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a b s t r a c t

A large class of discrete-event and hybrid systems can be described by a max–min-plus-scaling (MMPS)
model, i.e., a model in which the main operations are maximization, minimization, addition, and scalar
multiplication. Accordingly, optimization of MMPS systems appears in different problems defined for
discrete-event and hybrid systems. For a stochastic MMPS system, this optimization problem is compu-
tationally highly demanding as often numerical integration has to be used to compute the objective func-
tion. The aim of this paper is to decrease such computational complexity by applying an approximation
method that is based on the moments of a random variable and that can be computed analytically.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic max–min-plus-scaling (MMPS) systems construct a
special class of stochastic discrete-event and hybrid systems, in
which processing times and/or transportation times are stochastic
quantities; in practice stochastic fluctuations of these times can,
e.g., be caused by machine failure or depreciation (Olsder, Resing,
de Vries, Keane, and Hooghiemstra, 1990). The system dynamics
of an MMPS system are defined by MMPS expressions, i.e., ex-
pressions constructed using the operations maximization, mini-
mization, addition, and multiplication by a scalar. In Necoara, De
Schutter, van den Boom, andHellendoorn (2008) it was shown that
the class of MMPS systems encompasses other classes of discrete-
event systems such as max-plus linear systems. Furthermore, it
has been shown in Gorokhovik and Zorko (1994), Heemels, De
Schutter, and Bemporad (2001), Ovchinnikov (2002) that MMPS
systems are equivalent to a particular class of hybrid systems,
namely continuous piecewise affine (PWA) systems.

In optimization problems for stochastic MMPS or continuous
PWA systems, the objective function is often defined as the ex-
pected value of an MMPS or a continuous PWA function. Since,

✩ The material in this paper was partially presented at the 50th IEEE Conference
on Decision and Control and European Control Conference (CDC-ECC), December
12–15, 2011, Orlando, Florida, USA. This paper was recommended for publication
in revised form by Associate Editor Jan Komenda under the direction of Editor Ian
R. Petersen.

E-mail addresses: samifarahani@gmail.com (S.S. Farahani),
a.j.j.vandenboom@tudelft.nl (T. van den Boom), b.deschutter@tudelft.nl
(B. De Schutter).

in general, there are no analytic expressions for such an expected
value, the computation of the objective function in principle in-
volves numerical integration, which is computationally complex
and very time consuming. The aim of this paper is to develop
an approximation method to compute the expected value of a
stochasticMMPS or continuous PWA functionwith focus on reduc-
ing the computational complexity and the computation time. This
approximation method is an extension of the method presented
in Farahani, van den Boom, van derWeide, and De Schutter (2016),
which is inspired by the relation between different types of vector
norms, namely the p-normand the∞-normandwhich in Farahani
et al. (2016) has been only applied to max-plus linear systems
with normally distributed disturbances. In Farahani et al. (2011),
the method proposed in Farahani et al. (2016) has been applied
in the context of model predictive control for stochastic MMPS
systems and in Farahani, van den Boom, and De Schutter(2014),
the approximation method has been extended to a more general
class of distributions and an upper bound for the error of this
method has been introduced.

The main contributions of the current paper are as follows:
(1) proposing a solution for the optimization problem of stochastic
MMPS systems using an approximation method that is based on
moment-generating functions and is applicable to any distribution
with finite moments; (2) discussing the error of the proposed
approximation method and presenting finite upper bounds for the
error caused by this approximation method. In the discussion of
the general optimization problem of stochastic MMPS systems,
we introduce two main applications of such systems, namely, the
filtering problem and the reference tracking problem. To solve

http://dx.doi.org/10.1016/j.automatica.2017.05.001
0005-1098/© 2017 Elsevier Ltd. All rights reserved.
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the optimization problem, we use the approximation method pro-
posed in Farahani et al. (2014), which provides an upper bound for
the expected value of a stochastic MMPS function and which can
be used as a replacement of the objective function in the optimiza-
tion problem. In the error discussion, besides presenting an upper
bound, we show how different parameters in the approximation
function may influence the error bounds.

2. Max–min-plus-scaling systems

A large class of discrete-event and hybrid systems can be de-
scribed by amax–min-plus-scaling (MMPS)model.1 Thesemodels
are described using MMPS functions.

Definition 1 (De Schutter and van den Boom, 2002). A function
g : Rn

→ R is a scalar-valued MMPS function of the variables
x1, . . . , xn if there exist an index i ∈ {1, . . . , n} and scalarsα, β ∈ R
such that

g(x) = xi|α|max(gk(x), gl(x))|min(gk(x), gl(x))|
gk(x) + gl(x)|βgk(x),

where | stands for ‘‘or’’ and gk and gl are scalar-valued MMPS
functions.

Accordingly, for a vector-valuedMMPS function g , each compo-
nent of g is an MMPS function of the above form.

