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Abstract. Assessment of cultural heritage assets is now extremely important all around the
world. Non-destructive inspection is essential for preserving the integrity of the artworks while
avoiding the loss of any precious materials that make it up. The use of Infrared Thermography
(IRT) is an interesting concept since surface and subsurface faults can be discovered by utilizing
the 3D diffusion inside the object caused by external heat. The primary goal of this research is
to detect defects in artworks, which is one of the most important tasks in the restoration of mural
paintings. To this end, a spatiotemporal deep neural network (STDNN) is utilized for defect
identification in a mock-up reproducing an artwork, taking into account both the temporal and
spatial perspectives of step-heating (SH) thermography. Finally, the outcomes are compared to
those of other conventional algorithms.

1. Introduction
The preservation of cultural heritage assets has been nowadays attended because they carry valuable
information. Therefore, the use of Non-Destructive Testing (NDT) procedures in conservation is highly
valued by restorers and art historians [1]. Thermal non-destructive testing is a smart option to inspect
cultural heritage objects since surface and subsurface defects can be detected by exploiting the 3D
diffusion inside the object induced by external radiation [2, 3]. However, a painting surface is one of the
challenging items for Infrared Thermography (IRT) [4] as an NDT method because pigments composing
the colors cause the emissivity variations of the surface, which is the most important coefficient in the
emitted radiation energy and Stefan—Boltzmann law [5].

External surface treatments, typically given by spray, are frequently employed as a technique to
improve the emissivity value in order to increase the thermal contrast of subsurface faults projected on
the surface. This strategy, however, is not always appropriate, especially when sensitive layers of items,



such as cultural heritage and artworks, must be investigated [6-8]. Therefore, other techniques without
any manipulation of the objects should be considered to identify the defects of an artwork.

Data analysis by taking the heat equations into account can be helpful in extracting valuable
knowledge from thermograms recorded by an IR camera [9, 10]. Yet, because an artwork may have
complex damage configurations (various sizes, depths, materials, and types), analyzing IR data using
only physical models is extremely difficult, especially when access to thermal data is limited to the
external surface. Data-driven models and artificial intelligence (Al) are key mathematical approaches to
overcome this challenge.

In recent years, infrared machine vision has gained increasing interest in the various domains due to
the increasing growth of Machine Learning, notably with Deep Learning (DL) algorithms that use
multiple layer networks to extract higher-level features from raw IR input sequentially [11]. The
complexity of identifying damage in an artwork can be addressed by employing Al, particularly DL.
Despite significant research advances in IRT processing using unsupervised learning, generally
employed detection algorithms still have difficulties in defect identification due to weak signal-to-noise
ratio (SNR), complicated interference, and so on. The development of supervised learning to research
IRT is a prospective trend based on the spatial-temporal physic properties of the IRT sequences [12].
To this end, thermal video can be analyzed from two perspectives:

1. The aspect of temporal information that includes the temperature variation of each pixel over
time, and could be regarded as a time-series input.

2. The spatial information aspect, which includes the temperature variation of each frame (at
one moment) over all pixels and could be regarded as an image input.

In the present work, a Machine Learning Framework based on the Deep Neural Networks (DNN) is
designed to classify pixels into healthy and defective regions, presenting the pertinent intact and
damaged areas of the object under inspection. The proposed framework consists of two sub-models: a
multilayer perceptron (MLP) to classify each time-series (1D signal) into healthy or defective pixels;
and a convolutional neural network (U-Net) to segment images into healthy or defective areas. These
two networks are fused sequentially together in order to enhance the performance in such a way that
after training the former one, the latter one is trained. The developed framework's performance is
compared to the results of popular algorithms such as Pulsed Phase Thermography (PPT), Principal
Component Thermography (PCT), and Thermographic Signal Reconstruction (TSR).

2. Experimental setup

The IRT-inspected artwork is a replica of Giotto's "Meeting at the Golden Gate" (a mural painting) that
is preserved in Padua's Scrovegni Chapel (Italy). The size of the replica is 60 x 60 cm. The sample
contains several faults at various layers, indicating typical degrading mural painting faults. A photograph
of the replica, a map of defects, and a sketch of the experimental setup for the laboratory IRT inspection
can be seen in figure 1. Details about the different fabricated defects and more information were
provided in [13].
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Figure 1. (a) Photograph of the mock-up, (b) defects map, and (c) sketch of the experimental IRT setup.




