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Summary

Macroscopic behavior of heterogeneous materials depends on the behavior of
their microstructures and the interaction between different phases. In such ma-
terials, the damaging process occurs at different length scales and time scales.
Under dynamic loading conditions, rate dependency of the materials, large de-
formations and strains, micro inertia forces and wave reflection and refraction at
the interfaces of different phases in the heterogeneous material are involved in
the macroscopic response and should be taken into account.

The computational homogenization method enables to derive the overall be-
havior of heterogeneous materials from their local-scale response. In this method,
arepresentative volume element (RVE) is assigned to a macroscopic material point
and the constitutive law for the macroscopic model at that point is obtained by
solving a boundary value problem for the RVE. However, the standard computa-
tional homogenization scheme cannot be used when strain localization occurs
and does not account for dynamic effects at the local-scale. Furthermore, in the
computational homogenization scheme, at each iteration, a boundary value prob-
lem should be solved for RVEs associated to the integration points of macroscopic
elements which leads to high computational cost. When the problem is nonlin-
ear (material and/or geometrical nonlinearities), the computational cost may be-
come more than used for direct numerical simulation (DNS).

This study aims at developing computational and numerical homogenization
schem- es which account for strain localization, dynamic effects at the local-scale
and large deformations and strains. Furthermore, strategies are presented to de-
crease the computational cost while preserving accuracy. Different heterogeneous
structures consisting of quasi-brittle materials, hyperelastic materials and poly-
mer materials are studied and proper homogenization schemes are presented.

A computational homogenization scheme is developed to model failure in
heterogeneous quasi-brittle materials under dynamic loading. In this scheme,
the heterogeneous material with strain localization is replaced by a macro-scale
model with a cohesive crack and a meso-scale model with diffuse damage. The
constitutive law for the macroscopic bulk material is determined using standard
computational homogenization. The cohesive law for the macroscopic crack is
obtained using a continuous-discontinuous computational homogenization sch-
eme which is based on a failure zone averaging technique. At the macro-scale
a dynamic analysis is performed and the meso-scale model is solved as a static
problem. The effect of the crack opening rate on the macroscopic cohesive law is
taken into account by relating the material properties of the meso-scale model to
the macro-crack opening rate. For the dynamic problems, it is shown that when
the macroscopic length scale, which is related to the macroscopic wave length, is
significantly larger than the meso-scale length scale, inertia forces at the meso-
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viii Summary

scale model are negligible. However, when the macroscopic characteristic length
is comparable with the meso-scale length scale, inertia forces at the meso-scale
result in wave dispersion and no longer can be neglected. In order to account for
the inertia forces at the meso-scale model, a dispersion tensor is computed from
the RVE problem with which the inertia forces at the meso-scale model can be
obtained. The inertia forces at meso-scale model appear as additional body force
in the macro-scale model.

A new computational homogenization scheme is developed to model hetero-
geneous incompressible hyperelastic materials undergoing large deformations.
The model is bas- ed on a computational continua formulation which assumes
that the macro-scale model consists of disjoint unit cells. Computational proce-
dures to obtain the macroscopic quantities from the RVE problem solution are
presented. It has been shown that the computational time for the proposed ho-
mogenization scheme is lower than for standard computational homogenization.

A numerical homogenization scheme is also developed to model glass particle-
tough- ened polymer materials under dynamic loading. A constitutive law for the
polymer materials is developed. It is assumed that the behavior of the heteroge-
neous material is governed by the same constitutive law as the polymer material
with unknown material parameters. A homogenization scheme is presented to
obtain the unknown material parameters by solving the RVE problem. The pro-
posed homogenization scheme can be used after shear bands occur in the poly-
mer matrix where the standard computational homogenization scheme is not
valid.

The proposed homogenization schemes are validated against DNS and objec-
tivity of the schemes with respect to the RVE size is demonstrated.



Samenvatting

Het macroscopisch gedrag van heterogene materialen is athankelijk van het gedrag
van hun microstructuren en de interactie tussen verschillende fasen. In dergeli-

jke materialen vinden schade-processen plaats op verschillende lengte- en tijd-

schalen. Onder dynamische belastingcondities zijn de snelheidsafthankelijkheid

van de materialen, grote deformaties, micro-traagheidskrachten en golfreflectie

en -refractie op de grensvlakken tussen verschillende fasen in het heterogene ma-

teriaal van belang voor de macroscopische respons.

Numerieke homogenisatie is een methode om het gedrag van heterogene ma-
terialen af te leiden uit hun reactie op lokale schaal. Met deze methode wordt een
representatief volume element (RVE) toegekend aan een macroscopisch materi-
aalpunt waarna de constitutieve vergelijking voor het macroscopisch model in
dat punt wordt verkregen door een randvoorwaardeprobleem op te lossen voor
het RVE. Echter, het gangbare numerieke homogenisatieschema kan niet worden
gebruikt wanneer de deformatie lokaliseert en het schema houdt geen rekening
met dynamische effecten op de lokale schaal. Daarnaast moet er bij iedere iter-
atie in het schema een randvoorwaardeprobleem worden opgelost voor ieder RVE
dat geassocieerd is met een integratiepunt van een macroscopische element, wat
leidt tot lange rekentijden. Wanneer het vraagstuk niet-lineair is (materiaal en/of
geometrische niet-lineairiteiten) kan de rekentijd langer worden dan voor directe
numerieke simulaties (DNS).

Deze studie heeft als doel het ontwikkelen van numerieke homogenisatie-
schema’s die rekening houden met lokalisatie van deformatie, dynamische ef-
fecten op de lokale schaal en grote deformaties en rekken. Strategieén om de
rekentijd te reduceren met behoud van nauwkeurigheid worden ook voorgesteld.
Verschillende heterogene materiaalstructuren zoals quasi-brosse materialen, hyper-
elastische materialen en polymeren worden bestudeerd en geschikte homogenisa-
tieschema’s worden gepresenteerd.

Een numeriek homogenisatieschema is ontwikkeld om het falen te modelleren
van heterogene quasi-brosse materialen onder dynamische belasting. In dit stelsel
wordt het heterogene materiaal met gelokaliseerde deformatie vervangen door
een macroscopisch model met een cohesieve scheur en een mesoscopisch model
met diffuse schade. De constitutieve vergelijking voor het macroscopische mate-
riaal wordt bepaald door gebruik te maken van standaard numerieke homogenisatie.
De vergelijking voor de cohesieve scheur volgt uit een continue-discontinue nu-
merieke homogenisatie welke gebas- eerd is op middeling van de gefaalde zone.
Dynamische analyse wordt toegepast op de macroscopische schaal en het meso-
scopisch model wordt opgelost als een statisch vraagstuk. Er wordt rekening geh-
ouden met het effect van de snelheid van scheuropening op het macroscopische
model door de materiaaleigenschappen van het mesoscopisch model te relateren
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aan de snelheid van scheuropening op de macroscopische schaal. Voor dynamis-
che vraagstukken wordt aangetoond dat wanneer de macroscopische lengte schaal,
welke is gerelateerd aan de macroscopische golflengte, significant groter is dan de
mesoscopische lengte schaal de traagheidskrachten op de mesoscopische schaal
verwaarloosbaar zijn. Echter, wanneer de karakteristieke lengte van de macro-
scopische schaal vergelijkbaar is met de lengte van de mesoscopische schaal, re-
sulteren traagheids- krachten op de mesoscopische schaal in een fenomeen zoals
golfverstrooiing dat niet langer verwaarloosd kan worden. Om rekening te houden
met de traagheidskrachten op het model van de mesoscopische schaal wordt een
dispersietensor berekend met het RVE randvoorwaardeprobleem, waarmee de
traagheidskrachten op het model van de mesoscopische schaal kunnen worden
verkregen. De traagheidskrachten op de mesoscopische scha- al worden vertaald
naar een additionele kracht in het model op de macroscopische schaal.

Een nieuw numeriek homogenisatieschema is ontwikkeld om heterogene on-
samendrukbare hyp- erelastische materialen te modelleren welke grote deformaties
ondergaan. Het model is gebaseerd op een numerieke continua formulering welke
aanneemt dat het model van de macroscopische schaal bestaat uit disjuncte een-
heidscellen. Numerieke procedures worden gepresenteerd om de macroscopis-
che grootheden te verkrijgen uit de oplossing van het RVE vraagstuk. Er wordt
aangetoond dat de rekentijd voor het voorgestelde homogenisatieschema korter
is dan voor het standaard homogenisatieschema.

Een numeriek homogenisatieschema is ook ontwikkeld om glasdeeltjes-geharde
polymeren te modelleren onder dynamische belasting. Een constitutieve vergeli-
jking voor de polymeren is afgeleid. Er is aangenomen dat het gedrag van het
heterogene materiaal wordt bepaald door dezelfde constitutieve vergelijking als
het polymeer met onbekende materiaalgrootheden. Een homogenisatieschema
is voorgesteld om de onbekende materiaalgrootheden te verkrijgen door middel
van het oplossen van het RVE vraagstuk. Het voorgestelde homogenisatieschema
kan worden gebruikt nadat deformatiezones optreden in de matrix bestaande
uit het polymeer, waarvoor het standaard numerieke homogenisatieschema niet
geldig is.

De voorgestelde homogenisatietechnieken zijn gevalideerd met DNS en de
objectiviteit van de schema’s ten opzichte van de grootte van het RVE is aange-
toond.
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Introduction

1.1. Multi-scale modeling of heterogeneous

materials

Mixing different materials in order to obtain a better strength to weight ratio and
desired material properties is being considered for the design of complex engi-
neering structures for many years. These heterogeneous materials have vast ap-
plications in many industries including civil engineering, aerospace engineering,
defense, biomechanical engineering and sports. For example, the reinforcement
of automobile tires by adding particles and fibers or rubber/glass particle tough-
ened polymer blends in defense and impact resistant structures.

Optimal design of these heterogeneous materials requires a good understand-
ing of the global behavior of the material, the local behavior of each ingredi-
ent and the relation between the global and local responses. Heterogeneities of
these materials give rise to difficulties in the design process. For instance, dam-
age processes in heterogeneous materials occur at different spatial and temporal
scales which makes the analysis more complex. When a structure is subjected to
dynamic loading, for example in defense structures, geometrical nonlinearities
due to large deformations and large strains, wave dispersion effects and complex
damage mechanisms make the design procedure more difficult.

Modeling heterogeneous materials using a direct numerical simulation (DNS)
in which detailed heterogeneities are modeled directly at the macro-scale may
give accurate results but this method needs enormous computational efforts and
is, in most cases, not practical.

Multi-scale methods provide proper tools to model heterogeneous materials.
In the multi-scale methods, macroscopic behavior of the heterogeneous material
is obtained by averaging the local-scale properties. Multi-scale methods include
concurrent methods and homogenization-based methods. Concurrent methods
can be divided into domain decomposition methods [14, 32, 42, 43, 46] and vari-
ational multi-scale methods [47]. Homogenization-based methods can be cate-
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gorized into mathematical homogenization methods, numerical homogenization
methods and computational homogenization methods. Mathematical homog-
enization methods are based on the mathematical asymptotic homogenization
theory [52, 62]. In numerical homogenization methods which are also known as
unit cell methods, a constitutive law is assumed for the macro-scale model and
the unknown parameters for the constitutive law are determined by fitting the
data obtained from a micro sample analysis [7, 67]. Unit cell methods have been
extended for higher order continuum models by several authors, e.g. Forest et
al. [25] has developed homogenization procedures for a periodic linear elastic
Cosserat medium. In computational homogenization methods [20, 30, 75], a rep-
resentative volume element (RVE) is associated to each material point. In this
method, macroscopic deformations are used to prescribe boundary conditions
on the RVEs and macroscopic behavior is obtained from solutions of the bound-
ary value problems for the RVEs. A sample volume can be defined as an RVE if the
homogenized properties do not change with the size of the sample volume.

In the computational homogenization scheme, the macroscopic stress field
is assumed to be constant over the RVE. However, when strain localization oc-
curs, for example in the form of shear bands or microcracks, this assumption is
not valid. Figure 1.1 shows averaged stress versus averaged strain curves for het-
erogeneous samples with a localized deformation pattern for different sizes. The
averaged quantities are computed over the whole sample domain. As it can be ob-
served in figure 1.1, the results are similar in the linear regime but the results for
the different sample sizes are different in the post-peak softening regime. This is
due to the fact that when strain localization occurs, the localized area does not au-
tomatically scale with sample size and the homogenized properties change with
the sample volume size [31]. Therefore, based on the aforementioned definition
of an RVE, it can be concluded that RVE can only be defined for the linear and
hardening regime.

Many researchers have worked on this issue to account for strain localization
at the local-scale. A second-order computational homogenization scheme has
been developed in [41] to model softening materials. In this method, the macro-
scopic deformation tensor and its gradients are used to prescribe the boundary
conditions on the RVE. Oliver et. al. [56] have developed a multi-scale approach
for modeling propagating fracture which is based on a continuum setting for the
fracture at both scales and a standard format of the computational homogeniza-
tion procedure. Introducing a failure zone averaging scheme, Nguyen et. al. [53]
have defined an RVE for strain localization problems. Furthermore, a discontin-
uous computational homogenization scheme is developed in [54] based on the
failure zone averaging scheme which can be used to model cohesive cracking in
heterogeneous materials. In [55], a continuous-discontinuous computational ho-
mogenization scheme is developed in which the discontinuous scheme is used
together with the standard homogenization scheme.

However, using computational homogenization methods may lead to high
computational costs. In the computational homogenization method, when ma-
terial behavior is linear, the RVE problem can be solved only once which makes
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Figure 1.1: Averaged stress versus averaged strain for the localized
heterogeneous samples with different sizes

the method computationally effective. However, when the constitutive relations
of the micro-/meso-structures are nonlinear and history dependent, for each it-
eration of the macro-scale model problem solution, a boundary value problem
needs to be solved for the RVEs associated to the macroscopic elements integra-
tion points. Therefore, in some cases, using the computational homogenization
scheme may become computationally costlier than direct numerical simulations
(DNS). This may become worse when geometrical nonlinearity is also included.
One way to decrease the computational cost is to use the homogenization scheme
only for the critical regions (for example regions where strain localization occurs).
Parallel computing can also be used to reduce the computational time. Further-
more, model order reduction methods [8] can be applied to reduce the number
of degrees of freedom for both macro-scale model and RVE problem. Using the
model reduction method requires calculation of eigenvalues and eigenvectors for
the problem which can be also computationally expensive. Alternatively, one can
also decrease the number of RVE problems by choosing a coarse mesh for the
macro-scale model. However, when the macro-scale model is subjected to large
deformation gradients or the micro/meso structures are relatively large compared
to the macroscopic model, using a standard first-order homogenization scheme
with a very coarse macroscopic mesh, results in inaccurate solutions. Since in
the first-order homogenization theory, the macroscopic strain is assumed to be
constant over the RVE it yields inaccurate solutions in these cases. Higher or-
der homogenization theory [41] and gradient elasticity models [2, 15, 29] can take
micro/meso-model deformation gradients into account. However, higher-order
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homogenization methods introduce higher-order boundary conditions and gra-
dient elasticity methods add additional degrees of freedom to the formulation.
As a result, using these methods will increase the computational cost. Therefore,
Fish and Kuznetsov [24] developed a computational continua model which con-
siders the coarse-scale domain to consist of disjoint unions of computational unit
cells. The advantages of this model are that it does not add higher-order bound-
ary conditions and additional degrees of freedom to the problem.

For dynamic problems, local inertia effects may also affect the macroscopic re-
sponse. Figure 1.2 depicts a heterogeneous body subjected to a pulse. Due to the
heterogeneity of the structure, reflection and refraction of the wave between in-
terfaces of different phases may occur which leads to wave dispersion. In a multi-
scale model, dynamic effects at the local-scale should be taken into account in or-
der to model these dispersion effects. On the other hand, performing a dynamic
analysis for the RVE problem causes spurious wave reflections at the RVE bound-
aries (figure 1.2). This makes the multi-scale modeling of dynamic problems con-
siderably more complex.

Multi-scale modeling for wave propagation problems is studied by many re-
searchers. A two-field multi-body method is developed by Perales et. al. [58]
to obtain fracture properties of heterogeneous materials under dynamic loading.
Souza et. al. [70, 71, 73] have developed a multi-scale model for heterogeneous
viscoelastic materials by considering the same form of constitutive equations at
the local-scale model and the global-scale model. Furthermore, they have de-
veloped a scheme for transition of the micro-crack to the macro-crack in which
the eXtended Finite Element Method (XFEM) [50] is used at the global-scale to
model macro cracking and the cohesive zone method is used at the local-scale for
modeling micro cracks [72]. Pham et. al. [59] have developed a transient com-
putational homogenization scheme by enriching description of the micro-macro
kinematics and a generalized Hill-Mandel condition to ensure a consistent solu-
tion of the balance of linear momentum at both scales. Wave dispersion phenom-
ena can be modeled using gradient elasticity models [2, 15, 29] in which the classi-
cal equations of elasticity are extended by adding higher order spatial derivatives
of strain, stress and/or acceleration. However, these models introduce additional
length scales in the constitutive equations which need to be identified. Another
drawback of the gradient elasticity models is that they cannot easily be imple-
mented in the standard finite element formulation and a C! continuity formu-
lation is required. Wang and Sun [77] have developed a model including micro-
inertia for heterogeneous materials under dynamic loading. Using dynamic equa-
tions of motion at the local-scale together with the averaging theorem for the
local-scale stress and strain and local-scale work, the macroscopic strain energy
and macroscopic kinetic energy are obtained which contain micro-inertia terms.
The Hamilton’s principle is used to obtain macroscopic equations of motion in
which micro-inertia appears as effective extra body forces. Dispersion effects are
modeled using a higher order homogenization method in [12, 21, 22]. Fish [23]
developed a multi-scale scheme in which the asymptotic expansions of displace-
ment, inertia, and weight functions are used to derive global-scale and local-scale
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equations of motion. Local-scale inertia effects are taken into account as an iner-
tia induced eigen strain. Local-scale inertia effects lead to additional body forces
at the global-scale which is represented using a so-called dispersion tensor. This
dispersive model is compatible with standard C° continuity finite element formu-
lations and higher order boundary conditions are not required.

RAYAY,

Macro-scale model

Figure 1.2: Wave propagation in the multi-scale model: (a) wave
reflection at interface of different materials causes wave
dispersion, (b) spurious reflections from the RVE boundaries

As mentioned before, under dynamic loading condition, structures can also

undergo large deformations and strains. Most of the works using multi-scale meth-
ods, consider small deformations at both macro-scale and micro-/meso-scale.
There are also a number of works in which large deformations and large strains
are investigated. Bolzon et. al. [9] and Moraleda et. al. [51] presented a hy-
perelastic constitutive model for compressible materials under large deforma-
tions by homogenizing the strain energy density function of periodic porous elas-
tomers. Ponte Castafieda and Tiberio [60] presented a second-order homoge-
nization approach for particle reinforced rubbers. The implementation of a 3D
numerical model using this second-order homogenization method is performed
by Bouchart et. al. [10]. Yvonnet et. al. [78] developed a computational ho-
mogenization scheme to calculate heterogeneous hyperelastic materials which
use a database of the effective strain energy density function. Each value of the
database is computed by solving a boundary value problem for the RVE and a
continuous potential is obtained using an interpolation scheme during solving
the macro-scale model.
According to the above discussion, a multi-scale model for heterogeneous materi-
als under dynamic loading should account for strain localization, dynamic effects
at the local-scale and large deformations and strains. The computational cost of
the multi-scale scheme is also a challenging issue that should be considered. De-
veloping comprehensive multi-scale methods which consider these issues is the
aim of this study.
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1.2. Scope and outline

In this study multi-scale methods are developed to model ductile and brittle het-
erogeneous materials under dynamic loading. The multi-scale methods devel-
oped in the manuscript are based on computational homogenization and numer-
ical homogenization methods. A wide range of materials are considered including
quasi-brittle material (concrete), rubber-like materials and polymer materials. In
the homogenization schemes developed in this work, strain localization, rate de-
pendency, dynamic effects at the local-scale and large deformations and strains
are taken into account. Furthermore, the existence of RVEs, and the reduction
of computational cost are discussed in this work. The remainder of this thesis is
outlined as follows:

Chapter 2. In this chapter, an overview of the problem is given and the standard
computational homogenization scheme and the discontinuous computational ho-
mogenization scheme for the static problem are described. These two methods
will be further developed and extended for the dynamic problems in this thesis.
Chapter 3. The aim of this chapter is to extend the proposed discontinuous ho-
mogenization scheme by Nguyen et. al. [54] to wave propagation problems. Fur-
thermore, rate effects are added to the model by relating the material properties
of the RVE to the rate of the macroscopic crack opening. The scheme developed in
this chapter is limited to dynamic problems where the macroscopic wave length
is significantly larger than the local-scale length scale. In this case, the problem
at the local-scale can be solved as a quasi-static problem. This is advantageous
since as explained before considering inertia forces at the local-scale may cause
two problems. Firstly, spurious reflections at the RVE’s boundaries occur and sec-
ondly, it breaks down the assumption of a constant deformation gradient over the
RVE volume.

Chapter 4. In this chapter, the computational homogenization scheme devel-
oped in chapter 3 is modified to capture the effect of meso-scale inertia forces for
high frequency loading conditions using the dispersive model given in [23]. Fur-
thermore, in order to determine the macro-crack initiation and direction, a loss
of hyperbolicity criterion in the meso-scale model is used. The effect of disper-
sion on the damage evolution is taken into account via rate dependency of the
cohesive law while the dispersion effects are assumed to be only a function of
the meso-scale model configuration and material properties. Verification studies
are performed using different numerical examples by comparing the dispersive
multi-scale results with those of direct numerical simulations (DNS) and the ex-
istence of the RVE for the proposed dispersive multi-scale scheme is shown.
Chapter 5. In this chapter, based on a so-called computational continua formu-
lation, a computational homogenization scheme is developed to model hetero-
geneous incompressible hyperelastic materials with relatively large RVEs under-
going large deformations and large strains. The computational procedures are
developed and relations are derived from the RVE problem solution to obtain the
macroscopic stress tensors and macroscopic tangent tensors used in the com-
putational continua formulation. The computational issues for calculating the
macroscopic tangent when the RVE undergoes large deformations are also dis-
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cussed. The developed computational homogenization scheme is then verified
through numerical examples for a heterogeneous elastic structure and a hetero-
geneous hyperelastic structure undergoing large deformations against the DNS
model. The computational cost of the proposed scheme versus the standard ho-
mogenization scheme is also investigated.

