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Abstract

Railway networks are subjected to disruptions on a daily basis, which may make the timetable
unimplementable, which in its turn may significantly influence passenger satisfaction. In
practice, train dispatchers are responsible for mitigating the influence of disruptions, such
as delays of trains, train cancellations, and overcrowdedness at stations. The solutions they
propose are highly dependent on their experience, often resulting in low quality solutions. In
addition, the disruptions must be solved in a matter of minutes, which is challenging because
of the problem scale and computational complexity. Effective models and solution approaches
are required to mitigate the influence of disruptions.

In recent decades, railway rescheduling models have been developed to support train dispatch-
ers and to improve rail services. A recent and promising model is the event-activity network
model, which is a graph-based formulation that supports a wide variety of rescheduling mea-
sures. This thesis extends the event-activity network model by including rolling stock circula-
tion with depot entry and exit operations to increase the practicability of the operator-centric
model. In addition, a passenger-centric model is proposed by embedding detailed passenger-
related factors into the operator-centric model, where the train capacity is included, and the
detailed number of passengers in the railway network is calculated. Therefore, the effect of
delays on passengers can be handled properly. The passenger-centric model can help minimize
the number of waiting passengers on platforms to avoid overcrowding and to improve passen-
ger satisfaction. In practice, the resulting passenger-centric mixed-integer linear programming
(MILP) problem is hard to solve due to the introduction of binary variables for train orders,
which are important for calculating the detailed number of passengers. An adaptive large
neighborhood search (ALNS) algorithm is introduced to address the complexity due to train
orders and to improve the computational efficiency of the passenger-centric method. With
properly designed destroy and repair operators, the ALNS algorithm can explore the solution
space efficiently. Therefore, a balanced trade-off between solution time and quality can be
made.

Case studies are conducted based on the train lines operating between the stations of Utrecht
and ’s-Hertogenbosch in the Netherlands. The simulation results show that the developed
model can explicitly include the number of passengers while considering the rolling stock
circulation plan. Compared to directly solving an MILP problem using a commercial solver,
ALNS can calculate solutions more efficiently while maintaining a high level of solution quality.
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Chapter 1

Introduction

Railway transport is an important mode of transportation for many countries. Depending on
the density of population in a region, railway traffic can get extremely complicated as more
railway lines and trains are necessary for the high passenger demand, making the network
vulnerable to disturbances and disruptions. An example of a railway network with high pas-
senger demand is the Dutch railway network, where the largest railway operator, Nederlandse
spoorwegen (NS), transported 1 million passengers per day in 20191. During the same period,
approximately 6000 disturbances and disruptions occurred, which is equivalent to an aver-
age of 12 per day2. In particular, disruptions have a major impact on the network capacity,
which can make the timetable unimplementable, which in its turn may significantly influ-
ence passenger satisfaction. Finding effective rescheduling methods is essential for passenger
satisfaction.

In practice, train dispatchers are responsible for mitigating the influence of disruptions. Train
dispatching is a highly demanding job due to the scale and computational complexity of
the problem. Pre-made contingency plans can be used in combination with the experience
and skills of train dispatchers to create a disposition timetable (Chu and Oetting (2013)).
Although this approach of creating a disposition timetable is used in practice, the resulting
timetables are rarely optimal, since the disruption rescheduling problem is too complex to be
addressed effectively by a human.

In recent decades, computer hardware and solution algorithms have improved greatly, making
it possible to assist train dispatchers in finding better disposition timetables. Especially,
disturbance management has been a well-researched topic, (Cacchiani et al. (2014), König
(2020)), with a main focus on reducing train delays, i.e., ensuring that trains departing or
arriving than intended do not have conflicts with other trains. By definition, disturbances
can be handled by rescheduling the timetable without affecting the schedule of the rolling
stock and the crew. Disruptions, on the other hand, have a greater impact than disturbances
and require rescheduling of rolling stock and crew scheduling due to the significant delays and

1https://dashboards.nsjaarverslag.nl/reizigersgedrag
2https://www.rijdendetreinen.nl/statistieken/2019
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2 Introduction

cancellations caused by the disruption. For disruption management, most studies have been
using the macroscopic model, omitting details such as signal, block sections, and switches.
Due to the reduced complexity of the macroscopic model, a large part of the network can be
analyzed, so the overall impact of the disruption can be considered. A recent and promising
macroscopic model is the event-activity model, which supports a wide variety of rescheduling
measures resulting in practical solutions. Most studies using the event-activity network have
focused on the train scheduling step, i.e., determining and changing the arrival and departure
times of trains; and, typically, simplify rolling stock circulation by using short-turning at
terminal stations, or do not consider rolling stock circulation at all. When rolling stock
circulation is not considered, solutions may become infeasible when implemented in real-life,
therefore it is important to consider rolling stock circulation in a disruption management
model.

In recent years, more studies have integrated passenger-related factors into their network. Dis-
ruptions can have significant effects on passengers, as disruptions often affect the passengers’
original route to their destination. Furthermore, the implemented rescheduling measures,
e.g., delaying and cancelling trains, may have an impact on the passenger route as train may
not operate and transfers between train become unfeasible. Many studies have addressed
the passenger routing problem by considering passenger rerouting in the model, which more
accurately reflects the effect of rescheduling actions on passengers. However, a large increase
in model complexity is often necessary to formulate the rerouting problem. Typically, a com-
promise is made between performance and practicability. In addition to affecting passenger
routing, disruptions also have an impact on crowdedness at stations and trains. Especially,
with an epidemic situation, e.g., COVID-19, ensuring a safe environment on railway networks
has become more essential. Overcrowdedness in rail networks is already a significant issue in
urban rail networks (Xu et al., 2014), and has been addressed by several studies by generat-
ing timetables based on detailed number of passengers. An accurate model to describe the
number of passengers is important for disruption management.

Many passenger-centric models struggle to solve within acceptable time as the resulting mixed-
integer linear programming (MILP) problems have a high complexity due to the passenger
related variables. To deal with long computation times, most passenger-centric studies include
an alternative algorithm to find a good balance between solution time and quality. Adaptive
large neighborhood search (ALNS) is a promising and commonly employed algorithm for
vehicle routing problems that recently has been introduced for railway scheduling problems.
The railway disruption management problem based on the event-activity model has certain
similarities to the routing problem. In this paper, we develop a novel disruption management
approach based on the event-activity model and the ALNS algorithm.

1-1 Problem statement

In the literature, disruption management models have not considered a detailed number of
passengers, making it difficult to accurately determine the crowdedness at stations and trains.
Especially with the increase of passengers on railway networks and with the occurrence of
epidemic situations, it is important that disruption management models consider a detailed
number of passengers. The main research question on passenger-centric railway disruption
management is:

B.M. Wentges Master of Science Thesis



1-2 Thesis outline 3

Can a detailed number of passengers formulation be integrated in a railway traffic
disruption management problem to efficiently jointly optimize train delays, cancellation,
and overcrowdedness at stations?

The main research question can be divided into the following subquestions:

1. How to build a railway management model to incorporate rolling stock circulation and
detailed number of passengers in a railway network?

2. How to design an approach to effectively solve the passenger-centric railway disruption
management problem?

1-2 Thesis outline

The outline of this thesis is as follows. In Chapter 2, basic knowledge about railway modelling
is given. In Chapter 3 the operator-centric model is formulated and an extension is made to
rolling stock circulation. In Chapter 4 a passenger-centric model is formulated by extending
the operator-centric model with detailed passenger formulations. In Chapter 5 model trans-
formations to MILP formulations are shown, and an ALNS approach is designed. In Chapter
6 the performance of the operator-centric, passenger-centric, and ALNS approaches is tested
and compared. In Chapter 7 the discussion, conclusion, and suggestions for future work are
given.

Master of Science Thesis B.M. Wentges



4 Introduction

B.M. Wentges Master of Science Thesis



Chapter 2

Basic knowledge about railway traffic
management

To model a railway network, basic modelling concepts regarding the network infrastructure
are required. Additionally, an introduction to different rescheduling measures is necessary to
handle disturbances and disruptions on the railway network. The remainder of this chapter is
organized as follows. Section 2-1 introduces the different railway network models used in the
literature. Section 2-2 explains the difference between disturbances and disruptions. Section
2-3 discusses the different planning steps and control actions to handle disruptions. In Section
2-4 different approaches for passenger integration are shown.

2-1 Network detail

2-1-1 Level of detail

In railway modelling, there are three frequently used detail levels of modelling to describe the
railway network, i.e., microscopic models, macroscopic models, and mesoscopic models (see
Fig. 2-1) (Albrecht et al. (2008)). Depending on the study objective, one level of detail may
be preferred over another. A more in-depth description of each model is provided below.

In the microscopic model, the aim is to include all relevant details, e.g., signals, track segments,
and track switches. The microscopic model allows it to develop solutions that are more
practical than those found in less detailed models. However, the model is restricted in network
size because the model complexity increases rapidly with network size. The microscopic
model, for example, can be used to determine accurate train speed profiles, train movement
at the level of block sections, or rail signaling.

The macroscopic model neglects most of the railway details. Typically, stations are described
as nodes, and lines are the links that connect nodes. Details such as block sections and
switches are left out to reduce the computational burden. Due to the lack of detail, more

Master of Science Thesis B.M. Wentges



6 Basic knowledge about railway traffic management

extensive networks can be described with reasonable complexity. The results of the macro-
scopic model are generally the arrival and departure times of trains at stations and may not
guarantee feasibility, as trains could encounter conflicts at more detailed levels, such as con-
flicting trains at block sections. Therefore, the macroscopic result has to cooperate with a
lower-level controller at the microscopic level before being implemented in real-life in most
cases.
The mesoscopic model is between the macroscopic model and the microscopic model. The
model is primarily described as a macroscopic model with additional details on specific parts,
such as the entry tracks of a station. Compared to the macroscopic model, the mesoscopic
model has a better chance of being feasible in real-life while maintaining reasonable compu-
tational complexity to handle more extensive networks.

Junction Line Station

Microscopic

Mesoscopic

Macroscopic

Figure 2-1: Junction, line, and station are shown at the microscopic, mesoscopic, and macro-
scopic detail levels.

2-1-2 Track layout

Different track layouts can be used to describe railway networks. (Corman and Meng, 2014)
The simplest one is a single-track layout, where trains cannot pass or meet. Furthermore, a
commonly used layout is the double-track layout, where two parallel tracks are separate. The
track itself can be unidirectional or bidirectional. On a unidirectional track, trains can only
run in one direction, while on a bidirectional track they can run in both directions. Typically,
networks have single-bidirectional or double-unidirectional tracks. Some studies considered
more parallel tracks than two parallel tracks, which in general form is written as "N-tracked".
The layout of the track is largely dependent on the type of railway investigated. In the
literature on railways, there are mainly two types of railway networks, i.e., urban rail transit
networks and interurban rail transit networks. Urban rail transit networks are usually found
in large cities. These rail transit lines generally have less freedom of movement because the
tracks are used by only one line and the station platform is not shared between different
lines. Most urban rail transit networks have unidirectional tracks that are single- or double-
tracked. Interurban rail transit networks can be found between cities. With an interurban

B.M. Wentges Master of Science Thesis



2-2 Perturbations 7

rail transit network, resources, such as platforms and tracks, can be used between trains
with different origins and destinations. Furthermore, the trains can overtake and cross each
other. Additionally, urban rail transit networks usually have a high frequency of trains, and
passengers can decide ad hoc which train to board. A passenger can have multiple transfers
between lines before reaching their destination. Interurban rail transit networks are operated
less frequently, and passengers usually plan their routes. Unlike the urban rail transit network,
trains do not necessarily stop at every station they pass in an interurban rail network.
The literature on interurban rail transit networks can be divided into two groups, i.e., trans-
portation with seat reservation and without seat reservation. Railway systems with seat
reservation have trains with seats allocated for tickets. A passenger has to buy a ticket be-
forehand, and the train’s capacity is limited to the number of seats. Railway systems without
seat reservation do not allocate seats for each passenger. The capacity of trains without seat
reservation is usually not limited to passenger seats. In this case, they focus on the total
capacity of passengers.

2-2 Perturbations

2-2-1 Disturbances and disruptions

Punctuality is essential for passenger satisfaction. Under normal circumstances, trains can
arrive at a station on time by running according to a predetermined regular timetable. How-
ever, minor unexpected events (e.g., overcrowdedness and bad weather) can occur during
operation, which are known as disturbances. Disturbances cause trains to depart or arrive
later than planned. Usually, a buffer time is included in the regular timetable such that a train
can compensate for the delays, e.g., by speeding up or shortening the dwell times. However,
in some serious cases, the delay may be too severe for the buffer time to compensate for the
delay, which can result in conflicts with other trains and an infeasible timetable (Cacchiani
et al. (2014)).
In the daily operation, more severe unexpected events (e.g., rolling stock breakdowns, station
blockages, and extreme weather conditions) can occur, where disturbance management and
its rescheduling measures are not effective enough. More decisive measures should be applied
to create a new feasible timetable in which not only the timetable but also the rolling stock
and crew are rescheduled (Jespersen-Groth et al. (2009)). Generally, two cases of disruption
are discussed: complete blockade and partial blockade. A complete blockade means that all
tracks in a segment are blocked, leading to an infeasible timetable as trains cannot reach their
destination. A partial blockade means that a part of the tracks of a segment are blocked.
Thus, trains can still pass through the blockade on parallel tracks with reduced capacity.
Typically, the macroscopic model is used for disruption management since disruption affects
a large part of the network, and the macroscopic model is able to describe a large part with
practical complexity.

2-2-2 Disruption phases

Typically, disruption management can be divided into three phases, i.e., the transition phase
from the original timetable to the disruption timetable, the disruption phase, and the tran-

Master of Science Thesis B.M. Wentges



8 Basic knowledge about railway traffic management

sition phase back to the original timetable (Ghaemi et al. (2017)). The first phase is at the
beginning of the disruption, and railway traffic will suddenly decrease as some tracks will not
be available for train services. In the second phase, the disruption timetable is often applied
with a reduced number of trains. The third phase begins after the disruption is resolved,
and operations can gradually resume to the original timetable. Especially, the first and third
phases are hard to handle in practice, as few instructions are given to train dispatchers on
how to deal with these phases. Therefore, it is essential to consider a model that considers all
three phases to reduce the workload of the train dispatchers. Many disruption management
models in the literature have only considered a part of the disruption phases and not all three
of them. However, Ghaemi et al. (2018) have successfully created a disruption rescheduling
model that considers all these phases, using a recovery time in which the schedule returns to
its original timetable. Zhu and Goverde (2019) have used the same approach with a recovery
time after the disruption occurred.

