tk )] = P[mēk � m(ek + tk )]

=
m∑

i=�m(ek+tk )�

(
m

i

)
(ek )i(1 − ek )m−i. (H4)

Here we set m = � n
3 (Y − tY )�, which is an estimate for the

number of raw bits that Alice and Bob obtain from measure-
ments in each of the three bases, for the total n attempts
of the protocol. All the raw bits from those three sets are
then compared to estimate the QBER in each of the three
bases. Note that we gather the same amount of samples for
each basis, even when an asymmetric protocol would be per-
formed. Setting ti = t = 0.015, ∀i ∈ {x, y, z} and, as before,
n = 5×109, we find, at a distance of 17L0 where ez ≈ 0.171
and ey = ex ≈ 0.141, that

P[ēz � (ez + t )] � 9.0×10−5, (H5)

P[ēy � (ey + t )] = P[ēx � (ex + t )] � 2.7×10−5. (H6)

Then, with probability at least

{1 − P[ēx � (ex + t )]}{1 − P[ēy � (ey + t )]}
×{1 − P[ēz � (ez + t )]}{1 − P[Ȳ � (Y − tY )]}
� 1 − 1.5 × 10−4, (H7)

none of the observed QBER and yield exceed their threshold
conditions. The corresponding lowest secret-key rate for these

parameters (with a yield of Y − tY and QBER of ex + tx, ey +
ty, ez + tz) is ≈1.97×10−7, which we observe is greater than
the secret-key capacity by a factor ≈3.29 [see Eq. (5)]
at a distance of 17L0, since the secret-key capacity equals
− log2(1 − e−17) � 5.97×10−8.

Thus, with high probability we can establish that the
single-photon scheme achieves a secret-key rate significantly
greater than the corresponding secret-key capacity for a dis-
tance of 17L0 ≈ 9.2 km within approximately 12 h.

APPENDIX I: MDI QKD

We note here that the single-photon scheme for generating
keys is closely linked to the measurement-device-independent
(MDI) QKD protocol [45]. In particular, it is an entanglement-
based version of a scheme in which Alice and Bob pre-
pare and send specific photonic qubit states to the heralding
station in the middle, where the qubits are encoded in the
presence or absence of the photon. We note that in the ideal
case of the single-photon scheme, the spin-photon state is
given in Eq. (E1). For the six-state protocol, the spin part
of this state is then measured in the X , Y , or Z basis at
random according to a fixed probability distribution (this
probability distribution dictates whether we use symmetric
or asymmetric protocol). Considering the probabilities of the
individual measurement outcomes, this is equivalent to the
scenario in which Alice and Bob choose one of the three
set of states at random according to the same probability
distribution and prepare each of the two states from that set
with the probability equal to the corresponding measurement
outcome probability. These sets do not form bases, as the two
states within each set are not orthogonal. We will therefore
refer to these sets here as “pseudobases.” Depending on
the chosen pseudobasis, they prepare one of the six states
encoding the bit value of “0” or “1” in that pseudobasis. These
states and the corresponding preparation probabilities are the
following:

(1) pseudo-basis 1: {|0〉, |1〉} with probabilities {sin2 θ,

cos2 θ},
(2) pseudo-basis 2: {sin θ |0〉 + cos θ |1〉 , sin θ |0〉 −

cos θ |1〉} with probabilities { 1
2 , 1

2 }, and
(3) pseudo-basis 3: {sin θ |0〉 + i cos θ |1〉 , sin θ |0〉 −

i cos θ |1〉} with probabilities { 1
2 , 1

2 }.
These states are then sent toward the beam-splitter sta-

tion. The station performs the standard photonic Bell-state
measurement and sends the outcome to both Alice and Bob.
Alice and Bob discard all the runs for which the beam-splitter
station measured A2 [recall the measurement operators in
Eq. (E10)]. They then exchange the classical information
about their pseudobasis choice and keep only the data for the
runs in which they both used the same basis. For those data,
they apply the following postprocessing in order to obtain
correlated raw bits:

(1) Pseudo-basis 1: For both outcomes A0 and A1, Bob
flips the value of his bit.

(2) Pseudo-basis 2: For the outcome A0, they do nothing,
for the outcome A1 Bob flips the value of his bit.

(3) Pseudo-basis 3: For the outcome A0, they do nothing;
for the outcome A1, Bob flips the value of his bit.

052330-26



NEAR-TERM QUANTUM-REPEATER EXPERIMENTS WITH … PHYSICAL REVIEW A 99, 052330 (2019)

In this way, Alice and Bob have generated their strings of
raw bits.

We note here that the direct preparation of the six states
from the three pseudobases described above in the photonic
presence or absence degree of freedom is experimentally hard.
This is related to the fact that linear optics does not allow us to
easily perform the single-qubit rotations necessary to prepare
these states. The use of memory-based NV centers offers a

great advantage here, as in these schemes the rotations that
allow us to obtain the required amplitudes of the photonic
states are performed on the electron spins rather than the
photons themselves. There has also been proposed an alter-
native scheme that also benefits from single-photon detection
events in which Alice and Bob send coherent pulses to the
heralding station [42,55].
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