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A RECURSIVE LOVÁ SZ THETA NUMBER 

FOR SIMPLEX-AVOIDING SETS 

 
DAVI CASTRO-SILVA, FERNANDO MÁRIO DE OLIVEIRA FILHO, LUCAS SLOT, 

AND FRANK VALLENTIN 

 
(Communicated by Isabella Novik) 

 

Abstract. We recursively extend the Lov´asz theta number to geometric hy- 

pergraphs on the unit sphere and on Euclidean space, obtaining an upper 

bound for the independence ratio of these hypergraphs. As an application we 

reprove a result in Euclidean Ramsey theory in the measurable setting, namely 

that every k-simplex is exponentially Ramsey, and we improve existing bounds 

for the base of the exponential. 

 

 

1. Introduction 

The Lová sz theta number ϑ(G) of a finite graph G satisfies α(G) ≤ ϑ(G) ≤ χ(G), 
where α(G) is the independence number of G and χ(G) is the chromatic number of 

the complement G of G, the graph whose edges are the non-edges of G; the theta 
number can be computed efficiently using semidefinite programming. 

Originally, Lov ász [18] introduced ϑ to determine the Shannon capacity of the 
5-cycle. The theta number turned out to be a versatile tool in optimization, with ap- 
plications in combinatorics and geometry. It is related to spectral bounds like Hoff- 
man’s bound, as noted by Lov ász in his paper (cf. Bachoc, DeCorte, Oliveira, and 
Vallentin [2]), and also to Delsarte’s linear programming bound in coding theory, 
as observed independently by McEliece, Rodemich, and Rumsey [19] and Schrijver 
[28]. 

Bachoc, Nebe, Oliveira, and Vallentin [3] extended ϑ to infinite geometric graphs 
on compact metric spaces. They also showed that this extension leads to the classi- 
cal linear programming bound for spherical codes of Delsarte, Goethals, and Seidel 
[9]; the linear programming bound of Cohn and Elkies for the sphere-packing den- 
sity [6] can also be seen as an appropriate extension of ϑ [17, 21]. These many 
applications illustrate the power of the Lová sz theta number as a unifying concept 
in optimization; Goemans [15] even remarked that “it seems all paths lead to ϑ!”. 

We will show how a recursive variant of ϑ can be used to find upper bounds for 
the independence ratio of geometric hypergraphs on the sphere and on Euclidean 
space; this will lead to new bounds for a problem in Euclidean Ramsey theory. 
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1.1. Unit sphere. We call a set {x1, . . .  , xk} of k ≥ 2 points on the (n − 1)- 
dimensional unit sphere Sn−1 = { x ∈ Rn : \x\ = 1 } a (k, t)-simplex if xi · xj = t 

for all i /= j. The convex hull of a (k, t)-simplex has dimension k − 1. There is a 
(k, t)-simplex on Sn−1 for every k ≤ n and t ∈ [−1/(k − 1), 1). 

Fix n ≥ k ≥ 2 and t ∈ [−1/(k − 1), 1). A set of points on Sn−1 avoids (k, t)- 
simplices if no k points in the set form a (k, t)-simplex. We are interested in the 

parameter 

α(Sn−1, k, t) = sup{ ω(I) : I ⊆ Sn−1 is measurable and avoids (k, t)-simplices }, 

where ω is the surface measure on the sphere normalized so the total measure is 

1. This is the independence ratio of the hypergraph whose vertex set is Sn−1 and 
whose edges are all (k, t)-simplices. 

In §2 we will define the parameter ϑ(Sn−1, k, t) recursively as the optimal value 
of the problem 

sup Sn−1 Sn−1 f (x · y) dω(y)dω(x) 

f (1) = 1, 

f (t) ≤ ϑ(Sn−2,k − 1, t/(1 + t)), 

f ∈ C([−1, 1]) is a function of positive type for Sn−1 

for k ≥ 3. The base of the recursion is k = 2: ϑ(Sn−1, 2, t) is the optimal value of 

the problem above when “f (t) ≤ ϑ(Sn−2,k −1, t/(1+t))” is replaced by “f (t) = 0”. 

From Theorem 2.1 it follows that ϑ(Sn−1, k, t) ≥ α(Sn−1, k, t). Using extremal 
properties of ultraspherical polynomials, an explicit formula can be computed for 

this bound, as shown in Theorem 2.2. 

1.2. Euclidean space. Transferring these concepts from the compact unit sphere 

to the non-compact Euclidean space requires a bit of care; this is done in §3. 
A unit k-simplex in Rn is a set {x1, . . . , xk} of k ≤ n + 1 points such that 

\xi − xj\ = 1 for all i /= j. As before, the dimension of the convex hull of a unit 

k-simplex is k − 1. A set of points in Rn avoids unit k-simplices if no k points in 
the set form a unit k-simplex. We are interested in the parameter 

α(Rn, k) = sup{ δ(I) : I ⊆ Rn is measurable and avoids unit k-simplices }, 

where δ(X) is the upper density of X ⊆ Rn, that is, 
vol(X ∩ [−T, T ]n) 

δ(X) = lim sup 
T →∞ vol[−T, T ]n 

.
 

Again, this parameter has an interpretation in terms of the independence ratio 
of a hypergraph on the Euclidean space and again we can bound the independence 

ratio from above by an appropriately defined parameter ϑ(Rn, k). Theorem 3.2 gives 

an explicit expression for ϑ(Rn, k) in terms of Bessel functions and ultraspherical 
polynomials. 

