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Introduction

Introduction
The main product of the Armed Forces is operational readiness [28]. In order to achieve personnel readiness,
pilots in the Royal Netherlands Air Force (RNLAF) and other Air Forces, have to complete a lot of training
events throughout the year. Scheduling these training events is a complex task which is typically done man-
ually, as commercial tools that are used in civil aviation are not applicable in the military sector. The main
limiting factors in this process are the availability of pilots, the availability of aircraft and the complexity that
comes from flight formations. One of the current developments within the RNLAF is the desired transition to
"Informatie Gestuurd Optreden" (IGO), freely translated to Information Driven Operations. In this context,
the Air Force is exploring how data science and automation could improve the operating standard within the
organisation. Automating complex processes such as the construction of a training schedule and allocation
of pilots to this schedule could contribute to this improvement by a twofold increase in efficiency. First, the
time spent on constructing the schedules could be reduced. Second, the resulting schedule could make more
efficient use of the resources which would lead to higher readiness in the Air Force.

Motivation
In my job, where I work for the RNLAF, I am confronted with the training program of fighter pilots on a
daily basis. Consequently, when I started looking for a thesis subject in June 2020, the problem of scheduling
training for fighter pilots was one of the first subjects that came to mind. Nowadays, with the Data Science
Cell (DSC) the Air Force has a department that focuses on problems like this. After contacting the DSC, it
became apparent that this problem was already of their interest. Previous research into this problem has
been done by Guljé and Taks ([9], [26]), but both these theses were performed independently of the RNLAF
and the models were never implemented. Consequently, the RNLAF and DSC are still looking for a tool that
is able to perform the scheduling and assignment of fighter pilot training events.

Problem Statement & Scope
In order to become qualified pilots, to maintain a qualification or to upgrade a qualification, fighter pilots
have to complete a certain amount of training events throughout the calendar year. These events are mainly
conducted in the form of training missions. Scheduling these training missions is subject to the availability
of resources and all training missions have complicating characteristics. The missions should be scheduled
and pilots should be assigned to the scheduled missions with the objective to maximize the obtained training
value and by doing so maximize the personnel readiness. The scope of this research is to develop a model
that solves this problem and produces schedules that result in a higher level of training for the fighter pi-
lots. Ultimately, the model should be accessible to all schedulers and easy to use through a user interface.
Furthermore, the model could be integrated with a readily available tool that predicts and regulates aircraft
availability in the RNLAF. However, these two aspects are not in the scope of this research. Additionally, ex-
ternal factors that could lead to (partial) cancellation of the missions are not taken into account. Even though
the problem originates in the RNLAF fighter jet domain, the goal is that the model should (with a few alter-
ations) also be applicable in other military aviation scheduling problems.

Research Objective & Questions
From an organizational point of view, the desired outcome is that a tool is developed that ultimately leads
to higher personnel readiness and that reduces the time spent on constructing schedules. From this organi-
zational objective and the problem statement, the research objective is formulated. The research objective
for this thesis is to develop a model that is able to schedule initial, recurrent and transition training mis-
sions and assign pilots to these missions for training programs that have to be completed within one year.
Implementing this model at military fighter squadrons should result in more efficient schedules that lead
to an improvement in the readiness of personnel, while also reducing the time spent on constructing these

xiii



xiv Introduction

schedules. To the best of our knowledge after having conducted an extensive literature review, no such model
currently exists. To meet the research objective and work towards this objective in a structured manner, the
following research question and sub-questions have been formulated.

How can we develop a model that is able to schedule fighter pilot initial, recurrent and transition
training missions and assign pilots to these missions in such a way that the readiness of the pilots
is maximized?

• What are the current challenges in scheduling training flights within a typical fighter squadron?

• What are the requirements of the initial, recurrent and transition training programs?

• What resources are available and how is the planning environment constrained?

• What model form is suitable to find a solution to this problem within the specified require-
ments?

• What methodology is suitable to solve the model and balance runtime and solution quality?

Thesis Outline
The structure of this thesis report is as follows. In Part I, the scientific paper is included. This paper is the core
of the thesis and can be regarded as a stand-alone document. In Part II, the Literature Study which preceded
the thesis is included. This Literature Review was already presented and graded during an earlier course, but
provides significant background information on the subject. Part III provides supporting material, which can
serve as a more in-depth explanation of certain aspects of the scientific paper. Lastly, Part IV contains the
Appendices.
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Scheduling and Assignment of Fighter Pilot Training Missions

Rico Migom,∗

Delft University of Technology, Delft, The Netherlands

Abstract

Military fighter pilots spend most of their working hours performing training missions, simultaneously
carried out by multiple pilots with different qualifications. Scheduling these missions is typically done
manually, which is a time-consuming task resulting in far from optimal schedules. This study proposes
a model that schedules three types of training missions and assigns pilots to these missions for a full-
year training program. The proposed methodology consists of a two-stage Mixed Integer Program. Both
stages are solved with a Brand and Bound algorithm. Additionally, the second stage implements a Rolling
Horizon approach. A case study considering two Royal Netherlands Air Force fighter squadrons is used
to test the model. The results show an increase of more than 15% for the average amount of training
completed by all pilots, compared to the current scheduling process. The solutions are obtained in a few
minutes, demonstrating the suitability to use the model in practice and reduce the time spent on constructing
schedules.
Index Terms: Military Aviation, Scheduling & Assignment, Rolling Horizon, Mixed Integer Programming,
Royal Netherlands Air Force

1 Introduction
According to a Dutch policy research proceeding Zicht op Gereedheid, the most important product of the armed
forces is operational readiness, the ability to (inter)nationally deploy trained units and weapon systems [24].
One of the key aspects of operational readiness is the readiness of personnel. To achieve maximum readiness
of personnel, the armed forces strive to offer all their personnel as much training as possible. This is especially
true for fighter pilots, who undergo a lengthy and intensive initial training program. But even after pilots have
completed the initial training, much of their yearly flying program consists of performing training missions with
the aim of maintaining or increasing their level of proficiency. To do so, different training programs exist that
have to be completed in the course of a calendar year. These training programs describe a set of specific training
missions that have to be flown by a pilot to acquire or extend a pilot’s license or upgrade the qualification of the
pilot. While scheduling these training missions, the available resources as well as additional constraints have to
be taken into account. These constraints are for example the result of flight formations. For the remainder of
this paper we call the problem of scheduling training missions and assigning pilots to these missions given the
constraints and available resources the Fighter Pilot Training Scheduling and Assignment Problem (FPTSAP).
The organizational objective for the FPTSAP is then to maximize the readiness of personnel.

In practice, the training programs that have to be followed by the pilots, can be categorized into three
types of training: initial training, recurrent training and transition training. Initial training is aimed at Student
Pilots (SPs) that have just arrived at the squadron. They need to complete a training program that is strictly
sequentially ordered and the SPs have to be supervised by an instructor during each mission. Recurrent training
on the other hand is focused on readily qualified pilots. Those pilots have to conduct a certain amount of training
missions in order to maintain their qualification. Lastly, transition training is meant to have qualified pilots
upgrade their qualification to a higher level. As a result, transition training is in this paper also called upgrade
training. Like initial training, transition training has to follow a sequentially ordered syllabus. All three types of
training have a different impact on the personnel readiness, so managerial decisions could be made to prioritize
one training type over another.