2-3 Railway planning and rescheduling

2-3-1 Railway traffic planning steps

It takes years to make a railway planning for a network. Typically, the process is divided into
several steps in order to make them more manageable. For the creation of a regular timetable,
these steps consist of demand analysis, line planning, train scheduling, rolling stock planning,
and crew scheduling (Ghoseiri et al. (2004), Bussieck et al. (1997)). Demand analysis and line
planning are part of strategic planning and are made years in advance and are less relevant
for disruption rescheduling or daily operation. Train scheduling, rolling stock planning, and
crew scheduling are part of the tactical level and are relevant for the daily operation. In the
train scheduling step, the arrival and departure times of the train lines are determined, which
results in a timetable. The timetable is then used as input for the rolling stock rescheduling
step to assign rolling stock to each train service in the timetable. Finally, the crew reschedul-
ing assigns crew to each rolling stock to ensure each train has its own drivers and conductors.
Generally, timetable rescheduling is handled by the infrastructure manager of the railway
network, while rolling stock and crew rescheduling are the responsibility of the train operator
companies (Cacchiani et al., 2014). Schöbel (2017) argue that many railway planning models
apply the planning steps sequentially, resulting in suboptimal solutions compared to an inte-
grated approach. For an urban rail transit line, Wang et al. (2018) has integrated the rolling
stock circulation for a train scheduling problem with depot entry and exit actions, adjusting
departures and arrival times based on the available rolling stock. For disruption management
models, simplified approaches are used for rolling stock circulation. Veelenturf et al. (2016)
balance the rolling stock on each side of the disruption, to reduce the possibility of a rolling
stock shortage. Louwerse and Huisman (2014) keep track of the number of reserve rolling
stock at the start of the second phase of the disruption. In the work of Zhu and Goverde
(2020b) and Zhu and Goverde (2019), rolling stock circulation is approached by using short
turns at the terminal station, which is called OD-turning.

B.M. Wentges Master of Science Thesis



2-3 Railway planning and rescheduling 9

2-3-2 Rescheduling measures

To handle perturbations, the train dispatchers must adjust the timetable with rescheduling
measures so that conflicting trains avoid each other and the delays of the trains are minimized.
Generally, three rescheduling measures are applied to resolve conflicts and reduce small de-
lays, i.e., retiming, reordering, and local rerouting. For disruption rescheduling, rescheduling
measures are typically extended by cancellations, short-turning, adding stops, and inserting
a train actions.

Retiming
Retiming is the process of changing the departure and arrival times of trains in a block
section or station (see Fig. 2-2a). In practice, trains are usually delayed when a retiming
action is performed, as trains are not allowed to depart earlier than the originally scheduled
departure time. An early departure may be confusing for passengers, making it an undesirable
rescheduling measure for train operators. An effective retiming action can be to retime a train
to dwell longer at a station adjacent to the original conflicting block section. Retiming can
also be applied to maintain the connection between trains so that passengers can still make
their transfer when delays occur.

Reordering
Reordering refers to the process of changing the order of trains (see Fig. 2-2b). When a
faster train is caught behind a slower train, the reordering measure can be quite helpful. By
reordering the two successive trains, the faster train can pass the slower train at a stop and
reduce the consecutive delay. Furthermore, because departure and arrival times are modified,
the reordering measure also implies a retiming measure.

Local rerouting
For conflicting block sections, the local rerouting measure can be used to reroute trains
through different (parallel) block sections while maintaining the same destination. Since
block sections are used, local rerouting is usually used at the microscopic level.

Cancellation
Cancellation is a frequently used control action for disruptions (see Fig. 2-2c). Instead of
starting a train service, the train will not depart from its starting station and remain in the
shunting yard.

Short-turning
Short-turning is known as the action of turning a train around at a station and operating the
train in the opposite direction (see Fig. 2-2d). If a complete blockade occurs, the short-turning
measure is effective in keeping services running on both sides of the disruption. Furthermore,
it is also efficient for the rolling-stock circulation at terminal stations. For the vast majority
of the papers, short-turning is allowed at the station adjacent to the disruption. As short-
turning is time-consuming, many trains will be canceled due to the lack of short-turning
capacity at stations. Ghaemi et al. (2018) introduced a short-turning at 2 stations. However,
some recent studies have allowed short-turning at all stations with short-turning capability;
which is known as flexible short-turning (Zhu and Goverde (2019)).

Adding stop
The adding stop measure allows train services to get additional stops (see Fig. 2-2e). The
adding stop measure is possible when trains skip some stations in the original timetable. The
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10 Basic knowledge about railway traffic management

advantages are threefold: first, passengers waiting at the station might have a new option
to arrive at their destination. Second, the passenger demand for the following trains may
decrease. Moreover, the crowdedness at the station decreases. However, the downside is that
onboard passengers may experience a delay, which may result in a more significant delay when
a transfer is missed.

A

B

C

Tr

(a) Retiming action.

A

B

C

Tr1 Tr2

(b) Reordering action.

A

B

C

Tr

(c) Canceling action.

A

B

C

Tr1 Tr2

(d) Short-turning action.

A

B

C

Tr

(e) Adding stop action.

A

B

C

Tr

(f) Inserting train action.

Figure 2-2: The different control actions that can be applied.

Insert train
Insert train is the last rescheduling measure (see Fig. 2-2f). When short-turning is not
possible due to the lack of arriving trains, an insert train action enables the operator to keep
the service in operation by inserting a train from the shunting-yard into the network. Cavone
et al. (2020) have introduced a formulation for inserting trains by moving them from and to
the shunting yard.
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2-4 Passenger integration

Most of the literature on disruption management is operator-centric and does not consider the
effect of rescheduling on measures on passengers. Many studies focus on minimizing delays
and cancellations. However, in recent years, there has been an increase in passenger-centric
disruption management. The way of handling passenger-related factors is highly dependent
on the problem and the type of network, i.e., urban railway network and interurban network.
For urban railway networks, the focus has been on accurately calculating the number of
passengers in the network, as overcrowdedness at stations and trains is an important issue
for these networks (Xu et al., 2014). Especially with an epidemic situation, e.g., COVID-19,
resulting in lower available passenger capacity on networks. Wang et al. (2015) implemented
passenger arrival rates at stations with a piece-wise affine function. Based on time-varying
OD matrices and splitting rates, detailed passenger flows are handled. Instead of using OD-
dependent data, Wang et al. (2018) uses time-varying OD-independent arrival rates, which is
easier to access compared to OD-dependent data. However, the downside is that passengers’
waiting time and onboard time cannot be accurately computed. In addition, the model is
restricted to a single line without transfer behaviors. In the work of Yin et al. (2017) time-
variant OD data are used to describe passenger demands at stations; however, no further
routes need to be determined since there is only one line. Yin et al. (2021) considered time-
dependent passenger demand for an urban rail network using a discretized MILP model.
Transfer stations and travel paths based on historical data were considered in that paper;
however, route choice is not included and the passenger route remains static and deterministic.
In the work of Huang et al. (2020) a time-indexed formulation is used for the passenger flows
with a discretization of 5 minutes, which is a reasonable time to approximate passenger flows.
For passenger-centric disruption rescheduling, the focus has been more on accurately describ-
ing passenger routing, also called timetable-dependent passenger behavior (Zhu and Goverde
(2019)). In the work of Veelenturf et al. (2017), a framework with an iterative passenger flow
simulation is used to reschedule the timetable and rolling stock. Zhu and Goverde (2019)
reduced the complexity of passengers by considering a static passenger route choice, i.e., pas-
senger routes are not affected by rescheduling measures. Zhu and Goverde (2020a) integrated
passenger rerouting into the disruption management problem to minimize the generalized
travel time of passengers. The passenger activity set is reduced by excluding activities that
cannot be made to reduce complexity. Additionally, a transition network is introduced to
describe the effects of rescheduling measures on passengers.

2-5 Conclusions

There are three commonly used modelling frameworks for railway networks, i.e., microscopic
models, mesoscopic models, and macroscopic models. The models differ in level of detail and
usually correspond with the size of the studied network; i.e., macroscopic models are used for
large networks, while microscopic models are focused on small networks.
A lot of research has focused on train rescheduling when an unexpected event occurs. Un-
expected events can be categorized into disturbances and disruptions. A disturbance is less
severe and can be solved with rescheduling measures, e.g., retiming, reordering, and rerout-
ing. Disruptions are more severe and require more rescheduling measures to make a feasible
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12 Basic knowledge about railway traffic management

disruption timetable. Cancellations, short-turning, inserting trains, and adding stops are
frequently used measures for disruptions. Especially, disruptions put a heavy workload on
the train dispatchers as the transition phases of the disruptions are hard to handle. Recent
models in the literature have considered these phases to reduce workload.

Passenger integration into railway models has become more popular in recent years. Most
of the papers on urban railway networks have focused on accurately calculating the number
of passengers in the network. The interurban disruption management models have mainly
focused on accurately describing passenger routing.
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Chapter 3

Operator-centric modelling including
rolling stock circulation

In the event-activity network, the interaction between trains and stations is formulated con-
sidering various rescheduling measures. To ensure that rescheduling measures are applied
safely without causing conflicts, the event-activity network is implemented with various ac-
tivities, e.g., headway, running, and dwelling activities. In this chapter, the event-activity
network is extended to include rolling stock circulation to ensure sufficient rolling stock is
available for operation. Furthermore, shunting actions at intermediate stations are added.
The remainder of this chapter is organized as follows. In Section 3-1 the model assumptions
are shown and the event-activity network is developed by describing the necessary events and
activities for an operator-centric model. In Section 3-2 the operator-centric event-activity
network is described with constraints.

3-1 Operator-centric event-activity network

The daily operation of a railway network can be described as an event-activity network. The
event-activity network describes the characteristics of the network by defining interactions
between trains and stations. The event-activity network is essentially a graph-based formu-
lation, where the nodes consist of events, and the arcs between events represent activities.
This section will cover events and activities that are relevant to operator-centric disruption
rescheduling, including retiming, cancelation, reordering, and flexible short-turning measures
based on the work of Zhu and Goverde (2019). The event-activity network is extended by
adding rolling stock circulation with depot entry and exit operations based on the work of
Wang et al. (2018). To model rolling stock circulation, inventory events and shunting ac-
tivities are introduced. In addition, shunting activities are introduced at intermediate stops
of a train line to store rolling stock for future use. Modifications are made to the headway
activities in order to model quadruple tracks in a network.
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14 Operator-centric modelling including rolling stock circulation

3-1-1 Model assumptions

A detailed list of assumptions for the developed railway traffic disruption rescheduling model
is given:

1. In this thesis, our aim is to handle the case of a complete blockage between two stations,
i.e., all present tracks between two stations are blocked. Furthermore, it is assumed that
the duration of the disruptions is known beforehand and has a fixed time duration.

2. The railway network is formulated at the macroscopic detail level. The more detailed
train assignment can be further addressed by using local control with a microscopic
model, which is not in the scope of this thesis.

3. All train services within a train line use the same rolling stock and cannot use the reserve
rolling stock of other train lines. The reserve rolling stock will always be available for
operation when stored in the shunting yard.

3-1-2 Events

Events are the nodes of the graph-based event-activity network and are denoted by e. For the
passenger-centric model there are three events required, i.e., departure, arrival and inventory
events.

Departure and arrival events

There are two events necessary to describe the operation of a train service, i.e., the departure
event and the arrival event, which refer to the departures and arrivals of trains at stations,
respectively. Each event includes attributes that contain related information about the event.
The event attributes can be listed as follows:

• Original scheduled time oe. Describing the time of event e according to the original
timetable without disturbances or disruptions.

• Station se. Describing the station where the departure or arrival event e occurs.

• Train service τe. Describing the train service associated with event e. A train service
describes an individual train from its origin to its destination.

• Train line τline,e. Describing the train line associated with event e. A train line denotes
the route’s origin, destination, intermediate stops, and operating frequency. A train line
comprises several train services, commonly on a half-hour basis in The Netherlands.

• Train type τtype,e. Describing the train type associated with event e. Train types can
be categorized based on their operating speed, e.g., intercity and regional trains.

• Track κe. Describing which rail track is used by event e. Railway networks can have
multiple parallel tracks to run trains with different operating speeds separately.

B.M. Wentges Master of Science Thesis



3-1 Operator-centric event-activity network 15

• Operation direction de. Describing the train running direction, which can be in the up
direction or down direction.

The set of departure events is denoted as Edep and the set of arrival events as Earr. The union
of departure and arrival events comprises all train service events and is defined as:

Etrain = Earr ∪ Edep, (3-1)

where Etrain is the set of train service events.

Inventory events

A line may include a shunting yard with reserve rolling stock at certain stations that can be
used in case of rolling stock shortage. To describe the shunting yard in the event-activity
network, an inventory event is introduced with the following attributes

• Station se. Describing the corresponding station of the shunting yard, where the rolling
stock inventory is kept.

• Train line τline,e. Describing the train line associated with the inventory of the shunting
yard. Typically, different rolling stock is used for each train line to accommodate the
requirements of the train line, e.g., train capacity and speeds; therefore, it is preferred
to only use the rolling stock designated for the train line.

• Inventory number ie. Describing the number of rolling stock available for use at a
shunting yard.

The set of inventory events is denoted by Einv.

3-1-3 Activities

Activities link events by describing the relationships between the events. Activities are de-
noted by a and pointed from an event e at the tail of the activity (tail(a)) to another event e′

at the head of the activity (head(a)). In this thesis, the activities are divided into five groups,
i.e., train service, headway, turning, station capacity, and shunting activities.

Train service activities

A train service consists of several departure and arrival events on the route from its origin
to its destination. To describe the running, dwelling, and pass-through actions of trains on
their route, the following activities are introduced:

• Arun = {(e, e′)|e ∈ Edep, e′ ∈ Earr, τe = τe′ , snext,e = se′} Running activities enable trains
to traverse between two stations on a track. A running activity is defined between a
departure event e and an arrival event e′ at the two consecutive stations se and se′ , i.e.,
snext,e = se′ .
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16 Operator-centric modelling including rolling stock circulation

• Adwell = {(e, e′)|e ∈ Earr, e′ ∈ Edep, τe = τe′ , se = se′} Dwell activities describe the dwell
actions of trains at a station. Tail(a) and head(a) of a dwelling activity should be part
of the same train service (τe = τe′) and occur at the same station (se = se′).

• Apass = {(e, e′)|e ∈ Earr, e′ ∈ Edep, τe = τe′ , se = se′} Pass-through activities enable
trains to pass a station when no stop is required at the station.

