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ABSTRACT Lithium-ion batteries (LIB) are widely used in various applications. The LIB degradation curve
and, most significantly, the knee-point and End-of-life (EoL) point identification are critical factors for the
selection of the appropriate application, such as electric vehicles and stationary energy storage systems,
due to their effect on performance and lifespan, safety, and environmental footprint. Linear degradation
models can be inaccurate in capturing the highly nonlinear behavior of LIB degradation caused by multiple
simultaneous degradation mechanisms. Hence, this work first analyzes the main different mechanisms, their
causes, and their interrelations. Secondly, the various single- and multi-mechanism physics-based (PB) and
data-driven (DD) models for LIB degradation and knee-point identification are summarized and compared
regarding their prediction performance on degradation and transition from stabilized to saturated aging.
While single-mechanism PB models can be effective in the LIB first-life prediction, they can seriously
undermine the knee-point and saturated aging. Moreover, the modeling of the different aging mechanisms
can significantly increase the complexity of the multi-mechanism PB models. Finally, while DD models for
LIB degradation have been developed, a DDmodel focused on knee-point identification and LIB second-life
is still missing from the literature.

INDEX TERMS Lithium-ion batteries (LIB), degradation, degradation mechanisms, knee-point,
physics-based, data-driven.

I. INTRODUCTION
A. GENERAL BACKGROUND
Lithium-ion batteries (LIBs) are the most widely used
technology for energy storage in Electric Vehicles (EVs).
Compared to other electrochemical storage devices, such
as Ni-MH batteries, lead-acid batteries, or capacitors, LIBs
provide the best trade-off between specific energy, specific
power, and number of cycles [1]. Over their lifetime, LIBs
lose capacity through two mechanisms: on the one hand,
cells undergo calendar aging while being stored as a result of
side reactions resulting from the thermodynamic instability
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of materials; on the other hand, repeatedly charging and
discharging the cell induces kinetical effects such as volume
variations or concentration gradients in a process known
as cyclic aging [2]. The period during which LIBs are
suitable for use in EVs is, therefore, limited. Beyond a certain
point, their capacity and power fade so that they cannot
guarantee a mileage per full charge above the necessary to
avoid range anxiety. Typically, LIBs are retired from EV use
when their capacity falls below 70% to 80% of the initial
value [3]. This results in the useful life of LIBs being divided
into two periods: First Life (FL) and Second Life (SL).
To ensure the safe operation of the modules during the SL, the
identification of the retirement point (End-of-life EoL) is key
[4], [5].
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FIGURE 1. Battery Capacity Fade Timeline (First life, knee-point & Second
life).

Once the FL is over, the battery may be reconditioned and
used for a different purpose during its re-utilization stage.
SL’s possible applications include importing used LIBs into
another EV or integrating them into the electrical grid as
stationary storage. In [6], a life-cycle assessment was carried
out on the environmental impact of these two applications,
calculating the total carbon emissions in kgCO2eq/kWh.
It was found that re-utilization reduces the impact on climate
change and acidification by 16% and 25%, respectively.
Moreover, different stationary applications exist for SL
battery integration in the power grid, such as residential
demand response management and power smoothing for
grid-scale photovoltaic plants [7].

Degradation causes and mechanisms of LIBs have been
assessed several times in the literature [8], [9], [10], [11].
Each degradation mechanism is associated with one or
more of the following degradation causes: time, C-rate,
charge throughput, cut-off voltage, temperature, state-of-
charge (SoC), and depth-of-discharge (DoD) [12]. In turn,
each degradation mechanism leads to one or more of the
following aging modes: Loss of Lithium Inventory (LLI),
Loss of Active Material (LAM), and Conductivity Loss (CL).
Cell capacity decreases due to LLI and LAM, while cell
power fades as a consequence of LAM and CL [12].
Although all aging modes take place throughout the entire

life of LIBs, their event rates differ depending on the stage
of their lifespan and the operating and storage conditions
the cells are subjected to. In [10], a distinction is made
between the degradation trends at different stages: during the
first few cycles, solid electrolyte interface (SEI) formation
at the anode surface leads to LLI and LAM, resulting in a
fast decrease of capacity. Subsequently, capacity fades in a
stabilized fashion during most of the battery life. As Figure 1
depicts, a slow and stabilized capacity degradation can be
observed in LIBs up to a knee-point (FL), after which
capacity fades rapidly (SL) until the cell’s EoL [13].When the
knee-point is reached, other degradation mechanisms, such
as lithium plating (LP), which provokes lithium deposition
on the anode, become more relevant. Lithium plating
leads to:

1) A more prominent drop in the capacity of the cell: a
direct impact due to LLI.

2) An increase in the number of side reactions involving
the electrolyte and the disuse of part of the anode
surface for intercalation due to LAM.

Low temperatures, high cycling rates, poor cell balance,
charging at very low or high SOC, and geometric misfits
are factors that enhance lithium plating on the anode
surface [9]. On top of that, transition metal dissolution
(TMD), binder failures, and volume changes due to cyclic
aging and SEI cracking negatively affect CL, leading to
the appearance of the knee-point, after which the Internal
Resistance (IR) increase is accelerated until the EoL is
reached [14]. The calendar and cyclic stress factors applied on
a LIB before reaching its aging knee determine the transition
from stabilized to rapid degradation. These stress factors are
sometimes interrelated and may be aggravated or alleviated
depending on the chemistry of the cell.

Despite graphite and lithium metal being the focus of
the vast majority of studies on anode aging, Li metal
anodes are generally avoided in consumer cells as they
suppose a potential safety hazard due to the increased risk of
dendrites formation [15], [16]. The main cathode chemistries
investigated in the literature are lithium-iron-phosphate
(LFP) [17], [18], [19], [20], [21], [22], lithium-manganese-
nickel-cobalt (NMC) [23], [24], [25], [26], [27], [28], and
lithium-cobalt-oxide (LCO) [29], [30], [31], [32], [33], [34].
Chemistries such as lithium-manganese-oxide (LMO) [29],
[30], [33], [35] and lithium-nickel-cobalt-aluminium-oxide
(NCA) [34], [36], [37], [38] have also been investigated to
a lower extent.

B. CONTRIBUTIONS AND WORK STRUCTURE
As Table 1 depicts, while reviews about LIB aging are
present in the literature, most of them focused on degradation
mechanisms (DM) and their stress factors; however, several
of them analyzed only one DM, e.g. transition metal
dissolution (TMD), neglecting to assess the interactions
between the different mechanisms such as [39], [40], [41].
Moreover, LIB degradation has been modeled mainly with
two big model families, physics-based (PB) models and data-
driven (DD) models. Several studies focused on the review
of only PB models [11] or DD models [43], unable to
provide insights via a comprehensive comparison between
them. Only the authors in [42] & [12] incorporated both
analysis of DM, stress factors, and DM interactions as well
as assessment and comparison of PB & DD LIB degradation
approaches; however, only concerning lithium-plating and
EV applications, respectively. Finally, a review of knee-point
identification models is still missing from the literature.
In this regard, the study’s main contributions can be
summarized as follows:

• This work analyzes the key different LIB degradation
mechanisms, stress factors, and interactions responsible
for the nonlinear nature of the degradation curve
and knee-point appearance, summarizing the respective
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TABLE 1. Contributions of existing literature review works about LIB degradation.

developed degradation and knee-point identification
models that have not yet been thoroughly investigated.

• This work provides a comprehensive review of the
two main degradation method families and their differ-
ences, the single- and multi-mechanism physics-based
and data-driven modeling approaches, evaluating their
completeness and accuracy for LIB degradation and
knee-point prediction, which is still missing from the
existing literature.

The authors believe that this work can provide valuable
insights into the accuracy of the prediction of LIBs’
FL, SL, and knee-point by the various existing models.
Nowadays, this is critical for the proper use of the LIB
in different applications (e.g. use as mobility or stationary
energy storage) depending on the capacity fade curve due
to safety and environmental reasons. It must be noted that,
in this work, the anode and cathode denote the negative and
positive electrodes, respectively, and these terms are used
interchangeably. Moreover, this also applies to the use of the
terms ‘‘degradation’’ and ‘‘aging.’’ Finally, this work focused
mostly on the capacity fade effect for the LIB degradation,
rather than the power fade, since capacity fade is considered
as the main factor for the proper application selection and
re-utilization of LIBs [3].

This study is structured as follows: Section II provides a
full overview of the most relevant degradation mechanisms,
as well as a classification of the most significant stress
variables impacting each mechanism. Section III offers an
explanation of the knee-point as well as various analytical
and numerical ways to calculate it. Section IV comprises a
comparison of cutting-edge degradation modeling method-
ologies. This part covers three differentmodeling approaches:
single- and multi-mechanism physics-based approaches in
Section IV-A and Section IV-B respectively, and data-driven

approaches in Section IV-C. Finally, Section V concludes the
work.

II. DEGRADATION MECHANISMS IN LIBs AND
NONLINEAR INTERACTION
As already explained in Section I, LIBs deteriorate as a result
of a complex interplay of different physical and chemical
mechanisms. Their rate of occurrence is determined by the
different stress factors, along with the chemistry of the cell.
From the moment a cell is charged for the first time, all
degradation mechanisms are activated to different degrees.
Among them, SEI formation is generally accepted as the
most dominant mechanism in most situations [17], [47],
[48]. Yet, after prolonged cycling, Li plating becomes more
relevant based on the large amounts of metallic lithium at
the anode surface detected in aged cells [2], [18], [49].
Moreover, other aging mechanisms are the mechanical stress
on electrode materials [50], [51], [52], [53] and transition
metal dissolution from the cathode and deposition in the
anode [54], [55], [56], [57], [58]. This section analyses
the above aging mechanisms, their causes, and influencing
factors, and the conclusions reached in this regard. The effect
on capacity fading of other mechanisms, such as formation
and growth of cathode surface layer, are not included
in the present study as they are assumed comparatively
negligible [56], [59], [60].