In the FPTSAP, a mission is defined as a training event that is conducted by a predetermined number of
pilots. Missions that have similar goals and characteristics are grouped together in several mission categories. If
a mission has to be flown by four, two or one pilot(s), the formation is said to be respectively a 4-ship, a 2-ship
or a singleton. On top of that, some missions require opposing forces. Those opposing forces are scheduled
simultaneously as red air missions (support), while the actual training missions are defined as blue air. Then,
every pilot has a qualification, stating which roles the pilot can assume in every formation. Qualifications
typically used in North Atlantic Treaty Organization (NATO) Air Forces and European Participating Air
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Forces (EPAFs) are, from highest to lowest qualification, Instructor Pilot (IP), 4-ship Flight Lead (4-FL), 2-
ship Flight Lead (2-FL), Wingman (WM) and SP. Pilots with higher qualifications automatically also hold all
lower qualifications, except for SP. Depending on the qualification, level of experience and strategic decisions,
every pilot is assigned one or more training syllabi. A syllabus can then be defined as a specific combination
of missions that a pilot has to complete during the scheduling horizon. The scheduling horizon is then split
up into multiple weeks and working days. A working day can be divided into multiple periods during which
missions can be scheduled. Such a period is called a go. The process of a single pilot (in a fighter jet) that is
conducting a mission is defined as a sortie. Additional complexity comes from the fact that pilots conducting a
sortie in the same mission can do so as part of different syllabi. An overview of how these aspects come together
in a schedule is given in Table 1. To get an idea of the complexity of scheduling for just one go, we take a look
at this example. Two missions are scheduled in go ‘AM 12’, mission 19 and mission 2. Mission 19 is part of
mission category A and is carried out by six aircraft and pilots simultaneously, divided over a 4-ship formation
for blue air and a 2-ship formation for red air. In the 4-ship at least one pilot with qualification 4-FL or higher
and another pilot with qualification 2-FL or higher should be present. The other two pilots normally need to
be of qualification WM or higher. If an SP is assigned to the mission as part of his initial training syllabus, like
pilot 14 in this case, the SP has to be supervised by an IP, pilot 1. At the same time, pilot 1 can perform this
mission as part of his recurrent training. However, the pilots performing this mission as red air, can not count
the mission towards any of their training programs.

Table 1: Partial example of a training schedule.

Week Go Mission Mission
Category

Pilot Role Qualifi-
cation

Syllabus

3
AM 12

19 A 1 Blue IP Recurrent
19 A 14 Blue SP Initial
19 A 5 Blue 2-FL Recurrent
19 A 10 Blue WM Recurrent
19 A 2 Red 2-FL Support
19 A 8 Red WM Support
2 B 7 Blue 2-FL Recurrent
2 B 11 Blue WM Recurrent

PM 12 ... ... ... ... ...

Considering these aspects, the FPTSAP is a heavily constrained and complex scheduling problem. Never-
theless, scheduling is typically done manually as a secondary task by (ex-)fighter pilots with little scheduling
experience. Additionally, planning is regularly done with few (if any) decision support tools available to the
schedulers. As a consequence, scheduling is a time consuming task. To simplify the process and prevent in-
feasible schedules, schedulers are often forced to shorten their scheduling horizon. The combination of manual
scheduling and short scheduling horizons leads to schedules that are far from optimal. Several studies have
already attempted to improve the process of scheduling fighter pilot training missions and assigning pilots to
these missions, but all fall short in one or more ways. First, the papers by Aslan and Nguyen ([1], [14]) only
focus on the initial training program. Second, the proposed solutions of Newlon, Yavuz and Erdemir ([13], [26],
[4]) either solve their scheduling problems with outdated methodologies or have a scheduling horizon of only one
day or week. The master thesis of Taks proposes a model that solves the FPTSAP for a full year, but it lacks
detail and constraints with respect to formations, initial training, transition training and training completion
per pilot [23]. Additionally, due to the absence of a real case study it is hard to verify the performance of the
model. The methodology proposed in the master thesis by Guljé leads to runtimes of up to seven hours and
low readiness of personnel, while only scheduling recurrent training [8].

The research objective for this paper is to develop a model that is able to schedule initial, recurrent and
transition training missions and assign pilots to these missions for training programs that have to be completed
within one year. Implementing this model at military fighter squadrons should result in more efficient schedules
that lead to an improvement in readiness of personnel, while also reducing the time spent on constructing
these schedules. The model should also be able to react to changes in resource availability or training demand
throughout the scheduling horizon. To reach this objective, this paper proposes a two-stage Mixed Integer
Program (MIP) model. The first stage constructs a preliminary schedule, where each week of the scheduling
horizon is assigned a mission category. This stage takes into account the demand for certain missions, the
number of goes available per week and the number of aircraft available per week. Subsequently, the second
stage schedules specific missions and assigns pilots per week using a Rolling Horizon (RH) approach. While
doing so, the model has to take into account the availability of pilots with specific qualifications, availability of
aircraft, formation requirements, demand for certain missions and limitations of pilots in initial or transition
training. Both models are solved with the Branch-and-Bound (B&B) algorithm of a commercial solver. To test
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the model, it is subjected to a case study which originates in the Royal Netherlands Air Force (RNLAF), an
Air Force that resides among the best trained and most advanced Air Forces in the world.

The structure of this paper is as follows. Literature related to the problem is discussed in Section 2. Section
3 provides an explanation of the proposed methodology. The case which is used to test and demonstrate the
model is described in Section 4. Subsequently, Section 5 presents the results from the case study and a sensitivity
analysis. Finally, the conclusion and resulting recommendations are presented in Section 6.

2 Literature Review
In this Section, we explore existing literature that focuses on the scheduling and assignment of aircrew training.
By doing so, we aim to identify the current level of understanding in this field of research, how several studies
interrelate and where there is a possible gap in the research. We distinguish between civil and military aircrew
training scheduling and assignment problems, as these two types are very different from one another.

