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Abstract: The estimation of water requirements constitutes a critical prerequisite for de-
lineating water scarcity hotspots and mitigating intersectoral competition, particularly
in endorheic basins in arid or semi-arid regions where hydrological closure exacerbates
resource allocation conflicts. Under conditions of water scarcity, water supplied locally by
precipitation and shallow groundwater bodies should be taken into account to estimate
the net water requirements to be met with water conveyed from off-site sources. This
concept is embodied in the distinction of blue ET (BET) and green ET (GET). In this study,
the Budyko hypothesis (BH) method was optimized to partition the total ET into GET
and BET during 2001–2018 in the Heihe River Basin. In this region, a better knowledge
of net water requirements is even more important due to water allocation policies which
reduced water supply to irrigated lands in the last 15 years. This study proposes a modified
BH method based on a new vegetation-specific parameter (ωv) which was optimized for
different vegetation types using precipitation and actual ET data obtained from remote
sensing observations. The results show that the BH method partitioned GET and BET
reasonably well, with a percent bias of 23.8% and 37.4% and a root mean square error of
84.8 mm/a and 113.6 mm/a, respectively, when compared with reported data, which are
superior to that of the precipitation deficit and soil water balance methods. A sensitivity
experiment showed that the BH method exhibits a low sensitivity to uncertainties of input
data. The results documented differences in the contribution of GET and BET to total ET
across different land cover types in the Heihe River Basin. As expected, rainfed forest and
grassland ecosystems are predominantly governed by GET, with 81.3% and 87.2% of total
ET, respectively. In contrast, croplands and shrublands are primarily regulated by BET,
with contributions of 61.5% and 84.3% to total ET. The improved BH method developed
in this study paves the way for further analyses of the net water requirements in arid and
semi-arid regions.

Keywords: water accounting plus; green ET; blue ET; Budyko hypothesis; Heihe River Basin

1. Introduction
Water accounting plus (WA+) has been developed as a novel water accounting frame-

work [1,2], which integrates the characteristics of the depletion [3] and the flow methods [4].
WA+ provides spatially comprehensive estimates of water flows, stocks, and consumption
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across different land uses, explicitly considering the linkages between water consumption
and land use [1,5]. An important feature of WA+ is the separation of the total actual
evapotranspiration (ET) into green ET (GET) and blue ET (BET) by considering the sources
of water supply. Green water refers to precipitation-derived water stored in the soil, sus-
taining rainfed ecosystems and agriculture. GET represents the portion of ET sourced only
from green water. It is a natural process driven by vegetation use of soil water stored after
precipitation events. In contrast, blue water encompasses liquid freshwater resources in
surface water bodies (rivers, lakes) and groundwater, typically extracted for human uses
such as irrigation. BET quantifies ET supported by an additional water supply through
conveyance of blue water, such as irrigation water for croplands or water supplied to
ecosystems via canals or groundwater pumping [6,7]. BET reflects human intervention in
the water cycle. The distinctions between these components are fundamental. First, green
water originates solely from precipitation infiltrating the soil, while blue water is diverted
and conveyed from surface or subsurface water bodies. Second, GET is primarily localized,
influencing ecosystems and agriculture at regional scales with precipitation patterns and
soil conditions dictating water availability. In contrast, BET can have transboundary or
global implications, as blue water diversion often involves agricultural systems linked
to international water supply chains or depletes shared resources such as transbound-
ary aquifers. This leads to several advantages of the WA+, as demonstrated by existing
studies [1,5,8–16]. This includes the following: (i) identification of managed water flows,
(ii) quantification of the contributions of different water resource components to water
consumption, (iii) better understanding of the interactions between ecosystems and water
resources, and (iv) optimization of water use in a catchment.

Although the concept of GET and BET is clear and widely accepted, GET and BET
cannot be measured directly. Different algorithms have been developed to partition the
total actual ET into BET and GET [17,18]. The precipitation deficit (PD) method, commonly
used at annual or longer time scales, directly estimates GET by defining it as the effective
precipitation [19,20]. Effective precipitation is the portion of rainfall stored in the soil
available for plant transpiration and soil evaporation. BET is estimated as the difference
between total actual ET and GET. Another approach to partitioning total actual ET into GET
and BET is based on the water balance (WB) method by using a hydrological model [21], in
which monthly changes in soil water content in response to precipitation are calculated with
a WB model by considering a precipitation-only scenario. Then, GET is assumed to be equal
to the negative changes in soil water content. BET is obtained as the difference between
independent estimates of total ET (remote sensing data product) and GET. Although
these two methods have been widely applied for GET and BET partitioning, they are often
criticized for being either low-accuracy or data-intensive and time-consuming. For example,
the PD method failed in other regions with abundant precipitation, runoff, and significant
fluctuations in groundwater storage [22]. Uncertainties inherent in the hydrological models
used in the WB method, particularly regarding parameterizations, assumptions, and more
input data in the estimation model, can lead to unreliable ET partitioning results [23].

Simons et al. (2020) [24] demonstrated that the Budyko hypothesis (BH) can be applied
to separate GET and BET. The Budyko hypothesis describes the partitioning of long-term
precipitation into actual ET and runoff by considering only the dominant controls on actual
ET, i.e., water supply (typically precipitation) and energy supply (typically expressed by
net radiation) [25]. The method based on the Budyko hypothesis has been used to estimate
GET (BET is then calculated by subtracting GET from the total actual ET) in different
basins, such as the Lake Urmia in Iran [26], the Kikuletwa catchment in East Africa [27],
and other regions. These studies aimed to assess the water consumption patterns, land,
or water productivity of irrigated and rainfed agriculture. Compared to the WB method,
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the BH method is easier to use since it requires less data and the determination of just
one parameter.

