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Summary

Macroscopic behavior of heterogeneous materials depends on the behavior of

their microstructures and the interaction between different phases. In such ma-

terials, the damaging process occurs at different length scales and time scales.

Under dynamic loading conditions, rate dependency of the materials, large de-

formations and strains, micro inertia forces and wave reflection and refraction at

the interfaces of different phases in the heterogeneous material are involved in

the macroscopic response and should be taken into account.

The computational homogenization method enables to derive the overall be-

havior of heterogeneous materials from their local-scale response. In this method,

a representative volume element (RVE) is assigned to a macroscopic material point

and the constitutive law for the macroscopic model at that point is obtained by

solving a boundary value problem for the RVE. However, the standard computa-

tional homogenization scheme cannot be used when strain localization occurs

and does not account for dynamic effects at the local-scale. Furthermore, in the

computational homogenization scheme, at each iteration, a boundary value prob-

lem should be solved for RVEs associated to the integration points of macroscopic

elements which leads to high computational cost. When the problem is nonlin-

ear (material and/or geometrical nonlinearities), the computational cost may be-

come more than used for direct numerical simulation (DNS).

This study aims at developing computational and numerical homogenization

schem- es which account for strain localization, dynamic effects at the local-scale

and large deformations and strains. Furthermore, strategies are presented to de-

crease the computational cost while preserving accuracy. Different heterogeneous

structures consisting of quasi-brittle materials, hyperelastic materials and poly-

mer materials are studied and proper homogenization schemes are presented.

A computational homogenization scheme is developed to model failure in

heterogeneous quasi-brittle materials under dynamic loading. In this scheme,

the heterogeneous material with strain localization is replaced by a macro-scale

model with a cohesive crack and a meso-scale model with diffuse damage. The

constitutive law for the macroscopic bulk material is determined using standard

computational homogenization. The cohesive law for the macroscopic crack is

obtained using a continuous-discontinuous computational homogenization sch-

eme which is based on a failure zone averaging technique. At the macro-scale

a dynamic analysis is performed and the meso-scale model is solved as a static

problem. The effect of the crack opening rate on the macroscopic cohesive law is

taken into account by relating the material properties of the meso-scale model to

the macro-crack opening rate. For the dynamic problems, it is shown that when

the macroscopic length scale, which is related to the macroscopic wave length, is

significantly larger than the meso-scale length scale, inertia forces at the meso-
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scale model are negligible. However, when the macroscopic characteristic length

is comparable with the meso-scale length scale, inertia forces at the meso-scale

result in wave dispersion and no longer can be neglected. In order to account for

the inertia forces at the meso-scale model, a dispersion tensor is computed from

the RVE problem with which the inertia forces at the meso-scale model can be

obtained. The inertia forces at meso-scale model appear as additional body force

in the macro-scale model.

A new computational homogenization scheme is developed to model hetero-

geneous incompressible hyperelastic materials undergoing large deformations.

The model is bas- ed on a computational continua formulation which assumes

that the macro-scale model consists of disjoint unit cells. Computational proce-

dures to obtain the macroscopic quantities from the RVE problem solution are

presented. It has been shown that the computational time for the proposed ho-

mogenization scheme is lower than for standard computational homogenization.

A numerical homogenization scheme is also developed to model glass particle-

tough- ened polymer materials under dynamic loading. A constitutive law for the

polymer materials is developed. It is assumed that the behavior of the heteroge-

neous material is governed by the same constitutive law as the polymer material

with unknown material parameters. A homogenization scheme is presented to

obtain the unknown material parameters by solving the RVE problem. The pro-

posed homogenization scheme can be used after shear bands occur in the poly-

mer matrix where the standard computational homogenization scheme is not

valid.

The proposed homogenization schemes are validated against DNS and objec-

tivity of the schemes with respect to the RVE size is demonstrated.



Samenvatting

Het macroscopisch gedrag van heterogene materialen is afhankelijk van het gedrag

van hun microstructuren en de interactie tussen verschillende fasen. In dergeli-

jke materialen vinden schade-processen plaats op verschillende lengte- en tijd-

schalen. Onder dynamische belastingcondities zijn de snelheidsafhankelijkheid

van de materialen, grote deformaties, micro-traagheidskrachten en golfreflectie

en -refractie op de grensvlakken tussen verschillende fasen in het heterogene ma-

teriaal van belang voor de macroscopische respons.

Numerieke homogenisatie is een methode om het gedrag van heterogene ma-

terialen af te leiden uit hun reactie op lokale schaal. Met deze methode wordt een

representatief volume element (RVE) toegekend aan een macroscopisch materi-

aalpunt waarna de constitutieve vergelijking voor het macroscopisch model in

dat punt wordt verkregen door een randvoorwaardeprobleem op te lossen voor

het RVE. Echter, het gangbare numerieke homogenisatieschema kan niet worden

gebruikt wanneer de deformatie lokaliseert en het schema houdt geen rekening

met dynamische effecten op de lokale schaal. Daarnaast moet er bij iedere iter-

atie in het schema een randvoorwaardeprobleem worden opgelost voor ieder RVE

dat geassocieerd is met een integratiepunt van een macroscopische element, wat

leidt tot lange rekentijden. Wanneer het vraagstuk niet-lineair is (materiaal en/of

geometrische niet-lineairiteiten) kan de rekentijd langer worden dan voor directe

numerieke simulaties (DNS).

Deze studie heeft als doel het ontwikkelen van numerieke homogenisatie-

schema’s die rekening houden met lokalisatie van deformatie, dynamische ef-

fecten op de lokale schaal en grote deformaties en rekken. Strategieën om de

rekentijd te reduceren met behoud van nauwkeurigheid worden ook voorgesteld.

Verschillende heterogene materiaalstructuren zoals quasi-brosse materialen, hyper-

elastische materialen en polymeren worden bestudeerd en geschikte homogenisa-

tieschema’s worden gepresenteerd.

Een numeriek homogenisatieschema is ontwikkeld om het falen te modelleren

van heterogene quasi-brosse materialen onder dynamische belasting. In dit stelsel

wordt het heterogene materiaal met gelokaliseerde deformatie vervangen door

een macroscopisch model met een cohesieve scheur en een mesoscopisch model

met diffuse schade. De constitutieve vergelijking voor het macroscopische mate-

riaal wordt bepaald door gebruik te maken van standaard numerieke homogenisatie.

De vergelijking voor de cohesieve scheur volgt uit een continue-discontinue nu-

merieke homogenisatie welke gebas- eerd is op middeling van de gefaalde zone.

Dynamische analyse wordt toegepast op de macroscopische schaal en het meso-

scopisch model wordt opgelost als een statisch vraagstuk. Er wordt rekening geh-

ouden met het effect van de snelheid van scheuropening op het macroscopische

model door de materiaaleigenschappen van het mesoscopisch model te relateren
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aan de snelheid van scheuropening op de macroscopische schaal. Voor dynamis-

che vraagstukken wordt aangetoond dat wanneer de macroscopische lengte schaal,

welke is gerelateerd aan de macroscopische golflengte, significant groter is dan de

mesoscopische lengte schaal de traagheidskrachten op de mesoscopische schaal

verwaarloosbaar zijn. Echter, wanneer de karakteristieke lengte van de macro-

scopische schaal vergelijkbaar is met de lengte van de mesoscopische schaal, re-

sulteren traagheids- krachten op de mesoscopische schaal in een fenomeen zoals

golfverstrooiing dat niet langer verwaarloosd kan worden. Om rekening te houden

met de traagheidskrachten op het model van de mesoscopische schaal wordt een

dispersietensor berekend met het RVE randvoorwaardeprobleem, waarmee de

traagheidskrachten op het model van de mesoscopische schaal kunnen worden

verkregen. De traagheidskrachten op de mesoscopische scha- al worden vertaald

naar een additionele kracht in het model op de macroscopische schaal.

Een nieuw numeriek homogenisatieschema is ontwikkeld om heterogene on-

samendrukbare hyp- erelastische materialen te modelleren welke grote deformaties

ondergaan. Het model is gebaseerd op een numerieke continua formulering welke

aanneemt dat het model van de macroscopische schaal bestaat uit disjuncte een-

heidscellen. Numerieke procedures worden gepresenteerd om de macroscopis-

che grootheden te verkrijgen uit de oplossing van het RVE vraagstuk. Er wordt

aangetoond dat de rekentijd voor het voorgestelde homogenisatieschema korter

is dan voor het standaard homogenisatieschema.

Een numeriek homogenisatieschema is ook ontwikkeld om glasdeeltjes-geharde

polymeren te modelleren onder dynamische belasting. Een constitutieve vergeli-

jking voor de polymeren is afgeleid. Er is aangenomen dat het gedrag van het

heterogene materiaal wordt bepaald door dezelfde constitutieve vergelijking als

het polymeer met onbekende materiaalgrootheden. Een homogenisatieschema

is voorgesteld om de onbekende materiaalgrootheden te verkrijgen door middel

van het oplossen van het RVE vraagstuk. Het voorgestelde homogenisatieschema

kan worden gebruikt nadat deformatiezones optreden in de matrix bestaande

uit het polymeer, waarvoor het standaard numerieke homogenisatieschema niet

geldig is.

De voorgestelde homogenisatietechnieken zijn gevalideerd met DNS en de

objectiviteit van de schema’s ten opzichte van de grootte van het RVE is aange-

toond.
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1
Introduction

1.1. Multi-scale modeling of heterogeneous

materials
Mixing different materials in order to obtain a better strength to weight ratio and

desired material properties is being considered for the design of complex engi-

neering structures for many years. These heterogeneous materials have vast ap-

plications in many industries including civil engineering, aerospace engineering,

defense, biomechanical engineering and sports. For example, the reinforcement

of automobile tires by adding particles and fibers or rubber/glass particle tough-

ened polymer blends in defense and impact resistant structures.

Optimal design of these heterogeneous materials requires a good understand-

ing of the global behavior of the material, the local behavior of each ingredi-

ent and the relation between the global and local responses. Heterogeneities of

these materials give rise to difficulties in the design process. For instance, dam-

age processes in heterogeneous materials occur at different spatial and temporal

scales which makes the analysis more complex. When a structure is subjected to

dynamic loading, for example in defense structures, geometrical nonlinearities

due to large deformations and large strains, wave dispersion effects and complex

damage mechanisms make the design procedure more difficult.

Modeling heterogeneous materials using a direct numerical simulation (DNS)

in which detailed heterogeneities are modeled directly at the macro-scale may

give accurate results but this method needs enormous computational efforts and

is, in most cases, not practical.

Multi-scale methods provide proper tools to model heterogeneous materials.

In the multi-scale methods, macroscopic behavior of the heterogeneous material

is obtained by averaging the local-scale properties. Multi-scale methods include

concurrent methods and homogenization-based methods. Concurrent methods

can be divided into domain decomposition methods [14, 32, 42, 43, 46] and vari-

ational multi-scale methods [47]. Homogenization-based methods can be cate-
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gorized into mathematical homogenization methods, numerical homogenization

methods and computational homogenization methods. Mathematical homog-

enization methods are based on the mathematical asymptotic homogenization

theory [52, 62]. In numerical homogenization methods which are also known as

unit cell methods, a constitutive law is assumed for the macro-scale model and

the unknown parameters for the constitutive law are determined by fitting the

data obtained from a micro sample analysis [7, 67]. Unit cell methods have been

extended for higher order continuum models by several authors, e.g. Forest et

al. [25] has developed homogenization procedures for a periodic linear elastic

Cosserat medium. In computational homogenization methods [20, 30, 75], a rep-

resentative volume element (RVE) is associated to each material point. In this

method, macroscopic deformations are used to prescribe boundary conditions

on the RVEs and macroscopic behavior is obtained from solutions of the bound-

ary value problems for the RVEs. A sample volume can be defined as an RVE if the

homogenized properties do not change with the size of the sample volume.

In the computational homogenization scheme, the macroscopic stress field

is assumed to be constant over the RVE. However, when strain localization oc-

curs, for example in the form of shear bands or microcracks, this assumption is

not valid. Figure 1.1 shows averaged stress versus averaged strain curves for het-

erogeneous samples with a localized deformation pattern for different sizes. The

averaged quantities are computed over the whole sample domain. As it can be ob-

served in figure 1.1, the results are similar in the linear regime but the results for

the different sample sizes are different in the post-peak softening regime. This is

due to the fact that when strain localization occurs, the localized area does not au-

tomatically scale with sample size and the homogenized properties change with

the sample volume size [31]. Therefore, based on the aforementioned definition

of an RVE, it can be concluded that RVE can only be defined for the linear and

hardening regime.

Many researchers have worked on this issue to account for strain localization

at the local-scale. A second-order computational homogenization scheme has

been developed in [41] to model softening materials. In this method, the macro-

scopic deformation tensor and its gradients are used to prescribe the boundary

conditions on the RVE. Oliver et. al. [56] have developed a multi-scale approach

for modeling propagating fracture which is based on a continuum setting for the

fracture at both scales and a standard format of the computational homogeniza-

tion procedure. Introducing a failure zone averaging scheme, Nguyen et. al. [53]

have defined an RVE for strain localization problems. Furthermore, a discontin-

uous computational homogenization scheme is developed in [54] based on the

failure zone averaging scheme which can be used to model cohesive cracking in

heterogeneous materials. In [55], a continuous-discontinuous computational ho-

mogenization scheme is developed in which the discontinuous scheme is used

together with the standard homogenization scheme.

However, using computational homogenization methods may lead to high

computational costs. In the computational homogenization method, when ma-

terial behavior is linear, the RVE problem can be solved only once which makes
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Figure 1.1: Averaged stress versus averaged strain for the localized

heterogeneous samples with different sizes

the method computationally effective. However, when the constitutive relations

of the micro-/meso-structures are nonlinear and history dependent, for each it-

eration of the macro-scale model problem solution, a boundary value problem

needs to be solved for the RVEs associated to the macroscopic elements integra-

tion points. Therefore, in some cases, using the computational homogenization

scheme may become computationally costlier than direct numerical simulations

(DNS). This may become worse when geometrical nonlinearity is also included.

One way to decrease the computational cost is to use the homogenization scheme

only for the critical regions (for example regions where strain localization occurs).

Parallel computing can also be used to reduce the computational time. Further-

more, model order reduction methods [8] can be applied to reduce the number

of degrees of freedom for both macro-scale model and RVE problem. Using the

model reduction method requires calculation of eigenvalues and eigenvectors for

the problem which can be also computationally expensive. Alternatively, one can

also decrease the number of RVE problems by choosing a coarse mesh for the

macro-scale model. However, when the macro-scale model is subjected to large

deformation gradients or the micro/meso structures are relatively large compared

to the macroscopic model, using a standard first-order homogenization scheme

with a very coarse macroscopic mesh, results in inaccurate solutions. Since in

the first-order homogenization theory, the macroscopic strain is assumed to be

constant over the RVE it yields inaccurate solutions in these cases. Higher or-

der homogenization theory [41] and gradient elasticity models [2, 15, 29] can take

micro/meso-model deformation gradients into account. However, higher-order



1

4 Chapter 1. Introduction

homogenization methods introduce higher-order boundary conditions and gra-

dient elasticity methods add additional degrees of freedom to the formulation.

As a result, using these methods will increase the computational cost. Therefore,

Fish and Kuznetsov [24] developed a computational continua model which con-

siders the coarse-scale domain to consist of disjoint unions of computational unit

cells. The advantages of this model are that it does not add higher-order bound-

ary conditions and additional degrees of freedom to the problem.

For dynamic problems, local inertia effects may also affect the macroscopic re-

sponse. Figure 1.2 depicts a heterogeneous body subjected to a pulse. Due to the

heterogeneity of the structure, reflection and refraction of the wave between in-

terfaces of different phases may occur which leads to wave dispersion. In a multi-

scale model, dynamic effects at the local-scale should be taken into account in or-

der to model these dispersion effects. On the other hand, performing a dynamic

analysis for the RVE problem causes spurious wave reflections at the RVE bound-

aries (figure 1.2). This makes the multi-scale modeling of dynamic problems con-

siderably more complex.

Multi-scale modeling for wave propagation problems is studied by many re-

searchers. A two-field multi-body method is developed by Perales et. al. [58]

to obtain fracture properties of heterogeneous materials under dynamic loading.

Souza et. al. [70, 71, 73] have developed a multi-scale model for heterogeneous

viscoelastic materials by considering the same form of constitutive equations at

the local-scale model and the global-scale model. Furthermore, they have de-

veloped a scheme for transition of the micro-crack to the macro-crack in which

the eXtended Finite Element Method (XFEM) [50] is used at the global-scale to

model macro cracking and the cohesive zone method is used at the local-scale for

modeling micro cracks [72]. Pham et. al. [59] have developed a transient com-

putational homogenization scheme by enriching description of the micro–macro

kinematics and a generalized Hill–Mandel condition to ensure a consistent solu-

tion of the balance of linear momentum at both scales. Wave dispersion phenom-

ena can be modeled using gradient elasticity models [2, 15, 29] in which the classi-

cal equations of elasticity are extended by adding higher order spatial derivatives

of strain, stress and/or acceleration. However, these models introduce additional

length scales in the constitutive equations which need to be identified. Another

drawback of the gradient elasticity models is that they cannot easily be imple-

mented in the standard finite element formulation and a C1 continuity formu-

lation is required. Wang and Sun [77] have developed a model including micro-

inertia for heterogeneous materials under dynamic loading. Using dynamic equa-

tions of motion at the local-scale together with the averaging theorem for the

local-scale stress and strain and local-scale work, the macroscopic strain energy

and macroscopic kinetic energy are obtained which contain micro-inertia terms.

The Hamilton’s principle is used to obtain macroscopic equations of motion in

which micro-inertia appears as effective extra body forces. Dispersion effects are

modeled using a higher order homogenization method in [12, 21, 22]. Fish [23]

developed a multi-scale scheme in which the asymptotic expansions of displace-

ment, inertia, and weight functions are used to derive global-scale and local-scale
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equations of motion. Local-scale inertia effects are taken into account as an iner-

tia induced eigen strain. Local-scale inertia effects lead to additional body forces

at the global-scale which is represented using a so-called dispersion tensor. This

dispersive model is compatible with standard C0 continuity finite element formu-

lations and higher order boundary conditions are not required.

(a)

(b)

Macro-scale model

RVE

Figure 1.2: Wave propagation in the multi-scale model: (a) wave

reflection at interface of different materials causes wave

dispersion, (b) spurious reflections from the RVE boundaries

As mentioned before, under dynamic loading condition, structures can also

undergo large deformations and strains. Most of the works using multi-scale meth-

ods, consider small deformations at both macro-scale and micro-/meso-scale.

There are also a number of works in which large deformations and large strains

are investigated. Bolzon et. al. [9] and Moraleda et. al. [51] presented a hy-

perelastic constitutive model for compressible materials under large deforma-

tions by homogenizing the strain energy density function of periodic porous elas-

tomers. Ponte Castañeda and Tiberio [60] presented a second-order homoge-

nization approach for particle reinforced rubbers. The implementation of a 3D

numerical model using this second-order homogenization method is performed

by Bouchart et. al. [10]. Yvonnet et. al. [78] developed a computational ho-

mogenization scheme to calculate heterogeneous hyperelastic materials which

use a database of the effective strain energy density function. Each value of the

database is computed by solving a boundary value problem for the RVE and a

continuous potential is obtained using an interpolation scheme during solving

the macro-scale model.

According to the above discussion, a multi-scale model for heterogeneous materi-

als under dynamic loading should account for strain localization, dynamic effects

at the local-scale and large deformations and strains. The computational cost of

the multi-scale scheme is also a challenging issue that should be considered. De-

veloping comprehensive multi-scale methods which consider these issues is the

aim of this study.
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1.2. Scope and outline

In this study multi-scale methods are developed to model ductile and brittle het-

erogeneous materials under dynamic loading. The multi-scale methods devel-

oped in the manuscript are based on computational homogenization and numer-

ical homogenization methods. A wide range of materials are considered including

quasi-brittle material (concrete), rubber-like materials and polymer materials. In

the homogenization schemes developed in this work, strain localization, rate de-

pendency, dynamic effects at the local-scale and large deformations and strains

are taken into account. Furthermore, the existence of RVEs, and the reduction

of computational cost are discussed in this work. The remainder of this thesis is

outlined as follows:

Chapter 2. In this chapter, an overview of the problem is given and the standard

computational homogenization scheme and the discontinuous computational ho-

mogenization scheme for the static problem are described. These two methods

will be further developed and extended for the dynamic problems in this thesis.

Chapter 3. The aim of this chapter is to extend the proposed discontinuous ho-

mogenization scheme by Nguyen et. al. [54] to wave propagation problems. Fur-

thermore, rate effects are added to the model by relating the material properties

of the RVE to the rate of the macroscopic crack opening. The scheme developed in

this chapter is limited to dynamic problems where the macroscopic wave length

is significantly larger than the local-scale length scale. In this case, the problem

at the local-scale can be solved as a quasi-static problem. This is advantageous

since as explained before considering inertia forces at the local-scale may cause

two problems. Firstly, spurious reflections at the RVE’s boundaries occur and sec-

ondly, it breaks down the assumption of a constant deformation gradient over the

RVE volume.