A. SEI FORMATION AND GROWTH
1) DEFINITION & CAUSES
Electrolytes serve as the medium for the transfer of ions
between the negative and the positive electrodes [62].
Their stability window is defined as the energy difference
between the Highest Occupied Molecular Orbital (HOMO)
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FIGURE 2. a) Potential versus specific capacity of some common electrode materials relative to the electrochemical stability window (Eg)
of a LiPF6-based electrolyte [43], [46]. b) Schematic open-circuit diagram of an aqueous electrolyte [46].

FIGURE 3. SEI Formation by interaction of Li+ ions with electrolyte
solvents and electrons during charging [61].

and the Lowest Unoccupied Molecular Orbital (LUMO). The
electrolyte is reduced if the electrochemical potential of the
anode (µA) is above the LUMO and, likewise, the electrolyte
is oxidized if the electrochemical potential of the cathode
(µC ) is below the HOMO [63]. Because the electrochemical
potential of graphite anodes falls outside the stability window
of organic electrolytes, when the anode comes in contact
with the electrolyte for the first time, the latter is reduced
and decomposed onto the former, resulting in the SEI
formation [64]. The SEI protects the negative electrode
against solvent decomposition at a large negative voltage.
A schematic of this behavior can be observed in Figure 2,
where a) depicts the relationship between the potential and
the specific capacity of various electrode materials and b) the
schematic open-circuit diagram of an aqueous electrolyte.
As it can be seen, the kinetic stability is reached by the SEI
layer formation if µA > LUMO and/or µB > HOMO.
Ideally, the SEI would be a layer that is both ion-conductive

and electron-insulating, limiting additional electrolyte reduc-
tion at the anode while permitting reversible ion intercalation
into it [40], [62], [63], [64]. The SEI is a multi-layered
mosaic-like structure consisting of. firstly, an inorganic inner
layer near the anode-SEI interface that allows Li+ transport
and, secondly, an organic heterogeneous outer layer at the

SEI-electrolyte interface that is porous and permeable to
both Li+ and electrolyte solvent molecules [65]. Due to its
porous nature, after the formation cycle, a small amount
of electrolyte can still diffuse across the SEI layer and be
reduced on the electrode surface, resulting in uninterrupted
thickening of the SEI and continuous LLI [48]. This loss of
active lithium causes the cell’s capacity to drop irreversibly,
while the thickening of the film layer causes an increase in
IR [47], [61], [66]. Figure 3 depicts how the SEI is formed
by the interaction of Li+ ions with electrolyte solvents and
electrons when they are transported through the electrolyte
and intercalate into graphite during charging.

2) EFFECT OF TEMPERATURE & C-RATE
At high temperatures, firstly, the SEI shows increased
degradation as it breaks down or dissolves, which may
lead to subsequent restructuring of the damaged SEI or a
re-precipitation of dissolved SEI products. Secondly, the
SEI organic components shift towards more stable inorganic
products, reducing the formation rate but also the ionic
conductivity of the SEI [9]. Moreover, cycling at high C-rates
causes increased ohmic heating, raising the temperature and
leading the SEI to grow thicker on the negative electrode
and its chemical composition to vary dramatically [67], [68].
The electrolyte may also evaporate as a result of ohmic
heating, causing a buildup of pressure, which may result in
cracks in the surface film. These fissures offer fresh locations
for the lithiated carbon and electrolyte side reaction, further
thickening the SEI layer [69].

3) EFFECT OF SoC
Furthermore, SoC also plays an important role in SEI
growth. At increasing SoC, the potential imbalance at
the anode/electrolyte interface favors the occurrence of
electrolyte reduction reactions [12], promoting the formation
of SEI [45]. However, in [70], it was found that the SEI
growth rate does not increase steadily with SoC, but it
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FIGURE 4. Li plating-stripping mechanism and its long-term
consequences (dead Li and formation of dendrites). Based on a
combination of [41], [71], [72].

is highly influenced by the graphite staging phenomena.
Firstly, the electrode potential does not continuously vary
with the SoC. Secondly, capacity fades due to electrolyte
reduction, and SEI growth was found to be mostly constant
in plateau regions covering SoC intervals between graphite
stage transitions. When cells are cycled in SoC ranges
containing graphite phase transitions, the anode surface
suffers from dilation, causing the SEI to break and rebuild
irreversibly [52].

4) EFFECT OF POTENTIAL & ANODE VOLUME CHANGES
Higher cut-off voltages also contribute to SEI formation and,
hence, to greater battery aging. This is because higher and
lower potentials are created in the positive and negative
electrodes, respectively. Consequently, the electrolyte is
oxidized more easily by the positive electrode’s higher
potential, and SEI is formed on the anode surface [73].
Finally, anode volume changes hasten the loss of lithium,
further jeopardizing the SEI, especially during the first
cycles, because significant structural disorder can modify the
electrocatalytic properties and affect the SEi thickness and
composition [74].

B. LITHIUM (LI) PLATING
1) DEFINITION & CAUSES
Lithium plating has been found to be a major source of LLI
and LAM on the negative electrode [75]. It occurs under
charging conditions at the surface of the negative electrode.
The Li-graphite intercalation process is kinetically limited by
two sources of overpotential:

• Charge-transfer overpotential: It appears at the nega-
tive electrode surface as soon as a current is applied. The
charge-transfer process involves the ion de-solvation
step before entering the SEI and the diffusion step
through the SEI layer before receiving an electron at the
electrode-SEI interface [76].

• Solid diffusion overpotential: The inserted lithium
diffuses through the anode according to Fick’s law, with
the Li concentration in the solid phase determined based
on the number of available sites. This mass transport is

characterized by a solid diffusion coefficient following
an Arrhenius-type temperature dependence [77].

Due to these overvoltage sources, if the current of Li+ ions
in the electrolyte exceeds the intercalation current or the
transport rate inside graphite, the electrode potential drops
below 0 V vs. Li+/Li, leading to partial deposition of Li metal
on the anode surface [78]. Under these conditions, the two
reactions listed below coexist [77], [78]:

xLi+ + LiδC6 + xe−
−→ Liδ+xC6 (1)

(1 − x)Li+ + (1 − x)e−
−→ (1 − x)Li◦ (2)

where reaction (1) and reaction (2) are the insertion and
deposition reactions, respectively, and LiδC6 denotes the lithi-
ated graphite. Instead of intercalating into the anode crystal
structure, Li ions are reduced to metallic Li, which deposits
between the active material and the SEI, causing clogging
of anode pores and potentially forming dendrites [42], [49].
As it can be observed in Figure 4, Li+ ion concentration is
larger towards the graphite surface since upon charging and
discharging, they gradually intercalate from the core to the
interface and deintercalate from the interface to the core,
respectively. A secondary SEI layer is formed upon cycling
around the plated Li.

Additionally, two further reactions may take place
regardless of the external current:

R + Li◦ −→ R–Li (3)

εLi◦ + Liδ+xC6 −→ Liδ+x+εC6 (4)

Deposited metallic lithium may reduce the carbonate
solvent electrolyte R to form additional SEI according to
reaction (3), where Li◦ denotes the plated lithium [77]. The
redundant SEI film formed, and the clogging of pores caused
by deposited Li reduce the anode surface area, which in turn
increases current densities at the remaining available pores,
enhancing the likelihood of further lithium plating [43],
[79]. However, a reversible portion of deposited Li may be
recovered during electrode relaxation via re-intercalation into
graphite [80], [81], following reaction (4). Stripping may also
occur when part of the plated Li is re-oxidized and dissolved
during discharge [78], [82]. Deposited metallic lithium may
build up to develop dendrites, which are more prone to lose
electrical contact with the anode and form floating fragments
in the electrolyte (dead lithium) [83].

2) EFFECT OF TEMPERATURE
Temperature is one of the major factors influencing Li
plating. At low temperatures, the diffusion of Li ions into
graphite is hindered [82], and the activation energy required
for charge transfer is higher [84], leading to slower kinetics
and greater polarization in the anode. In particular, the charge
transfer process is described by two subprocesses: firstly,
(de)solvation of Li+ at the electrolyte-SEI interface and,
secondly, migration of Li+ through the SEI [85]. Lithium
plating at low temperatures can be determined by the sluggish
charge transfer process or the limited Li solid diffusion [83].
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Moreover, the reduced ionic conductivity of the electrolyte at
low temperatures contributes to slower kinetics. Yet, it is not
a limiting factor in that the diffusion of Li+ is much faster in
the electrolyte than in graphite [86].

3) EFFECT OF C-RATE & CUT-OFF VOLTAGE
High C-rates and cut-off voltages are also important causes
of Li deposition. At high C-rates, the accumulation of Li ions
at the anode/electrolyte interface caused by the slow solid
diffusion of Li+ in graphite leads to a high concentration
gradient of Li ions, resulting in Li plating if the concentration
becomes saturated [83]. Overcharging induces accumulation
of Li ions at the anode-electrolyte interface when the amount
of Li transferred from the positive to the negative electrode
exceeds the amount of Li that can be accommodated in the
anode, resulting in metallic Li deposition on its surface [87].

