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Abstract 

With an increase in the number of applications of ensemble optimization (EnOpt) for production optimization, the theoretical 
understanding of the gradient quality has received little attention. An important factor that influences the quality of the 
gradient estimate is the number of samples. In this study we use principles from statistical hypothesis testing to quantify the 
number of samples needed to estimate an ensemble gradient that is comparable in quality to an accurate adjoint gradient. We 
develop a methodology to estimate the necessary ensemble size to obtain an approximate gradient that is within a predefined 
angle compared to the adjoint gradient, with a predefined statistical confidence. The method is first applied to the Rosenbrock 
function (a standard optimization test problem), for a single realization, and subsequently for a case with uncertainty, 
represented by multiple realizations (robust optimization). The maximum allowed error applied in both experiments is a 10° 
angle between the directions of the EnOpt gradient and the exact gradient. For the single-realization case we need, depending 
on the perturbation size, 900, 5 and 3 samples to estimate a “good” gradient with 95% confidence at 50 points in the 
optimization space for 50 different random sequences. For the robust case, the conventional EnOpt approach is to couple one 
model realization with one control sample, which leads to a computationally efficient technique to estimate a mean gradient. 
However, our results show that in order to be 95% confident the original one-to-one model realization to control sample ratio 
formulation is not sufficient. To achieve the required confidence requires a ratio of 1:1100, i.e. each model realization is paired 
with 1100 control samples using the original formulation. However, using a modified formulation we need a ratio of 1:10 to 
stay within the maximum allowed error for 95% of the points in space, though a 1:1 ratio is sufficient for 85% of the points. 
We also tested our methodology on a reservoir case for deterministic and robust cases, where we observe similar trends in the 
results. Our results provide insight into the necessary number of samples required for EnOpt, in particular for robust 
optimization, to achieve a gradient comparable to an adjoint gradient.  

Introduction 

Multiple studies have shown the successful application of various optimization algorithms to maximize hydrocarbon 
recovery or net present value (NPV) over the producing life of a hydrocarbon reservoir. For such problems, gradient-based 
techniques, in terms of accuracy and computational efficiency, are the most successful and widely applied. The adjoint method 
provides the most accurate gradient and is computationally the most efficient method. However, the adjoint method requires 
access to a reservoir simulator's source code which for commercial simulators is practically impossible. Additionally it 
requires a considerable amount of time to implement and is not very flexible in adaptation to different control types. These 
limitations of the adjoint method have led to the development of alternative gradient-based techniques. One such alternative 
technique, Ensemble Optimization (EnOpt), inspired by the Ensemble Kalman Filter (EnKF) method was first introduced by 
Lorentzen et al. (2006) and Nwaozo (2006).  

Chen (2008) proposed the now standard formulation of the EnOpt method which uses an ensemble of randomly perturbed 
control vectors to approximate a gradient of the objective function with respect to some specific controls. The major 
advantages of EnOpt are its ease of implementation, flexibility to adapt to different control types and ability to be used with 
any reservoir simulator. The major drawback of this method, relative to the adjoint method, is its computational inefficiency 
and inaccuracy of the gradient approximation. Nonetheless, recently many studies such as Chen et al. (2009), Chen and Oliver 
(2010), and Leeuwenburgh et al. (2010) have demostrated the applicability of EnOpt for large-scale production optimization 
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problems. Most of these papers have focused on deterministic optimization problems starting from a single reservoir model. 
However, in reality the geological and reservoir modeling process is fraught with uncertainties since a reservoir is modeled 
using uncertain interpretations based on uncertain data sources such as seismics, well logs etc. Incorporating these 
uncertainties into the optimization framework is vital to achieve results of any practical significance.  

Van Essen et al. (2009) introduced a ‘robust optimization’ methodology in conjunction with the adjoint method to include 
the effect of uncertainties into the optimization framework. They used an ensemble of equi-probable reservoir models with 
differing geology and maximized the expectation of the objective function over this ensemble of models. Chen (2008) 
introduced this robust optimization concept within the ensemble optimization framework. They proposed the use of an 
ensemble of controls of equal size as the ensemble of geological models. Coupling of one member from the control ensemble 
with one member of the geological ensemble, a mean gradient can be approximated with the EnOpt formulation. This 
formulation, while computationally very attractive for robust optimization, has received scant attention with respect to its 
theoretical understanding. Recently Fonseca et al. (2014) demonstrated a case wherein the original formulation for ensemble-
based robust optimization leads to inferior results and suggested a modified gradient formulation.  