Chapter 4. In this chapter, the computational homogenization scheme devel-

oped in chapter 3 is modified to capture the effect of meso-scale inertia forces for

high frequency loading conditions using the dispersive model given in [23]. Fur-

thermore, in order to determine the macro-crack initiation and direction, a loss

of hyperbolicity criterion in the meso-scale model is used. The effect of disper-

sion on the damage evolution is taken into account via rate dependency of the

cohesive law while the dispersion effects are assumed to be only a function of

the meso-scale model configuration and material properties. Verification studies

are performed using different numerical examples by comparing the dispersive

multi-scale results with those of direct numerical simulations (DNS) and the ex-

istence of the RVE for the proposed dispersive multi-scale scheme is shown.

Chapter 5. In this chapter, based on a so-called computational continua formu-

lation, a computational homogenization scheme is developed to model hetero-

geneous incompressible hyperelastic materials with relatively large RVEs under-

going large deformations and large strains. The computational procedures are

developed and relations are derived from the RVE problem solution to obtain the

macroscopic stress tensors and macroscopic tangent tensors used in the com-

putational continua formulation. The computational issues for calculating the

macroscopic tangent when the RVE undergoes large deformations are also dis-
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cussed. The developed computational homogenization scheme is then verified

through numerical examples for a heterogeneous elastic structure and a hetero-

geneous hyperelastic structure undergoing large deformations against the DNS

model. The computational cost of the proposed scheme versus the standard ho-

mogenization scheme is also investigated.

Chapter 6. In this chapter, a numerical homogenization scheme is developed

to model the glass particle-toughened polymer materials. A material model for

the polymer is developed and verified against experimental results. In the ho-

mogenization scheme, it is assumed that the macroscopic behavior of the glass

particle-polymer composite is governed by the same constitutive law as the poly-

mer material with unknown material parameters. The unknown material param-

eters are then obtained from an RVE problem using the standard computational

homogenization scheme. It is shown that unlike standard computational homog-

enization, the proposed method can be used after strain localization occurs in

the material. Furthermore, initiation of crazing in the polymer material is investi-

gated. The multi-scale model is then verified against direct numerical simulation

(DNS) results.

Chapter 7. Conclusions and recommendations for future work are presented in

this chapter.





2
Computational

homogenization schemes for

static problems

2.1. Multi-scale model

A heterogeneous body which consists of embedded stiff particles in the matrix is

shown in figure 2.1. The body is subjected to a external force t̄
ζ
. As it is shown

in figure 2.1, a localization band occurs in the matrix. In the multi-scale model,

the heterogeneous body undergoing localized failure is replaced by a homoge-

neous macro-scale model with a discrete cohesive crack and a meso-scale model

with a localization band of diffuse damage. In the present work, a cohesive crack

in the macro-scale model is modeled using XFEM. In order to solve the macro-

scale model problem, the constitutive law for the bulk material and the cohesive

law for the cohesive crack are required to be determined. The constitutive law

of the bulk material is obtained using a standard computational homogenization

method by applying the macroscopic strain (εM ) on the RVE boundary. By solv-

ing a boundary value problem for the RVE, the corresponding macroscopic stress

(σM ) and macroscopic tangent (C M ) can be computed. The cohesive law for the

crack can be determined using a continuous-discontinuous computational ho-

mogenization method in which the macro-crack opening ([[u]]M ) is applied on

the RVE for the integration points on the crack surface. The macroscopic traction

(t M ) and the cohesive tangent (T M ) are calculated by solving an RVE problem.

In the following sections, the finite element formulations for the macro-scale

model and the meso-scale model are derived and the procedures for determining

the macroscopic properties from the meso-scale model are presented.

9
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Heterogeneous body Macro-scale model Meso-scale model

Localization band

t̄ζ

Ω
ζ

t̄ M

Cohesive crack

Ω
M

Γ
M
d

n ˙[[u]]
M

t M , T M

ε
M

σ
M , C M

l M

l Ω
m
d

uR

Ω
m

l m

Γ
ζ
t

Γ
M
t

Figure 2.1: Multi-scale scheme

2.2. Macro-scale model
The momentum equation for the heterogeneous body shown in figure 2.1 can be

written as:

∂σ
ζ
i j

∂x
ζ
j

= 0 (2.1)

In the multi-scale scheme two spatial coordinates are introduced; macro-scale

coordinates xM and meso-scale coordinates xm which are related via xm = x M

ζ
with ζ≪1. The displacement, strain and stress fields for the heterogeneous body

can be written using asymptotic expansions as [23]:

u
ζ
i

(xM , xm , t) = uM
i (xM , t)+ζum

i (xM , xm , t)+o(ζ2) (2.2)

ε
ζ
i j

(xM , xm , t) = εm
i j (xM , xm , t) = εM

i j (xM , t)+um
(i ,xm

j
)
(xM , xm , t) (2.3)

σ
ζ
i j

(xM , xm , t) =σm
i j (xM , xm , t) =σM

i j (xM , t)+ σ̃i j (xM , xm , t) (2.4)

where ζ, M and m superscripts denote the heterogeneous model, macro-scale

model and the meso-scale model quantities, respectively. x�, u�

i
, ε�

i j
and σ�

i j

are position vector, displacement vector, strain tensor and stress tensor, respec-

tively. σ̃i j is the meso-scale stress perturbation. ζ is the ratio of the meso-model

characteristic length to the macro-model characteristic length (figure 2.1). The

derivative used in (2.3) is defined as A(i ,xm
j

) =
1
2

(

∂Ai

∂xm
j
+

∂A j

∂xm
i

)

.

Macroscopic strain/stress can be related to the meso-scale strain/stress fields

via:

ε
M

=
1

|Ωm |

∫

Ωm
ε

m dΩm (2.5)
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σ
M

=
1

|Ωm |

∫

Ωm
σ

mdΩm (2.6)

Energy consistency in transition of scales is satisfied by the Hill-Mandel principle

[34] which states that the macroscopic work rate must be equal to the volume

average of local-scale work rate over the RVE, according to:

σ
M : ε̇M

=
1

|Ωm |

∫

Ωm
σ

m : ε̇mdΩm (2.7)

Inserting equations (2.2)-(2.4) into the heterogeneous model momentum equa-

tion (2.1) and using averaging equations (2.5) and (2.6), the equation of motion

for the bulk domain of the macro-scale model can be derived as:

∂σM
i j

∂xM
j

= 0 on Ω
M \ΓM

d (2.8)

The bulk material macro-stress can be computed via:

σ̇
M

=C M : ε̇M (2.9)

The fourth-order tensor C M is the bulk homogenized tensor which can be com-

puted using a homogenization technique. The boundary condition for the crack

surface reads:

n ·σ
M

+ = n ·σ
M

− = t M on Γ
M
d (2.10)

where n and t M are the outward normal to the crack surface and the macroscopic

traction, respectively. The cohesive law for the cohesive crack can be written in

the rate form as:

ṫ M
= T M

· ˙[[u]]
M

(2.11)

where [[u]]M and T M are the displacement jump for the macro crack and the

macro cohesive tangent, respectively. In the finite element method, the phan-

tom node method is used to model the strong discontinuity in which the cracked

element is modeled using two overlapping elements[49, 69]. The weak form of the

problem can be written as:

∫

Γ
M
t

δu.t̄
M

dΓM
t −

∫

ΩM
∇

sδu : σM dΩM
−

∫

Γ
M
d

δ[[u]]M .t M dΓM
d = 0 (2.12)

The discretized equations for the macro-scale model can be written as:

f M
ext − ( f M

bul k + f M
coh ) = 0 (2.13)

where f M
ext , f M

bul k
and f M

coh
are the external force vector, the bulk force vector and

the cohesive force vector, respectively. Internal force vectors can be obtained via

f M
bul k =

∫

ΩM
B T

σ
M dΩM (2.14a)
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f M
coh =

∫

Γ
M
d

N T t M dΓM (2.14b)

in which N and B are the matrix of nodal shape functions and the matrix of deriva-

tives of the shape functions, respectively.

2.3. Meso-scale problem
The momentum equation for the meso-scale problem can be written similar to

the macro-scale problem as:
∂σm

i j

∂xm
j

= 0 (2.15)

The rate form of the constitutive law for the meso-scale problem reads:

σ̇
m
=C m : ε̇m (2.16)

where the fourth-order tensor C m is the meso-scale model tangent module which

depends on the material model. The discretized form of equation (2.15) reads:

f m
i nt = f m

ext (2.17)

in which

f m
i nt =

∫

Ωm
B T

σ
mdΩm (2.18)

2.4. Macro-meso transition
In order to solve the discretized equation (2.13), one needs to find the macro-

scopic constitutive law for the bulk material (equation (2.9)) and the macroscopic

cohesive law for the macro crack (equation (2.11)) from the meso-scale model. In

section (2.4.1) the standard computational homogenization is presented which

can be used to obtain the bulk material macroscopic constitutive law. The continu-

ous-discontinuous computational homogenization scheme is explained in sec-

tion (2.4.2) which is used to obtain the cohesive law for the cohesive crack.

2.4.1. Standard computational homogenization scheme for bulk ma-

terial

Before strain localization occurs in the bulk material, the macro strain ε
M can be

transformed on the RVE boundary as (for periodic boundary condition) [40]:

ui = Hi
T
ε

M i = 1,2,4 (2.19)

where ui is the displacement of the RVE’s three controlling nodes shown in figure

2.2 and Hi is:

Hi =






xi 0

0 yi
yi

2
xi

2




 (2.20)
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Figure 2.2: Periodic representative volume element

The macroscopic stress as the volume average of meso-scale stress can be ob-

tained via

σ
M

=
1

|Ωm |

[
H1 H2 H4

]





f1

f2

f4



 (2.21)

where fi is the force vector at the controlling nodes.

At the converged state the linearized form of equation (2.17) for the meso-

scale model problem is written as K mδum = δf m from which the macroscopic

tangent moduli, C M , can be obtained via

C M
=

[
H1 H2 H4

]

(K m
bb −K m

ba

(

K m
aa

)−1
K m

ab)





H1

H2

H4



 (2.22)

in which subscript b denotes controlling nodes (three corner nodes) degrees of

freedom and subscript a represents the other nodes’ DOFs.

2.4.2. Continuous-discontinuous computational homogenization scheme

for the macro crack
When localization is detected in the RVE associated to a certain integration point

of the macro-scale model, a macrocrack is inserted in that point. In the cracked el-

ement, the bulk integration points are disconnected from the meso-scale model.

In the continuous-discontinuous scheme, the macro stress can be obtained from:

σ
M

=C M
un : εM (2.23)

where C M
un is a secant unloading tensor which can be computed by unloading the

localized RVE and computing the homogenized tangent from equation (2.22). To

each integration point on the crack surface, an RVE with boundary conditions

shown in figure 2.1 is allocated. The macro-meso transition equation is given as

[55]:

uR (um ) = (w − l(um ))C t M
+ [[u]]M

+u0
d am (2.24)
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where uR is the total displacement at the right edge of the RVE. The first term in

the right-hand-side of the equation represents the linear displacement and u0
d am

is the compatibility displacement. w and l denote the width of the RVE and the

averaged width of the localization band, respectively (figure 2.1). Matrix C is ob-

tained as:

C =∆
T
ℜ

−1
∆, ∆=






1 0

0 0

0 1




 (2.25)

ℜ can be computed using the cloning operation as follows: when localization is

detected in the RVE associated to the bulk integration point, the average stress

, σM
l oc

, is calculated from equation (2.21). The traction can be obtained using

t M
l oc

=σ
M
l oc

·n, where n is the normal vector of the macro-crack. The initial state

of the RVE corresponding to the integration point on the crack surface is obtained

as follows: The undeformed RVE with the boundary conditions shown in figure

2.1 is loaded to αt M
loc

. Then the deformed RVE is temporarily unloaded. At the

converged state of this unloading step the secant matrix ℜ can be computed us-

ing equation (2.22). Taking α=1.0 shows divergence of the solution. Here α= 0.99

is used.

The failure zone averaging scheme is used to compute the averaged quantities

for the meso-scale model. The averaged quantities are calculated over the active

damaged zone Ω
m
d

. The meso-scale quantities can be defined through:

l =
|Ωm

d
|

h
, ε

m
d am =

1

|Ωm
d
|

∫

Ω
m
d

ε
m dΩm , um

d am = ε
m

d am · (ln) (2.26)

h and n are the height of the RVE and normal to the crack band, respectively. l

is the width of the localization band. u0
d am

is calculated at the moment of crack

initiation using above equations. In order to compute the macroscopic traction,

t M , and the macroscopic cohesive tangent, T M , system of equations (2.17) and

(2.24) are solved. Details on theoretical and computational aspects can be found

in [54, 55].
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A computational

homogenization scheme for

quasi-brittle heterogeneous

materials under dynamic

loading

3.1. Summary
1In this chapter, a multi-scale numerical approach for modeling cracking in het-

erogeneous quasi-brittle materials under dynamic loading is presented.

In the proposed model, a discontinuous crack model is used at macro-scale

to simulate fracture and a gradient-enhanced damage model has been used at

meso-scale to simulate diffuse damage. The traction-separation law for the co-

hesive zone model at macro-scale is obtained from the meso-scale through the

discontinuous computational homogenization method. An implicit time integra-

tion is used to solve the dynamic problem at the macro-scale while the meso-scale

model is solved as a quasi-static problem. The effect of crack opening rate on the

macro cohesive law is taken into account by relating the material properties of the

meso-scale model to the macro crack opening rate. The objectivity of the model

response with respect to the representative volume element size is demonstrated

for wave propagation problems. The model is verified by comparison with a direct

numerical simulation.

1Based on reference [36]
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heterogeneous materials under dynamic loading

L

l m

λ

vp

Figure 3.1: Wave propagation in a heterogeneous beam

3.2. Computational homogenization scheme for dynamic

loading
To use computational homogenization theory, the problem must meet the fol-

lowing requirements. Firstly, the RVE should exist for the heterogeneous mate-

rial. As it is noted in chapter 1, the RVE exists if an increase in size does not

change homogenized properties and the sample is large enough so that the meso-

/micro- structure randomness does not affect the homogenized properties. The

second important issue in computational homogenization is the principle of sep-

aration of scales which indicates that the macroscopic characteristic length scale,

l M , which is either geometrical or related to the characteristic length of the phe-

nomenon [3] is assumed to be much larger than the local-scale length, l m (see

figure 2.1).

Figure 3.1 depicts a wave propagating with wave speed vp through a heteroge-

neous beam of length L. In wave propagation problems it can be shown that the

macroscopic characteristic length, l M , is related to the macro-scale wave length,

λ, through l M =
λ

2π [11]. In this case, the principle of separation of scales reads:

δ=
lm

l M
=

2πl m

λ
≪ 1 (3.1)

Fish et. al. [21] showed that higher-order homogenization is required to

model dispersion effects in wave propagation problems using a two-scale asymp-

totic expansion method. They demonstrated that in a dynamic problem, ho-

mogenized material properties obtained using the zero-order homogenization

method is the same as in the statics. It is also concluded in [21] that for low val-

ues of δ (δ≤ 10−2 ⇔ 10−1), the classical zero-order homogenization gives proper

results for dynamic problems.

In this chapter, problems with small values of δ are considered. Therefore, ac-

cording to the aforementioned discussion, the structural response is obtained by

solving the dynamic problem for the macro-scale model and for each time step of

the macro-scale solution, the material response is obtained from a static analysis

of the meso-scale problem.
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3.2.1. Macro-scale model
The momentum equation for the heterogeneous body (figure 2.1) in a dynamic

problem can be written as:

∂σ
ζ
i j

∂x
ζ
j

= ρζü
ζ
i

(3.2)

in which ρζ is the density of the heterogeneous body. The discretized equation

(2.13) can be written for a dynamic problem as:

M M üM
= f M

ext − ( f M
bul k + f M

coh ) (3.3)

where M M is the macro-scale model mass matrix and can be obtained via:

M M
=

∫

ΩM
N T ρM N dΩM (3.4)

in which ρM denotes the macro-scale model density and can be obtained from

the meso-scale mass densities ρm (=ρζ) as:

ρM
=

1

|Ωm |

∫

Ωm
ρm dΩm (3.5)

An implicit Newmark time integration scheme is used to solve equation (3.3)

in which consistent mass matrix is used. f M
bul k

and f M
coh

are computed from the

meso-scale problem (RVE) using standard computational homogenization (2.4.1)

and discontinuous computational homogenization (2.4.2) schemes, respectively.

3.2.2. Meso-scale model
In this chapter quasi-brittle materials (for example concrete) are analyzed. A grad-

ient-enhanced damage model [57] is used to model the behavior of such materi-

als. The stress-strain relation is given as [44]:

σ
m
= (1−ω)C m : εm (3.6)

where ω is the scalar damage variable (0 ≤ω≤ 1) and C m is a fourth-order tensor

which contains the elastic moduli. The damage evolution law is written as:

ω=

{
0 if κ≤κI

1− κ
κI

[1−γ+γexp
(

−β(κ−κI )
)

] if κ>κI
(3.7)

where γ, β and κI denote residual stress, softening slope and damage threshold,

respectively. κ is a scalar measure of the largest strain ever reached and is defined

by loading function f as:

f = ε̄eq −κ (3.8)

f and κ satisfy the Kuhn-Tucker conditions:

f ≤ 0, κ̇≥ 0, f κ̇= 0 (3.9)
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heterogeneous materials under dynamic loading

ε̄eq is the nonlocal equivalent strain which is implicitly related to the local equiv-

alent strain according to [57]:

ε̄eq −c∇2ε̄eq = εeq (3.10)

In this equation, c is defined as c =
1
2 l 2

c and lc represents the length scale. The

local equivalent strain [48] is defined as:

εeq =

√

〈ε1〉
2 +〈ε2〉

2 (3.11)

where εi are the principle strains and 〈x〉 refers to the positive part of x.

At time step t and iteration i (in case of using implicit time integration for non-

linear problems) in the macro-scale problem solution procedure, a quasi-static

problem should be solved for RVEs associated to the integration points on the

crack. The discrete system of equations for meso-scale model (RVE) can be writ-

ten as:
(t ,i) f m

ext =
(t ,i) f m

int (3.12)

where (t ,i) f m
int and (t ,i) f ext

m are the internal force vector and the external force vec-

tor for the meso-scale problem (at time step t and iteration i of the macro-scale

problem solution), respectively. By solving equation (3.12) one can find macro-

scopic quantities for the bulk (σM and C M ) and the macro crack (t M and T M ) at

time step t and iteration i for each integration point.

3.3. Wave propagation in a heterogeneous elastic beam
In this section, a heterogeneous 3-phase beam is considered which is subjected

to a half sine impact pulse at one end (figure 3.2). Material properties for dif-

ferent phases are given in table 3.1. In this case, the beam remains elastic dur-

ing the loading. Figure 3.3 depicts two different methods for modeling the prob-

lem. Figure 3.3 (a) shows a direct numerical simulation (DNS) in which all het-

erogeneities are directly modeled whereas figure 3.3 (b) illustrates the multi-scale

model. Three phases including matrix, aggregates and interfacial transition zone

(ITZ) are shown in yellow, green and blue, respectively. As shown in figure 3.3

(b), an RVE is associated to each integration point on the model. The dimensions

of the RVE are 10 mm×10 mm which is 100 times smaller than the macro wave

length which is 1000 mm.

The Newmark time integration scheme is used to solve the dynamic problem

at the macro-scale. The time step for the macro-scale problem is 5.0e-4 (ms). For

a certain time step, the macroscopic strain is transmitted to the RVE boundary

condition using (2.19) and after solving the static boundary value problem (BVP)

for the RVE, the homogenized stress and tangent moduli are calculated through

(2.21) and (2.22). The tip displacement obtained from the DNS model and multi-

scale model are shown in figure 3.4. Stress history curves for different points along

the beam are given in figure 3.5 for DNS and multi-scale models. In this figure,

curve number n shows average stress in x direction (σM
x =

1

|ΩM
n |

∫

Ω
M
n
σM

x dΩ) over a

domain specified as {(x, y) ∈Ω
M
n | 20(n −1) ≤ x ≤ 20n,0 ≤ y ≤ 20} (in mm). Good
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Figure 3.2: Heterogeneous elastic beam under dynamic loading

agreement can be observed between the results obtained from the DNS model

and the multi-scale model.

DNS Model

Multi-scale model

Figure 3.3: Direct numerical simulation and multi-scale model

Table 3.1: Material properties of different phases.

Matrix Aggregate ITZ

E (GPa) 12 80 7.2

ν (-) 0.25 0.15 0.35

ρ (kg/m3) 1900 2400 1900
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3.4. Wave propagation in a heterogeneous beam with strain

localization using rate-independent model

To study wave propagation in strain localization problems, a heterogeneous beam

is subjected to a constant velocity at both ends (figure 3.6). Tensile waves prop-

agate through the beam and after superposition of the waves at the center of the

beam, the stress at this point exceeds the tensile strength and a crack initiates.