A state space representation of a stochastic MMPS system, in
which noise and modeling errors are present, can be described as

x(k) = Mx(x(k − 1), u(k), ω(k)) (1)
y(k) = My(x(k), u(k), ω(k)) (2)

where Mx, My are MMPS functions, x(k) ∈ Rn is the system
state, u(k) ∈ Rm is the system input, and y(k) ∈ Rs is the
system output at time or event step k. We present both noise and
modeling errors in a single framework using a vectorω(k), which is
a vector of independent random variables with a given probability
distribution.

The class of MMPS systems is equivalent to a particular class of
hybrid systems, namely the class of continuous PWA systems (see
Bemporad, Ferrari-Trecate, & Morari, 2000; Chua & Deng, 1988;
Johansson, 2003; Leenaerts & van Bokhoven, 1998 for more details
on PWA systems).

Proposition 2 (Gorokhovik & Zorko, 1994; Ovchinnikov, 2002). Any
MMPS function can be written as a continuous PWA function and vice
versa.

Moreover, any MMPS function can be written in a canonical
form, as expressed in the following proposition.

Proposition 3 (De Schutter and van den Boom, 2004). Any scalar-
valuedMMPS function g can be rewritten into themin–max canonical
form g(x) = mini=1,...,Kmaxj∈ni (α

T
ij x + βij) or into the max–min

canonical form g(x) = maxi=1,...,Lminj∈mi (γ
T
ij x+δij) for some integers

K , L, non-empty subsets ni and mi of the index sets {1, 2, . . . , K } and
{1, 2 . . . , L} respectively, real numbers βij, δij, and vectors αij, γij.

Furthermore, the following proposition from Farahani et al.
(2011, Corollary 5) shows that an MMPS function can be written
as a difference of two convex functions.

1 Note that generalized Lindley recursion models Borovkov (1984) and Whitt
(1990) are special case of MMPS systems.

Proposition 4. The function g(x) = maxi=1,...,Lminj=1,...,mi lij(x)
where lij(x) = γ T

ij x + ξij is an affine function in x, can be written
as g(x) = s(x) − r(x) where s(·) and r(·) are both convex functions
defined as follows

r(x) = −

L∑
i=1

min
j=1,...,mi

lij(x) =

L∑
i=1

max
j=1,...,mi

(−lij(x)) (3)

s(x) = r(x) + max
i=1,...,L

min
j=1,...,mi

lij(x)

= max
l=1,...,L

max
(j1,...,ji−1,ji+1,...,jL)∈C(m1,...,mi−1,mi+1,...,mL)

L∑
i′=1
i′ ̸=i

(−li′ji′ (x)). (4)

The last equality is obtained using the distributive property of addition
w.r.t. maximization in which for some integers L,m1, . . . ,mL, the set
C(m1, . . . ,mL) is defined as C(m1, . . . ,mL) = {(q1, . . . , qL)|qk ∈

{1, 2, . . . ,mk}, k = 1, . . . , L}.

3. Optimization of stochastic MMPS systems

We consider minimization of a stochastic MMPS or continuous
PWA function with a random vector ω that has a given probability
density function. The class of minimization problems under con-
sideration2 can be formulated as
min
u∈Rn

Eω[F (u, ω)]

s.t. G(u) ≤ 0
(5)

where Eω[·] is the expected value operator with respect to ω, F is
a scalar MMPS function of u and ω, and G is a convex function of u
specifying the input constraints. In order to solve the optimization
problem (5), we need to determine the expected value of anMMPS
function. One possible approach is numerical integration using the
available methods. However, numerical integration is in general
both cumbersome and time-consuming, and it becomes evenmore
complicated as the probability density function ofω becomesmore
complex. Therefore, it is desired to find an alternative approach
that is more efficient than numerical integration.

First, we apply Proposition 4 to rewrite the objective function
J̃(u) = Eω[F (u, ω)] as a difference of two convex functions:

J̃(u) = Eω[F (u, ω)] = Eω[s(u, ω) − r(u, ω)]
= Eω[s(u, ω)] − Eω[r(u, ω)] (6)

where s(·, ·) and r(·, ·) are defined as given in Proposition 4, and
where the last equality stems from the fact that E[·] is a linear
operator. Note that J̃(u) in (6) results in a non-convex optimization
problem. To solve the optimization problem (5), it is only left to
compute the expected values in (6). Note that s(u, ω) and r(u, ω)
both consist of a maximization of set of affine terms. Therefore,
our aim is to find an efficientway to compute the following general
expression:

E[ max
j=1,...,n

(ξj + γ T
j ω)] (7)

where ξj ∈ R, γj ∈ Rnω is a scaling factor, and ω ∈ Rnω is a
vector of independent random variables with a given probability
distribution. Note that by assumption ξj = αj + βju, for αj ∈ R and
βj ∈ Rm but that the dependence of ξj on u is dropped in the rest of
the paper for brevity. Next, we present two popular cases in which
the optimization of stochastic MMPS functions appears.