Chapter 6. In this chapter, a numerical homogenization scheme is developed
to model the glass particle-toughened polymer materials. A material model for
the polymer is developed and verified against experimental results. In the ho-
mogenization scheme, it is assumed that the macroscopic behavior of the glass
particle-polymer composite is governed by the same constitutive law as the poly-
mer material with unknown material parameters. The unknown material param-
eters are then obtained from an RVE problem using the standard computational
homogenization scheme. It is shown that unlike standard computational homog-
enization, the proposed method can be used after strain localization occurs in
the material. Furthermore, initiation of crazing in the polymer material is investi-
gated. The multi-scale model is then verified against direct numerical simulation
(DNS) results.

Chapter 7. Conclusions and recommendations for future work are presented in
this chapter.







Computational
homogenization schemes for
static problems

2.1. Multi-scale model

A heterogeneous body which consists of embedded stiff particles in the matrix is
shown in figure 2.1. The body is subjected to a external force #*. As it is shown
in figure 2.1, a localization band occurs in the matrix. In the multi-scale model,
the heterogeneous body undergoing localized failure is replaced by a homoge-
neous macro-scale model with a discrete cohesive crack and a meso-scale model
with a localization band of diffuse damage. In the present work, a cohesive crack
in the macro-scale model is modeled using XFEM. In order to solve the macro-
scale model problem, the constitutive law for the bulk material and the cohesive
law for the cohesive crack are required to be determined. The constitutive law
of the bulk material is obtained using a standard computational homogenization
method by applying the macroscopic strain (¢M) on the RVE boundary. By solv-
ing a boundary value problem for the RVE, the corresponding macroscopic stress
(6™) and macroscopic tangent (C) can be computed. The cohesive law for the
crack can be determined using a continuous-discontinuous computational ho-
mogenization method in which the macro-crack opening ([ul™) is applied on
the RVE for the integration points on the crack surface. The macroscopic traction
(tM) and the cohesive tangent (T'™) are calculated by solving an RVE problem.

In the following sections, the finite element formulations for the macro-scale
model and the meso-scale model are derived and the procedures for determining
the macroscopic properties from the meso-scale model are presented.

9
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-~

Heterogeneous body Macro-scale model Meso-scale model

Figure 2.1: Multi-scale scheme

2.2. Macro-scale model

The momentum equation for the heterogeneous body shown in figure 2.1 can be
written as:

—=0 2.1)
¢
Oxj

In the multi-scale scheme two spatial coordinates are introduced; macro-scale

. . . . M
coordinates x™ and meso-scale coordinates x™ which are related via x™ = £~

with { «<1. The displacement, strain and stress fields for the heterogeneous body
can be written using asymptotic expansions as [23]:

b (M, x™, 1) = uM (M, 1)+ Cul (M, x™, 1) + 0((P) 2.2)
.M _m _m .M _m _ M, M m M _m
el.j(x , X ,t)—sl.j(x , X ,t)—eij(x ,t)+u(l.yx;,,)(x , XL (2.3)
af.]. M, x™, 0 = oM, x™, 0 = oMM, )+ 6 (M, 2™, ) 2.4)

where {, M and m superscripts denote the heterogeneous model, macro-scale

model and the meso-scale model quantities, respectively. xH, ul.D, sl.Dj and U‘l.:]!

are position vector, displacement vector, strain tensor and stress tensor, respec-
tively. G;; is the meso-scale stress perturbation. ( is the ratio of the meso-model
characteristic length to the macro-model characteristic length (figure 2.1). The
LY %),

oxT " oxy

derivative used in (2.3) is defined as A(; ym) = 3 (
i i

Macroscopic strain/stress can be related to the meso-scale strain/stress fields
via:

1
eM=—— | gmaq™ (2.5)
Q™ Jom
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oM=L [ gmaqr (2.6)
1™ Jam
Energy consistency in transition of scales is satisfied by the Hill-Mandel principle
[34] which states that the macroscopic work rate must be equal to the volume
average of local-scale work rate over the RVE, according to:

1
oM M= — o &MaQ" 2.7
|Q™] Jam
Inserting equations (2.2)-(2.4) into the heterogeneous model momentum equa-
tion (2.1) and using averaging equations (2.5) and (2.6), the equation of motion
for the bulk domain of the macro-scale model can be derived as:
00?14' M\ M
=0 on QY \T (2.8)
0x d

~=

The bulk material macro-stress can be computed via:

dM=cM: M 2.9)
The fourth-order tensor CM is the bulk homogenized tensor which can be com-
puted using a homogenization technique. The boundary condition for the crack
surface reads:

n~a'M+:n-¢rM_:tM on Fy (2.10)

where n and ¥ are the outward normal to the crack surface and the macroscopic
traction, respectively. The cohesive law for the cohesive crack can be written in
the rate form as:

M

M =TM . [[u] (2.11)

where [[u]]™ and T™ are the displacement jump for the macro crack and the
macro cohesive tangent, respectively. In the finite element method, the phan-
tom node method is used to model the strong discontinuity in which the cracked
element is modeled using two overlapping elements[49, 69]. The weak form of the
problem can be written as:

f 5u.iMdr§‘4—f Vséu:aMdQM—f Sltun™.eMart =o (2.12)
M oM i

The discretized equations for the macro-scale model can be written as:

M M M
fext - (fhulk + coh) =0 (2.13)
where e]‘)ft, fé” and fM are the external force vector, the bulk force vector and
ulk coh

the cohesive force vector, respectively. Internal force vectors can be obtained via

M _ T M 3AM
fbulk_fszB o dQ (2.14a)
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M _ T M M
w _fryN Mar (2.14b)
inwhich N and B are the matrix of nodal shape functions and the matrix of deriva-
tives of the shape functions, respectively.

2.3. Meso-scale problem

The momentum equation for the meso-scale problem can be written similar to
the macro-scale problem as:
00?}.
— =0 2.15
ox™ (2.15)
J
The rate form of the constitutive law for the meso-scale problem reads:
g"=Cc":.¢™ (2.16)

where the fourth-order tensor C™ is the meso-scale model tangent module which
depends on the material model. The discretized form of equation (2.15) reads:

i’r'zlt = fer;'clt (2.17)

in which

int —

m —f BTg™dQ™ (2.18)

2.4. Macro-meso transition

In order to solve the discretized equation (2.13), one needs to find the macro-
scopic constitutive law for the bulk material (equation (2.9)) and the macroscopic
cohesive law for the macro crack (equation (2.11)) from the meso-scale model. In
section (2.4.1) the standard computational homogenization is presented which
can be used to obtain the bulk material macroscopic constitutive law. The continu-
ous-discontinuous computational homogenization scheme is explained in sec-
tion (2.4.2) which is used to obtain the cohesive law for the cohesive crack.

2.4.1. Standard computational homogenization scheme for bulk ma-
terial

Before strain localization occurs in the bulk material, the macro strain € can be
transformed on the RVE boundary as (for periodic boundary condition) [40]:

M

wi=H;"eM i=124 (2.19)

where u; is the displacement of the RVE'’s three controlling nodes shown in figure
2.2 and H; is:
Xi

H; = Vi (2.20)

N ©
| =
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Figure 2.2: Periodic representative volume element

The macroscopic stress as the volume average of meso-scale stress can be ob-

tained via
M 1 h
:W[H‘ Hy Hil|f2 (2.21)
Ja

where f; is the force vector at the controlling nodes.

At the converged state the linearized form of equation (2.17) for the meso-
scale model problem is written as K™du™ = § f™ from which the macroscopic
tangent moduli, CM | can be obtained via

H,
CM=[Hi H, Hi| (K" -K"(K")"'K™)|H, (2.22)
H,

in which subscript b denotes controlling nodes (three corner nodes) degrees of
freedom and subscript a represents the other nodes’ DOFs.

2.4.2. Continuous-discontinuous computational homogenization scheme

for the macro crack

When localization is detected in the RVE associated to a certain integration point
of the macro-scale model, a macrocrackis inserted in that point. In the cracked el-
ement, the bulk integration points are disconnected from the meso-scale model.
In the continuous-discontinuous scheme, the macro stress can be obtained from:
oM =M .M (2.23)
where CY, is a secant unloading tensor which can be computed by unloading the
localized RVE and computing the homogenized tangent from equation (2.22). To
each integration point on the crack surface, an RVE with boundary conditions
shown in figure 2.1 is allocated. The macro-meso transition equation is given as

[55]:
up(@™) = (w—1w™)C™ + [[ul™ +ul,,,, (2.24)
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where up, is the total displacement at the right edge of the RVE. The first term in
the right-hand-side of the equation represents the linear displacement and ugam
is the compatibility displacement. w and !/ denote the width of the RVE and the
averaged width of the localization band, respectively (figure 2.1). Matrix C is ob-
tained as:

1
—ATp-1 —
C=A"R"TA, A=|0 (2.25)
0

= o O

R can be computed using the cloning operation as follows: when localization is
detected in the RVE associated to the bulk integration point, the average stress
, a%c, is calculated from equation (2.21). The traction can be obtained using
t%c = a% o where n is the normal vector of the macro-crack. The initial state
of the RVE corresponding to the integration point on the crack surface is obtained
as follows: The undeformed RVE with the boundary conditions shown in figure
2.1 is loaded to at%c. Then the deformed RVE is temporarily unloaded. At the
converged state of this unloading step the secant matrix ® can be computed us-
ing equation (2.22). Taking a=1.0 shows divergence of the solution. Here a = 0.99
is used.

The failure zone averaging scheme is used to compute the averaged quantities
for the meso-scale model. The averaged quantities are calculated over the active
damaged zone Q7. The meso-scale quantities can be defined through:

| Q:in | m 1 m m m m
l= h y € dam = W om e"dQ™, Ujam =€ dam-’ (In) (2.26)
d d

h and n are the height of the RVE and normal to the crack band, respectively. [
is the width of the localization band. ugam is calculated at the moment of crack
initiation using above equations. In order to compute the macroscopic traction,
tM and the macroscopic cohesive tangent, ™, system of equations (2.17) and
(2.24) are solved. Details on theoretical and computational aspects can be found
in [54, 55].



A computational
homogenization scheme for
quasi-brittle heterogeneous

materials under dynamic
loading

3.1. Summary

'In this chapter, a multi-scale numerical approach for modeling cracking in het-
erogeneous quasi-brittle materials under dynamic loading is presented.

In the proposed model, a discontinuous crack model is used at macro-scale
to simulate fracture and a gradient-enhanced damage model has been used at
meso-scale to simulate diffuse damage. The traction-separation law for the co-
hesive zone model at macro-scale is obtained from the meso-scale through the
discontinuous computational homogenization method. An implicit time integra-
tion is used to solve the dynamic problem at the macro-scale while the meso-scale
model is solved as a quasi-static problem. The effect of crack opening rate on the
macro cohesive law is taken into account by relating the material properties of the
meso-scale model to the macro crack opening rate. The objectivity of the model
response with respect to the representative volume element size is demonstrated
for wave propagation problems. The model is verified by comparison with a direct
numerical simulation.

1Based on reference [36]
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Figure 3.1: Wave propagation in a heterogeneous beam

3.2. Computational homogenization scheme for dynamic
loading

To use computational homogenization theory, the problem must meet the fol-
lowing requirements. Firstly, the RVE should exist for the heterogeneous mate-
rial. As it is noted in chapter 1, the RVE exists if an increase in size does not
change homogenized properties and the sample is large enough so that the meso-
/micro- structure randomness does not affect the homogenized properties. The
second important issue in computational homogenization is the principle of sep-
aration of scales which indicates that the macroscopic characteristic length scale,
IM, which is either geometrical or related to the characteristic length of the phe-
nomenon [3] is assumed to be much larger than the local-scale length, I (see
figure 2.1).

Figure 3.1 depicts a wave propagating with wave speed v, through a heteroge-
neous beam of length L. In wave propagation problems it can be shown that the
macroscopic characteristic length, IM is related to the macro-scale wave length,
A, through M= % [11]. In this case, the principle of separation of scales reads:

A 2wl™
NI

«1 (3.1)

Fish et. al. [21] showed that higher-order homogenization is required to
model dispersion effects in wave propagation problems using a two-scale asymp-
totic expansion method. They demonstrated that in a dynamic problem, ho-
mogenized material properties obtained using the zero-order homogenization
method is the same as in the statics. It is also concluded in [21] that for low val-
ues of § (5 <1072 & 1071, the classical zero-order homogenization gives proper
results for dynamic problems.

In this chapter, problems with small values of 6 are considered. Therefore, ac-
cording to the aforementioned discussion, the structural response is obtained by
solving the dynamic problem for the macro-scale model and for each time step of
the macro-scale solution, the material response is obtained from a static analysis
of the meso-scale problem.



3.2. Computational homogenization scheme for dynamic loading 17

3.2.1. Macro-scale model
The momentum equation for the heterogeneous body (figure 2.1) in a dynamic
problem can be written as:

— =plii} 3.2)

in which p¢ is the density of the heterogeneous body. The discretized equation
(2.13) can be written for a dynamic problem as:

MMM = M (e F) 3.3

where MM is the macro-scale model mass matrix and can be obtained via:
MM = f NTpMNaoM (3.4)
QM

in which p™ denotes the macro-scale model density and can be obtained from
the meso-scale mass densities p’"(:p() as:

1
M= _—— maQm (3.5)
T
An implicit Newmark time integration scheme is used to solve equation (3.3)
in which consistent mass matrix is used. fbMu 1 and fcl‘;’h are computed from the
meso-scale problem (RVE) using standard computational homogenization (2.4.1)
and discontinuous computational homogenization (2.4.2) schemes, respectively.

3.2.2. Meso-scale model

In this chapter quasi-brittle materials (for example concrete) are analyzed. A grad-
ient-enhanced damage model [57] is used to model the behavior of such materi-
als. The stress-strain relation is given as [44]:

" =1-w)C™:e™ (3.6)

where o is the scalar damage variable (0 < w < 1) and C™ is a fourth-order tensor
which contains the elastic moduli. The damage evolution law is written as:

0 ifx <xg
W= (3.7

1-E£[1-y+yexp(-px—xp)] ifx >«;

K1

where vy, f and x; denote residual stress, softening slope and damage threshold,
respectively. « is a scalar measure of the largest strain ever reached and is defined
by loading function f as:

f=8eq—x (3.8)

f and « satisfy the Kuhn-Tucker conditions:

=<0, =0, fx=0 (3.9
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£¢q is the nonlocal equivalent strain which is implicitly related to the local equiv-
alent strain according to [57]:

Eoq— CV?Eeq = Eeq (3.10)

In this equation, c is defined as ¢ = %lf and [, represents the length scale. The
local equivalent strain [48] is defined as:

Eeq = \/(€1)* + (€2)? 3.11)

where ¢; are the principle strains and (x) refers to the positive part of x.
At time step t and iteration i (in case of using implicit time integration for non-
linear problems) in the macro-scale problem solution procedure, a quasi-static
problem should be solved for RVEs associated to the integration points on the
crack. The discrete system of equations for meso-scale model (RVE) can be writ-
ten as:

(t,i)flg}” _ (50 fm (3.12)

int
where "9 £ ‘and (") f¢*! are the internal force vector and the external force vec-
tor for the meso-scale problem (at time step ¢ and iteration i of the macro-scale
problem solution), respectively. By solving equation (3.12) one can find macro-
scopic quantities for the bulk (6™ and €M) and the macro crack (£ and T™) at
time step t and iteration i for each integration point.

3.3. Wave propagation in a heterogeneous elastic beam
In this section, a heterogeneous 3-phase beam is considered which is subjected
to a half sine impact pulse at one end (figure 3.2). Material properties for dif-
ferent phases are given in table 3.1. In this case, the beam remains elastic dur-
ing the loading. Figure 3.3 depicts two different methods for modeling the prob-
lem. Figure 3.3 (a) shows a direct numerical simulation (DNS) in which all het-
erogeneities are directly modeled whereas figure 3.3 (b) illustrates the multi-scale
model. Three phases including matrix, aggregates and interfacial transition zone
(ITZ) are shown in yellow, green and blue, respectively. As shown in figure 3.3
(b), an RVE is associated to each integration point on the model. The dimensions
of the RVE are 10 mmx 10 mm which is 100 times smaller than the macro wave
length which is 1000 mm.

The Newmark time integration scheme is used to solve the dynamic problem
at the macro-scale. The time step for the macro-scale problem is 5.0e-4 (ms). For
a certain time step, the macroscopic strain is transmitted to the RVE boundary
condition using (2.19) and after solving the static boundary value problem (BVP)
for the RVE, the homogenized stress and tangent moduli are calculated through
(2.21) and (2.22). The tip displacement obtained from the DNS model and multi-
scale model are shown in figure 3.4. Stress history curves for different points along
the beam are given in figure 3.5 for DNS and multi-scale models. In this figure,

curve number 71 shows average stress in x direction (0} = @ JomoMdQ) overa
n n

domain specified as {(x, y) € QI,\f [20(n—1) = x<20n,0 <y <20} (in mm). Good



3.3. Wave propagation in a heterogeneous elastic beam

19

180 mm

20 mm

— F(t)

2.500

2.000

1.500

F (kN)

1.000

5007

0 ‘ ‘ ‘

0 001 002 003 004 005 006 007 008

Time (ms)

Figure 3.2: Heterogeneous elastic beam under dynamic loading

agreement can be observed between the results obtained from the DNS model

and the multi-scale model.
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Figure 3.3: Direct numerical simulation and multi-scale model

Table 3.1: Material properties of different phases.

Matrix Aggregate

ITZ

E  (GPa) 12 80
v ) 0.25 0.15
p (kg/m3) 1900 2400

7.2
0.35
1900
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Figure 3.4: Tip displacement for DNS model and multi-scale
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Figure 3.5: Stress history for DNS model and multi-scale model

3.4. Wave propagation in a heterogeneous beam with strain
localization using rate-independent model

To study wave propagation in strain localization problems, a heterogeneous beam
is subjected to a constant velocity at both ends (figure 3.6). Tensile waves prop-
agate through the beam and after superposition of the waves at the center of the
beam, the stress at this point exceeds the tensile strength and a crack initiates.
Figure 3.7 shows the multi-scale model of the problem. Voided structures with
different sizes are chosen as RVE for this problem. It should be mentioned that
the multi-scale scheme is applied only on the crack and the bulk part is solved us-
ing the standard finite element method. The material properties for the RVE and
the bulk material are given in table 3.2. A constant velocity equal to 0.3 (m/s) is
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applied at both ends of the beam. The time step is set to 3.2e-4 (ms)®.

Parameter c in table 3.2 is related to the internal length-scale, ., which is
linked to the microstructure of the material. This parameter can not be measured
directly in the laboratory. The model needs to be calibrated for parameter ¢ using
experimental data. However, this is out of the scope of this work. In order to show
the influence of parameter c, cohesive laws computed for ¢=0.01, 0.04 and 0.07
mm? using a 2.5 mmx2.5 mm RVE are given in figure 3.8. It can be observed that
a decrease in parameter c leads to a more brittle response. This can be explained
in figure 3.9 which shows the localization band at t=0.0128 (ms) in the RVE for
various values of parameter c. The width of the damage band increases with in-
creasing value of ¢ and hence for a given traction more energy dissipates. The
RVE size should be large enough to encompass the localization band, otherwise
results become dependent on RVE size.

Cohesive laws computed from different RVE sizes, for ¢=0.04 mm?, according
to the failure zone averaging scheme, are illustrated in figure 3.10. It can be ob-
served that the results are objective with respect to RVE size. In order to verify the
multi-scale model, the results are compared with a DNS model. Figure 3.11 de-
picts the DNS model in which the material properties of the voided part and bulk
part are similar to those of the RVE and the bulk part of the multi-scale model.
Averaged stress over active damage zone (similar to the averaged strain in equa-
tion (2.26)) versus damage opening, u?ﬂm, for the DNS model and the multi-scale
model are shown in figure 3.12 which shows good agreement. The difference be-
tween the results in the elastic branch is due to the fact that the mesostructure
is not present in the multi-scale model before crack initiation and the averaged
properties for the bulk part are not used before crack initiation. The RVE failure
mode using the multi-scale model is also compared to that of the DNS model at
time step t=0.0128 (ms) in figure 3.13. This comparison also demonstrates that
the development of the damage zone for both models is similar.

For the problems described in this section, the computational time required
for solving the DNS model until time t=0.001376 (ms) is 66.37 (s) while for the
multi-scale models with RVE sizes 2.5 mmx2.5 mm, 5.0 mmx2.5 mm and 5.0
mmx5.0 mm are 29.2 (s), 65.42 (s) and 188.9 (s), respectively. The computational
time for the multi-scale model with RVE size 5.0 mmx5.0 mm is larger than that of
the DNS model but in this problem results obtained from an RVE size 2.5 mmx2.5
mm are accurate enough and as mentioned its computational time is less than
half of that of the DNS model. The computational time for a multi-scale model
depends on the size of the RVE and the mesh density of the RVE and the coarse

2The relevant time-scale can be calculated by dividing the crack tip speed by the cohesive zone

length. The cohesive zone length can be obtained as: I.,j = 2—72’ I _EV ) ZZG < [79]. In this equa-
max

tion G¢ and f4x are the fracture energy and maximum cohesive force, respectively. The limit-
ing crack tip speed for mode I fracture is the Rayleigh wave speed which can be calculated as:

CR= (w) \/ ﬁ [26]. So the minimum time step can be found using: At,,;, = lon . The

T+v ‘R
minimum time step for the problem given here is 6.2e-3 (ms). Due to rate dependency, an additional
time-scale related to the crack opening rate is present which is generally smaller than the time scale
linked to the crack tip speed. So, in order to ensure accuracy of the modeling, the time step is set to
3.2e-4 (ms).
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model. However, one of the advantages the multi-scale method is that parallel
computing methods can be used in this framework which decreases the compu-
tational time to a significant extent.