Figure 3.7 shows the multi-scale model of the problem. Voided structures with

different sizes are chosen as RVE for this problem. It should be mentioned that

the multi-scale scheme is applied only on the crack and the bulk part is solved us-

ing the standard finite element method. The material properties for the RVE and

the bulk material are given in table 3.2. A constant velocity equal to 0.3 (m/s) is
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applied at both ends of the beam. The time step is set to 3.2e-4 (ms)2.

Parameter c in table 3.2 is related to the internal length-scale, lc , which is

linked to the microstructure of the material. This parameter can not be measured

directly in the laboratory. The model needs to be calibrated for parameter c using

experimental data. However, this is out of the scope of this work. In order to show

the influence of parameter c, cohesive laws computed for c=0.01, 0.04 and 0.07

mm2 using a 2.5 mm×2.5 mm RVE are given in figure 3.8. It can be observed that

a decrease in parameter c leads to a more brittle response. This can be explained

in figure 3.9 which shows the localization band at t=0.0128 (ms) in the RVE for

various values of parameter c. The width of the damage band increases with in-

creasing value of c and hence for a given traction more energy dissipates. The

RVE size should be large enough to encompass the localization band, otherwise

results become dependent on RVE size.

Cohesive laws computed from different RVE sizes, for c=0.04 mm2, according

to the failure zone averaging scheme, are illustrated in figure 3.10. It can be ob-

served that the results are objective with respect to RVE size. In order to verify the

multi-scale model, the results are compared with a DNS model. Figure 3.11 de-

picts the DNS model in which the material properties of the voided part and bulk

part are similar to those of the RVE and the bulk part of the multi-scale model.

Averaged stress over active damage zone (similar to the averaged strain in equa-

tion (2.26)) versus damage opening, um
d am

, for the DNS model and the multi-scale

model are shown in figure 3.12 which shows good agreement. The difference be-

tween the results in the elastic branch is due to the fact that the mesostructure

is not present in the multi-scale model before crack initiation and the averaged

properties for the bulk part are not used before crack initiation. The RVE failure

mode using the multi-scale model is also compared to that of the DNS model at

time step t=0.0128 (ms) in figure 3.13. This comparison also demonstrates that

the development of the damage zone for both models is similar.

For the problems described in this section, the computational time required

for solving the DNS model until time t=0.001376 (ms) is 66.37 (s) while for the

multi-scale models with RVE sizes 2.5 mm×2.5 mm, 5.0 mm×2.5 mm and 5.0

mm×5.0 mm are 29.2 (s), 65.42 (s) and 188.9 (s), respectively. The computational

time for the multi-scale model with RVE size 5.0 mm×5.0 mm is larger than that of

the DNS model but in this problem results obtained from an RVE size 2.5 mm×2.5

mm are accurate enough and as mentioned its computational time is less than

half of that of the DNS model. The computational time for a multi-scale model

depends on the size of the RVE and the mesh density of the RVE and the coarse

2The relevant time-scale can be calculated by dividing the crack tip speed by the cohesive zone

length. The cohesive zone length can be obtained as: lcoh = 9π
32

E
1−ν2

Gc

t 2
max

[79]. In this equa-

tion Gc and tmax are the fracture energy and maximum cohesive force, respectively. The limit-

ing crack tip speed for mode I fracture is the Rayleigh wave speed which can be calculated as:

cR =

(
0.862+1.14ν

1+ν

)√
E

2ρ(1+ν) [26]. So the minimum time step can be found using: ∆tmin =
lcoh
cR

. The

minimum time step for the problem given here is 6.2e-3 (ms). Due to rate dependency, an additional

time-scale related to the crack opening rate is present which is generally smaller than the time scale

linked to the crack tip speed. So, in order to ensure accuracy of the modeling, the time step is set to

3.2e-4 (ms).
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model. However, one of the advantages the multi-scale method is that parallel

computing methods can be used in this framework which decreases the compu-

tational time to a significant extent.

125 mm

12.5 mmV0 V0

Figure 3.6: Heterogeneous beam under dynamic loading

2.5 mm×2.5 mm 5.0 mm×2.5 mm 5.0 mm×5.0 mm

Figure 3.7: Multi-scale model and different RVE sizes

Table 3.2: Material properties for bulk material and RVE

Bulk RVE

E (GPa) 50 50

ν (-) 0.2 0.2

κI (-) 0.3 8e-5

α (-) 0.99 0.99

β (-) 1500 1500

ρ (kg/m3) 1200 1200

c (mm2) 0.04 0.04
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Figure 3.11: DNS model.
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3.5. Rate-dependent cohesive law
There are two sources for rate dependency in concrete materials [13]: (i) the vis-

coelasticity of the material behavior in the bulk of the structure, (ii) the rate pro-

cess of the bonds breakage in the fracture process zone. Both mechanisms are im-

portant for concrete but in high strain rate dynamic loading, the latter is the dom-

inant mechanism which causes the cohesive law to be rate dependent. Bažant

[5, 13], by considering fracture as a thermally activated phenomenon, derived a

rate-dependent softening law. Here, we consider mode I fracture and for the trac-

tion in normal direction to the crack surface, the rate dependent softening law

can be written as:

t M
n

(

[[u]]M
n , ˙[[u]]

M
n

)

=

[

1+c1asinh

(
˙[[u]]

M
n

c0

)]

t M
0n (3.13)

where subscript n shows the direction to the crack surface, ˙[[u]]
M
n denotes the

macro crack opening rate and t M
0n is the traction under static loading condition

following from the RVE analysis. c0 and c1 are material parameters.

Here, we assume that, when a crack initiates, the damage threshold, κI , in the

gradient damage model which is used for meso-scale model, is dependent on the

crack opening rate through:

κI

(

˙[[u]]
M
n

)

=

[

1+c1asinh

(
˙[[u]]

M
n

c0

)]

κ0
I (3.14)

in whichκ0
I

is the static damage threshold. In order to investigate this assumption,

cohesive laws are computed for various values of κI (for problem shown in figure

3.6) which are obtained from equation (3.14) for ˙[[u]]
M
n = 0.0, 0.25, 0.5, 1.0 (m/s).

Here, c0 and c1 are taken equal to 0.8 and 0.5, respectively 3. In figure 3.14, these

results are shown with solid lines. The dashed lines depict the static cohesive law,

t M
0n , multiplied by

κI

(

˙[[u]]
M
n

)

κ0
I

. From figure 3.14, it can be concluded that:

t M
n

(

[[u]]M
n , ˙[[u]]

M
n

)

≃

κI

(

˙[[u]]
M
n

)

κ0
I

t M
0n or

t M
n

(

[[u]]M
n , ˙[[u]]

M
n

)

t M
0n

≃

κI

(

˙[[u]]
M
n

)

κ0
I

(3.15)

The above relation shows that equations (3.13) and (3.14) are almost equiva-

lent. So, in order to capture rate dependency effects in the macro-scale cohesive

law, one can insert rate effects in the meso-scale model using equation (3.14).

In the solution procedure, at time step ti , for a certain crack in the macro-scale

model, the crack opening rate is calculated and the damage threshold for the RVE

corresponding to the integration points on this crack is updated using equation

3Parameters c0 and c1 can normally be found by fitting the model with experimental data. Due to lack

of experimental data, these coefficients are chosen such that the effect of rate dependency on the

cohesive law can be properly observed.
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(3.14). To obtain a more accurate result, the problem is solved again for time step

ti with updated values for damage threshold, κI .
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3.6. Wave propagation in a heterogeneous beam with strain

localization using rate-dependent model
The problem described in figure 3.6 is now considered for a crack with a rate-

dependent cohesive law. The multi-scale problem is solved for different loading

rates. Figure 3.15 illustrates the computed cohesive laws for various RVE sizes

at different loading rates. As it can be observed in this figure, for a given crack

opening, the traction increases with loading rate. It is also obvious that the ob-

tained softening curves are objective with respect to the RVE size. The area under

the traction-separation curve represents the dynamic fracture energy (Gc ). Figure

3.16 shows the fracture energy versus applied velocity (V0) for various RVE sizes.

The dashed curve is an exponential function with format y0+Aexp
(

−
V0

y1

)

fitted to

the data. Constant numbers y0, y1 and A are equal to 3.01, 0.45 and -1.35, respec-

tively. It can be observed that the fracture energy increases with loading rate.

In order to verify the model, a DNS model is presented as before. In the DNS

model, the relative velocity values between right-hand side and left-hand side of

the voided part (parts shown with red lines in figure 3.11), after damage initiation,

is taken as the crack opening rate. A comparison of crack opening rate in multi-

scale model and DNS model for V0=0.3 (m/s) is shown in figure 3.17. The averaged

stress over the active damage zone versus damage opening is given in figure 3.18

for the multi-scale and the DNS model at various loading rates. It can be observed

that for lower velocities the results are in good agreement. But, at higher loading

rates, the curve obtained for the DNS model is above the multi-scale curve and

the difference between these two curves increases with increasing loading rate.

This difference stems from the inertia forces around the damaged zone in the

DNS model. In the multi-scale model, as discussed before, the inertia forces at
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meso-scale are neglected in the present work and as a result the effects of iner-

tia forces cannot be captured. Nevertheless, even at high rates, the multi-scale

model is capable of properly calculating the material response. To illustrate this

fact, the density of the voided part in the DNS model is assumed to be artificially

small so that the inertia forces around the damaged zone are negligible. Averaged

stress-damage opening curves are shown for V0=1.0 (m/s) in figure 3.19. It can be

observed that the curves for the DNS model and the multi-scale model lie on top

of each other when the inertia forces are neglected in the voided part.
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3.7. Computation of rate dependent cohesive law for ran-

dom heterogeneous meso-structure
In this section the model will be used to compute rate dependent cohesive laws

for a heterogeneous three-phase material. Three phases include circular aggre-

gates, ITZ and matrix. The size of aggregates is in the range of 1.25 (mm) to 2.5

(mm) and they are randomly distributed in the matrix. The width of the ITZ is 0.25

(mm) and the aggregate density is 45%. It is worth mentioning that in the gradi-

ent enhanced model used for the meso-scale model (section (3.2.2)), the normal

component of the gradient of the nonlocal equivalent strain is zero on the external

boundaries only. As a result, there exist non-local interactions at the interface of

different phases. However, this is not a critical issue in the present work because

the aggregates are elastic and the material properties used for matrix and ITZ are

almost similar.

Table 3.3: Material properties for RVE

Matrix Aggregate ITZ

E (GPa) 25 30 20

ν (-) 0.2 0.2 0.2

κI (-) 7e-6 0.3 3e-6

α (-) 0.99 0.99 0.99

β (-) 1500 1500 1500

ρ (kg/m3) 1200 1200 1200

c (mm2) 0.02 0.02 0.02

The two-scale model is shown in figure 3.20. Loading and boundary condi-

tions are the same as in the wave propagation problem described in figure 3.6.

The length and width of the beam are 800 (mm) and 125 (mm), respectively. Ma-

terial properties for the RVE are given in table 3.3. The macro-scale bulk material

is an elastic material with Young’s modulus of 30 (GPa) and Poisson ratio of 0.2.

The material constants c0 and c1 from equation (3.14) are 0.2 and 1.0, respec-

tively. The time step is 1.5e-3 (ms). Three different sizes for the RVE with random

structure are used. Traction-separation (cohesive law) curves for the different RVE

sizes at various loading rates are demonstrated in figure 3.21. It can be observed

from figure 3.21 that the traction-separation curves are independent of RVE size.

Slight differences observed between the results for various RVE sizes are due to the

randomness of the structure and the fact that complex damaged areas are simply

replaced by a rectangular damaged zone in this model (see equation (2.26)). Vari-

ation of the fracture energy with applied velocity is depicted in figure 3.22. It can

be observed that the fracture energy is larger at higher loading rates. The constant

numbers for the fitted curve are y0=0.44, y1=0.09 and A=-0.23. In order to show

the rate effects on the failure evolution at meso-scale, the problem shown in figure

3.20 is solved for V0=0.2 (m/s) using rate-dependent and rate-independent mod-

els. Failure zones for a 20 (mm)×20 (mm) RVE are illustrated in figure 3.23 when
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the macro-crack traction is equal to 4766.74 (Pa). It can be observed that the lo-

calized band width for results obtained with the rate-dependent model is larger

than the width obtained with the rate-independent model. This is consistent with

results reported by Zhou et. al. [79].

10 (mm)×10 (mm) 15 (mm)×15 (mm) 20 (mm)×20 (mm)

Figure 3.20: Multi-scale model
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3.8. Conclusion
In this chapter, the wave propagation problem in heterogeneous materials is stud-

ied using a multi-scale method. It is shown that when the length of the macro-

scopic propagating wave is significantly larger than the local-scale dimensions,

one can perform a quasi-static analysis for the local-scale problem.

A two-scale rate-dependent crack model is developed based on the discontin-

uous computational homogenization scheme in which a failure zone averaging

technique is used. Rate effects due to bond breakage in the fracture process zone

are taken into account in the multi-scale model through the dependency of the

material properties at the meso-scale model on the macrocrack opening rate.

The results obtained for various loading rates using different RVE sizes show

that the model is objective with respect to the RVE size. Comparison of the multi-

scale model results with those of a DNS model shows a good agreement which

not only certifies the capability of the discontinuous homogenization method but

also supports the idea of neglecting wave propagation at the local-scale problem.





4
A dispersive multi-scale crack

model for quasi-brittle

heterogeneous materials under

impact loading

4.1. Summary
1A dispersive multi-scale model is presented to model failure in heterogeneous

quasi-brittle materials under high frequency loading conditions. In the disper-

sive multi-scale model, the heterogeneous model undergoing localized failure

is replaced by a homogeneous macro-scale model with a cohesive crack and a

meso-scale model with diffuse damage. Each material point of the macro-scale

model is linked to a heterogeneous meso-scale model. The macro-crack is mod-

eled as a strong discontinuity and the gradient-enhanced damage model is used

to model diffuse damage in the meso-scale model. The constitutive law for the

bulk material is obtained from the meso-scale model analysis using a standard

computational homogenization scheme. The cohesive law for the macro-crack

is obtained using a continuous-discontinuous homogenization scheme which is

based on a failure zone averaging technique. In the dispersive multi-scale model,

at the macro-scale, a dynamic analysis is performed and the meso-scale model is

solved as a quasi-static problem. The meso-scale inertia forces are taken into ac-

count via a dispersion tensor which only depends on the meso-scale model ma-

terial properties and the heterogeneity of the material. The meso-scale inertia

effects appear as additional body forces in the macro-scale model and cause dis-

persion of the propagating wave. The effect of dispersion on the cohesive cracking

is captured via a rate dependent cohesive law. The dispersive multi-scale model

1Based on references [37, 38]
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L

l m

λ

vp

Figure 4.1: Wave propagation in a heterogeneous beam

is verified against a direct numerical simulation and the objectivity of the scheme

with respect to the representative volume element size is shown.

4.2. Dispersive Multi-scale model for high frequency load-

ing
In chapter 3, the dynamic problems in which the macroscopic wave length is sig-

nificantly larger than meso-scale model is considered and it is shown than in such

cases the meso-scale problem can be solved as a static problem. This chapter fo-

cuses on the dynamic problems in which the macro-scale wave length is compa-

rable with the size of the meso-scale model. Figure 4.1 shows a wave propagating

with wave speed vp through a heterogeneous beam of length L. Unlike the prob-

lem shown in figure 3.1 in chapter 3, the macroscopic characteristic length l M

(see section (3.2)) is comparable with the meso-scale model length l m . In this

case equation (3.1) rewrites as:

δ=
lm

l M
=

2πl m

λ
≥ 1 (4.1)

Similar to the wave propagation problem in chapter 3, the macro-scale model

is solved as a dynamic problem while the meso-scale problems are solved as quasi-

static problems. However, when δ≥ 1, the dispersion effects cannot be neglected

but since the meso-scale model is being solved statically, wave dispersion which

is caused by the meso-scale inertia forces cannot be modeled. In order to model

the effect of the meso-scale inertia forces, a dispersion tensor D , which can be

computed from the meso-scale model is presented.

4.2.1. Inclusion of the meso-scale model inertia forces in the macro-

scale model
The inertia force for the heterogeneous body (figure 2.1) can be written as:

ρζü
ζ
i

(xM , xm , t) = ρM üM
i (xM , t)+ζρm üm

i (xM , xm , t) (4.2)

where ü�

i
is acceleration vector and as described in chapter 2, ζ, M and m super-

scripts denote the heterogeneous model, macro-scale model and the meso-scale
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model quantities, respectively. In [21], a higher order homogenization method is

used for dynamic problems and it is shown that the meso-scale inertia force vec-

tor, ρmüm
i

(in equation (4.2)), is related to the acceleration of the gradients of the

macroscopic displacement fields. The inertia force vector of a material point in

the macroscopic model is equal to the volume average of the inertia force vec-

tors of the heterogeneous body over a sample volume associated to that material

point, that is, ρM üM
i

=
∫

Ωm ρζü
ζ
i

dΩm . The meso-scale inertia force can be related

to the macroscopic strain acceleration through an equation which satisfies these

aforementioned conditions [23]:

ρm üm
i (xM , xm , t) = ρM h

pq

i
(xM , xm , t)ε̈M

pq (xM , t) (4.3)

in which h
pq

i
is a periodic tensor which is normalized as:

∫

Ωm
h

pq

i
(xM , xm , t)dΩm

= 0 (4.4)

Tensor h
pq

i
depends on the meso-scale model heterogeneity and material prop-

erties. For a homogeneous meso-scale model, tensor h
pq

i
vanishes. Equation (4.3)

denotes that the meso-scale inertia forces can be expressed in terms of the macro-

scale strain acceleration and the meso-scale heterogeneity and material proper-

ties. Using this equation, the time-dependent terms (üm
i

) can be eliminated from

the meso-scale model. Inserting equations (2.2)-(2.4), (4.2) and (4.3) into the het-

erogeneous model momentum equation (3.2) and using averaging equations (2.5)

and (2.6), the equation of motion for the bulk domain of the macro-scale model

can be derived as [23]:

∂

∂xM
j

(σM
i j +ζ2Di j kl ε̈

M
kl ) = ρM üM

i on Ω
M \ΓM

d (4.5)

where the dispersion tensor Di j kl can be defined as:

Di j kl =
ρM

|Ωm |

∫

Ωm
h

i j
s hkl

s dΩm (4.6)

The weak form (2.12) can be modified for this problem as:

∫

Γ
M
t

δϑ
(

σi j +ζ2Di j kl ε̈
M
kl

)

nM
i dΓM

t −

∫

ΩM

∂δϑ

∂xi

(

σi j +ζ2Di j kl ε̈
M
kl

)

dΩM

−

∫

Γ
M
d

δ[[u]]M
i ti dΓM

d =

∫

ΩM
δϑρM üM

i dΩM (4.7)

The discretized equations for the macro-scale model can be written as:

(M M
+mM

D )üM
= f M

ext − ( f M
bul k + f M

coh ) (4.8)
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where mM
D is the mass matrix corresponding to the meso-scale inertia forces and

can be obtained via:

mM
D =

∫

ΩM
B T DBdΩM (4.9)

A non-zero dispersion tensor, D results in a non-zero consistent additional mass

matrix mM
D . Similar to the problem in chapter 3, an implicit Newmark time inte-

gration scheme is used to solve equation (4.8) and f M
bul k

and f M
coh

are computed

from the meso-scale problem (RVE) using standard computational homogeniza-

tion (2.4.1) and discontinuous computational homogenization (2.4.2) schemes,

respectively. A gradient-enhanced damage model (see section (3.2.2)) is also used

for the meso-scale model. For computing the dispersion tensor using equation

(4.6), the components of tensor h
pq

i
should be determined. The procedure for

finding tensor h
pq

i
is given in the following section.

4.2.2. Determination of tensor h
pq

i
The effect of inertia at the meso-scale is represented as an eigenstrain which is

assumed to be proportional to the mass density at meso-scale [23]:

εI
i j =

ρm

ρM
f M

i j (4.10)

f M
kl

is a function of macro-scale strain acceleration ε̈M
kl

such that for ε̈M
kl

= 0, f M
kl

=

0. Equation (4.10) shows that inertia acts as an eigenstrain and changes the shape

and volume of the material. In equation (2.3), the meso-scale displacement deriva-

tive um
(i ,xm

j
)

can be witten as [23]:

u̇m
(i ,xm

j
)
= H kl

(i ,xm
j

)
ε̇M

kl + ε̇I
i j +hkl

(i ,xm
j

)
ḟ M

kl (4.11)

where H kl
i

is a periodic tensor which is related to the meso-scale model behavior.

