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Abstract

The formal verification of concurrent programs is of particular importance, because
concurrent programs are notoriously difficult to test. Because Haskell is a purely func-
tional language, it is relatively easy to reason about the correctness of such programs
and write down manual proofs. However, since these methods are still prone to error,
this paper investigates how agda2hs can be used to automate the verification process
in Agda, while keeping the advantages of having our code available in Haskell. This
paper shows how agda2hs enables the partial verification of a simple Haskell concur-
rency model. The model is first ported to Agda, staying as close to the original code
as possible, and directly compared to the Haskell translation provided by agda2hs
to showcase the readability of the code it produces. Consequently, it is shown how
Agda’s proof techniques can be used to provide straightforwards proofs of the presence
or absence of deadlocks in simple concurrent programs written in this model. Finally,
the model’s limitations, in particular its deterministic nature, are discussed.

1 Introduction
As a strongly typed, purely functional language, reasoning about the correctness of Haskell
programs is relatively easy. However, we would also like to have a slightly more formal way of
showing other programmers that the library their code relies upon is free from bugs. While
libraries such as Quickcheck1 allow for thorough and efficient testing, testing techniques are
not quite as rigorous as formal verification methods, which aim to systematically prove the
correctness of a program [1]. In contrast to Haskell, Agda2, as a dependently typed language,
enables us to write such formal proofs about our programs. However, this language is still
relatively experimental, mostly used for research and lacking the large infrastructure of an
established programming language like Haskell.

agda2hs3 is a tool that enables Haskell library developers to formally verify their pro-
grams. It allows them to write their code initially in Agda, consequently provide formal
correctness proofs for them, and finally have agda2hs translate them to workable Haskell
code. The aim of agda2hs is to combine the benefits of both worlds, because the programs
can be formally verified in Agda, while deployment and further development, for example
by those unfamiliar with Agda, can happen in the more popular Haskell. This makes the
verified code available to anyone wishing to use it in their Haskell programs.

At this stage, agda2hs is still an experimental tool, and identifying the common lan-
guage subset of Agda and Haskell is being actively researched. In a previous B.Sc. project
at the TU Delft, five students have formally verified several Haskell data structures in order
to investigate the potential of agda2hs as a tool [2]. All of them were successful in porting
substantial sections of the chosen Haskell libraries to Agda, proving a number of formal
properties, and generating readable and equivalent Haskell code with agda2hs.

In this paper, we extend on the previous work by showing how Haskell concurrency
models can be verified with the use of agda2hs. The reason for this is that we expect that
about concurrent programs in particular, interesting properties may be proven in Agda.
Classic properties of such programs include liveness, the absence of deadlocks or program-
specific invariants [3]. The formal verification of such properties is of vital importance
to ensure the correctness of a concurrent program. If concurrency models can be ported

1https://hackage.haskell.org/package/QuickCheck
2https://wiki.portal.chalmers.se/agda
3https://github.com/agda/agda2hs
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to Agda and correctly converted to Haskell with agda2hs, we would obtain a potentially
valuable and convenient method for formally verifying concurrent Haskell programs.

Formally verifying concurrent programs is nothing new - because testing concurrent
programs is very difficult, one generally has to resort to formal verification methods, such
as proving properties using the Spin model checker 4, which has the serious disadvantage
that one has to rewrite the entire program in a second language before being able to prove
anything, and this manual translation is itself again susceptible to bugs (whereas our goal is
to write and verify the programs in Agda to begin with, and translate them automatically
with agda2hs). Work has also been done on writing such proofs in Agda for concurrent
programs generally [4]-[5] and for Haskell’s STM library5 in particular [6], so if we would
be able to automatically translate concurrent Agda programs to valid and readable Haskell
using agda2hs, this would certainly be a useful addition.

This paper therefore sets out to (1) explain how a Haskell concurrency model can be
ported to Agda, such that agda2hs produces equivalent and readable Haskell code upon
translation; and (2) identify formal properties of the programs using the given model and
verify these in Agda. In particular, because of time constraints, we will focus on the occur-
rence of deadlocks in such programs by proving their (non-)termination.

2 Background
We assume the reader to be generally familiar with Haskell as a programming language.
Haskell’s concurrency features will be explained, as well as the particular model used in this
paper. For the sake of brevity, we will also consider basic familiarity with Agda, although
an unfamiliar reader should be able to grasp the gist of the provided code examples with
the explanations given in the paper.6Little prior knowledge about concurrent programs is
necessary, since the relevant properties and problems will be highlighted here.

2.1 Concurrent Haskell
In a concurrent program, multiple threads work together simultaneously on performing one
or more tasks. Each thread is essentially a sequential program, but the effects of the actions
of the different threads will appear interleaved in time [7]. It becomes interesting when there
are side effects involved, i.e. the change of some non-local state rather than just the pure
computation of a result [8], since the occurrence of such an effect will influence the outcome
of future actions. The execution order of the threads’ actions then becomes relevant. A
common example of this is when the different threads operate on some kind of mutable
shared state, e.g. to communicate with each other.