2 This class consists of one-stage horizon and receding horizon (model predictive
control) optimization problems and the class of control problems with static open-
loop inputs.
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3.1. Filtering problem

The first problem is a filtering problem (McEneaney, 1998;
Wang, Yang, Ho, & Liu, 2005), for which we consider a two-player
setting. Assume, e.g., that player one tries to reach his final desti-
nation during the discrete time span {1, . . . , T } and does not want
his final location x(T ) to be detected by player 2. There exists a
control action w that navigates player 1 towards the destination,
and a cloaking action v by him that perturbs the measurements of
player 2 andhe tends tominimize the costs for taking these actions.
Player 2 wants to determine an estimate x̂T of x(T ) as accurately
as possible using the obtained measurements of location of player
1 at each time step k for k = 1, . . . , T .

Let x(k) ∈ Rn denote the state, w(k) ∈ Rn the control input,
y(k)∈Rl the measurement, v(k)∈Rl the measurement noise, and
g(·) the measurement model. Filtering begins at time step k = 0
and we assume that player 2 has an estimate x̂0 of the initial state
and the measurement time-history {y(k)}Tk=1 while the initial state
x(0) of player 1, the final state x(T ), and w(·) are unknown. The
estimated final state x̂T is a decision variable for player 2. We
define the state space model of such system as follows

x(k) = f (x(k − 1)) + w(k) (8)
y(k) = g(x(k)) + v(k) (9)

where w and v are control variables and f and g are MMPS
functions. Player 1 tends to minimize the control and cloaking
cost and to maximize the difference between the final state x(T )
and estimation of his final state x̂T by player 2, while player
2 tends to minimize this difference and has to take the worst-
case control and cloaking action of player 1 into account as well
as the worst-case uncertainty about the initial state x(0). Hence,
the overall objective function is defined as J(x̂T , x(T ), w̃, ṽ) =

−γ
∑T

k=1

[
∥w(k)∥∞ + ∥v(k)∥∞

]
+ ∥x(T ) − x̂T ∥∞ for some γ >

0, where w̃ = [wT (1), . . . , wT (T )]T (ṽ is defined similarly) and
x(T ) can be defined as a function of x(0) and w̃ in a recursive
manner using (8), while ṽ can be eliminated through (8)–(9). We
assume that w, v, and x(0) are stochastic variables with a given
probability distribution and that player 2 knows typical probability
density functions of these variables based on previous experience
or a priori knowledge. Having this assumption, the optimization
problem can be defined as

min
x̂T ∈Rn

Ex(0),w̃[J(x̂T , x(0), w̃)]. (10)

This is a problem of the form (5) inwhich J(x̂T , x(0), w̃) is anMMPS
function of its arguments.

3.2. Reference tracking problem

The secondproblem is a reference tracking problem (Necoara et
al., 2008; Tierno, Murray, Doyle, & Gregor, 1997), in which the aim
is tominimize the difference between the output of the system and
the given reference signal. The system is defined similarly as in (8)–
(9), except that the state function contains the input variable u(k).
Here,w(k) and v(k) are external noise vectors that perturb the sys-
tem at each time or event step k. Assume that the initial state x(0)
is known and that f and g are MMPS functions of their arguments.
The objective function is defined as J(ũ, w̃, ṽ) =

∑T
k=1λk∥y(k)−

r(k)∥∞ where r(k) is the reference signal and λk is a weighting
factor at time or event step k, and ũ = [uT (1), . . . , uT (T )]T . Denote
the constraints on ũ by G(ũ) ≤ 0, where G(·) is assumed to be a

convex function. Note that x(k) has the following form:

x(k) = f (x(k−1), u(k)) + w(k)
= f (f (x(k−2), u(k−1)) + w(k−1), u(k)) + w(k)
. . .

= f (f (f (. . . (f (x(0), u(1))+w(1), u(2))+· · · ))
+ w(k−1), u(k)) + w(k)

= hk(u(1), . . . , u(k), w(1), . . . , w(k))

where hk(·) is an MMPS function of its arguments. Hence,

y(k) = g(x(k)) + v(k)
= g(hk(u(1), . . . , u(k), w(1), . . . , w(k))) + v(k)
= Hk(u(1), . . . , u(k), w(1), . . . , w(k), v(k)) (11)

whereHk(·) is also anMMPS function of its arguments. Accordingly,
the objective function can be rewritten as

J(ũ, w̃, ṽ)

=

T∑
k=1

λk∥Hk(u(1),. . .,u(k),w(1),. . .,w(k),v(k))−r(k)∥∞ (12)

which is an MMPS function of its arguments. Assuming that both
w(k) and v(k) are stochastic variables with a given probability
distribution, the optimization problem can be defined as follows:

min
ũ∈Rn

Ew̃,ṽ[J(ũ, w̃, ṽ)]

s.t. G(ũ) ≤ 0
(13)

which is again a problem of the form (5).