Substituting (4.10) into equation (4.11) and then inserting (4.11) into the rate form

of equation (2.3), the meso-scale strain rate can be written as:

ε̇m
kl (xM , xm , t) =

[

Ikl pq +H
pq

(k ,xm
l

)
(xM , xm , t)

]

ε̇M
pq (xM , t)+

[
ρm (xm )

ρM
Ikl pq +h

pq

(k ,xm
l

)
(xM , xm , t)

]

ḟ M
pq (xM , t) (4.12)

Substituting (4.12) into the meso-scale constitutive law (equation (3.6)) in rate

form (when ω = 0) and substituting the meso-scale stress into the momentum

equation (2.15) and making use of arbitrariness of ε̇M
i j

and ḟ M
i j

one obtains:

∂

∂xm
j

[

C m
i j kl (xm , t)

[

Ikl pq +
1

2

(

∂H
pq

k

∂xm
l

+
∂H

pq

l

∂xm
k

)]]

= 0 (4.13a)

∂

∂xm
j

[

C m
i j kl (xm , t)

[

ρm (xm )

ρM
Ikl pq +

1

2

(

∂h
pq

k

∂xm
l

+
∂h

pq

l

∂xm
k

)]]

= 0 (4.13b)
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Equation (4.13a) can be solved for H mn
i

. Inserting (4.12) into (3.6) and per-

forming a volume average of both sides of the resulting equation over the meso-

scale volume, Ωm , and using (2.5) and (2.6) yields the following equation for the

macroscopic tangent, C M
i j kl

:

C M
i j kl (xM , t) =

∫

Ωm
C m

i j pq (xm , t)
[

Ipqkl +H kl
(p,xm

q )
(xM , xm , t)

]

dΩm (4.14)

However in the present work, instead of solving equation (4.13a) and using

equation (4.14), the macroscopic tangent is obtained using the standard homoge-

nization method presented in section (2.4.1) via equation (2.22). Equation (4.13b)

which is called the quasi-dynamic equation can be solved to find tensor hmn
i

. Us-

ing test function ϑ the weak form of equation (4.13b) can be written as:

1

2

∫

Γm
ϑC m

i j kl

(

∂h
pq

k

∂xm
l

+
∂h

pq

l

∂xm
k

)

n j dΓm
−

1

2

∫

Ωm

∂ϑ

∂xm
j

C m
i j kl

(

∂h
pq

k

∂xm
l

+
∂h

pq

l

∂xm
k

)

dΩm

=

∫

Γm
ϑC m

i j kl

ρm

ρM
Ii j kl n j dΓm

−

∫

Ωm

∂ϑ

∂xm
j

(

C m
i j kl

ρm

ρM
Ii j kl

)

dΩm (4.15)

By inserting discretized form of h
pq

i
and test function ϑ into (4.15), one can

find the discretized set of equations for 2D problems as:

[
K

pq
11 K

pq
12

K
pq
21 K

pq
22

][
h̄

pq
1

h̄
pq
2

]

=

[
f

pq
1

f
pq

2

]

p, q = 1,2 (4.16)

where h̄
pq

i
are the nodal values for h

pq

i
. K

pq

i j
and f

pq

i
are given in A. In order

to solve system of equations (4.16), condition (4.4) and periodicity of h
pq

i
should

be satisfied over the meso-scale domain. Periodicity of h
pq

i
can be achieved by

applying periodic boundary conditions on the RVE (same as in figure 2.2 for the

displacement field). Once tensor h
pq

i
is obtained, the dispersion tensor can be

computed via equation (4.6).

4.3. Cracking criteria
In the continuous-discontinuous scheme, the loss of hyperbolicity criterion is

employed for crack initiation and propagation. The hyperbolicity indicator is de-

fined as [6]:

e = min
n,v

(n ⊗ v : A : n ⊗ v) (4.17)

where n = (cosθ,sinθ) shows the normal vector to the crack surface and v is as-

sumed to be parallel to n. Tensor A is defined as:

A =C M
+σ

M
⊗ I (4.18)
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eplacements

500(mm)

1(mm) 3(mm)

1(mm)

Figure 4.2: One dimensional DNS model

Based on this criterion the momentum equation loses hyperbolicity when e <

0 and vector n that minimizes e is normal to the direction of the crack (localiza-

tion) 2. In the multi-scale analysis, this criterion can be used to detect localiza-

tion in the RVE. At each time step, having the homogenized tangent moduli, C M ,

tensor A can be calculated using equation (4.18). Initiation and direction of the

localization can then be determined using equation (4.17). The advantage of this

criterion is that both initiation and direction of the crack can be obtained from

the meso-scale model which is physically more realistic.

4.4. Verification of the dispersive multi-scale model
In order to verify the proposed multi-scale model, the multi-scale simulation re-

sults are compared to a direct numerical simulation analysis. Two examples are

given in this section. In the first example a one dimensional heterogeneous elas-

tic bar under a sine pulse is given and in the second example, a two dimensional

heterogeneous beam is considered in which strain localization occurs due to a

propagating longitudinal wave.

4.4.1. One dimensional heterogeneous beam under impact loading
A one dimensional heterogeneous beam shown in figure 4.2 is analyzed in this

section. The beam consists of material 1 (green) and material 2 (yellow). The

left side of the beam is fixed and the right end is subjected to a displacement

sine pulse ūx = A0 sin
(

2π f t
)

H
(

1
2 f

−1
)

(mm). A0 and f are the maximum ap-

plied displacement the pulse frequency, respectively. The multi-scale model for

this problem is shown in figure 4.3 in which the material points of the homoge-

neous macro-scale model are linked to a heterogeneous RVE. The macroscopic

wave length, λM , can be obtained via λM = v/ f in which v is the wave veloc-

ity which can be computed using v =

√

C M
11/ρM . The material properties of dif-

ferent materials are E1=200(GPa), E2=2(GPa), ρ1=10000(kg/m3), ρ2=4000(kg/m3)

and ν1=ν2=0.0.

Four cases are considered including (1) dispersive multi-scale model, (2) non-

dispersive multi-scale model, (3) heterogeneous DNS model and (4) homoge-

neous DNS model. In the homogeneous DNS model, the homogenized material

properties are used and it is obviously almost equivalent to the non-dispersive

multi-scale model. The DNS model and the macro-scale beam in the multi-scale

model are discretized using 500 beam elements and 5 beam elements are used for

2In fact, this is a condition for material stability and implies the stable response of an infinite medium

in a uniform state of stress and strain when subjected to a perturbation u = vei w t+kn.x [6]
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500(mm)

1(mm)

1(mm)

5(mm)

3(mm)

Figure 4.3: One dimensional multi-scale model

the RVE.

The macroscopic stiffness and mass density can be computed for the RVE

shown in figure 4.3 as: C M
11 =E M =4.926(GPa) and ρM =7600(kg/m3). In a one di-

mensional problem, tensor Di j kl = D and h
i j
s = h are scalar values. Nodal values

of h can be computed by solving equation (4.16) for the one dimensional RVE

shown in figure 4.3. The values of h along the RVE are shown in figure 4.4. The

dispersion coefficient can be obtained using equation (4.6) as D = 0.0095(Pa.s2).

In [23], analytical expressions are derived for calculating homogenized stiffness

and dispersion coefficient for a one-dimensional RVE shown in figure 4.3. The

homogenized stiffness can be calculated using

E M
=

E1E2

(α1E2 +α2E1)
(4.19)

where αi is the volume fraction of material i . The dispersion coefficient can be

obtained via

D =
1

12
ρM (α1α2)2ϕ2(l m )2 (4.20)

in which ϕ =
E2ρ2−E1ρ1

ρM (α1E2−α2E1)
. By substituting material properties for the prob-

lem shown in figure 4.3 into equations (4.19) and (4.20), the homogenized stiff-

ness and dispersion coefficient can be obtained as E M = 4.926(GPa) and D =

0.0095(Pa.s2) which are equal to the results obtained using the finite element anal-

ysis.

 

h
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m
m

)
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Figure 4.4: Values of h along the RVE
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Figure 4.5: The displacement field for multi-scale models and DNS

models for A0=0.025(mm) and f =20000(Hz) at t =0.3(ms)

Figure 4.5 shows the displacement field along the beam subjected to the sine

pulse with A0=0.025(mm) and f =20000(Hz) at t=0.3(ms) for the dispersive multi-

scale model, the non-dispersive multi-scale model, the heterogeneous DNS model

and the homogeneous DNS model. The ratio of the RVE length to the macro-

scopic wave length is 0.124 for this case. As it can be observed in figure 4.5, the

curves corresponding to the homogeneous DNS model and non-dispersive multi-

scale model are exactly the same. This ensures that the differences between the

curves are due to the dispersion effects and not due to the discretization. In fig-

ure 4.5, it can also be observed that the results of the heterogeneous DNS model

and the dispersive multi-scale model are in good agreement. Figure 4.6 shows

the results for the same problem when the beam is subjected to a sine pulse with

A0=0.025(mm) and f =6666.67(Hz) at t=0.3(ms). The ratio of the RVE length to

the macroscopic wave length is 0.0413. As it is shown in figure 4.6, all four curves

are on top of each other which certifies that for large macroscopic wave length

compared to the RVE characteristic length, dispersion effects disappear. Figure

4.7 shows dispersive curves obtained from the dispersive model, non-dispersive

model and exact solution of the model shown in figure 4.3. The relations for ob-

taining dispersive curves are given in B. As it can be observed in figure 4.7, dis-

persion effects are negligible up to l m

λM =0.2 and as the ratio of the RVE size to the

macroscopic wave length increases, the deviation of the dispersive model curve

from the non-dispersive model curve increases. Furthermore, it is shown in fig-

ure 4.7 that the dispersive model coincides with the exact solution up to l m

λM =0.3.

However, for l m

λM values higher than 0.3, the error increases.
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Figure 4.6: The displacement field for multi-scale models and DNS

models for A0=0.025(mm) and f =6666.67(Hz) at t =0.3(ms)
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Figure 4.7: Dispersive curves for the dispersive model, the

non-dispersive model and the exact solution

4.4.2. Two dimensional heterogeneous beam with strain localiza-

tion under impact loading
Figure 4.8 shows a heterogeneous beam subjected to a sine pulse at the right-

hand-side end. The beam consists of the bulk matrix (yellow), the matrix with

voids (gray) and the stiff particles (green). The material properties are shown in

table 4.1. Materials parameters c0 and c1 in equation (3.14) are equal to 0.5. Dam-

age is assumed to occur only in the gray zone due to the existence of voids and

it is modeled by taking a low value for the damage threshold in this area. The

multi-scale model is shown in figure 4.9. The bulk part is shown in green color

and cracking occurs in the gray part. The DNS model and the multi-scale model

are discretized using 123,492 linear triangular elements and 769 linear quadrilat-

eral elements, respectively.

The next step is to compute the h
i j
s tensor by solving equation (4.16). How-

ever, satisfying constraint (4.4) is sometimes not possible for a complex RVE (fig-

ure 4.9) because system of equations (4.16) may become overdetermined. In order

to find tensor h
i j
s , the complex RVE is replaced by a partially homogenized RVE
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using the procedure shown in figure 4.10. As it is illustrated in figure 4.10, each

heterogeneous unit cell is replaced by a homogenized cell using the homogeniza-

tion method. Components of tensor h
i j
s for the partially homogenized RVE are

shown in figure 4.11. Using equation 4.6, one can obtain the dispersion tensor

which is written as a 3×3 matrix for the present two dimensional case as:

D =







0.0214 −7×10−5 0.0

−7×10−5 0.0214 0.0

0.0 0.0 0.038







(Pa.s2)

15(mm)

495(mm)

R 2.5(mm)

45(mm)

Figure 4.8: Two dimensional DNS beam model

15(mm)

495(mm)

15(mm)×15(mm)

45(mm)

Figure 4.9: Two dimensional multi-scale beam model

Table 4.1: Material properties for heterogeneous beam

Bulk matrix Matrix with voids Particle

E [GPa] 2 2 200

ν [−] 0.0 0.0 0.0

κI [−] 0.3 5×10−5 0.3

α [−] 0.99 0.99 0.99

β [−] 1500 1500 1500

ρ [kg/m3] 4000 4000 10000

c [m2] 10−7 10−7 10−7

It should be noted that the dispersion tensor only depends on the configura-

tion of the meso-scale model and contains dispersion effects due to the reflec-

tion of the wave at the interfaces of different phases. The effect of the presence
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Homogenization

Heterogeneous RVE Partially homogenized RVE

Figure 4.10: Partial homogenization of RVE

of the crack on the wave propagation is modeled explicitly via a strong disconti-

nuity in the macro-scale model. Figure 4.12a-4.12c depict the macroscopic dis-

placement in x direction for the dispersive multi-scale model, the non-dispersive

multi-scale model and the DNS model at t=0.2304(ms), 0.3(ms) and 0.4(ms) for

A0=0.025(mm) and f =66666.68(Hz). In this case the ratio of the RVE length to

the macroscopic wave length is 1.16 which denotes that the macroscopic wave

length is smaller than the RVE size, so dispersion effects play a role. The black

dashed line in figures 4.12b and 4.12c shows the location of the macro crack. It

can be observed in these figures that the dispersive multi-scale model results are

in good agreement with the results obtained from the DNS model, however, the

difference between the non-dispersive model results and DNS model results is

significant. In figures 4.12a-4.12c, it can be observed that as one moves away

from the wave front the difference between the results obtained from the disper-

sive multi-scale model and the DNS model increases. This can be explained as

follows. In the finite element model, in addition to physical dispersion effects, the

discretization causes non-physical dispersion effects as well. After the wave has

passed high frequency waves with low amplitude are still present, may accumu-

late and lead to non-physical dispersion. The present dispersive model does not

account for non-physical dispersion effects. Since the discretization in the DNS

model is considerably finer than the macro-scale discretization in the multi-scale

model, the non-physical dispersion effects for the DNS model are more signif-

icant in comparison with the multi-scale model. For this reason a deviation of

the DNS model results from the dispersive multi-scale model results away from

the wave front can be observed. The damaged zone is given for the dispersive and

non-dispersive multi-scale models and the DNS model at t=0.3(ms) in figure 4.13.

The width of the localization bands (l) for the dispersive multi-scale model and

the DNS model are 0.219(mm) and 0.211(mm), respectively which are almost the
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(a) h11
1 (b) h11

2

(c) h22
1 (d) h22

2

(e) h12
1 (f ) h12

2

Figure 4.11: Components of h
i j
s tensor

same but for the non-dispersive multi-scale model, the width is 0.464(mm) which

is more than twice as much as the DNS model localization band width. The av-

eraged stress over the active damaged zone versus averaged strain over the active

damaged zone is shown for the three models in figure 4.14. It can be observed that

the curves obtained from the dispersive multi-scale model agree with the curves

of the DNS model while the non-dispersive multi-scale model predicts a larger
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averaged stress for a given averaged stress compared to the DNS model. This can

be explained in figure 4.15 which shows the crack opening rate versus time for the

dispersive and non-dispersive multi-scale models and the DNS model. The crack

opening rate values are shown within the time span between the maximum trac-

tion is reached in the cohesive zone and complete crack opening (when the trac-

tion becomes zero). As it is shown in figure 4.15, energy dissipation in the cohesive

zone occurs faster in the non-dispersive multi-scale model compared to the DNS

model and the dispersive model. It can also be observed that the crack opening

rate predicted using the DNS model and the dispersive multi-scale model are in

good agreement while the crack opening rate obtained using the non-dispersive

multi-scale model is larger. According to rate equation (3.14), a larger crack open-

ing rate results in a larger strain threshold which causes an increase in the av-

eraged stress over the active damage zone. It is worthwhile to mention that the

simulation time for the DNS model until t=0.3(ms) is 13 hours and 23 minutes

whereas for the multi-scale model is 6 minutes and 35 seconds using a PC with

8.0(GB) of RAM and speed 3.07(GHz).

Dispersive curves can be plotted for the present two-dimensional problem by

solving an eigenvalue problem presented in B. However, in the present work, the

main goal is to verify the dispersive multi-scale model.
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Figure 4.12: Displacement in x direction along the beam subjected

to sine pulse with A0=0.025(mm) and f = 66666.68(Hz)
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Damage variable

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.13: The damaged zone for (a) the dispersive multi-scale

model RVE, (b) the non-dispersive multi-scale model RVE and (c)

the DNS model
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Figure 4.14: Averaged stress over active damaged zone versus
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DNS model
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4.5. Objectivity of the dispersive multi-scale model
In order to investigate the objectivity of the dispersive multi-scale model, a beam

of heterogeneous material shown in figure 4.16 is analyzed. The beam consists of

a bulk matrix (yellow), a matrix with voids (gray) and circular particles (green).

Properties of different phases are the same as in the example given in section

(4.4.2) (table 4.1).

15(mm)

105(mm)

5(mm)

Figure 4.16: Beam of heterogeneous material

15(mm)

105(mm)

5(mm)

5(mm)×5(mm) 10(mm)×10(mm) 15(mm)×15(mm)

Figure 4.17: Multi-scale model with different RVE sizes

The radius of the particles is in the range of 0.5 (mm) to 1.0 (mm). The par-

ticle density is 46%. The beam is subjected to a sine pulse at the right end with

A0=0.03(mm) and f =100000(Hz) (see formulas in section (4.4.1)). The multi-scale

model for the problem shown in figure 4.16, is presented in figure 4.17. Three RVE

sizes including 5 × 5(mm), 10 × 10(mm) and 15 × 15(mm) are used. The disper-

sive tensor can be computed by solving equation (4.16) for partially homogenized

mesostructures of RVEs as demonstrated in figure 4.10. The computed dispersion

tensors are similar for the three RVE sizes and are equal to:
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D =







0.002609 −2.039×10−5 0.01332

−2.039×10−5 0.004077 −0.002942

0.01332 −0.002942 0.7526







(Pa.s2).
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Figure 4.18: Displacement in x direction along the beam subjected

to sine pulse with A0=0.03(mm) and f =100000.0(Hz)

The macroscopic displacements in x direction at t =0.05(ms), t =0.07 (ms)

and t =0.09 (ms) are shown for different RVE sizes in figures 4.18a-4.18c. It can be

observed that results obtained using the dispersive multi-scale model are objec-

tive with respect to the RVE size.



4

50

Chapter 4. A dispersive multi-scale crack model for quasi-brittle heterogeneous

materials under impact loading

The damaged zones for different RVE sizes are shown in figure 4.19 at t =0.06(ms).

The width of the localization band for 5 × 5(mm), 10 × 10(mm) and 15 × 15(mm)

are 1.53(mm), 1.54(mm) and 1.58(mm), respectively. The maximum difference

between computed localization band width values is 3.16% which confirms that

the localization band width does not depend on the RVE size. Figure 4.20 shows

the cohesive law curves obtained for different RVE sizes using the dispersive multi-

scale model. As it can be seen in figure 4.20, the cohesive laws obtained using

different RVE sizes are almost equivalent.

Damage variable

0.0 0.2 0.4 0.6 0.8 1.0

5(mm)×5(mm) 10(mm)×10(mm) 15(mm)×15(mm)

Figure 4.19: The damaged zone for various sizes of RVE
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Figure 4.20: Cohesive law for the macro crack obtained using

different sizes for RVE

4.6. Conclusion
In this chapter, a dispersive multi-scale model is developed for modeling crack-

ing in quasi-brittle materials under high frequency impact loads. The dispersion

effects which stem from meso-scale inertia forces are modeled by introducing an

additional body force in the macro-scale model. The cohesive law for the macro-

crack is obtained using a continuous-discontinuous homogenization scheme.
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The dispersive multi-scale model is verified by comparing the multi-scale re-

sults with the DNS model results for various examples. It is shown that the dis-

persion effects are negligible when the macroscopic wave length is significantly

larger than the characteristic length of the RVE and the dispersion effects increase

with increasing wave frequency. It is also concluded that in order to obtain a cor-

rect cohesive law for the macro-scale cohesive crack, taking dispersion effects in

high frequency loading into account, is essential. It is shown that the proposed

multi-scale model is objective with respect to the RVE size.





5
A new multi-scale scheme for

modeling heterogeneous

incompressible hyperelastic

materials

5.1. Summary
1A computational homogenization scheme is developed to model heterogeneous

hyperelastic materials undergoing large deformations. The homogenization scheme

is based on a so-called computational continua formulation in which the macro-

scale model is assumed to consist of disjoint unit cells. This formulation adds no

higher-order boundary conditions and extra degrees of freedom to the problem.

A computational procedure is presented to calculate the macroscopic quantities

from the solution of the representative volume element boundary value problem.

The proposed homogenization scheme is verified against a direct numerical sim-

ulation. It is also shown that the computational cost of the proposed model is

lower than that of standard homogenization schemes.