C. OTHER DEGRADATION MECHANISMS: MECHANICAL
STRESS ON ELECTRODES
1) DEFINITION
During intercalation/deintercalation of Li ions into the
cathode and anode, the electrode particles suffer from volume
changes and mechanical stresses [52]. Especially in graphite
anodes, the volume increase can be as high as 10%, and
most of it occurs during the first 20% of Li insertion [2].
A schematic of this process is depicted in Figure 5, where the
intercalation stages of Li into graphite and their relationship
with the potential can be seen. Stage I represents the state
without anode volume change where the graphite structure
remains unharmed according to the Daumas-Herold model.
Upon prolonged cycling (Stages II-IV), the anode suffers
severe structural disordering, modifying its electrocatalytic
properties and affecting the thickness and composition of
the SEI. This is due to the exposed graphite edge sites’
reaction with the electrolyte to (re)form SEI [74], resulting
in LAM and LLI. After Transition III-IV, the potential
rises exponentially. Additionally, a mechanical strain may
result in electrode particle cracking and getting electrically
separated from the bulk material, further contributing to
LAM [57]. Graphite exfoliation, electrolyte reduction, and/or
gas evolution inside graphite due to mechanical stress have
also been reported to cause accelerated degradation of the
anode as indirect consequences of these strains [9].

2) EFFECT OF SOC
The main factor affecting structural degradation in the anode
is the SoC range, namely the maximum and minimum SoC
reached by a cell during cycling. As observed in Figure 5,
traversed voltage plateaus (or graphite phase transitions) have
a notable impact on cyclic aging, and less mechanical stress is
placed on cells that do not shift between them [28], [52], [74].
Yet, there is no clear consensus about which phase transitions
are more detrimental. Transition I-II takes place at around
50% SoC and is the first cause of voltage deviation, while
Transition III-IV is responsible for the biggest step in voltage

with respect to Li occupation [89]. The cells cycled in [52]
at SoC ranges slightly above stage II resulted in a higher
LLI with respect to other phase transitions, and the authors
attributed the results to the high dilation suffered by the
graphite particle surface at the threshold between stages I and
II. On the other hand, it was demonstrated in [74] that cycling
at potentials involving low lithium concentrations in LixC6
(0 ≤ x ≤ 0.16) is a major cause of anode structural damage
while cycling at potentials corresponding to stages I and II
(x ≥ 0.33) reduces the impact of structural disordering. In a
later study, the authors of [28] found that cells crossing the
maximum transition between plateaus at 17% SoC presented
fast degradation, while those cycled between 40% and 60%
SoC showed the lowest degradation rate.

3) EFFECT OF C-RATE
High C-rates during charging or discharging do not seem
to have an impact on the mechanical stress put on the
negative electrode, and although higher peak stresses have
been observed at high C-rates, the dependence appears to be
relatively weak [90].

4) EFFECT OF BATTERY CHEMISTRY
Phase transitions also occur at the cathode during inter-
calation and deintercalation of Li ions, and the structural
damage suffered by the cathode depends mainly on its
chemistry [43]. LFP cathodes show a highly reversible
transition between their LiFePO4 and FePO4 phases, and the
degree of structural disorder reaches a maximum near the
middle (mean SOC) of the charge/discharge cycle [19]. Yet,
upon lithiation, its volume increase is not large compared to
other chemistries, and hence, capacity fade caused by volume
changes during cycling is slighter in this chemistry [22].
On the contrary, multiple phase transitions coexist in the
NMC cathode voltage profile, which increases the difficulty
of understanding the mechanisms involved in their structural
degradation. The expansion and contraction of the NMC
cathode structure can lead to primary and even secondary
particle cracking upon cycling [53], [91]. Additionally,
at high levels of delithiation, further structural disorders such
as spinel structures due to non-ideal cation mixing may
form [25], [26]. After extended charge/discharge cycles, ion-
insulating cubic rocksalt phases may appear on the cathode
surface [26], [27], in addition to the buildup of a complex
surface film [27], [92], which can further increase capacity
fade.

D. OTHER DEGRADATION MECHANISMS: TRANSITION
METAL DISSOLUTION (TMD)
1) DEFINITION & EFFECT OF CHEMISTRY
A very significant challenge for transition metal-based
cathodes is capacity and power fading, especially at high
temperatures, which is directly related to the dissolution-
migration-deposition (DMD) process of transitionmetal from
the cathode materials [39]. LFP cathodes are commonly
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FIGURE 5. Daumas-Herold model of intercalation stages and transitions of Li into graphite. Based on a combination
of [52], [74], [88].

doped with vanadium to improve electronic and ionic
conductivity [93]. The bulk concentration of transition metals
(Fe and V) declines in the cathode and increases in the anode
as cells age, indicating the dissolution of these metals into
the electrolyte and subsequent deposition onto the negative
electrode surface, promoting the generation of surface layers
and LAM [56]. Additionally, Fe and V serve as catalysts
for SEI formation and growth reactions, consequently
enhancing battery aging [20]. DMD of transition metals
also takes place in NMC cathodes due to the presence of
Mn because manganese ions are dissolved from the positive
electrode onto the interface between the SEI and graphite.
Consequently, the dissolved Mn ions create an oxygen-rich
SEI layer comprising MN compounds, which negatively
impacts battery capacity retention and coulombic efficiency
and accelerates the formation of a less stable and greater SEI
layer by impeding charge transfer [23], [54], [55].

2) EFFECT OF TEMPERATURE
Cathodic structural aging is also highly affected by tempera-
ture. Dissolution of Fe and subsequent formation of surface
agglomerates at the cathode or deposition at the anode can
be observed in LFP cells aged at high temperature, while
low-temperature cycling can repress this mechanism [56].
At elevated temperatures, Mn dissolution in NMC cathodes
is also higher [54].

3) EFFECT OF VOLTAGE
Extreme cut-off voltages also have an important impact on
cathode structural degradation. Generally, the limiting factor
is the oxidation potential of electrolyte solvents, which takes
place at the high cathode (over)potentials [70], [94]. When
the cathode material is completely delithiated, overcharging
a LIB promotes heat generation and permanently damages
the crystallographic structure of the cathode [95], potentially

resulting in LLI and LAM. Under high cut-off voltage
conditions, NMC cells studied in [26] showed surface
structural degradation due to the formation of an ionically
insulating layer on the cathode’s surface, which tends to
switch from a rhombohedral phase to a mixture of spinel and
rock salt phases. Due to the rapid electrolyte decomposition
that occurs at higher voltages, more acidic components are
released, which can hasten the dissolution of NMC [96]. Very
low cell voltages also contribute to degradation by promoting
cathode particle cracking [97].

FIGURE 6. Relative volume fraction of free pores, SEI, and lithium metal
across the anode after 3300 cycles [48].

E. INTERACTION OF DEGRADATION MECHANISMS
CAUSING SATURATED AGING
As explained in Section I, among the various aging mech-
anisms studied in the literature, SEI formation and growth
have traditionally been identified as the primary mechanism
affecting the long-term degradation of LIBs [17], [47], [48].
In storage, a square-root dependency on time followed by
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FIGURE 7. Variation of capacity loss in each cycle as a function of LLI due
to SEI and Li plating over 3300 cycles [48].

capacity fade has been associated in several studies with
SEI growth [29], [98], whereas, under cycling conditions,
a linear component proportional to the charge throughput also
arises [28], [48].
Nevertheless, a saturated degradation trend has been

extensively reported after long-term cycling, resulting in
sharp capacity decay and impedance rise once a certain
number of cycles is reached [2], [17], [18]. Not only has
saturated aging been reported in cells with different cathode
chemistries, but large amounts of metallic Li were also
detected at the anode surface in several aged cells [2],
[99], leading some authors to attribute this abrupt saturated
capacity fade behavior mainly to Li plating happening at the
anode surface [48].
The dominant aging mechanism prior to the turning point

(knee-point) is believed to be a thickening of the SEI
catalyzed by oxidation products migrating to the anode.
Afterward, due to decreased ionic kinetics and graphite active
material degradation, lithium plating may occur even at low
temperatures and charging rates [49]. The authors in [48]
illustrated how the reduction of porosity is attributed to the
growth of a surface film on the anode-separator interface,
consisting of a combination of plated Li and SEI. Figure 6
shows how, near the separator of an aged cell, 40-50% of the
initial pore volume is occupied by the SEI and a high amount
of Li is plated at the very interface, resulting in a hindered
ionic conduction and diffusion. Moreover, as it has been
depicted in Figure 7, Li plating can be considered negligible
in the early stages of cycling, and all the LLI is attributed
to SEI growth. After a certain number of cycles, metallic Li
begins to deposit on the anode surface, causing a drop in
porosity, which in turn reinforces more Li plating. LLI by
deposited Li increases exponentially with the cycle number
at later stages, and the total aging rate increases when the LLI
caused by plated Li exceeds the LLI caused by SEI formation
(per-cycle) [48].
This interaction between deposited Li and the SEI is

therefore responsible for the transition from stabilized to
saturated behavior observed in the capacity fade curves of

LIBs after prolonged cycling, ultimately rendering the battery
early obsolete if the threshold between FL and SL is not
carefully established. For this purpose, early identification of
the knee-point is essential.