4. Approximation method

In this section, an approximation method based on the higher-
order moments of a random variable is proposed to compute the
expected value of the maximum of several affine expressions. This
approach is based on the method presented in Farahani et al.
(2016) for max-plus linear systems.

Let x = [x1, . . . , xn]T be a vector of random variables in Rn;
accordingly, for p ≥ 1, ∥x∥p =

(
|x1|p + · · · + |xn|p

)1/p defines
the p-norm and ∥x∥∞ = max(|x1|, . . . , |xn|) defines the ∞-norm
of x. These norms are related as follows (Golub and Van Loan,
1996): ∥x∥∞ ≤ ∥x∥p ≤ m1/p

∥x∥∞, and the proposed approxima-
tion method is based on this relation between the vector norms.
The following proposition (Farahani et al. 2016, Proposition 2)
shows how we can apply p-norms to find an upper bound for
E
[
max(x1, . . . , xn)

]
.

Proposition 5. Consider random variables xj for j = 1, . . . , n and let
p > 1. Then

E
[
max(x1, . . . , xn)

] (i)
≤ E

[
max(|x1|, . . . , |xn|)

]
(ii)
≤ E

[
(|x1|p + · · · + |xn|p)1/p

]
(iii)
≤

( n∑
j=1

E
[
|xj|p

])1/p

. (14)

Remark 6. For a positive even integer p = 2q, q ∈ N\{0}, we have
E[xp] = E[|x|p]. Hence, if p is an even integer, we can use E[xp] in
(14). So fromnowon, p is assumed to be an even integer larger than
or equal to 2.

Considering the above remark, we can approximate E[max(x1,
. . ., xn)] by the following upper bound:

U
(
E[max(x1, . . ., xn)]

)
=

( n∑
j=1

E
[
(xj)p

])1/p

. (15)
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Recall that our aim is to compute E[maxj=1,...,n(ξj + γ T
j ω)] in (7)

efficiently. Let xj = ξj + γ T
j ω, j = 1, . . . , n where ξj is an

affine expression in u and the elements of the stochastic vector ω,
i.e., ω1, . . . , ωnω , are independent random variables, as mentioned
before. Hence, in (15), we need to obtain the pth moment of
each random variable xj, j = 1, . . . , n, which is in fact a shifted,
weighted sum of independent random variables ω1, . . . , ωnω . To
this end, we use the following property of the moment generating
function (Ross, 2003),

My(t) = E[ety] = E[ety1 ] × · · · × E[etym ] (16)

where y =
∑m

i=1yi such that y1, . . . , ym are independent random
variables. Now, by adopting (14) and applying (16) to calculate
the pth moment of y, which is the pth derivative of the moment
generating function of y at t = 0, an upper bound for (7) can be
obtained as follows.

Theorem 7. For xj = ξj + γ T
j ω, j = 1, . . . , n in which the elements

of the vector ω are independent random variables, an upper bound for
E[max(x1, . . ., xn)] can be obtained as

E[ max
j=1,...,n

(ξj + γ T
j ω)]

≤

( n∑
j=1

∑
k0+k1+···+knω =p
k0,k1,...,knω ∈N

p!
k0! k1! · · · knω !

ξ
k0
j

nω∏
t=1

γ
kt
j,t E

[
ω

kt
t
])1/p

. (17)

Proof. The proof is straightforward by using the multinomial
theorem (Harris, Hirst, and Mossinghoff 2008, Section 2.3), and
by considering the fact that the elements of the stochastic vector
ω, i.e., ω1, . . . , ωnω are independent and for independent random
variables Z1, . . . , Znω , we have E[

∏nω

t=1Zt ] =
∏nω

t=1E[Zt ]. □

Consequently, we can rewrite (15) as follows

U
(
E[ max

j=1,...,n
(ξj + γ T

j ω)]
)

=

( n∑
j=1

∑
k0+k1+···+knω =p
k0,k1,...,knω ∈N

p!
k0! k1! · · · knω !

ξ
k0
j

nω∏
t=1

γ
kt
j,t E

[
ω

kt
t
])1/p

(18)

where E[(ξj)k0 ] = ξ
k0
j since ξj does not depend on the stochastic

vector ω and hence is not a random variable. In the approximation
function (18), we have to compute the kt-th moment of each
random variable ωt , t = 0, . . . , nω . In general, moments of
a random variable can be finite or infinite. Hence, to be able to
usefully apply U

(
E[maxj=1,...,n(ξj + γ T

j ω)]
)
as an approximation

of E[maxj=1,...,n(ξj + γ T
j ω)], we need to consider random variables

with finitemoments forwhich a closed-form expression exists, such
as variables with a uniform distribution, a normal distribution,
a Beta distribution, etc. (Johnson, Kotz, & Balakrishnan, 1995;
Papoulis, 1991). Note that if moments do not have a closed-form
expression, one has to obtain them using numerical integration
and hence, the approximation method will not be time-efficient
anymore. Next,wepresent a theorem for the case that the indepen-
dent elements of the stochastic vector w are normally distributed.
This theorem allows a faster computation compared to the case
using the upper bound in Theorem 7, since we will have less terms
in the summation (cf. (19) and (17) for comparison).