5.2. Computational homogenization scheme for large de-

formations
In this section, a computational homogenization scheme is developed for hetero-

geneous nearly incompressible hyperelastic materials. A schematic description

of the computational homogenization method is shown in figure 5.1. As it can be

observed, figure 5.1 is similar to figure 2.1. However, when the structure under-

goes large deformations and strains, the infinitesimal strain tensor ǫ cannot be

1Based on reference [39]
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Ω
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Γ
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t M

Γ
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Ω
m

1 2

34

P M ,C M

F M

Heterogeneous body Macro-scale model Meso-scale model

Controlling nodes

Figure 5.1: Computational homogenization scheme.

used. Therefore, as it is shown in figure 5.1, instead of the infinitesimal strain the

macroscopic deformation gradient F M is imposed as a boundary condition on

the external boundaries of the RVE associated to that material point. The corre-

sponding macroscopic first Piola-Kirchhoff stress tensor P M and the macroscopic

tangent moduli C M can be obtained from solution of a boundary value problem

for the RVE. Next, the macro-scale and the meso-scale model finite element for-

mulations are presented in sections (5.2.1) and (5.2.2), respectively, and after ex-

plaining the computational continua model in section (5.2.3), computational pro-

cedures are given in section (5.2.4) for obtaining the macroscopic quantities from

the RVE problem solution.

5.2.1. Macro-scale model
The momentum equation for the macro-scale model in the deformed configura-

tion is given as:

∂σM
i j

∂xM
j

= 0 (5.1)

where superscript M denotes the macro-scale model. σM
i j

is the Cauchy stress and

xM
j

is the coordinate in the deformed configuration. The incremental form of the

constitutive equation for the macro-scale model is given as:

δσM
i j =C M

i j klδeM
kl (5.2)

in which C M
i j kl

contains the homogenized tangent moduli in the deformed config-

uration which is obtained from solution of the meso-scale problem. eM
i j

denotes

the Almansi strain tensor which can be written in terms of macroscopic displace-

ments uM
i

as follows:

eM
i j =

1

2

(

∂uM
i

∂x j
+
∂uM

j

∂xi
−
∂uM

k

∂xi

∂uM
k

∂x j

)

(5.3)
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Using an updated Lagrangian formulation, the standard discretized equation

for the macro-scale model can be written as [4]:

(

K M
L +K M

NL

)

δuM
= f M

ext − f M
int (5.4)

where K M
L and K M

NL are linear and nonlinear stiffness matrices, respectively, and

f M
ext and f M

int are external force and internal force vectors, respectively. The stiff-

ness matrices and force vectors are given in C.

5.2.2. Meso-scale model
For hyperelastic materials, the strain energy Ψ

m can be written in terms of volu-

metric Ψ
m
vol

and isochoric Ψ
m
i so

(shape changing) parts as [45]:

Ψ
m
=Ψ

m
vol (J )+Ψ

m
i so

(

Ī1, Ī2

)

(5.5)

where superscript m denotes the meso-scale model. J = det(F m), Ī1 = J−2/3I1

and Ī2 = J−4/3I2. F m is the deformation gradient tensor and I1 and I2 denote

first and second invariants of the right Cauchy-Green deformation tensor C =

(F m)T F m , and are obtained via

I1 = tr (C )

I2 =
1

2

[

(tr (C ))2
− tr

(

C 2
)] (5.6)

in which tr denotes the trace of a matrix. Meso-scale model Cauchy stress tensor

is obtained from

σ
m
= P m I +Sm (5.7)

where I is the second order unit tensor. P m and Sm are the hydrostatic pressure

and the deviatoric stress tensor, respectively and are obtained via

P m
=

∂Ψm
vol

∂J

Sm
=

1

J

(

2
∂Ψm

i so

∂Ī1

dev(b̄)+2
∂Ψm

i so

∂Ī2

(

tr (b̄)dev(b̄)−dev(b̄
2

)
))

(5.8)

where b̄ = J−2/3b and b is the left Cauchy-Green deformation tensor (b = F m(F m)T ).

dev(A) denotes the deviatoric part of tensor A.

The tangent moduli in the deformed configuration can be decomposed into vol-

umetric and isochoric terms according to:

C m
=C m

vol +C m
i so (5.9)

Volumetric and isochoric terms of tangent moduli can be obtained as

C m
vol =

(

∂Ψm
vol

∂J
+ J

∂2
Ψ

m
vol

∂J 2

)

I ⊗ I −2
∂Ψm

vol

∂J
I

C m
i so =

1

J

(

γ1

∂Ψm
i so

∂Ī1

+γ2

∂Ψm
i so

∂Ī2

+γ11

∂2
Ψ

m
i so

∂Ī 2
1

+γ22

∂2
Ψ

m
i so

∂Ī 2
2

+γ12

∂2
Ψ

m
i so

∂Ī1∂Ī2

) (5.10)
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in which I is the fourth order unit tensor and γ1, γ2, γ11, γ22 and γ12 can be ob-

tained as:

γ1 =
4

3

[

Ī1

(

I−
1

3
I ⊗ I

)

−
(

dev(b̄)⊗ I + I ⊗dev(b̄)
)
]

γ2 =
8

3

[

Ī2

(

I−
2

3
I ⊗ I

)

− Ī2

(

dev(b̄)⊗ I + I ⊗dev(b̄)
)

+

(

dev(b̄
2

)⊗ I + I ⊗dev(b̄
2

)
)]

+4
(

b̄ ⊗ b̄ − H̄
)

γ11 = 4dev(b̄)⊗dev(b̄)

γ22 = 4
(

Ī1dev(b̄)−dev(b̄
2

)
)

⊗

(

Ī1dev(b̄)−dev(b̄
2

)
)

γ12 = 4
[

dev(b̄)⊗
(

Ī1dev(b̄)−dev(b̄
2

)
)

+

(

Ī1dev(b̄)−dev(b̄
2

)
)

⊗dev(b̄)
]

(5.11)

in which H̄i j kl =
1
2

(

b̄ik b̄ j l + b̄i l b̄ j k

)

.

For the Mooney-Rivlin model considered in this work, the isochoric part of the

energy function is obtained from

Ψ
m
i so =α1

(

Ī1 −3
)

+α2

(

Ī2 −3
)

(5.12)

where α1 and α2 are material parameters. The volumetric part of strain energy is

obtained via

Ψ
m
vol =

K

2
(J −1)2 (5.13)

in which K denotes the bulk modulus. In order to model incompressibility, a large

value should be chosen for the bulk modulus.

In the present work, a hybrid finite element formulation [66] is used to model

incompressible rubber-like mesostructures. In the hybrid finite element method,

the potential function is given as

Π
(

um ,θm ,P m
)

=

∫

Ωm

[

Ψ
m
i so (Ī1, Ī2)+Ψ

m
vol (θm )+P m(J −θm )

]

dΩm
+Π

m
ext (um)

(5.14)

where um , θm and P m are meso-scale model displacement field, dilatation and

hydrostatic pressure, respectively, andΠ
m
ext is the external forces potential. By tak-

ing the variation ofΠ with respect to um , θm and P m and performing linearization

and discretization of the equations, one can find the following system of equa-

tions: 





K uu 0 K uP

0 K θθ K θP

K Pu K Pθ 0













δum

δθm

δP m






=







F u

F θ

F P







(5.15)

where the stiffness matrices and force vectors are given in D. In the system of

equations given in (5.15), δθm and δP m can be calculated at element level as:

δθm
= K −1

θθ

(

F θ−K θPδP m
)

δP m
=Gδum

+h
(5.16)
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in which

G =
(

K PθK −1
θθK θP

)−1
K Pu

h =
(

K PθK −1
θθK θP

)−1 (

K PθK −1
θθF θ −F P

) (5.17)

Inserting (5.16) into (5.15), a condensed form of the equation can be obtained

as:

K m
C δum

= F m
C (5.18)

in which the components of K m
C

and F m
C

for each element can be calculated as:

K m
C = K uu +K up G

F m
C = F u −K uP h

(5.19)

5.2.3. Computational continua formulation
In the first order homogenization theory, the RVE is subjected to a constant macro-

scopic deformation gradient. However, when the RVE size is large, the deforma-

tion gradient significantly varies over the RVE domain and cannot be ignored. In

the present work, a computational continua model which is developed in [24] is

used which requires no additional degrees of freedom and higher order boundary

conditions. In the computational continua model, the macroscopic domain con-

sists of disjoint RVEs which are located on the macro-scale element integration

points as shown in figure 5.2.

The position of these integration points differs from those of standard inte-

gration points and depends on the RVE size and the macroscopic element size.

The locations of the new integration points are chosen such that the integration

of a function Φ over the heterogeneous domain Ω
ζ becomes equal to a sum of

integrations of that function over the disjoint RVEs which implies:

∫

Ωζ
Φ

(

X M
)

dΩζ
=

k∑

I=1

∫

Ωm
ŵ

(

X M
I , X m

)

Φ
(

X M
I , X m

)

dΩm (5.20)

in which ŵ is defined as:

ŵ
(

X M
I , X m

)

=
j
(

X M
I

, X m
)

w I

|Ωm |
(5.21)

where k, j and w I are the number of macroscopic element integration points,

Jacobian and the nonlocal quadrature weight, respectively. It should be noted

that in equation (5.20), the integral over the heterogeneous body is replaced by a

sum of integrals over RVEs with finite size and unlike standard homogenization,

no scale separation is introduced. It can be shown that for a bilinear quadrilateral

element, the location of the integration points can be obtained as:

(

±ξi ,±ηi

)

=



±

√

1

3

(

1−
l 2

x

W 2

)

,±

√
√
√
√

1

3

(

1−
l 2

y

H 2

)

 i = 1,2,3,4 (5.22)
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W

H

lx

ly X M
I

X m

Y m

Figure 5.2: One macro-scale finite element with disjoint RVEs

where
(

ξi ,ηi

)

denote the coordinates of the integration points of the element in

the natural coordinate system. lx , ly , W and H are width of the RVE, height of the

RVE, macro-scale element width and macro-scale element height, respectively

(figure 5.2). In equation (5.22), when lx → 0 and ly → 0, the nonlocal integra-

tion points become the usual Gauss points. It should also be noted that in order to

keep the value under the square root positive in equation (5.22), the macro-model

finite element size must be larger than or equal to the RVE size which means:

W ≥ lx and H ≥ ly . The aforementioned formula is used for regular meshes when

the macro-model finite element edges are parallel to those of the RVE. For irregu-

lar meshes, a so-called effective RVE domain can be defined. Details on defining

an effective RVE domain can be found in [24].

The heterogeneous body displacement field uζ and deformation gradient F ζ are

related to the macroscopic displacement and the macroscopic deformation gra-

dient via:

uζ
= uM

+u∗

F ζ
= F M

+F ∗
(5.23)

where u∗ denotes the displacement perturbation and F M and F ∗ are defined as:

F M
i j =

∂uM
i

∂X M
j

+δi j

F∗
i j =

∂u∗
i

∂X m
j

+δi j

(5.24)
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in which δi j is Kronecker delta. The macroscopic deformation gradient is approx-

imated as a linear function over the RVE:

F M
i j = F̄i j +

∂Fi j

∂X m
k

X m
k (5.25)

where

F̄i j =
1

|Ωm |

∫

Ωm
F m

i j dΩm

∂Fi j

∂X m
k

=
1

|Ωm |

∫

Ωm

∂F m
i j

∂X m
k

dΩm

(5.26)

In the computational continua model, the first Piola-Kirchhoff stress tensor

for the heterogeneous body (P ζ) can be decomposed into macroscopic stress (P M )

and meso-scale perturbation (P∗) as [24]:

Pζ
= P M

+P∗

P M
= P̄

M
+X mQM

x +Y mQM
y

(5.27)

It can be shown that P̄
M

, QM
x and QM

y can be obtained as (see Appendix E):

P̄
M

=
1

|Ωm |

∫

Ωm
P mdΩm

QM
x =

12

l 2
x |Ω

m |

∫

Ωm
X m P mdΩm

QM
y =

12

l 2
y |Ω

m |

∫

Ωm
Y m P m dΩm

(5.28)

In order to use the computational continua formulation, the macroscopic ma-

trices and the force vector should be calculated using equation (5.20) instead of

the integrals given in equations (C.1)-(C.3). For example, the macroscopic inter-

nal force vector can be computed via:

F M
int =

k∑

I=1

∫

Ωm

j
(

X M
I

, X m
)

w I

|Ωm |
B T

L

(

X M
I , X m

)

σ
M

(

X M
I , X m

)

dΩm (5.29)

It should be noted that in equation (5.29), B L is the matrix of derivatives of the

macro-scale model shape functions. The macroscopic Cauchy stress σ
M can be

obtained from the first Piola-Kirchhoff stress given in (5.27) as: σ
M =

1
J M P M ·

(

F M
)T

in which F M is the macroscopic deformation gradient and J M = det(F M ).

5.2.4. Homogenization
In order to compute macroscopic tensors given in equations (5.28), the volume

integrals can be converted into surface integrals on the boundaries of the RVE

via:

P̄
M

=
1

|Ωm |

∫

Ωm
P mdΩm

=
1

|Ωm |

∫

Γm

(

f ⊗X m
)

dΓm
=

1

|Ωm |
P̃

M
(5.30)
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QM
x =

12

l 2
x |Ω

m |

∫

Ωm
X m P m dΩm

=
12

l 2
x |Ω

m |

{
G1

2

∫

Γm
X m

(

f ⊗X m
)

dΓm
+

G2

2

∫

Γm
Y m

(

f ⊗X m
)

dΓm

}

=
12

l 2
x |Ω

m |

{
G1

2
Q̃

M
x +

G2

2
Q̃

M
y

} (5.31)

QM
y =

12

l 2
y |Ω

m |

∫

Ωm
Y mP mdΩm

=
12

l 2
y |Ω

m |

{
G3

2

∫

Γm
X m

(

f ⊗X m
)

dΓm
+

G4

2

∫

Γm
Y m

(

f ⊗X m
)

dΓm

}

=
12

l 2
y |Ω

m |

{
G3

2
Q̃

M
x +

G4

2
Q̃

M
y

} (5.32)

in which f denotes the force vectors on the RVE’s boundary. P̃
M

, Q̃
M
x , Q̃

M
y , G1, G2,

G3 and G4 are given in Appendix F. The incremental displacement at the RVE’s

controlling nodes (see figure 5.1) and the incremental macroscopic deformation

gradient are related via:

δum
i = H T

i δF M i = 1,2,4 (5.33)

The meso-scale problem stiffness in equation (5.18) can be rearranged for the

independent and dependent nodes as described in [40]. It should be noted that in

the finite element formulation of the macro-scale model, the geometrical nonlin-

earities are accounted for via nonlinear stiffness matrix K M
NL

(equation (C.2)) and

the homogenized tangent moduli C M is a function of the meso-scale model ma-

terial response. Therefore, in order to calculate the homogenized tangent mod-

uli from the meso-scale model stiffness matrix, only the first integral in equation

(D.1) is used which is related to the meso-scale model material properties. Hence,

at the converged state of the meso-scale problem, a modified matrix K̄
m
C is com-

puted by setting the second integral in equation (D.1) to zero. K̄
m
C is then used

to obtain the macroscopic tangent instead of K m
C . The linear system of equations

for the meso-scale problem can be written as K̄
m
Ciiδum

ii
= δf m

ii in which i denotes

the independent degrees of freedom. The system of equations can be rewritten as:

[

K̄
m
C aa K̄

m
C ab

K̄
m
C ba K̄

m
C bb

][

δum
a

δum
b

]

=

[

0

δf m
b

]

(5.34)

where subscript b denotes the degrees of freedom associated to the controlling

nodes (see figure 5.1) and subscript a represents the other nodes’ degrees of free-

dom. Equation (5.34) can be written in a condensed form as:

K̃
m
T δum

b = f m
b (5.35)

where K̃
m
T is calculated from stiffness matrix K̄

m
T as:

K̃
m
C =

(

K̄
m
C bb

)T
− K̄

m
C bb

(

K̄
m
C aa

)−1
K̄

m
C ab (5.36)

Similar to the homogenized macroscopic stress tensor, the homogenized macro-

scopic tangent can be written as:

C M
= C̄

M
+X md M

x +Y md M
y (5.37)
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in which

d M
x =G1d̃

M
x +G2d̃

M
y

d M
y =G3d̃

M
x +G4d̃

M
y

(5.38)

Matrices C̄
M

, d̃
M
x and d̃

M
y can be obtained via:

c̄ M
=

[
H 1 H 2 H 4

]

K̃
m
C





H 1

H 2

H 4





d̃
M
x =

12

l 2
x |Ω

m |

[
X H 1 X H 2 X H 4

]

K̃
m
C





H 1

H 2

H 4





d̃
M
y =

12

l 2
y |Ω

m |

[
Y H 1 Y H 2 Y H 4

]

K̃
m
C





H 1

H 2

H 4





(5.39)

5.3. Numerical results
In this section, numerical examples for an elastic material model and an incom-

pressible hyperelastic material model are given. In each example three solutions

including direct numerical simulation (DNS), standard homogenization and com-

putational continua model are presented and the results are compared.

5.3.1. Elastic model - stiff particles in a soft matrix
A two-dimensional heterogeneous structure is shown in figure 5.3. The structure

consists of circular aggregates (material 1, green) and matrix (material 2, yellow).

Both aggregates and matrix are modeled as linear elastic material. The material

properties are: E1=40 (MPa), E2=0.01 (MPa), υ1=0.0, υ2=0.49, where E and υ are

Young’s modulus and Poisson’s ratio, respectively.

100 (mm)

100 (mm) ū

x

y

Figure 5.3: Heterogeneous elastic structure

A uniform displacement field ū is applied on the right edge which increases

monotonically. The left and bottom edges are constrained in x and y directions,



5

62

Chapter 5. A new multi-scale scheme for modeling heterogeneous

incompressible hyperelastic materials

respectively. The displacement of the upper right node is constrained in y direc-

tion. The structure undergoes large deformations and a plane strain state is con-

sidered for the model. The DNS model and the multi-scale model for the problem

are shown in figure 5.4. The DNS model is discretized using 1540 linear triangu-

lar elements. The RVE is meshed using 396 linear triangular elements which is

consistent with the DNS model. Periodic boundary conditions are used for the

RVE. Linear quadrilateral elements are used to discretize the macro-scale model.

Three different mesh sizes are chosen for the macro-scale model which are shown

in figure 5.5. For the computational continua model, a macro-scale model with

4 elements is used which is the coarsest mesh (see figure 5.5). The locations of

the nonlocal integration points can be obtained using equation (5.22). For this

example, lx =ly =W =H=50 (mm). Therefore,
(

±ξi ,±ηi

)

=(0,0) which means that

four integration points are converted into one integration point at the center of

the macro-scale element. As it is discussed in section (5.2.3), for the computa-

tional continua model, the macroscopic element must be larger than or equal to

the RVE size and further refinement is not possible for the present example. The

reaction forces in x direction, at the right hand side edge versus applied displace-

ment ū for the DNS model, the standard homogenization model (with 4, 16, 64

and 256 elements) and the computational continua model (with 4 elements) are

shown in figure 5.6. As it can be seen in figure 5.6, for the standard homogeniza-

tion model, by refining the macro-scale model mesh size, the reference solution is

approached. It can also be seen that the result obtained using computational con-

tinua model with 4 elements is very close to that of the standard homogenization

model with 256 elements. It can also be observed in this figure that even when

using 256 elements for the macroscopic model, there is a difference between the

multi-scale result and the DNS model result. Further refinement of the maro-

scale model mesh size decreases the error slightly but it does not vanish. This

is due to the fact that the periodicity condition which is used in the multi-scale

model is only valid far enough away from the boundary and using this assump-

tion near the boundary gives rise to errors in the solution. The distribution of the

macroscopic Cauchy stress in x direction is shown for the DNS model, the stan-

dard homogenization model and the computational continua model in figure 5.7.

As it can be observed in this figure, the macroscopic stress distributions for the

standard homogenization model with 256 elements and the computational con-

tinua model with 4 elements are in good agreement with the DNS model. For

example, in the DNS model, the macroscopic stress at the upper edge is 4e3 (Pa)

and at the lower edge is 6.8e3-9.6e3 (Pa) which are the same for the standard ho-

mogenization model with 256 elements and the computational continua model

with 4 elements. However, results obtained from standard homogenization with

4 and 16 elements are not accurate compared to the DNS model results. The bet-

ter results obtained using the computational continua model can be explained

by considering the distribution of strains over the RVE which are shown in fig-

ures 5.8 and 5.9. The distribution of the Almansi strain in x direction for the DNS

model (top-right part) and RVEs associated to the specified integration points of

the macroscopic element for the computational continua model and the standard



5.3. Numerical results

5

63

homogenization model are shown in figure 5.8. Figure 5.9 depicts the distribu-

tion of the Almansi strain in y direction. Since the Poisson’s ratio is non-zero for

the soft material, the macroscopic stress in x direction depends on both strain in

x and y directions. In figure 5.8, it can be observed that the values of the strains

in x direction and the distribution over the RVEs are close to those of the DNS

model for both the standard homogenization model and the computational con-

tinua model. However, in figure 5.9, the distribution of the strain in y direction

over the RVEs associated to the macroscopic integration points (2) and (4) for

the standard computational homogenization model differ from that of the DNS

model and gives higher averaged strain values compared to the DNS model. This

results in higher macroscopic strain values in y direction and consequently higher

stress values in x direction compared to the DNS model (figure 5.10). Therefore,

it can be concluded that for the computational continua model, the macroscopic

deformation gradient which is applied on the RVE boundary is more consistent

with those of the DNS model compared to the standard homogenization model.