125 mm
1
VO -] 12.5 mm : —> VO
£ 1
X
Figure 3.6: Heterogeneous beam under dynamic loading
2.5 mmx2.5 mm 5.0 mmx2.5 mm 5.0 mmx5.0 mm

Figure 3.7: Multi-scale model and different RVE sizes

Table 3.2: Material properties for bulk material and RVE

Bulk RVE
E  (GPa) 50 50
v ) 0.2 0.2
K1 ) 03 8e-5
a ) 0.99 0.99
B ) 1500 1500
p  (kg/m®) 1200 1200
c (mm? 004 004
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Figure 3.11: DNS model.
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3.5. Rate-dependent cohesive law

There are two sources for rate dependency in concrete materials [13]: (i) the vis-
coelasticity of the material behavior in the bulk of the structure, (ii) the rate pro-
cess of the bonds breakage in the fracture process zone. Both mechanisms are im-
portant for concrete but in high strain rate dynamic loading, the latter is the dom-
inant mechanism which causes the cohesive law to be rate dependent. BaZant
[5, 13], by considering fracture as a thermally activated phenomenon, derived a
rate-dependent softening law. Here, we consider mode I fracture and for the trac-
tion in normal direction to the crack surface, the rate dependent softening law
can be written as:

L,
1+clasinh( d )] M (3.13)

! (1 ) = -
0

where subscript n shows the direction to the crack surface, [[it]]],\:[ denotes the
macro crack opening rate and t(% is the traction under static loading condition
following from the RVE analysis. ¢y and c; are material parameters.

Here, we assume that, when a crack initiates, the damage threshold, «;, in the
gradient damage model which is used for meso-scale model, is dependent on the
crack opening rate through:

i (1) = x (3.14)

i
1+ cjasinh ( (ull, )
Co

in which K‘} is the static damage threshold. In order to investigate this assumption,
cohesive laws are computed for various values of x; (for problem shown in figure
3.6) which are obtained from equation (3.14) for [[it]]z/lz 0.0, 0.25, 0.5, 1.0 (m/s).
Here, cp and c; are taken equal to 0.8 and 0.5, respectively °. In figure 3.14, these
results are shown with solid lines. The dashed lines depict the static cohesive law,

fal)y,
toMn’ multiplied by % From figure 3.14, it can be concluded that:
1
e () (1, weany) o ()
! (1 iy ) = ———e% o - ~——") 315
KT Lon KT

The above relation shows that equations (3.13) and (3.14) are almost equiva-
lent. So, in order to capture rate dependency effects in the macro-scale cohesive
law, one can insert rate effects in the meso-scale model using equation (3.14).
In the solution procedure, at time step ¢;, for a certain crack in the macro-scale
model, the crack opening rate is calculated and the damage threshold for the RVE
corresponding to the integration points on this crack is updated using equation

3parameters cp and ¢] can normally be found by fitting the model with experimental data. Due to lack
of experimental data, these coefficients are chosen such that the effect of rate dependency on the
cohesive law can be properly observed.
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(3.14). To obtain a more accurate result, the problem is solved again for time step
t; with updated values for damage threshold, «;.
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Figure 3.14: Traction-macro crack opening for various x

3.6. Wave propagation in a heterogeneous beam with strain

localization using rate-dependent model

The problem described in figure 3.6 is now considered for a crack with a rate-
dependent cohesive law. The multi-scale problem is solved for different loading
rates. Figure 3.15 illustrates the computed cohesive laws for various RVE sizes
at different loading rates. As it can be observed in this figure, for a given crack
opening, the traction increases with loading rate. It is also obvious that the ob-
tained softening curves are objective with respect to the RVE size. The area under
the traction-separation curve represents the dynamic fracture energy (G). Figure
3.16 shows the fracture energy versus applied velocity (Vp) for various RVE sizes.
The dashed curve is an exponential function with format y, + Aexp (— % fitted to
the data. Constant numbers yp, y; and A are equal to 3.01, 0.45 and -1.35, respec-
tively. It can be observed that the fracture energy increases with loading rate.

In order to verify the model, a DNS model is presented as before. In the DNS
model, the relative velocity values between right-hand side and left-hand side of
the voided part (parts shown with red lines in figure 3.11), after damage initiation,
is taken as the crack opening rate. A comparison of crack opening rate in multi-
scale model and DNS model for V5=0.3 (m/s) is shown in figure 3.17. The averaged
stress over the active damage zone versus damage opening is given in figure 3.18
for the multi-scale and the DNS model at various loading rates. It can be observed
that for lower velocities the results are in good agreement. But, at higher loading
rates, the curve obtained for the DNS model is above the multi-scale curve and
the difference between these two curves increases with increasing loading rate.
This difference stems from the inertia forces around the damaged zone in the
DNS model. In the multi-scale model, as discussed before, the inertia forces at
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meso-scale are neglected in the present work and as a result the effects of iner-
tia forces cannot be captured. Nevertheless, even at high rates, the multi-scale
model is capable of properly calculating the material response. To illustrate this
fact, the density of the voided part in the DNS model is assumed to be artificially
small so that the inertia forces around the damaged zone are negligible. Averaged
stress-damage opening curves are shown for V5=1.0 (m/s) in figure 3.19. It can be
observed that the curves for the DNS model and the multi-scale model lie on top
of each other when the inertia forces are neglected in the voided part.
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Figure 3.15: Computed cohesive laws for different RVE size at
various loading rates
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3.7. Computation of rate dependent cohesive law for ran-

dom heterogeneous meso-structure

In this section the model will be used to compute rate dependent cohesive laws
for a heterogeneous three-phase material. Three phases include circular aggre-
gates, ITZ and matrix. The size of aggregates is in the range of 1.25 (mm) to 2.5
(mm) and they are randomly distributed in the matrix. The width of the ITZis 0.25
(mm) and the aggregate density is 45%. It is worth mentioning that in the gradi-
ent enhanced model used for the meso-scale model (section (3.2.2)), the normal
component of the gradient of the nonlocal equivalent strain is zero on the external
boundaries only. As a result, there exist non-local interactions at the interface of
different phases. However, this is not a critical issue in the present work because
the aggregates are elastic and the material properties used for matrix and ITZ are
almost similar.

Table 3.3: Material properties for RVE

Matrix Aggregate 1TZ

E (GPa) 25 30 20
v ) 0.2 0.2 0.2
Ky ) 7e-6 0.3 3e-6
a (=) 0.99 0.99 0.99
B (=) 1500 1500 1500
p (kg/m® 1200 1200 1200
c (mm?) 0.02 0.02 0.02

The two-scale model is shown in figure 3.20. Loading and boundary condi-
tions are the same as in the wave propagation problem described in figure 3.6.
The length and width of the beam are 800 (mm) and 125 (mm), respectively. Ma-
terial properties for the RVE are given in table 3.3. The macro-scale bulk material
is an elastic material with Young’s modulus of 30 (GPa) and Poisson ratio of 0.2.
The material constants ¢y and c¢; from equation (3.14) are 0.2 and 1.0, respec-
tively. The time step is 1.5e-3 (ms). Three different sizes for the RVE with random
structure are used. Traction-separation (cohesive law) curves for the different RVE
sizes at various loading rates are demonstrated in figure 3.21. It can be observed
from figure 3.21 that the traction-separation curves are independent of RVE size.
Slight differences observed between the results for various RVE sizes are due to the
randomness of the structure and the fact that complex damaged areas are simply
replaced by a rectangular damaged zone in this model (see equation (2.26)). Vari-
ation of the fracture energy with applied velocity is depicted in figure 3.22. It can
be observed that the fracture energy is larger at higher loading rates. The constant
numbers for the fitted curve are y=0.44, y;=0.09 and A=-0.23. In order to show
the rate effects on the failure evolution at meso-scale, the problem shown in figure
3.20 is solved for V4=0.2 (m/s) using rate-dependent and rate-independent mod-
els. Failure zones for a 20 (mm) x20 (mm) RVE are illustrated in figure 3.23 when
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the macro-crack traction is equal to 4766.74 (Pa). It can be observed that the lo-
calized band width for results obtained with the rate-dependent model is larger
than the width obtained with the rate-independent model. This is consistent with

results reported by Zhou et. al. [79].
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Figure 3.20: Multi-scale model

Traction (MPa)
(=}
vy

-~ 10 mm x 10 mm(Static)
- |5 mm X% 15 mm(Static)
=+ 20 mm x 20 mm(Static)
- 10 mm x 10 mm(V,=0.05)
- 15 mm x 15 mm(V¢=0.05)
=+ 20 mm x 20 mm(V,=0.05)
-~ 10 mm x 10 mm(V(=0.2)
= 15 mm x 15 mm(V,=0.2)

=20 mm x 20 mm(V=0.2)

=4

0.001

0.002  0.003

0.004  0.005
Macro crack opening (mm)

0.006

Figure 3.21: Cohesive law for various RVE size

0.007



3.8. Conclusion 31

045 o
04 3 —_—"
E ==
% 0.35 4 /// [ ] 10 mm x 10 mm(Static)
> . s | | 15 mm x 15 mm(Static)
= E ;’ A 20 mm x 20 mm(Static)
g 033 Vs ® 10 mmx 10 mm(V,=0.05)
2 3 // | | 15 mm x 15 mm(V,=0.05)
2025 —: /’ A 20 mm x 20 mm(V,=0.05)
2 q A/ 10 mm x 10 mm(V,=0.2)
SEE
= 024 15 mm x 15 mm(V¢=0.2)
T q . 20 mm x 20 mm(V,=0.2)
O 1 5 | T T T T | T T T T | T T T T | T T T T | T T T T
0 0.05 0.1 0.15 0.2 0.25

Velocity (m/s)

Figure 3.22: Fracture energy versus applied velocity for different
RVE sizes

0.0 0.2 04 06 0.8 1.0

T [ e

Damage parameter

Rate-independent model Rate-dependent model

Figure 3.23: Localized band width at meso-scale for
rate-independent and rate-dependent models

3.8. Conclusion

In this chapter, the wave propagation problem in heterogeneous materials is stud-
ied using a multi-scale method. It is shown that when the length of the macro-
scopic propagating wave is significantly larger than the local-scale dimensions,
one can perform a quasi-static analysis for the local-scale problem.

A two-scale rate-dependent crack model is developed based on the discontin-
uous computational homogenization scheme in which a failure zone averaging
technique is used. Rate effects due to bond breakage in the fracture process zone
are taken into account in the multi-scale model through the dependency of the
material properties at the meso-scale model on the macrocrack opening rate.

The results obtained for various loading rates using different RVE sizes show
that the model is objective with respect to the RVE size. Comparison of the multi-
scale model results with those of a DNS model shows a good agreement which
not only certifies the capability of the discontinuous homogenization method but
also supports the idea of neglecting wave propagation at the local-scale problem.







A dispersive multi-scale crack
model for quasi-brittle
heterogeneous materials under
impact loading

4.1. Summary

'A dispersive multi-scale model is presented to model failure in heterogeneous
quasi-brittle materials under high frequency loading conditions. In the disper-
sive multi-scale model, the heterogeneous model undergoing localized failure
is replaced by a homogeneous macro-scale model with a cohesive crack and a
meso-scale model with diffuse damage. Each material point of the macro-scale
model is linked to a heterogeneous meso-scale model. The macro-crack is mod-
eled as a strong discontinuity and the gradient-enhanced damage model is used
to model diffuse damage in the meso-scale model. The constitutive law for the
bulk material is obtained from the meso-scale model analysis using a standard
computational homogenization scheme. The cohesive law for the macro-crack
is obtained using a continuous-discontinuous homogenization scheme which is
based on a failure zone averaging technique. In the dispersive multi-scale model,
at the macro-scale, a dynamic analysis is performed and the meso-scale model is
solved as a quasi-static problem. The meso-scale inertia forces are taken into ac-
count via a dispersion tensor which only depends on the meso-scale model ma-
terial properties and the heterogeneity of the material. The meso-scale inertia
effects appear as additional body forces in the macro-scale model and cause dis-
persion of the propagating wave. The effect of dispersion on the cohesive cracking
is captured via a rate dependent cohesive law. The dispersive multi-scale model

1Based on references [37, 38]
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Figure 4.1: Wave propagation in a heterogeneous beam

is verified against a direct numerical simulation and the objectivity of the scheme
with respect to the representative volume element size is shown.

4.2, Dispersive Multi-scale model for high frequency load-

g
In chapter 3, the dynamic problems in which the macroscopic wave length is sig-
nificantly larger than meso-scale model is considered and it is shown than in such
cases the meso-scale problem can be solved as a static problem. This chapter fo-
cuses on the dynamic problems in which the macro-scale wave length is compa-
rable with the size of the meso-scale model. Figure 4.1 shows a wave propagating
with wave speed v, through a heterogeneous beam of length L. Unlike the prob-
lem shown in figure 3.1 in chapter 3, the macroscopic characteristic length ™
(see section (3.2)) is comparable with the meso-scale model length /. In this
case equation (3.1) rewrites as:
I 27l™
=T g2 1 (4.1)
Similar to the wave propagation problem in chapter 3, the macro-scale model
is solved as a dynamic problem while the meso-scale problems are solved as quasi-
static problems. However, when 6 = 1, the dispersion effects cannot be neglected
but since the meso-scale model is being solved statically, wave dispersion which
is caused by the meso-scale inertia forces cannot be modeled. In order to model
the effect of the meso-scale inertia forces, a dispersion tensor D, which can be
computed from the meso-scale model is presented.

4.2.1. Inclusion of the meso-scale model inertia forces in the macro-

scale model
The inertia force for the heterogeneous body (figure 2.1) can be written as:

Pt (6™, x™, 1) = pM i (6™, 1) + o™ il (6™, 5™, 1) (4.2)

where ulD is acceleration vector and as described in chapter 2, {, M and m super-

scripts denote the heterogeneous model, macro-scale model and the meso-scale
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model quantities, respectively. In [21], a higher order homogenization method is
used for dynamic problems and it is shown that the meso-scale inertia force vec-
tor, p™ii}" (in equation (4.2)), is related to the acceleration of the gradients of the
macroscopic displacement fields. The inertia force vector of a material point in
the macroscopic model is equal to the volume average of the inertia force vec-
tors of the heterogeneous body over a sample volume associated to that material
point, that is, p™ us[ = [om 0° uf dQ™. The meso-scale inertia force can be related
to the macroscopic strain acceleration through an equation which satisfies these
aforementioned conditions [23]:

o™i (xM,x™, ) = pM hPY M, x™, el (M, 1) 4.3)

in which h?“ is a periodic tensor which is normalized as:

R M, x™, ndQ™ =0 (4.4)
Qm

Tensor hf 9

depends on the meso-scale model heterogeneity and material prop-

erties. For ahomogeneous meso-scale model, tensor hf 9 yanishes. Equation (4.3)

denotes that the meso-scale inertia forces can be expressed in terms of the macro- m
scale strain acceleration and the meso-scale heterogeneity and material proper-

ties. Using this equation, the time-dependent terms (ii;"") can be eliminated from

the meso-scale model. Inserting equations (2.2)-(2.4), (4.2) and (4.3) into the het-

erogeneous model momentum equation (3.2) and using averaging equations (2.5)

and (2.6), the equation of motion for the bulk domain of the macro-scale model

can be derived as [23]:

d i .
ax—M(af.‘j. +*DjjrEd)) = pMiiM on QM\rY (4.5)
J
where the dispersion tensor D; jx; can be defined as:

D= Lo [ ik ggm (4.6)
t]kl—|Qm| om s Its .

The weak form (2.12) can be modified for this problem as:

009
2 MY M 1M 2 MY g M
j;]twﬁ'ﬁ(aij +( Dijklgkl)ni ary” - iy —axi (Uij +( Dijklgkl)dQ
- f ot ndry = f | o9pM i}t aaM 4.7)
rd Q

The discretized equations for the macro-scale model can be written as:

MM+ mhyiM = (M, - (e M+ M 4.8)
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where mﬁ‘)" is the mass matrix corresponding to the meso-scale inertia forces and
can be obtained via:

m) = f B'DBaOM 4.9)
oM

A non- zero dispersion tensor, D results in a non-zero consistent additional mass
matrix m p - Similar to the problem in chapter 3, an implicit Newmark time inte-
gration scheme is used to solve equation (4.8) and fbul  and fwh are computed
from the meso-scale problem (RVE) using standard computational homogeniza-
tion (2.4.1) and discontinuous computational homogenization (2.4.2) schemes,
respectively. A gradient-enhanced damage model (see section (3.2.2)) is also used
for the meso-scale model. For computing the dispersion tensor using equation
(4.6), the components of tensor hf 9 should be determined. The procedure for
finding tensor k7' is given in the following section.

4.2.2. Determination of tensor /7

The effect of inertia at the meso-scale is represented as an eigenstrain which is
assumed to be proportional to the mass density at meso-scale [23]:

m
i = Z_Mfij
flé\;[ is a function of macro-scale strain acceleration 8% such that for 8% =0, flé\;[ =
0. Equation (4.10) shows that inertia acts as an eigenstrain and changes the shape
and volume of the material. In equation (2.3), the meso-scale displacement deriva-

tive u( m) can be witten as [23]:

(4.10)

_ 7kl kl
H(lx'")gkl+8 .+ h m)fkl (4.11)

Ug, xm) (i,x

where H fl is a periodic tensor which is related to the meso-scale model behavior.
Substituting (4.10) into equation (4.11) and then inserting (4.11) into the rate form
of equation (2.3), the meso-scale strain rate can be written as:

e xM, x™, 1) &M, x™, 1)

Iklpq +H

['”( x™)

M M
(k™) Epg(X7, 0+

Ikipg + BEY 0 M, x™ 0| fM M, 1 (4.12)

(k,x}™)

Substituting (4.12) into the meso-scale constitutive law (equation (3.6)) in rate
form (when w = 0) and substituting the meso-scale stress into the momentum
equation (2.15) and making use of arbitrariness of £%[ and flly one obtains:

d oHYT  oH)1
3 | ikt ™0 [ Tkipg + 5 T o ]| =0 (4.13)
J
P (x™) ony?  on
ox t]kl(x 1) [lelpq (6 o+ axl,cn) =0 (4.13b)
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Equation (4.13a) can be solved for H l.m”. Inserting (4.12) into (3.6) and per-
forming a volume average of both sides of the resulting equation over the meso-
scale volume, Q, and using (2.5) and (2.6) yields the following equation for the
macroscopic tangent, C#k !

— M _m m
zﬂcl(x )—fQ Clipg ™, 1) qul+H(pxm)(x X", 0| dQ (4.14)

However in the present work, instead of solving equation (4.13a) and using
equation (4.14), the macroscopic tangent is obtained using the standard homoge-
nization method presented in section (2.4.1) via equation (2.22). Equation (4.13b)
which is called the quasi-dynamic equation can be solved to find tensor h}"". Us-
ing test function 9 the weak form of equation (4.13b) can be written as:

L[ gom ony ah;"’ o L[99 on’ on? .
Efrm ijkl Ox Ox]’c" " T2 Qm Ox;" ijkl ax;” * ax;f

09
= aCc™ —
m ax}”

n;dr’ -
o z]kl j

p" o™
m m
ijkl oM (Cijklp_MIijkl) aQ (4.15)

By inserting discretized form of hf 9 and test function 9 into (4.15), one can
find the discretized set of equations for 2D problems as:

P4 paq 7,P4 pq
Ky Ky | [y 1 pa=1,2 (4.16)
pa  ppal||7ra pq q=1 .

K21 K22 h’2 2

where flf  are the nodal values for hf q, Kiqu and fip 7 are given in A. In order

to solve system of equations (4.16), condition (4.4) and periodicity of hf 7 should
be satisfied over the meso-scale domain. Periodicity of hf 7 can be achieved by
applying periodic boundary conditions on the RVE (same as in figure 2.2 for the
displacement field). Once tensor hf 7 s obtained, the dispersion tensor can be
computed via equation (4.6).

4.3. Cracking criteria

In the continuous-discontinuous scheme, the loss of hyperbolicity criterion is
employed for crack initiation and propagation. The hyperbolicity indicator is de-
fined as [6]:

ezrgigl(n®v:A:n® V) (4.17)

where n = (cos, sin0) shows the normal vector to the crack surface and v is as-
sumed to be parallel to n. Tensor A is defined as:

A=CM+gMa1 (4.18)
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Figure 4.2: One dimensional DNS model

Based on this criterion the momentum equation loses hyperbolicity when e <
0 and vector n that minimizes e is normal to the direction of the crack (localiza-
tion) 2. In the multi-scale analysis, this criterion can be used to detect localiza-
tion in the RVE. At each time step, having the homogenized tangent moduli, CM,
tensor A can be calculated using equation (4.18). Initiation and direction of the
localization can then be determined using equation (4.17). The advantage of this
criterion is that both initiation and direction of the crack can be obtained from
the meso-scale model which is physically more realistic.

4.4. Verification of the dispersive multi-scale model

In order to verify the proposed multi-scale model, the multi-scale simulation re-
sults are compared to a direct numerical simulation analysis. Two examples are
given in this section. In the first example a one dimensional heterogeneous elas-
tic bar under a sine pulse is given and in the second example, a two dimensional
heterogeneous beam is considered in which strain localization occurs due to a
propagating longitudinal wave.

4.4.1. One dimensional heterogeneous beam under impact loading
A one dimensional heterogeneous beam shown in figure 4.2 is analyzed in this
section. The beam consists of material 1 (green) and material 2 (yellow). The
left side of the beam is fixed and the right end is subjected to a displacement
sine pulse @ty = Agsin (2w ft) H (% - 1) (mm). A and f are the maximum ap-
plied displacement the pulse frequency, respectively. The multi-scale model for
this problem is shown in figure 4.3 in which the material points of the homoge-
neous macro-scale model are linked to a heterogeneous RVE. The macroscopic
wave length, AM, can be obtained via AM = v/f in which v is the wave veloc-

ity which can be computed using v = \/Cf\’lf /pM. The material properties of dif-

ferent materials are E;=200(GPa), E»=2(GPa), p;=10000(kg/m?), p,=4000(kg/m?)
and v1=v2=0.0.