Theorem 8. Let xj = ξj + γ T
j ω, j = 1, . . . , n in which ω is a

stochastic vector and its elements ωt are independent and normally
distributed random variables with mean µ̃t and standard deviation
σ̃t , t = 1, . . . , nω , i.e., ωt ∼ N (µ̃t , σ̃t ). For an even integer p, an
upper bound for E[max(x1, . . ., xn)] can be obtained as

E[max(x1, . . ., xn)] ≤

( n∑
j=1

σ
p
j i

−pHp(iµj/σj)
)1/p

(19)

where µj and σj are the mean and standard deviation of xj, j =

1, . . . , n, respectively, and

Hp(x) = p!
p/2∑
l=0

(−1)lxp−2l

2ll!(p − 2l)!
(20)

is the pth Hermite polynomial (Abramowitz & Stegun, 1964, equa-
tions (26.2.51) and (22.3.11)) with p/2 ∈ N \ {0} since p is an even
integer.

Proof. For the case of a normally distributed stochastic vector ω,
the randomvariable xj = ξj+γ T

j ω is also normally distributedwith
appropriately definedmeanµj and variance σ 2

j , using the property
of the normal distribution that propagates through linear transfor-
mation (Dekking, Kraaikamp, Lopuhaä, & Meester, 2005). Hence,
using the pth Hermite polynomial, we can immediately compute
the pthmoment in (15), defined asE

[
xpj

]
= σ

p
j i

−pHp(iµj/σj), which
is a real number since p is an even integer. □

Remark 9. Theorem 8 is actually valid for all distributions that are
either preserved under the summation, such as the Poisson and the
Gamma distributions, or the distribution of the sum is known, such
as the Irvin–Hall distribution, which is the sum of n i.i.d. uniformly
distributed random variables (Papoulis, 1991).

Recall that in the optimization problem (5), we minimize
Eω[F (u, ω)], which actually leads to the minimization of E[s(u, ω)]
and the maximization of E[r(u, ω)] in (6). Hence, we need to have
an upper bound for E[s(u, ω)] and a lower bound for E[r(u, ω)]. Let
us consider again the general function E[maxj=1,...,n(ξj + γ T

j ω)] in
(7). An upper bound for (7) can be obtained easily by using (18) or
equivalently (19), depending on the distribution of ω. To compute
a lower bound for (7), we can apply Jensen’s inequality for convex
functions since max(·) is a convex function. Hence,

max(E[x1], . . .,E[xn]) ≤ E
[
max(x1, . . ., xn)

]
.

Therefore, a lower bound for E[maxj=1,...,n(ξj + γ T
j ω)] can be de-

fined as follows

L
(
E[ max

j=1,...,n
(ξj + γ T

j ω)]
)

= max
j=1,...,n

(E[ξj + γ T
j ω]). (21)

Consequently, instead of minimizing the objective function J̃(u) in
(6), we will minimize its upper bound J̃up(u) = U

(
E[s(u, ω)]

)
−

L
(
E[r(u, ω)]

)
.

5. On the error of the approximation method

In this section, we show that J̃up(u) − J̃(u) is bounded from
above. This means that the errors caused by approximating
E[s(u, ω)] = E[max(x1, . . ., xn)] by its upper bound U

(
E[s(u, ω)]

)
=

(∑n
j=1E[(xj)p]

)1/p (cf. (15)) and E[r(u, ω)] = E[
∑M

i=1 max(x1,

. . ., xmi )]by its lower boundL
(
E[r(u, ω)]

)
=

∑M
i=1 max(E[x1], . . .,

E[xmi ]) (cf. (21)) are bounded from above.
First the error of approximating E[s(u, ω)] by its upper

bound will be discussed. Note that E[max(x1, . . ., xn)] is generally
bounded from below and above by

L
(
E[max(x1, . . ., xn)]

)
≤ E[max(x1, . . ., xn)]

≤ U
(
E[max(x1, . . ., xn)]

)
. (22)
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Hence, the error of approximating E[max(x1, . . ., xn)] by its upper
bound is always bounded by

0≤U
(
E[max(x1, . . ., xn)]

)
−E[max(x1, . . ., xn)]

≤U
(
E[max(x1, . . ., xn)]

)
−L

(
E[max(x1, . . ., xn)]

)
(23)

and, since by assumption, xj, j = 1, . . . , n have finite moments,
this upper bound (cf. (15) and (21)) is finite.