While the BH method facilitates broad applicability, its potential relies on selecting
an appropriate functional form that captures basin-specific properties. Several analytical
functional forms have been proposed for the quantitative description of the Budyko hy-
pothesis. These include the non-parametric original Budyko equation [25], the parametric
Fu equation [28,29], and the Mezentsev–Choudhury–Yang equation [30,31]. Compared to
the non-parametric Budyko equation, the parametric Budyko equation considers explicitly
the influence of land surface properties (i.e., land use and land cover, vegetation charac-
teristics, soil properties, and topographic features) on ET through the basin characteristic
parameter, thus enabling the explanation of observed differences relative to the original
non-parametric Budyko equation. The Fu equation, derived through dimensional analysis
and mathematical reasoning, has been extensively validated across globally diverse catch-
ments, demonstrating reliable and accurate water balance characterization. Therefore, it
was adopted in this study for its theoretical robustness and empirical reliability. The pa-
rameter (i.e., ω in the Fu equation) represents the integrated effects of basin characteristics
and controls the proportion of precipitation consumed as ET, indicating the adjustment
of water–energy partitioning related to basin characteristics. Research has shown that
the parameter ω in the Fu equation is influenced by various factors, including vegetation
factors (such as NDVI, LAI, and vegetation coverage) [32,33], climatic factors (such as
climate/precipitation seasonality or coefficient of variation in precipitation) [34,35], soil
factors (such as saturated hydraulic conductivity and field capacity) [36–38], topographic
factors (such as latitudes, slopes, and elevations) [39–41], and anthropogenic factors (such as
irrigated land, cultivated land, urban areas) [40,42]. These factors are closely interconnected
and coupled over longtime scales.

Optimizing the value of the parameter ω in the Fu equation is critical to estimate the
ratio ET/P. However, the current understanding of how ω controls hydrological partition-
ing is still very limited. Vegetation integrates the effects of climate, soil, and topography on
the water balance and plays an important role in controlling the variability of ω [35]. For
example, deep-rooted plants can uptake more water from shallow groundwater reservoirs,
thus affecting the response of ET to both precipitation and radiation [43]. Many studies
tended to use the default values, or the values applying to large-scale basins. Studies have
shown that the parameter ω varies significantly between different sub-basins within the
same large basin [33,37,41,44]. Furthermore, studies have shown that significant disparities
in ω values can be observed across different regions within the same sub-basin, highlight-
ing the spatial heterogeneity of hydrological processes [45]. This suggests that a single
ω parameter may not be able to capture basin, sub-basin, or within-basin characteristics.
Therefore, the controls of catchment characteristics on hydrological partitioning vary in
different regions of a basin, and the complex (non-linear) interactions between climate and
catchment processes result in the spatial heterogeneity of ω. Some studies attempted to
construct a universal parameterization model of ω using regression or machine learning
methods by selecting primary control factors [32,33,37,41,46–48].

Previous research suggests that aggregating all the vegetation types within a catchment
into a single biome may obscure the role of vegetation in determining ω and its spatial
variability. Different studies found either positive [49,50] or negative relationships between
ω and vegetation characteristics [47]. Therefore, it is necessary to consider the interaction
between each vegetation type and climate in determining the partition of precipitation.
There are currently no studies on the estimation ω for different ecosystems within a basin.
The specific objectives of this study were: (1) to improve the BH method for partitioning
GET and BET by estimating a vegetation-specific parameter (ωv); (2) to evaluate the
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performance of the improved BH method; and (3) to analyze the partitioning of total ET
into GET and BET across different ecosystems in an arid/semi-arid inland river basin
in China.

To obtain better estimates of the parameter (ωv), we proposed optimizing it using
remote sensing data products for precipitation, potential, and actual ET by applying the
least squares method. The performance of this approach was evaluated by comparing our
estimates with the experimental results at field scale. Additionally, the implications of the
GET and BET variability for water management were analyzed.

2. Study Area and Data
2.1. Study Area

The Heihe River Basin (HRB) is the second-largest endorheic river basin in the arid
and semi-arid region of northwestern China (37.7◦–42.7◦N, 97.1◦–102.0◦E), covering an
area of approximately 14.3 × 106 ha (Figure 1). The river originates in the Qilian Mountains,
which are located on the northern edge of the Tibetan Plateau, and serves as a critical water
resource for a large area.
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The upper reaches, at elevations ranging from 3000 m to 5500 m above sea level (a.s.l.),
consist mainly of mountainous terrain with alpine forests and grassland. From 1980 to
2014, the average annual precipitation in the upper reaches was about 500 mm [51].

The middle reaches, at elevations between 1400 m and 1700 m a.s.l., are characterized
by extensive agricultural oases. The agricultural oases in this region rely heavily on
irrigation to maintain their productivity, using water from the upper reaches of the river
as well as groundwater extraction. During the period from 2007 to 2014, the annual
precipitation in the middle reaches was around 100–250 mm, while the annual potential ET
ranged from 1200 to 1800 mm [52,53].

The downstream region is predominantly barren land or Gobi Desert, with a primary
oasis called Ejina dominated by shrubland and some farmland. Scattered natural oases
are found along the river and are covered by Populus euphratica, Tamarix, and Haloxylon
ammodendron. From 2007 to 2014, the annual precipitation in the lower reaches was less
than 50 mm, while the annual potential ET is about 3755 mm [52,53].
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2.2. Data and Pre-Processing
2.2.1. Remote Sensing Data

We used remote sensing data products on potential and actual ET, precipitation, and
land use land cover at 1 km spatial resolution for the period from 2001 to 2018.

The actual ET data in 2001–2018 were obtained by applying the ETMonitor system [54–56].
The latter estimates global daily actual ET at 1 km spatial resolution (https://doi.org//1
0.12237/casearth.6253cddc819aec49731a4bc2). Meteorological forcing is extracted from
the ERA5 reanalysis dataset. Daily potential ET is estimated using the Penman–Monteith
equation with bulk surface resistance equal to zero [57].

Daily precipitation is the Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) data product at 0.05◦ spatial resolution (https://data.chc.ucsb.edu/products/
CHIRPS-2.0/, accessed on 1 December 2024) [58]. The 0.05◦ CHIRPS precipitation data were
downscaled to 1 km resolution using a bilinear interpolation method. While more advanced
downscaling methods could be considered in future studies, the bilinear interpolation
approach was considered appropriate for the objectives of this study.

Annual land cover data were extracted from the Land Cover Dataset for the Qilian
Mountain Area from 2001 to 2018 (V2.0) (https://doi.org/10.11888/Ecolo.tpdc.270916)
with a spatial resolution of 30 m (Figure 1a) [59,60]. The International Geosphere–Biosphere
Programme (IGBP) classification system was adopted. The 30 m land cover data were
upscaled to 1 km spatial resolution using the majority method.

2.2.2. Auxiliary Data

The soil properties from the high-resolution soil map of hydraulic properties (Hi-
HydroSoil) with 250 m resolution (https://www.futurewater.eu/projects/hihydrosoil/,
accessed on 10 July 2023) [61] were used and upscaled to 1 km resolution to obtain the
saturated water content of the plant root zone.