In the military aviation sector, the literature that already exists can further be divided into two categories.
Firstly, there is the literature that focuses solely on initial training. Both the works of Aslan and Nguyen ([1],
[14]) research such a problem. They attempt to build a decision support tool to support planners in scheduling
and assigning initial training at a fighter training squadron. These researches are relevant for this paper, because
the problem environment concerning initial training is the same as the problem described in the introduction.
Their methodologies however are outdated and rely on manual input by the scheduler throughout the scheduling
process. Secondly, there are several papers and theses which discuss recurrent training. Scheduling recurrent
training is more complex for two main reasons. First, there is often no fixed sequential syllabus. This leads
to a larger solution space when compared to problems that only consider initial training. Second, the training
missions in recurrent training often have to be flown by large formations and can require additional supporting
aircraft. Research on such scheduling problems was carried out by Newlon, Yavuz, Erdemir, Taks and Guljé
([13], [26], [4], [23], [8]). Newlon’s research is a recurrent training scheduling and assignment problem, with a
scheduling horizon of one week. The main goal of the operations within the squadron is focused on maintaining
pilot’s licenses. Similar to Nguyen and Aslan earlier, Newlon’s goal is to find a feasible schedule in reduced time.
The model developed by Newlon solves in a matter of minutes, but assumes unlimited resources. Furthermore,
the three pilot qualifications he uses could be expanded further [13]. Yavuz’ research takes a readily available
weekly schedule and only assigns pilots to recurrent training missions [26]. The main objective in this study
is that all pilots should maintain their licenses and perform some yearly mandatory flights. The main benefits
of the developed method over fully manual scheduling are that the total amount of training events is balanced
better between the pilots and that feasible assignments are found faster. The downside to this work is that it
is an assignment problem rather than an integrated scheduling and assignment solution [26]. Erdemir studies
a recurrent training scheduling and assignment problem, with a scheduling horizon of one day [4]. The main
objective is that all pilots should maintain their pilot’s license, while maximizing sorties. For small instances,
the model is able to find optimal solutions within seconds. For realistically sized data samples using twenty
pilots however, the runtime increases to more than one hour. As such, Erdermir suggests to further investigate
heuristics to reduce runtime. If reduced runtime can be realized, he also suggests to increase the scheduling
horizon [4]. Taks increases the scheduling horizon to a full year. He researches a case where both initial and
recurrent training have to be scheduled and assigned [23]. Taks aims to provide squadron schedulers with a
baseline reference schedule to ease the schedulers’ decision making process. He succeeds to find a yearly schedule
within several minutes, but a lot of simplifications have been made to reduce the complexity of the problem. On
top of that, when the required number of sorties increases the model is no longer able to find feasible solutions
[23]. Guljé studies almost the same problem as Taks, but adds more complexity to the problem and runs the
yearly scheduling and assignment process as a simulation [8]. The objective of his model is to have as many
pilots as possible achieve full completion of the yearly training program. Computation times are in excess of
multiple hours and completion of the training program is, as stated by Guljé himself, under par. He believes
further research could be dedicated towards simplifying the model while at the same time looking into aircraft
availability [8].

Aside from these studies on scheduling and assignment of training in military aviation, there also exists
relevant research on the subject of pilot training in the civil aviation sector. Examples are the work done by
Holm, Kempen, Kozanidis, Qi et al. and Yu et al. ([10], [25], [12], [18], [27]). From these papers we conclude that
these civil problems as a whole are very different in terms of scheduling environment, resources and constraints.
The differences are mainly a consequence of the lack of flight formations in civil aviation. Nevertheless, some
of the research provides useful insights on aspects of the FPTSAP such as pilot qualifications.

In both the civil and military aviation literature, the fundamental methodology to formulate pilot training
scheduling problems is MIP. In MIP an objective function is defined, which is in turn maximized while respecting
a set of constraints and predefined parameters. Applying MIP to real size, real world problems however, often
results in large problems with rapidly increasing computation times. In fact, crew scheduling is known as an
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NP-hard problem [3]. As such, crew scheduling problems and their MIP models are often reformulated in order
to improve computational efficiency. One way to formulate a MIP is the Generalized Assignment Problem
(GAP), introduced by Ross [20]. GAP in its most basic form is a straightforward scheduling problem, in which
a set of tasks has to be performed by a set of agents. Both Yavuz and Guljé ([26], [8]) link fighter pilot scheduling
to the GAP. In the civil domain, all of Holm, Kozanidis, Van Kempen, Qi et al. and Yu et al. use a form of the
GAP ([10], [12], [25], [18], [27]). A second option is to divide the problem into multiple subproblems, but this
simple approach also has a downside. The creation of subproblems might have as a consequence that an optimal
solution to the overarching problem can no longer be found. One way to split a main problem into subproblems
is by defining the subproblems in such a way that they can be solved simultaneously. A simpler method is to
split the main problem into several subproblems which can then be solved sequentially. This methodology has
been used by Aslan, Erdemir, Taks and Yu et al. ([1], [4], [23], [27]) The RH approach, explained by Silvente et
al. [22], could be seen as a specific case of solving a model in several sub-problems. Using a RH approach, the
scheduling horizon is split into discrete time periods. At each iteration, the problem is solved for the current
time period but it can take into account information from past time periods or forecast data from upcoming
time periods. RH approaches have been used by Qi et al., Yu et al. and Guljé ([18], [27], [8]). Another way
to simplify a problem is to apply set partitioning to the problem as defined by Garfinkel and Nemhouser [7].
Set partitioning can reduce the problem size significantly and can often be applied by using common sense.
For example, in an aircrew training scheduling and assignment problem one could apply set partitioning to the
pilots by dividing them into different sets in accordance with their qualifications as has been done in almost all
the research discussed.

A widely applied methodology to solve MIP problems is B&B, accurately explained by Clausen [3]. Clausen
states that "B&B is by far the most widely used tool for solving large scale NP-hard combinatorial optimization
problems." [3] A B&B algorithm is able to search the whole solution space of a problem. Considering the
previously discussed literature, it becomes apparent that B&B is indeed a popular tool; it is applied in the
research of Holm, van Kempen, Qi et al. and Yu et al. ([10], [25], [18], [27]) Even though commercial solvers
use highly complex and efficient B&B algorithms, solving large-scale problems to an exact and optimal solution
often still results in excessive runtimes. To overcome this problem, heuristics have been created. A definition of
heuristics can be found in the work of Salcedo-Sanz [21], but in short heuristics can be described as smart tricks
that attempt to decrease the computation time in which an acceptable solution can be found. For example, a
model developed by Kim and Kim needs three hours to solve using exact optimization methods, but solves within
seconds when applying their heuristic [11]. Examples of heuristic methods applied in scheduling and assignment
problems of our interest are Greedy Randomized Adaptive Search Procedure (GRASP) and dispatching rules
([19], [17]). GRASP has been used in the FPTSAP problem by Yavuz and by Erdemir ([26], [4]). Dispatching
rules have been used in fighter pilot scheduling by both Aslan, Nguyen and Guljé ([1], [15], [8]).

From the literature overview, it can be concluded that there are no publications that present model solutions
capable of both scheduling and assignment of recurrent, initial and transition training in a military environment
for a scheduling horizon of up to one year. The apparent gap in literature motivates this particular research
project. This research proposes a model solution that is able to close this research gap. The contributions of
the proposed solution methodology are the following:

• The two-stage solution methodology makes the model useful for scheduling horizons of one week up to
one year, so the model can be used in multiple phases of the planning process.

• The proposed model takes into account scheduling and assignment of all three of initial, recurrent and
transition training.

• The proposed model can solve for a scheduling horizon of one year within minutes.

• An option is included in the model that allows pilots to train for and go on deployments.

• The model is developed to be applicable to fighter operations in all NATO Air Forces and EPAFs. On
top of that, with a few minor alterations, the model should also be applicable to other weapon systems.