Overall, Figure 8 summarizes the degradation mechanisms
that lead to LAM and LLI and their causes, based on the
work in [10]. As depicted, most mechanisms lead to LAM,
such as graphite exfoliation, transition metal dissolution,
etc., while SEI formation and Li plating cause both LAM
and LLI. Moreover, the high cell voltage and current (or
C-rate) can be defined as the most hazardous causes,
affecting most of the degradation mechanisms, e.g., SEI
formation, electrolyte decomposition, graphite exfoliation,
etc., followed by temperature and mechanical stress. Finally,
the significance of the SEI formation and Li plating is
also seen here since both are influenced by multiple factors
simultaneously.

FIGURE 8. Summary of degradation modes, mechanisms, and causes that
lead to capacity fade of LIBs [10].

III. KNEE-POINT IDENTIFICATION
Knee-points are defined by the IEEE standard as the point at
which the capacity fade stops to decline stably (this occurs
during most of the battery’s life) and begins to decrease
rapidly until the EoL [100]. This is the turning point depicted
in Figure 1, which distinguishes the stabilization from the
saturation stage (FL and SL, respectively). Both online and
offline methods to identify the knee-point can be found in the
literature: while online methods can identify the knee-point
during operation based on data collected from previous
cycles, offline identification of the knee-point requires the
complete aging trajectory of the cell, making them less useful
for models aiming at predicting the remaining life of LIBs
still in use.

The authors in [101] described a methodology for offline
detection of the knee-point by defining it as the cycle number
of the intersection of two tangent lines on the capacity
fade curve, obtained from the points with the minimum
and maximum absolute slope-changing ratio of the capacity
fade curve, following (5). Hence, the slow-changing ratio is
defined as the difference in the curve slope at two consecutive
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points divided by the slope at the initial point.

s(N ) =
l ′(N + 1) − l ′(N )

l ′(N )
(5)

where:
s(N ): curve on which the slope-changing ratio is assessed for
each cycle N.
l ′(N ): curve slope at the cycle interval [N-1, N].
l ′(N+1): curve slope at the adjacent cycle interval [N, N+1].
However, given the presence of derivatives of the fitted

curve, the noise in the degradation curve caused by uncon-
trolled usage of the battery may have an impact on how well
this gradient-based method performs.

Moreover, in [13], an offline detection methodology was
used to identify the knee-point based on the Bacon-Watts
model to estimate the transition between two intersecting
straight lines, which does not rely on gradient methodologies
and is claimed to be robust against noise. This model relates
two straight lines to the left and right of an unknown transition
point (the knee-point) as indicated in (6). In this work, the
authors adjusted the model to identify two transitions instead
of one in order to identify the knee onset.

Y = a0 + a1(x − x1) + a2(x − x1) tanh
(
x − x1
c

)
+ Z (6)

where:
a0: intercept of the leftmost segment.
a1 and a2: slopes of the intersecting lines.
c: abruptness of the transition.
x1: knee-point.
Z : normally distributed and centered-in-zero random variable
that represents the residuals.

In a more recent work [102], a knee-point detection
approach was proposed to identify the knee-point both online
and offline using raw capacity values without needing noise
filtering. In order to achieve that, the authors defined a vector
of straight lines Yi superposed on the degradation curve,
as dictated in (7), with their origin in the initial capacity and
passing through the measured capacity in each cycle Qi:

Yi =
(Qi − Q1)
(i− 1)

i+ Q1 (7)

Yi is subsequently subtracted from Qi to generate the
knee detection curve Kpi. Finally, the knee detection curve
is divided into two sections containing the same amount of
pointsKpleft,i andKpright,i). The occurrence of the knee-point
in the ith cycle is determined by (8):

iKp = i : (Kpleft,i < Kpright,i) (8)

When used offline, the average computational time
required for detecting the knee-point with the technique
proposed in [102] was reduced by 54.3% compared to [101]
and by 91.2% compared to [13].

In [103], the normalized distance method was proposed to
identify the knee-point as the most convex point in the shape
of the aging curve. Additionally, it was concluded that the

traditional state of health (SoH) of the battery (defined as the
ratio of the current capacity divided by the nominal capacity
of the LIB) is not sufficient to evaluate LIB aging in the linear
zone. In order to account for the nonlinearities prevalent in
LIB deterioration curves, they described the state of nonlinear
aging (SoNA) as a more efficient health evaluation indicator
that focuses on the full battery aging trajectory rather than a
specific state point.

IV. NONLINEAR DEGRADATION MODELING
In recent years, several works have been published to predict
LIBs’ behavior in storage and under cycling conditions.
Different approaches can be followed in order to achieve
that, and different classifications can be found in the
literature. Most review papers classify these models into
a) empirical models, b) physics-based or electrochemical
models, c) equivalent circuit models, and d) statistical or data-
driven models [43], [104], [105]. Additional categorization
can also be found in some publications, such as reduced-
order models [106], [107], which could be understood as a
subcategory of physics-based models.

When it comes to LIB degradation modeling, the afore-
mentioned categories may be condensed into two major
groups: physics-basedmodels (PBM) and data-drivenmodels
(DDM). Equivalent circuit models can be considered PBM
as they are a simplified yet less computationally expensive
method to incorporate the underlying physics of a battery.
Mathematical or empirical models, on the contrary, are
DDM by definition, in that statistical methods such as linear
regression or interpolation are used to predict future behavior
without requiring in-depth knowledge of the underlying
physics. In this work, an additional subcategorization is made
between single-mechanism and multi-mechanism PBMs:
whereas single-mechanism models focus solely on one of
the degradation mechanisms discussed in Section II (there-
fore ignoring their interactions), multi-mechanism models
incorporate two or more of those mechanisms, potentially
improving model accuracy at the expense of increased
complexity and computational cost.

A. SINGLE-MECHANISM PBMs
While a generally large series of assumptions are made
when developing single-mechanism PBMs, they have been
demonstrated to be a simple yet accurate tool to estimate
the degradation of LIBs. Some authors have contributed
models considering less prevalent aging mechanisms, such
as the mechanical stress placed on negative electrodes during
cycling [89], [108]. However, most of the literature in this
field focuses on the two main aging mechanisms affecting
LIBs, namely SEI formation and growth and Li plating.

1) SEI FORMATION AND GROWTH
As explained before, SEI formation protects the electrode
from further reaction with the electrolyte. However, a small
amount of electrolyte might still seep across this porous
layer and be reduced at the anode surface, further thickening
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the SEI [48] and enhancing battery aging. Consequently.
the solvent diffusion rate slows as it thickens, reducing the
SEI growth rate and fractional capacity loss [30]. In [29],
the capacity fade was tracked as a function of storage
temperature and time. By assuming that SEI growth is limited
by electron migration across it, they developed an Arrhenius
Law-based model, indicated in (9), which also accounted
for the electronic conductivity and concluded that the cell
capacity loss due to SEI growth has the following square root
dependency with time:

t = e(A/T−B)x2 + e(C/T−D)x (9)

where:
t: time.
A,B,C and D: fitting factors obtained experimentally.
T : temperature.
x: LLI due to SEI formation.

Despite its simplicity and good accuracy, the main
drawback of this model is that it only accounts for LLI by
SEI growth as a cause of capacity loss.

The single SEI layer model developed in [30] also
reflected a capacity fade with the square root of time. The
authors assumed that at the anode-SEI interface, ethylene
carbonate (EC) diffuses across the SEI and undergoes two-
electron reduction, resulting in an insoluble product P, in turn
increasing SEI thickness, which also grows proportional to
the square root of time as indicated by (10).

x(t,T ) =
ZPcPAa
N0

L(t) =
ZPcPAa
N0

2λ
√
DEC (T )t (10)

where:
x(t,T ): fractional capacity loss.
ZP: stoichiometric coefficient of Li in the insoluble product
P.
cP: molar density of the insoluble product P.
Aa: surface area of the anode.
N 0: initial capacity measured value.
L(t): SEI thickness.
λ: factor dependant on the electrolyte composition and the
molar volume of P.
DEC: effective binary diffusivity of EC in P, dependent on the
temperature T.
t: time.
The model accounted for continuously varying properties,

including composition and porosity, providing a more sophis-
ticated approach to SEI growth, yet again only accounting for
LLI by SEI growth as a cause for capacity degradation.

The model developed in [31] also considered LLI due to
solvent reduction reaction as the only cause for SEI growth
and capacity fade. However, the authors accounted also for
the contribution of the anode film resistance, enabling them
to quantitatively study the effects of C-rate, DoD, and cut-off
voltage. Based on the same premise, the work in [32] studied
the influence of the SEI porosity on capacity fade with a new
model that was able to simulate different aging profiles based

on charge/discharge current rates and different storage open
circuit voltage conditions (SOC).

In contrast, a two-layer SEI model was used in [109]
to demonstrate that while transport of a charged species
limits SEI growth, electronic leakage through the SEI is
not the limiting mechanism. When formed at low potentials,
the SEI passivates the anode more effectively, and for
potentials greater than 0.3 V vs. Li/Li+, growth of the
SEI on glassy carbon is parabolic with time, consistent
with capacity-fade measurements. They also found that the
SEI densifies gradually and attributed transport and kinetics
decrease to decreasing porosity rather than to increasing
thickness.

The authors of [61] used a single-particle model to show
that SEI formation is generally uniform on the anode surface,
and heterogeneities can only be appreciated under very high
C-rates. Again, an Arrhenius dependence was used to explain
how temperature affects the diffusivity of the limiting reactive
species through the SEI.