For EnOpt the two main inputs which influence the quality of the approximate gradient are the covariance matrix used to 
create the ensemble of perturbed controls and the number of control samples created, i.e. the ensemble size. The effect of the 
covariance matrix has been investigated recently in Fonseca et al. (2013) and a theoretical foundation for the use of a varying 
covariance matrix has been provided in Stordal et al. (2014). Sarma and Chen (2014) have investigated the applicability of 
different sampling techniques to improve the quality of a gradient estimate. However none of those studies have performed a 
detailed investigation into the effect of ensemble size on the estimated ensemble gradient quality.  

In this study we aim to quantify the ensemble size required to approximate a gradient comparable to the adjoint gradient 
especially for robust optimization problems using principles from hypothesis testing and statistical analysis. In this paper we 
first provide an introduction of the hypothesis testing methodology and the different test statistics used. This will be followed 
by a detailed set of experiments on the widely used Rosenbrock function for cases with and without model uncertainty. Finally 
we test the proposed methodology on a medium-sized reservoir model, again with and without geological uncertainty  

Theory 

The two most commonly used objective functions for production optimization are ultimate recovery or an economic 
objective such as Net Present Value (NPV). In this work we chose the objective function J to be the NPV, defined in the usual 
fashion as 
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where qo,k is the oil production rate in bbl/day, qwp,k is the water production rate in bbl/day, qwi,k is the water injection rate in 
bbl/day, ro is the price of oil produced in $/bbl, rwp is the cost of water produced in $/bbl, rwi  is the cost of water injected in 
$/bbl, tk is the difference between consecutive time steps in days, b is the discount factor expressed as a fraction per year, tk is 
the cumulative time in days corresponding to time step k, and t is the reference time period for discounting, typically one year. 
Gradient-based optimization requires the gradient ( )TdJ dg u  which is used within an optimization algorithm to iteratively 
optimize the objective function. For a detailed description of various available optimization algorithms see, e.g., Nocedal and 
Wright (2006). Usually the elements of the control vector are required to stay within upper and lower bounds, and different 
approaches for such bound control problems are available. Moreover, in addition to these constraints on the inputs, there may 
be constraints on the outputs of the simulator, which are much more difficult to handle. However, in this paper we are only 
considering the quality of the gradients under the presence of simple bound constraints. 

Ensemble Optimization (EnOpt) 

Ensemble-Based Deterministic Formulation 

In this section we outline the standard formulation of the EnOpt algorithm as proposed by Chen et al. (2009). We take u to 
be a single control vector containing all the control variables to be optimized. This vector has length N equal to the product of 
the controllable well parameters (number of well settings like bottom hole pressures, rates or valve settings) and the number of 
control time steps. Chen et al. (2009) sample the initial mean control vector from a Gaussian distribution while, at later 
iteration steps the final control vector of the previous iteration is taken as the mean control. However the initial controls can 
also be chosen by the user, as will be done in our experiments. 

 1 2 . T

Nu u u   u  (2) 

To estimate the EnOpt gradient, a multivariate, Gaussian distributed ensemble {u1, u2, …, uM} is generated with a distribution 
mean u and a predefined distribution covariance matrix C  where M is the ensemble size. During the iterative optimization 
process, u is updated until convergence, whereas C  is, traditionally, kept constant. [An alternative procedure, in which C  is 
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updated during the optimization process, is decribed in Fonseca et al. (2013)]. In our implementation of EnOpt the ensemble 
members ui, i = 1, 2, …, M, are created using 

 1 2 ,i iu u C z   (3) 

with  

 
1

1 M

i
iM 

 u u . (4) 

We use a Cholesky decomposition to calculate 1 2C , and draw zi from a univariate Gaussian distribution. To estimate the 
gradient, a mean-shifted ensemble matrix is defined as 

  1 2 .    MU u u u u u u  (5) 

[Note that in earlier publications we used the transposed version of U. We modified our notation to bring it in line with that of 
textbooks such as Conn et al. (2009).] A mean-shifted objective function vector is defined as  

 1 2 ,
T

MJ J J J J J     j   (6) 

where the expectation of the objective function is given by  
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The approximate gradient as proposed by Chen (2008) and Chen et al. (2009) is given by  

 1 ,uu uJg C c  (8) 

where 
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are ensemble (sample) covariance and cross-covariance matrices respectively. (Note that cuJ is a one-dimensional matrix, i.e. a 
vector.) For the usual case where M < N, matrix Cuu is rank-deficient, and Chen (2008) and Chen et al. (2009) therefore 
propose not to use expression (8) but, instead, to use 

 1 = ,uu uu uJ uJg C C c c   (11) 

or  

 .uu uJ
 g C c  (12) 