In Haskell, a mutable state can be represented in the IO monad with an IORef7, a
mutable variable that can be read from and written to. To deal with concurrency, we can
place such a variable in a mutex (mutually exclusive) box, that can only be accessed by
one thread at a time: this is an MVar8. An MVar is a box that is either full, containing a
variable, or empty. When full, its value can be read and removed (takeMVar) or simply
read (readMVar); when empty it can be written to (putMVar). When either action is not

4https://spinroot.com
5https://hackage.haskell.org/package/stm
6See https://wiki.portal.chalmers.se/agda/ for Agda’s documentation as well as tutorial suggestions.
7https://hackage.haskell.org/package/base-4.16.1.0/docs/Data-IORef.html
8https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Concurrent-MVar.html

2

https://spinroot.com
https://hackage.haskell.org/package/stm
https://wiki.portal.chalmers.se/agda/
https://hackage.haskell.org/package/base-4.16.1.0/docs/Data-IORef.html
https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Concurrent-MVar.html


possible, a thread blocks on it when trying to perform the action, and waits until the action
becomes available. We will show how MVars can be modeled in Agda.

An elaborate and accessible introduction to concurrent programming in Haskell can be
found in [7]. It includes a chapter on Haskell’s Software Transactional Memory (STM), an
interesting and important concurrency model that is outside the scope of this paper.

2.2 Properties of Concurrent Programs: Deadlocks
Two kinds of properties characterize good concurrent programs: safety properties and live-
ness properties [3]. Safety properties ensure the program behaves correctly - this includes the
absence of deadlocks, correct results, or program-specific invariants such as that 𝑥 is never
smaller than 0. For safety properties, we can always point out a specific point in the pro-
gram where they fail, if they do. Liveness properties ensure a program makes progress, e.g.
they might specify what happens after performing an action 𝑎 or that a program eventually
always returns to state 𝑠.

In this paper, we will focus on one of the safety properties: the absence of deadlocks.
According to the Encyclopedia of Parallel Programming, “A deadlock is said to occur when
two or more processes are waiting for each other to release a resource. None of the processes
can make any progress” [9].

mVarDeadlock :: IO ()
mVarDeadlock = do

a <- newEmptyMVar
b <- newEmptyMVar
forkIO $ do

takeMVar a
putMVar b ()

takeMVar b
putMVar a ()

mVarDeadlock :: IO ()
mVarDeadlock = do

a <- newEmptyMVar
b <- newEmptyMVar
forkIO $ do

takeMVar a
putMVar b ()

putMVar a ()
takeMVar b

Listing 1: A simple concurrent Haskell program that deadlocks because the two threads each first try to
read an empty MVar before writing to the other (left) and a non-deadlocking alternative (right).

For our verification, we will consider a simple example of a deadlocking program. The
aim is to detect through proofs in Agda that this program contains deadlocks. The program
in Listing 1 (left) illustrates a simple deadlock arising from the use of MVars. This program
creates two empty MVars, and then a new thread is forked from the main thread that reads
𝑎 and writes 𝑏, while the main thread continues to read 𝑏 and write 𝑎. It meets the four
necessary conditions for a deadlock, as explained in [9]: (1) we have two mutex resources, the
MVars 𝑎 and 𝑏; (2) both resources are waited upon by one of the threads, because takeMVar
is called while the MVars are empty; (3) the resources can only be released (i.e. written to)
by the other thread; (4) the threads are waiting for each other. The program thus deadlocks.
If both threads were to act on the variables in the same order (Listing 1, right), condition
4 would be unsatisfied, because the two threads are never waiting at the same time - thus
that program is free from deadlocks.
At present, GHC’s run-time system (RTS) can automatically detect deadlocks through its
garbage collector, so this feature is built into Haskell.9 However, this detection is not flawless
and may in some cases warn for deadlocks were there are none, as well as fail to detect some
[7]. Thus, this is for debugging purposes only and it is worthhile to investigate whether we
can obtain more certainty through Agda’s proof techniques.

9https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Concurrent.html
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3 A Simple Concurrency Model
Haskell’s Control.Concurrent library10 forms a collection of concurrency abstractions that
rely on low-level primitives that are built into Haskell, which makes it difficult to translate
the definitions of e.g. MVar or STM (another concurrency model) directly to Agda. Therefore,
for a first attempt to model Haskell’s concurrency in Agda, we will work with a particular
functional specification, presented in [10], that does not make use of any additional primi-
tives. An alternative, more elaborate such model is presented in [11]; we will not use it as
our basis because it was unknown to us at the early stages of the present work, but we will
adopt crucial parts of it along the way (see section 5).

The main idea of the model presented in [10] is to represent concurrency as a monad
transformer, which can ‘lift’ the operations in any arbitrary monad to a concurrent setting.
A monad transformer is defined as:11

class MonadTrans t where
l i f t : : Monad m => m a −> ( t m) a

Since we will not make use of actual threads, concurrent processes are interleaved - we
run the first part of a computation and suspend the rest, allowing another process to run in
the meantime. We do this through what is called continuation passing style12, which allows
for partial computations. We can then define a type C to represent concurrency:

type C m a = ( a −> Action m) −> Action m

This type takes a monad m over a; additionally, it takes another argument, a function,
that specifies what should be done with the result (of type a) of the current computation
(Action m) - namely performing another action over m.