Headway activities

A minimum duration between trains should be maintained to ensure that trains operate on
the same track safely. These safe distances can be expressed as headway activities. Reordering
introduces extra complexity, as multiple candidate headways are considered due to different
possible train orders. Headway activities are categorized into departure-departure headway
activities, arrival-arrival headway activities, and arrival-departure headway activities. The
main difference between these activities is based on the track layout of the stations. In this
thesis, we assume the order of trains can only be changed at stations. Stations with multiple
tracks offer the ability for trains to overtake, resulting in a change of train order, while stations
with a single track do not provide the possibility of overtaking and maintain the order of the
previous station. Therefore, different headways are required and formulated as follows:

• Ahead,de,de = {(e, e′)|e ∈ Edep, e′ ∈ Edep, τtype,e ̸= τtype,e′ , de = de′ , se = se′ , κe =
κe′ , Nse ≥ 2} Departure-departure headways are constructed between departure events
of trains that run on the same track (κe = κe′). The departure events should occur at
the same station (se = se′) and the station should have at least two tracks (Nse ≥ 2),
otherwise the activity should belong to Ahead,ar,de.

• Ahead,ar,ar = {(e, e′)|e ∈ Earr, e′ ∈ Earr, τnext,e = τe′ , τtype,e ̸= τtype,e′ , de = de′ , se =
se′ , κe = κe′ , Nse ≥ 2} Arrival-arrival headways are constructed between arrival events
of trains than run on the same track (κe = κe′). Both events should occur at the same
station (se = se′) and the station should have two tracks (Nse ≥ 2), otherwise the
activity should belong to Ahead,ar,de.

• Ahead,ar,de = {(e, e′)|e ∈ Earr, e′ ∈ Edep, τe ̸= τe′ , τnext,e = τe′ , de = de′ , se = se′ , κe =
κe′ , Nse ≥ 1} Arrival-departure headways are required between events at stations with
a single track Nse ≥ 1, or between trains at stations that have designated tracks and
can only enter after the previous train has departed.

The set of headway activities can be grouped as

Ahead = Ahead,de,de ∪Ahead,ar,ar ∪Ahead,ar,de. (3-2)

Turning activities

Certain stations enable turning activities of rolling stock to provide train services in the
opposite direction. Activities that are part of turning activities can be categorized into two
groups, i.e., short-turning and OD-turning activities. Short-turning activities are introduced
between events when trains have not arrived at their destination station. Therefore, they
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3-1 Operator-centric event-activity network 17

must suspend their current service to provide rolling stock for a train service operating in
the opposite direction. OD-turning activities are used at terminal stations, where trains start
and end their services. The OD-turning activity can be regarded as rolling stock circulation.
Short-turning and OD-turning activities can be formulated as follows

• Aturn = {(e, e′)|e ∈ Earr, e′ ∈ Edep, τe ̸= τe′ , τline,e = τline,e′ , se = se′ , de ̸= de′ , oe′ −
oe ≤ D} Short-turning activities enable rolling stock to short-turn in order to be used
by another train service running in the opposite direction. Short-turn activities are
constructed between arrival and departure events of the same train line (τline,e = τline,e′)
to ensure the same rolling stock is used, as different train lines, typically, use different
rolling stock. Short-turning activities events occur at the same station (se = se′), and
the events should happen in opposite directions (de ̸= de′). As it is unpractical to
excessively wait rolling stock at stations, the difference between arrival and departure
events are kept within a maximum delay (oe′ − oe ≤ D).

• Aodturn = {(e, e′)|(e, e′) = a ∈ Aturn, e ∈ Eterminal, e′ ∈ Eterminal} OD-turn activities
are short-turning activities that occur at terminal stations and are part of rolling stock
circulation.

Station capacity activities

Stations have a certain number of tracks to accommodate dwelling trains. To ensure that
the station capacity is not exceeded, capacity activity is constructed between arrival and
departure events. The capacity activity can be formulated as

• Acap = {(e, e′)|e ∈ Earr, e′ ∈ Edep, κe = κe′ , de = de′ , se = se′ , Nse,τtype ≥ 2, oe′ − oe ≤
D} Capacity activities are used between arrival and departure events of stations with
multiple tracks. This activity is used to keep track of the remaining station capacity.

Shunting activities

At stations with a shunting yard, rolling stock can be transferred from an arrival event to
a shunting yard or from a shunting yard to a departure event. Moving rolling stock to a
shunting yard allows it to be stored when it is not immediately required. When there is a
shortage of rolling stock, the reserved rolling stock can be used from the shunting yard to
serve as a departure event. Both activities can be summarized as follows

• Atoshunt = {(e, e′)|e ∈ Earr, e′ ∈ Einv, τline,e = τline,e′ , se = se′} Move to shunting yard
activities enables rolling stock to run from arrival events to terminal stations to accom-
panying shunting yards of the station when rolling stock is no longer required for train
services.

• Afromshunt = {(e, e′)|e ∈ Einv, e′ ∈ Edep, τline,e = τline,e′ , se = se′} Move from shunting
yard activities enables rolling stock to run from shunting yards to serve as departure
events from terminal stations when additional rolling stock is required.

The set of shunting activities can be grouped as

Ashunting = Atoshunt ∪Afromshunt. (3-3)
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18 Operator-centric modelling including rolling stock circulation

3-2 Operator-centric constraints

Constraints are established to ensure that the event activity network complies with practicable
railway operations to find an optimal disruption timetable subsequently. The constraints are
classified primarily according to the activities mentioned in Section 3-1.

3-2-1 Constraints for cancelling and retiming trains

Cancelling and retiming a train service are two effective rescheduling measures to establish a
new optimal disruption timetable. A binary decision variable is provided for each departure
and arrival event in the event-activity network to determine whether the event e is cancelled.
The binary decision variable is denoted as:

ce =
{

1 if event e is canceled;
0 otherwise.

(3-4)

To retime a train service, a continuous variable xe is introduced for each event e. This
variable represents the event’s rescheduled occurrence time. The reschedule time is bounded
by a minimum and a maximum, which is enforced by:

oe − xe ≤ 0, ∀e ∈ Earr ∪ Edep, (3-5)
xe − oe ≤ (1− ce)D, ∀e ∈ Earr ∪ Edep \ Eexc, (3-6)

where oe denotes the original occurrence time of event e, constant D is the maximum delay
allowed, and Eexc is the set of events that belong to trains that already departed at the start
of the disruption. Constraint (3-5) enforces that the reschedule time of event e is equal to
or greater than the initial occurrence time of the event, since trains generally do not depart
earlier than their scheduled departure time. Constraint (3-6) imposes a maximum delay time
on the reschedule time of event e. A maximum delay is set, as it is not desirable to delay
trains excessively. Especially when a cyclic schedule is used, delaying more than one cycle is
superfluous since another train service of the same train line is already scheduled to operate.
The maximum delay time is not imposed on events in the set Eexc because these events are
part of trains that already departed the starting station and cannot be cancelled, and may
lead to infeasibility.

Given that the disruptions considered in this model are complete blockages, a subset of arrival
and departure events that are scheduled at the original timetable on the disruption area are
no longer feasible. Some activities will run through the disrupted area, and the related events
should be cancelled or retimed to occur after the disruption:

xe ≥ tend(1− ce), ∀e ∈ Edep : se = sentry,de , tstart ≤ oe ≤ tend, (3-7)

where se = sentry,de means that the station corresponding to event e should be identical with
the station representing the entry station of the disruption in direction de ∈ {up, down}.
Constant tstart denotes the start time of the disruption, while tend denotes the end time of
the disruption. Constraint (3-7) enforces reschedule time xe to be greater than tend unless
the event is cancelled (ce = 1).
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To maintain the continuity of train services in the model, the arrival event for a running
activity should be cancelled when the corresponding departure event is cancelled, which can
be described as:

ce′ − ce = 0, ∀(e, e′) ∈ Arun. (3-8)

Train service continuity is also essential for station activities, i.e., Astation = Adwell ∪ Apass.
When an arrival event is cancelled, the corresponding departure event should also be cancelled:

ce′ − ce = 0, ∀(e, e′) ∈ Astation : e ̸∈ Aturn ∩ Earr, e′ ̸∈ Aturn ∩ Edep. (3-9)

Constraint (3-9) does not apply to events with short-turn activities, as rolling stock from
other train services may be short-turned and used to continue the train’s service. Therefore,
the cancellation of event e does not necessarily result in the cancellation of event e′ when an
event has a short-turning activity.
The rescheduled time between departure and arrival events should correspond to the minimum
duration of the running activity that connects these events. This can be formulated as:

xe′ − xe ≥ La, ∀a = (e, e′) ∈ Arun, (3-10)

where La is the minimum duration of activity a, which corresponds to the minimum time to
traverse a track between stations. A maximum for running activities is set to avoid excessive
running times

xe′ − xe ≤ La,max, ∀a = (e, e′) ∈ Arun, (3-11)

where La,max is the maximum duration of activity a.
For each dwelling activity, there is a minimum duration to ensure that passengers can safely
board the train, which can be formulated as

xe′ − xe ≥ La, ∀a = (e, e′) ∈ Adwell. (3-12)

3-2-2 Constraints for each disruption phase

Typically, a disruption can be divided into three phases, i.e., the transition phase from the
original timetable to the disruption timetable, the disruption phase, and the recovery phase.
Each phase is subject to different constraints, and in this subsection, the constraints related to
the transition phase from the original timetable to the disruption timetable and the recovery
phase are discussed.

Before disruptions

Prior to a disruption, events should operate according to the original timetable without
deviation. Arrival and departure events that occur before disruptions should not be cancelled
or delayed

ce = 0, ∀e ∈ Earr ∪ Edep : oe ≤ tstart, (3-13)
xe − oe = 0, ∀e ∈ Earr ∪ Edep : oe ≤ tstart, (3-14)

where tstart denotes the start time of the disruption.
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20 Operator-centric modelling including rolling stock circulation

After disruptions

When a disruption is resolved, the train services should gradually return to their nominal
operation, i.e., run according to the original timetable. Therefore, a maximum recovery time
constant R is introduced as the upper limit. The end time of a disruption is represented by
tend, and when the maximum recovery time is added, the nominal condition should be reached
after tend + R. Arrival and departure events that originally occur after this maximum should
not be cancelled or delayed, resulting in the following constraints:

ce = 0, ∀e ∈ Edep : oe ≥ tend + R, (3-15)
xe − oe = 0, ∀e ∈ Edep : oe ≥ tend + R. (3-16)

For events that are scheduled to occur after tend + R, the corresponding arrival event of the
same running activity should not be cancelled or delayed:

ce′ = 0, ∀(e, e′) ∈ Arun : oe ≥ tend + R, (3-17)
xe′ − oe′ = 0, ∀(e, e′) ∈ Arun : oe ≥ tend + R. (3-18)

3-2-3 Constraints for headways

To ensure safe operation between trains, sufficient distance between trains, known as head-
ways, should be maintained. To introduce constraints for headways, a binary decision is
introduced to define the train order

qe,e′ =
{

1 if event e takes place before event e′;
0 otherwise.

(3-19)

Depending on the sequence of events e and e′, a minimum headway should be maintained
between trains running in the same direction. To enforce the minimum headway, the following
constraints are introduced

xe′ − xe ≥ La −M(1− qe,e′ + ce + ce′), ∀a = (e, e′) ∈ Ahead, (3-20)
xe − xe′ ≥ La −M(qe,e′ + ce + ce′), ∀a = (e, e′) ∈ Ahead, (3-21)

where M is set to be equal to the number of seconds in a day, making it possible to au-
tomatically satisfy the constraint with the big-M method. Constraint (3-20) ensures that
the minimum headway La is respected when event e occurs before event e′ (i.e., qe,e′ = 1).
Constraint (3-21) enforces that the minimum headway is maintained when event e′ occurs
before event e (i.e., qe,e′ = 0). Both constraints are automatically satisfied when e or e′ are
cancelled, i.e., ce = 1 or ce′ = 1.

There are three subsets of headways, i.e., Ahead,de,de, Ahead,ar,ar and Ahead,ar,de. Activities from
the set Ahead,de,de are used between departure events at stations where trains can overtake,
while activities from the sets Ahead,ar,de and Ahead,ar,ar are constructed between events where
the trains cannot overtake. Train services related to activities of the subset Ahead,ar,de cannot
overtake as these activities are constructed at stations with a single platform. Overtaking is
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not possible with activities of the subset Ahead,ar,ar as overtaking is not possible on an open
track.

By the definition of the sets Ahead,ar,ar and Ahead,ar,de the order is determined by the preceding
flexible headway activity. As a result, the binary decision variable qe′′,e′′′ of activities in
Ahead,ar,de and Ahead,ar,ar should be equal to the preceding flexible activity, denoted by

qe,e′ = qe′′,e′′′ , ∀(e′′, e′′′) ∈ Ahead,ar,de∪Ahead,ar,ar : (e, e′) ∈ Ahead,ar,de∪Ahead,de,de∪Ahead,ar,ar,

τe = τe′′ , τe′ = τe′′′ , snext,e = se′′ . (3-22)

Constraint (3-22) ensures that the order of activities in the set Ahead,ar,de and Ahead,ar,ar
(qe′′,e′′′) are determined by the order of the previous flexible activity (qe,e′). The previous
activity can be in the sets Ahead,ar,de, Ahead,ar,ar, and Ahead,de,de, depending on the track
layout. The constraints should apply exclusively to activities that are between the same
trains, i.e., τe = τe′′ and τe′ = τe′′′ and occur at stations that are adjacent to each other
snext,e = se′′ .

3-2-4 Constraints for flexible short-turning

Recall that flexible short-turning enables trains to select short-turning activities at any sta-
tion that facilitates short-turning. Each departure and arrival event at one of the short-turn
stations can have multiple short-turn activity candidates; however, only one short-turn ac-
tivity can be selected for each event. To determine which short-turn activity is chosen, the
following decision variable is introduced:

ma =
{

1 if short-turn activity a is selected;
0 otherwise.

(3-23)

When a short-turning activity is selected, the continuity of train services related to that
short-turning activity is changed. At the tail(a) of the short-turning activity, the train service
suspends its service to release its rolling stock. At the head(a) of the short-turning activity is
a train service that receives rolling stock to continue operating its train service. To maintain
consistent train operation, the remaining events of the train service at the tail end of the
short-turning activity train service should be cancelled, whereas the train service at the head
end of the short-turn activity should have its previous events cancelled.

When a short-turning action is chosen or a train is cancelled, operational consistency can be
maintained at arrival events by

ce′ ≤ ce +
∑

a∈Aturn,
tail(a)=e

ma + za′ ≤ 1, ∀e ∈ Earr : (e, e′) ∈ Astation, a′ ∈ Atoshunt (3-24)

ce′ ≥
∑

a∈Aturn,
tail(a)=e

ma + za′ , ∀e ∈ Earr : (e, e′) ∈ Astation, a′ ∈ Atoshunt, (3-25)

where za′ is a binary variable for shunting activity, introduced in Section 3-2-6. Constraint (3-
24) ensures that when departure event e′ is cancelled (i.e., ce′ = 1), arrival event e is cancelled,
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Figure 3-1: Possible short-turning and shunting activities at a station.

short-turned, or moved to a shunting yard. The summation term expresses all short-turning
activities that can be selected from the arrival event. Constraint (3-25) ensures that when a
short-turn activity is selected, the related departure event e′ is cancelled, as there will be no
rolling stock available for the departure event.