1.3. Euclidean Ramsey theory. The central question of Euclidean Ramsey the- 

ory is: given a finite configuration P of points in Rn and an integer r ≥ 1, does 
every r-coloring of Rn contain a monochromatic congruent copy of P ? 

The simplest point configurations are unit k-simplices, which are known to have 
the exponential Ramsey property: the minimum number χ(Rn, k) of colors needed 

to color the points of Rn in such a way that there are no monochromatic unit k- 
simplices grows exponentially in n. This was first proved by Frankl and Wilson [14] 

http://www.ams.org/journal-terms-of-use
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for k = 2 and by Frankl and R ö d l  [13] for k  > 2. Results in this area are usually 
proved by the linear algebra method; see also Sagdeev [24]. 

Recently, Naslund [20] used the slice-rank method from the work of Croot, Lev, 

and Pach [7] and Ellenberg and Gijswijt [11] on the cap-set problem1 to prove that 

χ(Rn, 3) ≥ (1.01466 + o(1))n. 

This is the best lower bound known at the moment. 
For simplices of higher dimension, Sagdeev [25] used a quantitative version of 

the Frankl-R öd l  theorem to show that 

χ(Rn, k) ≥ 
  1  

1+ 
22k+3 

n 

+ o(1) . 

Denote by H(n, k) the unit-distance hypergraph, namely the k-uniform hyper- 
graph whose vertex set is Rn and whose edges are all unit k-simplices. The pa- 

rameter χ(Rn, k) is the chromatic number of this hypergraph. A theorem of de 

Bruijn and Erdő s [5] shows2 that computing χ(Rn, k) is a combinatorial problem: 
the chromatic number of H(n, k) is the maximum chromatic number of any finite 
subgraph of H(n, k). 

Determining χ(Rn, 2) is known as the Nelson-Hadwiger problem. The problem 
was proposed by Nelson in 1950 (cf. Soifer [29, Chapter 3]), who used the Moser 

spindle, a 4-chromatic 7-vertex subgraph of H(2, 2), to show that χ(R2, 2) ≥ 4. 
Isbell (cf. Soifer, ibid.), also in 1950, proved that χ(R2, 2) ≤ 7 by constructing a  
coloring of H(2, 2). 

The difficulty of finding subgraphs of H(2, 2) with chromatic number higher 
than 4 led Falconer [12] to define the measurable chromatic number χm(Rn, 2) by 

requiring the color classes to be Lebesgue-measurable sets; we define χm(Rn, k) 

likewise for k ≥ 3. Of course, χm(Rn, k) ≥ χ(Rn, k), but it is not known whether 

the two numbers differ. Falconer could show that χm(R2, 2) ≥ 5, whereas a proof 

that χ(R2, 2) ≥ 5 was only obtained more than three decades later by de Grey [16], 
who found by computer a 5-chromatic subgraph of H(2, 2) with 1581 vertices. 

The restriction to measurable color classes also helps improving asymptotic lower 
bounds. Frankl and Wilson [14] give a combinatorial proof that 

χ(Rn, 2) ≥ (1.2+ o(1))n. 

By analyzing a strengthening of the extension of the theta number given by Oliveira 

and Vallentin [22], Bachoc, Passuello, and Thiery [4] could show that 

χm(Rn, 2) ≥ (1.268 + o(1))n. 

Similarly, the analytical tools developed here can also be used to improve lower 
bounds for χm(Rn, k). Since 

(1) α(Rn, k)χm(Rn, k) ≥ 1, 

any upper bound for α(Rn, k) gives a lower bound for χm(Rn, k), hence 

χm(Rn, k) ≥ r1/ϑ(Rn, k)l. 
 

1The slice-rank method is only implicit in the original works; the actual notion of slice rank 

for a tensor was introduced by Tao in a blog post [31]. 
2De Bruijn and Erdo˝s consider only k = 2, but their result can be easily generalized to k ≥ 3. 

http://www.ams.org/journal-terms-of-use
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In §4 we analyze the upper bounds ϑ(Sn−1, k, t) for simplex-avoiding sets on the 
sphere and ϑ(Rn, k) for simplex-avoiding sets on Euclidean space by using properties 
of ultraspherical polynomials, obtaining Theorem 1.1. 

Theorem 1.1. If k ≥ 2, then: 

(i) for every t ∈ (0, 1), there is a constant c = c(k, t) ∈ (0, 1) such that 

ϑ(Sn−1, k, t) ≤ (c + o(1))n; 

(ii) there is a constant c = c(k) ∈ (0, 1) such that ϑ(Rn, k) ≤ (c + o(1))n. 

From this theorem we get an exponential lower bound for χm(Rn, k). Rigorous 
estimates of the constant c then yield significantly better lower bounds for χm(Rn, k) 
than those coming from χ(Rn, k). 

Namely, in the case k = 3 we obtain (see §4.1) 

α(Rn, 3) ≤ (0.95622 + o(1))n, 

and so  
χm(Rn, 3) ≥ (1.04578 + o(1))n. 

We also obtain the rougher estimate 
( 

 1  
 n 

 

valid for all k ≥ 3, which immediately implies 

χm(Rn, k) ≥ 

(

1 +   1  

9(k − 1)2 

n 

+ o(1) . 

Though our lower bounds for χm(Rn, k) do not necessarily hold for χ(Rn, k), they 
do imply some structure for general colorings. If a coloring of H(n, k) uses fewer 
than 1/α(Rn, k) colors, then the closure of one of the color classes is a measurable set 

with density greater than α(Rn, k), and so it contains a unit k-simplex. This means 
that in such a coloring there are monochromatic k-point configurations arbitrarily 
close to unit k-simplices. 