Four cases are considered including (1) dispersive multi-scale model, (2) non-
dispersive multi-scale model, (3) heterogeneous DNS model and (4) homoge-
neous DNS model. In the homogeneous DNS model, the homogenized material
properties are used and it is obviously almost equivalent to the non-dispersive
multi-scale model. The DNS model and the macro-scale beam in the multi-scale
model are discretized using 500 beam elements and 5 beam elements are used for

2In fact, this is a condition for material stability and implies the stable response of an infinite medium
in a uniform state of stress and strain when subjected to a perturbation u = ve'" trkn.x 5]
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Figure 4.3: One dimensional multi-scale model

the RVE.
The macroscopic stiffness and mass density can be computed for the RVE
shown in figure 4.3 as: C%:EM=4.926(GPa) and pM=7600(kg/m3). In a one di-

mensional problem, tensor D;jx; = D and hy = h are scalar values. Nodal values
of h can be computed by solving equation (4.16) for the one dimensional RVE
shown in figure 4.3. The values of h along the RVE are shown in figure 4.4. The
dispersion coefficient can be obtained using equation (4.6) as D = 0.0095(Pa.s?).
In [23], analytical expressions are derived for calculating homogenized stiffness
and dispersion coefficient for a one-dimensional RVE shown in figure 4.3. The
homogenized stiffness can be calculated using

EM — E\E;

= (4.19)
(a1Ez + azEy)

where ¢; is the volume fraction of material i. The dispersion coefficient can be
obtained via

1
D= EpM(alaz)zwzu’”)z (4.20)

Ezp2—E1p1
pM(a1Ex—azEr)°
lem shown in figure 4.3 into equations (4.19) and (4.20), the homogenized stiff-

ness and dispersion coefficient can be obtained as EM = 4.926(GPa) and D =
0.0095(Pa.s?) which are equal to the results obtained using the finite element anal-
ysis.

in which ¢ = By substituting material properties for the prob-

h (mm)
=)

X (mm)

Figure 4.4: Values of i along the RVE
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Figure 4.5: The displacement field for multi-scale models and DNS
models for Ap=0.025(mm) and f=20000(Hz) at t=0.3(ms)

Figure 4.5 shows the displacement field along the beam subjected to the sine
pulse with Ap=0.025(mm) and f=20000(Hz) at #=0.3(ms) for the dispersive multi-
scale model, the non-dispersive multi-scale model, the heterogeneous DNS model
and the homogeneous DNS model. The ratio of the RVE length to the macro-
scopic wave length is 0.124 for this case. As it can be observed in figure 4.5, the
curves corresponding to the homogeneous DNS model and non-dispersive multi-
scale model are exactly the same. This ensures that the differences between the
curves are due to the dispersion effects and not due to the discretization. In fig-
ure 4.5, it can also be observed that the results of the heterogeneous DNS model
and the dispersive multi-scale model are in good agreement. Figure 4.6 shows
the results for the same problem when the beam is subjected to a sine pulse with
Ap=0.025(mm) and f=6666.67(Hz) at t=0.3(ms). The ratio of the RVE length to
the macroscopic wave length is 0.0413. As it is shown in figure 4.6, all four curves
are on top of each other which certifies that for large macroscopic wave length
compared to the RVE characteristic length, dispersion effects disappear. Figure
4.7 shows dispersive curves obtained from the dispersive model, non-dispersive
model and exact solution of the model shown in figure 4.3. The relations for ob-
taining dispersive curves are given in B. As it can be observed in figure 4.7, dis-
persion effects are negligible up to %:0.2 and as the ratio of the RVE size to the
macroscopic wave length increases, the deviation of the dispersive model curve
from the non-dispersive model curve increases. Furthermore, it is shown in fig-
ure 4.7 that the dispersive model coincides with the exact solution up to /{—’;:0.3.

m . .
However, for /{—M values higher than 0.3, the error increases.
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Figure 4.6: The displacement field for multi-scale models and DNS
models for Ap=0.025(mm) and f=6666.67(Hz) at =0.3(ms)
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Figure 4.7: Dispersive curves for the dispersive model, the
non-dispersive model and the exact solution

4.4.2. Two dimensional heterogeneous beam with strain localiza-
tion under impact loading

Figure 4.8 shows a heterogeneous beam subjected to a sine pulse at the right-
hand-side end. The beam consists of the bulk matrix (yellow), the matrix with
voids (gray) and the stiff particles (green). The material properties are shown in
table 4.1. Materials parameters ¢y and ¢ in equation (3.14) are equal to 0.5. Dam-
age is assumed to occur only in the gray zone due to the existence of voids and
it is modeled by taking a low value for the damage threshold in this area. The
multi-scale model is shown in figure 4.9. The bulk part is shown in green color
and cracking occurs in the gray part. The DNS model and the multi-scale model
are discretized using 123,492 linear triangular elements and 769 linear quadrilat-
eral elements, respectively.

The next step is to compute the k¢’ tensor by solving equation (4.16). How-
ever, satisfying constraint (4.4) is sometimes not possible for a complex RVE (fig-
ure 4.9) because system of equations (4.16) may become overdetermined. In order

to find tensor héj , the complex RVE is replaced by a partially homogenized RVE
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using the procedure shown in figure 4.10. As it is illustrated in figure 4.10, each
heterogeneous unit cell is replaced by a homogenized cell using the homogeniza-

tion method. Components of tensor hy for the partially homogenized RVE are
shown in figure 4.11. Using equation 4.6, one can obtain the dispersion tensor
which is written as a 3x3 matrix for the present two dimensional case as:

0.0214 -7x107° 0.0
D=|-7x107°  0.0214 0.0 | (Pas?)
0.0 0.0 0.038

R 2.5(mm)

15(mm)
>

i

495(mm)

EPaP PO, 9 o 9 0 O 0 U ¥ 1

45(mm) I

Figure 4.8: Two dimensional DNS beam model

495(mm)

Figure 4.9: Two dimensional multi-scale beam model

Table 4.1: Material properties for heterogeneous beam

Bulk matrix Matrix with voids  Particle

E [GPa] 2 2 200
v -] 0.0 0.0 0.0
K1 -] 0.3 5x107° 0.3
a (-] 0.99 0.99 0.99
B -] 1500 1500 1500
o [kg/m?] 4000 4000 10000
c (m?] 1077 1077 1077

It should be noted that the dispersion tensor only depends on the configura-
tion of the meso-scale model and contains dispersion effects due to the reflec-
tion of the wave at the interfaces of different phases. The effect of the presence
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Homogenization
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Figure 4.10: Partial homogenization of RVE

of the crack on the wave propagation is modeled explicitly via a strong disconti-
nuity in the macro-scale model. Figure 4.12a-4.12c depict the macroscopic dis-
placement in x direction for the dispersive multi-scale model, the non-dispersive
multi-scale model and the DNS model at £=0.2304(ms), 0.3(ms) and 0.4(ms) for
Ap=0.025(mm) and f=66666.68(Hz). In this case the ratio of the RVE length to
the macroscopic wave length is 1.16 which denotes that the macroscopic wave
length is smaller than the RVE size, so dispersion effects play a role. The black
dashed line in figures 4.12b and 4.12c shows the location of the macro crack. It
can be observed in these figures that the dispersive multi-scale model results are
in good agreement with the results obtained from the DNS model, however, the
difference between the non-dispersive model results and DNS model results is
significant. In figures 4.12a-4.12c, it can be observed that as one moves away
from the wave front the difference between the results obtained from the disper-
sive multi-scale model and the DNS model increases. This can be explained as
follows. In the finite element model, in addition to physical dispersion effects, the
discretization causes non-physical dispersion effects as well. After the wave has
passed high frequency waves with low amplitude are still present, may accumu-
late and lead to non-physical dispersion. The present dispersive model does not
account for non-physical dispersion effects. Since the discretization in the DNS
model is considerably finer than the macro-scale discretization in the multi-scale
model, the non-physical dispersion effects for the DNS model are more signif-
icant in comparison with the multi-scale model. For this reason a deviation of
the DNS model results from the dispersive multi-scale model results away from
the wave front can be observed. The damaged zone is given for the dispersive and
non-dispersive multi-scale models and the DNS model at t=0.3(ms) in figure 4.13.
The width of the localization bands (I) for the dispersive multi-scale model and
the DNS model are 0.219(mm) and 0.211(mm), respectively which are almost the
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Figure 4.11: Components of h;] tensor

same but for the non-dispersive multi-scale model, the width is 0.464(mm) which
is more than twice as much as the DNS model localization band width. The av-
eraged stress over the active damaged zone versus averaged strain over the active
damaged zone is shown for the three models in figure 4.14. It can be observed that
the curves obtained from the dispersive multi-scale model agree with the curves
of the DNS model while the non-dispersive multi-scale model predicts a larger
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averaged stress for a given averaged stress compared to the DNS model. This can
be explained in figure 4.15 which shows the crack opening rate versus time for the
dispersive and non-dispersive multi-scale models and the DNS model. The crack
opening rate values are shown within the time span between the maximum trac-
tion is reached in the cohesive zone and complete crack opening (when the trac-
tion becomes zero). Asitis shown in figure 4.15, energy dissipation in the cohesive
zone occurs faster in the non-dispersive multi-scale model compared to the DNS
model and the dispersive model. It can also be observed that the crack opening
rate predicted using the DNS model and the dispersive multi-scale model are in
good agreement while the crack opening rate obtained using the non-dispersive
multi-scale model is larger. According to rate equation (3.14), a larger crack open-
ing rate results in a larger strain threshold which causes an increase in the av-
eraged stress over the active damage zone. It is worthwhile to mention that the
simulation time for the DNS model until #=0.3(ms) is 13 hours and 23 minutes
whereas for the multi-scale model is 6 minutes and 35 seconds using a PC with
8.0(GB) of RAM and speed 3.07(GHz).

Dispersive curves can be plotted for the present two-dimensional problem by
solving an eigenvalue problem presented in B. However, in the present work, the
main goal is to verify the dispersive multi-scale model.
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Figure 4.12: Displacement in x direction along the beam subjected
to sine pulse with Ap=0.025(mm) and f= 66666.68(Hz)
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Figure 4.15: Crack opening rate for the multi-scale models and the
DNS model
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4.5. Objectivity of the dispersive multi-scale model

In order to investigate the objectivity of the dispersive multi-scale model, a beam
of heterogeneous material shown in figure 4.16 is analyzed. The beam consists of
a bulk matrix (yellow), a matrix with voids (gray) and circular particles (green).
Properties of different phases are the same as in the example given in section
(4.4.2) (table 4.1).

15(mm)

105(mm)

Figure 4.16: Beam of heterogeneous material
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2
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R and
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Figure 4.17: Multi-scale model with different RVE sizes

The radius of the particles is in the range of 0.5 (mm) to 1.0 (mm). The par-
ticle density is 46%. The beam is subjected to a sine pulse at the right end with
Ap=0.03(mm) and f=100000(Hz) (see formulas in section (4.4.1)). The multi-scale
model for the problem shown in figure 4.16, is presented in figure 4.17. Three RVE
sizes including 5 x 5(mm), 10 x 10(mm) and 15 x 15(mm) are used. The disper-
sive tensor can be computed by solving equation (4.16) for partially homogenized
mesostructures of RVEs as demonstrated in figure 4.10. The computed dispersion
tensors are similar for the three RVE sizes and are equal to:



4.5. Objectivity of the dispersive multi-scale model 49

0.002609  —2.039x10™°  0.01332
D=|-2039x10"°  0.004077  —0.002942 | (Pa.s?).
0.01332 -0.002942 0.7526
0.02
0.015 1 -~ 5(mm) x 5(mm)

-= 10(mm) x 10(mm)
0.01 1 == 15(mm) x 15(mm)

0.005 1

-0.005 7

Displacement (mm)
=)

-0.01 " ; " " " " i ; "
0 10 20 30 40 50 60 70 80 90 100
X (mm)

(a) t=0.05(ms)

0.02

-~ 5(mm) x 5(mm)
0.015 1 -+ 10(mm) x 10(mm)
== 15(mm) x 15(mm)

Displacement (mm)
=}
S o

s & =2

-0.005 " i " "
10 20 30 40 50 60 70 80 90 100
X (mm)
(b) t=0.07(ms)
0.02

-~ 5(mm) X 5(mm)
= 10(mm) x 10(mm)
== 15(mm) x 15(mm)

Displacement (mm)
=) =
s 3 =
> & = O

-0.005 1 } }
0 20 40 60 80 100
X (mm)

(c) t=0.09(ms)

Figure 4.18: Displacement in x direction along the beam subjected
to sine pulse with Ap=0.03(mm) and f=100000.0(Hz)

The macroscopic displacements in x direction at t =0.05(ms), ¢ =0.07 (ms)
and t =0.09 (ms) are shown for different RVE sizes in figures 4.18a-4.18c. It can be
observed that results obtained using the dispersive multi-scale model are objec-
tive with respect to the RVE size.
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The damaged zones for different RVE sizes are shown in figure 4.19 at £ =0.06(ms).
The width of the localization band for 5 x 5(mm), 10 x 10(mm) and 15 x 15(mm)
are 1.53(mm), 1.54(mm) and 1.58(mm), respectively. The maximum difference
between computed localization band width values is 3.16% which confirms that
the localization band width does not depend on the RVE size. Figure 4.20 shows
the cohesive law curves obtained for different RVE sizes using the dispersive multi-
scale model. As it can be seen in figure 4.20, the cohesive laws obtained using
different RVE sizes are almost equivalent.

0.0 0.2 0.4 0.6 0.8 1.0

Damage variable - | | -

5(mm) x5(mm) 10(mm) x 10(mm) 15(mm) x 15(mm)

Figure 4.19: The damaged zone for various sizes of RVE
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Figure 4.20: Cohesive law for the macro crack obtained using
different sizes for RVE

4.6. Conclusion

In this chapter, a dispersive multi-scale model is developed for modeling crack-
ing in quasi-brittle materials under high frequency impact loads. The dispersion
effects which stem from meso-scale inertia forces are modeled by introducing an
additional body force in the macro-scale model. The cohesive law for the macro-
crack is obtained using a continuous-discontinuous homogenization scheme.
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The dispersive multi-scale model is verified by comparing the multi-scale re-
sults with the DNS model results for various examples. It is shown that the dis-
persion effects are negligible when the macroscopic wave length is significantly
larger than the characteristic length of the RVE and the dispersion effects increase
with increasing wave frequency. It is also concluded that in order to obtain a cor-
rect cohesive law for the macro-scale cohesive crack, taking dispersion effects in
high frequency loading into account, is essential. It is shown that the proposed
multi-scale model is objective with respect to the RVE size.







A new multi-scale scheme for
modeling heterogeneous
incompressible hyperelastic
materials

5.1. Summary

! A computational homogenization scheme is developed to model heterogeneous
hyperelastic materials undergoing large deformations. The homogenization scheme
is based on a so-called computational continua formulation in which the macro-
scale model is assumed to consist of disjoint unit cells. This formulation adds no
higher-order boundary conditions and extra degrees of freedom to the problem.

A computational procedure is presented to calculate the macroscopic quantities
from the solution of the representative volume element boundary value problem.
The proposed homogenization scheme is verified against a direct numerical sim-
ulation. It is also shown that the computational cost of the proposed model is
lower than that of standard homogenization schemes.

5.2. Computational homogenization scheme for large de-

formations
In this section, a computational homogenization scheme is developed for hetero-
geneous nearly incompressible hyperelastic materials. A schematic description
of the computational homogenization method is shown in figure 5.1. As it can be
observed, figure 5.1 is similar to figure 2.1. However, when the structure under-
goes large deformations and strains, the infinitesimal strain tensor € cannot be

1Based on reference [39]
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Figure 5.1: Computational homogenization scheme.

used. Therefore, as it is shown in figure 5.1, instead of the infinitesimal strain the
macroscopic deformation gradient FM is imposed as a boundary condition on
the external boundaries of the RVE associated to that material point. The corre-
sponding macroscopic first Piola-Kirchhoff stress tensor PM and the macroscopic
tangent moduli CM can be obtained from solution of a boundary value problem
for the RVE. Next, the macro-scale and the meso-scale model finite element for-
mulations are presented in sections (5.2.1) and (5.2.2), respectively, and after ex-
plaining the computational continua model in section (5.2.3), computational pro-
cedures are given in section (5.2.4) for obtaining the macroscopic quantities from
the RVE problem solution.

5.2.1. Macro-scale model
The momentum equation for the macro-scale model in the deformed configura-
tion is given as:

60?]4.

= 0 (5.1)

J

M
1
x;.‘” is the coordinate in the deformed configuration. The incremental form of the

constitutive equation for the macro-scale model is given as:

where superscript M denotes the macro-scale model. ¢ is the Cauchy stress and

M M M
60” = Cl.jkléekl (5.2)

in which C?}’.’k ; contains the homogenized tangent moduli in the deformed config-

uration which is obtained from solution of the meso-scale problem. ef.\f denotes
the Almansi strain tensor which can be written in terms of macroscopic displace-
ments us[ as follows:

M M M 7, M
Oui au]. _Ouk Ouk

1
- +
2 ax]' 0x; 0x; ax]'

ef.\;.[ = (5.3)
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Using an updated Lagrangian formulation, the standard discretized equation
for the macro-scale model can be written as [4]:

(Kivl—‘rK%L)(su fext flnt (54)

where Ky M and K %L are linear and nonlinear stiffness matrices, respectively, and
M ex and f im¢ are external force and internal force vectors, respectively. The stiff-
ness matrices and force vectors are given in C.

5.2.2. Meso-scale model
For hyperelastic materials, the strain energy ¥ can be written in terms of volu-
metric 7" and isochoric W7}  (shape changing) parts as [45]:

P = vol )+ \sto (Il’ 1-2) (5.5)

where superscript m denotes the meso-scale model. J = det(F™), I = J23 L
and I, = J7*3L,. F™ is the deformation gradient tensor and I; and I» denote
first and second invariants of the right Cauchy-Green deformation tensor C =
(F™TF™ and are obtained via

11 = tr(C)

(5.6)
L= % [(tr (€)? - tr(C?)]

in which ¢r denotes the trace of a matrix. Meso-scale model Cauchy stress tensor
is obtained from
o™ =pP"1+8" (5.7

where I is the second order unit tensor. P and §™ are the hydrostatic pressure
and the deviatoric stress tensor, respectively and are obtained via

opm
m_ ~ " vol vol

oJ
m 1 aqjlso a\ljlyrslo 72 68
"= 2 o7 — IS0 doy(b) + 2—s0 o (tr(b)dev(b) dev(b )))

where b = J~2/3b and b is the left Cauchy-Green deformation tensor (b = F"(F'™) T,
dev(A) denotes the deviatoric part of tensor A.

The tangent moduli in the deformed configuration can be decomposed into vol-
umetric and isochoric terms according to:

cm=cn,+Cr (5.9

Lso

Volumetric and isochoric terms of tangent moduli can be obtained as

oy orym oy
c;ﬂol:( a;"l+]—a]§°l)l®1 2 6;"lu
(5.10)
wo L[ 0%R, 0¥, 0PWR, o 0PWE,  OPWE,
n o= 20 + + 150 4 150 4 —i5
iso = 71 oL Y2 ok Y11 61% Y22 613 mallab_
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in which [ is the fourth order unit tensor and Y1, y2, Y11, Y22 and y12 can be ob-
tained as:

m:%[1‘1(u-%I@I)—(dev(B)®I+I®dev(l3))]
8[-( 2 - ; 2
r2=3 [2(|]_§1®I)—Ig(dev(b)®1+1®dev(b))

+ (dev(i;z) ®I+I®dev(i12))] +4(beb- H)
y11 = 4dev(b) ® dev(b) .11
Yoo = 4(f1dev(i1) - dev(i:z)) ® (I_ldev(l_ﬂ - dev(l_Jz))
Y12 =4 [dev(i)) ®(f1dev(i1) —dev(l_fz))
+(f1dev(i7) —dev(i;z)) ®dev(i))]
in which Hjjx; = 3 (bikbji + birbji).

For the Mooney-Rivlin model considered in this work, the isochoric part of the
energy function is obtained from
\P m

io= a1 (I =3)+az(I>-3) (5.12)
where a; and a» are material parameters. The volumetric part of strain energy is

obtained via
m K 2
P = E J-1 (5.13)

vol —

in which K denotes the bulk modulus. In order to model incompressibility, a large
value should be chosen for the bulk modulus.

In the present work, a hybrid finite element formulation [66] is used to model
incompressible rubber-like mesostructures. In the hybrid finite element method,
the potential function is given as

n(u™0m, P™) =f (Y1, (L, L)+¥0 (0™ +P"(J—-0™)]dQ™ + 11}, (u™)
Qm

(5.14)

where u™, 0™ and P are meso-scale model displacement field, dilatation and

hydrostatic pressure, respectively, and I}, is the external forces potential. By tak-

ing the variation of IT with respect to ©#?, 8" and P" and performing linearization

and discretization of the equations, one can find the following system of equa-
tions:

Ku, 0 Kyup| [ou™ Fy,
0 Kgp Kpgp| |60™ | = | Fg (5.15)

Kp, Kpg 0 oP™ Fp

where the stiffness matrices and force vectors are given in D. In the system of
equations given in (5.15), 6™ and § P can be calculated at element level as:

80™ = Ky (Fg— Kop6P™)

5.16
6P =Géu™+h (5.16)
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in which .
G = (KpoKggKop)  Kpu 517)
_ -1 - :
h=(KpgKzyKogp)  (KpoKpyFo—Fp)
Inserting (5.16) into (5.15), a condensed form of the equation can be obtained
as:

KZou™ =F( (5.18)
in which the components of K and F(' for each element can be calculated as:

K =Kuu+KyupG
m (5.19)

Fi=F,-Kyph
5.2.3. Computational continua formulation
In the first order homogenization theory, the RVE is subjected to a constant macro-
scopic deformation gradient. However, when the RVE size is large, the deforma-
tion gradient significantly varies over the RVE domain and cannot be ignored. In
the present work, a computational continua model which is developed in [24] is
used which requires no additional degrees of freedom and higher order boundary
conditions. In the computational continua model, the macroscopic domain con-
sists of disjoint RVEs which are located on the macro-scale element integration
points as shown in figure 5.2.