When a short-turning action is chosen or a train is cancelled, operational consistency should
be maintained at departure events by

ce ≤ ce′ +
∑

a∈Aturn,
head(a)=e

ma + za′ ≤ 1, ∀e′ ∈ Edep : (e, e′) ∈ Astation, a′ ∈ Afromshunt (3-26)

ce ≥
∑

a∈Aturn,
head(a)=e

ma + za′ , ∀e′ ∈ Edep : (e, e′) ∈ Astation, a′ ∈ Afromshunt. (3-27)

Constraint (3-26) ensures that when arrival event e is cancelled, departure event e′ is cancelled,
continues by selecting a short-turning activity, or rolling stock from the shunting yard is
selected. The summation term expresses all short-turning activities that can be selected from
the departure event. Constraint (3-27) ensures that when a short-turn activity is selected at
departure event e′, the previous arrival event e is cancelled to prevent the presence of two
rolling stocks for the same arrival event.

When a short-turning activity is selected, the related event of the activity should respect the
minimum duration of the short-turning action by

M(1−ma) + xe′ − xe ≥ La, ∀a = (e, e′) ∈ Aturn, (3-28)

Constraint (3-28) enforces that the minimum short-turn duration is respected when the short-
turn activity a is selected (ma = 1). When the short-turn activity is not selected (ma = 0),
the constraint automatically satisfies the big-M method.

In Fig. 3-1 an example of short-turning and shunting at station ’A’ is given. The red train,
operating in the down direction, has two short-turn activities, i.e., to the blue train and to the
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green train, and a shunting activity. Therefore, the red train has four options, i.e., continue
the service (ce′

2
= 0)), short-turn to the green train (ma = 1), short-turn to the blue train

(ma′ = 1) or move to the shunting yard (za = 1).

3-2-5 Constraints for station capacity

Stations have limitations on the number of trains that can be accommodated concurrently.
To ensure that the capacity of the stations is not exceeded, constraints are introduced to
limit the number of trains. The constraints are categorized into two groups, i.e., single track
and multiple track stations, as these stations require different formulations to describe station
capacity.

Singletrack

For stations with a single track for each train type, the correct station capacity is maintained
by the Ahead,ar,de and Afixed,ar,de headway activities and their related constraints of Section
3-2-3. These constraints ensure that a subsequent train can only arrive when the previous
train has departed from a station, satisfying the station capacity of a single-track station.

Multiple tracks

Different tracks can be available for a train at stations with multiple tracks for each train
type. A train can only arrive on a track at a station when the previous train has departed
from the same track. To determine whether a track is in use, the following binary variable is
introduced:

ϵe,e′ =
{

1 if arrival event e occurs before departure event e′;
0 otherwise.

(3-29)

An arrival event e can occur before or after departure event e′, and the related reschedule
times xe, and xe′ should obey the order of these events, which can be formulated as:

xe − xe′ ≥ −M(ϵe,e′ + ce + ce′), ∀(e, e′) = a ∈ Acap (3-30)
xe′ − xe ≥ −M((1− ϵe,e′) + ce + ce′), ∀(e, e′) = a ∈ Acap. (3-31)

Recall that Acap is the set of activities constructed between arrival and departure events at
stations with multiple tracks for each train type. Constraint (3-30) ensures that xe occurs
after xe′ when (ϵe,e′ = 0) and is otherwise automatically satisfied. Constraint (3-31) ensures
that xe′ occurs after xe when (ϵe,e′ = 1) and is otherwise automatically satisfied.

The arrival event of earlier operated trains will always occur prior to the arrival event of later
operated trains of the same type. For a station with several tracks for each train type, the
station capacity can be defined simply by considering whether an earlier train has left the
station. The capacity of a station with several tracks can be expressed as follows:
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∑
a∈Acap

tail(a)=e

ϵe,e′ ≤ χs,τtype − 1, ∀(e, e′) = a ∈ Acap : s = se′ , (3-32)

where χs,τtype is the station capacity of train type τtype. The left-hand side summation term
expresses all departure events e′ that are connected by the capacity activity with event e and
that have not occurred yet, e.g., another train service is using a platform at the station of
event e.

3-2-6 Constraints for rolling stock circulation

Rolling stock is circulated at terminal stations between trains that arrive at their destination
station and trains that depart to begin their train service. For train services that are at their
origin station, rolling stock is required, while train services at their terminal station must
dispose of their rolling stock. Arrival events have multiple ways of disposing of their rolling
stock, i.e., by selecting one of the OD-turning candidates or by moving the rolling stock to
the shunting yard, such that it can be used for later departure events. Departure events have
multiple ways to receive rolling stock, i.e., by selecting one of the OD-turning candidates or
by using reserve rolling stock from the shunting yard. To decide which activity is selected
for departure and arrival events at terminal stations, the following binary decision variable is
introduced:

za =
{

1 if rolling stock circulation activity a is selected;
0 otherwise.

(3-33)

First, the binary decision variable za can be used to formulate the circulation of rolling stock
at departure events. Unless train services are cancelled, each departing train service starting
at a terminal station requires rolling stock to operate, which can be retrieved by using rolling
stock from an arriving train service or from the shunting yard

1− ce′ = za +
∑

a′∈Acirc,
head(a′)=e′

za′ , ∀(e, e′) = a ∈ Afromshunt. (3-34)

Constraint (3-34) ensures that when departure event e′ is cancelled (ce′ = 1), no rolling stock
circulation activity is selected, as rolling stock is no longer required for the departure event.
When the departure event e′ is not cancelled (ce′ = 0), the left-hand side becomes equal to
one. Therefore, an OD-turn activity or a move from the shunting yard activity should be
selected. On the right-hand side, the variable za corresponds to the use of rolling stock from
the shunting yard, while the summation expresses the selection of one of the OD-turning
candidates at event e.
For arrival events at terminal stations, the same approach can be used as for departure events.
Unless an arrival event is cancelled, each arrival event should dispose of its rolling stock by
moving it to a departure event or by moving it to the shunting yard

1− ce = za +
∑

a′∈Acirc,
tail(a′)=e

za′ , (e, e′) = a ∈ Atoshunt. (3-35)
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Constraint (3-35) ensures that when arrival event e is cancelled (ce = 1), no rolling stock
circulation activity is selected since no rolling stock will arrive at the terminal station. When
arrival event e is not cancelled (ce = 0), the left-hand side becomes equal to one. Therefore,
an OD-turn activity or a move to the shunting yard activity should be selected. On the right-
hand side, the variable za corresponds to moving rolling stock to the shunting yard, while the
summation expresses the selection of one of the OD-turning candidates at event e.

When an OD-turn activity is selected, a minimum time between events is required, as rolling
stock cannot be instantly available after arriving at a terminal station. It takes time to make
the rolling stock available for the next train service, which can be maintained by

xe′ − xe + M(1− za) ≥ La, ∀(e, e′) = a ∈ Aodturn. (3-36)

Constraint (3-36) ensures that the difference between the reschedule time of the departure
event xe′ and the reschedule time of the arrival event xe is greater than La when an OD-turn
activity is selected (za = 1). When an OD-turn activity is not selected (za = 0), the big-M
method automatically satisfies the time duration constraint.

When retrieving rolling stock from a shunting yard, it is critical to determine whether there
is still sufficient rolling stock in the shunting yard. This can be accomplished by counting the
shunting yard activities associated with previous events at the same station

∑
(e′′,e′′′)=a′,

a′∈Afromshunt,
e′′′=e

∑
oe′′ <oe′

za′ −
∑

(e′′,e′′′)=a′,
a′∈Atoshunt,

e′′=e

∑
oe′′′ +D<oe′

za′ ≤ ie, ∀(e, e′) = a ∈ Afromshunt, (3-37)

where ie denotes the number of rolling stocks present in the shunting yard. The first term of
(3-37) expresses the number of rolling stocks that moved from the shunting yard to arrival
events. Only activities preceding oe′ are considered, as shunting yard activities occurring after
activity a are irrelevant. The second term expresses the number of rolling stocks that were
moved from arrival events to the shunting yard. Only activities up to oe′ −D are considered,
since arrival events that occur in the time window (oe′−D, oe′) are considered by OD-turning
activities.

Fig. 3-2 shows an example of the activities involved with rolling stock circulation at a terminal
station. Each arrival event at the terminal station can OD-turn to a departure event or move
to the shunting yard. For departure events, the options are to retrieve rolling stock with a
OD-turn or from the shunting yard.
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Time

Shunting yard

Running activity

OD-turn activity

Shunting activity

Terminal station

Figure 3-2: Rolling stock circulation with shunting and OD-turn activities.

3-3 Conclusions

An operator-centric event-activity model is proposed to describe the necessary relations to
ensure safe and practical operation within a railway traffic network. Three events are intro-
duced, i.e., departure event, arrival event, and inventory event, to represent the departure of
a train from a station, the arrival of a train at a station, and the inventory of reserve rolling
at stations. To describe the relations between these events, multiple activities are introduced
in five categories, i.e., train service activities, headway activities, station activities, turning
activities, and shunting activities. An extension to current models is made by including depot
entry and exit operations at terminal stations and intermediate stations with a shunting yard,
resulting in a more practical solution compared to other event-activity networks.
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Chapter 4

Passenger-centric modelling
considering train capacity and waiting

passengers

In Chapter 3, an operator-centric model is created without considering passengers. To exam-
ine the effects of rescheduling measures on passengers, the event-activity network is extended
to include events and activities that allow passengers to navigate through the network. An
accurate number of waiting passengers is considered by calculating the number of waiting
passengers based on the departure times of the trains. In addition, train capacity is consid-
ered, denying passengers to board when the train capacity is exceeded. The remainder of
this chapter is organized as follows. In Section 4-1 the model assumptions are shown and the
operator-centric event activity is extended to accommodate passenger routing through the
network. In Section 4-2, the event-activity network is described with constraints.

4-1 Passenger-centric event-activity network

The operator-centric event-activity network of Section 3-1 is extended to include detailed
passenger-related factors. To accurately describe passenger movement within the network,
new events and activities are introduced based on the work of Zhu and Goverde (2019). A
duplicate departure event is introduced to construct waiting, boarding, and transfer activities.
A new dummy event is introduced to initialize the number of waiting passengers at the start
of the optimization.

4-1-1 Model assumptions

1. The passenger origin-destination demands are assumed to be time-independent, as the
arrival rate typically would not change significantly during a relatively short period of
the full disruption.
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2. Passengers waiting at a station will always choose the first available route and will not
skip a train to take a different route. Each OD-pair has access to a maximum of one
route per departure event.

3. It may occur that passenger routes are not available because of the disruption. It is
assumed that passengers will wait at the station until the disruption is over and will
not leave the station.

4. Passenger groups are assumed to be a continuous number instead of an integer number.
As the number of passengers can become quite large, the inaccuracy can be ignored.

4-1-2 Events

The network is extended with a duplicate departure event to integrate passengers in the
model. The duplicate departure event is used to construct waiting, boarding, and transfer
activities. In comparison to the departure event, the duplicate departure event contains an
additional property, λe, which links the event to the corresponding departure event. The
attributes of the departure event can be summed up as follows:

• Original scheduled time oe. Describing the time of event e according to the original
timetable without disturbances or disruptions.

• Station se. Describing the station where the duplicate departure event e occurs.

• Train service τe. Describing the train service associated with event e. A train service is
the run of a train from the origin to the destination.

• Train line τline,e. Describing the train line associated with event e. A train line denotes
the origin, destination, intermediate stops, and operating frequency of the route. A
train line consists of several train services.

• Train type τtype,e. Describing the train type associated with event e. Typically, train
types can be categorized based on their operating speed.

• Track κe. Describing which railway track is used by event e. Railway networks can have
multiple parallel tracks to separately run trains with different operating speeds.

• Operation direction de. Describing the train running direction, which can be in the up
direction or down direction.

• Related duplicate departure event λe. Describes the departure event of which this
duplicate is a copy.

The set of duplicate departure events is denoted as Edde.

A dummy event for each station is introduced to initialize the number of waiting passengers
at the first departure event within the time window. The dummy event has the following
attributes:
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• Scheduled time oe. Describing the time of the dummy event e. The time corresponds
with the start time of the optimization.

• Station se. Describing the station where the event occurs.

The set of dummy events is denoted as Edum.

4-1-3 Activities

Activities are constructed between two different events as a directed arc. To accommodate
passenger behaviour, the following activities are formulated

• Aboarding = {(e, e′)|e ∈ Edde, e′ ∈ Edep, λe = e′}. Boarding activities allow passengers to
board the train corresponding to event e.

• Atransfer = {(e, e′)|e ∈ Earr, e′ ∈ Edep, oe′−oe ≥ La, τe ̸= τe′ , se = se′} Transfer activities
allow passengers to transfer from one train service to another train service at a station.

• Awaiting = {(e, e′)|e ∈ Edum, e′ ∈ Edum, oe′−oe ≤ D}Waiting activities allow passengers
to wait for another train service at their origin station.

4-2 Passenger-centric constraints

The extension of the passenger-centric event-activity network of Section 4-1 describes passen-
gers’ behaviours in the network through various activities, i.e., boarding activities, transfer
activities, and waiting activities. In this Section, the event-activity network is used to formu-
late passenger routes. A new formulation based on the work of Wang et al. (2015) is introduced
to accurately calculate the number of waiting passengers at stations using the reschedule time
of departure events. In addition, a formulation is introduced to deny passengers to board a
train when the train capacity is exceeded.

4-2-1 Passenger routing

The routes of passengers are required to accurately describe the impact of rescheduling mea-
sures on passengers. Passenger routes can be constructed by using origin-destination (OD)
demands. The OD-demands are assumed to be time-independent during a disruption, as no
significant changes in arrival rates are expected as we consider full disruption during a certain
period, the passenger rate typically does not change significantly during a relatively short
period. In this thesis, passengers with the same origin and destination are regarded as one
group, and each passenger group g contains the following attributes:

(Og, Dg), (4-1)

where Og is the origin of passenger group g and Dg is the destination of passenger group g.
The set of passenger groups is defined as G.
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For each passenger group, a route is defined between the origin and destination. A route is
constructed between the duplicate departure event and the arrival event at the destination
of the passenger group. Typically, the route for each passenger group is pre-given and can
be determined by using historical data. The set of activities that are taken by the passenger
group is defined by Ag,e, where e denotes the duplicate departure event at which the group
starts.
Some passenger groups will have a transfer on their route, resulting in two subsets of activities,
i.e., pre-transfer activities and after-transfer activities. Since a transfer means that passengers
will take two trains, it could be possible that only the pre-transfer activities are available. To
account for this, we have these two subsets.
Due to the disruption and the resulting rescheduling measures, some routes might become
infeasible. A binary decision variable is introduced to define whether the route of group g
starting at duplicate departure event e is available

ug,e =
{

1 if the route of group g starting at event e is available;
0 otherwise.