Alternatively, the pre-multiplication in equation (12) can be performed with C , leading to 

 .uJ
 g Cc  (13) 

All three expressions (11), (12) and (13) can be interpreted as modified (regularized or smoothed) approximate gradients. In 
the present paper we use a straight gradient, i.e. expression (8), computed as the underdetermined least squares solution 

 †( )  Tg UU Uj , (14) 

where the superscript † indicates the Moore-Penrose pseudo inverse, which is conveniently computed using a singular value 
decomposition (SVD); see, e.g., Strang (2006). Moreover, we use smoothed and double-smoothed versions of equation (14): 

 †( )   T g C UU Uj , (15) 

 †( )    T g CC UU Uj , (16) 

Equation (14) was also described in Dehdari and Oliver (2012), while Do and Reynolds (2013) recently demonstrated that it is 
akin to what is known as a ‘Simplex gradient’ in, e.g., Conn et al. (2009). Do and Reynolds (2013) also provided theoretical 
connections between various ensemble methods such as simulataneous perturbation stochastic approximation (SPSA), 
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Simplex gradient, EnOpt etc. Moreover, they proposed a modification to the gradient formulation which uses the current 
control vector u  and the corresponding objective function value J  to calculate the control and objective function anomalies 
U and j: 

 1 2 ,     
   MU u u u u u u  (17) 

 1 2 ,     
  

T

MJ J J J J Jj  (18) 

where the superscript ℓ is the optimization iteration counter. 
Equations (11-16) can all be used to estimate a gradient-based on either the original [equations (5) and (6)] or the modified 

[equations (17) and (18)] formulations. Thus we can estimate as many as twelve different gradient formulations for 
deterministic cases. Further varieties will emege when considering robust optimization. 

Ensemble-Based Robust Formulation 

Chen (2008) proposed a computationally efficient robust ensemble algorithm in which she used an ensemble of controls of 
equal size as the ensemble of geological models. Coupling one member from the control ensemble with one member of the 
geological ensemble a mean gradient is approximated; see Chen (2008) for details. Therefore the ensemble size M of the 
controls is equal to the number of geological models, i.e. a 1:1 ratio. Hence only M simulation runs are needed to approximate 
the ‘robust’ gradient of the objective function. Recently Stordal et al. (2014) reached a similar conclusion starting from a 
different mathematical viewpoint. However the theoretical understanding of using this 1:1 ratio is still incomplete. As an 
alternative to this formulation, Fonseca et al. (2014) propose a modified formulation for the robust gradient which no longer 
uses the mean-shifted control samples and objective values, equations (5) and (6). Instead, in equation (5) the control sample 
mean u  is replaced by the control vector of the current iteration step, uℓ: 

 1 2 ,     
   MU u u u u u u  (19) 

The new formulation replacing equation (6) is 

 1 1 2 2 ,     
  

T

M MJ J J J J Jj  (20) 

Note that equation (19) is identical to equation (17) as used in the deterministic modified expression of Do and Reynolds 
(2013), but that equation (20) is different from equation (18). This modified gradient formulation [based on equations (19) and 
(20)] will also be tested in our set of experiments. It behaves distinctly different compared to the original robust formulation 
[based on equations (5) and (6)]. First, because the subtractions in the objective function values in equation (20) are with 
respect to the individual objective function values 

iJ  and not with respect to the mean. Second, because for bound-
constrained control problems, u and u  may be shifted with respect to each other. Thirdly, because the effect of outliers, 
which may strongly influence the mean value our least-squares approach to estimate the gradient, is reduced in the modified 
formulation. 
Note: all the different gradient formulations (11-16) for deterministic optimization are also applicable to the robust case. 
Together with the robust modified formulation [equations (19) and (20)] this leads to a total of 18 potential robust gradient 
formulations for the 1:1 ratio (i.e. one control perturbation for each geological realization) approach. However, another 
distinction can be made if we use other ratios. E.g., Raniolo et al. (2013) suggest the use of 20 control perturbations for every 
model realization. For every model realization, using the 1:20 ratio, they estimate an individual gradient, whereafter they take 
the mean of the individual gradients to obtain the robust gradient. This formulation will hereafter be referred to as the ‘Mean 
of Individual Gradients’ (MIG). Alternatively, one can combine all the controls and objective function anomalies to estimate a 
single robust gradient, i.e. not estimate individual gradients for every model realization. This approach will hereafter be 
referred to as the ‘Hotch-Potch Gradient’ (HPG). This additional disctinction leads to a total of 30 potential formulations [2 
times 18 minus 6 because for the MIG approach there is no difference between using equations (18) and (20)]. 