3 Model Formulation
This Section provides an overview and explanation of the methodologies that are used to formulate and solve
the problem. First, some additional info is given on the model requirements and assumptions that are made.
Second, in Subsection 3.2, the high-level solution methodology is explained. An explanation of the required
input data is given in Subsection 3.3. Lastly, Subsections 3.4 and 3.5 provide a description of the two models
that are used to solve the FPTSAP.
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3.1 Model Requirements & Assumptions
The proposed model should be able to schedule all three types of training. Strategic decisions could be made
that would result in a higher priority for either one of the three training types. For example, if there are few
4-FLs and many 2-FLs the decision could be made to prioritize transition training to have some 2-FLs upgrade
to 4-FLs quickly. To reflect these types of decisions, the model should be able to assign priority to either of the
three training types.

In addition to the three standard types of training, the model should also be able to handle deployments.
A deployment is defined by the United States Department of Defense as "The movement of forces into and out
of an operational area." [16]. The impact of a deployment in this model is that certain pilots can be appointed
to go on a deployment. These pilots have to complete a certain training program before the deployment starts
and are unavailable for other activities during the length of the deployment.

It is impossible to capture every detail of the real-life problem in a model. However, as was stated by Box,
"All models are wrong, but some are useful." [2] Therefore, in order to make it possible to clearly formulate a
mathematical model some assumptions have to be made. These assumptions are:

1. Every week, only missions belonging to one specific mission category can be scheduled.

2. Only one mission can be completed per sortie.

3. All missions and accompanying sorties that are scheduled will be successfully executed.

4. Formation sizes are either singleton, 2-ship or 4-ship.

5. Only one type of aircraft is considered when constructing the schedule.

6. The number of aircraft that are available for scheduling at any moment is known for the whole scheduling
horizon at the beginning of the scheduling horizon.

7. The number of pilots and the availability of all pilots is known for the whole scheduling horizon at the
beginning of the scheduling horizon.

These assumptions closely resemble RNLAF practices, except for assumptions 1 and 7. Assumption 1 states
that one mission category can be scheduled per week. In practice, missions within the same category are often
scheduled in the same week without this being a strict rule. The continuity that would come from such a
rule however could benefit pilots, ground crew, schedulers and the organization as a whole as it would make
the whole training process easier. Assumption 7 states that the availability of all pilots is known for the full
scheduling horizon. It is impossible to predict the exact availability, but personnel is advised to request their
leave as early as possible. Although it is hard to exactly estimate the resources availability, it is fair to assume
that the availability is known since the personnel leaves are commonly known a few months in advance. Even if
significant changes occur in personnel availability, it becomes clear in Section 5 that the model runtime is low
enough to be able to quickly build a new schedule.

3.2 High-level Methodology
The goal of the FPTSAP is to efficiently schedule training missions over the goes and to assign sorties to pilots
in such a way that every pilot can complete as much of the assigned training as possible. Eventually, this leads
to higher operational readiness. To achieve this goal, the decision is made to split the problem into two stages:
a Master Problem (MPr) and multiple Subproblems (SPrs). The MPr looks at the full scheduling horizon.
For each week, it can either schedule one mission category or no mission category at all. One would want
to minimize the number of weeks that are used in the scheduling horizon because other activities, like large
exercises, also make use of these weeks. The goal of the MPr is to make just enough sorties available for every
mission category, so that every pilot can perform the required number of missions in that mission category.
This schedule is then forwarded to the first SPr. Every SPr has a scheduling horizon of one week and as such
can only plan missions in the scheduled mission category for that week. The SPrs schedule these missions and
assign pilots to these missions. The SPrs have the objective to maximize the amount of training, or to increase
the readiness, that is obtained every week. There are two reasons to approach the FPTSAP like this. The first
reason is computational efficiency. During an early stage of the research, we tried to solve the problem as a
whole. Due to the size of the problem and the NP-hard nature of the problem, we were not able to find any
solution within a day and therefore decided that a more efficient methodology should be developed. The second
reason comes from an organizational point of view. The MPr can provide a preliminary schedule for the full
scheduling horizon within seconds and without going into detail. This schedule can serve as a starting point or
be used to make high-level decisions within parts of the organization that need to look further into the future.
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Figure 1: Flow chart of the high level solution process of the FPTSAP.

The SPrs then go into more detail and can be used for the lower-level decision making process. This two-stage
methodology thus makes the model useful throughout multiple levels of an organization.

Figure 1 visualizes the flow of the model as a whole. The first step is to set the user-defined input parameters.
The most important parameters are the length of the scheduling horizon, the number of goes in a week, the
desired level of training, the availability of pilots and the availability of aircraft. All parameters can be found
in Tables 5 and 8. After this has been done, the data that dictates which pilots are in the problem and how
many times they should perform every mission is read by the model and structured to run the model. The
exact composition of this data is described in Section 3.3. The next step is to construct the MIP models that
represent the MPr and SPrs. Subsequently, the problem is solved according to the process visualized in Figure
2. After terminating the solution process, the best solution to the overall FPTSAP problem is selected. For
this solution, the results are processed and a schedule is generated. An example of a scheduled mission and
assigned pilot is AM1: 4, 4-F4-2. This means that at the AM go of day 1, pilot 4-F4-2 is assigned to mission
number 4. The pilot discriminator 4-F4-2 denotes the fourth pilot overall and the second pilot with qualification
4-FL. The output schedules of the model, an example of which can be found in Appendix A, are anonymized
for confidentiality reasons.

Figure 2: Flow chart of the Solve process from Figure 1.

The solution process given in Figure 2 starts by solving the MPr. The MPr is a MIP that focuses on the
full scheduling horizon. It splits this scheduling horizon into separate weeks and schedules one mission category
for every week. Thus, if a mission category is assigned to a week, only missions that belong to that specific
mission category can be scheduled in that week. Ultimately, the MPr aims to fulfill the training demand in the
minimum amount of weeks, by either assigning a specific mission category or not assigning any mission category
to each week. The specifics of the MPr are discussed further in Subsection 3.4. The MPr is solved by Gurobi,
a commercial solver that uses a combination of B&B and heuristic methods to solve optimization problems [9].
The resulting output is the mission category planning per week, which is forwarded to the SPrs. Every SPr is
also a MIP, with a scheduling horizon of one week. As such, a single full solution process consists of as many
SPrs as there are weeks in the MPr scheduling horizon. These separate SPrs are solved with a RH approach.
Every SPr has the goal to schedule missions and assign sorties in such a way that the highest training value
can be attained every week in accordance with the mission category that was scheduled by the MPr and the
training already completed in previous SPrs. The specifics of the SPr are discussed further in Subsection 3.5.
Each SPr is solved by Gurobi. At the end of each week, the results of that week are saved and carried over to
the beginning of the next SPr. The next step is to check if any SPr stopping criteria is met. For this paper the
only stopping criterion is reaching the end of the scheduling horizon, but other criteria could be implemented.
If none of the implemented stopping criteria is met, the model continues to the next week, where a new SPr is
solved. When one of the criteria is met, the solution to the entire FPTSAP, so the solution for the full scheduling
horizon is saved. Continuing the process, the model evaluates if any of the stopping criteria of the MPr has
been met. Stopping criteria for the MPr are either reaching a predetermined amount of iterations or achieving a
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predetermined level of training. The iterative process is introduced because of the nature of the MPr. The MPr
solves by looking for the minimum amount of weeks in which the desired training value can be met. However,
different solutions in terms of mission category planning per week could lead to the same minimum amount
of weeks required, so the first solution to the MPr is not necessarily the best one. Therefore, if no stopping
criteria is met, a cut is implemented to reduce the feasible solution space. In the current formulation, there is
only one type of cut present. This cut forbids solutions that offer just as many available goes for every mission
category as any previous solution did. After adding the cuts, the process restarts by solving the MPr. If no
MPr stopping criteria was met in the step before, the model exits the solve block.