Moreover, a double-layer approach was used in [33]
to explain the long-term SEI growth with finite porosity,
concluding that its thickness and morphology can be
predicted based on the structural properties. In the case
that the formation of a dense SEI cannot be prevented,
electron conduction is the rate-limiting mechanism in a
situation in which electrons are conducted away from the
electrode and solvent is diffused towards it, resulting in
nearly constant porosity throughout the film and over time.
Otherwise, solvent diffusion in the pores becomes the
rate-limiting transport mechanism, and an inhomogeneous
thickness distribution can be seen due to porosity fluctuations
in the SEI. In a later paper [34], the diffusion of neutral
lithium interstitials was identified as the limiting long-term
growth mechanism [70].

In [111], the electrochemical kinetics of SEI growth
were developed based on the assumption that the electronic
conductivity of the initial SEI varies quadratically with
the local lithium concentration, stimulating SEI growth
during lithiation and suppressing it during delithiation.
According to their findings, the SEI thickness is a com-
plex function of transient variables such as cell potential,
electron concentration, current direction and magnitude,
and ion absorption energy. However, it was assumed that
electron transport is the rate-limiting factor, which may
only be valid for short periods of storage time, but
no experimental data was provided to corroborate this
assumption.

In the mixed model presented in [112], the authors
predicted open circuit potential, SEI layer thickness, and
capacity loss by accounting for solvent diffusion through
the SEI and solvent reduction kinetics at the SEI/electrode
interface, considering the effect of the initial SoC. Compared
to previous work, they reported lower capacity loss and a
thinner SEI due to its growth under open circuit conditions.
They stated that the SEI growth depends on its own diffusion
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TABLE 2. Comparison of Single-mechanism SEI growth models.

coefficient and thickness: the initial growth of the SEI layer
is diffusion-limited, and after a certain thickness, the growth
rate gradually slows down due to the rising resistance of the
film, kinetically limiting the system.

A summary of the models compared in this subsection is
included in Table 2.

2) LI PLATING
Li plating models are generally based on the kinetic
limitations of the Li intercalation process into graphite,
which in turn arise from the two sources of overpotential
previously mentioned in subsection II-B, namely charge
transfer and solid diffusion. The Butler-Volmer equation (11)
(or variants like linearizations [114], [115]) has been widely
used to model the charge transfer limitation effect on the Li
deposition rate [15], [35], [37], [72], [77], [114], [115], [116],
[117], [118], [119]:

jpl = j0

[
exp

(
αa,kF
RT

ηpl

)
− exp

(
αc,kF
RT

ηpl

)]
(11)

where:
jpl : lithium plating local current density.
j0: exchange current density.
αa,pl, αc,pl : anode and cathode transfer coefficients.
F : Faraday constant, equal to 96487 C·mol-1.
R: universal gas constant, equal to 8.314 J·K-1mol-1.
T : temperature.
ηpl : local value of surface overpotential.
On the contrary, the diffusion of Li through a hypo-

thetically spherical graphite particle is generally modeled
according to Fick’s second law in (12) [15], [77], [114], [115]:

∂cs
∂t

=
Ds
r2

∂

∂r

(
r2

∂cs
∂r

)
(12)

where:
cs: solid phase concentration of Li in the particle.

Ds: solid phase diffusion coefficient.
Rs: particle radius.

One of the first Li plating models (based on a model
previously developed in [120]) was used to study the
effect of cell design parameters on Li deposition due to
overcharging conditions and how it affects the resistance
increase and capacity fade curves [35]. Their model allowed
the authors to understand how plated lithium is spatially
distributed across the negative electrode under different
charging conditions, enabling them to establish operational
and design limits that help avoid Li deposition. While the
evolution of the SEI layer was not considered in the model,
its resistance after the formation period was added as a
constant value to the resistance of the film formed by
metallic Li and Li2CO3 over time. They concluded that the
risk of Li plating under overcharging conditions decreases
in cells with an excess negative electrode compensating
for the reduced specific capacity of the anode. In a later
study [114], the overcharging conditions under which Li
plating happens were investigated by means of a simplified
two-dimensional model, concluding that the geometry of
the anode with respect to the cathode plays an essential
role in avoiding Li deposition. It was found that expanding
it rather than increasing its thickness prevents Li deposi-
tion more effectively. However, in contrast with [35], the
authors neglected the film resistances on electrodes in their
model.

In [115], a control-oriented model suitable for BMS was
developed based on a reduced-order approximation of the
model in [35] capable of reducing the calculation time to
1/5000 compared to the physical-based model. In order to
achieve this, the authors made a number of assumptions, such
as constant local electrolyte and solid surface concentrations

1Kinetic-limited case failed to describe calendar aging.
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TABLE 3. Comparison of Single-mechanism Li plating models.

(quasi-equilibrium state), uniform current density over the
anode, and the same anodic and cathodic charge-transfer
coefficients of the interalation kinetics. Furthermore, the
work in [77] studied the risk of Li plating caused by charge
transfer limitation as a function of the C-rate using a 1D
electrochemical model previously developed in [121].

Additionally, the coupled electrochemical-thermal model
developed in [15], parameterized for a wide range of
temperature and SoC and validated against multiple discharge
currents and driving profiles, showed a good correla-
tion between experimental and semi-quantitative simulation
results despite attributing all degradation to lithium plating.
Their model enabled them to determine safe operational
currents for each temperature and SoC.Moreover, the authors
in [116] also determined safe operational limits for charging
protocols by means of an electrochemical model, which
allowed them to calculate lithium plating ratios (determined
by the percentage of charge corresponding to Li plating and
the total charge) for cells cycled at SoC ranges under 0 °C.
According to their results, Li plating may also occur prior
to the saturation of Li+ ions concentration at the graphite
surface. This is a consequence of the reduction of the surface
potential due to the potential induced by the higher activation
energy of Li+ ion intercalation compared to that of Li plating.
Such as in [35], they also accounted for the contribution
of a constant SEI film resistance and a time-varying film
resistance arising from the plating products (although only
Li was considered).

In [37], an improved pseudo-3D model was used to
simulate reversible Li plating based on the premise that the
equilibrium potential of the plating reaction is not always
equal to 0 V but varies as a function of local temperature,
pressure, and concentration of Li+ ions. Moreover, their
model accounted not only for the intercalation and solid-state
diffusion kinetics but also for the kinetics of the plating
reaction itself, enabling them to generate operation maps
over a wide range of C-rates and temperatures. An extensive

experimental dataset was used for validation, showing
good qualitative correlations; however, some quantitative
differences were observed that might be related to the
morphological characteristics of the deposited Li. A re-
intercalation reaction was also included in their model as
an alternative to the electrochemical oxidation of plated
Li. In addition, a Li plating model was proposed in [117]
that is independent of a transport model, allowing access to
the spatial distribution of the lithium phase and permitting
correlation of deposited Li to electrochemical features.
Furthermore, plating onset could be recognized through a
feature in the half-cell voltage during charge, which could
serve as a characteristic indicator for battery diagnostics.

Finally, the model developed in [118] combined a pseudo-
2D electrochemical model and a mechanical model to
account for the pressure behavior of the cell during Li
deposition while charging. This model was able to accurately
reproduce experimental voltage and pressure data, predict
Li plating onset based on measured pressure behavior,
and optimize a fast charging protocol based on measured
anode potential. A summary of the models reviewed in this
subsection is available in Table 3.

3) KEY INSIGHTS
The key insights derived from the single-mechanism PB LIB
degradation models can be summarized as follows:

a) Single-mechanism PBMs have been demonstrated to be
a simple yet accurate tool to estimate the degradation of LIBs
despite the large series of assumptions they often use.

b) It is commonly agreed that SEI growth modeling is
reflected with a capacity fade with the square root of time.

c) While the transport of a charged species limits SEI
growth, electronic leakage through the SEI is not the limiting
mechanism.

d) SEI formation is mostly uniform on the anode surface,
and the thickness and morphology of long-term SEI growth
with finite porosity can be predicted based on the structural
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properties. However, another study claims that SEI growth
depends on its own diffusion coefficient and thickness.

e) Li plating models are generally based on the kinetic
limitations of the Li intercalation process into graphite, and
they are most often developed based on the Butler-Volmer
equation.

f) The risk of Li plating under over-charging conditions
decreases in cells with an excess negative electrode.

g) Li plating may also occur prior to the saturation of Li+
ions concentration at the graphite surface.

h) The half-cell charging voltage curve can recognize Li
plating onset, which can serve as a characteristic indicator
for battery diagnostics.

i) Most existing single-mechanism PB models consider
either SEI formation/growth or Li plating. Time and tem-
perature, followed by C-rate and initial SOC, are the main
stress factors considered in the SEI formation models. On the
contrary, C-rate is the respectivemain stress factor considered
in the existing Li platingmodels, followed by temperature and
initial SOC.

B. MULTI-MECHANISM PBMs
1) MODELS REVIEW
One of the first multidimensional models able to predict
the spatial and temporal temperature distribution inside the
cell by coupling the thermal and electrochemical behavior
of the battery was developed in [122]. Despite the fact that
the authors did not aim at predicting battery aging, their
model would act as a benchmark for future physical-based
modeling approaches. Thismodel was later improved in [123]
by incorporating features such as reversible, irreversible, and
ohmic heating in matrix and solution phases, as well as
the Arrhenius dependence of the various transport, kinetic,
and mass-transfer parameters. This work also accounted for
the entropic contribution of the manganese oxide spinel and
carbon electrodes.