Now, consider the error of approximating E[r(u, ω)] by its
lower bound. Due to linearity of E[·], we may assume, without
loss of generality, that M = 1. By Jensen’s inequality for convex
functions we have

max(E[x1], . . .,E[xm]) ≤ E[max(x1, . . ., xm)]
⇒ 0 ≤ E[max(x1, . . ., xm)] − max(E[x1], . . .,E[xm]) (24)

and we want to show that the right-hand side of (24) is bounded
from above. Note that max(E[x1], . . .,E[xm]) is finite since we
assume that the random variables xr = ξr + γ T

r ω, r = 1, . . . ,m
have finite moments. To obtain an upper bound for (24), we show
that E[max(x1, . . ., xm)] is bounded from above. Let x1, . . . , xm be
random variables that are not necessarily independent or identi-
cally distributed and let x(m) = max(x1, . . ., xm). Denote the mean
and variance of each xr by E[xr ] = µr and σ 2(xr ) = σ 2

r for
r = 1, . . . ,m. An upper bound for E[x(m)] can be then defined as
follows (Arnold & Groeneveld, 1979)

E[x(m)] ≤

∑m
r=1 µr

m
+

√m − 1
m

m∑
r=1

[
σ 2
r +

(
µr −

∑m
k=1 µk

m

)2]
.

Hence, for a general case withM ≥ 1, we have the following upper
bound for

∑M
i=1E[x(m)]:

M∑
i=1

(∑mi
r=1 µr

mi
+

√mi − 1
mi

mi∑
r=1

[
σ 2
r +

(
µr −

∑mi
k=1 µk

mi

)2])
.

Moreover, two other upper bounds for E[x(mi)] are given in Bert-
simas, Natarajan, and Teo (2006). Therefore, we can choose
the smallest upper bound among these three, denote it by
U
(∑M

i=1E[x(mi)]

)
. Hence, an upper bound for (24) withM ≥ 1, can

be written as

E
[ M∑

i=1

max(x1, . . ., xmi )
]

−

M∑
i=1

max(E[x1], . . .,E[xmi ])

≤ U
(
E[x(m)]

)
−

M∑
i=1

max(E[x1], . . .,E[xmi ]). (25)

Hence, we have shown that the error of approximating J̃ by J̃up,
i.e., J̃up(u) − J̃(u), is bounded from above by (23)+(25).

5.1. Alternative upper bound for the approximation method

Since the proposed approximation method is also valid for
distributions with a bounded domain, here we discuss this case
separately to propose an alternative upper bound for the error
caused by applying the upper bound approximation function (15).
To this end, we consider the three inequalities in (14) and their
corresponding error. For random variables xj, j = 1, . . . , n
with a bounded domain Xj, Inequality (i) turns into an equality
if all xj are nonnegative. Hence, we introduce a constant L =

minj=1,...,n(minXj, 0) and then replace each xj by yj = xj − L, j =

1, . . . , n and add L to the right-hand side of all inequalities in
(14); in this way, the error due to (i) is zero. The error due to
(ii) approaches zero if p → ∞, since by definition ∥x∥∞ =

limp→∞∥x∥p. However, a large p affects the error due to (iii), which
is the error of Jensen’s inequality, differently andwe discuss it here
in more detail.

For a differentiable, concave function f defined on an interval
[a, b], the absolute error of Jensen’s inequality has the following
upper bound (Simić, 2009):

0 ≤ f (E[x]) − E[f (x)]
≤ max

θ∈[0,1]
[f (θa+(1−θ )b)−θ f (a)−(1−θ )f (b)]=: ēabs(a, b) (26)

and it has been shown in Simić (2009) that there exists a unique
θ0 ∈ (0, 1) for which ēabs(a, b) is maximal. In our case, the concave
function f is given by f (x) = x1/p and we have f ′(x) =

1
p x

1
p −1. Since

we assume that p is a positive even integer larger than or equal to
2, the argument x has to be larger than or equal to zero, which is
the case since x =

∑n
j=1x

p
j . Let us first consider the case where x is

strictly positive and hence, a, b > 0. The case where x = 0 will be
considered later on (see Propositions 10 and 11). By substituting
f in (26) and by determining the optimal value of θ , the following
expression for ēabs(a, b) is obtained:

ēabs(a, b) =

( a − b

p(a
1
p − b

1
p )

) 1
p−1

−

(
1

a − b

[
(a

1
p − b

1
p )

(
a − b

p(a
1
p − b

1
p )

) p
p−1

− a
1
p b + ab

1
p

])
.

(27)

Hence, we derive the following proposition based on the above
formula. Since the proof of this proposition is straightforward, we
skip it here.

Proposition 10. Considering our assumptions that a, b > 0 and
p ≥ 2 is an even integer, we obtain the following result:

lim
a→0+

ēabs(a, b) = b
1
p

((1
p

) 1
p−1

−

(1
p

) p
p−1

)
.