This full process visualized in both Figures 1 and 2 is also described with pseudo-code in Appendix B.

3.3 Input Data
The algorithm that is detailed in Subsections 3.2, 3.4 and 3.5 requires specifically structured data in order to
be run. This subsection provides an explanation of how this data should be structured.

Pilot Data The pilot data contains information on the number of pilots in the scenario, their qualification,
their status and the training syllabi that have been assigned to them. This data is anonymized, but resembles
the actual situation at a RNLAF fighter squadron. A partial example of the data is given in Table 2. The
column P ID is an indexed identifier for each pilot, that starts at 1. Qualification states the highest qualification
the pilot holds. Known qualifications to the model are IP, 4-FL, 2-FL, WM and SP. Qualified Pilots (QPs) are
all pilots except SP. The next column, Status, states if the pilot is either experienced (exp) or inexperienced
(inexp). This is based on how long the pilot has already been a QP for and can have consequences for the
amount of training sorties required. Lastly, the column Syllabi notes for each pilot which Syllabi are assigned.
Normally, all QPs are assigned recurrent training (RT) and all SPs are assigned initial training (IL). On top of
that, a WM can be assigned transition training to become a 2-FL (U2) and a 2-FL can be assigned transition
training to become a 4-FL (U4). Additionally, all QPs can be assigned a deployment work-up syllabus (DY) to
prepare them for a deployment.

Table 2: Example of pilot data.

P ID Qualification Status Syllabi

...
14 4-FL exp RT

...
18 2-FL exp RT, U4
19 2-FL inexp RT

...
23 SP inexp IL

Mission Data The mission data includes all available missions and their characteristics. This information is
obtained from the RNLAF F-16 training program and the RNLAF Mission Qualification Training ([5], [6]), but
has been made unrecognizable for classification reasons. An example of some missions and their characteristics
is given in Table 3. All missions are numbered with a unique index, M ID. The syllabi in which they occur are
given in column S. Then the number of pilots required as blue air is given in column Blue size. Some missions
require red missions to be activated at the same time. Red mission indicates the M ID of the red mission that
should be scheduled. The next column, #R1 indicates how many times the mission has to be executed in the
recurrent training syllabus for experienced pilots. Similar columns exist for recurrent training for inexperienced
pilots, initial training, transition training and deployment work-up, but these are left out for better readability.
Then column Prec states the indices of the required precedents for the mission, if there are any. Missions in
the upgrade syllabi from WM to 2-FL (U2) and from 2-FL to 4-FL (U4) always are similar to a mission in the
recurrent syllabus. For the functionality of the model however, these upgrade missions need a unique mission
index. The recurrent training mission they resemble is given in the column Twin. Column MC indicates which
mission category the mission belongs to and MC Alt states an alternate mission category in which the mission
might also be scheduled.

3.4 Master Problem
The idea behind the MPr is that it decides for every week in the scheduling horizon which mission category
to assign, if any. The MPr bases these decisions on the demand for missions in each mission category, given
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Table 3: Example of mission data.

M ID S Blue size Red mission #R1 ... Prec Twin MC MC Alt
...

5 IL, RT 2 35 1 ... 4 / A1 /
...

12 IL, RT 4 36 2 ... 9 / A4 /
13 IL 2 35 0 ... 6 / A2 /

...
51 U2 4 36 0 ... 42, 44, 45 12 A4 G3

the pilots and their assigned syllabi. By doing so, the MPr aims to provide the SPrs with enough scheduling
opportunities to meet the required readiness in as few weeks as possible. The Sets, Parameters and Decision
Variables used in the MPr are described in Tables 4, 5 and 6 respectively.

Table 4: Sets used in the MPr.

Set Description

MC set of mission categories

W set of weeks

DY set of deployments

PRCmc Set of precedents of missions
category mc

Table 5: Parameters used in the MPr.

Parameter Description

bwdy week in which deployment dy starts

demgm total demand for mission m in terms of goes

demsm total demand for mission m in terms of sorties

gpw number of goes in a week

naw number of aircraft available in week w

rdym number of required executions of mission m to be ready for
deployment

τ training value threshold

min J =
∑

w∈W

∑

mc∈MC

vmcsw,mc (1a)

s.t.
∑

mc∈MC

vmcsw,mc ≤ 1, ∀w ∈W, (1b)

∑

w∈W
vmcsw,mc · naw · gpw ≥ τ ·

∑

m∈Mmc

demsm, ∀mc ∈MC, (1c)

∑

w∈W
vmcsw,mc · gpw ≥ τ ·

∑

m∈MMC

demgm, ∀mc ∈MC, (1d)

bwdy∑

w=1

vmcsw,mc · naw · gpw ≥
∑

m∈MC

rdym, if m ∈ [Mdy ∩Mmc], ∀mc ∈MC, dy ∈ DY, (1e)

8



Table 6: Decision variables used in the MPr.

Variable Domain Description

vmcsw,mc {0, 1} 1 if mission category mc is scheduled for week w

∑

w 6∈Wdy

vmcsw,mc ≥ 1, ∀mc ∈MC, dy ∈ DY, (1f)

vmcsw,mc ≤
w−1∑

v=1

vmcsv,mcp, ∀mc ∈MC,mcp ∈ PRCmc, w ∈W.

(1g)

Objective Function The MPr objective function is to minimize the amount of weeks in the schedule that
get assigned a mission category by minimizing the sum of the binary decision variable vmcsw,mc for all weeks
and mission categories, as can be seen in Equation 1a.

Constraints To ensure that enough weeks are made active in order for the SPrs to schedule sufficient training,
some constraints have to be implemented. Constraints 1b state that at most one mission category can be active
per week, as was noted in assumption 7 in Subsection 3.1. Constraints 1c and 1d enforce that enough weeks are
activated in order for the SPrs to be able to fulfill a certain ratio of the training demand and thus to achieve a
certain level of readiness, while taking into account the available aircraft and goes per week. Mmc is a subset
of M that contains all missions in mission category mc. Constraints 1e and 1f apply to deployments. The first
states that mission categories that contain missions that have to be completed before a pilot is eligible to go
on deployment should be scheduled often enough before the start of the deployment. Set Mdy is a subset of M
that contains the missions that are part of the deployment work-up. The second states that every pilot that
goes on a deployment must get the chance to train every mission category at least for one week, outside of his
deployment period, where Wdy denotes the sets of week for each deployment period. Constraints 1g make sure
that mission categories that have missions with precedents in other categories are scheduled in a logical order.
These constraints prevents weeks where no initial or transition training can be scheduled. The most important
results and output of the MPr are then the total number of active weeks and the mission category planning per
week, which is forwarded to the SPrs.