The reaction force on the right edge as a function of RVE size is plotted at ū=30

(mm) for the DNS model, the standard homogenization model and the compu-

tational continua model in figure 5.11. For the results shown in figure 5.11, the

macro-scale model for the computational continua model is discretized using 4

elements (element size=50×50 (mm)). As it can be observed in this figure, by in-

creasing the RVE size (lx =ly ) the difference between the multi-scale models and

the DNS model increases and for all RVE sizes the results obtained using the com-

putational continua model are better than those of the standard homogenization

method. It can also be observed that for the present example, the more accurate

results from the computational continua model can be obtained by choosing the

macroscopic element size equal to the RVE size. In figure 5.12, the reaction forces

as a function of RVE size are plotted for the cases in which the macro-scale model

element size is equal to the RVE size for the computational continua model and

the standard homogenization model (W =lx , H=ly ). As it can be observed in figure

5.12, the computational continua model results (in contrast to the standard ho-

mogenization results for larger RVEs) are in good agreement with the DNS model

results and as the RVE size decreases the difference between the results obtained

from the DNS model, the standard homogenization model and the computational

continua model decreases. In order to compare the computational cost for DNS

model, standard homogenization and computational continua, models with the

same meso-structure size (50×50 (mm)) and different macro-scale model sizes

(100×100 (mm), 150×150 (mm) and 200×200 (mm)) are solved. For the stan-

dard homogenization model, the macro-scale model is discretized using 256 lin-

ear quadrilateral elements which is the minimum number of elements with which

a converged solution (with respect to the mesh size) is obtained. For the computa-

tional continua model, the macroscopic element size is equal to the RVE size. The

computational time versus the size of the macroscopic model is shown in figure

5.13 at nominal strain ū/W =0.3. In figure 5.13, it can be observed that the com-

putational cost increases with size and for all sizes the computational time for

the computational continua model is significantly lower than for the other two
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50 (mm)

50 (mm)

DNS model Multi-scale model

Figure 5.4: DNS and multi-scale models

4 element 16 elements

64 element 256 elements

Figure 5.5: Different mesh sizes for the macro-scale model in

multi-scale simulation

models which resulted from using a coarser mesh in the computational continua

model compared to the DNS model and the standard homogenization model. It

should be noted that in the present example, a linear elastic material model is

used and the RVE problem is solved only once and the homogenized properties

are calculated a priori. As a result the computational time is directly related to the

total number of degrees of freedom of the macro-scale model.
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Displacement (mm)

50

dns

multi4

multi16

multi256

CC

2

dns

multi4

multi16

multi256

CC

2

Figure 5.6: Reaction forces in x direction for different models

(a)

(b)

(c)

Macroscopic stress (Pa)

4.00e3 6.80e3 9.60e3 1.24e4 1.52e4 1.80e4

Figure 5.7: Macroscopic Cauchy distribution for (a) DNS model,

(b) standard homogenization model (with 4, 16, 64 and 256

elements) and (c) computational continua model (with 4

elements)
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(a)

Strain in x direction

-0.20 -0.06 0.08 0.22 0.36 0.50

(b) 1 2

3 4

(1) (2)

(3) (4)

(c)

Figure 5.8: Strain distribution in x direction for (a) DNS model, (b)

standard homogenization model and (c) computational continua

model (with 4 elements)
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(a)

Strain in y direction

-0.50 -0.38 -0.26 -0.14 -0.02 0.10

(b)
1 2

3 4

(1) (2)

(3) (4)

(c)

Figure 5.9: Strain distribution in y direction for (a) DNS model, (b)

standard homogenization model and (c) computational continua

model
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4e3 8e3 1.2e4 2e4 3.5e4 5e4

(a) (b)

Macro-scale model

Figure 5.10: Distribution of the Cauchy stress (in Pa) in x direction

over the RVE for (a) standard homogenization model and (b)

computational continua model

RVE size (mm)

55

Figure 5.11: Reaction forces in x direction versus RVE size for the

DNS, the standard homogenization and the computational

continua models (macroscopic model is discretized by 4 elements)
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RVE size (mm)

Figure 5.12: Reaction forces in x direction versus RVE size for the

DNS, the standard homogenization and the computational

continua models (macroscopic element size is the same as RVE

size)

Macro-scale model size (mm)

Figure 5.13: Computational time versus macro-scale model size for

different models

5.3.2. Incompressible hyperelastic model - a stiff/soft layered cell
In this section, a numerical example for a heterogeneous incompressible hypere-

lastic structure is given. In this example, as shown in figure 5.14, a 100×100 (mm)

heterogeneous structure which consists of two different hyperelastic materials is

considered. An incompressible Mooney-Rivlin material model is used. The mate-

rial properties are shown in table 5.1. In order to enforce the condition of incom-

pressibility, a sufficiently large value for bulk modulus K =400 (Pa) is chosen for

both materials. Material parameters α1 and α2 are related to the standard shear

modulus via µ=2(α1+α2). Therefore, the material parameters given in table 5.1

denote that material 1 is stiffer than material 2. A linearly varying non-uniform
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Table 5.1: Material properties of different phases

Material 1 (green) Material 2 (yellow)

α1 (kPa) 5 1

α2 (kPa) 5 6

100 (mm)

100 (mm)

ū

1.25ū

Figure 5.14: Heterogeneous hyperelastic structure

50 (mm)

50 (mm)

DNS model Multi-scale model

Figure 5.15: DNS and multi-scale models

displacement field is applied on the right edge and a plane strain state is assumed.

The DNS and the multi-scale models for the problem are shown in figure 5.15. A

linear boundary condition is used for the RVE. Three different mesh sizes are con-

sidered for the macro-scale model which are shown in figure 5.16.

The reaction forces at the right edge of the structure versus applied displace-

ment ū for the DNS model, the standard homogenization model (with 4, 16 and

64 elements) and the computational continua model with 4 elements are shown

in figure 5.17. It can be seen that the results for the standard homogenization
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model with 16 and 64 elements and the computational continua model with 4 ele-

ments are in good agreement with the DNS model result, however, for applied dis-

placement values larger than 35 (mm) the standard homogenization model with

4 elements, results in a lower reaction force compared to the DNS model. It can

also be observed in figure 5.17 that the reaction force for standard computational

homogenization with 64 elements slightly deviates from the DNS results. The er-

ror at x=80 (mm) is 2.02%. Increasing the number of macro-scale finite elements

does not improve the results. This error is due to fact that in the computational

homogenization model, a linear boundary condition is used for the RVE which is

not properly valid near the boundaries (as explained in section (5.3.1)).

4 element 16 elements 64 elements

Figure 5.16: Different mesh sizes for the macro-scale model

Displacement(mm)

80

dns

multi4

multi16

Multi64

CC4

Figure 5.17: Reaction forces in x direction for different models

The distribution of the macroscopic Cauchy stress in x direction is shown for

the DNS model, the standard homogenization model and the computational con-

tinua model in figure 5.18. The macroscopic stress distribution for the compu-

tational continua model with 4 elements is in good agreement with that of the

DNS model whereas in case of the standard homogenization model, one needs

to refine the macroscopic mesh to converge to the reference solution. Figure 5.19
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shows the distribution of the meso-scale Cauchy stresses in x direction over an

RVE associated to the macroscopic integration point (shown in the figure 5.19)

for the standard homogenization model and the computational continua model

with 4 elements. It can be seen that the stress values obtained from the standard

computational homogenization method are higher than those of computational

continua model. This results in higher values of the macroscopic stresses and

consequently higher reaction forces.

(a)

(b)

(c)

Macroscopic stress (Pa)

2.e4 4.6e4 7.2e4 9.8e4 1.24e5 1.5e5

Figure 5.18: Macroscopic Cauchy stress distribution for (a) DNS

model, (b) standard homogenization model (with 4, 16 and 64

elements) and (c) computational continua model (with 4

elements)
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9.8e4 1.11e5 1.24e5 1.37e5 1.5e5

(a) (b)

Macro-scale model

Figure 5.19: Distribution of the Cauchy stress (in Pa) in x direction

over the RVE for (a) standard homogenization model and (b)

computational continua model

5.4. Conclusion
In this chapter, based on a so-called computational continua model, a computa-

tional homogenization scheme is developed for modeling heterogeneous incom-

pressible hyperelastic structures under large deformations. This model requires

neither higher-order boundary conditions unlike higher-order homogenization

methods nor extra degrees of freedom unlike gradient elasticity methods. The

numerical implementation aspects of the homogenization procedure to calculate

the macroscopic properties using the solution of the RVE problem are presented

and discussed. Using two numerical examples including a heterogeneous elastic

structure and a heterogeneous hyperelastic structure, the proposed multi-scale

model is verified against a DNS model. Furthermore, it is shown that, using the

present homogenization scheme, one can achieve the reference solution with a

significantly coarser macroscopic mesh compared to the standard homogeniza-

tion scheme which results in lower computational cost. The computational con-

tinua model is limited to cases in which the macroscopic element is larger than

the RVE size. In the present work it is also shown that due to the invalidity of the

periodicity close to the boundaries, using the usual boundary conditions such as

periodic boundary condition and linear boundary condition causes an error in

the computational homogenization model solution close to the boundaries.
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A numerical homogenization

scheme for glass

particle-toughened polymers

under dynamic loading

6.1. Summary
1In this chapter, a numerical homogenization scheme is presented to model glass

particle-toughened polymer materials under dynamic loading. A constitutive law

is developed for the polymer material and validated by comparing the results to

experimental test data. A similar constitutive law as that of the polymer material

with unknown material parameters is assumed for the glass particle-toughened

polymer. A homogenization scheme is used to determine the unknown material

parameters from the boundary value problem (BVP) of a representative volume

element. Unlike the standard computational homogenization scheme, the pro-

posed numerical homogenization scheme can be used after localization occurs

in the material. The proposed multi-scale model is then verified against direct

numerical simulation.

6.2. Introduction
Polymer materials have a wide range of applications due to their tunable material

properties, ease of processing and low cost. The impact resistance which is related

to the material toughness is important in the applications such as the automotive

industry and defense industry where systems and structures may be subjected to

intense dynamic loadings.

1Based on reference [35]
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Polymer materials can exhibit both ductile and brittle responses. The ductile

response is due to plastic deformations in the material and the brittle response

is caused by initiation of localized crazes which can lead to brittle fracture. At

high deformation rates, polymer materials behave more brittle which is not desir-

able for impact resistance applications. In order to enhance fracture toughness of

polymer materials under high strain rates, glass or rubber particles can be added

to the polymer matrix which promote the plastic deformations in the polymer

matrix and result in an improvement of the particle-toughened polymer tough-

ness. Adding the particles to the polymer matrix can also improve the stiffness

of the mixture. The strength of the particle-toughened polymer depends on the

bonding between particles and polymer matrix. For a well-bonded particle the

strength increases, however, weak bonding between particles and polymer ma-

trix may reduce the strength of the particle-toughened polymer [27].

The standard computational homogenization scheme can be used when the

strain field is more or less constant over the volume of the RVE. In the particle-

toughened polymer material, strain localization can occur in the forms of local-

ized crazes and shear bands (plastic deformations). Therefore, the standard com-

putational homogenization scheme cannot be used after strain localization oc-

curs in the polymer matrix.

The continuous-discontinuous scheme (2) may also be extended for model-

ing shear banding in ductile materials. This can be achieved by modeling a shear

band as a strong tangential discontinuity [61] and linking the corresponding co-

hesive law to averaged properties of the localized band in the RVE. However this

is out of the scope of this chapter.

In this chapter, a numerical homogenization scheme is developed to model

glass particle-toughened polymer materials. A viscoplastic material model for

the polymer is developed and verified against experimental results. This model

is not coupled to a damage model or discontinuous failure model to simulate

the post-peak response. In the homogenization scheme, it is assumed that the

macroscopic behavior of the glass particle-polymer composite is governed by the

same constitutive law as the polymer material with unknown material parame-

ters. A homogenization method is presented to obtain the unknown material pa-

rameters from an RVE problem. It is shown that unlike standard computational

homogenization, the proposed method can be used after strain localization oc-

curs in the material. Furthermore, initiation of crazing in the polymer material

is investigated. The multi-scale model is then verified against direct numerical

simulation (DNS) results.

6.3. Material model for glassy polymer under dynamic

loading

The stress-strain response of a glassy polymer material during dynamic tension

loading is shown in figure 6.1. Four different regions can be observed during de-

formation: i) elastic, ii) yielding, iii) strain softening and iv) strain hardening. As it

is proposed by Haward and Thackray [33], the total stress can be decomposed into
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two components: 1) a viscous component due to inter-molecular interactions and

2) an elastic hardening component which is related to the entangled molecular

network. In the following sections a constitutive law is formulated based on this

stress decomposition and the required material parameters are obtained for the

soft, transparent polyurethane elastomeric polymer, Clear Flex 75 (CF 75), using

the experimental data reported in [17, 19].

Strain

Figure 6.1: Stress-strain response of glassy polymer material

6.3.1. Constitutive law
The constitutive model is shown in figure 6.2. Chains (I) and (II) represent the

elasto-visco plastic response (inter molecular interactions) and the linear elastic

hardening response (network), respectively. E I , E I I and η are Young’s modulus

for chain (I), Young’s modulus for chain (II) and the viscosity of the material, re-

spectively, and they are strain rate dependent.

E I η

E I I

(I)

(II)

Figure 6.2: The constitutive model for the glassy polymer.

The total 2nd Piola-Kirchhoff stress can be obtained as:

S = S I
+S I I (6.1)

S I and S I I denote 2nd Piola-Kirchhoff stress tensor in chains (I) and (II), respec-
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tively, and can be written in rate form as 2:

Ṡ
I
=C I : ė

Ṡ
I I
=C I I : ė

e =
1

2

(

F T F − I
)

(6.2)

in which e is the total Green-Lagrangian strain tensor and over-dot denotes time

derivative. F and I are the deformation gradient tensor and the second order unit

tensor, respectively. C I and C I I are linear elastic tangent moduli for chains (I) and

(II), respectively and are obtained as:

C n
i j kl =−

νn

E n
δi j δkl +

1+νn

E n

[

δikδ j l +δi lδ j k

]

n = I , I I (6.3)

where ν and δi j are Poisson ratio and Kronecker delta, respectively. The inelastic

rate of deformation, d p can be obtained as:

d p =
τ

I
d

η
(6.4)

in which τ
I
d

is the deviatoric Kirchhoff stress tensor and is given via:

τ
I
= F S I F T

τ
I
d =τ

I
−

1

3
tr

(

τ
I
) (6.5)

where tr denotes the trace of a matrix. The viscosity η is calculated via

η= η0
τ/τ0

sinh (τ/τ0)
exp

(
µp

τ0

)

τ=

√

1

2
τ

I
d

:τI
d

, p =
1

3
tr

(

τ
I
d

)
(6.6)

where η0, τ0 and µ are material parameters. According to experimental observa-

tions [17, 19], one can write E I , E I I and τ0 as functions of equivalent strain rate

as3:

E I
=α1ė

β1
eq , E I I

=α2ė
β2
eq , τ0 =α3 ė

β3
eq (6.7)

in which αi and βi (i=1, 2, 3) are material constants and the equivalent strain

rate is calculated as: ėeq =

√
2
3 ė : ė. The flow rule (6.4) can be solved by apply-

ing a return mapping algorithm and spectral decomposition using local Newton-

Raphson iteration (see G). The proposed model in total consists of 10 material

parameters including νI , νI I , µ, η0, αi and βi (i=1, 2, 3) which can be found using

experimental data at various strain rates.

2For branch (I), F = F el ast i c F pl ast i c and equation (6.2a) are solved together with a flow rule.
3It should be noted that equation (6.4) controls the rate dependency of the inelastic response and

equations (6.7) control the rate dependency of the elastic response and the yield stress.
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6.3.2. Calculation of material parameters

In the present work, experimental data for CF 75 polymer is used which is re-

ported in [17, 19]. The tension and compression tests are performed using a split

Hopkinson bar apparatus. For the tension test a dogbone specimen with gauge

length 10 (mm) and circular cross section with diameter 6 (mm) is used. For

the compression test a cylindrical specimen with length 5 (mm) and diameter

10 (mm) is tested. For the numerical, cylindrical specimens with a diameter of

6 (mm) and length of 10 (mm) under tension and cylindrical speciemens with a

diameter of 10 (mm) and length of 5 (mm) under compression are analyzed. The

axisymmetric state is used for the numerical analysis. A constant velocity V̄ is

applied on the edge of specimens in the numerical analysis (figure 6.3). In or-

der to account for incompressibility of the polymer material, Poisson ratio values

can be chosen close to 0.5. For CF 75 polymer we set νI =νI I =0.4. Parameter µ is

taken equal to -5e-5 (MPa). The values for αi and βi for tension and compression

are given in table 6.1. Figure 6.4 and 6.5 show the experimental and numerical

stress-strain curves at different strain rates under tension and compression, re-

spectively. It should be noted that for the tension test, the material parameters

are obtained using the experimental data at rates 900, 1300 and 2200 (1/s). The

results at the other strain rates are predicted using the proposed polymer model.

For the compression test, the material parameters are calculated from the data at

1092, 2191 and 4334 (1/s) and the stress-strain curve at strain rate 5124 (1/s) is

predicted using the polymer model.

10 (mm)

6
(m

m
)

5 (mm)

1
0

(m
m

)

V̄ V̄

(a) Tension (b) Compression

Figure 6.3: Numerical models for the tension and compression

tests
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Table 6.1: Material parameters

Parameters Tension Compression

α1 (MPa) 20.6 1.31e-2

α2 (MPa) 4.35 56.9

α3 (MPa) 9.94e-4 0.771

β1 (-) 0.55 1.43

β2 (-) 0.50 0.23

β3 (-) 1.31 0.39

νI (-) 0.4 0.4

νI I (-) 0.4 0.4

µ (MPa) -5e-5 -5e-5

η0 (MPa.s) 0.1 0.1

Engineering strain (-)

0.2

85858585858585

Figure 6.4: Numerical and experimental stress-strain curve for

tension test at different strain rates
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Engineering strain (-)

0.25

6
6
6
6
6
5
6
5

2191
4333
5124
6
6
5
6
5

 Polymer model 1092 (1/s) Experimental data 1092 (1/s) Polymer model 2191 (1/s) Experimental data 2191 (1/s) Polymer model 4334 (1/s) Experimental data 4334 (1/s) Polymer model 5124 (1/s) Experimental data 5124 (1/s)

Figure 6.5: Numerical and experimental stress-strain curve for

compression test at different strain rates

6.4. Failure mechanisms in glassy polymer materials
Two types of failure can be observed in the glassy polymers. Shear yielding and

crazing. The competition between these two failure mechanisms determines the

ductility or brittleness of the response of the polymer material. Under compres-

sion loading, the material undergoes large plastic deformations and localized shear

yielding (formation of shear bands) occurs in a direction of 45◦ from the direc-

tion of maximum tensile stress. Under tension, limited shear yielding occurs and

at a specific stress level crazing occurs due to the nucleation of micro voids in

the direction normal to the maximum principle stress. Crazes can further widen

and eventually break down which results in brittle fracture of the polymer ma-

terial. From the experiments it has been observed that craze initiation is stress

dependent [1, 76]. It has also been observed that craze initiation depends on the

hydrostatic stress and the maximum principal stress. In the present work, craze

initiation criteria developed by Sternstein et. al. [74] are utilized. For the plane

stress state, these criteria can be expressed as:

{
3
2 Sm −

1
2 A+

B
6Sm

−S1 ≤ 0

0 < Sm <
3
2 S1

(6.8)

in which S1 and Sm denote the maximum principle stress and the hydrostatic

stress, respectively. A and B are temperature dependent material parameters. In

the present work, the temperature is assumed to be constant during loading.

Material parameters A and B for the craze initiation criteria can be estimated us-

ing experiments. In [28], a intact bar and a notched-bar tension tests are used to
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estimate the craze initiation parameters for PMMA. In the experimental tests it

is observed that crazing initiates just prior to the peak load. In the present work

due to the lack of experimental data for the CF 75, numerical analysis with the

same geometries as in [28] are analyzed using the finite element method. Mate-

rial properties for CF 75 are given in table 6.1. It has been assumed that at strain

rate 600 (1/s), crazing initiates at the peak load. The intact bar and the notched

bar are shown in figure 6.6. A constant velocity V̄ is applied on the right edge.