The position of these integration points differs from those of standard inte-
gration points and depends on the RVE size and the macroscopic element size.
The locations of the new integration points are chosen such that the integration
of a function @ over the heterogeneous domain Q¢ becomes equal to a sum of
integrations of that function over the disjoint RVEs which implies:

k
L(@(XM) gt = I; - w(xY,x™o(xM,x™) aq™ (5.20)

in which @ is defined as:

J (XM, X™) w;

5.21
Q] (5.21)

w (X, x™) =
where k, j and w; are the number of macroscopic element integration points,
Jacobian and the nonlocal quadrature weight, respectively. It should be noted
that in equation (5.20), the integral over the heterogeneous body is replaced by a
sum of integrals over RVEs with finite size and unlike standard homogenization,
no scale separation is introduced. It can be shown that for a bilinear quadrilateral
element, the location of the integration points can be obtained as:

1 12 1 ly )
(£&i,4mi) = | 3 I_W 3 l_ﬁ i=1,2,3,4 (5.22)
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Figure 5.2: One macro-scale finite element with disjoint RVEs

where (5 ,~,17,~) denote the coordinates of the integration points of the element in
the natural coordinate system. Iy, I, W and H are width of the RVE, height of the
RVE, macro-scale element width and macro-scale element height, respectively
(figure 5.2). In equation (5.22), when I, — 0 and I, — 0, the nonlocal integra-
tion points become the usual Gauss points. It should also be noted that in order to
keep the value under the square root positive in equation (5.22), the macro-model
finite element size must be larger than or equal to the RVE size which means:
W =z I and H = l,,. The aforementioned formula is used for regular meshes when
the macro-model finite element edges are parallel to those of the RVE. For irregu-
lar meshes, a so-called effective RVE domain can be defined. Details on defining
an effective RVE domain can be found in [24].

The heterogeneous body displacement field #¢ and deformation gradient F¢ are
related to the macroscopic displacement and the macroscopic deformation gra-
dient via:

ub =uM+u*

(5.23)
FC=FM+F*

where u* denotes the displacement perturbation and FM and F* are defined as:

ouM
M _
Fij = G
! (5.24)
* aui
F, +6j
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inwhich §;; is Kronecker delta. The macroscopic deformation gradient is approx-
imated as a linear function over the RVE:

_ OF;
FM = Fij+ ——L X" (5.25)
i axX]"
where )
.. — m m
5= T Jon T 49 -
OFi; _ 1 i Q™ '

axyr —10m Jom 0X]"

In the computational continua model, the first Piola-Kirchhoff stress tensor
for the heterogeneous body (P?) can be decomposed into macroscopic stress (PM)

and meso-scale perturbation (P*) as [24]:
P =pPM i p*

- (5.27)

PM=pM i xmQM +ym Q)

It can be shown that PM, QQ/I and QJIYI can be obtained as (see Appendix E):

- 1
M- _—_ [ pmaq™
Q™ Jom
* B Jon 628
12
QM Yumde

Yo 1am) Jam

In order to use the computational continua formulation, the macroscopic ma-
trices and the force vector should be calculated using equation (5.20) instead of
the integrals given in equations (C.1)-(C.3). For example, the macroscopic inter-
nal force vector can be computed via:

k i (XM, X" wy
1=y #BZ (xM x™) oM (xM, x™) da™ (5.29)
=1Jam |Qm|
It should be noted that in equation (5.29), By is the matrix of derivatives of the
macro-scale model shape functions. The macroscopic Cauchy stress 6 can be
obtained from the first Piola-Kirchhoff stress given in (5.27) as: oM = ]LMPM .

(F M ) T in which FM is the macroscopic deformation gradient and JM = det(FM).,

5.2.4. Homogenization

In order to compute macroscopic tensors given in equations (5.28), the volume
integrals can be converted into surface integrals on the boundaries of the RVE
via:

_ 1 1 1.
pPM=— | pmaqm= _f (fox™arm=——p" (5.30)
1Q™ Jom 1Q™] Jpm 127




Chapter 5. A new multi-scale scheme for modeling heterogeneous

60 incompressible hyperelastic materials
12 12 G
QY = - X"P"dQ™ = — {—1f X" (f @ X™)dT"+
1£1Qm] Jam z1am| (5.31)
G, 12 G1~M Gs - M } )
= y™(fex™)dr" —=
2 Jrm f ) } lZIQ’"I{ Q5
12 12 G
QY =5——| v"PmdQ" = {—3f X" (f ®X™)dr"+
L1aQm Jam ziam | 2 Jom
(5.32)
G, 12 (Gs ~M Gy -
Gl ym(roxm drm} { }
> Jon ¥ (R X) Ziom 5@
M xM M

in which f denotes the force vectors on the RVE'sboundary. P, Q. , Qy ,G1, G2,
G3 and G4 are given in Appendix F. The incremental displacement at the RVE’s
controlling nodes (see figure 5.1) and the incremental macroscopic deformation
gradient are related via:

sul' =H{6FM =124 (5.33)

The meso-scale problem stiffness in equation (5.18) can be rearranged for the
independent and dependent nodes as described in [40]. It should be noted that in
the finite element formulation of the macro-scale model, the geometrical nonlin-
earities are accounted for via nonlinear stiffness matrix K (equatlon (C.2)) and
the homogenized tangent moduli CM is a function of the meso scale model ma-
terial response. Therefore, in order to calculate the homogenized tangent mod-
uli from the meso-scale model stiffness matrix, only the first integral in equation
(D.1) is used which is related to the meso-scale model material properties. Hence,
at the converged state of the meso-scale problem, a modified matrix K¢, is com-
puted by setting the second integral in equation (D.1) to zero. K, 'Cn is then used
to obtain the macroscopic tangent instead of K. The linear system of equations
for the meso-scale problem can be written as K ;6 ul? =45 f}; in which i denotes
the independent degrees of freedom. The system of equations can be rewritten as:
dul}

a

m
6uh

0
ofy
where subscript b denotes the degrees of freedom associated to the controlling

nodes (see figure 5.1) and subscript a represents the other nodes’ degrees of free-
dom. Equation (5.34) can be written in a condensed form as:

K{.. K¢
Caa Cab (5.34)

=N =
Kcpa Kcpy

Krouy = f (5.35)
where K7 is calculated from stiffness matrix K7 as:
71m om T &m =m \—1zm
K¢ = (Kepy) = Kepy (Kcaa)  Kcap (5.36)

Similar to the homogenized macroscopic stress tensor, the homogenized macro-
scopic tangent can be written as:

cM=c"+xmal +ymalt (5.37)
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in which
di/j = Glai/[ + sziy
v M M (5.38)
dy = G3dx +G4dy

.M M ~M . .
Matrices C"', d x and d, canbe obtained via:

H,
‘-:M: [Hl H, H4]I~(E‘n H,
H,
12 [H1]
dy = — [XH\ XH, XH4 K[} |H: (5.39)
15 1Q™| H,
12 [t
d)'=—"_[YH, YH, YH,K{|H:
ly|Qm| H,

5.3. Numerical results

In this section, numerical examples for an elastic material model and an incom-
pressible hyperelastic material model are given. In each example three solutions
including direct numerical simulation (DNS), standard homogenization and com-
putational continua model are presented and the results are compared.

5.3.1. Elastic model - stiff particles in a soft matrix

A two-dimensional heterogeneous structure is shown in figure 5.3. The structure
consists of circular aggregates (material 1, green) and matrix (material 2, yellow).
Both aggregates and matrix are modeled as linear elastic material. The material
properties are: E1=40 (MPa), E»=0.01 (MPa), v1=0.0, v2=0.49, where E and v are
Young’s modulus and Poisson’s ratio, respectively.

!

100 (mm)

100 (mm)

Figure 5.3: Heterogeneous elastic structure

A uniform displacement field # is applied on the right edge which increases
monotonically. The left and bottom edges are constrained in x and y directions,
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respectively. The displacement of the upper right node is constrained in y direc-
tion. The structure undergoes large deformations and a plane strain state is con-
sidered for the model. The DNS model and the multi-scale model for the problem
are shown in figure 5.4. The DNS model is discretized using 1540 linear triangu-
lar elements. The RVE is meshed using 396 linear triangular elements which is
consistent with the DNS model. Periodic boundary conditions are used for the
RVE. Linear quadrilateral elements are used to discretize the macro-scale model.
Three different mesh sizes are chosen for the macro-scale model which are shown
in figure 5.5. For the computational continua model, a macro-scale model with
4 elements is used which is the coarsest mesh (see figure 5.5). The locations of
the nonlocal integration points can be obtained using equation (5.22). For this
example, Iy=l,=W=H=50 (mm). Therefore, (+¢;,+7;)=(0,0) which means that
four integration points are converted into one integration point at the center of
the macro-scale element. As it is discussed in section (5.2.3), for the computa-
tional continua model, the macroscopic element must be larger than or equal to
the RVE size and further refinement is not possible for the present example. The
reaction forces in x direction, at the right hand side edge versus applied displace-
ment & for the DNS model, the standard homogenization model (with 4, 16, 64
and 256 elements) and the computational continua model (with 4 elements) are
shown in figure 5.6. As it can be seen in figure 5.6, for the standard homogeniza-
tion model, by refining the macro-scale model mesh size, the reference solution is
approached. It can also be seen that the result obtained using computational con-
tinua model with 4 elements is very close to that of the standard homogenization
model with 256 elements. It can also be observed in this figure that even when
using 256 elements for the macroscopic model, there is a difference between the
multi-scale result and the DNS model result. Further refinement of the maro-
scale model mesh size decreases the error slightly but it does not vanish. This
is due to the fact that the periodicity condition which is used in the multi-scale
model is only valid far enough away from the boundary and using this assump-
tion near the boundary gives rise to errors in the solution. The distribution of the
macroscopic Cauchy stress in x direction is shown for the DNS model, the stan-
dard homogenization model and the computational continua model in figure 5.7.
As it can be observed in this figure, the macroscopic stress distributions for the
standard homogenization model with 256 elements and the computational con-
tinua model with 4 elements are in good agreement with the DNS model. For
example, in the DNS model, the macroscopic stress at the upper edge is 4e3 (Pa)
and at the lower edge is 6.8e3-9.6e3 (Pa) which are the same for the standard ho-
mogenization model with 256 elements and the computational continua model
with 4 elements. However, results obtained from standard homogenization with
4 and 16 elements are not accurate compared to the DNS model results. The bet-
ter results obtained using the computational continua model can be explained
by considering the distribution of strains over the RVE which are shown in fig-
ures 5.8 and 5.9. The distribution of the Almansi strain in x direction for the DNS
model (top-right part) and RVEs associated to the specified integration points of
the macroscopic element for the computational continua model and the standard
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homogenization model are shown in figure 5.8. Figure 5.9 depicts the distribu-
tion of the Almansi strain in y direction. Since the Poisson’s ratio is non-zero for
the soft material, the macroscopic stress in x direction depends on both strain in
x and y directions. In figure 5.8, it can be observed that the values of the strains
in x direction and the distribution over the RVEs are close to those of the DNS
model for both the standard homogenization model and the computational con-
tinua model. However, in figure 5.9, the distribution of the strain in y direction
over the RVEs associated to the macroscopic integration points (2) and (4) for
the standard computational homogenization model differ from that of the DNS
model and gives higher averaged strain values compared to the DNS model. This
results in higher macroscopic strain values in y direction and consequently higher
stress values in x direction compared to the DNS model (figure 5.10). Therefore,
it can be concluded that for the computational continua model, the macroscopic
deformation gradient which is applied on the RVE boundary is more consistent
with those of the DNS model compared to the standard homogenization model.
The reaction force on the right edge as a function of RVE size is plotted at #=30
(mm) for the DNS model, the standard homogenization model and the compu-
tational continua model in figure 5.11. For the results shown in figure 5.11, the
macro-scale model for the computational continua model is discretized using 4
elements (element size=50x50 (mm)). As it can be observed in this figure, by in-
creasing the RVE size (Ix=l,) the difference between the multi-scale models and
the DNS model increases and for all RVE sizes the results obtained using the com-
putational continua model are better than those of the standard homogenization
method. It can also be observed that for the present example, the more accurate
results from the computational continua model can be obtained by choosing the
macroscopic element size equal to the RVE size. In figure 5.12, the reaction forces
as a function of RVE size are plotted for the cases in which the macro-scale model
element size is equal to the RVE size for the computational continua model and
the standard homogenization model (W=I,, H=[)). Asit can be observed in figure
5.12, the computational continua model results (in contrast to the standard ho-
mogenization results for larger RVEs) are in good agreement with the DNS model
results and as the RVE size decreases the difference between the results obtained
from the DNS model, the standard homogenization model and the computational
continua model decreases. In order to compare the computational cost for DNS
model, standard homogenization and computational continua, models with the
same meso-structure size (50x50 (mm)) and different macro-scale model sizes
(100100 (mm), 150x150 (mm) and 200x200 (mm)) are solved. For the stan-
dard homogenization model, the macro-scale model is discretized using 256 lin-
ear quadrilateral elements which is the minimum number of elements with which
a converged solution (with respect to the mesh size) is obtained. For the computa-
tional continua model, the macroscopic element size is equal to the RVE size. The
computational time versus the size of the macroscopic model is shown in figure
5.13 at nominal strain i/ W=0.3. In figure 5.13, it can be observed that the com-
putational cost increases with size and for all sizes the computational time for
the computational continua model is significantly lower than for the other two
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Figure 5.4: DNS and multi-scale models

..

4 element 16 elements
64 element 256 elements

Figure 5.5: Different mesh sizes for the macro-scale model in
multi-scale simulation

models which resulted from using a coarser mesh in the computational continua
model compared to the DNS model and the standard homogenization model. It
should be noted that in the present example, a linear elastic material model is
used and the RVE problem is solved only once and the homogenized properties
are calculated a priori. As aresult the computational time is directly related to the
total number of degrees of freedom of the macro-scale model.
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Figure 5.6: Reaction forces in x direction for different models
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Figure 5.7: Macroscopic Cauchy distribution for (a) DNS model,
(b) standard homogenization model (with 4, 16, 64 and 256
elements) and (c) computational continua model (with 4
elements)
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Figure 5.8: Strain distribution in x direction for (a) DNS model, (b)
standard homogenization model and (c) computational continua
model (with 4 elements)
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Figure 5.9: Strain distribution in y direction for (a) DNS model, (b)
standard homogenization model and (c) computational continua
model
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Figure 5.10: Distribution of the Cauchy stress (in Pa) in x direction
over the RVE for (a) standard homogenization model and (b)
computational continua model
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Figure 5.11: Reaction forces in x direction versus RVE size for the
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continua models (macroscopic model is discretized by 4 elements)
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Figure 5.12: Reaction forces in x direction versus RVE size for the
DNS, the standard homogenization and the computational
continua models (macroscopic element size is the same as RVE
size)
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Figure 5.13: Computational time versus macro-scale model size for
different models

5.3.2. Incompressible hyperelastic model - a stiff/soft layered cell

In this section, a numerical example for a heterogeneous incompressible hypere-
lastic structure is given. In this example, as shown in figure 5.14, a 100x100 (mm)
heterogeneous structure which consists of two different hyperelastic materials is
considered. An incompressible Mooney-Rivlin material model is used. The mate-
rial properties are shown in table 5.1. In order to enforce the condition of incom-
pressibility, a sufficiently large value for bulk modulus K=400 (Pa) is chosen for
both materials. Material parameters @; and «, are related to the standard shear
modulus via u=2(a;+az). Therefore, the material parameters given in table 5.1
denote that material 1 is stiffer than material 2. A linearly varying non-uniform
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Table 5.1: Material properties of different phases

Material 1 (green) Material 2 (yellow)

a; (kPa) 5 1
a, (kPa) 5 6
i
100 (mm) 1.25@

A2 A A AAAARA

100 (mm)
Figure 5.14: Heterogeneous hyperelastic structure
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Figure 5.15: DNS and multi-scale models

displacement field is applied on the right edge and a plane strain state is assumed.
The DNS and the multi-scale models for the problem are shown in figure 5.15. A
linear boundary condition is used for the RVE. Three different mesh sizes are con-
sidered for the macro-scale model which are shown in figure 5.16.

The reaction forces at the right edge of the structure versus applied displace-
ment & for the DNS model, the standard homogenization model (with 4, 16 and
64 elements) and the computational continua model with 4 elements are shown
in figure 5.17. It can be seen that the results for the standard homogenization
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model with 16 and 64 elements and the computational continua model with 4 ele-
ments are in good agreement with the DNS model result, however, for applied dis-
placement values larger than 35 (mm) the standard homogenization model with
4 elements, results in a lower reaction force compared to the DNS model. It can
also be observed in figure 5.17 that the reaction force for standard computational
homogenization with 64 elements slightly deviates from the DNS results. The er-
ror at x=80 (mm) is 2.02%. Increasing the number of macro-scale finite elements
does not improve the results. This error is due to fact that in the computational
homogenization model, a linear boundary condition is used for the RVE which is
not properly valid near the boundaries (as explained in section (5.3.1)).

4 element 16 elements 64 elements

Figure 5.16: Different mesh sizes for the macro-scale model
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Figure 5.17: Reaction forces in x direction for different models

The distribution of the macroscopic Cauchy stress in x direction is shown for
the DNS model, the standard homogenization model and the computational con-
tinua model in figure 5.18. The macroscopic stress distribution for the compu-
tational continua model with 4 elements is in good agreement with that of the
DNS model whereas in case of the standard homogenization model, one needs
to refine the macroscopic mesh to converge to the reference solution. Figure 5.19
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shows the distribution of the meso-scale Cauchy stresses in x direction over an
RVE associated to the macroscopic integration point (shown in the figure 5.19)
for the standard homogenization model and the computational continua model
with 4 elements. It can be seen that the stress values obtained from the standard
computational homogenization method are higher than those of computational
continua model. This results in higher values of the macroscopic stresses and
consequently higher reaction forces.
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2.e4 4.6e4 7.2e4  9.8e4 1.24e5 1.5e5

Macroscopic stress (Pa)

Figure 5.18: Macroscopic Cauchy stress distribution for (a) DNS
model, (b) standard homogenization model (with 4, 16 and 64
elements) and (c) computational continua model (with 4
elements)



5.4. Conclusion 73

9.8e4 1.11e5 1.24e5 1.37e5 1.5e5

1 (a) (b) )

Macro-scale model

Figure 5.19: Distribution of the Cauchy stress (in Pa) in x direction
over the RVE for (a) standard homogenization model and (b)
computational continua model

5.4. Conclusion

In this chapter, based on a so-called computational continua model, a computa-
tional homogenization scheme is developed for modeling heterogeneous incom-
pressible hyperelastic structures under large deformations. This model requires
neither higher-order boundary conditions unlike higher-order homogenization
methods nor extra degrees of freedom unlike gradient elasticity methods. The
numerical implementation aspects of the homogenization procedure to calculate
the macroscopic properties using the solution of the RVE problem are presented
and discussed. Using two numerical examples including a heterogeneous elastic
structure and a heterogeneous hyperelastic structure, the proposed multi-scale
model is verified against a DNS model. Furthermore, it is shown that, using the
present homogenization scheme, one can achieve the reference solution with a
significantly coarser macroscopic mesh compared to the standard homogeniza-
tion scheme which results in lower computational cost. The computational con-
tinua model is limited to cases in which the macroscopic element is larger than
the RVE size. In the present work it is also shown that due to the invalidity of the
periodicity close to the boundaries, using the usual boundary conditions such as
periodic boundary condition and linear boundary condition causes an error in
the computational homogenization model solution close to the boundaries.







A numerical homogenization
scheme for glass
particle-toughened polymers
under dynamic loading

6.1. Summary

'In this chapter, a numerical homogenization scheme is presented to model glass
particle-toughened polymer materials under dynamic loading. A constitutive law
is developed for the polymer material and validated by comparing the results to
experimental test data. A similar constitutive law as that of the polymer material
with unknown material parameters is assumed for the glass particle-toughened
polymer. A homogenization scheme is used to determine the unknown material
parameters from the boundary value problem (BVP) of a representative volume
element. Unlike the standard computational homogenization scheme, the pro-
posed numerical homogenization scheme can be used after localization occurs
in the material. The proposed multi-scale model is then verified against direct
numerical simulation.

6.2. Introduction

Polymer materials have a wide range of applications due to their tunable material
properties, ease of processing and low cost. The impact resistance which is related
to the material toughness is important in the applications such as the automotive
industry and defense industry where systems and structures may be subjected to
intense dynamic loadings.

1Based on reference [35]
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Polymer materials can exhibit both ductile and brittle responses. The ductile
response is due to plastic deformations in the material and the brittle response
is caused by initiation of localized crazes which can lead to brittle fracture. At
high deformation rates, polymer materials behave more brittle which is not desir-
able for impact resistance applications. In order to enhance fracture toughness of
polymer materials under high strain rates, glass or rubber particles can be added
to the polymer matrix which promote the plastic deformations in the polymer
matrix and result in an improvement of the particle-toughened polymer tough-
ness. Adding the particles to the polymer matrix can also improve the stiffness
of the mixture. The strength of the particle-toughened polymer depends on the
bonding between particles and polymer matrix. For a well-bonded particle the
strength increases, however, weak bonding between particles and polymer ma-
trix may reduce the strength of the particle-toughened polymer [27].

The standard computational homogenization scheme can be used when the
strain field is more or less constant over the volume of the RVE. In the particle-
toughened polymer material, strain localization can occur in the forms of local-
ized crazes and shear bands (plastic deformations). Therefore, the standard com-
putational homogenization scheme cannot be used after strain localization oc-
curs in the polymer matrix.

The continuous-discontinuous scheme (2) may also be extended for model-
ing shear banding in ductile materials. This can be achieved by modeling a shear
band as a strong tangential discontinuity [61] and linking the corresponding co-
hesive law to averaged properties of the localized band in the RVE. However this
is out of the scope of this chapter.