3.5 Subproblem
The mathematical formulation for the SPrs is given in this Subsection. For clarification, it is noted that sets
presented in Table 7 can have subsets that originate from other sets. For example, if there exists a pilot
qualification SP , there exists a set of pilots that own qualification SP . This set of pilots, that have qualification
SP , which is a subset of P is denoted as PSP . For readability purposes, a set with multiple subscripts separated
by a comma is used to denote the intersection of two subsets, so M′4,U2 indicates the set of missions of size
4 in the 2-FL transition training syllabus. Furthermore, every SPr has a scheduling horizon of only one week
and the solution from the MPr states which mission category is active in this week. The apostrophe that is
displayed next to sets denotes that we are only looking at that part of the set that is relevant for the current
SPr. For instance, G′ means all the goes in the current week and M′ are all missions in the mission category
that is scheduled for this week. Parameters used by the SPr are explained in Table 8. The most important
parameters are the number of sorties per mission that is required and already completed by each pilot.

Decision Variables The decision variables for the SPr are given in Table 9. It is useful to note the difference
between vsm,g,p and vsum,g,p. All pilots are either in initial training or in recurrent training, so the model
can differentiate between those types of training by looking at different sets of pilots. Some pilots that are in
recurrent training however, are also assigned transition training. Those pilots can be assigned training sorties
that relate to either of both syllabi. However, the model needs to be able to differentiate whether the pilot is
performing the mission either as part of the recurrent training program or as part of the transition training
program. If pilot p performs mission m at go g as part of the recurrent syllabus, this sortie will count towards
variable vsm,g,p. If the pilot performed this mission as part of the transition syllabus, the sortie will count
towards variable vsum,g,p. Every go, vmm,g determines how many times every mission is scheduled. The ratio
of completion for every recurrent training mission by each pilot is tracked by vtmpm,p. This variable serves as
an auxiliary variable to be able to compute vtpp. The two training completion ratios that are passed to the
objective function are vtpp and vtpup. The training completion values could be fed directly to the objective
function without the introduction of vtpp and vtpup. However, for readability reasons and ease of programming,
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Table 7: Sets used in the SPr.

Set Description

G set of goes

P set of pilots

M set of missions

DY set of deployments

Q set of pilot qualifications

SY set of training syllabi

BSI set of blue air mission sizes

PRCm Set of precedents of mission
m

Table 8: Parameters used in the SPr.

Parameter Description

bwdy week in which deployment dy starts

cm,p number of executions of mission m by pilot p

mred red air missions that has to be planned simultaneous to mis-
sion m

naw number of aircraft available in week w

avp,g availability of pilots; 1 if pilot p is available at go g

rm,p number of executions required by pilot p for mission m

rdym,p number of executions required by pilot p for mission m to be
ready for deployment

wi weight factor for initial training missions

wr weight factor for recurrent training missions

wu weight factor for upgrade training missions
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the choice is made to introduce these decision variables. A similar relation as to vsm,g,p and vsum,g,p exists
between the two decision variables vtpp and vtpup.

Table 9: Decision variables used in the SP.

Variable Domain Description

vsm,g,p {0, 1} 1 if pilot p is assigned to mission m at go g

vsum,g,p {0, 1} 1 if pilot p is assigned to mission m, which is part
of an upgrade training, at go g

vmm,g {0, 1} number of times mission m is scheduled at go g

vtmpm,p Q ∩ [0, 1] ratio of training completion of mission m by pilot p

vtpp Q ∩ [0, 1] ratio of training completion by pilot p

vtpup Q ∩ [0, 1] ratio of training completion by pilot p, who is fol-
lowing an upgrade training

max T =
wr

|PQP |
∑

p∈QP

vtpp +
wi

|PSP |
∑

p∈IP
vtpp +

wu

|PUP |
∑

p∈UP

vtpup (2a)

s.t.
∑

m∈M′

∑

p∈P
vsm,g,p +

∑

m∈M′
UP

∑

p∈PUP

vsum,g,p ≤ naw, ∀g ∈ G′, w = w′, (2b)

∑

m∈M′

vsm,g,p +
∑

m∈M′
UP

vsum,g,p ≤ pag,p, ∀g ∈ G′, p ∈ P, (2c)

∑

p∈P
vsm,g,p +

∑

p∈PUP

vsum,g,p = 4 · vmm,g, ∀m ∈M′4, g ∈ G′, (2d)

∑

p∈P
vsm,g,p +

∑

p∈PUP

vsum,g,p = 2 · vmm,g, ∀m ∈M′2, g ∈ G′, (2e)

∑

p∈P
vsm,g,p +

∑

p∈PUP

vsum,g,p = vmm,g, ∀m ∈M′1, g ∈ G′, (2f)

∑

p∈P
vsm,g,p ≤ 2

∑

p∈PF2

vsm,g,p, ∀m ∈M′2,RT , g ∈ G′,

(2g)
∑

p∈P
vsm,g,p ≤ 2

∑

p∈PF2

vsm,g,p, ∀m ∈M′4,RT , g ∈ G′,

(2h)
∑

p∈P
vsm,g,p ≤ 4

∑

p∈PF4

vsm,g,p, ∀m ∈M′4,RT , g ∈ G′, (2i)

∑

p∈P
vsm,g,p +

∑

p∈PUP

vsum,g,p ≤ 2
∑

p∈PF4

vsm,g,p, ∀m ∈M′4,U2, g ∈ G′, (2j)

∑

p∈P
vsm,g,p +

∑

p∈PUP

vsum,g,p ≤
4

3

∑

p∈PF2

vsm,g,p, ∀m ∈M′4,U4, g ∈ G′, (2k)

∑

(m∈M′
BL|mred=n)

vmm,g = vmn,g, ∀n ∈M′RED,∀g ∈ G′,

(2l)
∑

p∈PIP

vsm,g,p ≥
∑

p∈PSP

vsm,g,p, ∀m ∈M′IL, g ∈ G′, (2m)

∑

m 6∈M′
IL

∑

g∈G′

vsm,g,p = 0, ∀p ∈ PSP , (2n)

∑

g∈G′

vsm,g,p + cm,p ≤ rm,p, ∀m ∈M′IL, p ∈ PSP ,

(2o)
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cn,p +

g−1∑

h=1

vsn,h,p + vsm,h,p ≥ vsm,g,p, ∀m ∈M′IL,PRC , g ∈ G′,

p ∈ PSP , n ∈ PRCm,
(2p)

∑

p∈PIP

vsm,g,p ≥
∑

p∈PUP

vsum,g,p, ∀m ∈M′UP , g ∈ G′, (2q)

∑

p∈PUP

vsum,g,p = vmm,g, ∀m ∈M′UP , g ∈ G′, (2r)

∑

g∈G′

vsum,g,p + cm,p ≤ rm,p, ∀m ∈M′UP , p ∈ PUP ,

(2s)

cn,p +

g−1∑

h=1

vsun,h,p + vsum,h,p ≥ vsum,g,p, ∀m ∈M′UP,PRC , g ∈ G′,

p ∈ PUP , n ∈ PRCm,
(2t)