2.2.3. Ground Observations

To assess the accuracy of precipitation and actual ET from satellite observations, we
collected in situ latent heat flux data from a total of six flux tower stations in the upper,
middle, and lower reaches of the HRB from 2012 to 2021 (Table 1). These stations cover
a wide range of land cover, i.e., forest, grassland, cropland, and bare land in the upper to
lower reaches of the HRB [62]. Daily ET was obtained from the 30 min latent heat flux
measurements by the eddy covariance system, and monthly ET was obtained by accumu-
lating the daily ET values. Data from days with more than 80% missing measurements of
30 min latent heat flux were not used. If in situ flux measurements on more than 25 days
in a month were missing, and the monthly data were not used to evaluate the remote
sensing actual ET. The 30 min precipitation observed by rain gauges was aggregated to
monthly totals.

Table 1. In situ flux tower sites in Heihe River Basin.

Station Lon (◦) Lat (◦) Elev (m) Land Cover Time Period Location

Arou 100.46 38.05 3033 Grassland 2013–2021 Upstream

Dashalong 98.94 38.84 3739 Grassland 2013–2021 Upstream

Daman 100.37 38.86 1556 Cropland 2013–2021 Midstream

Huazhaizi 100.32 38.77 1731 Bare land 2013–2021 Midstream

Mixedforest 101.13 41.99 874 Forest and Shrubland 2013–2021 Downstream

Sidaoqiao 101.14 42.00 873 Shrubland 2013–2021 Downstream

https://doi.org//10.12237/casearth.6253cddc819aec49731a4bc2
https://doi.org//10.12237/casearth.6253cddc819aec49731a4bc2
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://doi.org/10.11888/Ecolo.tpdc.270916
https://www.futurewater.eu/projects/hihydrosoil/
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2.2.4. Literature Data

There were no direct in situ measurements of GET and BET in the HRB to validate
our estimates. We used data collected during a field experiment in the Yingke Irrigation
District in the middle reaches of the HRB between April and September in 2012–2013 [63,64].
The experiment included 16 fields, covering different soil types and crops in the Yingke
Irrigation District (inset map in Figure 1a). Soil water content, soil texture, crop phenology,
leaf area index, dry biomass, and plant height were measured. In addition, irrigation
time and volume were recorded. Daily meteorological data were collected at the Zhangye
weather station (100◦25′E, 38◦51′N, 1425 m a.s.l.). These field data were used to drive an
agro-hydrological model (SIMDualKc model) to estimate GET and BET. Our estimates of
BET were evaluated against these observations. The site scale validation was conducted
only for BET, since the GET data were not available. Detailed information on the field
experiment and methodology can be found in Yan (2015) [63] and Jiang (2017) [64].

3. Methods
3.1. GET and BET Estimation Based on Budyko Hypothesis

The Budyko hypothesis describes the long-term relationships between the water and
energy balance in a basin. The hypothesis states that precipitation is the only source of
water in closed basins, with some of the precipitation exiting the basin as runoff and some
entering the atmosphere via ET [25]. GET, as defined in this study, is given by the partition
of precipitation into ET and runoff according to the BH concept (Figure 2).
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The Fu equation [28], derived by dimensional analysis and mathematical deduction,
is written as follows:

ET
P

= 1 +
ETp

P
−
[

1 +
(

ETp

P

)ω] 1
ω

(1)

where P is annual precipitation (mm), ETp is annual potential ET (mm), and ω is a basin
characteristic parameter in the range (1, +∞) describing the combined effect on actual ET of
climatic and basin characteristics. The default ω value is 2.6.

The Fu equation (Equation (1)) assumes that precipitation is the only source of water
available for ET in a given catchment and that water storage can be neglected in the water



Remote Sens. 2025, 17, 612 7 of 24

balance equation on an annual or longer timescale. Simons et al. (2020) [24] applied the Fu
equation to estimate GET of a catchment as follows:

GET
P

= 1 +
ETp

P
−
[

1 +
(

ETp

P

)ω] 1
ω

. (2)

The BET is then calculated as the difference between the total actual ET and the GET:

BET = ET − GET. (3)

To determine GET using Equation (2), the unknowns are precipitation, potential ET,
and ω. In principle, ω integrates the effects of basin climate, hydrology, topography, soil,
and vegetation. Vegetation integrates the effects of climate, soil, and topography on the
water balance and determines the variability of ω. On the one hand, vegetation adapts
to the local climate, hydrology, and soil moisture conditions, and on the other hand, it
modifies the soil climate and properties to maximize its water use efficiency. This two-way
feedback between vegetation, soils, hydrology, and climate is the co-evolutionary process in
basins [65]. Thus, each ecosystem has a ω value controlled by vegetation under otherwise
similar conditions within a catchment. River basins are typically divided into sub-basins.
Assuming that a single vegetation type is dominant in each sub-basin, satisfying the steady-
state condition of the Budyko hypothesis, Equation (2) can be written at the annual scale
as follows:

GETv,i

Pv,i
= 1 +

ETpv,i

Pv,i
−
[

1 +

(
ETpv,i

Pv,i

)ωv] 1
ωv

(4)

where Pv,i, ETpv,i, and GETv,i are pixel-wise values of annual precipitation, annual potential
ET, and annual GET, all with unit mm, in pixel i covered by vegetation type “v”, respectively,
based on remote sensing data products.

The vegetation-specific parameter ωv is then estimated by applying the least squares
method using Equation (4) to the yearly precipitation and potential ET averages for each
year and each vegetation type. The objective function Obj (ωv) reads then as follows:

Obj(ωv) = min

Yn

∑
k=Y0

ETv,k

Pv,k
−
{

1 +
ETpv,k

Pv,k
−
(

1 +

(
ETpv,k

Pv,k

)ωv) 1
ωv
}

2

(5)

where k is the year number, Y0 and Yn represent the start and end year of the analysis,
respectively (from 2001 to 2018 in this study); Pv,k and ETpv,k are the annual precipitation
and potential ET, respectively, averaged over all pixels covered by vegetation type “v” in
year “k” (unit: mm). For a given vegetation type (v) that occupies N pixels, the following
equations apply to mean precipitation, potential ET, and actual ET at an annual scale:

Pv,k = (
N

∑
i=1

Pv,k(i))/N (6)

ETpv,k = (∑N
v=1 ETpv,k(i))/N (7)

ETv,k = (∑N
i=1 GETv,k(i))/N (8)

There are four dominant vegetation types in the HRB, i.e., forest, grassland, cropland,
and shrubland. This fitting is not applicable to irrigated cropland and deep-rooted shrub-
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land. Previous studies applied GET values of rainfed croplands to represent neighboring
irrigated croplands [18,66]. We applied the rainfed cropland ωv value to estimate GET and
BET in irrigated cropland. Shrubland is primarily distributed in shallow groundwater areas
along streams in the extremely arid downstream regions of the HRB, and it relies heavily
on groundwater for growth. The shallow groundwater reservoirs are recharged by river
water, which strongly depends on irrigation water management [67]. Therefore, Equation
(8) is not applicable to shrubland to estimate shrubland-specific values of ωv. We averaged
the forest and grassland ωv values to estimate the GET and BET of shrubland in the HRB.