Action is defined as a data type that can be either an atomic operation, a ‘fork’ that
creates new processes, or an indication to stop a process:

data Action m = Atom (m ( Action m) )
| Fork ( Action m) ( Action m)
| Stop

The model additionally defines the action function to convert an expression of type C
into an action, and functions to turn any computation in m into an atomic action in C m13,
as well as to fork and to stop a process:

a c t i on : : Monad m => C m a −> Action m
act i on m = m (\_ −> Stop )

atom : : Monad m => m a −> C m a
atom m = \c −> Atom ( fmap c m)

stop : : Monad m => C m a
stop = \_ −> Stop

10https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Concurrent.html
11As of GHC 8.8, a type class constraint was added to the class declaration to enforce that (t m) is a

monad. Its documentation can be found at https://hackage.haskell.org/package/transformers-0.6.0.
4/docs/Control-Monad-Trans-Class.html. For our purposes the simpler definition will do.

12Read more about continuation passing style in Haskell here: https://en.wikibooks.org/wiki/Haskell/
Continuation_passing_style.
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f o rk : : Monad m => C m a −> C m ( )
fo rk m = \c −> Fork ( ac t i on m) ( c ( ) )

Originally, the model defined the atom function as atom m = \c -> Atom (fmap c m),
but since Functor is a superclass of Monad since GHC 7.10 [12], this definition can be
significantly simplified with the use of fmap.

Finally, we can then make C a monad transformer instance, such that lifting a monadic
computation to C will make it an atomic operation in the concurrent setting:

instance MonadTrans C where
l i f t = atom

To schedule the computations performed by the processes, the model makes use of a
simple round robin scheduler, which takes a list of actions, lets a process perform the first
part of a computation, and places the continuation at the end of the list. When a process is
forked, both of its actions are added to the end of the list. This procedure continues until
the list is empty (possibly indefinitely).

This model allows us to represent simple concurrent programs; it will also enable us to
construct the examples of faulty programs from the previous section, because we can use it
to represent Haskell’s MVars - we will cover the details of this as part of the implementation.

4 Implementation
Our first priority is to translate the model to Agda in such a way that agda2hs converts
it to readable Haskell code as close as possible to the definitions provided in the previous
section. Not all code can be presented here due to a lack of space, so only the most notable
parts will be discussed in detail.14

Our code will make extensive use of the standard library of agda2hs, that provides def-
initions for useful types such as List, Maybe or Monad.15 Using these rather than importing
them from Agda directly ensures they are translated correctly to Haskell.

{-# NO_POSITIVITY_CHECK #-}
data Action (m : Set → Set) : Set where

Atom : m (Action m) → Action m
Fork : Action m → Action m → Action m
Stop : Action m

{-# COMPILE AGDA2HS Action #-}

data Action m = Atom (m (Action m))
| Fork (Action m) (Action m)
| Stop

Listing 2: The Action data type in Agda (left) with the corresponding Haskell translation by agda2hs
(right).

In order to define C, we will first need a data type Action. As shown in Listing 2, it
is possible to define this in such a way that it translates exactly to the Haskell code we
want. m, representing a monad (although not restricted to monads here) is of type Set →
Set because a monad is parameterized over some a : Set.

However, note the pragma here that switches off the positivity checker. Agda requires all
its (recursive) types to be strictly positive, because otherwise one can write non-terminating

14All code can be found at https://github.com/mschifferstein/concurrent-haskell-verification/.
15See https://github.com/jespercockx/agda2hs/tree/master/lib/Haskell/Prim.
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functions with them - which, since Agda is a total language, is not allowed.16In our case,
the Atom constructor is not strictly positive because Action occurs as an argument to m.

When we turn off the positivity checker, we basically work under the assumption that
our data type is positive. That is, our proofs are valid given that this assumption holds -
meaning this part needs to be manually verified. There are cleaner, alternative solutions
thinkable which could however not be fully implemented within the scope of this project; the
interested reader may find partial implementation and documentation of related problems
in the repository.

With our Action type in place, we can move on to a definition of C. In [10], C is defined
as a type class. However, Haskell does not allow us to define instances of (C m) where C
is a type class, even with the TypeSynonymInstances flag, because C is supposed to take
two arguments rather than one. In Haskell, most monad transformers (e.g. MaybeT17) are
instead defined with newtype declarations, if not as data types, but these are not currently
accepted by agda2hs. We thus use have to opt for the more cumbersome but equivalent
alternative given in Listing 3, which agda2hs can translate without problems.

record C (m : Set → Set) (a : Set) : Set where
constructor Conc
field

act : (a → Action m) → Action m
open C public
{-# COMPILE AGDA2HS C #-}

data C m a =
Conc{act :: (a -> Action m) -> Action m}

Listing 3: A definition of C as a record type (left) with the corresponding Haskell translation by agda2hs
(right).

While [10] only provides a monad instance for C, we need to provide functor and applica-
tive instances as well, since these are superclasses of Monad as of GHC 7.10 [12]. Fortunately,
fmap and <*> can be defined in terms of bind (>>=).18 For the sake of brevity, we leave
out these instance definitions as well as the straightforward definitions of the functions that
accompany our model.

round_robin : {{Monad m}} → List (Action m) → MyNat → m ⊤
round_robin _ Zero = return tt
round_robin [] (Suc n) = return tt
round_robin (Atom x ∷ xs) (Suc n) = do

x1 ← x
round_robin (xs ++ (x1 ∷ [])) n

round_robin (Fork x y ∷ xs) (Suc n) = round_robin (xs ++ (x ∷ y ∷ [])) n
round_robin (Stop ∷ xs) (Suc n) = round_robin xs n

Listing 4: The round_robin function for interleaving actions. It takes a custom defined natural number as
argument as ‘fuel’ to ensure termination.