(4-2)

Passenger routes can only be available when all corresponding activities of the route are fea-
sible. Activities can only be feasible when the corresponding events, i.e., tail(a) and head(a),
are not cancelled

ug,e ≤ (1− ce), ∀(e, e′) = a ∈ Ag,e,∀g ∈ G, ∀e ∈ Edde, (4-3)
ug,e ≥

∑
ce − (Ng,e − 1), ∀(e, e′) = a ∈ Ag,e,∀g ∈ G, ∀e ∈ Edde, (4-4)

where Ng,e is the number of activities of Ag,e. Constraint (4-3) ensures that a passenger route
becomes unavailable (i.e., ug,e = 0) when one of the events on the route is cancelled (ce = 1).
Constraint (4-4) ensures that the route is available (i.e., ug,e = 1) when no activities of the
passenger route are cancelled.
Note that in this thesis, the activities of Ag,e that determine the variable ug,e consist of the
activities until a transfer. This will allow a passenger group to board a train and wait at the
transfer station, even when the connecting train is not available.

4-2-2 Waiting passengers

There are two key components to calculating the number of waiting passengers at each station,
i.e., the departure of trains and the passenger arrival rates. When a departure event occurs,
the number of waiting passengers will change depending on the number of boarding and
transferring passengers. Between two departure events, waiting passengers are accumulated
according to the arrival rate. Assuming that the arrival rate is constant, the number of
waiting passengers in each group immediately before a departure event can be calculated as
follows

wbefore,g,e = wafter,g,e′ + ζg(xe − xe′) + ntrans,g,e, ∀g ∈ G, e ∈ Edde (4-5)

where xe′ is the occurrence time of previous event e′; ζg is the number of passengers arriving
per second for the passenger group g, variable wafter,g(xe′) is the number waiting passengers
immediately after the previous e′, and ntrans,g,e is the number of transferring passengers.
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The total number of waiting passengers before each departure event e can be calculated by
the summation of waiting passengers in each passenger group:

wbefore,e =
∑
g∈G

wbefore,g,e, ∀e ∈ Edde. (4-6)

When a departure event occurs, some passengers board the train to travel to their destination.
The number of passengers wanting to board a train is denoted by the continuous variable
ηwant,g,e. The number of passengers wanting to board a train is constrained by the availability
of their preferred route:

ηwant,g,e ≤ wbefore,g,e + Mug,e, ∀g ∈ G,∀e ∈ Edde, (4-7)
ηwant,g,e ≥ wbefore,g,e −Mug,e, ∀g ∈ G,∀e ∈ Edde, (4-8)
ηwant,g,e ≥ 0, ∀g ∈ G,∀e ∈ Edde, (4-9)
ηwant,g,e ≤Mug,e, ∀g ∈ G,∀e ∈ Edde, (4-10)

where ηwant,g,e = 0 when the passenger route is not available (ug,e = 0). Constraints (4-
7) and (4-8) ensure that variable ηwant,g,e is equal to wafter,g,e when the route is available
(ug,e = 1). When the route is not available (ug,e = 0), the constraints are automatically
satisfied. Constraint (4-9) ensures that the number of passengers who want to board is not
negative. Constraint (4-10 ensures that the number of passengers who want to board a train
is zero when their route is not available.

The total number of boarding passengers at departure event e can be calculated by the sum
of all boarding passenger groups

ηwant,e =
∑

g

ηwant,g,e, ∀g ∈ G,∀e ∈ Edde. (4-11)

When a train is near its maximum passenger capacity, not all passengers who want to board
the train can board the train. The variable ηcan,e is introduced to represent the number of
passengers that can board the train. The number of passengers that can board the train is
equal to the minimum of the number of waiting passengers and the remaining space of the
train

ηcan,e = min(ηwant,e, nremain,e), ∀e ∈ Edde, (4-12)

where nremain,e is the remaining passenger capacity of the train at event e.

The number of passengers per group that can board a train is denoted by ηcan,g,e, and the
number of passengers that can board a train at a departure event can be summed up by all
groups as

ηcan,e =
∑
g∈G

ηcan,g,e, ∀e ∈ Edde. (4-13)

When a departure event occurs, some waiting passengers board the train, and the number of
waiting passengers after the boarding process is:

wafter,g,e = wbefore,g,e − ηcan,g,e, ∀g ∈ G, ∀e ∈ Edde. (4-14)
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The remaining capacity of a train depends on the total capacity of the train, the number of
alighting passengers, and the number of passengers on board, which can be described by

nremain,e = C − nafter,e′ + nalight,e, ∀e ∈ Edde. (4-15)

where C is the maximum train capacity; nafter,e′ is the passengers on board of the train after
its previous departure event e′ and nalight,e is the number of alighting passengers.

The number of alighting passengers can be calculated by determining the passenger groups
with a transfer or destination at the station of the current event by

nalight,e =
∑

e′∈τpre

∑
g∈Galight,e′

ηcan,g,e′ , ∀e ∈ Edde, (4-16)

where τpre,e denotes the preceding events e′ of the corresponding train and Galight,e denotes the
set of passenger groups with a transfer or destination at event e. Constraint (4-16) calculates
the total number of alighting passengers at event e by summing up the total number of
boarded passengers groups at previous events e′ of the corresponding train service with a
transfer or destination at station e.

The number of passengers on board a train after a departure can finally be described by

nafter,e = nafter,e′ − nalight,e + ncan,e, ∀e ∈ Edde. (4-17)

Using the number of waiting passengers, the maximum congestion level (Yin et al. (2021))
can be determined at each station, denoted as ξs. The congestion level can be determined by

ξs ≥ wbefore,e/Scap,s, ∀s ∈ S,∀e ∈ Edde : s = se (4-18)

where Scap,s is the station capacity of station s and wtotal,e is the number of waiting passengers
before each event. The set S denotes all stations.

4-3 Conclusions

In this chapter, a passenger-centric event-activity network is proposed to determine an accu-
rate number of waiting passengers considering the capacity of trains. First, the event-activity
network is extended with two events, i.e., a duplicate departure event and a dummy event.
The duplicate departure event is used to support the boarding and transferring of passengers.
Boarding, waiting, and transfer activities are constructed between departure and duplicate
departure events in the event-activity network to allow passengers to navigate through the
network. By using the passenger-centric event-activity network, a routing formulation is de-
veloped to determine if passenger routes are still feasible with the considered rescheduling
measures. A new detailed waiting passenger formulation is proposed to extend the passenger-
centric model by considering the effects of the reschedule time on the number of passengers
while considering train capacity.
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Chapter 5

Solution methods including an ALNS
algorithm

The passenger-centric railway disruption management problem based on the event-activity
model presented in Chapters 3 and 4 can be expressed as a mixed-integer linear programming
(MILP) problem to determine a new timetable when disruptions occur. An MILP formulation
requires linear constraints containing continuous and integer variables. The operator-centric
problem already consists of linear constraints, continuous variables, and integer variables.
Therefore, it can be solved directly. The passenger-centric constraint problem requires trans-
formations before it can be solved as an MILP problem. A formulation is required to deter-
mine the train order at stations to calculate the detailed number of passengers. Inspired by
the well-researched vehicle routing problem (VRP)(Adewumi and Adeleke (2018)), we handle
train ordering in the formulation by the VRP flow constraints, so that many advanced solu-
tion approaches in VRP can be used. The resulting optimization problem can be transformed
into an MILP problem. However, the passenger-centric MILP formulation introduces a sig-
nificant number of binary variables, which makes the MILP problem hard to solve. Adaptive
large neighborhood search (ALNS) is a widely used metaheuristic for solving VRPs, which
is capable of balancing solution time and quality with destroy and repair operators. In this
section, the ALNS algorithm is adapted to be compatible with the passenger-centric model,
and a railway disruption management algorithm is developed.

The remainder of this chapter is organized as follows. In Section 5-1 two objective func-
tions are introduced for the operator-centric and passenger-centric model. In Section 5-2
the requirements for an MILP formulation are shown. In Section 5-2-4 the MILP solution
method is introduced for the operator-centric and passenger-centric model. In Section 5-3 an
ALNS metaheuristic is proposed for the transformed passenger-centric model to obtain faster
solution times.
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5-1 Problem statement

An optimization problem requires an objective function that quantifies the performance of
the obtained solution. For the railway traffic disruption rescheduling problem, the optimiza-
tion can have different objective functions depending on the goal of the user. In this thesis,
two objective functions are considered, i.e., for the operator-centric and the passenger-centric
model. The operator-centric objective function minimizes train delays and cancelations, en-
suring a minimum deviation from the original timetable. The passenger-centric objective
function extends the passenger-centric objective function by also considering the station ca-
pacity, improving passenger satisfaction.

The operator-centric objective function is formulated as follows

J =
∑

e∈Earr

Ψdelay(xe − oe) +
∑

e∈Earr

Ψcancelce, (5-1)

s.t. constraints (3-5) - (3-37) (5-2)

where wdelay is the weight related to the reschedule time for each arrival event, and wcancel is
the weight of the binary cancellation variable for each event. With the weights, a trade-off
can be made between the number of cancellations and delays. Adding a high weight to the
cancellation weight wcancel will favor a cancellation above a delay when the delay reaches a
certain threshold (Zhan et al., 2015).

The passenger-centric objective function is formulated as follows

J =
∑

e∈Earr

Ψdelay(xe − oe) +
∑

e∈Earr

Ψcancelce +
∑

∀s∈S

Ψscξs, (5-3)

s.t. constraints (3-5) - (3-37) and (4-1) - (4-17) (5-4)

where Ψsc is the weight of the maximum station capacity for each station. A higher value for
the station capacity weight Ψsc will result in reduced congestion levels at stations; however,
it will decrease operator-centric performance as more cancellations and delays occur. The
optimization should satisfy the constraints of (5-4) consisting of the constraints introduced
in the operator-centric model of Section 3-2 and the passenger-centric model of Section 4-2.

5-2 Mixed-integer linear programming transformations

In this section, two transformations are introduced to be able to directly solve the passenger-
centric problem, i.e., the transformation of event orders and the transformation of min func-
tion (4-12). The order of events is handled by the general idea of VRP. The min function is
transformed into linear inequialities by using the method in Bemporad and Morari (1999).
Finally the problem can be transformed into an MILP problem.

5-2-1 Introduction to VRP

The goal of the vehicle routing problem (VRP) is to connect nodes or customers in the most
efficient manner to minimize the objective function, e.g., minimization of distance or time.
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The VRP approach has the advantage of being extensively studied, making it possible to find
efficient algorithms to solve the problem (Adewumi and Adeleke (2018)). The general VRP
can be formulated as

min z =
n∑

i=1

n∑
j=1

dijxij

subject to
n∑

j=1
xij = 1, ∀i ∈ {1, 2, . . . , n} (5-5)

n∑
i=1

xij = 1, ∀j ∈ {1, 2, . . . , n} (5-6)

xij ∈ {0, 1}

where dij is the distance from i node to j node. The binary variable xij determines whether
the route from i to j is selected. The objective function is denoted as z, and in the generalized
case minimizes the total distance between the nodes. Constraints (5-5) and (5-6) ensure that
each node is visited once. These constraints can be used to describe the event order at
stations. For each station, the order of events can be regarded as a vehicle routing problem
(VRP), in which each duplicate departure event is regarded as a node, and the goal is to
connect the departure events in the most efficient manner to minimize the objective function.

An issue that can arise when optimizing a VRP is the generation of subtours, in which
multiple closed routes are generated instead of a single route. To eliminate subtours, Miller
et al. (1960) introduced an approach in which time variables are assigned to each visited
node. A node can only be visited if the previous node has a lower time; hence, it is impossible
to form subtours. As station events already have assigned time variables, this approach is
suitable for station event ordering to eliminate subtours, as no significant adjustments are
required.

5-2-2 Station event ordering

Recall that in (4-5) a formulation was introduced to calculate the number of waiting passengers
before each event by using the time of the previous event xe. In the work of (Wang et al.
(2015)) this formulation can be used directly, as there is no reordering in their urban railway
network. Using a predetermined order of events, the preceding event is known and can be
expressed as a linear constraint. To accurately describe the number of waiting passengers
in an event-activity network with reordering, a linear formulation is required to describe the
order of events at each station to determine which event precedes which event.

In this thesis, a binary decision variable is introduced to determine whether the event e is the
preceding event of event e′ to represent the order of the events at each station:

αe,e′ =
{

1 if event e is the previous occurring event of e′ at the same station
0 otherwise.

(5-7)

The variable αe,e′ is constructed between each duplicate departure event at each station.
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To enforce the definition of the binary variable αe,e′ in (5-7) the reschedule times must satisfy

xe < xe′ + M(1− αe,e′), ∀e, e′ ∈ Edde ∪ Edum : se = se′ . (5-8)

Constraint (5-8) ensures that event e occurs before event e′ when αe,e′ = 1. Otherwise, e
is not the previous event of e′ and the constraint is automatically satisfied with the big-M
method. The constraint is expressed as less than (<) instead of less than or equal (≤) to
ensure no subtours are created.

Fig. 5-1 shows an example with 3 examples with the usage of variable αe,e′ . The horizontal
axis represents time. Therefore, αe,e′ = 1, as e is the previous event of event e′, and αe′,e′′ = 1,
as e′ is the previous event of e′′.

e e' e''αe'',e'=0

αe,e'=1 αe',e''=1

Time

αe',e=0

αe,e''=0

αe'',e=0

Figure 5-1: Event ordering of three events.

The general VRP formulation states that a tour must be closed, i.e., the starting node must
also be the ending node. As the station event order is in the time domain, the tour cannot
be completed as the ending node cannot occur before the starting node. Therefore, the
formulation is adjusted to fit an open tour. The event order at each station can be found
by determining for each event e′ which event is the previous event e. Except for the dummy
event, each event e′ has a previous event that occurred. The summation of binary decision
variables satisfies ∑

e,se=s

∑
e′,se′ =s

αe,e′ = Πse , ∀s ∈ S (5-9)

where Πse is the number of duplicate departure events at station se and S is the set of stations.