 
1.4. Notation and preliminaries. We will denote the Euclidean inner product 

between x, y ∈ Rn by x · y. The surface measure on the sphere is denoted by ω and 
is always normalized so the total measure is 1. 

We always normalize the Haar measure on a compact group so the total measure 

is 1. By O(n) we denote the group of n × n orthogonal matrices. If X ⊆ Sn−1 is 

any measurable set and if μ is the Haar measure on O(n), then for every e ∈ Sn−1 

we have μ({ T ∈ O(n) : Te ∈ X }) = ω(X). 
We will need Lemma 1.2, which will be applied to the sphere and the torus. For 

a proof, see Lemma 5.5 in DeCorte, Oliveira, and Vallentin [8]. 

Lemma 1.2. Let V be a metric space and Γ be a compact group that acts transitively 
on V ; let ν be a finite Borel measure on V that is positive on open sets. Denote by 
μ the Haar measure on Γ. If the metric on V and the measure ν are Γ-invariant 

and if f ∈ L2(V ; ν), then the function K : V × V → R such that 
 

 

 
is continuous. 

K(x, y) =  
Γ 

f (σx)f (σy) dμ(σ) 

α(Rn, k) ≤ 1 − + o(1) , 

http://www.ams.org/journal-terms-of-use
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2. Simplex-avoiding sets on the sphere 

We call a continuous kernel K : Sn−1 × Sn−1 → R positive if for every finite set 

U ⊆ Sn−1 the matrix 
(
K(x, y)

) 
is positive semidefinite. A continuous function 

f : [−1, 1] → R is of positive type for Sn−1 if the kernel K ∈ C(Sn−1 × Sn−1) given 
by K(x, y) = f (x · y) is positive. 

Fix n ≥ k ≥ 3 and t ∈ [−1/(k − 1), 1). For any γ ≥ 0, consider the optimization 
problem 

 

 

 
(2)  

sup Sn−1 Sn−1 f (x · y) dω(y)dω(x) 

f (1) = 1, 

f (t) ≤ γ, 

f ∈ C([−1, 1]) is a function of positive type for Sn−1. 

Theorem 2.1. Fix n ≥ k ≥ 3, t ∈ [−1/(k − 1), 1). If γ ≥ α(Sn−2,k − 1, t/(1 + t)), 
then the optimal value of (2) is an upper bound for α(Sn−1, k, t). 

Proof. Let I ⊆ Sn−1 be a measurable set that avoids (k, t)-simplices and assume 

ω(I) > 0. Consider the kernel K : Sn−1 × Sn−1 → R such that 

 
K(x, y) = χI (Tx)χI(Ty) dμ(T ), 

O(n) 
 

where χI is the characteristic function of I and where μ is the Haar measure on 
O(n). 

By taking V = Sn−1 and Γ = O(n) in Lemma 1.2, we see that K is continuous. 
By construction, K is also positive and invariant, that is, K(Tx, Ty) = K(x, y) for 

all T ∈ O(n) and x, y ∈ Sn−1. Such kernels are of the form K(x, y)  = g(x · y), 

where g ∈ C([−1, 1]) is of positive type for Sn−1. Note that 

 
K(x, x) = χI (Tx) dμ(T ) = ω(I), 

O(n) 
 

so g(1) = ω(I) > 0. 
Set f = g/g(1). Immediately we have that f is continuous and of positive type 

and that f (1) = 1; moreover 

  

Sn−1

 

Sn−1 

f (x · y) dω(y)dω(x) = ω(I). 

Hence, if we show that f (t) ≤ γ, the theorem will follow. 

If x ∈ Sn−1 is a point in a (k, t)-simplex, all other points in the simplex are in 

Ux,t = { y ∈ Sn−1 : y · x = t }. Note that Ux,t is an (n − 2)-dimensional sphere 

with radius (1 − t2)1/2; let ν be the surface measure on Ux,t normalized so the total 
measure is 1. 

If T ∈ O(n) is any orthogonal matrix, then TI avoids (k, t)-simplices. Hence if 
x ∈ TI, then TI ∩ Ux,t cannot contain k − 1 points with pairwise inner product t, 
and so ν(TI ∩ Ux,t) ≤ α(Sn−2,k − 1, t/(1 + t)) ≤ γ. Indeed, the natural bijection 
between Ux,t and Sn−2 maps pairs of points with inner product t to pairs of points 
with inner product t/(1+t), and so TI ∩Ux,t is mapped to a subset of Sn−2 avoiding 
(k − 1, t/(1 + t))-simplices. 

http://www.ams.org/journal-terms-of-use
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Therefore, if x ∈ Sn−1, then 
 

g(t) =  
Ux,t 

K(x, y) dν(y) =  
Ux,t 

 
 

O(n) 

χI (Tx)χI (Ty) dμ(T )dν(y) 

= 
O(n) 

χI (Tx) 
Ux,t 

χI (Ty) dν(y)dμ(T ) 

≤ γω(I), 

whence f (t) ≤ γ, and we are done. □ 
 

One obvious choice for γ in Problem (2) is the bound given by the same problem 

for (k − 1, t/(1 + t))-simplices. The base for the recursion is k = 2: then we need 
an upper bound for the measure of a set of points on the sphere that avoids pairs 
of points with a fixed inner product. Such a bound was given by Bachoc, Nebe, 

Oliveira, and Vallentin [3] and looks very similar to (2). They show that, for n ≥ 2 
and t ∈ [−1, 1), the optimal value of the following optimization problem is an upper 
bound for α(Sn−1, 2, t): 

sup 
f
Sn−1 

f
Sn−1 f (x · y) dω(y)dω(x) 

(3)  f (1) = 1, 
f (t) = 0, 

f ∈ C([−1, 1]) is a function of positive type for Sn−1. 