In this chapter, a numerical homogenization scheme is developed to model
glass particle-toughened polymer materials. A viscoplastic material model for
the polymer is developed and verified against experimental results. This model
is not coupled to a damage model or discontinuous failure model to simulate
the post-peak response. In the homogenization scheme, it is assumed that the
macroscopic behavior of the glass particle-polymer composite is governed by the
same constitutive law as the polymer material with unknown material parame-
ters. A homogenization method is presented to obtain the unknown material pa-
rameters from an RVE problem. It is shown that unlike standard computational
homogenization, the proposed method can be used after strain localization oc-
curs in the material. Furthermore, initiation of crazing in the polymer material
is investigated. The multi-scale model is then verified against direct numerical
simulation (DNS) results.

6.3. Material model for glassy polymer under dynamic
loading

The stress-strain response of a glassy polymer material during dynamic tension
loading is shown in figure 6.1. Four different regions can be observed during de-
formation: i) elastic, ii) yielding, iii) strain softening and iv) strain hardening. As it
is proposed by Haward and Thackray [33], the total stress can be decomposed into
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two components: 1) a viscous component due to inter-molecular interactions and
2) an elastic hardening component which is related to the entangled molecular
network. In the following sections a constitutive law is formulated based on this
stress decomposition and the required material parameters are obtained for the
soft, transparent polyurethane elastomeric polymer, Clear Flex 75 (CF 75), using
the experimental data reported in [17, 19].

— Total polymer response
— Inter-molecular interactions
— Entangled molecular netwrork Hardening

. Softening
Yield,

Stress

"|Elastic,

Strain

Figure 6.1: Stress-strain response of glassy polymer material

6.3.1. Constitutive law

The constitutive model is shown in figure 6.2. Chains (I) and (II) represent the
elasto-visco plastic response (inter molecular interactions) and the linear elastic
hardening response (network), respectively. E/, E!/ and n are Young’s modulus
for chain (I), Young’s modulus for chain (II) and the viscosity of the material, re-
spectively, and they are strain rate dependent.

gll
YW\ =
* El n °

T )
YW\ |

Figure 6.2: The constitutive model for the glassy polymer.

The total 2nd Piola-Kirchhoff stress can be obtained as:
s=8'+8! (6.1)

ST and $! denote 2nd Piola-Kirchhoff stress tensor in chains (I) and (II), respec-
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tively, and can be written in rate form as 2.

§'=cl:eé

<11 .

s =cll:e 6.2)
1

e= E(FTF—I)

in which e is the total Green-Lagrangian strain tensor and over-dot denotes time
derivative. F and I are the deformation gradient tensor and the second order unit
tensor, respectively. C’ and C'! are linear elastic tangent moduli for chains (I) and
(IT), respectively and are obtained as:

n n

v 1+v
C?jklz_ﬁaij(skl"‘F[6ik6jl+6i16jk] n=111 (6.3)

where v and §;; are Poisson ratio and Kronecker delta, respectively. The inelastic
rate of deformation, d, can be obtained as:
I
T
d,=-42 (6.4)
U]

in which ‘rfi is the deviatoric Kirchhoff stress tensor and is given via:

' =FS'F’
1 (6.5)
Tin =¢l- gtr (TI)
where tr denotes the trace of a matrix. The viscosity 7 is calculated via
T/79
=10 sinh (1/71¢) ex (’:_p)
0 0 (6.6)

1
2

1
_ I..I _ I
T=y/-t}:T], p—gtr(‘rd)
where 19, 7o and p are material parameters. According to experimental observa-
tions [17, 19], one can write E!, E/! and 7, as functions of equivalent strain rate
as’:

El=aéll, E"=ael, to=asel} (6.7)
in which a; and B; (i=1, 2, 3) are material constants and the equivalent strain

rate is calculated as: é.; = \/%é :e. The flow rule (6.4) can be solved by apply-
ing a return mapping algorithm and spectral decomposition using local Newton-
Raphson iteration (see G). The proposed model in total consists of 10 material
parameters including vI yI W, o, a; and B; (i=1, 2, 3) which can be found using
experimental data at various strain rates.

2For branch (I), F = Felasticpplastic 41,4 equation (6.2a) are solved together with a flow rule.
31t should be noted that equation (6.4) controls the rate dependency of the inelastic response and
equations (6.7) control the rate dependency of the elastic response and the yield stress.
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6.3.2. Calculation of material parameters

In the present work, experimental data for CF 75 polymer is used which is re-
ported in [17, 19]. The tension and compression tests are performed using a split
Hopkinson bar apparatus. For the tension test a dogbone specimen with gauge
length 10 (mm) and circular cross section with diameter 6 (mm) is used. For
the compression test a cylindrical specimen with length 5 (mm) and diameter
10 (mm) is tested. For the numerical, cylindrical specimens with a diameter of
6 (mm) and length of 10 (mm) under tension and cylindrical speciemens with a
diameter of 10 (mm) and length of 5 (mm) under compression are analyzed. The
axisymmetric state is used for the numerical analysis. A constant velocity V is
applied on the edge of specimens in the numerical analysis (figure 6.3). In or-
der to account for incompressibility of the polymer material, Poisson ratio values
can be chosen close to 0.5. For CF 75 polymer we set v/=v!/=0.4. Parameter y is
taken equal to -5e-5 (MPa). The values for a; and §; for tension and compression
are given in table 6.1. Figure 6.4 and 6.5 show the experimental and numerical
stress-strain curves at different strain rates under tension and compression, re-
spectively. It should be noted that for the tension test, the material parameters
are obtained using the experimental data at rates 900, 1300 and 2200 (1/s). The
results at the other strain rates are predicted using the proposed polymer model.
For the compression test, the material parameters are calculated from the data at
1092, 2191 and 4334 (1/s) and the stress-strain curve at strain rate 5124 (1/s) is
predicted using the polymer model.

6 (mm)
10 (mm)
<

10 (mm)

5 (mm)

(a) Tension (b) Compression

Figure 6.3: Numerical models for the tension and compression
tests
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Table 6.1: Material parameters
Parameters Tension Compression
ap (MPa) 20.6 1.31e-2
a (MPa) 4.35 56.9
as (MPa) 9.94e-4 0.771
b1 ) 0.55 1.43
P2 ) 0.50 0.23
Bs ) 1.31 0.39
vi ¢ 0.4 0.4
vl “) 0.4 0.4
u (MPa) -5e-5 -5e-5
1o (MPa.s) 0.1 0.1
— Polymer model 600 (1/s) --- Experimental data 600 (1/s)
1401 |— Polymer model 900 (1/s) --- Experimental data 900 (1/s)
— Polymer model 1300 (1/s) --- Experimental data 1300 (1/s)
~ 1201 — Polymer model 2200 (1/s) --- Experimental data 2200 (1/s)
Cﬁ = Polymer model 2700 (1/s) --- Experimental data 2700 (1/s)
2 = Polymer model 3400 (1/s) -=- Experimental data 3400 (1/s) .
T 1001 | = Polymer model 3800 (1/s) --- Experimental data 3800 (1/s) e
ji 807 N ':-‘-’: .: o~ o - -:—- == "_—"" -«uu‘v"u"'“' teP’
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Engineering strain (-)

Figure 6.4: Numerical and experimental stress-strain curve for
tension test at different strain rates
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Figure 6.5: Numerical and experimental stress-strain curve for
compression test at different strain rates

6.4. Failure mechanisms in glassy polymer materials
Two types of failure can be observed in the glassy polymers. Shear yielding and
crazing. The competition between these two failure mechanisms determines the
ductility or brittleness of the response of the polymer material. Under compres-
sion loading, the material undergoes large plastic deformations and localized shear
yielding (formation of shear bands) occurs in a direction of 45° from the direc-
tion of maximum tensile stress. Under tension, limited shear yielding occurs and
at a specific stress level crazing occurs due to the nucleation of micro voids in
the direction normal to the maximum principle stress. Crazes can further widen
and eventually break down which results in brittle fracture of the polymer ma-
terial. From the experiments it has been observed that craze initiation is stress
dependent [1, 76]. It has also been observed that craze initiation depends on the
hydrostatic stress and the maximum principal stress. In the present work, craze
initiation criteria developed by Sternstein et. al. [74] are utilized. For the plane
stress state, these criteria can be expressed as:
$Sm—3A+ 5 —S1=<0 6.5)
0<Sm<38 '

in which S; and S,, denote the maximum principle stress and the hydrostatic
stress, respectively. A and B are temperature dependent material parameters. In
the present work, the temperature is assumed to be constant during loading.

Material parameters A and B for the craze initiation criteria can be estimated us-
ing experiments. In [28], a intact bar and a notched-bar tension tests are used to
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estimate the craze initiation parameters for PMMA. In the experimental tests it
is observed that crazing initiates just prior to the peak load. In the present work
due to the lack of experimental data for the CF 75, numerical analysis with the
same geometries as in [28] are analyzed using the finite element method. Mate-
rial properties for CF 75 are given in table 6.1. It has been assumed that at strain
rate 600 (1/s), crazing initiates at the peak load. The intact bar and the notched
bar are shown in figure 6.6. A constant velocity V is applied on the right edge.
For the notched-bar, crazing initiates at the notch tip. In order to enforce the
strain rate 600 (1/s) at the tip element for the notched-bar test, a constant velocity
V=3.11 (m/s) (which refers to a strain rate 490 (1/s)) is applied on the right edge
of the notched-bar. The force-displacement curves for the intact bar tension test
and the notched-bar tension test are shown in figure 6.7. The set of maximum
principle stress and hydrostatic stress (S1, S;;) at peak load for the intact bar test
and the notched-bar test are (4.38, 13.13) (MPa) and (4.96, 11.38) (MPa), respec-
tively. Inserting these sets of data in equations (6.8) and solving for A and B gives
A=16.74 (MPa) and B=366.25 (MPa?). These parameters can be used in equations
(6.8) to evaluate craze initiation for CF 75 polymer material.

R 0.9 (mm)

3.18 (mm)

- _ g B
H Vg v
6.35 (mm) 6.35 (mm)

Figure 6.6: The intact bar (left) and the notched-bar (right) tension
tests

In order to verify the calculated values for A and B, equation (6.8) is used to
determine the initiation of crazing in the quasi-static tension test performed on
the CF 75 polymer material in [19]. The quasi-static test has been conducted at
a strain rate of 0.01/s using a servo-hydraulic Instron 8810 testing machine. In
this experiment, it has been observed that fracture occurs at maximum stress 14
(MPa). In fact, the first crazes initiate at a stress value lower than 14 (MPa) and
after craze widening fracture occurs. Since a uniaxial test is performed the speci-
men used is a intact bar, the hydrostatic stress can be estimated as S m:% x14=4.67
(MPa). Figure 6.8 shows the craze initiation criteria for CF 75 polymer using the
numerically calculated values for A and B. The set (S1=14, S,,=4.57) (MPa) for
the static test is also shown in figure 6.8 which is inside the crazing zone. This
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means that crazing initiates at a maximum stress lower than 14 (MPa) and after
that fracture occurs which is consistent with the experimental test.

200
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|| = Notched-bar tension test
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Figure 6.7: Reaction force for the intact bar and notched-bar
tension tests

6.5. Verification of the polymer model: a glass particle-

polymer tension test
In order to verify the proposed polymer material model, the numerical results ob-
tained from the model are compared to experimental results in this section. Fan
et. al. [18] performed a dynamic tensile test on a CF 75 polymer matrix with a
single glass particle at various strain rates using a split Hopkinson bar apparatus.
The test has been conducted on dogbone specimens with gauge length 10 (mm)
and a circular cross section with a diameter of 6 (mm). A glass particle with a di-
ameter of 3 (mm) is embedded in the polymer matrix. In the stress-strain curves
reported in [18] for the polymer and the polymer with a single glass particle at
strain rate 2700 (1/s), it has been observed that the glass particle does not affect
the initial stiffness and for the polymer with the glass particle, yielding occurs at
lower stress values compared to the single-phase polymer specimen. From these
observations it can be concluded that debonding occurs between the glass par-
ticle and the polymer matrix at the first loading steps. The finite element model
for the specimen is shown in figure 6.9. A cylindrical specimen is modeled and
a axisymmetric state is assumed in the numerical analysis. The sample consists
of a CF 75 polymer matrix (yellow), glass particle (green) and the interface (blue).
The glass particle is modeled using a linear elastic material with Young’s modu-
lus EP@rticle_70 (GPa) and Poisson ratio v=0.23. Debonding at the interface of
the glass particle and the polymer matrix is modeled using a thin linear elastic
layer (thickness=0.1 (mm)) with small Young’s modulus compared to the polymer
(Einterface_1e_9x E!). The experimental and numerical stress-strain curves for
the tensile dynamic test at strain rate 2700 (1/s) for the glass particle-polymer
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Figure 6.8: Craze initiation criteria

sample and the single-phase polymer sample are shown in figure 6.10. A compar-
ison between the experimental and numerical stress-strain curves for the glass
particle-polymer sample at different strain rates is depicted in figure 6.11. Good
agreement between the numerical and the experimental results can be observed
for strain rates from 700 (1/s) to 2700 (1/s). However, for the higher strain rates
3300(1/s) and 3800(1/s) the difference between the numerical and experimental
results increases. This can be explained from the results in figure 6.12 which show
the potential craze initiation zone for different strain rates at right edge displace-
ment 0.07 (mm). The craze initiation zone increases with strain rate which means
that the brittle response due to crazing (craze initiation, widening and final frac-
ture) increases with strain rate. Therefore, at higher strain rates the deformation
due to crazing contributes more to the total deformation. However, in the present
polymer model only plastic deformations are taken into account and the defor-
mations due to craze widening and final fracture are not considered. As a result,
the present model overestimates the experimental test results at high strain rates.

R 1.5 (mm)
R 1.6 (mm) \
[ \
> —
1D —>
6 (mm) > Vv
> —>
1D —>
10 (mm)

Figure 6.9: The glass particle-polymer tension test specimen



6.6. Numerical homogenization scheme 85

S
S

— Polymer-glass particle sample (Numerical model) 2700 (1/s)
=== Polymer-glass particle sample (Experimental test) 2700 (1/s)

80+ | — Polymer sample (Numerical model) 2700 (1/s)
==+ Polymer sample (Experimental test) 2700 (1/s) ren o]
A I, ]
60 “, ZaeT NN S

N
(@]

PUTTeL LT
LT
PTG o
pPLITTIE

Engineering stress (MPa)

20
0 ; :
0 0.05 0.1 0.15
Engineering strain (-)
Figure 6.10: The glass particle-polymer sample and the
single-phase sample tension tests
80

=— Numerical model 700 (1/s) === Experimental test 700 (1/s)

= Numerical model 1200 (1/s) -=- Experimental test 1200 (1/s)

= Numerical model 1700 (1/s) ==+ Experimental test 1700 (1/s)
—_ — Numerical model 2000 (1/s) === Experimental test 2000 (1/s)
Q“_f 60 Numerical model 3300 (1/s) Experimental test 3300 (1/s)
2 — Numerical model 3800 (1/s) -=- Experimental test 3800 (1/s) . N
= s Sl
» PR ol
172] - e
5] RIS o O
a‘ N - N amSasat e

P 70 MNP v
2 40 L N
- g
E ‘,.d " o'-‘""."/"\ A o) “,,"n" “\ ,', ‘\ ,"
él) 20— ,{l"l ," :,5\‘ ~' v LT a - /_~_-I 3 '__:.!,:'\:1 e “’.’ o et .\,:___:__\'
m “ gy P ki ===
oy Lommne v
np et - o RS S e s
Wiy / e /.~_‘-ll \“ R o Ao mmmt S "¢ o Y o S e s ',-t._"ﬂ
A ai :
0 . .
0 0.05 0.1 0.15

Engineering strain (-)

Figure 6.11: The glass particle-polymer tension tests at various

strain rates

6.6. Numerical homogenization scheme
In a standard computational homogenization method, the macroscopic strain is
assumed to be constant over the RVE. For the glass particle toughened polymers,
strain localization can occur due to shear banding and/or cracking in the polymer
matrix and as a result the assumption of constant strain is not valid. Therefore, the
standard computational homogenization scheme cannot directly be used. In the
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0.0 1.0

Craze initiation parameter

700 (1/s) 1200 (1/s) 1700 (1/s)
2000 (1/s) 2700 (1/s) 3300 (1/s)

3800 (1/s)

Figure 6.12: Craze initiation zone at different strain rates (no
crazing: craze initiation parameter=0.0, crazing occurs: craze
initiation parameter=1.0)

proposed numerical homogenization scheme, we assume that the macroscopic
behavior of the glass particle-toughened polymer is governed by a similar con-
stitutive law as the polymer material (see (6.3.1)). This constitutive law includes
unknown parameters which can be obtained by solving an RVE problem. There-
fore, the glass particle-toughened polymer constitutive law can be written as (see
equations (6.2), (6.4) and (6.6)):

(6.9)

— 7/To (uﬁ)
=ny————exp|=
10 sinh (7/7) “ P\ %5
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in which overbar denotes macroscopic quantities. In equation (6.9) parameters

1o and pu are taken equal to the values of the plain polymer material. EI, ¢" and

7o should now be computed from the RVE problem. Similar to the plain polymer
material, the response of the particle/polymer system can be decomposed into
an elasto-visco plastic response and the linear hardening response (see figure 6.1

—I —
and equations (6.9)). C' and 7 are the homogenized elastic tangent modulus and
the homogenized yield strength for the elasto-visco plastic response, respectively.

¢ is the elastic tangent modulus for the hardening response. It should be noted

that all three material parameters (and EI, EH and T ) govern the response before
the peak load (figure 6.1). On the other hand, as mentioned before, the standard

. o . . . . =1
computational homogenization scheme is valid before the softening part. C' and

€"' can now be computed from the RVE problem using the standard computa-
tional homogenization scheme as follows (see H). Two RVE problems should be
solved:

I. RVE with linear elastic matrix with Young’s modulus E’

II. RVE with linear elastic matrix with Young’s modulus E*/

At the converged state, the linearized form of RVE problems (I) and (II) can be
written as K\V6u'¥ = 5 £ (a=1, 10). €' and T"' can be obtained via (see (2.4.1)):

H;
C'=(H Hy H(Kg)-KD((KD) KD)|H| (@=11D (610
H,

T can be computed from the RVE problem as follows: first, one can relate the
peak stress 0,45 (the stress value just before softening takes place in the stress-
strain curve) to 7o for the polymer material as 7¢ = Clagfax in which C; and C,
can be obtained using the stress-strain curves at different strain rates. Then, it
can be assumed that the glass particle-toughened polymer obeys the same rela-
tion. The peak stress for the glass particle-toughened polymer 7, can be ob-
tained from the RVE problem solution. Ty can then be computed as 7 = Clﬁgfa i
In the standard computational homogenization scheme, the constitutive law for
the macro-scale model is taken as § = C : e in which C is computed via equation
(6.10). Algorithms for the standard computational homogenization scheme and
the proposed numerical homogenization scheme are given in boxes 1 and 2, re-
spectively.
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Box 1: The standard computational homogenization scheme.

1. Calculate éoq = \/3e: &

2. Calculate Ef, ET and 1, using equations (6.7)

3. Solving RVE problem
3-1. Set matrix as a polymer material (section (6.3.1))
3-2. Solve BVP for RVE: K;;6u;; =6 f;;
3-3. Compute macroscopic tangent moduli using equation (6.10)

4. Calculate macroscopic stress tensor as S = C: €

Box 2: The numerical homogenization scheme.

1. Calculate é,q =/5é: &

2. Calculate E', E'T and 7 using equations (6.7)

3. Solving two RVE problems (a=1, I])
3-1. Set matrix as a elastic material with Young’s modulus E*
3-2. Solve BVP for RVE: K'¥6u'? =5 f1%)
3-3. Compute macroscopic tangent moduli using equation (6.10)

C2

4. Obtain 0 4y and calculate 7o = C10 2,

5. Calculate macroscopic stress tensor using equations (6.9)

6.7. Verification of the numerical homogenization scheme

In this section two numerical examples are given in order to verify the proposed

numerical homogenization scheme. In the first example a heterogeneous intact

structure composed of glass particles and a CF 75 polymer matrix under dynamic

loading is analyzed and the proposed numerical homogenization scheme is com-

pared to the standard computational homogenization scheme and the DNS model.
In the second example, the numerical homogenization scheme is used to model

a notched heterogeneous structure.

6.7.1. Glass particle-polymer intact structure under dynamic load-
ing

Figure 6.13 shows a heterogeneous structure consisting of glass particles (green)

and a CF 75 polymer matrix (yellow). The material properties of the glass particle

and the polymer material are the same as in the example given in section (6.5).

A perfectly bonded interface between the particle and the polymer matrix is as-
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sumed. A constant velocity V is applied on the right edge. The multi-scale model
is shown in Figure 6.14. The problem is solved using the proposed numerical ho-
mogenization scheme, the standard computational homogenization scheme and
a DNS model.

Figure 6.15 shows the force versus displacement diagram for the DNS model, the
standard computational homogenization scheme and the numerical homogeniza-
tion scheme at strain rate 700 (1/s). As it can be observed in figure 6.15, all three
models give similar results before softening occurs. After the peak load, in the
softening part, the results obtained from the standard computational homoge-
nization scheme are more ductile than those of the DNS model. However, the
results obtained from the numerical homogenization scheme are in a good agree-
ment with the DNS model results. The averaged plastic strain in x direction for the
DNS model, the numerical homogenization model (over the whole area) and the
homogenization model (over the RVE area) are plotted in figure 6.16. As it can be
observed in this figure, the curves for the DNS model and the numerical homog-
enization scheme are the same which leads to the same overall stress tensor and
reaction forces (figure 6.15). However these curves are below that of the standard
computational homogenization method. Figure 6.17 depicts the distribution of
the plastic strain for the DNS model and the standard computational homoge-
nization scheme (over the RVE). It can be observed that for the DNS model, the
plastic strain is localized over a smaller area compared to the standard homog-
enization method. Therefore, in the softening part, the results obtained with the
standard homogenization method are more ductile compared to those of the DNS
model.