∑

m∈M′
U4

∑

g∈G′

∑

p∈PU2

vsum,g,p = 0 , (2u)

∑

m∈M′
U2

∑

g∈G′

∑

p∈PU4

vsum,g,p = 0 , (2v)

∑

m∈M′

∑

g∈G′

∑

p∈Pdy

vsm,g,p +
∑

m∈M′
UP

∑

g∈G′

∑

p∈Pdy,UP

vsum,g,p = 0 if w′ ∈Wdy, ∀dy ∈ DY, (2w)

∑

g∈G′

vsm,g,p + cm,p ≥ rdym,p if w′ = bwdy − 1, ∀dy ∈ DY,m ∈M′DY , p ∈ Pdy,

(2x)

vtmpm,p =

{
max[0;

rm,p−cm,p

rm,p
], if

∑
g∈G′ vsm,g,p + cm,p ≥ rm,p∑

g∈G′ vsm,g,p, else

}
if rm,p > 0, ∀m ∈M′RT , p ∈ PQP ,

(2y)

vtpp =

∑
m∈M′

RT
vtmpm,p · rm,p∑

m∈MRT
rm,p

, ∀p ∈ PQP , (2z)

vtpp =

∑
g∈G′

∑
m∈M′

IL
vsm,g,p∑

m∈MIL
rm,p

, ∀p ∈ PSP , (2aa)

vtpup =

∑
g∈G′

∑
m∈M′

UP
vsum,g,p∑

m∈MUP
rm,p

, ∀p ∈ PUP . (2ab)

Objective Function The goal of each separate SPr is to maximize the average training value per pilot in
each week, given the results of all preceding weeks. This goal is translated to the objective function in equation
2a as follows. The first term in the objective function represents recurrent training, the second term initial
training and the third term transition training. Every term represents for that specific training type a ratio
of how much of the training demand has been completed during the week, averaged over the number of pilots
that are assigned that type of training. By formulating this as a ratio instead of absolute number of sorties, we
can directly get an idea of how the training completion and ultimately the readiness increases every week. The
weighting factors wr, wi and wu are user-defined and can reflect the priority given to each of the training types.

Constraints The constraints can be divided into five categories.
First, there are constraints 2b and 2c which relate to resource availability. Constraints 2b state that for

every go, the number of conducted sorties can not be higher than the amount of available aircraft, where the
subscript UP indicates the subset that is concerned with transition training. Similarly, constraints 2c ensures
that a pilot can only perform one sortie per go that the pilot is available.

Second, constraints 2d - 2l are constraints that enforce certain mission characteristics. Constraints 2d makes
sure four pilots are assigned to a 4-ship mission (M′4), while constraints 2e and 2f do the same for 2-ship (M′2)
and singleton (M′1) missions. Then, constraints 2g - 2k state that enough 2-FLs and 4-FLs are assigned to
recurrent training missions (M′RT ) of appropriate sizes. Due to the nature of the missions, upgrade missions
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(M′U2 or M′U4) require different amounts of flight leads than recurrent and initial training missions. This is a
result of the fact that pilots in transition training perform a role in the formation which is not in accordance with
their current qualification. Constraints 2l enforce that red air missions (M′RED) are planned simultaneously
with the blue air missions (M′BL) that require opposing forces.

The next category of constraints, 2m - 2p, impose restrictions on initial training missions (M′IL). Constraints
2m ensure that an SP is always accompanied by an IP and constraints 2n states that SPs can only be assigned to
initial training missions. Furthermore, those training missions can not be flown more often than dictated by the
syllabus, which is specified by constraints 2o. Constraints 2p state that missions with precedents (M′PRC)can
only be started when all preceding missions have been completed at least once.

Subsequently, there is the category that focuses on upgrade training in constraints 2q - 2v. Constraints 2q,
2s and 2t are similar to constraints 2m, 2o and 2p respectively, but deal with transition training instead of
initial training. Additionally, Constraints 2r enforce that a transition training mission can only be planned if
a pilot in upgrade training is assigned to it. Constraints 2u and 2v make sure that pilots in 2-FL training can
not be assigned to 4-FL training and vice versa.

In the fourth category, constraints 2w and 2x handle the implementation of deployments, where constraints
2w state that a pilot can not complete training missions when on deployment and 2x are constraints that state
that a pilot must complete the deployment work-up to be able to go on deployment.

Lastly, the constraints 2y - 2ab are introduced to calculate the actual training completion ratio. Constraints
2y are auxiliary, to calculate for each pilot the ratio of completion for each recurrent training mission. These
constraints are required as every pilot could perform more executions of a single mission than required. However,
these superfluous missions do not result in higher training value and as such can not be counted towards the
objective. Therefore, constraints 2y checks for every pilot how many required executions are remaining for every
mission. If a pilot performs any mission more times than was required, only the number of required executions
at the beginning of the week counts towards the objective function. Then finally, constraints 2z, 2aa and 2ab
compute the incremental training completion ratio respectively for recurrent, initial and transition training in
this SPr. These values are then transferred over to the objective function.

4 Case Study
To evaluate the performance of the proposed FPTSAP model, we test the model with a case study. For the
case study, two closely collaborating squadrons operating F-16 fighter jets out of RNLAF Volkel airbase are
considered. This case is outlined further in Subsection 4.1. Unfortunately, no historical data was available
within the RNLAF to compare the performance of the proposed model to. As an alternative, a rule-based
decision making algorithm was developed which is introduced in Subsection 4.2.

4.1 Case Description
Both 312 and 313 squadrons are located at Volkel airbase and currently solely operate F-16 fighter jets. While
they are both operational squadrons, they are also tasked with the (partial) fulfillment of initial, recurrent and
transition training. Each pilot in the squadrons has one of the following qualifications: IP, 4-FL, 2-FL, WM
or SP. SPs are new to the squadron and have to complete initial training. All qualifications other than SP
combined are classified as QPs and have to complete recurrent training. Some more experienced 2-FL and
WM can be assigned to follow transition training, on top of the recurrent training, to become 4-FL and 2-FL,
respectively. On top of the qualification, every pilot has a status of either experienced or inexperienced which
further influences the number of required completions per training mission.

Depending on pilot experience and the assigned syllabi, every pilot should execute every training mission a
certain amount of times. Every pilot then ideally should complete the training missions while using the fewest
amount of weeks possible. The full scheduling horizon is 52 weeks, but one would not want to use all these
weeks for the baseline training schedule, as has been explained before. Continuing, there are five working days
in a week and every day is composed of two goes, AM and PM. Every week either four, six or eight aircraft are
available for scheduling at each go. Every pilot is also assigned some days off in the schedule, which can be a
result of numerous reasons for planned employee absence.

The total reference scenario consists of 23 pilots, 56 unique blue air missions and three red air missions.
Lastly, for the reference scenario τ from Table 5 is set to 0.95, which indicates that the FPTSAP aims to have
all pilots complete at least 95% of their training programs. We set this value at 0.95 to prevent the model from
spending excessive time on realising a marginal increase in readiness.