Adjoint method 

The adjoint method has been investigated extensively for use in data assimilation and production optimization. Detailed 
derivations for the production optimization case can be found in, e.g., Brouwer and Jansen (2004), Sarma et al. (2005), 
Kraaijevanger et al. (2007) and Jansen (2011). The adjoint method is the most accurate and computationally efficient method 
for computing a gradient. Computation of the gradient only requires one forward simulation and one fast backward 
computation. Therefore the number of simulation runs is independent of the number of controls. However for robust 
optimization using the adjoint requires running the forward and backward simulation for every geological realization, thus to 
compute the robust gradient, the same number of simulation runs will be performed as required for the robust EnOpt gradient 
using the 1:1 ratio. For our experiments we assume that the adjoint gradient is the exact gradient, which the EnOpt method 
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tries to approximate. In this study the adjoint module available in the Shell in-house simulator was used (Kraaijevanger et al. 
2007). 

Hypothesis testing 

We use principles from hypothesis testing to validate the research goal of this paper, namely to test if the approximate 
EnOpt gradient is comparable in quality to the adjoint gradient. To be able to determine the difference in gradients we compute 
the angle between them by using the dot product: 

 
.

cos( ) .adj ens

adj ens

 
g g

g g
 (21) 

Another measure that describes the difference in direction of two vectors is the length of the difference between the 
normalized adjoint and EnOpt gradients, defined as 

 .  adj ens

ensadj

g g

gg
 (22) 

To eliminate the effect of a difference in gradient magnitude between both methods the gradient vectors are made into unit 
vectors by dividing them by their norm. When  goes to zero, the two gradients will point in the same direction, just like if the 
angle goes to zero. These two test parameters can be used to cross-validate each other, because a difference of 10◦ corresponds 
to a dimensionless length difference of 0.175. Thus the two equivalent null hypotheses used are 

 0 : 10 ,

   : 0.175 .     

H  
 



 (23) 

The statistical inference method used is based on pre-defined confidence intervals for the testing parameters defined above. 

Confidence intervals 

Creating a confidence interval is a method to define a range at and the certainty that the true value of an estimated 
parameter lies within it, based on the knowledge of the sampling distribution (Dekking et al., 2005). In our numerical 
experiments we create a dataset of our parameters, given in equations (21) and (22). The parameter of interest  is the 
maximum allowable deviation of the EnOpt gradient with regard to the exact or adjoint gradient. As it is virtually impossible 
to achieve a 100% confidence, we apply a confidence level of  = 0.95. The general definition of a confidence interval assumes 
a two-sided interval, i.e. an upper and a lower limit. However it is also possible to have a one-sided interval. As the test 
parameters used for the numerical experiments are absolute values of deviations we only want to find the confidence interval 
of the maximum deviation, thus the upper limit. Using a one-sided interval, the confidence interval is just the integral of the 
probability distribution, i.e. the cumulative density function (CDF). 

Beta distribution 

The EnOpt method samples random points from a normal distribution with a user-defined standard deviation. The 
distribution of the test parameters ( and ) are, however, not normally distributed due to the non-linearity of the objective 
function and the function for the test statistics. In order to determine a confidence interval the distribution of the underlying 
parameters needs to be known. The two parameters   and  are , by definition, ratios of two different gradients, and the beta 
distribution is suitable to fit data sets that are ratios. The beta distribution forms a class of continuous probability distributions,  
parameterized by two shape parameters a and b that define the shape of the distribution. AbouRizk et al. (1994) outline several 
methods to determine these shape parameters, of which we have chosen to use the maximum likelihood estimator. AbouRizk 
et al. (1994) also demonstrate that there is virtually no difference in the results when using different fitting methods. Note that 
the beta distribution is always bounded in the interval [0,1]. However, in this study, because we use the cosine function, our 
data is bounded between [-1 1]. Thus in order to use the beta distribution for angles greater than 90 degrees (i.e. cos() < 0) we 
simply reset the angle to 90 degrees (i.e. cos() =0).  

Methodology using Beta Distributions 

The methodology proposed in this work to either accept or falsify our null hypothesis and estimate the necessary ensemble 
size to accept our null hypothesis is as follows: 

 Sample points in the control space and compute the adjoint and EnOpt gradients at each point. 
 Estimate the fitting parameters a and b of the beta distribution using the data. 
 Plot the CDF for the beta distribution and compute the confidence interval for the predefined error.  
 Repeat for varying ensemble sizes. 
 Read-off the ensemble size to achieve the desired 95% confidence interval 
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We have chosen the 95% confidence interval to test our methodology, however any different confidence interval can be 
chosen within the same workflow. Varying the desired confidence interval will automatically vary the ensemble size needed to 
accept our hypothesis. In essence an ensemble size is found that gives an accurate gradient approximation in a number of times 
equal to the confidence interval, i.e. if the numerical experiment would be repated many times, 95% of the experiments would 
result in an approximate gradient within the error margin compared to the true (adjoint) gradient. For a more detailed 
explanation of confidence intervals see, e.g. Dekking et al. (2005). 