The last function that is worth discussing is the round_robin function from Listing 4,
which is responsible for interleaving the concurrent actions. Originally, this function is

16Read more about Agda’s strict positivity requirements here: https://agda.readthedocs.io/en/latest/
language/data-types.html#strict-positivity.

17https://hackage.haskell.org/package/transformers-0.6.0.4/docs/Control-Monad-Trans-Maybe.
html

18See https://wiki.haskell.org/Monad.
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essentially non-terminating, since new actions may always be added to the list. However,
Agda requires all its functions to be terminating.19Thus we have it take a (custom defined,
to be able to pattern match) natural number as argument, serving as ‘fuel’, ensuring that
the function terminates once the fuel runs out (reaches zero). This will unfortunately also
appear in the Haskell translation, but in practice we can initialize it with some very large
value (the maximum integer value in Haskell would allow for almost 1016 recursive calls)
that is practically equivalent to looping infinitely.

Now that we have a working concurrency model, we can use it to define MVars. [10] defines
MVars and their operations in terms of Haskell’s built-in Var, which is nowadays the IO
monad’s IORef (see subsection 2.1). Given our concurrency model, we will follow this format,
although in practice IORef is defined in terms of MVar instead. The model assumes the IO
monad as a primitive; for now we will therefore postulate20it in Agda, along with IORef and
its operations, and have our Haskell code import the existing IORef - we are thereby able to
obtain Haskell code using these primitives that compiles correctly and behaves as we would
expect. This allows us to first finish our model by adding MVars to it; in section 5 we will
see how to actually model IO.

MVar : (a : Set) → Set
MVar a = IORef (Maybe a × Bool)
{-# COMPILE AGDA2HS MVar #-}

newEmptyMVar : { @0 a : Set } → C IO (MVar a)
newEmptyMVar = lift (newIORef (Nothing , True))
{-# COMPILE AGDA2HS newEmptyMVar #-}

newMVar : a → C IO (MVar a)
newMVar a = lift (newIORef (Just a , True))
{-# COMPILE AGDA2HS newMVar #-}

type MVar a = IORef (Maybe a, Bool)

newEmptyMVar :: C IO (MVar a)
newEmptyMVar = lift (newIORef (Nothing, True))

newMVar :: a -> C IO (MVar a)
newMVar a = lift (newIORef (Just a, True))

Listing 5: A definition of MVar in terms of IORef in Agda (left) with the corresponding Haskell translation
by agda2hs (right). Operations for creating new IORefs are lifted in their entirety to atomic actions in the
concurrent setting.

Listing 5 displays the definition of MVar with operations for creating a new MVar, which
is basically an IORef (a regular, non-concurrent mutable variable) that contains a tuple of
Maybe a (which contains a value if and only if the MVar is full) and a boolean (which we
will need for the write operations). MVars can be created either empty of full. The latter
is not presented in [10], but we have added it to our model since it is part of Haskell’s
MVar definition. Function definitions have been adjusted since newIORef is defined to create
an IORef with a given value, not an empty one. Creating new MVars must be an atomic
operation in the concurrent setting, thus is lifted in its entirety.

We have also defined read and write operations for MVars. The latter and most inter-
esting one is given in Listing 6. While [10] chooses a convenient definition of MVar that
simply always writes the given value to the MVar, we opted for porting the actual semantics,
according to which the operation should block if the MVar is full.22To this aim, we should
(1) check that no other thread is currently busy writing to the MVar (i.e. the boolean tuple
value should be True); and (2) check that the MVar is currently empty. If both conditions

19Read more about Agda’s termination checker here: https://agda.readthedocs.io/en/latest/
language/termination-checking.html.

20https://agda.readthedocs.io/en/v2.6.2.2/language/postulates.html
21This corresponds to Control.Concurrent’s putMVar.
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checkWriteOk : MVar a → IO (Maybe a × Bool)
checkWriteOk v = do

v1 ← readIORef v
writeIORef v (fst v1 , False)
return v1

{-# COMPILE AGDA2HS checkWriteOk #-}

endWrite : MVar a → a → IO ⊤
endWrite v a = writeIORef v (Just a , True)
{-# COMPILE AGDA2HS endWrite #-}

writeMVar : MVar a → a → MyNat → C IO (Maybe ⊤)
writeMVar v a Zero = return Nothing
writeMVar v a (Suc fuel) = do

v1 ← lift (checkWriteOk v)
case v1 of 𝜆

{(Nothing , True) → (do
x <- lift (endWrite v a)
return (Just x));

(Just b , True) → lift (endWrite v b)
>> writeMVar v a fuel;

(_ , False) → writeMVar v a fuel}
{-# COMPILE AGDA2HS writeMVar #-}

checkWriteOk :: MVar a -> IO (Maybe a, Bool)
checkWriteOk v

= readIORef v >>=
\ v1 -> writeIORef v (fst v1, False)