3.2. Evaluation Against Alternate Methods

The improved BH method was compared with two commonly used methods to
estimate BET and GET. The PD method compares the amount of effective precipitation and
actual ET to estimate GET and BET (see Section 3.2.1). Changes in soil water storage can
be calculated with the WB method. These changes are then compared with independent
estimates of total ET. This comparison allows us to partition ET into BET and GET, as
detailed in Section 3.2.2. Both the WB and PD methods were applied at the monthly scale,
and the monthly estimates of GET and BET were then accumulated to obtain annual values
of GET and BET.

3.2.1. Precipitation Deficit Method (PD)

The precipitation deficit method distinguishes between GET and BET by determining
whether the monthly effective precipitation is sufficient to meet the monthly ET demand.
Effective precipitation is the fraction of precipitation stored in the soil that can be used for
plant transpiration and soil evaporation [68]. When effective precipitation is larger than ET,
precipitation can meet water consumption and actual ET is equal to GET. However, when
the precipitation is insufficient to meet plant water needs, additional water sources (e.g.,
surface water or groundwater) are required to meet the water consumption. GET and BET
are then calculated as:

BET = max(ET − Pe, 0) (9)

GET = ET − BET (10)

where Pe is effective precipitation (mm) that is of great importance for the correct estimation
of GET and BET. We applied the same parameterization of Pe as the widely used CROPWAT
model [69,70] to estimate the effective precipitation:

Pe =


P(125 − 0.2P)

125
, P < 250

125 + 0.1P, P ≥ 250
(11)

where P is the total monthly precipitation (mm).

3.2.2. Soil Water Balance Method (WB)

The soil water balance method is based on describing physical processes in each
pixel. By tracking the soil moisture balance, with actual ET known a-priori, the method
distinguishes between water use that is met solely by precipitation and what requires
additional water resources, thereby partitioning actual ET into GET and BET. It calculates
the losses of precipitation in the form of surface runoff, vegetation canopy interception,
and deep infiltration to obtain the available water (Wt) from precipitation. The GET and
BET can be determined by comparing the Wt with the actual ET. If the Wt is larger than the
actual ET, the water stored in the soil is sufficient to meet the ET demand. If Wt is less than
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the actual ET, the soil water in the soil is insufficient to meet the ET demand, and additional
water sources are required. GET and BET are calculated as:

GETt = min(Wt, ETt) (12)

BETt = max(ETt − GETt, 0) (13)

where t is the monthly time step. Wt is the amount of available water for ET (mm), estimated
according to the water balance equation:

Wt = SMt−1 + Pt − It − Qt − Qprec,t (14)

where SMt−1 is the soil moisture stored at the end of the previous timestep (mm) and up-
dated at each time step; Pt is precipitation (mm); It is the canopy precipitation interception
loss (mm) estimated by ETMonitor; Qt is surface runoff (mm); and Qprec,t is percolation
(mm). The detailed calculations for Qt and Qprec,t can be found in [7,71,72].

3.2.3. Numerical Experiment to Assess the Uncertainty Associated with the Input Data

To evaluate the robustness of the BH method for estimating GET and BET, a numerical
experiment was conducted, and the error in partitioning the GET and BET using the
satellite-derived dataset (mainly precipitation and ET) was evaluated based on sensitivity
analysis. The observed precipitation and ET data were used as a benchmark for the
sensitivity analysis and the mean percentage error in remote sensing annual or seasonal
ET estimates ranges from 1% to 20%, while the mean percentage error in remote sensing
precipitation can typically be up to 65%. Accordingly, we created four scenarios by taking
ET equal to plus and minus 20% and 40% of the annual ET observed by the eddy covariance
system. Similarly, we created six scenarios for precipitation using plus and minus 20%,
40%, and 80% of the in situ-observed annual precipitation. These error scenarios were
plotted to generate a sensitivity curve for further analysis. These curves illustrate the
relative errors in the estimated GET and BET resulting from the errors in the input variables
(ET and precipitation).

To create a reference dataset, the same numerical experiment was also conducted in
the same way for PD and WB methods.

3.2.4. Error Metrics

Percent bias (PBIAS) is a statistical metric used to evaluate the accuracy of estimates:

PBIAS =
∑n

i=1(Obsi − Esti)

∑n
i=1 Obsi

× 100% (15)

where Obsi is the observed value, Esti is the estimated value, and n is the number of obser-
vations. The optimal value of PBIAS is 0, with positive values indicating overestimation
and negative values indicating underestimation.

Root mean square error (RMSE) is quantifying the magnitude of random errors by
calculating the square root of the average squared differences between observed values
and estimates:

RMSE =

√
1
n∑n

i=1(Obsi − Esti)
2. (16)
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4. Results
4.1. Determination of the Vegetation-Specific Parameter (ωv) in the BH Method

The ωv values for each vegetation type in the HRB were determined by fitting satellite-
derived annual precipitation, actual ET, and potential ET data from 2001 to 2018 in the HRB
(Figure 3). The results show that forest had the highest value (ω f orest = 9.52 ± 1.67) among
all the vegetation types. As regards the ratio ET/P, the coefficient of determination (R2)
was 0.53 and RMSE = 0.05. Grassland had a significantly lower value (ωgrass = 3.77 ± 0.18),
while R2 = 0.51 and RMSE = 0.04 for the ratio ET/P. This lower value is probably due to the
shallower root systems, lower leaf area index (lower vegetation cover), and lower transpira-
tion capacity. This is consistent with previous research showing that higher vegetation cover
is associated with both higher ω values and higher evaporation rates. Cropland (rainfed)
has a slightly higher value (ωcropland = 4.99 ± 0.56), while R2 = 0.43 and RMSE = 0.07 for
the ratio ET/P. This higher value may be attributed to management practices such as
fertilization and tillage, which likely result in higher ET compared to grassland.
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4.2. Evaluation of BET and GET Partition
4.2.1. Evaluation at Site Scale

To evaluate the accuracy of the ET partitioning methods, we compared our estimates
with the field experiment data described in Section 2.2.4 (Table 2). The BET estimated by
the BH method showed good agreement with Yan’s results, with PBIAS ranging from 23.8%
to 37.4% and root mean square errors (RMSE) ranging from 84.8 mm/a to 113.6 mm/a.
In comparison, the WB and PD methods showed slightly larger deviations from the ref-
erence data. For the PD method, the deviation is probably due to an underestimation of
the effective precipitation using Equation (11). The underestimation of GET leads to an
overestimation of BET.