It was not until several years later that the first
multi-mechanism aging models began to be developed. One
of the earliest and most widely accepted ones was based on
a linear combination of intact and cracked SEI layer [124].
The developed model used kinetics and transport control
to describe the electrode kinetics, and despite showing a
good correlation with the experimental results, its use was
restricted to low C-rates (up to 1C) and a narrow temperature
window (between 25 C and 45 C).
Moreover, in [125], the SEI growth and transition metal

dissolution were combined as the dominating capacity fade
mechanism for the anode and the cathode, respectively, the
latter being assumed responsible for the saturated aging
behavior. According to their model, the saturation in the
capacity fade curve occurs when the LAM in the cathode
is larger than the LLI caused by SEI growth. Additionally,
the authors made a distinction between electronic and ionic
conductivity within the SEI. Despite the accuracy of their
model, they did not consider transition metal deposition on

the anode and failed to implement Li plating as a second
source of LLI, causing the slope after the knee-point to be
underestimated by the model.

Furthermore, the electrochemical-thermal model previ-
ously developed in [122] was improved in [48] by accounting
for both lithium plating and SEI growth and by incorporating
the effect of anode porosity clogging too. Hence, the model
was able to accurately characterize battery aging before and
after the knee-point. It was confirmed that SEI is the dominant
agingmechanism during the early stages of the battery. As the
anode porosity reduces upon cycling, a larger gradient of
electrolyte potential in the anode is formed and, consequently,
a lower lithium deposition potential (LDP), leading to a
saturated degradation stage dominated by irreversible Li
plating. In their model, the authors used the following
cathodic Tafel expression (13) to calculate the transfer current
density of the lithium plating reaction:

jpl = −ai0,pl exp−
αc,plF
RT

ηpl (13)

where:
a: specific surface area.
i0,pl : exchange current density of lithium deposition, treated
as a fitting parameter.
αC,pl : charge transfer coefficient.
F : Faraday constant, equal to 96487 C·mol-1.
R: universal gas constant, equal to 8.314 J·K-1mol-1.
T : temperature.
ηpl : lithium deposition potential (LDP), defined in (14):

ηpl = φs − φe −
jtot
a
Rfilm (14)

where:
φs: solid phase potential (close to zero in the anode).
φe: electrolyte potential.
jtot : total volumetric current density, defined as the sum of
the current densities of the intercalation, SEI formation, and
deposition reactions.
Rfilm: resistance of surface film (insignificant at room
temperature).

Therefore, the LDP is highly dependent on the electrolyte
potential at room temperature. In an aged cell’s charging
process, electrolyte potential is dramatically increased in
the anode, especially in the region near the separator,
consequently causing low LDP. Lithium plating occurs
whenever the LDP goes below 0 V vs. Li/Li+. Their model
was even able to capture the voltage undershoot effect of a
cell cycled at 3C after advanced aging, caused by a resistance
increase due to local pore clogging near the anode/separator
interface. Despite showing a very good correlation with
experimental results, the model could still be more accurate
if the effects of transition metal dissolution had also been
included. Moreover, only irreversible lithium deposition was
considered in their work. Therefore, the estimated fitting
value of I0,lpl resulted in a lower than the actual exchange
current density of Li metal stripping/plating. In a subsequent
study [127], the same authors used their previous model to
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TABLE 4. Comparison of multi-mechanism degradation models.

obtain an optimal temperature at which the battery should be
operated in order to maximize the cycle life by minimizing
both SEI formation and Li plating.

Additionally, an electrochemical model was developed
in [72], which was capable of simulating the characteristic
voltage plateau during relaxation after charging to investigate
the reversibility of Li plating at low temperatures. The authors
concluded that voltage plateaus observed in the anode poten-
tial profiles are induced by Li stripping and re-intercalation
reactions and that local minima exhibited in the differential
voltage curves are linearly related to the amount of reversible
Li. Moreover, the electrochemical model developed in [126]
combined different aging mechanisms, namely the formation
and growth of the SEI, particle cracking in the anode, and
percolation losses of the electrolyte due to electrode dry-
out. Their model ascribed saturated degradation to the loss
of contact between the active materials and the electrolyte
as a consequence of the dry-out of electrodes due to
gas formation, which was in quantitative agreement with
experimental data.

Furthermore, the work [36] later proposed a more com-
plete approach based on multi-layered heterogeneous SEI
growth, irreversible lithium plating, and reduction of anode
porosity. The authors considered a binary electrolyte filling
the porous components of the electrodes, composed of
ethylene carbonate (EC) and dimethyl carbonate (DMC), and
coupled their diffusion coefficient and that of Li-ion as a
function of local porosity. Despite ohmic heat generation
being disregarded in this work, a higher performance than

previous models ( [48], [111], [124]) was claimed by the
authors.

In [38], the 3D modeling framework for reversible Li
plating developed in [37] was coupled with the SEI model
in [126]. The resulting model was adjusted to account for
the intricate interplays between SEI growth and Li deposition
positive feedback, enabling it to describe cell degradation
over a wide range of temperatures and C-rates and to identify
critical operation conditions.

Finally, in a more recent study [119], a 3D electrochemical
model was presented to investigate the occurrence of
inhomogeneous Li plating in large-format LIBs under low-
temperature charging conditions. The spatial distribution
of metallic Li on the anode was found to be highly
dependent on local current densities and overpotentials.
While the main goal was to understand the behavior of the
Li plating-stripping process at low temperatures, the model
also accounted for irreversible Li plating and SEI formation,
as well as the interaction of plated Li with the electrolyte
to thicken the SEI film. Thus, it can be considered one
of the most comprehensive multi-mechanism models in the
literature due to all of the above. The models described in
this subsection have been summarised in Table 4.

2) KEY INSIGHTS
The key insights derived from the multi-mechanism PB LIB
degradation models can be summarized as follows:

a) It is generally agreed that SEI formation is the leading
degradation mechanism during the stabilized degradation
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stage, while Li plating is mostly responsible for the saturated
degradation stage.

b) Hence, failing to include mechanisms such as Li
plating or transition metal deposition or Li plating can be
insignificant for the FL modeling of the LIB degradation;
however, the SL can be highly underestimated, and the
knee-point identification can be inaccurate.

c) C-rate is the main stress factor considered, followed by
SOC and temperature, while SEI formation and growth is
the mechanism always accounted for, followed by Li plating,
in the multi-mechanism models.

d) Lithium deposition potential modeling is highly depen-
dent on the consideration of the electrolyte potential at room
temperature.

e) Voltage plateaus in the anode potential profiles are
induced by Li stripping and re-intercalation reaction.

f) A main cause of saturated degradation (SL) is the loss
of contact between the active materials and the electrolyte
as a consequence of the dry-out of electrodes due to gas
formation.

g) The spatial distribution of metallic Li on the
anode is highly dependent on local current densities and
overpotentials.

C. DATA-DRIVEN MODELS
Although PBMs aid in understanding how LIBs age from a
physics perspective, they are not the sole approach to forecast
long-term degradation. Data-driven approaches generally
rely on large datasets of features typically based on mea-
surable magnitudes such as current, voltage, or temperature,
which, combined with statistical methods, enables estimation
of the future physical behavior of the cell without explicitly
making use of physics-based equations.

The advantages and disadvantages of PBM and data-driven
approaches are already well-known in the literature. On the
one hand, PBMs are capable of providing a better interpre-
tation of the underlying physical laws and their relation with
the results, while they also do not need historical data for their
functionality. They can also provide generalized solutions,
which are not highly case-specific. However, they are usually
characterized by high complexity and computational time.
Moreover, it is challenging to model the interdependencies
between the various aging mechanisms, especially for LIB
degradation. On the other hand, data-driven approaches are
able to reduce computational time, provide accurate results
regardless of the aging interdependencies, and inherently
manage uncertainties. However, they need a large amount of
historical data, and they are not easily applicable to different
operating conditions and chemistries [129].

For online estimation of a battery’s remaining useful life
(RUL), two general DDM trends are currently followed in
the literature [130]: the first one consists of using a previously
developed lifetimemodel to estimate the RUL using historical
battery usage data as input. On the contrary, the second
approach relies on a prediction model fed with present battery

characteristics data. In both cases, the design and appropriate
training of these models is fundamental. Statistical models
are generally simple to use and are characterized by high
accuracy; however, they usually need comprehensive data
(e.g. extensive battery behavior tests). On the contrary,
machine learning (ML) models are more robust and more
able to address the non-linearities of battery aging while
maintaining high accuracy; however, they highly depend on
the quantity and quality of the data, and they are usually
characterized by a high computational time challenging
their online implementation in real-world applications [131].
While most statistical and machine learning models currently
focus on solely forecasting the RUL of the battery, few
of them aim at predicting other parameters such as the
knee-point or the elbow-point, and, to the best of our
knowledge, none of them provide detailed insight about
the behavior of the capacity fade/resistance increase curves
during the saturated degradation stage. Under environmental
and load conditions different from the training datasets, it is
still challenging to reliably anticipate when a battery will
reach the end of its useful life using state-of-health (SOH)
predictions.

1) REGRESSION-BASED METHODS
Some works used regression-based approaches to estimate
the RUL of LIBs. In [128], 124 lithium-iron-phosphate/
graphite cells were tested under different conditions aiming
at developing an elastic-net-based model able to accurately
predict capacity degradation over time. The cells were
cycled under various charge C-rates (1C to 8C), following
72 different one-step and two-step charging policies. Cell
voltages, currents, and temperatures were measured during
the test, and the authors found that the discharge capacity vs.
voltage curves Q(V) and their derivatives (e.g. the difference
of the discharge capacity curves vs voltage) are a rich data
source effective in degradation diagnostics, as depicted in
Figure 9. Indeed, by training the model with the variance
of the change in discharge voltage curves between cycles
10 and 100 1Q10−100(V ), they were able to quantitatively
predict the cycle life (Figure 9c) with an average percent
error not higher than 15%. Moreover, by enhancing the
features of the elastic-net model, they were able to reach
average percent errors as low as 7.5%. Furthermore, they
developed a classificationmodel based on regularized logistic
regression able to categorize cells into high- and low-lifetime
with an accuracy of 95.1% using features from only the first
5 cycles.