>> return v1

endWrite :: MVar a -> a -> IO ()
endWrite v a = writeIORef v (Just a, True)

writeMVar :: MVar a -> a -> MyNat -> C IOs (Maybe ())
writeMVar v a Zero = return Nothing
writeMVar v a (Suc fuel)

= lift (checkWriteOk v) >>=
\ v1 -> case v1 of

(Nothing, True) -> lift (endWrite v a)
>>= \ x -> return (Just x)

(Just b, True) -> lift (endWrite v b)
>> writeMVar v a fuel

(_, False) -> writeMVar v a fuel

Listing 6: The definition of writeMVar21that blocks through busy waiting when the MVar is full, in Agda
(left) with the corresponding Haskell translation by agda2hs (right).

are met, we can write the new value to it, otherwise the operation has to block. In this
case, blocking is accomplished by having the function call itself recursively, which is known
as ‘busy waiting’ - a method that is very inefficient but is also the simplest implementation
to serve our purposes.23

The busy waiting makes the function essentially non-terminating; as with the round_robin
function, we solve this by adding ‘fuel’ and have the return type be C IO (Maybe ⊤) rather
than C IO ⊤, so that we can return Nothing when running out of fuel. Ideally we would
want to use a wrapper type to hide these implementation details for the user, so they will
not have to pattern match on the result whenever reading from or writing to an MVar.

We need to go through the implementation in a bit more detail to convince ourselves of
its correctness. When writeMVar is called, it first checks that no other thread is currently
writing the MVar. It performs this check and sets the boolean value to False in one atomic
operation, so that no two threads can do this at the same time. If the check fails, the
function recurses. If it succeeds and the MVar is empty, it writes the new value and sets
the boolean value to True in one atomic operation. If the MVar is full, it first restores the
boolean value to indicate no thread is currently writing, after which it recurses.

Finally, MVars can be used to create unbounded channels, as in Haskell’s Chan24 data
type [7], which is also possible in our model - although again we need to work around issues
with Agda’s positivity checker. An implementation may be found in the repository, but is
not discussed here because verification of it is not yet possible, due to time constraints.

23See Chapter 3 of [13].
23According to the original definition from [14], writeMVar would instead throw an error when the MVar is

already full. These are the semantics referred to by [10].
24https://hackage.haskell.org/package/base-4.16.1.0/docs/Control-Concurrent-Chan.html
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5 Verification: Proving (the Absence of) Deadlocks
Now that we have an implementation of MVars in Agda that agda2hs can translate to
correct Haskell code, we can return to the example program in subsection 2.2 and verify its
correctness. In particular, we will be addressing the problem of deadlock detection: can we
show that a concurrent program is free from deadlocks, or, in the case of the example, that
it is indeed faulty and deadlocks?

Before we can proceed with writing proofs, there is one more thing we need. At present,
we postulate IO, IORef and its operations in our Agda code, and have the translated Haskell
code use Haskell’s own built-in counterparts. However, Agda knows nothing about how
postulates behave and therefore cannot normalize expressions using them. So instead, we
will need to model their behavior: we need a functional specification that allows us to define
the impure IO operations we need in a pure way. [11] provides the details of such a model
that allows us to work with mutable state. Here we will make minimal adjustments to obtain
this model in Agda.

Loc = Nat
{-# COMPILE AGDA2HS Loc #-}

record IORef (a : Set) : Set where
constructor MkIORef
field

mem : Loc
open IORef public
{-# COMPILE AGDA2HS IORef #-}

Data = Maybe Nat × Bool
{-# COMPILE AGDA2HS Data #-}

data IOs (a : Set) : Set where
NewIORef : Data → (Loc → IOs a) → IOs a
ReadIORef : Loc → (Data → IOs a) → IOs a
WriteIORef : Loc → Data → (IOs a) → IOs a
Return : a → IOs a

{-# COMPILE AGDA2HS IOs #-}

type Loc = Natural

data IORef a = MkIORef{mem :: Loc}

type Data = (Maybe Natural, Bool)

data IOs a = NewIORef Data (Loc -> IOs a)
| ReadIORef Loc (Data -> IOs a)
| WriteIORef Loc Data (IOs a)
| Return a

Listing 7: A definition of the IOs data type with constructors for all IORef operations in Agda (left) with
the corresponding Haskell translation by agda2hs (right).

Listing 7 presents the main data type of our IO model, IOs. It has constructors for
all IORef operations we earlier postulated, as well as a Return constructor to wrap an
arbitrary value inside IOs. Each IORef includes a pointer to a (fictive) unique memory
location (through the Loc type) at which its contents can be found. In our model, IORefs
will have content of type Data, which is simply a type synonym for Maybe Nat × Bool,
so that we can define MVar = IORef Data. We will limit ourselves to natural numbers as
content; [11] suggests how a generalized version may be implemented.

There are functions for newIORef, readIORef and writeIORef that instantiate the re-
spective constructors. Additionally Functor, Applicative and Monad instances are defined
for IOs. Definitions can be found in [11], and as their conversion to Agda is straightforward
the code is not presented here.