Each event has at most one previous and one following event and satisfies∑
e∈E,e ̸=e′,se=se′

αe,e′ ≤ 1 e′ ∈ Edde, (5-10)

∑
e′∈E,e ̸=e′,se=se′

αe,e′ ≤ 1 e ∈ Edde. (5-11)
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Constraint (5-10) ensures that events have one single previous event. Constraint (5-11) ensures
that events have one single subsequent event. To account for the first and last events that
occur, both constraints are set as an inequality.
The event order also affects the calculation of waiting passengers, as variable wbefore,g,e′ is
dependent on the variable wafter,e of the previous event. To account for the different event
orders, the continuous variable wbefore,g,e,e′ is introduced to represent the number of passengers
waiting for event e′ after event e. The number of waiting passengers before event e′ can be
formulated as:

wbefore,g,e,e′ ≤Mαe,e′ , ∀e, e′ ∈ Edde : se = se′ , (5-12)
wbefore,g,e,e′ ≥ 0, ∀e, e′ ∈ Edde : se = se′ , (5-13)
wbefore,g,e,e′ ≤ wafter,g,e + ζg(xe − xe′) + M(1− αe,e′), ∀e, e′ ∈ Edde : se = se′ , (5-14)
wbefore,g,e,e′ ≥ wafter,g,e + ζg(xe − xe′)−M(1− αe,e′), ∀e, e′ ∈ Edde : se = se′ . (5-15)

Constraint (5-12) ensures that wbefore,g,e,e′ = 0 when the corresponding event e is not the
previous event of e′, i.e., αe,e′ = 0. Constraint (5-13) ensures that wbefore,g,e,e′ is equal to or
greater than zero, as the waiting passenger cannot be negative. Constraints (5-14) and (5-15)
ensure that wbefore,g,e,e′ is equal to the number of waiting passengers and arriving passengers
when event e′ succeeds e, i.e., αe,e′ = 1.
Finally, the total number of waiting passengers before event e′ can be determined by

wbefore,g,e =
∑

e∈Edde,se=se′

wbefore,g,e,e′ , ∀e′ ∈ Edde. (5-16)

Constraint (5-16) sums all possible wbefore,g,e,e′ to account for the different possible event
orders. According to (5-12) - (5-15), one variable wbefore,g,e,e′ will contribute to the total,
while the rest will be zero.

5-2-3 Transformation of min function

Another non-linear term is introduced when calculating the number of boarding passengers
in (4-12):

ηcan,e = min(ηwant,e, nremain,e), ∀e ∈ Edde, (5-17)

A linearization of the minimization of boarding passengers (4-12) is required to formulate an
MILP problem. A binary decision variable is introduced to define whether wbefore,e is smaller
than nremain,e.

y =
{

1 if ηwant,e is smaller than nremain,e;
0 otherwise.

(5-18)

When y = 1, ηwant,e should be smaller than nremain,e, while nremain,e should be smaller than
ηwant,e when y = 0. The following constraints are used to enforce the definition of y:

nremain,e − ηwant,e ≤My, ∀e ∈ Edde, (5-19)
ηwant,e − nremain,e ≤M(1− y), ∀e ∈ Edde. (5-20)
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To ensure that ηcan,e is equal to the minimum of nremain,e and ηwant,e

ηcan,e ≤ ηwant,e, ∀e ∈ Edde, (5-21)
ηcan,e ≤ nremain,e, ∀e ∈ Edde, (5-22)
ηcan,e ≥ ηwant,e −M(1− y), ∀e ∈ Edde, (5-23)
ηcan,e ≥ nremain,e −My, ∀e ∈ Edde. (5-24)

Constraints (5-21) and (5-22) ensure that ηcan,e will never be larger than wbefore,e and ηwant,e.
Constraints (5 − 23) and (5 − 24) ensure that ηcan,e is greater than or equal to wbefore,e and
ηwant,e depending on the binary decision variable y.

5-2-4 MILP formulation

The MILP formulation is a preferred formulation for railway disruption management problems
(Cacchiani et al. (2014)), as MILP approaches provide fast computational times and can be
solved efficiently by using existing solvers, compared to, e.g., non-linear formulations. In
standard form, the MILP model can be described as

min
x

cT x

s.t. Ax ≤ b

x ≥ 0 (5-25)
xi ∈ Z, i ∈ {1, . . . , nb}
xj ∈ R, j ∈ {nb + 1, . . . , nb + nr}

where c is a constant weight vector and x is the variable vector, consisting of nb integer (or
binary) variables and nr continuous variables. The coefficients of the inequality constraints
are contained in the matrix A. Equality constraints can be preserved by rewriting them as
inequality constraints.

Combining the operator-centric objective with the operator-centric constraints, the passenger-
centric MILP problem can be solved directly, since the constraints introduced in Section 3-
2 are formulated as linear constraints. To solve the passenger-centric model as an MILP
problem, the station event ordering and the min function transformation are required.

5-3 ALNS algorithm

The MILP solution method provides a way to solve the railway disruption problem directly
and accurately. For small-scale networks, the MILP approach can be applied practically;
however, for large-scale networks, the number of binary variables grows exponentially, result-
ing in long solution times and making the MILP method not suitable to use in real-time.
Therefore, we seek a solution method that efficiently addresses the discrete combination opti-
mization problem. Ropke and Pisinger (2006) introduced adaptive large-scale neighborhood
search (ALNS) as an extension of the large neighborhood search heuristic for a VRP. ALNS
can efficiently explore a large solution space with properly designed destroy and repair oper-
ators. Since the formulation introduced to handle the event ordering at stations (Sec. 5-2-4)
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is based on the VRP formulation, the ALNS algorithm is a suitable option. A part of the
literature has focused on the application of the ALNS algorithm to railway scheduling prob-
lems. In the work of Yin et al. (2021), ALNS is applied effectively to a rail transit network
scheduling problem in which the emphasis is on coordinating the passenger flows of different
train lines to reduce crowding. Dong et al. (2020) applied the ALNS algorithm with a wide
variety of operators to a train stop planning problem. Their method handles a mixed-integer
non-linear programming problem. In this section, an adaptation is made to the destroy and
repair algorithms so that they can be applied to the disruption rescheduling problem.

5-3-1 Introduction

ALNS is developed based on the large neighborhood search (LNS) algorithm (Shaw (1998)),
which explores the solution space using a destroy and repair operator. A destroy operator
destroys a portion of a feasible solution, resulting in an infeasible solution that requires
a repair operator to become feasible again. The destroy operators are responsible for the
exploration of the solution space, while the repair operator tries to find the best solution
within the neighborhood. By alternating between the destroy and repair operators, LNS can
explore large parts of the solution space. Although LNS works with only one destroy and
repair operator, ALNS provides an adaptive layer on top of LNS, where multiple destroy and
repair operators can be selected based on the efficiency of each operator. An adaptive weight
is made for each operator that influences the chance of being selected for the current iteration.
ALNS can produce solutions more diversified than LNS because different parts of the solution
can be destroyed.

5-3-2 Initial solution generation

The initial solution of ALNS should be properly designed, as it has a significant impact on the
performance of the algorithm. For the railway disruption rescheduling problem, the initial
order of the original timetable is a solid starting point. Typically, trains should operate
according to the original timetable before the disruption occurs. Using the original ordering
gives a solution that is most relevant to the original situation, while the destroy and repair
operators can gradually develop a new solution with diverging event orders.

5-3-3 Destroy operators

To destroy a part of the solution found in each iteration, three destroy operators are used,
i.e., destroy event orders in a random station, destroy event orders in a random train, and
destroy event orders first cancelled train line.

Destroy event orders at a random station

The destroy station event order operator randomly selects a station and partially destroys the
order of events that occur within a time window. The destroy operator can be formulated as

{ae,e′ |xe − xe′ ≤ ∆, se = se′ , se = s, } (5-26)
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where the constant ∆ is the maximum allowed difference between events that are part of the
destroy operator and s is the selected station of the destroy operator. The constant ∆ must
be chosen carefully, as a too large value can result in a large destroyed solution, resulting in
long repair solution times, especially at stations with many departure events. On the other
hand, a too small ∆ results in too few events being able to be destroyed, and the approach
might have a hard time finding the global optimum. The operator is particularly efficient at
stations with several departure events and can ensure that the order of events for lines with
transfers can be rearranged.

In Fig. 5-2a, a visual example of the destroy operator is given. The black dots are events.
The gray ovals denote the destroyed events. Only the orders of events at one station that
occur within ∆ from each other are destroyed.

Destroy event orders in a random train line

At each station the train line passes, the destroy line order operator destroys the previous
and next events of the train line. This destroy operator is particularly useful for trains that
can have a short-turn in the rescheduled timetable, as a short-turn typically causes a delay
for a large part of the train service. To ensure that short-turning is possible, each previous
and next event is destroyed, allowing the departure times of the line to be delayed past the
other events. The operator can be described as

{ae,e′ ∩ ae′′,e|τe = τr, se = se′ , se = se′′} (5-27)

where τr is the train selected randomly.

In Fig. 5-2b, a visual example of the destroy operator is given. The black dots are events.
The gray ovals denote the destroyed events. The order of events around the train line is
destroyed.

Destroy event orders first cancelled train line

Many train conflicts occur at the beginning of the disruption, which may result in the ALNS
algorithm remaining in the transition stage (more information about the transition stage
can be found in 5-3-4). Trains at the start may be canceled because there are no other
rescheduling measures available due to the fixed order. This operator will provide more
solution space by destroying the event order around the selected train. In this operator, the
train that corresponds to the first occurring cancelled event is selected. The event destroying
component is similar to the destroy random train line operator:

{ae,e′ ∩ ae′′,e|τe = τf , se = se′ , se = se′′} (5-28)

where τf is the train corresponding to the first occurring event that is cancelled.

5-3-4 Repair operator

The repair operator is used to solve the destroyed solution directly as an MILP formulation.
Within the solution space of the destroyed solution, the repair operator will find the optimal
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(b) Destroy event order around a train line.

Figure 5-2: Destroy operators for ALNS.

solution. The primary reason for solving the destroyed solution directly is that the event
ordering is only a component of the total problem. It is challenging to build a heuristic repair
operator because the event ordering is heavily dependent on the rescheduling measures, i.e.,
the rescheduling measures influence the sequence of events and vice versa.

At the beginning of a disruption, already departed trains cannot be cancelled, as the trains
already left their station of origin. Compared to trains that still need to depart, the options to
avoid conflicts are reduced to short-turning, relocating to a shunting yard at an intermediate
station, or delaying them until the disruption is resolved. For the MILP approach, no problems
arise as the rescheduling measures can be applied without limitations; however, for the ALNS
approach, the rescheduling measures are restricted to the fixed station event order, which
may result in infeasibility of the model. To overcome the infeasibility of the model, the phase
constraint in (3-13) can be relaxed. In general, cancellation of past departures should be
avoided; hence, the associated variables are moved to the objective function with a large
penalty, called the request bank. The new optimization problem allows undesirable solutions
to be generated to avoid infeasibility during the start of the ALNS algorithm. This stage is
also known as the transition stage (Ropke and Pisinger (2006)).

The relaxed objective function can then be written as:

min
∑

e∈Earr

Ψdelay(xe − oe) +
∑

e∈Earr

Ψcancelce +
∑

∀s∈S

Ψscξs

∑
∀e∈Earr∪Edep:oe≤tstart

ceγ, (5-29)

s.t. constraints (3-5) - (3-12) and (3-14) - (3-37) and (4-3) - (4-17) (5-30)

where γ is the weight of cancellations from past events. The weight must be chosen to be
γ ≫ Ψcancel, Ψdelay, Ψdelay to ensure that past events are cancelled when no feasible options
are possible.

Note: The past cancellation can also be seen as a practical implementable solution, where a
past cancellation means that a train must go to the nearest shunting yard.
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5-3-5 Adaptive searching strategy

The main part where ALNS extends from LNS is the adaptive layer that is used to select
operators. Based on the weights, the algorithm chooses an operator where the weights can
dynamically change during the search process based on the past success. Using the roulette
wheel principle, the methods can be selected. The roulette wheel can be formulated as (Ropke
and Pisinger (2006)):

wj∑3
i=1 wi

, (5-31)

wj is the probability of selecting heuristic j. Since there are three destroy operators, the
probability can be determined by dividing by the sum of all the weights.

The power of ALNS is the adjustment of weights that are adjusted based on the current per-
formance of a destroy operator. To determine the performance of the operator, the parameter
σ is introduced, which resembles the reward that is given when an operator is successful, i.e.,
the heuristic finds a new best solution. As the operators themselves are random and their
performance can be highly dependent on the randomness of the operator, the weights of the
operators should not be updated at each iteration, as this can lead to fluctuating results.
Therefore, segments are introduced over which the average is taken to better reflect the per-
formance of the operator. A segment is a predefined number of iterations of ALNS over which
the weights are updated. For example, a segment could be defined as 15 iterations, such that
each weight can be updated with the performance of an average of 5 iterations, if we have
3 destroy operators. To calculate the new weights at the end of each segment, the following
formula is introduced

wi,j+1 = wij(1− r) + r
πi

σi
, (5-32)

where wij , wi,j+1 are the weight of heurstic i, for segment j and j + 1. Variable πi is the
performance of the heurstic i during segment j, which depends on the parameter σ. Parameter
θi, resembles the number of selection of heuristic during i.

Algorithm 1 shows an overview of the ALNS algorithm. In line 1 the inputs are given. In
line 2 the best order ab is set as the initial order. In line 3 an initial solution x is made using
the MILP formulation and the initial ordering. In line 5 the iterations are started. In line 6
one of the destroy operators is selected based on the weights. In line 8 the best order ab is
destroyed with destroy operator d. In line 9 the solution time is set to zero. In lines 10-12 the
destroyed order ad is used as input to solve the MILP problem until a solution is found or the
maximum iteration time tmax is met. In lines 13-16 the variables are replaced when the new
solution of the current iteration is better than the best solution. In line 18 the algorithm is
stopped when a number of iterations is reached or the maximum algorithm time is exceeded.
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Algorithm 1 ALNS Algorithm
1: Input: the initial ordering a, MILP model m
2: ab ← a;
3: xb ← r(m(ab));
4: w ← (1, ..., 1);
5: repeat
6: select destroy operator d ∈ Ω using w;
7: select repair operator r;
8: ad ← d(ab);
9: t← 0;

10: while t < tmax do
11: xt ← r(m(ad);
12: end while
13: if c(xt) < c(xb) then
14: xb ← xt;
15: ab ← a ∈ xb;
16: end if
17: update w;
18: until Stop criterium is met
19: return xb, ab

5-4 Conclusions

In this chapter, two objective functions are proposed, i.e., for the operator-centric model and
the passenger-centric model. To directly solve the passenger-centric problem, two transfor-
mations are introduced, such that the passenger-centric model can be directly solved as an
MILP problem. The transformation for handling train orders at the stations introduces a
significant number of binary variables. An adaptive large neighborhood search is developed
to improve the solution speed of the original MILP problem. The ALNS approach is modified
to fit the train ordering formulation of the disruption management model. Three heuristic
destroy operators are introduced to explore the solution space. The ALNS offers a way to
make a trade-off between solution performance and quality.
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Chapter 6

Case study

In this chapter, three case studies are considered, i.e., to illustrate the effectiveness of rolling
stock circulation, the passenger-centric model, and the ALNS algorithm, respectively. The
remainder of this chapter is organized as follows. In Section 6-1 the general setup of the case
studies is shown. In Section 6-2 the performance of the rolling stock circulation is tested
using the operator-centric model. In Section 6-3 the novel passenger-centric formulation is
evaluated. In Section 6-4 a comparison is made between the MILP approach and the ALNS
algorithm. In Section 6-5 the conclusions of the case studies are drawn.