As we have assumed that yj = xj − L = ξj + γ T
j ω − L has a

probability distribution with a finite domain, a and b can be easily
obtained. Indeed, assume that each independent element of the
stochastic vector ω, i.e., ωt , t = 1, . . . , nω , belongs to the interval
[ct , c̄t ] where ct , c̄t ∈ R and without loss of generality, we assume
that ct < c̄t for all t . Since γjt can be positive or negative, we
have min(γjtct , γjt c̄t ) ≤ γjtωt ≤ max(γjtct , γjt c̄t ). Hence, we can
show that each yj, j = 1, . . . , n, also belongs to the interval [aj, bj]
where 0 ≤ aj < bj are defined as follows: since xj = ξj + γ T

j ω =

ξj +
∑nω

t=1γjtωt , we have

ξj+

nω∑
t=1

min(γjtct , γjt c̄t )  
āj

≤xj ≤ξj+

nω∑
t=1

max(γjtct , γjt c̄t )  
b̄j

.

Let L = minjāj and define aj = āj − L and bj = b̄j − L. Therefore,
aj ≤ yj ≤ bj. Note that by this choice of L, 0 ≤ yj, ∀j = 1, . . . , n, so
0 ≤ aj < bj and apj < bpj . Hence,

apj ≤ ypj ≤ bpj ⇒

n∑
j=1

apj  
a

≤

n∑
j=1

ypj  
x

≤

n∑
j=1

bpj  
b

(28)

with a < b. Recall that the error caused by inequality (ii) in (14)
approaches 0 as p → ∞, which suggests that p should be selected
very large. However, we need to investigate the effect of having
a large p on ēabs(a, b), since both a and b depend on p in (28). To
this end, let α = maxj=1,...,naj and β = maxj=1,...,nbj. Denote the
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number of aj values that are equal to α by A and the number of bj
values that are equal to β by B. Hence, β > α since b > a. Now, for
a large p, we rewrite a and b as a ≈ Aαp and b ≈ Bβp. Using this
notation, we have the following proposition.

Proposition 11. Assuming that a ≈ Aαp, b ≈ Bβp for a large
positive even integer p with A, B positive integers and 0 ≤ α < β ,
we have limp→∞ēabs(α, β) = β.

The proof has been skipped as it is straightforward. This propo-
sition shows that if p → ∞, the absolute error converges to β ,
which indicates that for a large p, the error may become too large
depending on the value of β . Consequently, there is a trade-off
between having a small error in inequality (iii) by choosing a rela-
tively small p and having a small error in inequality (ii) by choosing
a very large p. So, the value of p has to be tuned accordingly.

6. Worked example

In this example, we will illustrate that our approximation
method works efficiently when it is applied to a reference tracking
problem. As a specific case, we study control of the temperature
of a room (see Necoara et al., 2008) and we consider the model
predictive control (MPC) optimization problem of an MMPS sys-
tem. For more details on MPC for (stochastic) MMPS systems, the
interested reader is referred to Farahani et al. (2011) and the
references therein. The following continuous discrete-time PWA
system is considered in Necoara et al. (2008):

x(k + 1) =

{
1/2x(k) + u(k) + ω1(k) + 1 if x(k) < 0
u(k) + ω1(k) + 1 if x(k) ≥ 0

y(k) = x(k) + ω2(k)

where x, y, and u denote the state (room temperature), measure-
ment, and heat input, respectively, and ω1 and ω2 denote the
disturbance. We also have the following input constraints for all
k: u(k) ≥ 0 and −4 ≤ ∆u(k) = u(k + 1) − u(k) ≤ 4. In
Necoara et al. (2008), it is assumed that ω1 and ω2 belong to a
bounded polyhedral set. However, to illustrate our approach, here
we assume that the error components have a standard normal
distribution, i.e., ω1(k), ω2(k) ∼ N (0, 1). The equivalent MMPS
representation of the above PWA system is

x(k+1) = min
(1
2
x(k)+u(k)+ω1(k)+1, u(k)+ω1(k)+1

)
y(k) = x(k) + ω2(k).

For the MPC setting (cf. Necoara et al., 2008), the prediction
horizon is Np = 2 and the control horizon is Nc = 2 ac-
cordingly, ỹ(k) = [y(k + 1), y(k + 2)]T , r̃(k) = [r(k + 1), r(k +

2)]T , and ũ(k) = [u(k), u(k+ 1)]T . Let the uncertainty vector be
ω(k) = [ω1(k), ω2(k+1)]T . Therefore, ω̃(k) = [ωT (k), ωT (k+1)]T .
The objective function is defined as J̃(k) = E

[
∥ỹ(k) − r̃(k)∥∞ +

λ∥ũ(k)∥1
]
,which is the expected value of anMMPS function. Here,

we have the expected value due to the stochastic setting while
in Necoara et al. (2008) the worst-case optimization problem
was solved due to considering a bounded disturbance. We com-
pute the closed-loop MPC control signal by minimizing the upper
bound of J̃(k) over the simulation period [1, 20], with λ = 0.01,
x(0) = −6, u(−1) = 0, and p = 26 in the approximation
method (cf. (19)). The reference signal is given as {r(k)}20k=1 =