Methodology with Traditional Hypothesis Testing Principles 

In addition to using the beta distribution to test our null hypothesis we can also use a traditional hypothesis testing 
approach to either accept or falsify our hypothesis and estimate the necessary ensemble size as follows: 

 Sample points in the control space and compute the adjoint and EnOpt gradients at each point. 
 Count the number of points that satisfy the null hypothesis  
 Compute the confidence interval for the predefined maximum allowable error.  
 Repeat for varying ensemble sizes until the confidence interval is achieved.  

In this paper we compare the results of the two methodologies for the different test statistics in the following section.  

Numerical Example 

Rosenbrock Function 

The methodology is first applied to the non-linear Rosenbrock function named after the mathematician who first used it to 
demonstrate his optimization algorithm, see Rosenbrock (1960). This analytical function has since been used as a standard test 
case in mathematical optimization. The Rosenbrock function consists of a curved narrow valley which most algorithms have 
little difficulty finding. However once found, the difficulty lies in finding the global optimum which is situated inside the 
valley. Equation (24) is a slightly altered version, as it is multiplied by -1, making it a maximization problem opposed to a 
minimization problem: 

 2 2 2
1 2 2 1 1( , ) 100( ) (1 )J u u u u u     . (24) 

The Rosenbrock function has an optimal solution J=0 at (u1,u2) = [1 1]. This point lies on a long curved ridge; see Fig. 1 for a 
contour plot. Since it is an analytical function it is possible to compute the exact gradient. The red dots in Fig. 1 are 50 
randomly distributed points in space which will be used to test our methodology. All the numerical experiments will be carried 
out over the same set of points for different scenarios. Since we are working with approximate gradient techniques the effect of 
different random sequences also needs to be accounted for. Therefore, all the experiments are repeated for 50 different random 
sequences. The results presented below are the mean values for the 50 points in space over the 50 different random sequences.  

 
Fig. 1: Contour plot of Rosenbrock function given by equation (24). Red dots are 50 points randomly distributed in space. 

Deterministic Case 

We first test the two hypothesis testing methodologies which consist of calculating the angle between the gradient 
estimated by EnOpt and the exact gradient for different ensemble sizes. The points are uniformly distributed so as to capture 
the effect of the spatial variability in the objective space on the gradient quality, with many points that are on the ridge or on 
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 The use of a ratio other than 1:1 is thus necessary to achieve good gradients along the flatter region of the curve. Like 
for the deterministic case the perturbation sizes also needs to be reduced and using the MIG formulation always 
performs better than the HPG formulation 

 As the results have shown, the developed methodology can, in theory, be used to quantify the ensemble size required 
to achieve a high-quality gradient. However, all the angles obtained in this work are always less than 90 degrees 
which suggests that with ensemble methods, irrespective of the ensemble size (in our case), we estimate the ‘correct’ 
uphill direction.  

 We recommend to use, out of the 30 potential robust gradient formulations identified in our paper, the single 
‘smoothed’ modified formulation, i.e. equation (15) based on equations (19) and (20), using the 1:1 ratio for recovery 
optimization under uncertainty.  

Nomenclature 

 b = discount rate 
 uJc  = ensemble cross-covariance vector 
 C  = distribution covariance matrix 
 uuC  = ensemble covariance matrix 
 g  = gradient vector 
 g  = single-smoothed gradient vector  
 g  = double smoothed gradient vector with ensemble covariance matrix uuC  
 g  = double smoothed gradient vector with distribution covariance matrix C  
 g  = single smoothed gradient vector, using C  and a straight gradient vector 
 g  = double smoothed gradient vector, using C and a straight gradient vector 
 ℓ = iteration counter 
 j  = vector of mean-shifted objective function values 
 J = objective function value 
 J  = mean objective function value 
 k = time step counter 
 K = total number of time steps 
 M = number of ensemble members 
 N = number of control variables 

 q = flow rates 
 r = price per unit volume 
 t = time 
 u = control variable 
 u = vector of control variables 
 u  = ensemble mean 
 U  = matrix of ensemble mean-shifted control vectors 
  = perturbation size 
  = reference time for discounting 

Subscripts 

 o = oil 
 w = water 
 wp = produced water 
 wi = injected water 
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