<

10 (mm)

10 (mm)

Figure 6.13: DNS model for the glass particle-polymer intact
structure
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Figure 6.14: Multi-scale model for the glass particle-polymer intact
structure
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Figure 6.15: Force-displacement curves for the DNS model, the
standard computational homogenization scheme and the
numerical homogenization scheme at strain rate 700 (1/s)

6.7.2. Glass particle-polymer notched structure under dynamic load-
ing

Figure 6.18 depicts a heterogeneous notched structure which is composed of sim-
ilar glass particle-polymer material as in section (6.7.1). Figure 6.19 shows the
multi-scale model for the problem. The force-displacement curves obtained from
the DNS model and the numerical homogenization scheme are shown in figure
6.20 for different rates. A good agreement can be observed between the results.
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Figure 6.16: Plastic strain in x direction for the DNS, the standard

computational homogenization scheme and the numerical
homogenization scheme
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Figure 6.17: Distribution of the plastic strain in x direction for the
DNS and the standard computational homogenization scheme

Craze initiation and direction in the macro-scale model element can be de-
termined from the RVE problem and the craze initiation criteria (equation (6.8)).
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However, in order to reduce the computational costs, macroscopic craze parame-
ters can be obtained by solving the RVE problem once a priori. It is assumed that
the macroscopic craze initiation criteria can be written as:

3— 1 B =
—Sm—=-A+—+d-51<0 (6.11)
2 2 6Sm

in which A and B have the same values as the polymer material. d is a parameter
which represents a shift in the craze initiation curve in y (S;) direction (see figure
6.8). Parameter d can be computed using a set of (Sm, S1) which can be obtained
from the RVE problem solution a priori. For the present problem, this set is calcu-
lated when 50% of the RVE area meets the craze initiation criteria *. For the strain
rate 700 (1/s), these values can be obtained as (S;,;,=4.46, S;=12.11) (MPa). By sub-
stituting these values in equation (6.11), parameter d can be obtained as 0.1035
(MPa).

10 (mm)

2.4 (mm)

4.9 (mm)

10 (mm)

Figure 6.18: DNS model for the glass particle-polymer notched
structure

4This value is arbitrary. However, since crazing occurs in the polymer matrix, one can use the volume
fraction of particles as a minimum value. In order to have a better estimate of this value, one can
compare a DNS model and multi-scale model for a very simple example and use the obtained value
for more complex problems. For the present example, the particle volume fraction is 10% and a value
of 50% is used.
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1.25 (mm)

1.25 (mm)
Figure 6.19: Multi-scale model for the glass particle-polymer
notched structure
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Figure 6.20: Force-displacement curves for the DNS model and the
numerical homogenization scheme at different strain rates

Figures 6.21 and 6.22 show the development of the plastic shear strain and the
craze initiation zone obtained from the DNS model and the numerical homoge-
nization scheme at different times for strain rate 700 (1/s). The time step for this
problem is 0.1 (us). A good agreement between the multi-scale and DNS results
can be observed in both figures. It can also be observed that crazing initiates be-
fore yielding in the polymer matrix.
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Figure 6.21: Plastic shear strain for (a) the DNS model and (b) the
numerical homogenization scheme for strain rate 700 (1/s)

6.8. Conclusion

In this chapter, glass particle-toughened polymer materials are modeled using a
numerical homogenization scheme. A constitutive law is formulated for the poly-
mer material under high rate dynamic loading. The material model is validated
using the experimental results for CF 75 polymer. The craze initiation criterion
given in [74] is used to detect initiation of crazing and the corresponding craze ini-
tiation parameters for CF 75 are determined using numerical tests. The proposed
numerical homogenization scheme is verified against the DNS model at different
rates and a good agreement between the results is observed. It is also shown that
when strain localization occurs, unlike the proposed numerical homogenization
scheme, the standard computational homogenization scheme results in different
plastic strain values and distribution compared to the DNS model which leads to
an incorrect macroscopic response.

It should be mentioned that the proposed numerical homogenization scheme can
be used as long as the assumption of similar behavior of the mixture and the plain
polymer is valid. However, by adding large particles with high volume fractions to
the polymer matrix, this assumption may be violated and the present numerical
homogenization scheme cannot be used. In most practical applications, small
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Craze initiation parameter (-)
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Figure 6.22: Craze initiation zone for (a) the DNS model and (b) the
numerical homogenization scheme for strain rate 700 (1/s)

particles are used to enhance the fracture toughness of the polymer in which case
the aforementioned assumption is valid.







Conclusions and
recommendations

7.1. Concluding remarks
The macroscopic response of heterogeneous materials is to a large extent deter-
mined by the behavior of their micro-structure. Under dynamic loading condi-
tions, a material undergoes large deformations and strains and complex damage
processes occur at different length scales and time scales. Under these condi-
tions, the macroscopic behavior depends not only on the material responses of
the micro-structures but also on their local-scale inertia forces.

Homogenization-based multi-scale methods can be used to link the local-
scale behavior to the macroscopic response. In order to model the macroscopic
behavior properly in dynamic problems, the homogenization scheme should ac-
count for strain localizations (e.g., cracking and shear bands), rate effects, local-
scale dynamic effects and large deformations and strains.

In this dissertation, homogenization methods have been developed for brittle
and ductile materials under dynamic loading conditions considering aforemen-
tioned issues. The main contributions and conclusions of this thesis are:

e The continuous-discontinuous computational homogenization scheme is
extended for dynamic problems to account for rate effects and local-scale
dynamic effects (chapters (3) and (4)). It is shown that (1) a multi-scale
dynamic problem can be solved by performing a dynamic analysis at the
macro-scale while solving the RVE model as a quasi-static problem, (2) the
effect of crack opening rate on the macro cohesive law can be taken into
account by relating the material properties of the meso-scale model to the
macro crack opening rate, (3) the dispersion effects due to local-scale in-
ertia forces can be taken into account by introducing an additional body
force into the macro-scale model problem, (4) the local-scale dynamic ef-
fects are negligible when the macroscopic wave length is significantly larger
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than the characteristic length of the RVE and (5) the results obtained from
the multi-scale models are objective with respect to the RVE size.

¢ The computational efficiency of the computational homogenization schemes
isimproved using a computational continua model which requires no higher-
order boundary conditions and extra degrees of freedom (chapter (5)). It is
shown that (1) using this homogenization scheme, the reference solution
(solution obtained using the DNS model) can be achieved by a significantly
coarser macroscopic mesh compared to the standard computational ho-
mogenization scheme which leads to much lower computational cost and
(2) the required homogenized properties for the computational continua
can be obtained using computational procedures similar to the standard
homogenization scheme.

e Finally, in chapter (6), anumerical homogenization scheme is developed for
glass-particle/polymer systems. The advantages of this model are that (1)
unlike the standard computational homogenization scheme, it is valid after
localization occurs in the polymer matrix and (2) the required homogenized
properties can be obtained a priori by solving two separate RVE problems
(using a standard computational homogenization scheme) which makes
the model computationally more effective than the continuous-discontinuous
homogenization scheme.

In chapters (3) and (4), the developed multi-scale methods have been used for
quasi-brittle materials. However, it should be noted that these multi-scale mod-
els can also be used in combination with other material models. For instance, the
continuous-discontin-uous computational homogenization scheme can be used
for modeling shear bands in ductile materials and the same formulation can be
used to account for dispersion effects. The derived computational continua for-
mulation which is used for hyperelastic materials in chapter (5) can also be used
for other materials to reduce the computational cost. Furthermore, the numeri-
cal homogenization scheme developed in chapter (6) is based on the fact that the
composite system and the plain matrix show similar behavior. Therefore, in order
to use this scheme for other material models it is important to have experimental
evidences (as exist for glass particle-polymer systems) which show this similarity.

7.2. Future work

In this thesis, the standard and the continuous-discontinuous computational ho-
mogenization schemes are extended for dynamic problems and an numerical
homogenization scheme is also developed for glass particle-toughened polymer
materials under dynamic loading. The proposed models in this dissertation can
further be developed. A few suggestions for future work based on the presented
models in this thesis are:

e All problems solved in this dissertation are two-dimensional multi-scale
problems. The models can be formulated in general form for three-dimensional
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problems. However, in order to extend the multi-scale models for three-
dimensional problems a few issues should be considered: (1) the choice
of the boundary conditions imposed on the RVE is very important and af-
fects the homogenized properties. Complex localization patterns may oc-
cur in a three-dimensional RVE which may require the modification of the
boundary conditions shown in figure 2.1 in chapter (2) and the compu-
tational costs of three-dimensional problems are significantly higher than
two-dimensional problems. Therefore, using computational cost reduction
techniques for three-dimensional multi-scale problems is essential.

* In the rate-dependent multi-scale crack models (chapters (3) and (4)), only
mode I is considered. However, the rate-dependent multi-scale models can
be used for mode II and can also be modified for mixed mode loading. In
order to generalize the rate-dependent crack model for the mixed mode,
one can modify equation (3.13) as:

- oM
e ) o 7.1

2 (bt g y) = 1+cfasinh( = || e

where [[u]}} = \/,62[[u]]§”2 +[[u]lM* and (M = VB 2tM? + tM? In these

equations subscripts n and s denote normal and shear components of macro
crack opening (or traction), respectively. Equation (3.14) can be rewritten

as: M
([ze]]
o7 ) K" (7.2)
Co

([l ) = 1+clasinh(

Then, the same analysis as given in figure 3.14 for different combinations of
[[u]]lsV[ and [[u]]l,\l/[ can be used to relate ¢y and c; to cg and ci‘ . The bound-
ary conditions which are imposed on the RVE should also be modified for
model IT and mixed mode loading. For instance, as suggested in [54], one
can apply a shear displacement at the right edge of the RVE (see figure 2.1)
for mode II and a combination of mode I and mode II boundary conditions
for the mixed mode problem.

* In chapter (6), only craze initiation is considered. After craze initiation, the
contin-uous-discontinuous computational homogenization scheme which
is based on the failure zone averaging method can be modified to obtain
the cohesive law for craze widening. The cohesive law for crazing (initia-
tion, widening and breakdown) is shown in figure 7.1. In order to obtain
the cohesive law from the RVE problem, one needs to provide proper local-
scale models for the widening process which can be an interesting topic for
future research.

e The multi-scale models can also be extended to multi-physics problems.
For example, to perform thermo-hydro-mechanical analysis in geomechan-
ical materials. The concepts of failure zone averaging and treating the RVE
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model as a quasi-static problem in transient analysis are still valid. How-
ever, issues such as boundary conditions imposed on the RVE and the ho-
mogenization procedures should be properly modified.

Computational efficiency of the multi-scale models can be more improved
using computational cost reduction methods. For example, using paral-
lel computing, applying model order reduction techniques [8] for both the
macro-scale model and the RVE problem, precomputation of the RVE, ap-
plying the multi-scale methods only for the critical regions and using multi-
time stepping (subcycling on RVE scale) [68].

A

(2a)

3)

(2b)

Traction

O Craze breakdown

D Craze initiation

Opening

Figure 7.1: The cohesive law for crazing: (1) no crazing, (2) craze
widening ((a) hardening response, (b) softening response)), (3)
craze breakdown [16]
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Relations for obtaining K’
and f*

For anisotropic materials in plane stress, the constitutive law can be written in
compact form o Cl';l ;”(l j =1,2,6) and equation (4.13b) for a 2D problem
can be written as follow

0

pm  ohl mon')
Chi M+ 2 | T Cili5y

{ (
hll ahll m ahll hll
c +2|cm p—+ m
66| oy Ox ay | 21\ p Ox 22 ay

6h11 ahll ))
ah12 m 0h3? P p™M ah12 ah12
+ 57 66 M

e

e

e

1 *C2 ay

m h12 ahlz 6 ahIZ h12
M + + ==+
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6y oy 12 6x 22 Gy
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(A.1c)
Inserting the discretized form hf T=-N ilf.? 7 into weak form (4.15), yields K l.qu
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and fip 9in equations (4.16):
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Relations for obtaining
dispersive curves

For a one-dimensional macro-scale problem, the equation of motion reads:

dZ M d2 =M
M@ U p @R MM (B.1)

St dx? dx?

M

Considering a harmonic wave u™ = u}e’**=" (k is the wave number), one ob-

tains:

~-CM+ DK v? = -pM1? (B.2)

M
uz\/L (B.3)
oM+ k2D '

The exact dispersion equation is given in [23]:

By solving (B.2) for v:

<1 Z2

cos(kl) =cos (ki 1) cos (k) — % ( sin (ky1y) sin (k2 o) (B.4)

— 4+ =
22 21

where [; = a;l, z; = \/Cf\f(i)Pi, ki = ,/pi/C{\f(i)wM. o™ and w(I)VI are angular fre-

quencies for the dispersive model and the non-dispersive model, respectively. a;
denotes the volume fraction of material i.

For a two-dimensional problem, before the crack initiation, the discretized
equation of motion reads:

MM+ m¥HaM + KMu= 2, (B.5)
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where KM is the stiffness matrix for the macro-scale problem. Considering a free
vibration (f2%, = 0) and assuming a solution of the form u™ = u} e’ results in:
(—* (MM + mY) + Kyu) =0 (B.6)

and w can be found by solving this eigenvalue problem (B.6) and dispersive curves
can be produced.



Stiffness matrices and force
vectors for the updated
Lagrangian finite element
formulation

The stiffness matrices and the internal force vector can be obtained via:

Ky:fMB{cMBLdQM
Q

kY, = - B}, SMBypaoM

where By, By, SM
ONy

0x

B;=| 0
Ny

dy

0N,
0x
0N,

M

int —

0
N,

oy
Ny
0x

0

0
Ny

0x
Ny

dy

and oM are defined as:
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0
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[
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0
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sM = o o2 0 (C.6)
0 0 011\/11 011\/21 ’
ol 0%
ol
M=o (o))
o1

in which 7 is the number of nodes per element.



Stiffness matrices and force
vectors for the hybrid FE
formulation

The stiffness matrices and the force vectors can be obtained via:

Kuuzf B} (C™+p™ (I®1—2|]))BLdQ’"+f B}, S™BN dQ™  (D.1)
Qm Qm

Kup= fQ ) DNLdQ™ (D.2)
dzq]Tol(gm) T m
Koo =me WNPNPdQ (D.3)
Kop = fQ ) NpNLdQ™ (D.4)
Kpu= fQ . NpDTdo™ (D.5)
1
Kpg :fgm ijNngm (D.6)
F,=FI, - f B} o™MadQ™ (D.7)
Qm
d\P%l(Q) m m
szf Np(J-0™)aQ™ (D.9)
Qm
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Np is a matrix of shape functions and matrix D is defined as:

ONi 0N ONg
0x 0x 0x

D=|on  on, aN.| k=1ton (D.10)
2y oy v oy

where 7 is the number of nodes of each element.



Deriving the macro-scale stress
tensors

The weak form of the macro-scale problem can be written as:

M

aP¢ k aw
M ik ¢ _ m _
M_kgat = £ dQ E.l
fni Wi gxM = axm (E-D

where w is the macroscopic test function. After inserting equatlon (5.27) into

ow M
(E.1) and assuming waxl =aj +ﬁf]Xm+ﬁy ym, COIldlthl’lme waX'" P* dQm =
J

0 is enforced which gives:
fQ (i + B, X+ BY v ™) (P - PY - QM x™ - QM v aa™ =0 ®2)
Equation (E.2) leads to the system of equations below:

aoP + b QY + by QY = [ PCAQ™
beP" + ¢ QY + ¢y QY = [om XM PLAQ™ (E.3)
byP™ + ¢y QY + ¢y QY = [on Y PLAQ™

where
aozf de:Ile,bef deQm:O,by:f Y"dQ™ =0
Qm Qm Qm

c =f (X’”)ZQ’"zM c =f (Y™?aQ™ = /0" c =f X"y"mdQ" =0
w= 12 "7 Jom 12 77T Jgm
(E.4)
Inserting (E.4) into (E.3), ™, QM and Q) can be obtained as given in equation
(5.28).
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Calculation of matrices used
for computing macroscopic
tensors

Matrices P, Qi’j, Qy, G1, G2, G3 and G4 can be obtained via:

PM=H,f, (E1)
Q) =XH;f, (E2)
- M
Q) =YHf, (E3)
1 0 0 0 00 0 0
0200 00 -1 0
Gi=lo 0 0 1 G =1p o 0
00 0 1 00 0 0
i (E4)
00 0 -1 2 0 0 0
000 0 01 0 0
Gs=10 0 0 o Gi =19 01 0
000 0O 001 0

In equations (E1)-(E3), i denotes the boundary nodes. For the RVE shown in
figure 5.1, the periodic boundary condition can be written as:

m m _ m_ .m
ur, —up = uy' —uj
Up, —Up, =Uy; — U
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Nodes (1), (2) and (4) are called controlling nodes. Using the equations given in
(E5) for the periodic boundary condition, matrices H;, XH;, Y H; and f'; are cal-
culated only for the controlling nodes that is i=1, 2, and 4. Matrices H;, XH; and
Y H; are defined as:

Xm0 (X™? 0 xmym 0
o y" o Xxmry" 0 (y/m?
Hi=\ym o [ XHi =|xmym o | YHi=|mp
1 1 1 1
o Xxn 0 (X™? 0o Xx"y”

(E6)



Integration of the flow rule

Integration of the flow rule given in (6.4) and development of a return mapping
algorithm can be carried out following the work of [64]. The inelastic rate of de-
formation, d, can be defined as the Lie derivative of elastic Finger deformation
be(= Fe(F9)T) (63, 65]). Equation (6.4) can be written as

I

1 T
— - b e =4 (G.1)

2 n

in which %, is the Lie derivative. In order to obtain the time-discrete solution of
the above equation, a typical time sub-interval [#,, f,+1] is considered. The inte-
gration of the flow rule is performed by an algorithm which involves an operator
split of the material time derivative of b° into an elastic predictor and an inelastic
corrector

by = Lb{+ bl + L,b]  Vielty tnn] (G.2)
elastic inelastic

where I=FF~! is the spatial velocity gradient. Inserting the value of %, b° from
(G.1) into (G.2), one obtains

1
. T
b = ltb§+b§lf—7db§ (G.3)

In the elastic trial state, plastic flow is frozen. Therefore we have £, b° r_,
Superscript ¢tr denotes trial solution. In the inelastic corrector step, the current
configuration is fixed at the position updated in the trial state. Therefore, the spa-
tial velocity gradient is zero and equation (G.3) becomes

I

. T
b =——pc" (G.4)
n
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The differential equation (G.4) can be solved as
T
b° " =exp|—LAt|b° (G.5)
n

in which At is the time step. The spectral decomposition of b° and ‘ré are given
as

b°=> b;n“en”

a

(G.6)
=Y 1l n"en”
a

in which b%=(1%)?. 1¢ and n® are the principal elastic stretch values and direc-
tions of the principal axes. Due to isotropy, b and T4 share the same eigenspace.
Inserting equations (G.6) into (G.5) gives

n’®n® (G.7)

be IF:Z

a

Tﬁld e)2
exp TAt (29)

On the other hand, spectral decomposition of b° ' is given as

peir = Z (/12 tr)z nl i @t tr (G.8)

a
Comparing (G.7) and (G.8) gives

‘L'I
CHOE exp(‘“%’)mzf

(G.9)
na — na tr
Taking logarithms of both sides of (G.9), one obtains
Tha
€% =—At o +eblr (G.10)

in which e4=InA¢. Equation (G.1) can be solved using local Newton-Raphson it-
eration. The stress-update algorithm is shown in box 3. In box 3, K denotes the
bulk modulus.
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Box 3: The stress-update algorithm for polymer model.

1. Calculate trial principal stretch values
dF=F, F,}
b¢ '=dFb% " dFT
Find A¢ " and n“ '" from (G.8)
efﬁ;’:lnag I
A’a :/12 tr
2. Calculate residual
D=1
]:A(ll) /lél) /lél)

p_1((,0)? s . .
€q=5 (/la) — 1| (principal Green-Lagrangian strain)

sk =CubeZ (principal 2nd Piola-Kirchhoff stress)
P _op

S =Sh-K(J—1)

Find Téd using (6.5)

etr
a

IF [r| < TOL GOTO (4)

() _ e T
— a —
r' =e,+At 2 | €

3. Update principal stretch values
@ [ dr \?
AAa =—-r ! /(d_/la)
AFV=AD 40,
i=1i+1GOTO (2)
4. Calculate 2nd Piola-Kirchhoff stress
Find 7/, using (G.6b)
S'=F el F T+ K(y-DI







Calculation of the
homogenized elastic tangent
moduli from two RVE problems

Figure H.1a shows a one dimensional description of the problem. EY is the Young’s
. —I
modulus for the particle. The aim is to find homogenized stiffness values C and

c” (figure H.1c). For the model shown in figure H.1b, the equivalent stiffness can
be written as

E°(ET+EN)

C=—"r—n0——
El+EN +EO

(H.1)
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Bl

— A

(a) | | | | (b)  e— gl —\/\N\/—
= L A—

O Glass particle

C
O Polymer matrix \A/\/\/
© = o I
o E°
(d) = gl EO —
m L AM—VWN—

Figure H.1: One dimensional model for glass particle-toughened
polymer matrix

Since the stiffness of the particle, E°, is much larger than that of polymer ma-

I Il
trix, % becomes orders of magnitude smaller than the stiffness values!. There-
fore, equation (H.1) can be written as

I Il
EO (E’+E”+2%) ETEY (B + ) + ETEO (E! + E*)
EI+EII+E0+E’EI€” (ET + E°) + (E! + E°)
EIEO EIIEO (H.2)
T B+ B0 EI 4O
—_— ———

1 —=II
C

C=

al

Equation (H.2) can also be obtained from the model shown in figure H.1d
which means that the models shown in figures H.1b and H.1d are equivalent if
E ;f)” is much smaller than the stiffness values. In the model shown in figure H.1d,
branches (I) and (II) represent two RVE problems: one RVE with linear elastic ma-
trix with stiffness E! and one with stiffness E{. For two (or three) dimensional
problems, the computational homogenization scheme can be used to solve these
RVE problems.

Il _
1 For the material properties used in this paper, at strain rate 3800 (1/s), E % =0.00147 (GPa). C can

be calculated using equations (H.1) and (H.2) as 2.273 and 2.276 (GPa), respectively.