The sample was stimulated by four halogen lamps (OSRAM SICCATHERM, 250 W), and the thermal
response of the surface was recorded by an infrared camera (FLIR S65 HS, 7.5-13 pum, 320%240, 50
Hz). The heating and cooling phases lasted 52.5 and 164 seconds, respectively (for a total of around
216.5 seconds). The final thermography dataset contains 10826 thermal images, of which the frames
with a 25 Hz rate will be collected for further analysis to reduce processing costs, and the total number
of final frames is 434. In addition, each image is cropped to remove the additional marginal pixels,
reducing the size of each frame to 230x230. As a result, the network's input data set size is
230%230x434.

3. Methodology

This section outlines the proposed framework, a spatiotemporal deep neural network (STDNN), which
is depicted in figure 2. The framework is divided into two parts: temporal and spatial sub-models, which
will be discussed in detail in the following subsections.
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Figure 2. The proposed spatiotemporal deep neural network (STDNN).

3.1. Temporal network
For the temporal information, a multilayer perceptron (MLP) is used to classify the temporal signals
related to the pixels into healthy or defective. First, the thermal signals relevant to each pixel are labeled



using the ground truth image, which was built artificially using the actual locations and dimensions of
the defects. The dataset is then windowed across the spatial point of view by a mask with a size of 10-
by-10 pixels, which is a patch of neighboring pixels, and the moving stride is 10 pixels in both directions
of the image's height and width (i.e., zero overlap). As a result, the dataset is composed of 23x23 patches
of 3-dimensional data, each of which is 10x10x434 pixels in size. This type of partitioning was carried
out because the dataset needed to be divided into training and test datasets from only one specimen, and
because pixels near to each other in the spatial network needed to be imported into the sub-model for
the segmentation task and morphology based on topology. Each thermal signal related to a pixel is
imported into the MLP to be classified between zero (healthy) and one (defective).

The temporal sub-model comprises three hidden layers, respectively containing 20, 10, and 5
neurons. The hyperbolic tangent (tan-sigmoid) function is used as the activation function in all hidden
layers, whereas the logistic (log-sigmoid) function is used in the output layer. The scaled conjugate
gradient backpropagation [14] is adopted as the optimizer, and a binary cross-entropy function with a
regularization parameter of 0.1 is used as the loss function.

3.2. Spatial network

A U-Net as a Convolutional Neural Network (CNN) model [15] is employed to segment images into
healthy and faulty regions based on the relationships between surrounding pixels in spatial information.
The U-Net architecture is composed of an encoder network followed by a decoder network. U-Net, as
opposed to a simple autoencoder architecture, has additional interconnections between the encoder and
decoder sections. In the present work, this U-Net model is trained on Keras API which is an open-source
software library that provides a Python interface for artificial neural networks. It should be noted that
the Adam, which is a stochastic gradient descent algorithm according to the adaptive estimation of first-
and second-order moments, is used as the optimizer with a learning rate of 0.001. Moreover, binary
cross-entropy is the loss function. The U-Net model's architecture is presented in detail in table 1. The
default settings are used for the parameter that are not mentioned in the table 1. Patches of 10x10x434
are inputted to the U-Net, and then all resultant patches of 10x10x1, including training and test ones,
are concatenated to reconstruct the full image of 230x230.

Table 1. The U-Net (spatial sub-model) model's architecture.