Table 2. Comparison of BET estimates from different methods with experimental results in 16 fields
of the Yingke Irrigation District (2012–2013).

Year
Experimental

Results (mm/a)
BET (mm/a) PBIAS (%) RMSE (mm/a)

BH WB PD BH WB PD BH WB PD

2012 308.3 ± 90.1 373.8 ± 103.7 381.8 ± 102.0 380.0 ± 103.8 23.8 26.9 25.8 84.8 90.8 89.5
2013 249.4 ± 62.0 346.2 ± 107.1 348.3 ± 106.1 352.9 ± 107.5 37.4 38.3 39.9 113.6 115.0 119.4
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4.2.2. Spatial Variability of GET and BET

Evaluating the spatial pattern estimated by different methodologies is helpful for
selecting the proper approach to partitioning actual ET into GET and BET. Figure 4 illus-
trates the spatial distribution of GET and BET from 2001 to 2018 in the HRB using the BH
method improved by optimizing the vegetation-specific parameter (ωv), and the PD and
WB methods. A consistent spatial pattern emerges across all methods, with higher GET
(lower BET) in the grassland and forest (upper reaches) transitioning to higher BET (lower
GET) in the irrigated area (middle reaches) and shrubland (low reaches). The higher GET in
the upper reaches implies lower water yield of this sub-basin. This gradient is likely to be a
consequence of the combined effects of decreasing precipitation, increasing temperature,
and increasing irrigation from upstream to downstream.
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and (d) GET by three methods (red represents BH; green represents WB; and blue represents PD).

While all methods captured the overall pattern, differences were observed (Figure 4d).
In the southeastern part of the upper basin, the PD method estimated significantly higher
GET (lower BET) than the BH and WB methods. In the northwestern parts of the upper
basin, the PD and BH methods produced similar GET estimates, while the WB method
produced lower estimates than the other two methods.

In the middle reaches where cropland dominates (Figure 1a), cropland can be classified
into two categories based on the contribution of GET and BET to ET (Figure 4a–c). The
cropland with a higher fraction of GET (and a lower fraction of BET) is located close to
the Qilian Mountains (blue frame in Figure 4d) where precipitation is higher (Figure 1b).
The central and western parts (green frame) are characterized by a higher fraction of BET.
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The difference in precipitation between the east and the central and western parts may
be a possible reason for the differences in BET. Furthermore, the BH method resulted in
higher GET values in the blue frame in Figure 4d, while the estimates by the WB and the
BH methods were closer in the green frame. Climatic factors (precipitation) are already
incorporated in the Budyko framework, and the parameter ωv has been optimized. The
BH method estimates are therefore less affected by uncertainty than the other two methods.

Notably, all the methods gave similar results in the lower reaches and showed the
expected lower GET and higher BET. The scarcity of precipitation (Figure 1b) leads to lower
GET (higher BET) in downstream areas.

The GET and BET values for the entire basin and its different parts were further ana-
lyzed (Table 3). The BH method estimated the highest GET of 317.6 mm/a (with the lowest
BET of 128.0 mm/a) for the multi-year average in the whole basin. In the upstream area, the
BH method and the PD methods gave GET (BET) approximately 372.0 mm/a (64.8 mm/a),
while the WB method gave GET 353.2 mm/a and BET 83.6 mm/a, i.e., different from the
other two methods. In the middle reach, the results of the three methods were different.
The estimated GET (BET) using the WB and PD methods was approximately 173.8 mm/a
(287.3 mm/a). The GET estimate using the BH method was 185.4 mm/a (275.6 mm/a for
BET), i.e., slightly different from the estimates obtained using the WB and PD methods.
The estimated GET (48.6 mm/a) and BET (244.1 mm/a) in the downstream region were
very similar across all three methods.

Table 3. GET and BET values by different methods for the upper, middle, and lower reaches of the
Heihe River Basin from 2001 to 2018.

GET (mm/a) BET (mm/a)

BH WB PD BH WB PD

Whole basin 317.6 ± 16.6 301.2 ± 18.3 314.6 ± 17.4 128.0 ± 16.2 144.4 ± 17.1 131.0 ± 15.6
Upstream 372.0 ± 48.7 353.2 ± 48.1 372.8 ± 52.0 64.8 ± 48.3 83.6 ± 46.5 64.0 ± 50.9
Midstream 185.4 ± 33.1 173.8 ± 31.2 174.0 ± 30.3 275.6 ± 24.6 287.3 ± 25.0 287.0 ± 25.1

Downstream 49.8 ± 6.3 48.6 ± 6.0 48.8 ± 6.0 242.5 ± 32.7 244.1 ± 32.1 243.4 ± 32.8

4.3. GET and BET Variability in the Heihe River Basin

Based on the evaluation results in Section 4.2, the improved BH method showed
superior performance compared to the other two methods. Therefore, the results of the BH
method were used to analyze the BET and GET variability in the HBR.

4.3.1. Temporal Trend of GET and BET in HRB

The trends in GET and BET across the HRB from 2001 to 2018 were estimated using the
Mann–Kendall test. The results show significant differences in the trends of GET and BET
across the upper, middle, and lower reaches of the basin (Figure 5). In particular, a localized
increase in GET was observed in the upper basin (Figure 5c), mirroring the spatial pattern
of changes in precipitation (Figure 5a). A significant decrease in BET (Figure 5d) was
observed in the western part of the upper basin, corresponding to the localized decrease in
ET (Figure 5b) in that area.