Let ϑ(Sn−1, 2, t) denote the optimal value of the optimization problem above, so 
ϑ(Sn−1, 2, t) ≥ α(Sn−1, 2, t). For k ≥ 3 and t ∈ [−1/(k − 1), 1), let ϑ(Sn−1, k, t) be 
the optimal value of Problem (2) when γ = ϑ(Sn−2,k − 1, t/(1 + t)). It follows that 
ϑ(Sn−1, k, t) ≥ α(Sn−1, k, t). 

There is a simple analytical expression for ϑ(Sn−1, k, t), as we see now. For n ≥ 2 
and j ≥ 0, let P n denote the Jacobi polynomial with parameters α = β = (n − 3)/2 
and degree j, normalized so P n(1) = 1 (for background on Jacobi polynomials, see 
the book by Szeg ö [30]). 

In Theorem 6.2 of Bachoc, Nebe, Oliveira, and Vallentin [3] it is shown that for 

every t ∈ [−1, 1) there is some j ≥ 0 such that P n(t) < 0. Theorem 8.21.8 in the 

book by Szeg ö  [30] implies that, for every t ∈ (−1, 1), 

(4) lim P n(t) = 0. 

j→∞ 
j
 

Hence, for every t ∈ (−1, 1) we can define 

(5) Mn(t) = min{ P n(t) : j ≥ 0 }, 

and we see that Mn(t) < 0. With this we have [3, Theorem 6.2] 

(6) ϑ(Sn−1, 2, t) = 
 −Mn(t)  

. 

1 − Mn(t) 

The expression for ϑ(Sn−1, k, t) is very similar. 

Theorem 2.2. If n ≥ k ≥ 3 and if t ∈ [−1/(k − 1), 1), then 
 

(7) ϑ(S 

 

n−1 

 
, k, t) =  

ϑ(Sn−2,k − 1, t/(1 + t)) − Mn(t) 
. 

1 − Mn(t) 

    

    

http://www.ams.org/journal-terms-of-use


Licensed to Technical University of Delft. Prepared on Mon Jan 9 08:39:03 EST 2023 for download from IP 131.180.131.122. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use 
 

L 

j 

j 

S S 
j 

L 

L 
j 

L 
fjP (t) 

j 

2 

j∗ 

j∗ 

( ) 
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The proof requires the following characterization of functions of positive type 

due to Schoenberg [27]: a function f : [−1, 1] → R is continuous and of positive 

type for Sn−1 if and only if there are nonnegative numbers f0, f1, . . .  such that 
∞ 
j=0 fj < ∞ and 

∞ 

(8) f (t) = 
L 

fjP n(t), 

j=0 

with uniform convergence in [−1, 1]. 

Proof of Theorem 2.2. The orthogonality of the Jacobi polynomials P n implies in 
particular that, if j ≥ 1, then 

r 

n−1 

r 

n−1 P n(x · y) dω(y)dω(x) = 0. 

Use this and Schoenberg’s characterization of positive type functions to rewrite (2) 

with γ = ϑ(Sn−2,k − 1, t/(1 + t)), obtaining the equivalent problem 

sup f0 
∞ 
j=0 

∞ 
j=0 

fj = 1, 

fjP n(t) ≤ ϑ(Sn−2,k − 1, t/(1 + t)), 

fj ≥ 0 for all j ≥ 0. 

To solve this problem, note that 

∞ 
n 
j 

j=0 

is a convex combination of the numbers P n(t). We want to keep this convex com- 

bination below ϑ(Sn−2,k − 1, t/(1 + t)) while maximizing f0. The best way to do ∗ 
so is to concentrate all the weight of the combination on f0 and fj∗ , where j is 
such that P n (t) is the most negative number appearing in the convex combination, 

that is, P n (t) = Mn(t). Now solve the problem using only the variables f0 and fj∗ 

to get the optimal value as given in the statement of the theorem. □ 

The expression for ϑ(Sn−1, k, 0) is particularly simple. Indeed, for n ≥ 2 it fol- 
lows from the recurrence relation for the Jacobi polynomials that Mn(0) = P n(0) = 

−1/(n − 1), whence  

ϑ(Sn−1, k, 0) = (k − 1)/n. 

Figure 1 shows the behavior of ϑ(Sn−1, 3, t) for a few values of n as t changes. 
Plots for k > 3 are very similar. 

 

3. Simplex-avoiding sets in Euclidean space 

An optimization problem similar to (2) provides an upper bound for α(Rn, k). 

To introduce it, we need some definitions and facts from harmonic analysis on Rn; 
for background, see e.g. the book by Reed and Simon [23]. 

A continuous function f : Rn → R is of positive type if for every finite set U ⊆ Rn 

the matrix f (x − y) 
x,y∈U 

is positive semidefinite. Such a function f has a well- 
defined mean value 

 
M (f ) =  lim 

 1  
r
  

f (x) dx. 
T →∞ vol[−T, T ]n [−T,T ]n 

http://www.ams.org/journal-terms-of-use
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Figure 1. Plots of ϑ(Sn−1, 3, t) for t ∈ [−0.5, 1] and n = 3 (left) 
and 5 (right) 

 
We say that a function f : Rn → R is radial if f (x) depends only on \x\. In this 
case we denote by f (t) the common value of f for vectors of norm t. 