For the notched-bar, crazing initiates at the notch tip. In order to enforce the

strain rate 600 (1/s) at the tip element for the notched-bar test, a constant velocity

V̄ =3.11 (m/s) (which refers to a strain rate 490 (1/s)) is applied on the right edge

of the notched-bar. The force-displacement curves for the intact bar tension test

and the notched-bar tension test are shown in figure 6.7. The set of maximum

principle stress and hydrostatic stress (S1, Sm) at peak load for the intact bar test

and the notched-bar test are (4.38, 13.13) (MPa) and (4.96, 11.38) (MPa), respec-

tively. Inserting these sets of data in equations (6.8) and solving for A and B gives

A=16.74 (MPa) and B=366.25 (MPa2). These parameters can be used in equations

(6.8) to evaluate craze initiation for CF 75 polymer material.

6.35 (mm)

1
2

.7
(m

m
)

1
2

.7
(m

m
)

3
.1

8
(m

m
)

6.35 (mm)

R 0.9 (mm)

V̄V̄

Figure 6.6: The intact bar (left) and the notched-bar (right) tension

tests

In order to verify the calculated values for A and B , equation (6.8) is used to

determine the initiation of crazing in the quasi-static tension test performed on

the CF 75 polymer material in [19]. The quasi-static test has been conducted at

a strain rate of 0.01/s using a servo-hydraulic Instron 8810 testing machine. In

this experiment, it has been observed that fracture occurs at maximum stress 14

(MPa). In fact, the first crazes initiate at a stress value lower than 14 (MPa) and

after craze widening fracture occurs. Since a uniaxial test is performed the speci-

men used is a intact bar, the hydrostatic stress can be estimated as Sm= 1
3
×14=4.67

(MPa). Figure 6.8 shows the craze initiation criteria for CF 75 polymer using the

numerically calculated values for A and B . The set (S1=14, Sm=4.57) (MPa) for

the static test is also shown in figure 6.8 which is inside the crazing zone. This
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means that crazing initiates at a maximum stress lower than 14 (MPa) and after

that fracture occurs which is consistent with the experimental test.

Displacement (mm)

0.35

7
7

Figure 6.7: Reaction force for the intact bar and notched-bar

tension tests

6.5. Verification of the polymer model: a glass particle-

polymer tension test
In order to verify the proposed polymer material model, the numerical results ob-

tained from the model are compared to experimental results in this section. Fan

et. al. [18] performed a dynamic tensile test on a CF 75 polymer matrix with a

single glass particle at various strain rates using a split Hopkinson bar apparatus.

The test has been conducted on dogbone specimens with gauge length 10 (mm)

and a circular cross section with a diameter of 6 (mm). A glass particle with a di-

ameter of 3 (mm) is embedded in the polymer matrix. In the stress-strain curves

reported in [18] for the polymer and the polymer with a single glass particle at

strain rate 2700 (1/s), it has been observed that the glass particle does not affect

the initial stiffness and for the polymer with the glass particle, yielding occurs at

lower stress values compared to the single-phase polymer specimen. From these

observations it can be concluded that debonding occurs between the glass par-

ticle and the polymer matrix at the first loading steps. The finite element model

for the specimen is shown in figure 6.9. A cylindrical specimen is modeled and

a axisymmetric state is assumed in the numerical analysis. The sample consists

of a CF 75 polymer matrix (yellow), glass particle (green) and the interface (blue).

The glass particle is modeled using a linear elastic material with Young’s modu-

lus E par ticle =70 (GPa) and Poisson ratio ν=0.23. Debonding at the interface of

the glass particle and the polymer matrix is modeled using a thin linear elastic

layer (thickness=0.1 (mm)) with small Young’s modulus compared to the polymer

(E inter f ace =1e-9×E I ). The experimental and numerical stress-strain curves for

the tensile dynamic test at strain rate 2700 (1/s) for the glass particle-polymer
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Hydrostatic stress (MPa)

30

22242

Figure 6.8: Craze initiation criteria

sample and the single-phase polymer sample are shown in figure 6.10. A compar-

ison between the experimental and numerical stress-strain curves for the glass

particle-polymer sample at different strain rates is depicted in figure 6.11. Good

agreement between the numerical and the experimental results can be observed

for strain rates from 700 (1/s) to 2700 (1/s). However, for the higher strain rates

3300(1/s) and 3800(1/s) the difference between the numerical and experimental

results increases. This can be explained from the results in figure 6.12 which show

the potential craze initiation zone for different strain rates at right edge displace-

ment 0.07 (mm). The craze initiation zone increases with strain rate which means

that the brittle response due to crazing (craze initiation, widening and final frac-

ture) increases with strain rate. Therefore, at higher strain rates the deformation

due to crazing contributes more to the total deformation. However, in the present

polymer model only plastic deformations are taken into account and the defor-

mations due to craze widening and final fracture are not considered. As a result,

the present model overestimates the experimental test results at high strain rates.

10 (mm)

6 (mm)

R 1.5 (mm)

R 1.6 (mm)

V̄

Figure 6.9: The glass particle-polymer tension test specimen
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Engineering strain (-)

0.15

8

5

8

5

Figure 6.10: The glass particle-polymer sample and the

single-phase sample tension tests

Engineering strain (-)

0.15

700 num
1200 num
1200 exp
1700 num
 1700 exp
 2000 num
 2000 exp
3300 num
3300 exp
5
8
5

Figure 6.11: The glass particle-polymer tension tests at various

strain rates

6.6. Numerical homogenization scheme
In a standard computational homogenization method, the macroscopic strain is

assumed to be constant over the RVE. For the glass particle toughened polymers,

strain localization can occur due to shear banding and/or cracking in the polymer

matrix and as a result the assumption of constant strain is not valid. Therefore, the

standard computational homogenization scheme cannot directly be used. In the
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0.0 1.0

Craze initiation parameter (-)

700 (1/s) 1200 (1/s) 1700 (1/s)

2000 (1/s) 2700 (1/s) 3300 (1/s)

3800 (1/s)

Figure 6.12: Craze initiation zone at different strain rates (no

crazing: craze initiation parameter=0.0, crazing occurs: craze

initiation parameter=1.0)

proposed numerical homogenization scheme, we assume that the macroscopic

behavior of the glass particle-toughened polymer is governed by a similar con-

stitutive law as the polymer material (see (6.3.1)). This constitutive law includes

unknown parameters which can be obtained by solving an RVE problem. There-

fore, the glass particle-toughened polymer constitutive law can be written as (see

equations (6.2), (6.4) and (6.6)):

˙
S =

˙
S

I
+

˙
S

I I

˙
S

I
=C

I
: ė

˙
S

I I
=C

I I
: ė

d p =
τ

I
d

η

η= η0
τ/τ0

sinh
(

τ/τ0

)exp

(
µp

τ0

)

(6.9)
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in which overbar denotes macroscopic quantities. In equation (6.9) parameters

η0 and µ are taken equal to the values of the plain polymer material. C
I
, C

I I
and

τ0 should now be computed from the RVE problem. Similar to the plain polymer

material, the response of the particle/polymer system can be decomposed into

an elasto-visco plastic response and the linear hardening response (see figure 6.1

and equations (6.9)). C
I

and τ0 are the homogenized elastic tangent modulus and

the homogenized yield strength for the elasto-visco plastic response, respectively.

C
I I

is the elastic tangent modulus for the hardening response. It should be noted

that all three material parameters (and C
I
, C

I I
and τ0 ) govern the response before

the peak load (figure 6.1). On the other hand, as mentioned before, the standard

computational homogenization scheme is valid before the softening part. C
I

and

C
I I

can now be computed from the RVE problem using the standard computa-

tional homogenization scheme as follows (see H). Two RVE problems should be

solved:

I. RVE with linear elastic matrix with Young’s modulus E I

II. RVE with linear elastic matrix with Young’s modulus E I I

At the converged state, the linearized form of RVE problems (I) and (II) can be

written as K (α)
i i

δu(α)
i i

= δf (α)
i i

(α=I, II). C
I

and C
I I

can be obtained via (see (2.4.1)):

C
α
=

[
H 1 H 2 H 4

](

K (α)
bb

−K (α)
ba

(

K (α)
aa

)−1
K (α)

ab

)





H 1

H 2

H 4



 (α= I , I I ) (6.10)

τ0 can be computed from the RVE problem as follows: first, one can relate the

peak stress σmax (the stress value just before softening takes place in the stress-

strain curve) to τ0 for the polymer material as τ0 = C1σ
C2
max in which C1 and C2

can be obtained using the stress-strain curves at different strain rates. Then, it

can be assumed that the glass particle-toughened polymer obeys the same rela-

tion. The peak stress for the glass particle-toughened polymer σmax can be ob-

tained from the RVE problem solution. τ0 can then be computed as τ0 =C1σ
C2
max .

In the standard computational homogenization scheme, the constitutive law for

the macro-scale model is taken as
˙
S = C : ė in which C is computed via equation

(6.10). Algorithms for the standard computational homogenization scheme and

the proposed numerical homogenization scheme are given in boxes 1 and 2, re-

spectively.
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Box 1: The standard computational homogenization scheme.

1. Calculate ėeq =

√
2
3

ė : ė

2. Calculate E I , E I I and τ0 using equations (6.7)

3. Solving RVE problem

3-1. Set matrix as a polymer material (section (6.3.1))

3-2. Solve BVP for RVE: K i iδu i i = δf i i

3-3. Compute macroscopic tangent moduli using equation (6.10)

4. Calculate macroscopic stress tensor as
˙
S =C : ė

Box 2: The numerical homogenization scheme.

1. Calculate ėeq =

√
2
3 ė : ė

2. Calculate E I , E I I and τ0 using equations (6.7)

3. Solving two RVE problems (α=I , I I )

3-1. Set matrix as a elastic material with Young’s modulus Eα

3-2. Solve BVP for RVE: K (α)
i i

δu(α)
i i

= δf (α)
i i

3-3. Compute macroscopic tangent moduli using equation (6.10)

4. Obtain σmax and calculate τ0 =C1σ
C2
max

5. Calculate macroscopic stress tensor using equations (6.9)

6.7. Verification of the numerical homogenization scheme
In this section two numerical examples are given in order to verify the proposed

numerical homogenization scheme. In the first example a heterogeneous intact

structure composed of glass particles and a CF 75 polymer matrix under dynamic

loading is analyzed and the proposed numerical homogenization scheme is com-

pared to the standard computational homogenization scheme and the DNS model.

In the second example, the numerical homogenization scheme is used to model

a notched heterogeneous structure.

6.7.1. Glass particle-polymer intact structure under dynamic load-

ing
Figure 6.13 shows a heterogeneous structure consisting of glass particles (green)

and a CF 75 polymer matrix (yellow). The material properties of the glass particle

and the polymer material are the same as in the example given in section (6.5).

A perfectly bonded interface between the particle and the polymer matrix is as-
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sumed. A constant velocity V̄ is applied on the right edge. The multi-scale model

is shown in Figure 6.14. The problem is solved using the proposed numerical ho-

mogenization scheme, the standard computational homogenization scheme and

a DNS model.

Figure 6.15 shows the force versus displacement diagram for the DNS model, the

standard computational homogenization scheme and the numerical homogeniza-

tion scheme at strain rate 700 (1/s). As it can be observed in figure 6.15, all three

models give similar results before softening occurs. After the peak load, in the

softening part, the results obtained from the standard computational homoge-

nization scheme are more ductile than those of the DNS model. However, the

results obtained from the numerical homogenization scheme are in a good agree-

ment with the DNS model results. The averaged plastic strain in x direction for the

DNS model, the numerical homogenization model (over the whole area) and the

homogenization model (over the RVE area) are plotted in figure 6.16. As it can be

observed in this figure, the curves for the DNS model and the numerical homog-

enization scheme are the same which leads to the same overall stress tensor and

reaction forces (figure 6.15). However these curves are below that of the standard

computational homogenization method. Figure 6.17 depicts the distribution of

the plastic strain for the DNS model and the standard computational homoge-

nization scheme (over the RVE). It can be observed that for the DNS model, the

plastic strain is localized over a smaller area compared to the standard homog-

enization method. Therefore, in the softening part, the results obtained with the

standard homogenization method are more ductile compared to those of the DNS

model.

10 (mm)

10 (mm) V̄

Figure 6.13: DNS model for the glass particle-polymer intact

structure
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1.25 (mm)

1.25 (mm)

Figure 6.14: Multi-scale model for the glass particle-polymer intact

structure

Displacement (mm)

0.8

Figure 6.15: Force-displacement curves for the DNS model, the

standard computational homogenization scheme and the

numerical homogenization scheme at strain rate 700 (1/s)

6.7.2. Glass particle-polymer notched structure under dynamic load-

ing

Figure 6.18 depicts a heterogeneous notched structure which is composed of sim-

ilar glass particle-polymer material as in section (6.7.1). Figure 6.19 shows the

multi-scale model for the problem. The force-displacement curves obtained from

the DNS model and the numerical homogenization scheme are shown in figure

6.20 for different rates. A good agreement can be observed between the results.
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Displacement (mm)

0.8

2

2

2

Figure 6.16: Plastic strain in x direction for the DNS, the standard

computational homogenization scheme and the numerical

homogenization scheme

DNS model Multi-scale model

Plastic strain (-)

x

y

0

0.0112

0.0224

0.0336

0.0448

0.0560

Figure 6.17: Distribution of the plastic strain in x direction for the

DNS and the standard computational homogenization scheme

Craze initiation and direction in the macro-scale model element can be de-

termined from the RVE problem and the craze initiation criteria (equation (6.8)).
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However, in order to reduce the computational costs, macroscopic craze parame-

ters can be obtained by solving the RVE problem once a priori. It is assumed that

the macroscopic craze initiation criteria can be written as:

3

2
Sm −

1

2
A+

B

6Sm

+d −S1 ≤ 0 (6.11)

in which A and B have the same values as the polymer material. d is a parameter

which represents a shift in the craze initiation curve in y (S1) direction (see figure

6.8). Parameter d can be computed using a set of (Sm , S1) which can be obtained

from the RVE problem solution a priori. For the present problem, this set is calcu-

lated when 50% of the RVE area meets the craze initiation criteria 4. For the strain

rate 700 (1/s), these values can be obtained as (Sm=4.46, S1=12.11) (MPa). By sub-

stituting these values in equation (6.11), parameter d can be obtained as 0.1035

(MPa).

10 (mm)

4.9 (mm)

10 (mm)

2
.4

(m
m

)

R 0.1 (mm)

V̄

Figure 6.18: DNS model for the glass particle-polymer notched

structure

4This value is arbitrary. However, since crazing occurs in the polymer matrix, one can use the volume

fraction of particles as a minimum value. In order to have a better estimate of this value, one can

compare a DNS model and multi-scale model for a very simple example and use the obtained value

for more complex problems. For the present example, the particle volume fraction is 10% and a value

of 50% is used.
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1.25 (mm)

1.25 (mm)

Figure 6.19: Multi-scale model for the glass particle-polymer

notched structure

Displacement (mm)

0.8

dns 350

num 350

dns 700

num 700

dns 1400

num 1400

DNS700 extension

DNS350 wxtension

7

Figure 6.20: Force-displacement curves for the DNS model and the

numerical homogenization scheme at different strain rates

Figures 6.21 and 6.22 show the development of the plastic shear strain and the

craze initiation zone obtained from the DNS model and the numerical homoge-

nization scheme at different times for strain rate 700 (1/s). The time step for this

problem is 0.1 (µs). A good agreement between the multi-scale and DNS results

can be observed in both figures. It can also be observed that crazing initiates be-

fore yielding in the polymer matrix.
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(a)

0.0 0.02 0.04 0.06 0.08 0.1

Plastic shear strain (-)

(b)

t=25 (µs) t=50 (µs) t=100 (µs)

Figure 6.21: Plastic shear strain for (a) the DNS model and (b) the

numerical homogenization scheme for strain rate 700 (1/s)

6.8. Conclusion
In this chapter, glass particle-toughened polymer materials are modeled using a

numerical homogenization scheme. A constitutive law is formulated for the poly-

mer material under high rate dynamic loading. The material model is validated

using the experimental results for CF 75 polymer. The craze initiation criterion

given in [74] is used to detect initiation of crazing and the corresponding craze ini-

tiation parameters for CF 75 are determined using numerical tests. The proposed

numerical homogenization scheme is verified against the DNS model at different

rates and a good agreement between the results is observed. It is also shown that

when strain localization occurs, unlike the proposed numerical homogenization

scheme, the standard computational homogenization scheme results in different

plastic strain values and distribution compared to the DNS model which leads to

an incorrect macroscopic response.

It should be mentioned that the proposed numerical homogenization scheme can

be used as long as the assumption of similar behavior of the mixture and the plain

polymer is valid. However, by adding large particles with high volume fractions to

the polymer matrix, this assumption may be violated and the present numerical

homogenization scheme cannot be used. In most practical applications, small
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(a)

0.0 1.0

Craze initiation parameter (-)

(b)

t=5 (µs) t=15 (µs) t=25 (µs)

Figure 6.22: Craze initiation zone for (a) the DNS model and (b) the

numerical homogenization scheme for strain rate 700 (1/s)

particles are used to enhance the fracture toughness of the polymer in which case

the aforementioned assumption is valid.





7
Conclusions and

recommendations

7.1. Concluding remarks
The macroscopic response of heterogeneous materials is to a large extent deter-

mined by the behavior of their micro-structure. Under dynamic loading condi-

tions, a material undergoes large deformations and strains and complex damage

processes occur at different length scales and time scales. Under these condi-

tions, the macroscopic behavior depends not only on the material responses of

the micro-structures but also on their local-scale inertia forces.

Homogenization-based multi-scale methods can be used to link the local-

scale behavior to the macroscopic response. In order to model the macroscopic

behavior properly in dynamic problems, the homogenization scheme should ac-

count for strain localizations (e.g., cracking and shear bands), rate effects, local-

scale dynamic effects and large deformations and strains.

In this dissertation, homogenization methods have been developed for brittle

and ductile materials under dynamic loading conditions considering aforemen-

tioned issues. The main contributions and conclusions of this thesis are:

• The continuous-discontinuous computational homogenization scheme is

extended for dynamic problems to account for rate effects and local-scale

dynamic effects (chapters (3) and (4)). It is shown that (1) a multi-scale

dynamic problem can be solved by performing a dynamic analysis at the

macro-scale while solving the RVE model as a quasi-static problem, (2) the

effect of crack opening rate on the macro cohesive law can be taken into

account by relating the material properties of the meso-scale model to the

macro crack opening rate, (3) the dispersion effects due to local-scale in-

ertia forces can be taken into account by introducing an additional body

force into the macro-scale model problem, (4) the local-scale dynamic ef-

fects are negligible when the macroscopic wave length is significantly larger

97
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than the characteristic length of the RVE and (5) the results obtained from

the multi-scale models are objective with respect to the RVE size.

• The computational efficiency of the computational homogenization schemes

is improved using a computational continua model which requires no higher-

order boundary conditions and extra degrees of freedom (chapter (5)). It is

shown that (1) using this homogenization scheme, the reference solution

(solution obtained using the DNS model) can be achieved by a significantly

coarser macroscopic mesh compared to the standard computational ho-

mogenization scheme which leads to much lower computational cost and

(2) the required homogenized properties for the computational continua

can be obtained using computational procedures similar to the standard

homogenization scheme.

• Finally, in chapter (6), a numerical homogenization scheme is developed for

glass-particle/polymer systems. The advantages of this model are that (1)

unlike the standard computational homogenization scheme, it is valid after

localization occurs in the polymer matrix and (2) the required homogenized

properties can be obtained a priori by solving two separate RVE problems

(using a standard computational homogenization scheme) which makes

the model computationally more effective than the continuous-discontinuous

homogenization scheme.

In chapters (3) and (4), the developed multi-scale methods have been used for

quasi-brittle materials. However, it should be noted that these multi-scale mod-

els can also be used in combination with other material models. For instance, the

continuous-discontin-uous computational homogenization scheme can be used

for modeling shear bands in ductile materials and the same formulation can be

used to account for dispersion effects. The derived computational continua for-

mulation which is used for hyperelastic materials in chapter (5) can also be used

for other materials to reduce the computational cost. Furthermore, the numeri-

cal homogenization scheme developed in chapter (6) is based on the fact that the

composite system and the plain matrix show similar behavior. Therefore, in order

to use this scheme for other material models it is important to have experimental

evidences (as exist for glass particle-polymer systems) which show this similarity.

7.2. Future work
In this thesis, the standard and the continuous-discontinuous computational ho-

mogenization schemes are extended for dynamic problems and an numerical

homogenization scheme is also developed for glass particle-toughened polymer

materials under dynamic loading. The proposed models in this dissertation can

further be developed. A few suggestions for future work based on the presented

models in this thesis are:

• All problems solved in this dissertation are two-dimensional multi-scale

problems. The models can be formulated in general form for three-dimensional
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problems. However, in order to extend the multi-scale models for three-

dimensional problems a few issues should be considered: (1) the choice

of the boundary conditions imposed on the RVE is very important and af-

fects the homogenized properties. Complex localization patterns may oc-

cur in a three-dimensional RVE which may require the modification of the

boundary conditions shown in figure 2.1 in chapter (2) and the compu-

tational costs of three-dimensional problems are significantly higher than

two-dimensional problems. Therefore, using computational cost reduction

techniques for three-dimensional multi-scale problems is essential.