In the middle reaches, the BET decreased in the irrigated areas of the west-central
part, while it distinctly increased close to the Qilian Mountains in the southeastern part
of the basin. The patterns observed for BET are also observed for ET. Figure 5b shows a
decreasing trend of ET in the irrigated areas of the west-central part, while an increase is
observed close to the Qilian Mountains in the southeastern part. The trend of decreasing
BET (5~10 mm/a) in the irrigated area closely follows the decrease in ET, suggesting that
reduced ET directly drives the downward trend in BET. This finding is consistent with the
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recent water conservation projects implemented in the middle reaches, which resulted in a
significant reduction in water consumption per unit area [73,74]. Meanwhile, the increase in
BET (2~6 mm/a) close to the Qilian Mountains in the southeastern part mirrors the decrease
in precipitation (Figure 5a), implying an increasing demand for blue water (surface water
or groundwater) in this region. This pressure is likely to be due to the combined effect of
reduced local precipitation and higher air temperature affecting surface water supply in
the Heihe agricultural area [75].
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In the downstream region, increasing trends in both GET and BET were observed
(Figure 5c,d), corresponding to the increase in ET (Figure 5b). However, further analysis is
needed to determine whether the increase in ET is due to land use change or the ecological
water diversion project aiming at improving water supply to the oases at the northern end
of the river.

4.3.2. GET and BET of Different Land Cover Types

Significant differences in GET and BET fractions were observed across different land
cover types in the HRB (Figure 6). Forest had the highest total ET and GET, with an
exceptionally high GET/ET ratio of 81.3%. This highlights the dependence of forests on
green water resources, i.e., precipitation, as its higher GET ratio indicates that almost all
the precipitation is used by GET. Grassland also showed a high dependence on green
water, with an estimated GET/ET ratio of 87.2%. However, grassland had lower ET than
precipitation, resulting in runoff. These significant differences in water consumption
patterns highlight the different roles of forests and grasslands in the HRB hydrological
cycle: forests act as water-consuming units in the basin hydrological cycle, while grasslands
act as runoff-producing units.
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Figure 6. Annual average contributions to ET for different land covers in the Heihe River Basin
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bars represent the ET.

The cropland in the middle reaches is heavily dependent on irrigation (blue water),
which is reflected in the higher BET/ET ratios (61.5%) compared to the vegetation in the
upper reaches (i.e., BET/ET for forest and grassland are 18.7% and 12.8%, respectively).
Although cropland is the second largest user of water after forest in the HRB (Figure 6), the
impact on water resources differs dramatically. Forests in the upper reaches consume large
amounts of green water due to higher precipitation and well-developed root systems. In
contrast, the high ET of cropland in the middle reaches in a drier climate relies heavily on
blue water.

The shrubland, which dominates the downstream region of the HRB with a poten-
tial ET of over 2200 mm/a, experiences extreme aridity with minimal precipitation, i.e.,
not more than 50 mm/a. This large mismatch between precipitation and ET makes the
shrubland highly dependent on blue water, not only using all available precipitation, but
also extracting six times more blue water (e.g., groundwater) compared to green water
(precipitation). The strong dependence of shrubland on blue water resources explains why
it grows along the sides of the lower river, where river water supply is largest.

To further explore the distribution of ET sources within each land cover type, we used
split violin plots to show the statistics of spatial distribution of GET and BET for each
vegetation type (Figure 7). Forest and grassland have a concentrated cluster of GET values
in the range of 339.6 mm/a to 485.7 mm/a. In contrast, their BET values differ significantly,
with the forest BET showing a wider range and higher peak value compared to the more
concentrated and lower peak value of the grassland BET. Crops show a wider range of
GET, ranging from 61.0 mm/a to 553.9 mm/a (with a peak around 136.4 mm/a). BET
shows two distinct peaks at 110.6 mm/a and 462.4 mm/a. Shrubland has very low GET
values, peaking at around 35.7 mm/a, and the BET distribution has a narrow range and a
unimodal distribution, peaking at around 226.9 mm/a, indicating the high dependence of
these natural land cover types on blue water.
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Figure 7. Probability distribution functions of GET and BET for different vegetation covers in the
Heihe River Basin from 2001 to 2018 using split violin plots. Interquartile range is shown by short
dashes, and median by long dashes.

5. Discussion
5.1. Uncertainty of Estimated GET and BET
5.1.1. Evaluation of P and ET Retrievals

The accuracy of satellite-derived precipitation and ET data, which are crucial inputs
for partitioning ET into GET and BET, was evaluated in this study. The evaluation demon-
strated a good agreement with the reference data of both the precipitation and ET retrievals.
The precipitation reference data were observations at meteorological stations, while the
reference ET data were eddy covariance measurements at a few flux towers (Figure 8).
The CHIRPS precipitation retrievals at both the upstream (Arou and Dashalong) and the
midstream stations (Daman and Huazhaizi) showed a high correlation with the in situ
measurements (Figure 8). The bias ranged from 4.08 mm/month to 19.98 mm/month, the
RSME ranged from 6.01 mm/month to 32.74 mm/month, and the correlation coefficient
ranged from 0.53 to 0.83. The correlation coefficient was lower at the downstream stations
compared to the upstream and midstream stations.
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The ETMonitor ET data were evaluated against in situ measurements at the same
locations (Figure 9). The ET retrievals for the Arou and Dashalong stations showed a strong
correlation with the in situ measurements, with the correlation coefficient values of 0.92 and
0.95, and the RMSE values of 11.3 mm/month and 8.1 mm/month, respectively. Similar
results were obtained for the Daman Cropland station, with the correlation coefficient
values of 0.91, a bias of 13.36 mm/month, and an RMSE of 17.17 mm/month. Notably,
the bias difference was more significant for the downstream Mixedforest station. The
difference can be attributed to the heterogeneity of the surroundings of the Mixedforest
station, resulting in significant differences between the spatial pattern in the pixel-wise ET
retrievals by ETMonitor and the ground observations by the EC system.

Remote Sens. 2025, 17, x FOR PEER REVIEW 16 of 26 
 

 

ranged from 0.53 to 0.83. The correlation coefficient was lower at the downstream stations 
compared to the upstream and midstream stations. 

 

Figure 8. Validation of CHIRPS precipitation data using in situ data in the Heihe River Basin for the 
period 2013–2021. (a,b) sites upstream; (c,d) sites midstream; and (e,f) sites downstream. 

The ETMonitor ET data were evaluated against in situ measurements at the same 
locations (Figure 9). The ET retrievals for the Arou and Dashalong stations showed a 
strong correlation with the in situ measurements, with the correlation coefficient values 
of 0.92 and 0.95, and the RMSE values of 11.3 mm/month and 8.1 mm/month, respectively. 
Similar results were obtained for the Daman Cropland station, with the correlation coef-
ficient values of 0.91, a bias of 13.36 mm/month, and an RMSE of 17.17 mm/month. Nota-
bly, the bias difference was more significant for the downstream Mixedforest station. The 
difference can be attributed to the heterogeneity of the surroundings of the Mixedforest 
station, resulting in significant differences between the spatial pattern in the pixel-wise ET 
retrievals by ETMonitor and the ground observations by the EC system. 