Fix n ≥ 2 and k ≥ 3 such that k ≤ n + 1. For every γ ≥ 0, consider the 
optimization problem 

sup M (f ) 

(9)  
f (0) = 1, 

f (1) ≤ γ, 

f : Rn → R is continuous, radial, and of positive type. 

We have the analogue of Theorem 2.1: 

Theorem 3.1. Fix n ≥ 2 and k ≥ 3 such that k ≤ n+1. If γ ≥ α(Sn−1,k−1, 1/2), 
then the optimal value of (9) is an upper bound for α(Rn, k). 

We need a few facts about periodic sets and functions. A set X ⊆ Rn is periodic 

if it is invariant under some lattice Λ, that is, if X + v = X for all v ∈ Λ. Similarly, 
a function f : Rn → R is periodic if there is a lattice Λ such that f (x + v) = f (x) 

for all v ∈ Λ. We say that Λ is a periodicity lattice of X or f . A periodic function 
f with periodicity lattice Λ can be seen as a function on the torus Rn/Λ; its mean 
value is 

 1  
r
  

f (x) dx. 
vol(Rn/Λ) Rn/Λ 

Proof of Theorem 3.1. Let I ⊆ Rn be a measurable set of positive upper density 
avoiding unit k-simplices. The first step is to see that we can assume that I is 

periodic. Indeed, fix R  > 1/2. Erase a border of width 1/2 around I ∩ [−R, R]n 
and paste the resulting set periodically in such a way that there is an empty gap of 
width 1 between any two pasted copies. The resulting periodic set still avoids unit 
k-simplices and is measurable. Its upper density is 

vol(I ∩ [−R + 1/2, R − 1/2]n) 

vol[−R, R]n 
;
 

by taking R large enough, we can make this density as close as we want to the 
upper density of I. 

Assume then that I is periodic, so its characteristic function χI is also periodic; 
let Λ be a periodicity lattice of I. Set 

g(x) = 
 1  

r 

χ (y)χ (x + y) dy. 

vol(Rn/Λ) 
I I 

Rn/Λ 
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Lemma 1.2 with V = Γ = Rn/Λ applied to χI implies that g is continuous. Direct 

verification yields that g is of positive type, g(0) = δ(I), and M (g) = δ(I)2. 
Now set 

 
 

f (x) = δ(I)−1 
O(n) 

g(Tx) dμ(T ), 

where μ is the Haar measure on O(n). The function f is continuous, radial, and 

of positive type. Moreover, f (0) = 1 and M (f ) = δ(I). If we show that f (1) ≤ γ, 
then f is a feasible solution of (9) with M (f )  = δ(I), and so the theorem will 
follow. 

To see that f (1) ≤ γ, note that if x is a point of a unit k-simplex in Rn, then 

all the other points in the simplex lie on the unit sphere x + Sn−1 centered at x. 
Hence if x ∈ I, then I ∩ (x + Sn−1) is a measurable subset of x + Sn−1 that avoids 
(k − 1, 1/2)-simplices, and so the measure of I ∩ (x + Sn−1) as a subset of the unit 
sphere is at most α(Sn−1,k − 1, 1/2). Hence if ξ ∈ Rn is any unit vector, then 

 

 
 

f (1) = δ(I)−1 
O(n) 

= δ(I)−1 

r

 

g(Tξ) dμ(T ) 

 1  
r
 

 

 

χ (x)χ (Tξ + x) dxdμ(T ) 

O(n) 

= δ(I)−1 1
 

vol(Rn/Λ) 
r 

I 
Rn/Λ 

χ (x) 

r

 

I 
 
 

χ (Tξ + x) dμ(T )dx 
 

vol(Rn/Λ) 
I 

Rn/Λ 
I 

O(n) 

≤ α(Sn−1,k − 1, 1/2) ≤ γ, 

as we wanted. □ 

Denote by ϑ(Rn, k) the optimal value of (9) when setting γ = ϑ(Sn−1,k−1, 1/2). 

Then ϑ(Rn, k) ≥ α(Rn, k). 
An expression akin to the one for ϑ(Sn−1, k, t) can be derived for ϑ(Rn, k). For 

n ≥ 2, let 

Ωn(0) = 1 and Ωn(u) = Γ(n/2)(2/u)(n−2)/2J(n−2)/2(u)  for u > 0, 

where Jα is the Bessel function of the first kind with parameter α. Let mn be the 
global minimum of Ωn, which is a negative number (cf. Oliveira and Vallentin [22]). 
Theorem 3.2 is the analogue of Theorem 2.2. 

Theorem 3.2. For n ≥ 2 we have 

ϑ(Rn 
 

, k) =  
ϑ(Sn−1,k − 1, 1/2) − mn 

. 
1 − mn 

The proof uses again a theorem of Schoenberg [26], that this time characterizes 
radial and continuous functions of positive type on Rn: these are the functions 

f : Rn → R such that 
∞ 

(10) f (x) =  
0 

Ωn(z\x\) dν(z) 

for some finite Borel measure ν. 
 