6-1 Set-up

For the case studies, we use a part of the Dutch railway network between the cities Utrecht
(Ut) and ’s-Hertogenbosch (Ht) are considered. In practice, five train lines operate every 30
minutes in both directions on the considered railway network. The train lines have different
starting and terminal stations, as shown in Table 6-1. Each starting and terminal station is
equipped with a shunting yard and sufficient trains to ensure normal operation. To evaluate
the impact of disruptions and rescheduling measures on passengers and rolling stock, several
significant stations outside the Ut-Ht segment are also considered. In Fig. 6-1 the railway
network is shown.

For each case study, we will use two scenarios, i.e., the large-scale case study with all 5 lines
operating of Table 6-1, and the small-scale case study with 3 lines operating, consisting of
trains SP6000, SP6900 and IC3500.

A more detailed layout of the tracks between Ut and Ht is given in Fig. 6-2. The blue tracks
are designated for regional trains (Sprinters), which stop at each intermediate station between
Ut and Ht. The red tracks are designated for intercity trains that only make stops at Ut and
Ht. A large part of the segment consists of 2 tracks in each direction, allowing the sprinters
and intercities to run separately. The tracks around Culemborg (Cl) and Zaltbommel (Zbm)
stations are single track in each direction, meaning that sprinters and intercities must use the
same track. More detailed information on each train line is given in Table 6-1.
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For the optimization the time window between 8:00 and 11:00 is considered. A disruption is
set to occur between 8:52 and 10:00 between the Culemborg (Cl) and Geldermalsen (Gdm)
stations. The disruption is a full blockage, i.e., both tracks are not available, and no railway
traffic is possible between Cl and Gdm until the disruption is over. The main parameters for
this optimization are listed in Table 6-2.
All case studies are solved in Python using the optimization software GUROBI release 9.5.0.
The experiments are performed on a computer with an Intel Core i7-9750H CPU and 16GB
RAM.
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Figure 6-1: The considered railway network.
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Intercity trains

Regional trains

Combined

Ut
Utvr Htn Cl

Ht

Utl Htnc

Gdm

Zbm

Operation direction

Figure 6-2: Schematic layout of a railway line in one operation direction.

Table 6-1: Information and parameters of the train lines.

Train line Train type Terminal
station 1

Rolling
stock 1

Terminal
station 2

Rolling
Stock 2

IC800 Intercity Asa 4 Ec 2
IC3500 Intercity Asa 4 Ec 4
IC3900 Intercity Shl 4 Ec 3
SP6000 Sprinter Ut 2 Tl 3
SP6900 Sprinter Ut 1 Ht 3

Table 6-2: Parameters for the optimization.

Parameters Value
Minimum headway 120 s
Short-turn 300 s
Minimum dwell time 30 s
Recovery time 3600 s
Maximum delay 1800 s

6-2 Case study A - Performance of rolling stock circulation

To compare the effectiveness of including rolling stock circulation, a model is used that as-
sumes infinite reserve rolling stock. In theory, these models give good results; however, when
applied in practice, trains may be cancelled due to a lack of reserve rolling stock. To evaluate
the practicability of the infinite rolling stock solution, a second optimization cancels trains at
their origin station when there would be insufficient rolling stock in real-life. Furthermore,
two optimizations are conducted to evaluate the effectiveness of rolling stock circulation, i.e.,
an optimization with rolling stock circulation without shunting at intermediate stations and
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an optimization with rolling stock circulation with shunting at intermediate stations. In Table
6-5 the stations with shunting-yards are shown.

The four optimizations are conducted on the large-scale case study using the MILP formula-
tion of (5-1). The weights for the objective function are set to Ψcancel = 100 and Ψdelay = 0.1.
The generated disruption timetables are shown in Fig. 6-3 and Fig. 6-4, and the found ob-
jectives are shown in Table 6-3. To provide a clear overview, the stations between Ut-Ht are
shown in the disruption timetables. The complete disruption timetables with all the stations
can be found in Appendix A-1. In the timetables, the red rectangle represents the disruption
between stations Cl and Gdm. The solid lines represent the new paths of the trains. The
dashed lines show the original path of the trains that are cancelled. The solid lines show the
original path of trains that are delayed.

Table 6-3: Objective functions

Best
Objective Cancellations Delay

Infinite rolling stock 3450 12 22498
Simulated with infinite rolling stock 6018 36 24183
Rolling stock circulation 5245 32 21453
Rolling stock circulation with intermediate shunting 4481 31 13812

When comparing the model with infinite rolling stock and the practical solution, a significant
increase in cancellations can be seen. In the down direction, the third IC3900 (green) train
that short-turns at Htn is cancelled. Furthermore, a difference in operation can be seen for
the IC800 (red) after the disruption has ended. Additionally, in the up direction, the third
IC3500 (purple) train, and the second and third IC3900 trains that short-turns at station Zbm
are cancelled. Looking at Fig. 6-4 most of the train lines appear to have sufficient rolling
stock; however, the intercities have additional stops after stations Ut and Ht, e.g., Ec and
Asa, which require additional running time before the trains can be served as rolling stock
in the opposite direction. In Appendix A-1 the full disruption timetable is shown. Table 6-3
shows that the practical solution has an increase of 74% in best objective when compared
to the infinite rolling stock optimization. The increase in the best objective is mainly due
to an increase in cancellations from 12 to 36. The simulated model attempts to apply the
same disruption timetable as the model with infinite rolling stock; however, many trains are
cancelled due to a lack of reserve rolling stock at the terminal stations.

The rolling stock circulation without intermediate shunting model can lower the best objective
value by considering the reserve rolling stock in the optimization. When comparing the
disruption timetables of Fig. 6-3b and Fig. 6-4a, it can be observed that the IC3500 (purple)
running from Ht to Gdm between 9:00 and 9:30, which short-turns at Gdm, is cancelled in
the model that considers rolling stock circulation. By considering rolling stock, the model is
able to strategically cancel the train services between 9:00 and 9:30, in order to keep reserve
rolling stock for the run at 10:00 from Ht to Ut.

The model with rolling stock circulation and intermediate shunting shows great improvement
compared to the model with rolling stock circulation without intermediate circulation. The
best objective is reduced from 5245 to 4481 by reducing one cancellation and reducing the
total arrival delay from 21453 to 13812 seconds. Especially, the reduced total arrival delay is
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(a) Generated timetable with infinite rolling stock.
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(b) Practical implementation of timetable with infinite rolling stock.

Figure 6-3: Generated timetables with infinite rolling stock.
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(a) Generated timetable with rolling stock circulation.
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(b) Generated timetable with rolling stock circulation and intermediate shunting actions.

Figure 6-4: Generated timetables with rolling stock circulation.
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remarkable and is mainly due to the ability to store rolling stock at the Ut at the begin of
the disruption. As seen in Fig. 6-4a, the IC3500 running in the down direction between 9:00
and 9:30 is run with a significant delay. The model without intermediate shunting can only
short-turn or delay the train until after the disruption, as the train has already departed from
its origin station and, therefore, cannot be cancelled. Instead, the model with intermediate
shunting is able to store this rolling stock at the station Ut for later usage and avoids running
the train with significant delays.

6-3 Case study B - Performance of passenger-centric model

To solve the MILP problems of (5-3) and (5-4), the passenger OD-demands are required.
The passenger-demands in this case study are based on the OD-demands as shown in Table
6-4. The passenger OD data are generated based on publicly available data on the number
of boarding passengers per station in 20191. The morning travel peak is estimated at 20% of
the total number of passengers per day. Between several stations, the OD-demand is set to
zero because a faster route exits outside the scope of this network; e.g., between station Ac
and Shl, there is a direct line that provides a faster route that is not part of this network. To
calculate the congestion level, the passenger capacity at each station should be known. The
station information is shown in Table 6-5, and the station capacity is generated based on the
size of the station.

Table 6-4: Origin-destination demands per day.

Stations Ac Asa Shl Az Asb Ut Utvr Utl Htn Htnc Cl Gdm Zbm Ht Tp Tl Ec
Ac 589 0 0 0 3394 677 326 687 435 780 454 337 2480 122 144 2287
Asa 589 0 0 0 596 119 57 120 76 137 80 59 435 21 25 401
Shl 0 0 503 236 1629 325 157 329 209 374 218 162 1190 59 69 1097
Az 0 0 503 153 1060 211 102 214 136 244 142 105 774 38 45 714
Asb 0 0 236 153 497 99 48 100 64 114 66 49 363 18 21 334
Ut 3394 596 1629 1060 497 685 330 695 440 789 459 341 2509 124 146 2313
Utvr 677 119 325 211 99 685 66 138 88 157 92 68 500 25 29 461
Utl 326 57 157 102 48 330 66 67 42 76 44 33 241 12 14 222
Htn 687 120 329 214 100 695 138 67 89 160 93 69 508 25 29 468
Htnc 435 76 209 136 64 440 88 42 89 101 59 44 322 16 19 297
Cl 780 137 374 244 114 789 157 76 160 101 105 78 577 28 33 532
Gdm 454 80 218 142 66 459 92 44 93 59 105 46 335 17 19 309
Zbm 337 59 162 105 49 341 68 33 69 44 78 46 249 12 14 230
Ht 2480 435 1190 774 363 2509 500 241 508 322 577 335 249 90 106 1690
Tp 122 21 59 38 18 124 25 12 25 16 28 17 12 90 5 83
Tl 144 25 69 45 21 146 29 14 29 19 33 19 14 106 5 98
Ec 2287 401 1097 714 334 2313 461 222 468 297 532 309 230 1690 83 98

The passenger optimization is conducted on the small-scale case study as the large-scale case
study was unable to solve within an acceptable time. By reducing the number of trains, the
complexity is significantly reduced and will still give a good evaluation of the effectiveness of
the overcrowdedness.

To compare the effectiveness of the passenger-centric model, two optimizations are carried
out with different weighted objective functions (5-3). As a benchmark, the weights are set to

1https://dashboards.nsjaarverslag.nl/reizigersgedrag/
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Table 6-5: Station information.

Stations Passenger capacity Short-turning Shuting-yard
Ac 5000 Yes Yes
Asa 5000 Yes No
Shl 5000 Yes Yes
Az 5000 Yes No
Asb 5000 Yes No
Ut 5000 Yes Yes
Utvr 1000 No No
Utl 500 No No
Htn 1000 Yes No
Htnc 500 No No
Cl 1000 Yes No
Gdm 1000 Yes No
Zbm 1000 Yes No
Ht 5000 Yes Yes
Tp 500 Yes No
Tl 500 Yes No
Ec 5000 Yes Yes

Ψcancel = 100, Ψdelay = 1 and Ψsc = 0. This objective function shows the congestion levels at
stations when only train delays and cancellations are included in the objective function. The
weights of the second objective function are set to Ψcancel = 100, Ψdelay = 1 and Ψsc = 50000,
ensuring that the congestion levels at stations are considered.

In Fig. 6-5 the congestion levels at each station in both cases are shown. Each line represents
the congestion level at a station over time. The vertical dotted lines denote the start and
end of the disruption. The figures clearly show an increase in the congestion level during
the disruption, as many passengers cannot reach their destination because their destination
is on the other side of the disruption, e.g., passengers waiting at Ec with a destination at Ut
are not able to travel until the disruption is over. Table 6-7 shows the maximum congestion
level at each station. Here we can see that most of the stations have a reduced maximum
congestion level. Especially, at the stations Gdm and Cl a significant reduction in maximum
congestion level can be seen, while at Tp and Tl a significant increase can be seen.

In Fig. 6-6 the disruption timetables for both optimizations are shown. The reduced con-
gestion level of Ψsc = 50000 can be explained by the extra SP6000 (blue) sprinters running
between stations Ut-Cl and Gdm-Ht. One extra sprinter is operated between station Ut-Cl
and Gdm-Ht is extended to short-turn at a later station. After the disruption one IC3500
and one SP6000 are moved to operate directly after the disruption, with a slight delay. This
ensures that the spike of passengers at the end is reduced as soon as possible. As shown in
the Table 6-6, the arrival delay has increased by operating these extra sprinters, however, the
reduction in congestion level at the stations is more valued. By considering the congestion
level while optimizing, a balance between deviating from the timetable and the congestion
level can be made. The passenger-centric model (Ψsc = 50000) is more practical than the
operator-centric model (Ψsc = 0), as it can value stations with many waiting passengers over
deviations from the original timetable, while the operator-centric model will only consider
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minimizing deviations from the original timetable.
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(a) Ψsc = 0.
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(b) Ψsc = 50000

Figure 6-5: Congestion level of the stations over time.
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(a) Ψsc = 0
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(b) Ψsc = 50000

Figure 6-6: Disruption timetables of case study B.
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Table 6-6: Train cancellations and delays.

Cancellations Delays
Ψsc = 0 51 1895
Ψsc = 50000 51 5004

Table 6-7: Maximum congestion level at each station

Weights Az Asb Ut Utvr Utl Htn Htnc Cl Gdm Zbm Ht Tp Tl Ec
Ψsc = 0 0.114 0.052 0.240 0.155 0.154 0.187 0.274 0.372 0.201 0.102 0.263 0.161 0.193 0.298
Ψsc = 50000 0.102 ↓ 0.038 ↓ 0.203 ↓ 0.155 ≈ 0.157 ↑ 0.171↓ 0.264↓ 0.115↓ 0.115↓ 0.123↑ 0.262↓ 0.212↑ 0.257↑ 0.298 ≈

6-4 Case study C - Comparison of MILP and ALNS

To evaluate the effectiveness of the ALNS algorithm, the MILP approach, the LNS algorithm,
and the ALNS algorithm are applied to a small-scale case study and a large-scale study. The
weights of the objective function are set to Ψcancel = 100, Ψdelay = 1 and Ψsc = 1. Due to
the reduced complexity of the small-scale study, we are able to calculate the optimal solution
with the MILP approach in an acceptable amount of time. The relaxed objective function
of (5-29) is used such that ALNS can avoid infeasibility and use the transition stage. The
maximum iteration time of LNS and ALNS is set to 400 seconds.

In Table 6-8 the results are shown. The MILP approach is able to find the optimal solution
of 6698 in 426 seconds. ALNS is able to find the optimal solution in 8 seconds and 1 iteration
after the initial solution. It shows that ALNS is significantly more efficient in the small-
scale case study while maintaining the same performance as the MILP approach. LNS has
a comparable solution time with ALNS, however the optimum was not found. The main
advantage of ALNS is that the train order of the optimal solution does not differ much from
the initial order; therefore, not many iterations are required to reach the train order of the
optimal solution.