 
Figure 9. Validation of ETMonitor ET retrievals against EC measurements in 2013–2021 at six sites in
the Heihe River Basin. (a,b) sites upstream; (c,d) sites midstream; and (e,f) sites downstream.

Overall, the validation results indicate that the satellite-derived P and ET were reason-
ably accurate at most stations and could be applied to estimate GET and BET in the HRB.

5.1.2. Uncertainty Propagated from the Input Data

The sensitivity of the BH methods, as well as the PD and WB methods, to P and ET was
evaluated as explained in Section 3.2.3. Figure 10 shows that the sensitivity and uncertainty
of the GET and BET partitions obtained with different methods are most pronounced in the
upstream humid and colder climate zone. The second highest values are observed in the
midstream semi-arid climate zone. The downstream arid zone results show low sensitivity
and minimal uncertainty in response to changes in precipitation and ET.

In the case of natural vegetation with humid and cold climate, i.e., Arou station
with high precipitation and no irrigation, the three methods gave similar results and
were all highly sensitive to both precipitation and ET. The ET from ETMonitor was found
to be in excellent agreement with the EC measurements at the Arou station (Figure 10b).
However, the CHIRPS precipitation data tend to overestimate precipitation compared to the
observations at the Arou station, leading to an overestimation of GET and underestimation
of BET (Figure 10a).

In a natural ecosystem characterized by an extremely arid climate, i.e., the Sidaoqiao
station with very low precipitation and no irrigation, the reliance on ground water is accen-
tuated due to the limited precipitation and absence of irrigation. All three methods gave
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similar results and were moderately sensitive to precipitation and ET. CHIRPS precipitation
data overestimated precipitation, while the ETMonitor ET data underestimated actual ET
(Figure 10e,f). However, despite the large error in precipitation and ET, there was much
less uncertainty in the estimated GET and BET, as they were found to be less sensitive to
these factors.
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In Daman station, which represents a transition between humid and arid climate
with lower precipitation, irrigation plays a crucial role in ensuring water availability for
agriculture. The three methods gave different results, with the BH method showing
lower sensitivity to precipitation and ET than the PD and WB methods. This indicates
that the error associated with the input precipitation and ET will introduce much less
uncertainty in the Daman station. For example, the ETMonitor data at the Daman station
underestimated the observed values by approximately 14.05%, resulting in an error of
15.66% in the estimated BET by the BH method. Under the same conditions, the WB and
PD methods gave errors of 17.82% and 18.09%, respectively. This highlights the robustness
of the BH method, which is much less sensitive to the uncertainty associated with the input
data than the PD and WB methods.

5.2. Evaluating Estimates of the ω Parameter in the Budyko Equation

The Budyko hypothesis, in the form of the Fu equation, was used to estimate the
GET generated by green water in different ecosystems when the actual ET is known. The
estimation of GET using the BH method is significantly influenced by the vegetation-
specific parameter ωv. Previous studies were focused on investigating ω in different basins,
while we analyzed ωv in different ecosystems.
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Research has shown that the value of ω varies widely, ranging from 1.0 to infinity.
The range in ωv values in our study is similar to that in the study by Xu et al. (2013) [41],
who used a neural network model to estimate ω. They reported values ranging from 1.0 to
4.9 for 224 small basins in the United States, 1.3 to 4.6 for 32 large basins worldwide, and
1.0 to 5.0 for approximately 36,600 basins worldwide. The values of ωv of our study also
compare favorably with Li et al. (2013) [33], who used the same 26 large basins as Xu et al.
(2013) [41] and obtained basin-specific ω values ranging from 1.3 to 3.9 by fitting in situ
observations (precipitation and ET). The findings of Zhang et al. (2004) [29] were similar to
our estimates, i.e., ωgrassland of 3.77 and ωcropland of 4.99. A large difference was observed
for forest, however, as we estimated ω f orest = 9.52 against 2.84 in Zhang et al. (2004) [29].
The difference in estimated basin-specific ω values may be attributed to the heterogeneity
of vegetation characteristics and their interactions within a basin. This study focuses on the
characteristics of different ecosystems in controlling precipitation partitioning to obtain
GET, and the values of ωv in forest ecosystems differ due to these characteristics.

When compared to the outcomes of previous studies, our ωv values in the HRB
exhibited a considerable variability across ecosystems. Figure 11 shows a comparison of ωv

against the basin-scale ω, which is the default value of 2.6, the value (ω = 1.8) estimated by
Xu et al. (2013) [41], and the values in six different regions of the HRB by Du et al. (2016) [45].
In particular, Du et al. (2016) [45] used data from observation stations to fit ω values for
six different zones in the HRB. Based on the ω values in the original Fu equation fitted
by Du et al. (2016) [45], significant differences in ω values were observed even between
two climatically similar zones within the HRB, especially in the lower reaches, where ω was
20.28 in one zone and 13.05 in another zone. Furthermore, compared to Du’s results, which
showed ω values of 1.34 and 1.45 in the upper reaches and 2.05 and 20.28 in the middle
reaches, our results differ in the ωv values between grassland and forest (the dominant
vegetation in the upper reaches) and cropland (the dominant vegetation in the middle
reaches) (Figure 11).
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Our study confirmed that different ecosystems have different ωv values even under
the same climatic conditions. For example, forest and grassland ecosystems in the cold and
semi-arid upper reaches showed differences in ωv. The significant difference in the values
of ω can potentially lead to a greater error in the estimated GET fraction.
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5.3. Comparative Assessment of Different Methods

The parametric BH method incorporates the effects of vegetation, soil type, topog-
raphy, and climate seasonality on ET through a comprehensive parameter ωv [29,46,47].
We investigated the performance of the BH method in the HRB by calibrating its ωv value
and comparing its estimates with the observed data and those obtained by the WB and
PD methods. The results show the superior performance of the BH method in terms of
both accuracy and robustness. Compared to the other methods, the estimates by the BH
method showed a better agreement with the observed values and lower sensitivity to
variations in the input data. The superior performance of the BH method can be attributed
to its holistic consideration of multiple influencing factors through the ωv parameter. This
holistic approach makes the BH method more accurate and robust to estimate GET, which
is particularly well suited for comprehensive assessments of hydrological dynamics in com-
plex basins such as the HRB, where different climates and ecosystems interact. However,
the current applicability of the BH method is limited to annual scales. Attempts have been
made to adapt the Budyko framework to monthly estimates [76]. Future research can focus
on extending the BH method to higher temporal resolution calculations, improving the
accuracy of the ωv value.