Proof. If f is given as in (10), then M (f )  = ν({0}) (see e.g. §6.2 in DeCorte, 
Oliveira, and Vallentin [8]). Using Schoenberg’s theorem, we can rewrite (9) (with 

r 

r 
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Table 1. The bound ϑ(Rn, k) for n = 2, . . . ,  10 and k = 3, . . . , 
11, with values of n on each row and of k on each column 

 
n / k 3 4 5 6 7 8 9 10 11 

2 0.64355 — — — — — — — — 

3 0.42849 0.69138 — — — — — — — 

4 0.29346 0.49798 0.73225 — — — — — — 

5 0.20374 0.36768 0.55035 0.76580 — — — — — 

6 0.15225 0.28471 0.42777 0.60262 0.79563 — — — — 

7 0.11866 0.22740 0.34071 0.48493 0.64681 0.81972 — — — 

8 0.09339 0.18405 0.27471 0.39559 0.53374 0.68268 0.83882 — — 

9 0.07387 0.15030 0.22864 0.33042 0.44903 0.57816 0.71431 0.85537 — 
10 0.05846 0.12340 0.19194 0.27851 0.38158 0.49496 0.61521 0.74026 0.86882 

 

γ = ϑ(Sn−1,k − 1, 1/2)) equivalently as: 

sup ν({0}) 
ν([0, ∞)) = 1, 
f ∞ 

Ω
 

(z) dν(z) ≤ ϑ(Sn−1,k − 1, 1/2), 

ν is a Borel measure. 

We are now in the same situation as in the proof of Theorem 2.2. If z∗ is such 

that mn = Ωn(z∗), then the optimal ν is supported at 0 and z∗. Solving the 
resulting system yields the theorem. □ 

 

Table 1 contains some values for ϑ(Rn, k). 

 
4. Exponential density decay 

In this section we analyze the asymptotic behavior of ϑ(Sn−1, k, t) and ϑ(Rn, k) 
as functions of n, proving Theorem 1.1. 

The main step in our analysis is to understand the asymptotic behavior of 

Mn(t) = min{ P n(t) : j ≥ 0 }, 

as defined in (5). For t ∈ [−1, 0) we have Mn(t) ≤ P n(t) = t, and so Mn(t) does 

not approach 0. We have seen in §2 that Mn(0) = −1/(n − 1), so for t =  0 we 
have that Mn(t) approaches 0 linearly fast as n grows. Things get interesting when 

t ∈ (0, 1): then Mn(t) approaches 0 exponentially fast as n grows. 

Theorem 4.1. For every t ∈ (0, 1) there is c ∈ (0, 1) such that |Mn(t)|≤ (c+o(1))n. 

We will need Lemma 4.2 showing that, for every t ∈ (0, 1), if j = Ω(n), then 

|P n(t)| decays exponentially in n. Theorem 4.1 will follow from an application of 

this lemma after we show that the minimum in (5) is attained for some j∗ = Ω(n). 
The statement of the lemma is quite precise since we later want to do a more 
detailed analysis of the base of the exponential. The proof is a refinement of the 
analysis carried out by Schoenberg [27]. 

Lemma 4.2. If for θ ∈ (0, π) and δ ∈ (0, π/2) we write 

C = (cos2 θ + sin2 θ sin2 δ)1/2, 

then |P n(cos θ)|≤ πn1/2 cosn−3 δ + Cj for all n ≥ 3. 

0 n 
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Proof. An integral representation for the ultraspherical polynomials due to Gegen- 

bauer (take λ = (n − 2)/2 in Theorem 6.7.4 from Andrews, Askey, and Roy [1]) 
gives us the formula 

 
 
 

where 

 
P n(cos θ) = R(n) −1 

π
 

0 

 

F (φ)j 
 

sin 

 

n−3 

 

φ dφ, 

F (φ) = cos θ + i sin θ cos φ and R(n) =  
π 

sin 
0 

 

n−3 φ dφ. 

Note that |F (φ)|2 = cos2 θ + sin2 θ cos2 φ and that |F (φ)| ≤ 1. Split the inte- 

gration domain into the intervals [0, π/2 − δ], [π/2 − δ, π/2+ δ], and [π/2+ δ, π] to 
obtain 

|P n(cos θ)|≤ R(n) −1 
π
 

0 
|F (φ)|j 

 

sin 

 

n−3 

 

φ dφ 

≤ 2R(n) 
−1 

π/2−δ 

0 

 

sin 

 

n−3 

 

φ dφ + R(n) −1  
π/2+δ 

π/2−δ 
|F (φ)|j sin 

 

n−3 

 

φ dφ. 

For the first term above, note that 

π1/2Γ(n/2 − 1) 
R(n) = . 

Γ((n − 1)/2) 

Use Gautschi’s inequality (alternatively, take x = (n − 2)/2 and a = 1/2 in (7) of 
Wendel [32]) to get 

 

 
Now 

R(n)−1 ≤ π−1/2((n − 2)/2)1/2 < n1/2. 

2R(n)−1 
π/2−δ 

 
0 

 

sin 

 

n−3 
φ dφ ≤ 2n1/2 

π/2−δ 

 
0 

 

sin 

 

n−3 

 

(π/2 − δ) dφ 

= 2n1/2(π/2 − δ) cosn−3 δ 

≤ πn1/2 cosn−3 δ. 

For the second term we get directly 

 
R(n) −1  

π/2+δ 

π/2−δ 

 

|F (φ)|j 

 
sin 

 

n−3 

 

φ dφ ≤ R(n) 

π/2+δ 

Cj 

π/2−δ 

 
sin 

 

n−3 

 

φ dφ ≤ Cj, 

and we are done. □ 

We can now prove the theorem. 
 