[10]

[11]

References

A.S. Argon, ].G. Hannoosh, Initiation of crazes in polystyrene, Philos. Mag. 36
(1977) 1195-1216.

H. Askes, A.H. Metrikine, A.V. Pichugin, T. Bennett, Four simplified gradient
elasticity theories for the simulation of dispersive wave propagation, Philo-
sophical magazine 88 (2008) 3415-3443.

J.L. Auriault, Upscaling heterogeneous media by asymptotic expansions, J.
Eng. Mech. 128(8) (2002) 817-822.

K.J. Bathe, E. Ramm, E.L. Wilson, Finite element formulations for large de-
formation dynamic analysis, Int. J. Numer. Meth. Engng. 9 (1975) 353-386.

Z. Bazant, Creep and damage in concrete, Materials science of concrete IV
(1995) 355-389.

T. Belytschko, H. Chen, J. Xu, G. Zi, Dynamic crack propagation based on loss
of hyperbolicity and a new discontinuous enrichment, Int. J. Numer. Meth.
Engng. 58 (2003) 1873-1905.

T. Belytschko, S. Loehnert, J.H. Song, Multiscale aggregating discontinuities:
A method for circumventing loss of material stability, Int. J. Numer. Meth.
Engng 73 (2008) 869-894.

B. Besselink, U. Tabak, A. Lutowska, N. Van de Wouw, H. Nijmeijer, D.J. Rixen,
M.E. Hochstenbach, W.H.A. Schilders, A comparison of model reduction
techniques from structural dynamics, numerical mathematics and systems
and control, J. Sound Vibration 332(19) (2013) 4403-4422.

G. Bolzon, R. Vitaliani, The blatz-ko material model and homogenization,
Arch. Appl. Mech. 63 (1993) 228-241.

V. Bouchart, M. Brieu, D. Kondo, M. Nait Abdelaziz, Implementation and nu-
merical verification of a non-linear homogenization method applied to hy-
perelastic composites, Comput. Mater. Sci. 43 (2008) 670-680.

C. Boutin, J.L. Auriault, Dynamic behavior of porous media saturated by

a viscoelastic fluid. Application to bituminous concretes, Int. J. Engng Sci.
28(11) (1990) 1157-1181.

121



122

(12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

W. Chen, J. Fish, A dispersive model for wave propagation in periodic hetero-
geneous media based on homogenization with multiple spatial and tempo-
ral scales, J. Appl. Mech. 68 (2001) 153-161.

G. Cusatis, Strain-rate effects on concrete behavior, Int. J. Impact Eng. 38
(2011) 162-170.

S. Eckardt, C. Konke, Adaptive damage simulation of concrete using het-
erogeneous multi-scale models, Journal of Algorithms and Computational
Technology 2 (2008) 275-297.

VI. Erofeyev, Wave process in Solids with microstructure, Wolrd Scientific,
2003.

R. Estevez, M.G.A. Tijssens, E. Van der Giessen, Modeling of the competition
between shear yielding and crazing in glassy polymers, J. Mech. Phys. Solids
48 (2000) 2585-2617.

J.T. Fan, J. Weerheijm, L.J. Sluys, Dynamic compressive mechanical response
of a soft polymer material, Mater. Des. 79 (2015) 73-85.

J.T. Fan, J. Weerheijm, L.J. Sluys, Glass interface effect on high-strain-rate
tensile response of a soft polyurethane elastometric polymer material, Com-
pos. Sci. Technol. 118 (2015) 55-62.

J.T. Fan, J. Weerheijm, L.J. Sluys, High-strain-rate tensile mechanical re-
sponse of a polyurethane elastomeric material, Polymer 65 (2015) 72-80.

E Feyel, J.L.D. Chaboche, Fe2 multiscale approach for modelling the elas-
toviscoplastic behaviour of long fibre sic/ti composite materials, Comput.
Methods Appl. Mech. Engrg 183 (2000) 309-330.

J. Fish, W. Chen, Higher-order homogenization of initial/boundary-value
problem, J. Eng. Mech. 127(12) (2001) 1223-1230.

J. Fish, W. Chen, N. Gakuji, Non-local dispersive model for wave propagation
in heterogeneous media: one-dimensional case, Int. J. Numer. Meth. Engng.
54 (2002) 331-346.

J. Fish, V. Filonova, S. Kuznetsov, Micro-inertia effects in nonlinear heteroge-
neous media, Int. J. Numer. Meth. Engng. 91 (2012) 1406-1426.

J. Fish, S. Kuznetsov, Computational continua, Int. J. Numer. Meth. Engng.
84 (2010) 774-802.

S. Forest, K. Sab, Cosserat overall modeling of heterogeneous materials,
Mech. Res. Comm. 25(4) (1998) 449-454.

L.B. Freund, Dynamic fracture mechanics. Cambridge Monographs on Me-
chanics and Applied Mathematics., Cambridge University Press, 1990.



123

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(361

(371

(38]

(39]

S.Y. Fu, X.Q. Feng, B. Lauke, YW. Mai, Effects of particle size, parti-
cle/matrix interface adhesion and particle loading on mechanical proper-
ties of particulate-polymer composites, Composites: Part B: engineering 39
(2008) 933-961.

B.P. Gearing, L. Anand, On modeling the deformation and fracture response
of glassy polymers due to shear-yieling and crazing, Int. J. Solids Struct. 41
(2004) 3125-3150.

I.M. Gitman, H. Askes, E.C. Aifantis, Gradient elasticity with internal length
and internal inertiabased on the homogenisation of a representative volume
element, J. Mech. Behav. Mater. 18(1) (2007) 1-16.

I.M. Gitman, H. Askes, L. Sluys, Coupled-volume multi-scale modelling of
quasi-brittle material, Eur. J. Mech. — A/Solids 27(3) (2007) 302-327.

I.M. Gitman, H. Askes, L. Sluys, Representative volume: Existence and size
determination, Eng. Fract. Mech. 74(16) (2007) 2518-2534.

PA. Guidault, C. Allix, L. Champaney, J.P. Navarro, A two-scale approach with
homogenization for the computation of cracked structures, Comput. Struct.
85(17-18) (2007) 1360-1371.

R.N. Haward, G. Thackray, The use of a mathematical model to describe
isothermal stress-strain curves in glassy thermoplastics, Proc. R. Soc. Lon-
don A 302 (1968) 453-472.

R. Hill, On constitutive macro-variables for heterogeneous solids at finite
strain, Proc. R. Soc. Lond. 326 (1972) 131-147.

A. Karamnejad, A. Ahmed, L.J. Sluys, A numerical homogenization scheme
for glass particle-toughened polymers under dynamic loading, Journal of
Multiscale Modelling (2016) (In press).

A. Karamnejad, V.P. Nguyen, L.J. Sluys, A multi-scale rate dependent crack
model for quasi-brittle heterogeneous materials, Eng. Fract. Mech. 104
(2013) 96-113.

A. Karamnejad, L.J. Sluys, A dispersive multi-scale crack model for quasi-
brittle heterogeneous materials under impact loading, Comput. Methods
Appl. Mech. Engrg. 278 (2014) 423-444.

A.Karamnejad, L.]. Sluys, A multi-scale scheme for modelling fracture under
dynamic loading conditions, Key Eng. Mater. 627 (2014) 37-40.

A. Karamnejad, L.J. Sluys, A new multi-scale scheme for modeling hetero-
geneous incompressible hyperelastic materials, Int. J. Numer. Meth. Engng
(2015) (In press).



124

(40]

[41]

(42]

(43]

[44]

[45]

[46]

[47]

(48]

(49]

(50]

(51]

[52]

(53]

V. Kouznetsova, WA.M. Brekelmans, EPT. Baaijens, An approach to micro-
macro modeling of heterogeneous materials, Comput. Mech. 27(1) (2001)
37-48.

V.G. Kouznetsova, M.G.D. Geers, W.A.M. Brekelmans, Multi-scale second-
order computational homogenization of multi-phase materials: a nested
finite element solution strategy, Comput. Methods Appl. Mech. Engrg 193
(2004) 5525-5550.

P. Ladevéze, A. Nouy, On a multiscale computational strategy with time and
space homogenization for structural mechanics, Comput. Methods Appl.
Mech. Engrg. 192 (2003) 3061-3087.

P. Ladevéze, J.C. Passieux, D. Néron, The latin multiscale computational
method and the proper generalized decomposition, Comput. Methods Appl.
Mech. Engrg. 199 (2010) 1287-1296.

J. Lemaitre, A Course on Damage Mechanics, Springer-Verlag, 1996.

C.H. Liu, H. G, H.A. Mang, 3d finite element analysis of rubber-like materials
at finite strains, Eng. Computations 11 (1994) 111-128.

O. Lloberas-Valls, D.J. Rixen, A. Simone, L.J. Sluys, Multiscale domain de-
composition analysis of quasi-brittle heterogeneous materials, Int. J. Numer.
Meth. Engng 89(11) (2012) 1337-1366.

S. Loehnert, T. Belytschko, A multiscale projection method for
macro/microcrack simulations, Int. J. Numer. Meth. Engng 71 (2007)
1466-1482.

J. Mazars, G. Pijaudier-Cabot, Continuum damage theory-application to
concrete, J. Engng. Mech. Div. ASCE 115 (1989) 345-365.

J. Mergheim, E. Kuhl, P. Steinmann, A finite element method for cohesive
crack modelling, PMMA 4(1) (2004) 350-351.

N. Moés, J. Dolbow, T. Belytschko, A finite element method for crack growth
without remeshing, Int. J. Numer. Methods Engng. 46(1) (1999) 131-150.

J. Moraleda, J. Segurado, J. Llorca, Finite deformation of porous elastomers: a
computational micromechanics approach, Philos. Mag. 87(35) (2007) 5607—
5627.

S. Nemat-Nasser, M. Hori, Micromechanics: Overall properties of heteroge-
neous materials., Elsevier, 1999.

V.P. Nguyen, O. Lloberas-Valls, M. Stroeven, L.J. Sluys, On the existence of
representative volumes for softening quasi-brittle materials-a failure zone
averaging scheme, Comput. Methods Appl. Mech. Engrg. 199 (2010) 3028-
3038.



125

(54]

[55]

(56]

[57]

(58]

(59]

(60]

(61]

(62]

(63]

(64]

(65]

(66]

V.P. Nguyen, O. Lloberas-Valls, M. Stroeven, L.J. Sluys, Homogenization-
based multiscale crack modelling: From micro-diffusive damage to macro-
cracks, Comput. Methods Appl. Mech. Engrg. 200 (2011) 1220-1236.

V.P. Nguyen, M. Stroeven, L.J. Sluys, An enhanced continuous-discontinuous
multiscale method for modeling mode-I cohesive failure in random hetero-
geneous quasi-brittle materials, Engrg. Fract. Mech. 79 (2012) 78-102.

J. Oliver, M. Caicedo, E. Roubin, A.E. Huespe, J.A. Hernandez, Continuum ap-
proach to computational multiscale modeling of propagating fracture, Com-
put. Methods Appl. Mech. Engrg. 294 (2015) 384-427.

R. Peerlings, R. De Borst, W. Brekelmans, J. De Vree, Gradient enhanced dam-
age for quasi-brittle materials, Int. J. Numer. Methods Engrg. 39 (1996) 3391-
3403.

E Perales, S. Bourgeois, A. Chrysochoos, Y. Monerie, Two field multi-body
method for periodic homogenization in fracture mechanics of nonlinear
heterogeneous materials, Eng. Fract. Mech. 75(11) (2008) 3378-3398.

K. Pham, V.G. Kouznetsova, M.G.D. Geers, Transient computational homog-
enization for heterogeneous materials under dynamic excitation, J. Mech.
Phys. Solids 61 (2013) 2125-2146.

P. Ponte Castarieda, E. Tiberio, A second-order homogenization method in fi-
nite elesticity and applications to black-filled elastomers, Journal of the me-
chanics and physics of solids 48 (2000) 1389-1411.

E. Samaniego, T. Belytschko, Continuum-discontinuum modelling of shear
bands, Int. J. Numer. Methods Engng. 62 (2005) 1857-1872.

E. Sanchez-Palencia, Non-homogeneous media and vibration theory. Lec-
ture notes in physics 127, Springer-Verlag, Berlin, 1980.

J.C. Simo, A framework for finite strain elastoplsticity based on maximum
plastic dissipation and the multiplicative decomposition: part i. continuum
formulation, Comput. Meth. Appl. Mech. Eng. 66 (1988) 199-219.

J.C. Simo, Algorithms for static and dynamic multiplicative plasticity that
preserve the classical return mapping schemes of the inifitesmal theory,
Comput. Meth. Appl. Mech. Eng. 99 (1992) 61-112.

J.C. Simo, M. Ortiz, A unified approach to finite deformation elastoplasticity
based in the use of hyperelastic constitutive equations, Comput. Meth. Appl.
Mech. Eng. 49 (1985) 222-235.

J.C. Simo, R.L. Taylor, Quasi-incompressible finite elasticity in principal
stretches. continuum basis and numerical algorithms, Comput. Methods
Appl. Mech. Engrg. 85 (1991) 273-310.



126

(67]

(68]

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

O. Van der Sluis, P. Schreurs, W. Brekelmans, H. Meijer, Overall behaviour of
heterogeneous elastoviscoplastic materials: effect of microstructural mod-
elling, Mech. Mater. 32(8) (2000) 449-462.

P. Smolinski, S. Sleith, T. Belytschko, Stability of an explicit multi-time step
integration algorithm for linear structural dynamics equations, Comput.
Mech. 18(3) (1996) 236-244.

J.H. Song, PM.A. Areias, T. Belytschko, A method for dynamic crack and shear
band propagation with phantom nodes, Int. J. Numer. Meth. Engng. 67(6)
(2006) 868-893.

EV. Souza, D.H. Allen, Modeling failure of heterogeneous viscoelastic solids
under dynamic/impact loading due to multiple evolving cracks using a two-
way coupled multiscale model, Mech. Time-Depend. Mater. 14 (2010) 125-
151.

EV. Souza, D.H. Allen, Multiscale modeling of impact on heterogeneous vis-
coelastic solids containing evolving microcracks, Int. J. Numer. Meth. Engng.
82 (2010) 464-504.

EV. Souza, D.H. Allen, Modeling the transition of microcracks into macroc-
racks in heterogeneous viscoelastic media using a two-way coupled multi-
scale model, Int. J. Solids. Struct. 48 (2011) 3160-3175.

EV. Souza, D.H. Allen, M.R. Kim, Multiscale model for predicting damage
evolution in composites due to impact loading, Compos. Sci. Technol. 68
(2008) 2624-2634.

S.S. Sternstein, L. Ongchin, A. Silverman, Inhomogeneous deformation and
yielding og glasslike high polymers, Appl. Polym. Symp. 7 (1968) 175-199.

P. Suquet, Local and global aspects in the mathematical theory of plasticity,
Plasticity Today: Modelling, Methods and Applications (1985) 279-310.

M.G.A. Tijssens, E. van der Giessen, L.J. Sluys, Modeling of crazing using a
cohesive surface methodology, Mech. Mater. 32 (2000) 19-35.

Z.P. Wang, C.T. Sun, Modeling micro-inertia in heterogeneous materials un-
der dynamic loading, Wave Motion 36 (2002) 473-485.

J. Yvonnet, E. Monteiro, Q. He, Computational homogenization method and
reduced database model for hyperelastic heterogeneous structures, Int. J.
Multiscale. Com. 11(3) (2013) 201-225.

E Zhou, J.E Molinari, S. Tadashi, A rate-dependent cohesive model for sim-
ulating dynamic crack propagation in brittle materials, Eng. Fract. Mech. 72
(2005) 1383-1410.



Acknowledgements

The financial support provided by Netherlands Technology Foundation (STW) is
gratefully acknowledged.

Foremost, I would like express my most sincere gratitude and appreciation to my
supervisor Prof. Bert Sluys for giving me this wonderful opportunity to join this
group and his commitment, involvement, guidance, encouragement and support
during this research and all the things I learned from him.

I would also like to thank my thesis committee: Prof. Tom Scarpas, Prof. Akke
S. J. Suiker Prof. Ludovic Noels, Dr. Jaap Weerheijm, Dr. Frans P. van der Meer
and Dr. Varvara Kouznetsova for taking time to read my thesis and their valuable
comments and suggestions.

I must express my very special thanks to Vinh Phu Nguyen who introduced me to
multi-scale methods and provided me with a lot of useful documents and codes.
I would also like to thank Awais Ahmed for his guidance, support and valuable
discussions and collaborations on modeling polymer materials.

Iwould like to thank Erik Jan Lingen for his support and valuable advices in using
Jem/Jive library. I would also like to thank Frank Everdij for his help and support
on the computer related issues.

I specially thank Martijn van den Ende and Erik Simons who helped me trans-
lating my thesis summary into Dutch. I would also like to thank our kind and
nice secretary Anneke Meijer for her help in administrative works. I would like
to express my sincere gratitude to Mojtaba Talebian and Mehdi Nikbakht who
have been great friends and I will never forget their help and supports when I
first arrived in the Netherlands. My sincere thanks go to Mehdi Musivand Arzan-
fudi and Salar Mostofizadeh for being genuine friends and supportive and for
all the scientific and non-scientific discussions we had in their office!. I would
also like to thank my kind officemates Mohammad Latifi, Jure Zlopasa and Oriol
Lloberas-Valls for their support and friendship. I thank my former and current
colleagues including Angelo Simone, Rafid Al-Khoury, Zahid Shabir, Prithvi Man-
dapalli, Adriaan Sillem, Jitang Fan, Sanaz Saeed, Noori, Luis Magalhaes Pereira,
Marcello Malagu, Ali Paknahad, Behrouz Arash, Fariborz Ghavamian, Kai Li, Jafar
Amani Dashlejeh, Lars Voormeeren, Liting Qui, Mohsen Goudarzi, Nghi Le, Os-
valds Verners, Prashanth Srinivasan and Tiziano Li Piani.

My special appreciation goes to my wonderful and nice neighbors and friends
Vahid Kamyab and Alieh Alipour who have been genuine and supportive friends
especially in difficulties. I specially thank my kind and terrific friends Hadi Jamali-
Rad, Hamid Ramazani, Nader Sadeghi and Mehdi Salarpour for their friendship
and all the fun we have had together. I would also like to thank all my friends
Davood Karimi, Dara Ghasimi, Vahid Arbabi, Firoozeh Farokhzad, Mohi Ahmad-
nia, Somi Lotfi, Mostafa Zahmatkesh, Maryam Khodadadian and Fatima Anisi for

127



128

their support and friendship which made living far from homeland much easier
for me.

Last but not least, I would like to express my greatest gratitude to my parents Hey-
dar and Tayebeh, my brother Hamed, my sister Narjes and my sister-in-law So-
mayeh for their unconditional love and support.



02-03-1985

Education
2003 - 2007

2007 - 2009

2011 - 2016

Curriculum Vitae

Amin KARAMNEJAD

Born in Larestan, Iran.

B.Sc. in Mechanical Engineering

Faculty of Mechanical Engineering

Iran University of Science and Technology
Tehran, Iran

M.Sc. in Mechanical Engineering

Faculty of Mechanical Engineering

Iran University of Science and Technology
Tehran, Iran

Ph.D. candidate

Faculty of Civil Engineering and Geosciences
Delft University of Technology

Delft, the Netherlands

129






List of Publications

Journal papers

1. A. Karamnejad, V.P. Nguyen, L.J. Sluys, A multi-scale rate dependent crack
model for quasi-brittle heterogeneous materials, Eng. Fract. Mech. 104
(2013) 96-113.

2. A. Karamnejad, L.J. Sluys, A dispersive multi-scale crack model for quasi-
brittle heterogeneous materials under impact loading, Comput. Methods
Appl. Mech. Engrg. 278 (2014) 423-444.

3. A. Karamnejad, L.J. Sluys, A multi-scale scheme for modelling fracture un-
der dynamic loading conditions, Key Eng. Mater. 627 (2014) 37-40.

4. A. Karamnejad, L.J. Sluys, A new multi-scale scheme for modeling hetero-
geneous incompressible hyperelastic materials, Int. J. Numer. Meth. Engng
(2015) (In press).

5. A.Karamnejad, A. Ahmed, L.J. Sluys, A numerical homogenization scheme
for glass particle-toughened polymers under dynamic loading, Journal of
Multiscale Modelling (2016) (In press).

Conferences

1. A. Karamnejad, V. P. Nguyen, L. J. Sluys, Multi-scale crack modeling for het-
erogeneous quasi-brittle materials under dynamic loading using a discon-
tinuous homogenization scheme , Euromech 537, Paris, France, (2012).

2. A. Karamnejad, V. P. Nguyen, L. J. Sluys, A two-scale rate dependent crack
model for quasi-brittle materials under dynamic loading , WCCM 2012, Sao
Paulo, Brazil, (2012).

3. A.Karamnejad, V. P. Nguyen, L. J. Sluys, Modeling crack propagation in het-
erogeneous materials using a computational homogenization method, CFRAC
2013, Prague, Czech Republic, (2013).

4. A.Karamnejad, V. P. Nguyen, L. J. Sluys, A rate-dependent multi-scale crack
model for concrete , Proceedings of the 8th International Conference on
Fracture Mechanics of Concrete and Concrete Structures, Toledo, Spain,
(2013) 919-929.

5. A. Karamnejad, V. P. Nguyen, L. J. Sluys, Modeling concrete under high fre-
quency loading using a multi-scale method, Euro-C 2014, St. Anton am Arl-
berg, Austria, (2014).

131



132 List of Publications

6. A.Karamnejad, L.]. Sluys, Modeling concrete under high frequency loading
using a multi-scale method , WCCM 2014, Barcelona, Spain, (2014).

7. A.Karamnejad, L.]. Sluys, Multiscale schemes for modelling fracture in soft
and brittle materials under impact , CFRAC 2015, Cachan, France, (2015).

8. A. Karamnejad, L. J. Sluys, Multiscale Schemes for Modelling Impact on
Soft and Brittle Materials , European Solid Mechanics Conference, Madrid,
Spain, (2015).