Finally, we have a Store that keeps track of the next free memory location as well as the
data corresponding to each location. A runIOs function evaluates the stateful computation
of a program in IOs, initialized with an empty store - this computation is given by the
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function runIOState and has cases for each of the IOs constructor cases - adding new data
to the store for NewIORef, retrieving data from it for ReadIORef, updating its data for
WriteIORef and ending the computation for Return. Again our Agda implementation, left
out here for the sake of brevity, corresponds closely to the definitions given in [11].

prop : runIOs (do
ref <- newIORef (Just 5 , True)
empt <- newIORef (Nothing , True)
readIORef ref)

≡
(Just 5 , True)

prop = refl

Listing 8: A simple proof for an IORef program that the result of the final read operation evaluates to what
was originally put in.

data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x

Listing 9: Agda ’s equality data type with the reflexivity constructor that indicates that every value is equal
to itself.25

We are now able to write proofs concerning the results of programs that operate on
IORefs. For example, the proof in Listing 8 verifies that a program which creates two
IORefs and reads the contents from the first one returns the value we actually put in. It
makes use of Agda’s built-in equality data type, defined as in Listing 9. Because Agda can
reduce the left and right hand side of the equivalence to the same value, we can simply use
the refl constructor to prove the equivalence.

The simplest way to make this model work with MVars is by defining MVar = IORef
Data and simply let our MVar operations run in the IOs monad rather than the postulated
IO. With this approach, however, we lose the ability to write proofs about the content of
our memory for programs running in a concurrent setting; for this we would need to adopt
Swierstra’s IO𝑐 model that has constructors for all MVar operations as well as an additional
constructor to represent forking threads [11]. Because of time constraints, however, we have
opted to retain our MVar definition in terms of IORef as according to [10], so that we can
directly use it with the IOs model in the way just specified.

Now that we can run IO operations in a concurrent setting, we can write the example
program from subsection 2.2 in Agda. We slightly adjust the round_robin function from
Listing 4 to return a boolean value, as shown in Listing 10. The boolean value signifies
termination: it returns True if it stops because there are no actions left to perform, and
False if it runs out of fuel before all actions have been performed. Recall that the fuel was
added to enforce termination and that we will in practice make the value of this argument
so large that it will represent infinity. This setup then practically enables us to check a
program against deadlocks: if our program deadlocks, it will continue infinitely, i.e. until
the round_robin function runs out of fuel and returns False.

Listing 11 presents the deadlocking program from subsection 2.2 - recall that both the
forked thread and the main thread are stuck waiting for the other thread to write to the

25For more information on this data type, see https://plfa.github.io/Equality/.
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round_robin : {{Monad m}}� → List (Action m) → MyNat → m Bool
round_robin [] _ = return True
round_robin xs Zero = return False
round_robin (Atom x ∷ xs) (Suc n) = do

x1 ← x
round_robin (xs ++ (x1 ∷ [])) n

round_robin (Fork x y ∷ xs) (Suc n) = round_robin (xs ++ (x ∷ y ∷ [])) n
round_robin (Stop ∷ xs) (Suc n) = round_robin xs n

Listing 10: The adjusted round_robin function. Returns True if all actions are completed or False if it runs
out of fuel first.

fuel = natToMyNat 9223372036854775800
{-# COMPILE AGDA2HS fuel #-}

mVarDeadlock : Bool
mVarDeadlock = runIOs (run (do

a <- newEmptyMVar
b <- newEmptyMVar
fork (do

takeMVar a fuel
writeMVar b 1 fuel)

takeMVar b fuel
writeMVar a 2 fuel
) (natToMyNat 100000))

{-# COMPILE AGDA2HS mVarDeadlock #-}

deadlock-proof : mVarDeadlock ≡ False
deadlock-proof = refl

fuel :: MyNat
fuel = natToMyNat 9223372036854775800

mVarDeadlock :: Bool
mVarDeadlock = runIOs

(run
(newEmptyMVar >>=

\ a ->
newEmptyMVar >>=

\ b ->
fork (takeMVar a fuel >> writeMVar b 1 fuel) >>

(takeMVar b fuel >> writeMVar a 2 fuel))
(natToMyNat 100000))

Listing 11: The deadlocking program from subsection 2.2 with corresponding (trivial) proof of deadlock in
Agda (left) with the corresponding Haskell translation by agda2hs (right).

respective MVars they are trying to read. Running this program will thus result in the
round_robin function (initiated by run) running out of fuel, which thereupon returns IOs
False; the runIOs function in turn extracts that boolean value. Proving that this program
does not terminate can be done by a simple refl, because Agda is itself able to reduce
the expression to a boolean value through normalization. We do not translate the proof
to Haskell. Note that we have to take care that the value used as fuel for takeMVar and
writeMVar is significantly larger than that given to run, because otherwise we risk those
functions terminating (and thus the action list becoming empty) before the round_robin
function runs out of fuel (with the alternative model from [11] we could likely be able to avoid
this because we can take into account the return value of those functions). Furthermore, we
deliberately only use 100000 as fuel to run because the larger the value, the longer it takes
to type check, and this is clearly plenty for such a short program.

In a similar fashion, we can prove that a version of the program in which the takeMVar
and writeMVar operations of the main thread are reversed, is free of deadlocks (evaluates
to True).