Layer

Number Layer Type Input of Layer
1 Conv2D (Filters: 128, (3 x 3), Activation: Exponential Linear Unit (ELU)), MLP’s output
Kernel_Initializer: he_normal
2 Batch Normalization Layer 1
3 Conv2D (Filters: 128, (3 x 3), Activation Function: ELU), Kernel_Initializer: he_normal Layer 2
4 Max-Pooling (Size: (2 x 2)) Layer 3
5 Conv2D (Filters: 128, (3 x 3), Activation Function: ELU), Kernel_Initializer: he_normal Layer 4
6 Batch Normalization Layer 5
7 Conv2D (Filters: 128, (3 x 3), Activation Function: ELU), Kernel_Initializer: he_normal Layer 6
8 Conv2D-Transpose (Filters: 128, (3 x 3), Strides = (2 x 2), Activation Function: ELU) Layer 7
9 Conv2D (Filters: 128, (3 x 3), Activation Function: ELU), Kernel_Initializer: he_normal  Concatenation of
Layers 3 and 8
10 Batch Normalization Layer 9
11 Conv2D (Filters: 128, (3 x 3), Activation Function: ELU), Kernel_lInitializer: he_normal Layer 10
12 Dropout (0.3) Layer 11
Final Layer Conv2D (Filters: 1, (1 x 1), Activation: Sigmoid) Layer 12

4. Results and discussion
The dataset, including 529 (23%23) patches, is divided into training and test datasets with a ratio of 7:3.
As a result, the training and test datasets are composed of 370 and 159 patches, respectively, with each



patch size of 10x10x434. Having only one mock-up reproduced artwork was one of the biggest
challenges in this research. The dataset is randomly split with a 7:3 ratio and repeated ten times to
investigate the model's stability. The temporal sub-model has been evaluated on the test dataset after
training the MLP network on the training dataset for 1000 epochs. Since this is a Class-Imbalanced
problem, the AUC value, which is the area under the ROC (receiver operating characteristic) curve, is
provided to analyze the performance of the sub-models. The AUC averaged over ten repeats across ten
datasets of the MLP is presented in table 2. The results on the test set demonstrates the stability and high
performance of MLP sub-model in classifying the pixels. The images obtained by the temporal sub-
model (MLP) from the first dataset and the first repeat can be seen in figure 3 (the 2™ line).

Table 2. AUC calculated from the (temporal sub-model) MLP’s results for the ten generated datasets.

Dataset 1 2 3 4 5 6 7 8 9 10 Mean:
Pop std

Training 0.96+0.01 0.96+0.01 0.96+0.01 0.96+0.01 0.97+0.01 0.97+0.00 0.97+0.00 0.96+0.00 0.96+0.01 0.96+0.01 0.96+0.00
Test 0.86+0.010.89+0.010.87+0.01 0.88+0.01 0.88+0.00 0.87+0.01 0.89+0.01 0.87+0.01 0.89+0.01 0.86+0.01 0.88+0.01

The first repeat of the MLP's outputs from each dataset has been selected as the input of the U-Net
model. To reduce the uncertainty in performance of the U-Net model, this model is implemented ten
different times on each of these datasets, and the mean performances with their deviations are presented.
This random repeat technique will help to find out how stable the spatial sub-model is with its
performance.

Table 3 shows the U-Net model's performance across all ten datasets. Due to the Class-Imbalanced
condition in this experiment, AUC and F-1 score evaluation metrics are calculated to investigate the
performance of the predictive model. Furthermore, the evaluation metrics of Recall and Precision are
computed for more detailed information regarding the model’s performance. It should be noted that
Macro-Averaged is used to calculate the Recall, Precision, and F1-Score metrics.

Table 3. AUC, Precision, Recall, and F1-Score calculated from the (spatial sub-model) U-Net’s results
for the ten generated datasets.

Precision Recall
AUC (Specificity) (Sensitivity) R

Dataset
Train Test Train Test Train Test Train Test

1.00+0.00 094+0.00 097001 0.82+0.03 0.96+0.02 0.75+0.03 096+0.01 0.78+0.01
1.00+0.00 095+0.01 091+0.02 0.88+0.02 097+0.01 0.85+£002 093+0.01 0.86+0.01
1.00+0.00 0.94+0.00 0.95+0.02 0.83+0.04 094+0.01 0.78+0.03 0.95+0.01 0.80+0.01
0.99+0.00 093+0.01 0.92+0.02 0.83+0.01 095+001 0.79+0.03 0.93+0.01 0.80+0.02
0.99+0.00 095+0.00 0.95+0.01 0.85+0.02 094+002 0.81+£0.02 094+0.01 0.82+0.01
1.00+0.00 0.94+0.00 0.89+0.03 0.83+£0.02 097+0.01 0.81+£002 093+0.02 0.82+0.01
1.00+0.00 0.95+0.00 096+0.02 0.89+0.03 0.96+0.01 0.83+0.03 096+0.01 0.85+0.01
099+0.00 0.93+0.00 0.92+0.01 0.83+£0.02 090+0.04 0.74+0.05 091+0.02 0.77+0.03
1.00+0.00 0.95+0.00 096+0.01 0.87+0.02 0.94+0.02 0.81+£0.01 095+0.01 0.84+0.01
10 1.00+0.00 0.93+0.00 092+0.02 0.81+002 0.95+0.02 0.78+0.03 094+0.01 0.79+0.01