• In the rate-dependent multi-scale crack models (chapters (3) and (4)), only

mode I is considered. However, the rate-dependent multi-scale models can

be used for mode II and can also be modified for mixed mode loading. In

order to generalize the rate-dependent crack model for the mixed mode,

one can modify equation (3.13) as:

t M
e f f

(

[[u]]M
e f f , ˙[[u]]

M
e f f

)

=



1+c∗1 asinh





˙[[u]]
M
e f f

c∗0







 t M
0e f f (7.1)

where [[u]]M
e f f

=

√

β2[[u]]M
s

2
+ [[u]]M

n
2

and t M
e f f

=

√

β−2t M
s

2
+ t M

n
2

. In these

equations subscripts n and s denote normal and shear components of macro

crack opening (or traction), respectively. Equation (3.14) can be rewritten

as:

κI

(

˙[[u]]
M
e f f

)

=



1+c1asinh





˙[[u]]
M
e f f

c0







κ0
I (7.2)

Then, the same analysis as given in figure 3.14 for different combinations of

[[u]]M
s and [[u]]M

n can be used to relate c0 and c1 to c∗0 and c∗1 . The bound-

ary conditions which are imposed on the RVE should also be modified for

model II and mixed mode loading. For instance, as suggested in [54], one

can apply a shear displacement at the right edge of the RVE (see figure 2.1)

for mode II and a combination of mode I and mode II boundary conditions

for the mixed mode problem.

• In chapter (6), only craze initiation is considered. After craze initiation, the

contin-uous-discontinuous computational homogenization scheme which

is based on the failure zone averaging method can be modified to obtain

the cohesive law for craze widening. The cohesive law for crazing (initia-

tion, widening and breakdown) is shown in figure 7.1. In order to obtain

the cohesive law from the RVE problem, one needs to provide proper local-

scale models for the widening process which can be an interesting topic for

future research.

• The multi-scale models can also be extended to multi-physics problems.

For example, to perform thermo-hydro-mechanical analysis in geomechan-

ical materials. The concepts of failure zone averaging and treating the RVE
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model as a quasi-static problem in transient analysis are still valid. How-

ever, issues such as boundary conditions imposed on the RVE and the ho-

mogenization procedures should be properly modified.

• Computational efficiency of the multi-scale models can be more improved

using computational cost reduction methods. For example, using paral-

lel computing, applying model order reduction techniques [8] for both the

macro-scale model and the RVE problem, precomputation of the RVE, ap-

plying the multi-scale methods only for the critical regions and using multi-

time stepping (subcycling on RVE scale) [68].

Opening

T
ra

ct
io

n

(1)

(2a)

(2b)

(3)

(3)
Craze breakdown

Craze initiation

Figure 7.1: The cohesive law for crazing: (1) no crazing, (2) craze

widening ((a) hardening response, (b) softening response)), (3)

craze breakdown [16]
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A
Relations for obtaining K

p q

i j

and f
p q

i

For anisotropic materials in plane stress, the constitutive law can be written in

compact form σm
i

= C m
i j
εm

j
(i , j = 1,2,6) and equation (4.13b) for a 2D problem

can be written as follow:







∂
∂x

(

C m
11

(

ρm

ρM +
∂h11

1

∂x

)

+C m
11

∂h11
2

∂y

)

+
∂
∂y

(

C m
66

(
∂h11

1

∂y
+

∂h11
2

∂x

))

= 0

∂
∂x

(

C m
66

(
∂h11

1

∂y
+

∂h11
2

∂x

))

+ ∂
∂y

(

C m
21

(

ρm

ρM +
∂h11

1

∂x

)

+C m
22

∂h11
2

∂y

)

= 0

(A.1a)






∂
∂x

(

C m
11

∂h12
1

∂x +C m
12

∂h12
2

∂y

)

+
∂
∂y

(

C m
66

(

ρm

ρM +
∂h12

1

∂y +
∂h12

2

∂x

))

= 0

∂
∂x

(

C m
66

(

ρm

ρM +
∂h12

1

∂y
+

∂h12
2

∂x

))

+
∂
∂y

(

C m
12

∂h12
1

∂x
+C m

22

∂h12
2

∂y

)

= 0

(A.1b)







∂
∂x

(

C m
12

(

ρm

ρM +
∂h22

2

∂y

)

+C m
11

∂h22
1

∂x

)

+
∂
∂y

(

C m
66

(
∂h22

1

∂y
+

∂h22
2

∂x

))

= 0

∂
∂x

(

C m
66

(
∂h22

1

∂y
+

∂h22
2

∂x

))

+ ∂
∂y

(

C m
22

(

ρm

ρM +
∂h22

2

∂y

)

+C m
12

∂h22
1

∂x

)

= 0

(A.1c)

Inserting the discretized form h
pq

i
= N h̄

pq

i into weak form (4.15), yields K
pq

i j
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pq

i j
and f

pq

i

and f
pq

i
in equations (4.16):

K
pq
11 (p, q = 1,2) =

∫

Ωm

(
∂N T

∂x
C m

11

∂N

∂x
+
∂N T

∂y
C m

66

∂N

∂y

)

dΩm
−

∫

Γm

(

N T C m
11

∂N

∂x
nx +N T C m

66

∂N

∂y
ny

)

dΓm (A.2a)

K
pq

12 (p, q = 1,2) =

∫

Ωm

(
∂N T

∂x
C m

12

∂N

∂y
+
∂N T

∂y
C m

66

∂N

∂x

)

dΩm
−

∫

Γm

(

N T C m
12

∂N

∂y
nx +N T C m

66

∂N

∂x
ny

)

dΓm (A.2b)

K
pq
21 (p, q = 1,2) =

∫

Ωm

(
∂N T

∂x
C m

66

∂N

∂y
+
∂N T

∂y
C m

21

∂N

∂x

)

dΩm
−

∫

Γm

(

N T C m
66

∂N

∂y
nx +N T C m

21

∂N

∂x
ny

)

dΓm (A.2c)

K
pq
22 (p, q = 1,2) =

∫

Ωm

(
∂N T

∂x
C m

66

∂N

∂x
+
∂N T

∂y
C m

22

∂N

∂y

)

dΩm
−

∫

Γm

(

N T C m
66

∂N

∂x
nx +N T C m

22

∂N

∂y
ny

)

dΓm (A.2d)

f 11
1 =−

∫

Ωm

∂N T

∂x
C m

11

ρm

ρM
dΩm

+

∫

Γm
N T C m

11

ρm

ρM
nx dΓm (A.2e)

f 11
2 =−

∫

Ωm

∂N T

∂y
C m

21

ρm

ρM
dΩm

+

∫

Γm
N T C m

21

ρm

ρM
ny dΓm (A.2f)

f 12
1 = f 21

1 =−

∫

Ωm

∂N T

∂y
C m

66

ρm

ρM
dΩm

+

∫

Γm
N T C m

66

ρm

ρM
ny dΓm (A.2g)

f 12
2 = f 21

2 =−

∫

Ωm

∂N T

∂x
C m

66

ρm

ρM
dΩm

+

∫

Γm
N T C m

66

ρm

ρM
nx dΓm (A.2h)

f 22
1 =−

∫

Ωm

∂N T

∂x
C m

12

ρm

ρM
dΩm

+

∫

Γm
N T C m

12

ρm

ρM
nx dΓm (A.2i)

f 22
2 =−

∫

Ωm

∂N T

∂y
C m

22

ρm

ρM
dΩm

+

∫

Γm
N T C m

22

ρm

ρM
ny dΓm (A.2j)



B
Relations for obtaining

dispersive curves

For a one-dimensional macro-scale problem, the equation of motion reads:

C M
11

d2uM

d x2
+D

d2üM

d x2
= ρM üM (B.1)

Considering a harmonic wave uM = uM
0 eik(x−vt ) (k is the wave number), one ob-

tains:

−C M
11 +Dk2v2

=−ρM v2 (B.2)

By solving (B.2) for v :

v =

√

C M
11

ρM +k2D
(B.3)

The exact dispersion equation is given in [23]:

cos(kl) = cos (k1l1)cos(k2l2)−
1

2

(
z1

z2
+

z2

z1

)

sin (k1l1)sin (k2l2) (B.4)

where li = αi l , zi =

√

C M
11(i)

ρi , ki =

√

ρi /C M
11(i)

ωM . ωM and ωM
0 are angular fre-

quencies for the dispersive model and the non-dispersive model, respectively. αi

denotes the volume fraction of material i .

For a two-dimensional problem, before the crack initiation, the discretized

equation of motion reads:

(M M
+mM

D )üM
+K M u = f M

ext (B.5)
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where K M is the stiffness matrix for the macro-scale problem. Considering a free

vibration ( f M
ext = 0) and assuming a solution of the form uM = uM

0 eiωt results in:

(−ω2(M M
+mM

D )+K )uM
0 = 0 (B.6)

and ω can be found by solving this eigenvalue problem (B.6) and dispersive curves

can be produced.



C
Stiffness matrices and force

vectors for the updated

Lagrangian finite element

formulation

The stiffness matrices and the internal force vector can be obtained via:

K M
L =

∫

ΩM
B T

L C M B LdΩM (C.1)

K M
NL =

∫

ΩM
B T

NL SM B NLdΩM (C.2)

f M
int =

∫

ΩM
B T

L σ
M dΩM (C.3)

where B L , B NL , SM and σ
M are defined as:

B L =







∂N 1

∂x
0 ...

∂N k

∂x
0

0 ∂N 1

∂y
... 0

∂N k

∂y
∂N 1

∂y
∂N 1

∂x
...

∂N k

∂y
∂N k

∂x







k = 1 to n (C.4)

B NL =










∂N 1

∂x
0 ...

∂N k

∂x
0

∂N 1

∂y
0 ...

∂N k

∂y
0

0
∂N 1

∂x
... 0

∂N k

∂x

0
∂N 1

∂y ... 0
∂N k

∂y










k = 1 to n (C.5)
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Chapter C. Stiffness matrices and force vectors for the updated Lagrangian finite

element formulation

SM
=









σM
11 σM

12 0 0

σM
12 σM

22 0 0

0 0 σM
11 σM

12

0 0 σM
12 σM

22









(C.6)

σ
M

=







σM
11

σM
22

σM
12







(C.7)

in which n is the number of nodes per element.



D
Stiffness matrices and force

vectors for the hybrid FE

formulation

The stiffness matrices and the force vectors can be obtained via:

K uu =

∫

Ωm
B T

L

(

C m
+P m (I ⊗ I −2I)

)

B LdΩm
+

∫

Ωm
B T

NL SmB NL dΩm (D.1)

K uP =

∫

Ωm
DN T

P dΩm (D.2)

K θθ =

∫

Ωm

d2
Ψ

m
vol

(θm)

d(θm )2
N P N T

P dΩm (D.3)

K θP =

∫

Ωm
N P N T

P dΩm (D.4)

K Pu =

∫

Ωm
N P DT dΩm (D.5)

K Pθ =

∫

Ωm

1

J
NP N T

P dΩm (D.6)

F u = F m
ext −

∫

Ωm
B T

L σ
mdΩm (D.7)

F θ =

∫

Ωm
N P

(
dΨm

vol
(θ)

dθm
−P m

)

dΩm (D.8)

F P =

∫

Ωm
N P

(

J −θm
)

dΩm (D.9)
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N P is a matrix of shape functions and matrix D is defined as:

D =





∂N 1

∂x
∂N 2

∂x ...
∂N k

∂x
∂N 1

∂y
∂N 2

∂y
...

∂N k

∂y



 k = 1 to n (D.10)

where n is the number of nodes of each element.



E
Deriving the macro-scale stress

tensors

The weak form of the macro-scale problem can be written as:

∫

Ωζ
w M

i

∂P
ζ
ik

∂X M
k

dΩζ
=

k∑

I=1

∫

Ωm
ŵ

∂w M
i

∂X m
k

P
ζ
ik

dΩm
= 0 (E.1)

where w M
i

is the macroscopic test function. After inserting equation (5.27) into

(E.1) and assuming ŵ
∂w M

i

∂X m
j
=αi j +β

x
i j

X m+β
y

i j
Y m , condition

∫

Ωm ŵ
∂w M

i

∂X m
k

P∗
ik

dΩm =

0 is enforced which gives:

∫

Ωm

(

αi j +βx
i j X m

+β
y

i j
Y m

)(

P
ζ
i j
− P̄ M

i j −QM
xi j X m

−QM
yi j Y m

)

dΩm
= 0 (E.2)

Equation (E.2) leads to the system of equations below:







a0P̄
M
+bxQM

x +by QM
y =

∫

Ωm PζdΩm

bx P̄
M
+cxxQM

x +cx y QM
y =

∫

Ωm X m PζdΩm

by P̄
M
+cx y QM

x +cy y QM
y =

∫

Ωm Y mPζdΩm

(E.3)

where

a0 =

∫

Ωm
dΩm

= |Ω
m
|,bx =

∫

Ωm
X m dΩm

= 0,by =

∫

Ωm
Y mdΩm

= 0

cxx =

∫

Ωm

(

X m
)2
Ω

m
=

l 2
x |Ω

m |

12
,cy y =

∫

Ωm

(

Y m
)2

dΩm
=

l 2
y |Ω

m |

12
,cx y =

∫

Ωm
X m Y m dΩm

= 0

(E.4)

Inserting (E.4) into (E.3), P̄
M

, QM
x and QM

y can be obtained as given in equation

(5.28).
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F
Calculation of matrices used

for computing macroscopic

tensors

Matrices P̃
M

, Q̃
M
x , Q̃

M
y , G1, G2, G3 and G4 can be obtained via:

P̃
M

= H i f i (F.1)

Q̃
M
x = X H i f i (F.2)

Q̃
M
y = Y H i f i (F.3)

G1 =









1 0 0 0

0 2 0 0

0 0 0 1

0 0 0 1









G2 =









0 0 0 0

0 0 −1 0

0 0 0 0

0 0 0 0









G3 =









0 0 0 −1

0 0 0 0

0 0 0 0

0 0 0 0









G4 =









2 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0









(F.4)

In equations (F.1)-(F.3), i denotes the boundary nodes. For the RVE shown in

figure 5.1, the periodic boundary condition can be written as:

um
ΓT

−um
ΓB

= um
4 −um

1

um
ΓR

−um
ΓL

= um
2 −um

1

(F.5)
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Nodes (1), (2) and (4) are called controlling nodes. Using the equations given in

(F.5) for the periodic boundary condition, matrices H i , X H i , Y H i and f i are cal-

culated only for the controlling nodes that is i =1, 2, and 4. Matrices H i , X H i and

Y H i are defined as:

H i =









X m
i

0

0 Y m
i

Y m
i

0

0 X m
i









, X H i =









(X m
i

)2 0

0 X m
i

Y m
i

X m
i

Y m
i

0

0 (X m
i

)2









, Y H i =









X m
i

Y m
i

0

0 (Y m
i

)2

(Y m
i

)2 0

0 X m
i

Y m
i









(F.6)



G
Integration of the flow rule

Integration of the flow rule given in (6.4) and development of a return mapping

algorithm can be carried out following the work of [64]. The inelastic rate of de-

formation, d p can be defined as the Lie derivative of elastic Finger deformation

be (= F e (F e )T ) ([63, 65]). Equation (6.4) can be written as

−
1

2
Lv be .be−1

=
τ

I
d

η
(G.1)

in which Lv is the Lie derivative. In order to obtain the time-discrete solution of

the above equation, a typical time sub-interval [tn , tn+1] is considered. The inte-

gration of the flow rule is performed by an algorithm which involves an operator

split of the material time derivative of be into an elastic predictor and an inelastic

corrector

ḃ
e
t = l t be

t +be
t l T

t
︸ ︷︷ ︸

el ast ic

+ Lv be
t

︸ ︷︷ ︸

inel ast ic

∀t ∈ [tn , tn+1] (G.2)

where l =Ḟ F −1 is the spatial velocity gradient. Inserting the value of Lv be from

(G.1) into (G.2), one obtains

ḃ
e
t = l t be

t +be
t l T

t −
τ

I
d

η
be

t (G.3)

In the elastic trial state, plastic flow is frozen. Therefore we have Lv be tr =0.

Superscript tr denotes trial solution. In the inelastic corrector step, the current

configuration is fixed at the position updated in the trial state. Therefore, the spa-

tial velocity gradient is zero and equation (G.3) becomes

ḃ
e
t =−

τ
I
d

η
be tr (G.4)
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The differential equation (G.4) can be solved as

be tr
= exp

(

τ
I
d

η
∆t

)

be (G.5)

in which ∆t is the time step. The spectral decomposition of be and τ
I
d

are given

as

be
=

∑

a
be

a na
⊗na

τ
I
d =

∑

a
τI

d a na
⊗na

(G.6)

in which be
a=(λe

a)2. λe
a and na are the principal elastic stretch values and direc-

tions of the principal axes. Due to isotropy, be and τd share the same eigenspace.

Inserting equations (G.6) into (G.5) gives

be tr
=

∑

a

[

exp

(

τI
ad

η
∆t

)

(

λe
a

)2

]

na
⊗na (G.7)

On the other hand, spectral decomposition of be tr is given as

be tr
=

∑

a

(

λe tr
a

)2
na tr

⊗na tr (G.8)

Comparing (G.7) and (G.8) gives

(

λe tr
a

)2
= exp

(

−∆t
τI

ad

η

)

(

λe
a

)2

na
= na tr

(G.9)

Taking logarithms of both sides of (G.9), one obtains

ǫe
a =−∆t

(

τI
ad

2η

)

+ǫe tr
a (G.10)

in which ǫe
a =lnλe

a . Equation (G.1) can be solved using local Newton-Raphson it-

eration. The stress-update algorithm is shown in box 3. In box 3, K denotes the

bulk modulus.
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Box 3: The stress-update algorithm for polymer model.

1. Calculate trial principal stretch values

dF =F n+1F−1
n

be tr
n+1=dF be tr

n dF T

Find λe tr
a and na tr from (G.8)

ǫe tr
a =lnλe tr

a

λ(0)
a =λe tr

a

2. Calculate residual

ǫe(i)
a =lnλ(i)

a

J=λ(i)
1 λ(i)

2 λ(i)
3

e
p
a = 1

2

((

λ(i)
a

)2
−1

)

(principal Green-Lagrangian strain)

S
p
a =Cabe

p

b
(principal 2nd Piola-Kirchhoff stress)

S
p

ad
=S

p
a -K (J −1)

Find τI
ad

using (6.5)

r (i) = ǫe
a +∆t

(
τI

ad

2η

)

−ǫe tr
a

IF |r | < T OL GOTO (4)

3. Update principal stretch values

∆λa =−r (i)/
(

dr
dλa

)(i)

λ(i+1)
a =λ(i)

a +∆λa

i = i +1 GOTO (2)

4. Calculate 2nd Piola-Kirchhoff stress

Find τ
I
d

using (G.6b)

S I =F−1
τ

I
d

F−T +K (J −1)I





H
Calculation of the

homogenized elastic tangent

moduli from two RVE problems

Figure H.1a shows a one dimensional description of the problem. E 0 is the Young’s

modulus for the particle. The aim is to find homogenized stiffness values C
I

and

C
I I

(figure H.1c). For the model shown in figure H.1b, the equivalent stiffness can

be written as

C =
E 0

(

E I +E I I
)

E I +E I I +E 0
(H.1)
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Chapter H. Calculation of the homogenized elastic tangent moduli from two RVE

problems

(a) (b)

(c)

(d)

Glass particle

Polymer matrix

E I

E I I

E0

C
I

C
I I

E0

E0

E I

E I I

(I)

(II)

x

Figure H.1: One dimensional model for glass particle-toughened

polymer matrix

Since the stiffness of the particle, E 0, is much larger than that of polymer ma-

trix, E I E I I

E 0 becomes orders of magnitude smaller than the stiffness values1. There-

fore, equation (H.1) can be written as

C =

E 0
(

E I +E I I +2 E I E I I

E 0

)

E I +E I I +E 0 + E I E I I

E 0

=
E I E 0

(

E I I +E 0
)

+E I I E 0
(

E I +E 0
)

(

E T +E 0
)

+
(

E I I +E 0
)

=
E I E 0

E I +E 0
︸ ︷︷ ︸

C
I

+
E I I E 0

E I I +E 0
︸ ︷︷ ︸

C
I I

(H.2)

Equation (H.2) can also be obtained from the model shown in figure H.1d

which means that the models shown in figures H.1b and H.1d are equivalent if
E I E I I

E 0 is much smaller than the stiffness values. In the model shown in figure H.1d,

branches (I) and (II) represent two RVE problems: one RVE with linear elastic ma-

trix with stiffness E I and one with stiffness E I I . For two (or three) dimensional

problems, the computational homogenization scheme can be used to solve these

RVE problems.

1For the material properties used in this paper, at strain rate 3800 (1/s), E I E I I

E 0 =0.00147 (GPa). C can

be calculated using equations (H.1) and (H.2) as 2.273 and 2.276 (GPa), respectively.
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