Proof of Theorem 4.1. Our strategy is to find a lower bound on the largest j0 such 

that P n(t) ≥ 0 for all j ≤ j0. Then we know that Mn(t) is attained by some j ≥ j0, 

and we can use Lemma 4.2 to estimate |Mn(t)|. 
Recall [30, Theorem 3.3.2] that the zeros of P n are all in [−1, 1] and that the 

rightmost zero of P n is to the right of the rightmost zero of P n. Let Cλ denote 
j+1 j j 

the ultraspherical (or Gegenbauer) polynomial with parameter λ and degree j, so 

C
(n−2)/2(t) 

(11) P n(t) =  j  . 
j 

C
(n−2)/2(1) 

r 

r r 

r 
−1 
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Let xj be the largest zero of Cλ. Elbert and Laforgia [10, p. 94] show that, for 

λ ≥ 0,  
2 j2 + 2λj 

 

If for a given j we have that 

xj < 
(j + λ)2 

.
 

j2 + 2λj 2 

(12)  
(j + λ)2 

≤ t ,
 

then we know that the rightmost zero of Cλ is to the left of t, and so Cλ(t) ≥ 0. 
j j 

The left-hand side in (12) is increasing in j; let us estimate the largest j for 
which (12) holds. We want 

j2 + 2λj − t2(j + λ)2 ≤ 0. 

The left-hand side above is quadratic in j and, since t2 < 1, the coefficient of j2 is 
positive. So all we have to do is to compute the largest root of the left-hand side, 

which is 2a(t)λ, where a(t) = ((1 − t2)−1/2 − 1)/2. 
Hence for j ≤ 2a(t)λ we have Cλ(t) ≥ 0. From (11) we see that P n(t) ≥ 0 if 

j j 

j ≤ a(t)n − 2a(t). 

Now plug the right-hand side above into the upper bound of Lemma 4.2 to get 

|Mn(t)|≤ (πn1/2 cos−3 δ) cosn δ + Ca(t)n−2a(t) 

= O(n1/2)(cos δ)n + O(1)(Ca(t))n, 

with C as defined in Lemma 4.2 with cos θ = t. Since a(t) > 0, for any choice of 

δ ∈ (0, π/2) we have that b = max{cos δ, Ca (t)}∈ (0, 1). Hence if c is any number 

such that b < c < 1, then limn→∞ O(n1/2)bn/cn = 0, and the theorem follows.  □ 

We now get exponential decay for ϑ(Sn−1, k, t) for any k ≥ 3 and t ∈ (0, 1). 

Indeed, consider the recurrence F0 = t and Fi = Fi−1/(1 + Fi−1) for i ≥ 1, whose 
solution is Fi = t/(1 + it). Using Theorem 4.1 to develop our analytic solution (7), 
we get 

k−2 k−2 

(13) ϑ(Sn−1, k, t) ∼ 
L 

|Mn−i(Fi)| = 
L 

|Mn−i(t/(1 + it))|, 
 

where an ∼ bn means that limn→∞ an/bn = 1. Since t/(1 + it) > 0 for all i, each 
term decays exponentially fast, and so we get exponential decay for the sum. 

We also get exponential decay for ϑ(Rn, k) for any k ≥ 3. Indeed, from Theorem 
3.2 we have that 

k−3 

(14) ϑ(Rn, k) ∼ |mn| + |Mn−i(1/(2 + i))|. 
i=0 

From Theorem 4.1 we know that every term in the summation above decays expo- 
nentially fast. Bachoc, Nebe, Oliveira, and Vallentin [3] give an asymptotic bound 

for |mn| that shows that it also decays exponentially in n, namely 

|mn|≤ (2/e + o(1))n/2 = (0.8577 . . .  + o(1))n. 

This finishes the proof of Theorem 1.1. 

i=0 i=0 
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A RECURSIVE LOVÁSZ THETA NUMBER 3319 

 

1 
 
 
 
 
 

 
0.9383 

1 
 

Figure 2. The best constant c obtained in our proof of Theorem 

4.1 for each value of t ∈ (0, 1). 

 

4.1. Explicit bounds. We now compute explicit constants c(k, t) and c(k) which 
can serve as bases for the exponentials in Theorem 1.1, in particular obtaining the 

bounds advertised in §1.3. 
The constant c given in Theorem 4.1 depends on t. Following the proof, we 

can find the best constant for every t ∈ (0, 1) by finding δ ∈ (0, π/2) such that 
cos δ = Ca(t), that is, by solving the equation 

(15) cos4 δ = (t2 + (1 − t2) sin2 δ)(1−t
2)−1/2 −1

 

and taking c = cos δ > 0. 

For any given t ∈ (0, 1) it is easy to solve (15) numerically. For t = 1/2 we get 

cos δ = 0.95621 . . .  as a solution, and so |Mn(1/2)| ≤ (0.95622 + o(1))n, leading to 
the the bound 

ϑ(Rn, 3) ∼ |Mn(1/2)| ≤ (0.95622 + o(1))n. 

Figure 2 shows a plot of the best constant c for every t ∈ (0, 1). 

With a little extra work, it is possible to show that, for all k ≥ 2, 
( 

 1  
 n 

(16) |Mn(1/k)|≤ 1 − 
9k2 

+ o(1) , 

whence 

ϑ(Rn, k) ∼ |Mn−k+3(1/(k − 1))|≤  

for all k ≥ 3. 

(

1 − 
 1  

9(k − 1)2 

n 

+ o(1) 

Direct verification shows that (16) holds for k = 2, so let us assume k ≥ 3. 