Using the same dataset of [128] as input for their work, the
authors in [132] developed a Gaussian Process Regression
(GPR) model capable of estimating changes in the SoH of
the battery by feeding it with features selected automatically
and prioritized based on their impact in degradation. This
enabled their model to accurately predict the entire capacity
fade trajectory, knee-point, and EoL. Additionally, a migrated
GPR was used in [133] to predict the two-stage aging
trajectory of NMC LIBs. The model was fed offline with
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FIGURE 9. Features based on voltage curves from the first 100 cycles of the A123 dataset in [128]. (a) Discharge capacity curves for the
10th and 100th cycles for a representative cell. (b) Difference of the discharge capacity curves as a function of voltage between the
100th and 10th cycles, 1Q100−10(V). (c) Cycle life plotted as a function of the variance of 1Q100−10(V), with a correlation coefficient of
−0.93.

accelerated-speed aging data of three batteries from different
manufacturers, enabling them to achieve high-accuracy
online aging predictions from the initial 30% data.

The use of regression-based methods (e.g. GPR) is
increasing in LIB degradation prediction due to their
non-parametric character and high flexibility in encompass-
ing the non-linearities of the capacity fading while also being
capable of directly quantifying the uncertainty levels in their
prediction [131]. However, they are usually computationally
expensive, and the proper selection of the appropriate Kernel
function greatly affects the results. Hence, it is recommended
that the model parameters and quantity and quality of the
input data must be carefully considered for high prediction
robustness [44].

2) NEURAL NETWORK-BASED METHODS
Neural networks (NNs) are often adopted to estimate the
generally nonlinear degradation process of LIBs thanks to
their superior ability to approximate nonlinearities, despite
having a tendency to fall into local minima and frequently
needing very large amounts of training data [134]. Two NN
approaches are widely found in the literature for battery
degradation purposes:

• Recurrent Neural Networks (RNNs) process sequences
by iterating through the sequence elements and main-
taining a state containing information relative to what it
has seen so far [135].

• Convolutional Neural Networks (CNNs) work by learn-
ing a hierarchy of modular patterns and concepts to
represent data [135].

Concerning RNNs, the study in [136], in order to account
for the dynamic state behavior of LIBs, used an adaptive
recurrent neural network (RNN) to predict their RUL,
in which the network weights were adaptively optimized
by means of the recursive Levenberg-Marquardt method.
Furthermore, an RNN was used in [137] to monitor the
SoH and predict the deterioration of high-power LIBs.
In order to achieve that, the authors first developed an
equivalent circuit model based on electrochemical impedance

spectroscopy measurements to account for the dependence
of internal resistance and open circuit voltage on the
SoC. The work in [138] also developed a RUL prediction
model based on Long Short-Term Memory RNN combined
with Monte Carlo simulations. More recently, an LSTM
sequence-to-sequence (S2S) RNN was used in [139] capable
of detecting intrinsic variability caused by manufacturing
differences to predict cell-specific EoL and knee-point from
the first 100 cycles, and the model was validated with
a dataset consisting of 48 NMC/C cells aged under the
same conditions. The authors reported a notable increase
in accuracy and computing speed compared to other
state-of-the-art models.

On the contrary, CNNs have been increasingly used by
several authors in recent years to predict the degradation
trends of LIBs. In the work of [140], a CNN is proposed
capable of predicting both the full capacity fade and internal
resistance rise trajectory from only one cycle among the
first 100 cycles of data. Their CNN employed convolutional
feature extraction to eliminate the need for manual feature
generation. In contrast, a classification model was proposed
in [141] based on a CNN able to predict the knee-point online
under a more realistic charge/discharge scenario. Their model
was based on a two-stage approach: it first predicted whether
or not a certain cell would reach the knee-point within the
next 100 cycles with an accuracy of 91%, followed by an
estimation of the remaining number of cycles before reaching
the knee-point with a 14.6% mean absolute percent error
(MAPE).

As explained, the main advantages of NNs are their high
suitability for non-linear problems such as LIB aging and
their high accuracy levels, while RNNs are also highly quali-
fied for long-term forecasting (use of LSTM) [131]. However,
their performance greatly depends on the training process
and dataset, they are limited regarding uncertainty handling,
while they can also cause overfitting issues. Therefore, the
use of a high number of features is recommended for higher
knowledge of the battery dynamics or the combination of
several NNs for improved estimation results [44].
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3) CLASSIFIERS
Support Vector Machines (SVMs) are a family of gener-
alized linear classifiers that include a number of closely
similar supervised learning techniques for classification and
regression [142]. In [143], an SVM was used to estimate
the RUL and SOH of LIBs and validate their model on
driving profiles and temperatures not present during training.
Moreover, an SVM-based model was developed in [144] to
predict the SoH of LIBs at constant temperature and over an
SoC range typical for EV operating conditions, solely based
on current, voltage, and temperature training data. More
recently, the authors in [13] employed an SVM for the early
classification of cells by knee-point occurrence, enabling
their model to categorize cells into ‘‘short,’’ ‘‘medium,’’ and
‘‘long-range,’’ reaching an accuracy of 88% by using data
from just the first 3 cycles.

SVMs do not require as much training data as NNs,
and they are non-parametric and highly adaptable, making
their solution global and unique within a short prediction
time [131]. However, for RUL applications, SVMs have the
disadvantage that they must select the proper kernel function,
and only the point estimate value of the RUL is provided,
whose uncertainty is difficult to determine [134]. Moreover,
the utilized hyper-parameters need to be cross-validated,
and the handling of the battery aging non-linearities is
usually a challenge. Therefore, it is recommended that SVMs
be used as a hybrid method component (e.g. SVMs and
regression-based approaches) for performance improvement
in applications as non-linear as the LIB degradation [44].
On the contrary, Relevance Vector Machines (RVMs),

which have the same functional form as SVMs, are built
using a Bayesian framework of extended linear models [142],
resulting in probabilistic outputs capable of providing better
generalization performance than SVMs. The study in [145]
used an RVM to generate representative training vectors from
capacity degradation data, which were later used to generate
a capacity model able to calculate the failure threshold and
estimate the RUL of a battery set. Their training dataset
was, however, not very broad, consisting only of constant
C-rate and constant temperature degradation curves, and
their model was unable to dynamically update. To address
these issues, the authors in [146] implemented an online
training strategy in their RVM algorithm, achieving better
prediction precision and improving the operating efficiency
of RUL estimation. Also, in [13], an RVM was used for early
quantitative prediction of knee-onset and knee-point using
data from the first 50 cycles with a 12% and 9.4% error,
respectively.

RVMs are characterized by a high degree of generalization
and sparsity while they are also able to provide probability
distribution functions (PDFs) as an output [131]. However,
they need a very high amount of available data, and
overfitting issues often occur. Therefore, it is recommended
that the quality of the data is carefully considered and the data
are pre-processed to avoid overfitting.

4) SEMI-SUPERVISED LEARNING
As already explained, data-driven approaches are often
chosen over PB for LIB degradation due to the high modeling
complexity of the various degradation mechanisms and
their interactions. However, the previously described DD
approaches, summarized also in Table 5, usually rely on
a heavy amount of available labeled data collected, e.g.,
at room temperature, which is unsuitable for real-world
dynamic conditions and challenges the data collection
process. As a consequence, their accuracy and reliability are
often hindered [147], [148]. On the contrary, semi-supervised
DD approaches can function with the need for less data that
are unlabeled and can be derived by different LIB systems
extending their suitability for different applications [149].
For example, the authors in [147] extracted three features

(namely current rate, pseudo-differential voltage, and tem-
perature) from the battery discharging profiles using only an
amount of up to 15% labeled data. The approach used was
a semi-supervised method, which comprised a bidirectional
gate recurrent unit (biGRU) and a structured kernel interpo-
lation GPR finding an RMSE error below 1.91%. Moreover,
a semi-supervised adversarial deep learning (SADL) method
was utilized for capacity estimation in [148] to transform
voltage and current data to capacity increment features,
finding an RMSE error below 2% for various battery
types. Additionally, the LIB RUL estimation work in [150]
recommended an NN that included one encoder and three
decoder heads for the feature extraction within 25 operation
cycles and only 2% labeled data. Consequently, datasets from
34 different LIBs that comprised more than 19900 cycles
under dynamic operation conditions were used for the
validation of the approach. Furthermore, the semi-supervised
partial Bayesian co-training (PBCT) method used in [151]
led to up to 21.9% higher accuracy concerning LIB lifetime
prediction than other supervised-learning approaches (e.g.
elasticnet method) while simultaneously being able to follow
other key influential factors of LIB degradation. Finally, with
the use of semi-supervised learning, the authors in [152]
managed to predict the capacity fade of a LIB cell at three
difference temperatures with an RMSE of 0.24% using the
cell labeled dataset from only one. However, it must be noted
that the development of semi-supervised learning methods
is generally characterized by higher complexity than that of
supervised learning.