In Table 6-9 the results of the large-scale case study are shown. The MILP approach was
unable to find a feasible solution within the 10 hour (36000s) time limit, only a best bound of
12521 was found. The ALNS algorithm was set to a limit of 100 iterations and was able to find
a solution of 13387. LNS has a comparable solution time with ALNS, however the solution
quality of LNS is worse. In Fig. 6-7a the best objective value for each iteration. In the first 7
iterations, the ALNS algorithm remains in the transition stage, i.e., the repair operator is not
able to find a feasible solution without using the request bank. Several iterations are required
before a new event order can be found without cancelling past events. The 7 iterations take
453 seconds.

Table 6-8: Small-scale case study re-
sults.

Performance CPU time (s)
MILP 6998 426
LNS 7167 16
ALNS 6998 8

Table 6-9: Large-scale case study re-
sults.

Performance CPU time (s)
MILP - 36000
LNS 14052 3152
ALNS 13387 3586
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In Fig. 6-7a the cumulative computational time is shown during the iterations. Iterations 12
and 42 have computational times that reach the time limit of 400 seconds. Both iterations
correspond to the destroy event order in a random station operator, the random station
being Ut. Iteration 7 has a computational time of 384 seconds and is the destroy event
order in a random station operator, with random station being Cl. The other iterations have
computational times that are below 200 s.
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Figure 6-7: ALNS best objective and computational time during iterations.

The poor performance of the MILP approach for the large-scale case study compared to
the MILP approach for the small-scale case study is that the large-scale case study has a
significant increase in variables. In the small-scale case study, the number of binary variables
is 9177, while the large-scale has 16963. In Fig. 6-8 and Fig. 6-9 the disruption timetable of
both case studies are shown. In Appendix A-2 the whole disruption timetable is shown.
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Figure 6-8: Best found disruption timetable of ALNS for the small-scale case study.
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Figure 6-9: Best found disruption timetable of ALNS for the large-scale case study.

6-5 Conclusions

Case study A evaluates the effectiveness of rolling stock circulation. A comparison is made
between a model with infinite rolling stock and a practical model. The results show that the
infinite rolling stock model has good solutions in theory; however, the practical model shows
that the disruption timetable found by the model with infinite rolling stock requires significant
additional cancellations due to insufficient rolling stock. A model is run with rolling stock
circulation, outperforming the practical solution as there is a better strategy for which trains
to cancel. Furthermore, a model with rolling stock circulation and intermediate shunting.
The intermediate shunting further improves the performance, as trains can be stored for later
use at intermediate stations instead of being run with large delays. The model is especially
efficient in minimizing the total delay.

In case study B the effectiveness of the passenger-centric model is evaluated. Due to the
significant increase in complexity, the optimization is conducted on the smaller-scale case
study. A comparison is made between a case where the congestion level is include in the
objective function and a case without including the congestion level. The results show that
the model is able to lower the maximum congestion levels by slightly changing the timetable.
A balanced trade-off can be made between deviating from the original timetable and the
congestion level at stations.

In case study C the effectiveness of ALNS is evaluated. First, a comparison is made between
MILP, LNS and ALNS in the small-scale case study. ALNS is able to find the optimal solution
significantly faster than MILP, while LNS does not converge to the optimal solution. Second,
a comparison is made with the large-scale case study. For the large-scale study, MILP was not
able to find a feasible solution within 10 hours. ALNS and LNS were able to find a feasible
solution, where ALNS was able to find a lower objective.
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Chapter 7

Conclusions and discussion

In this thesis, a novel disruption management approach based on the event-activity model is
developed that integrates detailed passenger-related factors into the model. The new model
aims to describe the congestion level at stations while considering train capacity. The resulting
passenger-centric problem is difficult to solve due to the introduction of binary variables for
train orders. An ALNS algorithm is proposed to make a balanced trade-off between solution
and quality. The remainder of this chapter is as follows. In Section 7-1, the conclusions are
given and the research questions are answered. In Section 7-2 recommendations for future
work are given.

7-1 Conclusions

The main research question on passenger-centric railway disruption management of this thesis
was:

Can a detailed number of passengers formulation be integrated in a railway traffic
disruption management problem to efficiently jointly optimize train delays, cancellation,
and overcrowdedness at stations?

The main research question was split into the following subquestions, that can be answered:

1. How to build a railway management model to incorporate rolling stock circulation and
detailed number of passengers in a railway network?
In this thesis, a novel formulation for rolling stock circulation in the event-activity
network is introduced. By considering shunting actions at intermediate and terminal
stations, the number of reserve rolling stock at each shunting yard is kept track of. Fur-
thermore, a novel formulation for the event-activity network is introduced to calculate
the number of waiting passengers. Instead of using a static passenger size, the arrival
rate of passengers at each station is used to calculate the number of waiting passengers
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at each departure event. By determining the time difference between two consecutive
departure events, the number of arriving passengers is calculated; therefore, the influ-
ence of train delays on the number of waiting passengers is considered. Furthermore,
the train capacity is considered by calculating the number of onboard passengers and
denying boarding to passengers when a train exceeds its capacity. A formulation in-
spired by VRPs is introduced to determine the event orders at stations, as train orders
can change due to rescheduling measures. The novel formulation is capable of describing
the passenger in detail, making it possible to consider overcrowdedness at stations in
detail.

2. How to design an approach to effectively solve the passenger-centric railway disruption
management problem?
The case studies show that the MILP approach for the passenger-centric problem results
in long computation times for small networks, which implies that MILP may not be
suitable for real-time timetable rescheduling. Alternative solution methodologies are
required to effectively solve the railway disruption management problem. Adaptive large
neighborhood search (ALNS) is a well-researched method in VRP. As the proposed
passenger-centric railway disruption management model has certain similarities with
VRPs, and ALNS has been proven to be efficient for these types of problems. ALNS has
multiple components that should be designed carefully to make the algorithm efficient.
First, the algorithm uses destroy operators to destroy part of the solution to explore
the solution space. Then, the repair operator solves the destroyed solution, finding the
optimal neighborhood solution. Second, ALNS requires an initial solution. For the
initial solution, the event ordering of the original timetable is selected, as part of the
objective is to minimize the deviation from the original timetable. Third, a relaxation of
the MILP formulation is required as the problem may be infeasible due to the fixed event
order. Finally, an adaptive layer is introduced that uses the roulette wheel principle
to select the destroy operators based on the performance of the destroy operators over
a span of multiple iterations. As shown in the case studies, ALNS is able to obtain
the optimal solution for the small-scale case study significantly faster than the MILP
approach. For the large-scale case study, ALNS was able to find a solution within
453 seconds, while the MILP approach could not find a feasible solution in 10 hours.
Compared to LNS, ALNS has better solution quality with a solution time similar to
LNS.

To answer the main research question: A detailed number of passengers formulation can
be integrated with a railway traffic disruption management model to efficiently reduce over-
crowding at stations and trains. The combined results of case studies B and C show that
the congestion levels at stations can be reduced, and with ALNS can be solved in an efficient
way. The results of case study B show that the maximum congestion levels at stations can be
reduced by slightly changing the disruption timetable. Case study C shows that the result-
ing detailed number of passengers formulation can be efficiently solved with an ALNS while
outperforming the MILP approach and the LNS algorithm.
From the case studies, it becomes clear that the passenger-centric MILP problem has become
very hard to solve due to the binary variables for the train orders. There are many train
lines considered in this study, and especially around larger stations, e.g., Ut, the number of
events increases significantly, resulting in many options for the event ordering. The power of
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the ALNS algorithm lies in that the optimal solution does not necessarily deviate much from
the original planned timetable, as deviation from the original timetable is penalized, i.e., an
objective function that includes minimization of train delays and cancellations. ALNS uses
the original timetable as a starting point and can slowly deviate with the destroy and repair
algorithm.

7-2 Future work

In this section, several recommendations are given for future research.

Time-varying passenger arrival rate

The passenger arrival rates are fixed in this thesis. An extension could be made by introducing
arrival rate changes based on historical data. Wang et al. (2018) have successfully applied
arrival rate changes for an urban railway network. To integrate arrival rate changes, their
work can be transformed to fit the event-activity network and extend the passenger-centric
model of this thesis.

Flexible coupling of trains

In this thesis, each rolling stock has the same passenger capacity. In practice, many operators
are able to change train compositions by coupling and decoupling train, and can select the
rolling stock based on the passenger demand. From the results of this thesis, it can be seen
that there is a surge of passengers around the end of the disruption, and the selection of train
capacity could be further integrated to reduce overcrowdedness during disruption.

Passenger routes

Passenger routes are assumed static in this thesis, i.e., the routes of passengers remain the
same despite the rescheduling measures that are applied. In practice, passengers may take
different routes based on the implemented disruption timetable. In further work, multiple
predefined routes could be integrated into the model so that passengers can select based on
preferences and availability. Another option could be to apply passenger reassignment like in
the work of Zhu and Goverde (2020a), however, their model already has significant complexity,
which could lead to problems with the performance of the model.

Passenger travel time

In this thesis, the focus has been on minimizing crowdedness at stations and trains to en-
sure safe operations for passengers. Although passenger travel time is implicitly taken into
account by minimizing train delays and cancellations, further extensions can be made by
taking passenger travel time into account. The passenger travel time can be determined by
calculating the difference between the arrival time at their destination and the departure time
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at the origin; however, problems arise when the passenger travel time is minimized. As the
passenger group size is variable in this thesis and the passenger travel time is also variable,
the resulting objective function would be non-linear. To avoid non-linearity, an option would
be to approximate the passenger travel time with a piecewise affine function.

Close the loop

The optimization in this thesis is classified as open-loop control, i.e., optimization is run once
without information updates over time. An interesting research direction would be to imple-
ment the model with closed-loop control, e.g., model predictive control (MPC). Improvements
should be made to represent current states of the model, e.g., departure times of trains, num-
ber of passengers on board of a train, and rolling stock inventory at the shunting yards. A
challenge could be to ensure that the problem can be solved within the limited solution time
imposed by MPC. An overview of possible strategies can be found in the work of Fang et al.
(2015).

Extension of ALNS

In this thesis, ALNS has been tested on a network in The Netherlands; however, it would be
interesting to see how the performance of ALNS is on networks with other track configurations
and on larger networks. Different destroy operators can be explored that are more suitable
for the networks. Furthermore, the options to implement a heuristic repair operator can
be explored to shorten the iteration solution time. It will be a challenge to define effective
heuristics that can repair event orders and the disruption management problem without using
a solver.
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Appendix A

Supportive figures

A-1 Case study A

The complete disruption timetables that correspond with case study A.
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Figure A-1: Generated disruption timetable with infinite rolling stock.
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Figure A-2: Practical disruption timetable.
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Figure A-3: Generated disruption timetable with rolling stock circulation.
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Figure A-4: Generated disruption timetable with rolling stock circulation and intermediate shunt-
ing actions.
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A-2 Case study C

The complete disruption timetables that correspond with case study C.
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Figure A-5: Best found disruption timetable of ALNS for the small-scale case study.
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Figure A-6: Best found disruption timetable of ALNS for the large-scale case study.
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Glossary

List of Acronyms

ALNS Adaptive large neighborhood search

LNS Large neighborhood search

MILP Mixed-integer linear programming

VRP Vehicle routing problem
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70 Glossary

List of Symbols

Activity sets
Aboarding Set of boarding activities
Acap Set of capacity activities
Adwell Set of dwell activities
Ag,e Set of activities part of route g, e

Ahead,ar,ar Set of arrival-arrival headways activities
Ahead,ar,de Set of arrival-arrival headways activities
Ahead,ar,de Set of arrival-departure headways activities
Ahead,de,de Set of departure-departure headways activities
Ahead Set of headways activities: Ahead = Ahead,de,de ∪Ahead,ar,ar ∪Ahead,ar,de

Aodturn Set of short-turn activities at terminal stations, known as OD-turning
Apass Set of pass-through activities
Arun Set of running activities
Afromshunt Set of move from shunting yard activities
Aturn Set of short-turn activities
Ashunting Set of shunting activities: Ashunting = Atoshunt ∪Afromshunt

Astation Set of activities related to stations: Astation = Adwell ∪Apass

Atoshunt Set of move to shunting yard activities
Atransfer Set of transfer activities
Awaiting Set of waiting activities

Decision variables
αe,e′ Indicates whether event e is the previous event of e′

ce Cancellation of event e

ϵe,e′ Event order between e and e′ for station capacity
ma Short-turn activity selection
ηcan,e Number of waiting passengers wanting that can board the train of departure

event e

ηcan,g,e Number of waiting passengers of passenger group g that can board the train of
departure event e

ηwant,e Number of waiting passengers wanting to board the train of departure event e

ηwant,g,e Number of waiting passengers of passenger group g wanting to board the train
of departure event e

ntrans,g,e Number of transferring passengers of group g at departure event e

nalight,e Number of passengers alighting at departure event e

nremain,e Remaining passenger capacity of the corresponding train of departure event e

qe,e′ Train order between e and e′ for headway activities
ug,e Route available for group g starting at event e

wafter,g,e Number of waiting passengers of group g immediately after departure event e
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wbefore,g,e Number of waiting passengers of group g immediately before departure event e

wbefore,e Number of waiting passengers immediately before before event e

wbefore,g,e,e′ Number of waiting passenger waiting for event e after event e

xe Reschedule time of event e

ξs Congestion level at station s

Events and activities
a Activity
de Operation direction of the train corresponding with e

e Event
e′ Linked event
ie Number of rolling stock available for use at a shunting yard
κe Railway track used by event e

λe Related departure event of duplicate departure event e

La,max Maximum time duration of activity a

La Minimum time duration of activity a

oe Original schedule time of event e

snext,e Next station of event e

se Station corresponding with event e

τline,e Train line corresponding with event e

τe Train service corresponding with event e

τtype,e Train type corresponding with event e

Miscellaneous
∆ Maximum allowed difference between events for a destroy operator
D Maximum allowed delay
La Minimum time duration of activity a

Πse Number of duplicate departure events at station se

R Maximum recovery time
sentry,de The entry station of the disruption in direction de

σ Reward given to an operator when it is successful
tend End time of the disruption
tstart Start time of the disruption
Ψcancel Weight for cancellation of event e

Ψdelay Weight for reschedule time of event e

γ Weight for cancellations of the request bank
Ψsc Weight for congestion level ξs

wj Probability of selecting heuristic j

χs,τtype Station capacity of train type τtype

Scap,s Passenger capacity at station s
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Passenger related
Dg Destination station of passenger group g

g Passenger group
Og Origin station of passenger group g

ζg Number of passengers of passenger group g arriving per second
Ng,e Number of activities in route g, e

Event sets
Earr Set of arrival events
Edep Set of departure events
Edum Set of dummy events
Edde Set of duplicate departure events
Eexc Set of event that belong to trains that already departed from their starting

station before the disruption occurs
Einv Set of inventory events
Etrain Set of events required to operate trains: Etrain = Earr ∪ Edep
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