Writing c for the (unique) positive solution cos δ of (15) and taking θ ∈ (0, π/2) 
such that cos θ = t, we can rewrite (15) in the more convenient form 

(17) c4 sin θ/(1−sin θ) = 1 − c2 sin2 θ. 

Now say c = 1 − x and use Bernoulli’s inequality (1 + z)r ≥ 1+  rz to get 

(1 − x)4 sin θ/(1−sin θ) ≥ 1 −  
4 sin θ 

1 − sin θ 

 

x  and 

1 − (1 − x)2 sin2 θ ≤ 1 − (1 − 2x) sin2 θ. 
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Equating the left-hand sides of both inequalities above and solving for x, we get 

sin θ(1 − sin θ) 
c = 1 − x ≤ 1 − 

In particular, when cos θ = 1/k we get 

. 
4+2 sin θ(1 − sin θ) 

( 
 1  

 n
 

|Mn(1/k)|≤  1 − 
4k2(1 + 

✓
k2/(k2 − 1)) + 2 

+ o(1)
 

( 
 1  

 n 

 
for all k ≥ 3. 

≤ 1 − 
9k2 

+ o(1) 

 

Acknowledgments 

We would like to thank Christine Bachoc for helpful discussions and comments 
at an early stage of this work. We are also thankful to both anonymous referees 
whose suggestions certainly improved this paper. 

 

References 

[1] George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of 

Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999, 

DOI 10.1017/CBO9781107325937. MR1688958 

[2] Christine Bachoc, Evan DeCorte, Fernando M´ario de Oliveira Filho, and Frank Vallentin, 

Spectral bounds for the independence ratio and the chromatic number of an operator, Israel 

J. Math. 202 (2014), no. 1, 227–254, DOI 10.1007/s11856-014-1070-7. MR3265319 

[3] Christine Bachoc, Gabriele Nebe, Fernando M´ario de Oliveira Filho, and Frank Vallentin, 

Lower bounds for measurable chromatic numbers, Geom. Funct. Anal. 19 (2009), no. 3, 645– 

661, DOI 10.1007/s00039-009-0013-7. MR2563765 

[4] Christine Bachoc, Alberto Passuello, and Alain Thiery, The density of sets avoiding distance 1 

in Euclidean space, Discrete Comput. Geom. 53 (2015), no. 4, 783–808, DOI 10.1007/s00454- 

015-9668-z. MR3341578 

[5] N. G. de Bruijn and P. Erd¨os, A colour problem for infinite graphs and a problem in the 

theory of relations, Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math. 13 

(1951), 369–373. MR0046630 

[6] Henry Cohn and Noam Elkies, New upper bounds on sphere packings. I, Ann. of Math. (2) 

157 (2003), no. 2, 689–714, DOI 10.4007/annals.2003.157.689. MR1973059 

[7] Ernie Croot, Vsevolod F. Lev, and P´eter P´al Pach, Progression-free sets in Zn are exponen- 

tially small, Ann. of Math. (2) 185 (2017), no. 1, 331–337, DOI 10.4007/annals.2017.185.1.7. 

MR3583357 

[8] E. DeCorte, F.M. de Oliveira Filho, and F. Vallentin, Complete positivity and distance- 

avoiding sets, Mathematical Programming, Series A, 2020, p. 72, DOI: 10.1007/s10107-020- 

01562-6, arXiv:1804:09099. 

[9] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geometriae Dedi- 

cata 6 (1977), no. 3, 363–388, DOI 10.1007/bf03187604. MR485471 
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alizations, J. Combin. Inform. System Sci. 3 (1978), no. 3, 134–152. MR505587 

[20] Eric Naslund, Monochromatic equilateral triangles in the unit distance graph, Bull. Lond. 

Math. Soc. 52 (2020), no. 4, 687–692, DOI 10.1016/j.jcta.2019.105190. MR4171395 

[21] Fernando M´ario de Oliveira Filho and Frank Vallentin, Computing upper bounds for the 

packing density of congruent copies of a convex body, New trends in intuitive geometry, 

Bolyai Soc. Math. Stud., vol. 27, Ja´nos Bolyai Math. Soc., Budapest, 2018, pp. 155–188. 

MR3889260 

[22] Fernando M´ario de Oliveira Filho and Frank Vallentin, Fourier analysis, linear programming, 

and densities of distance avoiding sets in Rn, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 6, 

1417–1428, DOI 10.4171/JEMS/236. MR2734347 

[23] Michael Reed and Barry Simon, Methods of modern mathematical physics. II. Fourier anal- 

ysis, self-adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York- 

London, 1975. MR0493420 

[24] A. A. Sagdeev, An improved Frankl-R¨odl theorem and some of its geometric consequences 

(Russian, with Russian summary), Problemy Peredachi Informatsii 54 (2018), no. 2, 45– 

72, DOI 10.1134/s0032946018020047; English transl., Probl. Inf. Transm. 54 (2018), no. 2, 

139–164. MR3845496 

[25] A. A. Sagdeev, On a Frankl-R¨odl theorem (Russian, with Russian summary), Izv. Ross. Akad. 

Nauk Ser. Mat. 82 (2018), no. 6, 128–157, DOI 10.4213/im8630; English transl., Izv. Math. 

82 (2018), no. 6, 1196–1224. MR3881768 

[26] I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 

(1938), no. 4, 811–841, DOI 10.2307/1968466. MR1503439 

[27] I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108. 

MR5922 

[28] Alexander Schrijver, A comparison of the Delsarte and Lov ász bounds, IEEE Trans. Inform. 
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