However, we should also point out that our current model cannot detect all possibilities of
deadlock: when there are race conditions involved, a deadlock may pass through unnoticed.
This is illustrated in Listing 12 - according to the proof, this program terminates in our
model. In a genuine concurrent setting, however, we do not know whether it terminates:
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fuel = natToMyNat 9223372036854775800

failDetect : Bool
failDetect = runIOs (run (do

a <- newEmptyMVar
mutex <- newMVar 0
fork (do

takeMVar mutex fuel
writeMVar a 2 fuel
writeMVar mutex 0 fuel)

takeMVar mutex fuel
takeMVar a fuel
writeMVar mutex 0 fuel
) (natToMyNat 100000))

fail-proof : failDetect ≡ True
fail-proof = refl

Listing 12: Example of a program that may or may not deadlock depending on the order in which the thread
operations are interleaved. Because round-robin interleaving is deterministic, we can ‘prove’ this program
to be free of deadlocks, which in a real concurrent setting it is not.

indeed, if the forked thread gets hold of the mutex variable first, it will write to 𝑎 and make
the mutex available for the main thread so that it can retrieve 𝑎; this is the order of operations
of our round_robin implementation. But if instead the main thread gets hold of the mutex
variable first, it will wait forever for the other thread to write to 𝑎, which it cannot because
the mutex has already been taken - in this situation a deadlock occurs. The behavior of the
program thus depends on the order in which actions are performed, i.e. it has race conditions
[15]. Because our model is deterministic, we cannot trust the verification of programs that
contain such race conditions. It would be interesting to investigate whether this determinism
could be circumvented by some form of randomized interleaving or considering multiple
interleaving options at once.

6 Related Work
Iris. Iris26 is a separation logic framework that can be used to verify concurrent pro-
grams [16].27Although we are not aware of any work done with Iris on concurrent Haskell
specifically, as a higher-order framework, Iris can be instantiated with a range of different
programming languages, so we would expect it to be usable with e.g. the model discussed
in this paper. It is integrated in the Coq proof assistant, so it might be possible to use it
in combination with hs-to-coq, a tool for automatically translating existing Haskell code to
Coq [17]-[18], to obtain proofs for concurrent Haskell programs. Using this approach would
have the advantage that an entire framework for verifying concurrent programs already ex-
ists in Coq, but not in Agda; on the other hand, the order of translation (from Haskell to
Coq, rather than Agda to Haskell) has some disadvantages, because the developer needs
to be aware of the limitations of Coq while programming in Haskell. [19] also presents an
alternative Coq library for verifying concurrent programs.

26https://iris-project.org/
27Separation logic is an extension of Hoare logic that can be used for reasoning about concurrent programs

[20].
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Concurrent Haskell Debugger. The Concurrent Haskell Debugger28 (CHD) is a graphical
user interface that helps programmers debug their concurrent programs, by allowing them
to go through their program step by step and adjust the execution order. One integrated
extension is automatic deadlock detection [21], which redefines the IO monad and detects
deadlocks in different possible schedules (other than the one selected by the user) through
iterative deepening. As the search is non-exhaustive, it is not guaranteed to discover a
deadlock present in the program - but it is thereby also efficient and thus a useful debugging
tool.

Run-time verification with LTL. An extension to the CHD enables programmers to verify
concurrent programs at run-time using linear temporal logic (LTL) formulae [22]. In par-
ticular, it can be used to specify program invariants or propositions that must hold at a
particular point in the program. As explained by the developers, such properties cannot be
verified (efficiently) at compile time because it is impossible to verify all possible paths of
program execution (which may be very large or even infinite in number). Thus these need
to be verified at run-time. A disadvantage of this type of verification is that, because the
properties are checked during a single execution of the program, if no errors are found, there
is no guarantee that the properties hold for all possible program executions. Thus it is a
useful for debugging our Haskell programs, but it does not provide the formal proofs we
would like to see - although our current deterministic model does not yet provide any better
guarantees.

Model checking with LTL. A classical method of verifying concurrent programs, if not by
handwritten proofs, is by using model checking techniques in combination with LTL, which
allows us to formulate properties about concurrent programs such as fairness and liveliness.
As mentioned in section 1, one such model checker is Spin. Spin works with its own modeling
language, Promela, based on Dijkstra’s guarded command language.29Within the model,
one can define invariants that are expected to hold at any point during the program. The
model checker can be run with several algorithms to verify these invariants, and can addi-
tionally check for properties such as liveliness and fairness. In contrast to our approach, the
programmer needs to do the work here twice: both write the program in the desired target
language, and represent this program as a verifiable Spin model. Additionally, this brings
along the uncertainty of translation: how do we know the model corresponds one-to-one with
the program we wish to verify? Although some tools have been developed to automatically
extract Spin models from existing source code for some mainstream languages like Java and
C, these tools are not flawless and still require the programmer to manually specify which
parts of the program need to be modeled and to manually check the model [23]. If we would
want to use Spin for our Haskell programs, we would need to create the models manually.