The WB method, based on the water balance principle, includes numerous parameters
and relies on empirical formulae to calculate water balance components. Compared to
observations and the BH method, WB calculations show larger biases and distinct dis-
crepancies with observations. In particular, lower GET and higher BET are estimated,
which implies that a smaller fraction of ET is due to precipitation in ecosystems such as
grasslands and forests, which is inconsistent with the findings of previous studies [77,78].
This discrepancy may be due to the inherent underestimation of available water caused
by the combination of numerous parameters and empirical formulae used to calculate
the water balance components (Equation (14)). Despite these limitations, the WB method
has the potential to improve accuracy and can be applied at monthly or even shorter
timescales [79]. By addressing the component calculation and parameter calibration, the
WB method offers promising prospects for improving its accuracy and achieving finer
temporal and spatial resolutions.

The PD method has been widely used due to its clear physical interpretation and
applicability to long timescales [1,20,65]. However, evaluations using observational data
and sensitivity experiments reveal limitations in its accuracy and high sensitivity to input
data. The main source of error comes from the simplified estimation of effective precipita-
tion, which significantly influences the ET partitioning results. The PD method’s limited
consideration of factors such as plant types, soil properties, precipitation variability, and
topography in the calculation of effective precipitation hinders its accuracy [68], particu-
larly in ecosystems where these factors strongly influence water partitioning. Interestingly,
although the PD method showed a larger deviation compared to field experiments, it
closely matched other methods in the downstream region with an extremely dry climate.
This suggests that the method may be more appropriate for arid regions. In wetter ar-
eas, such as the upper reaches of the HRB, the high precipitation could mask potential
mismatches between precipitation and vegetation water demand, potentially leading to
undetected BET.

Overall, the BH method stands out as an ET estimation method with high accuracy,
strong robustness, and low sensitivity to input data. Its concise parameterization, clear
physical interpretation, and suitability for annual ET assessments make it a valuable
tool. The WB method shows promise for improvement, particularly in its accuracy and
ability to achieve finer temporal and spatial resolutions. Future research could explore
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alternative computational methods, such as machine learning [80,81]. The PD method is a
straightforward approach, although its limitations in accuracy require further improvement.

5.4. Advantages of the Research Methods and Applicability in Other Study Areas

This study addresses the critical challenge of partitioning total ET into GET (sourced
from precipitation) and BET (sourced from irrigation or groundwater) in arid/semi-arid
regions. By optimizing the BH method with ωv using remote sensing hydrological data,
the research provides a robust framework for quantifying and understanding water con-
sumption patterns across ecosystems. This is particularly important in closed basins such
as the HRB, where water scarcity and intersectoral competition are exacerbated by limited
water availability. The study also highlights the distinct roles of ecosystems (e.g., forests
relying on GET vs. croplands depending on BET), offering useful insights for sustainable
water management in water-stressed regions.

The Budyko framework explicitly links water–energy partitioning to climatic and veg-
etation factors, providing a transparent basis for ET partitioning. The modified BH method,
by optimizing ωv for different vegetation types (e.g., forest, grassland, and cropland),
takes into account ecosystem-specific characteristics. This improves accuracy compared to
traditional “one-size-fits-all” approaches. The method relies primarily on globally avail-
able remote sensing data (precipitation, ET, and land cover), reducing the dependence on
ground-based measurements. The sensitivity analyses (Section 5.1.2) demonstrated that
the BH method is less affected by errors in precipitation and ET data compared to the PD
and WB methods.

Designed for universal application, the method relies solely on publicly available
remote sensing data products, including precipitation, potential, and actual ET. By leverag-
ing open-access remote sensing products, the approach bypasses the need for extensive
ground observations, making it viable in regions with limited hydrological monitoring
infrastructure. Moreover, by using open-access remote sensing products, our approach
can be easily applied to similar inland river basins facing water scarcity, such as those in
Central Asia, the Middle East, or Africa, where irrigation-dependent agriculture competes
with natural ecosystems. The approach is applicable to any river basin where interan-
nual changes in water storage are negligible when compared with precipitation, ET, and
runoff. The proposed vegetation-specific parameter allows adaptation to different land
covers (e.g., forests, shrublands, and croplands) and climatic gradients. The method sup-
ports water accounting frameworks (e.g., water accounting plus) to evaluate trade-offs
between agricultural productivity and ecosystem health, thus informing transboundary
water management.

Integrating machine learning or advanced downscaling techniques could further refine
parameter optimization and spatial resolution. Overall, this research provides a scalable
and adaptable tool for improving water management in global arid/semi-arid zones.

6. Conclusions
The accurate partitioning of ET into GET and BET is crucial for effective water man-

agement. Despite its importance, a systematic evaluation and comparison of methods for
quantifying GET and BET is lacking in the literature. This study addresses this gap by
comparing the performance of an optimized BH method against other established methods
for separating ET into GET and BET in the complex climatic and environmental setting of
the HRB.

The comparison with observations, numerical experiments, and different methods
revealed that the BH method outperformed both the PD and WB methods. The opti-
mized BH method gave the lowest PBIAS (23.8% and 37.4%) and RMSEs (84.8 mm/a and
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113.6 mm/a) values for the GET and BET estimates. The BH method had lower sensitivity
to uncertainties in precipitation and ET input data. When subjected to a 14.05% uncertainty
in ET data, a 15.66% error in its BET estimates was obtained.

Building upon this robust method, this study revealed distinct spatial patterns in
GET and BET across the HRB from 2001 to 2018. The upper reaches experienced notably
higher GET. Conversely, the middle reaches saw lower BET, likely influenced by water-
saving projects focused on, e.g., irrigation efficiency. In the lower reaches, a unique pattern
emerged with increases in both GET and BET, potentially resulting from water re-allocation.
Furthermore, the study revealed significant differences in water use strategies across vege-
tation types. Forests and grasslands primarily relied on green water, with GET accounting
for 81.3% and 87.2% of their total ET, respectively. This highlights their efficient utilization
of local rainfall. In contrast, croplands and shrublands predominantly utilized blue water,
with BET contributing to 61.5% and 84.3% of their ET, respectively.

Water resources in the HRB, as in other river basins in arid and semi-arid regions, are
limited, and water use for irrigation is being reduced through diverse water management
policies. In the HRB, new policies were introduced in the last 15 years to limit water
allocation to irrigated lands, so that water supply is lower than both reference and potential
ET. Thus, BET became a much more relevant benchmark to assess whether allocation of
irrigation water is sufficient to meet net water requirements.
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