m}i)agtg 1.00+0.00 094+001 094+002 084+003 095+0.02 080+003 094+0.01 0.81+0.03
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Precision estimates the accuracy for the minority class in the case of a Class-Imbalanced situation since
it is a measure that quantifies the amount of correct positive (Minority class which is the defective pixels)
predictions. The results indicate that the mean precision on the test set is 0.84 with a low standard
deviation, which can be considered an outstanding performance. Although precision is valuable and the
findings appear to be excellent, it does not reflect on how many true positive class samples are predicted
as belonging to the negative class (Majority Class which is the healthy pixels).
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Figure 3. Results of MLP based on only temporal information (the 2" row), MLP-U-Net based on both
temporal and spatial information (the 3" row), and the well-known algorithms of TSR, PPT, and PCT
(the 4" and 5" rows) compared to the ground truth image (the 1%t row) for the first dataset. The red color
for the first three rows represents the unused pixels for training or test.



Precision only indicates the correct positive prediction out of all positive prediction, but Recall metric,
as opposed to precision, shows missed positive predictions. The Recall is a measure that reflects the
number of correct positive predictions made out of all possible positive forecasts. The purpose in
imbalanced datasets is to optimize Recall without diminishing Precision. Nevertheless, both criteria are
often in contradiction, as increases in Recall often lead to the expense of declines in Precision. The F1-
score integrates Precision and Recall into a single metric that encompasses both. The overall F1-score
of the U-net model on the test set demonstrates that the model performs acceptably in segmenting the
image into healthy or faulty regions based on spatial information relationships between surrounding
pixels. Above all, the AUC is sensitive to the class imbalance in the view that the minority class has a
significant impact on its value. Compared to Accuracy, this is very desirable behavior from the AUC
metric. The AUC scores verify that the model's performance is excellent and, more interestingly, stable.
Figure 3 (the 3" line) depicts the images generated by the spatial sub-model (U-Net) once performed on
the MLP outputs for the first dataset and first repeat.

To compare, the TSR results, as well as the amplitude and phase of PPT at the frame with the high
contrast (maximum kurtosis), are displayed in figure 3. (the 4" line). Figure 3 (the 5™ line) depicts the
first three principal components (PCs) obtained by PCT. Despite the fact that these popular, conventional
algorithms do not require training, their results are not comparable to the MLP-U-Net's, and the effect
and reflection of the drawing on the surface are evident. As a result, the proposed framework was able
to rectify the emissivity problem induced by pigment effects. However, its shortcoming is that it is
supervised and requires training data from similar types of samples, which is not the case in this work.

5. Conclusions

In this work, a spatiotemporal deep neural network (STDNN) was utilized for defect identification in a
mock-up reproducing an artwork, taking into account both the temporal and spatial perspectives of SH
thermography. Initial results indicated that the mean F1-score evaluation metric is acceptable with a low
standard deviation, which can be considered an outstanding performance despite the fact that there is a
class-imbalance problem in the data. These results were supported by the AUC scores verifying that the
model's performance was excellent and, more interestingly, stable. Finally, the outcomes of the STDNN
were compared to those of other conventional algorithms (i.e., PCT, PPT, TSR). It was found that their
results cannot be considered comparable to the MLP-U-Net's; for example, the effect and reflection of
the drawing on the surface are still evident.

It is possible to say that the proposed framework was able to rectify the emissivity problem induced
by pigment effects. For the future, training data from similar types of samples (e.g., panel paintings) will
be collected in order to reduce the shortcoming of the proposed STDNN mainly linked to the supervised
learning approach.
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