Haskell contracts. Contracts, or refinement types, can be used to specify pre- and post
conditions of a function, in the form of boolean predicates, which can thereby be statically
verified (i.e. at compile time) [25].30An advantage of this technique is that contracts are
written in Haskell and do not require the programmer to learn another language. Addi-
tionally, the functions they use can be non-total or non-terminating, in contrast to Agda
functions. However, contracts are restricted to verifying pre- and post conditions and cannot
say anything about the relation between multiple functions. In [26], it has been shown how

28See https://www.informatik.uni-kiel.de/~fhu/chd/. Development of this tool seems to have been
discontinued after GHC 5.

29For the original introduction to guarded commands, see [24].
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contracts can be extended to check for race conditions in Concurrent Haskell’s STM.

7 Responsible Research
Finally, we will discuss how the present work adheres to and promotes the research principles
as formulated in the Netherlands Code of Conduct for Research Integrity [28].

Transparency. An effort has been made to make this work reproducible and verifiable. The
investigation of concurrent Haskell programs with agda2hs is far from finished, and it is
therefore especially important that others can continue this work without having to start
from scratch. To this aim, all code is publicly available31, including archived alternative
code and documentation on specific problems. Additionally, this allows others to verify the
obtained results with minimum effort.

Honesty. Not only can the results be verified to be correct, but also have we focused on
addressing the encountered difficulties and solutions here. We realize the importance hereof
so that anyone continuing this research may avoid getting stuck on the same issues and
thereby succeed in carrying it further. The discussions of current limitations serve the same
purpose.

Independence. Although the present work was supervised by active developers of agda2hs,
we believe this has not impacted the objectiveness of our assessment of its suitability to
verifying concurrent programs, because as researchers they are also primarily interested in
improving their tool, rather than promoting it. Another threat to the independence of this
work could have been posed by it being a graded B.Sc. thesis - however, as grades were not
directly influenced by the obtained results, there was no conflict of interest in this regard
either.

Responsibility. The purpose of this research, namely to contribute to the verification of
concurrent Haskell programs, and Haskell libraries in general has been explained already. It
is part of the larger aim to enrich the Haskell community with another tool to help create
error-free code.

Scrupulousness. We hope the present work along with the aforementioned points of focus
advertises its own regard for careful design, implementation, evaluation and documentation.

8 Conclusions and Future Work
In this paper, we have shown how a simple Haskell concurrency model can be ported to
Agda and successfully translated to Haskell by agda2hs. The code generated by agda2hs
is readable to and usable for Haskell programmers. As expected, the Agda programmer
needs to find workarounds for Agda’s demands of totality and termination, which lead to a
somewhat different Haskell program than we might want - we saw this in particular in the
case where ‘fuel’ needed to be added to intrinsically non-terminating functions. The effects
on the behavior of the resulting Haskell programs are however not necessarily substantial.

Another restriction we encountered was having to represent Haskell newtypes as records
in Agda, which are then translated into data types, which for our purposes was fine in terms
of functionality but undesirably led to more verbose code.

30Alternatively, contracts can be checked dynamically, at run-time, as done by e.g. [27].
31At https://github.com/mschifferstein/concurrent-haskell-verification.
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More serious are the restrictions posed by Agda’s positivity checker. Converting non-
positive data types into ones that are strictly positive takes significant effort (we were not
able to do it successfully within the scope of this project) and if done leads to more convoluted
Haskell code. On the other hand, turning off the positivity checker as we did seems a viable
alternative - one only needs to take care to manually verify and make explicit the assumption
that the data type in question is indeed positive in all its use cases.

Verification is still primarily a task for future research. We have made a start by port-
ing the mutable state IO model from [11] to Agda and showing how this can be used in
combination with [10]’s concurrency model to prove the (non-)termination of concurrent
programs for a deterministic action sequence based on round-robin. We have however also
seen how this method fails to detect deadlock possibilities in some cases in the presence of
race conditions. In fact, as pointed out by [22], it might well be impossible to decisively
prove (the absence of) deadlocks, because all possible program executions would need to
be considered. Nevertheless, if we can prove that a program does not terminate, we can at
least be sure a deadlock is possible in a genuine concurrent setting as well, even though the
converse does not hold.

Another unfortunate limitation of our approach is that we cannot be sure that the pure
IO model used for our proofs corresponds to the actual behavior of Haskell’s IO - we have
to simply assume that our model is a correct representation of the Haskell primitives. We
can at most compare the behavior of programs run in our model and with Haskell’s IO
respectively. While such an extra translation step is unavoidable if we want to write proofs
in Agda about e.g. IO programs, in practice we would like to replace them by postulates
for the agda2hs translation, so that the resulting Haskell code works in the environment
we expect it to.

The first next step should be to port [11]’s IO𝑐 model and write proofs concerning the
results of MVar operations, e.g. by inspecting the values read from memory. We expect this
to be rather straightforward, as was the modeling of IO𝑠.

There are many opportunities to expand on this work further. It would be interesting
to port a model of Haskell’s STM library to Agda. To this aim, it could be investigated
whether the STM model presented in [6] can be translated with agda2hs. To extend on the
verification of concurrent programs, it might be possible to adapt the proof methods from
[4] and [5] to work with (models of) Haskell’s concurrency concepts, which would enable
us to prove safety and liveness properties with linear-time logic. Finally, we suggest the
investigation of models of interleaving operations alternative to the implemented round-
robin, to see whether there are any options that perhaps come closer to mimicking genuine
concurrency.
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