{−5, −5, −5, −5, −3, −3, 1, 3, 3, 8, 8, 8, 8, 10, 10, 7, 7, 7, 4, 3}.
Fig. 1 shows the results of the simulation in which we compare
our proposed approach (cf. Section 4) with the ‘‘Exact solution’’
obtained by using numerical integration and with robust MPC
(RMPC) in which the random variables have a truncated normal
distribution using 3σ , 5σ , and 7σ bounds, respectively. The sim-

Fig. 1. Results of the stochastic and robust MPC-MMPS optimization problem.
‘o’-line: exact solution; ‘+’-line: approximation approach; solid linewithoutmarker
(first plot): reference signal; dotted line: robust MPC with 3σ bounded error; dash-
dotted line: robust MPC with 5σ bounded error; dashed line: robust MPC with 7σ
bounded error.

ulations are done in Matlab R2016b on a 2.6 GHz Intel Core i5
processor and the optimizations are solved using fminconwith the
SQP solver.

Since we have a stochastic system, we have repeated the sim-
ulations for each approach 100 times with different noise real-
izations and then report the mean and variance of the obtained
trajectories. The top plot in Fig. 1 shows the reference signal
and the mean of the output trajectories of the system using the
‘‘Exact solution’’, using the approximation approach, and using
the robust MPC approach with different error bounds; the second
plot presents the mean of the tracking error using the mentioned
approaches; the third plot shows the mean of the optimal input
trajectories using the different mentioned approaches; the last
plot illustrates the mean of ∆u(k) for each approach and the fact
that the input constraint is satisfied, i.e., −4 ≤ ∆u(k) ≤ 4.
The maximum values for the variance of the output trajectories
are as follows: ‘‘Exact solution’’: 2.5283, approximation approach:
2.4992, RMPC with 3σ : 5.2118, RMPC with 5σ : 4.9976, and RMPC
with 7σ : 5.9361. Themaximum values for the variance of the opti-
mal input trajectories are: ‘‘Exact solution’’: 0.0742, approximation
approach: 0.0687, RMPC with 3σ : 5.8396, RMPC with 5σ : 7.0336,
and RMPC with 7σ : 6.7088. These values show that the variances
in robust MPC are much larger compared to stochastic MPC, which
results in more deviation in the obtained trajectories.

As shown in Fig. 1, the results of the approximation approach
are very close to the ones from the ‘‘Exact solution’’. Moreover, the
overall performance of robust MPC is worse than that of stochastic
MPC; although themean of the output trajectories in robustMPC in
the first 4 time steps is closer to the reference signal, this changes
in the next steps in favor of the stochastic approach using both the
approximation method and the exact method. Furthermore, the
third plot confirms the conservativeness of the robustMPCmethod
as that approach results in much larger inputs, which results in
more energy used (in terms of heat) compared to the stochastic
approaches.

Furthermore, in the error analysis in Section 5, we have shown
that the error of approximating J̃ by J̃up, i.e., J̃up(u)− J̃(u), is bounded
from above. Fig. 2 shows this error and the obtained upper bound,
which is the sum of the two upper bounds in (23) and (25), having
different values for p in the approximation method (cf. (19)). As
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Fig. 2. The error J̃up(u)− J̃(u) and its upper bound, i.e., sum of (23) and (25), for
different values of p, applying (19).

can be seen in this figure, p = 26 gives mostly a smaller error
compared to p = 16 and p = 36. This is due to Jensen’s inequality
used in obtaining the approximation function (cf. (14)), and hence,
a trade-off has to be made in the choice of the p, as explained in
Section 5.1. For more details on the effect of p on the performance
of the controller, the reader is referred to Farahani et al. (2016).

7. Conclusions

This paper has discussed an optimization problem of stochas-
tic max–min-plus-scaling (MMPS) systems in which the objec-
tive function is defined as an expected value of stochastic MMPS
functions. As the available numerical approaches for computing
this expected value are both complex and time consuming, we
have proposed an approximation method in which the objective
function is replaced by its upper bound. We have shown that for
distributions with closed-form moments, this upper bound has a
closed-form expression and hence, can be computed analytically.
This way, we have avoided the cumbersome numerical or analytic
integrations needed for the calculation of the expected value. We
have also shown that the error resulting from approximating the
original objective function by its upper bound is bounded from
above. In our ongoing and future research, we will investigate
approaches to decrease the error of this approximationmethod by,
e.g. considering truncated distributions or finding an appropriate L
for distributions with an unbounded domain. Moreover, it is inter-
esting to compare the proposed approximationmethodwithmore
conservative approaches such as the one presented in Bemporad,
Borrelli, and Morari (2003).
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