5) KEY INSIGHTS
The key insights derived from the data-driven LIB
degradation models can be summarized as follows:

a) Regression-based models, NN-based models (RNNs &
CNNs), and classifiers (SVMs & RVMs) have been used
as data-driven approaches for LIB degradation prediction.
While NN-based approaches have a higher capability of
capturing the non-linearities of LIB degradation, they need
a large amount of available data. On the contrary, classifiers
while needing less amount of data, the appropriate Kernel
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function for degradation prediction of each LIB chemistry can
be challenging.

b) While higher precision can often be achieved with the
PB models, data-driven approaches generally offer a good
trade-off between model accuracy and response, reducing the
high computational requirements and complexity. However,
data-driven approaches are more efficient for total LIB aging
prediction but less efficient in predicting the impact of every
degradation mechanism.

c) The majority of data-driven models aim at forecasting
the RUL of the battery, and only a few also attempt to predict
other parameters, e.g. the knee-point or the elbow-point.

d) The existing data-driven approaches do not provide spe-
cific information regarding how the capacity fade/resistance
rise curves behave throughout the saturated degradation
stage.

e) The lack of available physical input complicates the
forecast of the knee-point and EoL using SoH predictions
under different environmental and load variables from the
training datasets.

f) Semi-supervised learning approaches can overcome the
data collection challenge of supervised approaches that need
a large amount of labeled data which can be inaccurate under
dynamic operation conditions and/or for other LIB battery
models.

D. COMBINED PHYSICS-BASED & DATA-DRIVEN
METHODS
1) REVIEWED STUDIES
The complexity and computational demands of the PB
approaches and the lack of physical interpretation and gener-
alization of the DD approaches have led to the investigation
of combined approaches that can take advantage of the merits
of both families, offering potential advancements in both
short- and long-term predictions of LIB lifetime. In [154],
the authors explored the ease of implementation, advantages,
limitations, and viability of different combined PB and
machine learning (ML)-based architectures for LIB lifetime
prediction, for which a summary is provided in Figure 10. The
sequential integration approaches (A1, A2, and A3) preserve
ML and PB modeling as independent components, making
them compatible with existing methodology. An alternate
option for integration is the hybridization ofML and PBmod-
eling approaches, in which the borders between each mod-
eling paradigm become hazy, such as physics-constrained
ML (B1) or machine learning-accelerated PB modeling
(B2). Architecture B1 is typically accomplished through
physics-based penalty terms, utilized to improve predictions
and capture physical spatiotemporal relations, or through
a physics-guided network architecture design to help learn
low-dimensional, physical representations. For battery health
forecasting, a generative ML model could be trained
with conservation laws to constrain model evolution or
PDE-constrained inverse problems could be solved for
constitutive relations from datasets. On the other hand,
architecture B2 relies on physics-informed ML, exemplified

by physics-informed neural networks (PINNs), to solve
underlying nonlinear PDEs for dynamic battery models,
pioneered in [155].

PINNs are described as neural networks that are trained
to solve supervised learning tasks while respecting any given
law of physics described by general nonlinear partial differ-
ential equations. For example, aging-correlated parameters,
derived by a generalizable PBmodel, were used to inform the
DNN in [156], achieving an RMSE of 11.42 cycles utilizing
only a single charging curve. Furthermore, physicochemical
simulations with a pseudo-two-dimensional Newman model
and laboratory or EV field data were used for data generation
to inform the PINN developed in [157]. While the PINN
achieved a LIB SOH estimation with an RMSE error
below 2% with the use of laboratory data, differences in
current profiles and signal acquisition proved to be the
main limitations for the model generalization to the EV
field data. On the contrary, an equivalent circuit model was
used to produce the integral voltage error, which, together
with the feature of dynamic operation conditions, was sent
as input to a back propagation NN, achieving an RMSE
error of 1% in [158]. Additionally, the PINN developed
in [159] comprised two different NNs, one for feature-to-
SOH mapping and one for dynamic degradation modeling,
from which the latter does not depend on the battery
operation profiles and can be used with transfer learning to
the degradation modeling of other LIBs. Finally, a physics-
informed autoencoder was developed in [160] to combine an
electrochemical model with a Bayesian NN to increase early
battery aging identification and uncertainty management.

Apart from the use of PINNs for LIB SOH or RUL
estimation, there are a number of existing works in the
literature that investigated how ML methods could be used
with different means to assist the understanding of battery
degradation mechanisms. For example, a CNN was used
in [161] to overcome the challenge of time-consuming on-
board open-circuit voltage (OCV) data acquisition for LIB
aging prediction. With the use of the CVV, parameters such
as electrode capacities and initial SOCs were estimated with
very high accuracy compared to the offline OCV tests. The
OCV curves could be reconstructed with a RMSE below
15mV . Additionally, the hybrid approach followed in [162]
achieved, besides aging prediction of lithium-sulfur batteries,
untangling intractable degradation chemistry parameters such
as the ratio of electrolyte amount to high-voltage-region
capacity E/Qhigh which was defined as an undiscovered indi-
cator of capacity fading of this type of batteries.Moreover, the
authors in [163], in continuation of their work in [155] where
they introduced the fundamental frameworks for NNs being
informed by PDEs (PINNs), used the developed PINNs to
discover hidden physic laws in the given dataset. In addition,
the ML approach ‘‘transfer learning’’ can be utilized to
transfer available model knowledge in different frameworks
needing only a small amount of known data. An example
can be found in [164] where an established battery model is
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TABLE 5. Data-driven approaches comparison.

transferred to a different type of LIB for SOH estimation,
overcoming the various heterogeneities in different LIB
systems (rated capacities, electrode materials, etc).

Furthermore, as Figure 11 depicts, the authors in [153]
found that the incremental capacity curve of negative
electrodes reveals three distinct peaks, each corresponding to
a different region under the curve. The area of the third region
and the height of the second peak can be used to quantify LLI,
whereas the area of the first and second regions can be used
to characterize LAM. While these three regions could only
be precisely identified under low C-rate conditions (0.05C),
detection of the NEII was also possible under normal charging
conditions (1C). In their work, they used quantile regression
and Monte Carlo simulations to identify the knee-point based
on the evolution of the height of NEII. The advantage of
using combined methods is the capability of combining the
low computational time of the data-driven approaches with
the reproducibility and generalization that characterize the
electrochemical models at the expense of the complexity of
the model development.

Finally, a review of the different ways that data-driven
approaches can assist PB methods for LIB lifetime forecast
(‘‘grey box modeling’’) can be found in [165]. In this
work, and in agreement with the summary of Figure 10,
the first main category is the assistance in the estimation

and optimization of PB parameters (data-driven assisted
PB models), such as parameter identification, development
of reduced-order PB models, and uncertainty qualification.
The second category is the ‘‘physics-guided data-driven
approaches,’’ which assist PBmodels in constructing datasets
with physical meaning, tracking and accelerating the calcula-
tion of the PB capacity fading results, or calculating the error
between a physical degradation model and the estimation.

2) KEY INSIGHTS
The key insights derived from the combined DD and PB LIB
degradation models can be summarized as follows:

a) Data-driven and physics-based approaches can be
combined with various integration means, which are mainly
categorized into, firstly, sequential integration, such as
residual learning, transfer learning, and parameter learning,
and secondly, hybrid integration; physics-constrained ML or
ML-accelerated PB models (PINNs).

b) PINNs can combine the advantages of the two families,
providing high accuracy, physical laws interpretation, and
less need for available data; however, these come at the
expense of complexity, while the computational time depends
on the architecture.

c) The use of ML approaches, such as PINNs, for untan-
gling undiscovered degradation parameters and physical laws
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FIGURE 10. Integration strategies for physics-based and machine learning models for forecasting battery health [154].

FIGURE 11. Incremental capacity curve for an NMC battery charged at
0.05 C. The peak regions NEI (blue), NEII (green), and NEIII (yellow) are
divided by the minima in the curve [153].

in the input datasets is an emerging research direction that can
provide valuable insights regarding the non-linearities and

various interactive degradation mechanisms present in LIB
degradation.

V. CONCLUSION AND FUTURE TRENDS
This work has, firstly, provided a detailed review of the
main degradation mechanisms present in LIB aging, their
causes and influencing factors. Secondly, the work focused
on the summarization of the interrelations between the
different aging mechanisms that cause the non-linear nature
of the LIB capacity fading and the appearance of the
so-called knee-point. Finally, the work contributed to the
analysis and comparison of the existing single- and multi-
mechanism physics-based and data-driven degradationmodel
for LIB capacity fading and knee-point prediction. The
LIB degradation understanding and the accurate knee-point
identification are crucial for the safe LIB re-utilization in
different applications (e.g. use of an EV LIB as stationary
storage).While single-mechanism physics-based degradation
modeling can be effective in FL prediction, the knee-point,
and saturated aging can be significantly underestimated.
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On the contrary, the modeling of the different mechanism
interactions can be challenging in multi-mechanism models.
Finally, data-driven models are proven to be effective for LIB
aging prediction; however, the existing data-driven works are
not focused on the identification of the knee-point of the
degradation curve and they are not capable of distinguishing
the various aging mechanisms.

In future research, the development of data-driven models
with the aim of forecasting specific degradation parameters
such as the knee-point is recommended. Moreover, it is
proposed that further research of different combinations of
physics-based and data-driven approaches is conducted for
both enhanced LIB degradation prediction and discovery of
unknown degradation parameters. Finally, online recalibra-
tion of data-driven approaches based on the behavior of the
battery during operation (e.g. online knee-point recalculation
in [102]) is also proposed for future research.
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