There is also an option to include deployments in the schedule. For the scenario, a deployment can be
included which is split into two periods of four consecutive weeks. The first period spans from week 6 up to and
including week 9 and the second period spans from week 10 up to and including week 13. For every deployment
four pilots should be appointed. Combined, those pilots should have the required qualifications to be able to
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form a 4-ship formation. Besides the pilots, aircraft should also be made available for the deployment. To
include this in the scenario, the number of aircraft available for training during the deployment periods is fixed
at four.

4.2 Rule Based Algorithm
A Rule-Based Algorithm (RBA) has been developed to simulate the current manual scheduling process at the
mentioned squadrons. At the beginning of the year, the decision is made to plan every mission category one
after another in a repeating manner. If there were five categories, the weekly planning would just be to schedule
category 1 first, then 2, then 3 and so on. Then after category 5, category 1 is scheduled again. Before the start
of the upcoming week, the scheduler greedily constructs a schedule per go from the available pilots and aircraft.
Priority is first with transition training, then initial training and lastly recurrent training. Subsequently, the
scheduler prioritizes larger missions over smaller missions and tries to assign the pilots with the most executions
remaining to these missions first. At the end of each week, the scheduler checks if all pilots have completed
all required missions for the scheduled mission category. If this is the case, this mission category is removed
from the schedule and all remaining categories are moved forward in the schedule to fill up resulting gaps. This
terminates the week and a new week begins, where the scheduler repeats this process of building a schedule per
go. This process is captured in a RBA, for which the pseudo-code is given in Algorithm 2 in Appendix C.

5 Results
We must first identify how many iterations of the solution process should be made. The Constraints in the MPr
effectively reduce the solution space for a problem the size of the reference scenario. Therefore, the expectation
is that only a small number of iterations is needed to meet the training objective specified by τ . A series of tests
is carried out to investigate the performance for the reference scenario. Per test, 25 runs are executed. A run
is defined as a single completion of the process visualized in Figure 1, where a new problem instance is created
every run. The differentiation between the instances comes from the availability of aircraft per week and the
availability of pilots per day, as these are the input parameters that are beyond our control. The results are
visualized in Figure 3.

Figure 3: Average total training completion and model runtime for 25 runs and for varying iterations, with τ =
0.95.

Every iteration solves all the SPrs again for the same problem instance but a different MPr solution. Only
minor computational improvements can be gained with the MIP starts that are implemented in the SPrs. As
such, solving every iteration is of equal complexity and the linear increase in runtime per iteration is as expected.
At the same time, it can be seen that the total training completion passes the objective of τ at just over three
iterations. Therefore, for the remainder of this paper the number of iterations used is set to four. At this number
of iterations, the desired training value denoted by τ can be met in the smallest amount of time. However,
one could also choose to let the model run for some more iterations, as the total training value still gradually
increases.

Further performance of the FPTSAP in the reference scenario is benchmarked against the RBA in Section
5.1. To investigate how the FPTSAP model reacts to problems of different size and complexity a sensitivity
analysis is presented in Subsection 5.2.
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5.1 Benchmark
To get an idea of how the FPTSAP model performs with regard to the current situation of manual scheduling,
the FPTSAP model is benchmarked against the RBA. As the RBA is not able to deal with deployments, during
the benchmark the FPTSAP model also disregards deployments. Furthermore, the RBA schedules transition
training first, then initial training and lastly recurrent training. To implement this in the FPTSAP, wr, wi and
wu are set to 1, 100 and 1000 respectively. These values are chosen arbitrarily to reflect the same strictness in
the priorities as the RBA uses. To be able to come to a decent comparison, 25 runs are executed for both the
RBA and the FPTSAP model.

Running the FPTSAP model for the reference scenario, most solutions use 23 weeks to fulfill the training
demand and construct the schedule. As such, 23 weeks are made available for the RBA as well. An overview of
the results of these runs is given with boxplots in Figure 4. Furthermore, the averages of the training completion
ratios and sorties over 25 runs are given in Table 10. It can be concluded that the FPTSAP model leads to
an increase of total training completion of over 15 percentage points with respect to the RBA. The FPTSAP
model manages to deliver such an increase mainly by using approximately 12 percentage points more sorties
than the RBA. This is a logical consequence of the fact that the FPTSAP model is an optimization model that
seeks the most efficient allocation of resources, while the RBA uses a greedy approach and as such regularly
leaves multiple aircraft unused. Still, the 84.42% of sorties used by the FPTSAP model ideally should be higher.
Inspecting the constructed schedules, it becomes apparent that weeks can occur in which less than 10% of the
available sorties are used. This is a consequence of formulation of the MPr objective and decision variables.
The MPr can only schedule mission categories for full weeks, which is not always consistent with the demand
for sorties in those mission categories. This leads to inefficiently scheduled weeks and scheduling opportunities
that are left unused.

Analyzing the different training types, it can be seen that the increase in average training completed comes
almost solely from an increase in recurrent training completion, where the FPTSAP model scores better than
the RBA. For completion of initial training, the average of the FPTSAP model is about one percentage point
higher than that of the RBA. The average completion of transition training is roughly two percentage points
higher for the FPTSAP, but this is mainly due to some negative extremities in the RBA. Eliminating these
extremities, the RBA does a better job at adhering to the transition training priority. That being said, with
an increase of 15 percentage points in total training completion it can be concluded that for the reference
scenario, the FPTSAP model outperforms the RBA and as such outperforms the current scheduling process.
Additionally, Table 10 also presents the average percentage of pilots that have completed all the training (of a
specific type) that was assigned to them. A remarkable metric is that the RBA does not succeed to have any
pilot fully complete the recurrent training syllabus.

Lastly, the runtime for a single run of the RBA averages to three seconds and that of the FPTSAP model to
205 seconds. While this is a hefty increase, the FPTSAP still comes up with a solution for a problem instance
of real-life scale in less than four minutes, which is easily within operational requirements. Additionally, with
a runtime this low the model can not only be implemented at the beginning of the year, but also if changes
occur throughout the year. Then, one could simply modify the input data in accordance with the changes and
construct a new schedule.

(a) FPTSAP model. (b) RBA.

Figure 4: Boxplots of training completion ratios for both models, for 25 runs.
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Table 10: Averages of training completion ratios and sorties over 25 runs, for the FPTSAP and RBA.

FPTSAP RBA

Percentage of Training Completed

Total Training 95.05 80.42

Recurrent Training 94.16 76.42

Initial Training 99.64 98.55

Transition Training 98.18 96.30

Percentage of Full Syllabus Completions

Total 70.46 14.62

Recurrent Training 67.05 0

Initial Training 96.00 72.00

Transition Training 77.33 78.67

Sorties 1165 1004

Sorties used 84.42 % 72.75 %

5.2 Sensitivity Analysis
To further research how the FPTSAP model performs under different circumstances and to be sure the perfor-
mance from Section 5.1 is not a coincidence, some more tests are run. All results in this subsection are averages
of 25 runs and are obtained with the training threshold value τ set to 0.95, unless specified otherwise. Scenarios
are tested to research the influence of the size of the problem and the value of threshold parameter τ . Outcome
parameters of interest remain the runtimes, number of weeks used, training completion ratios and number of
sorties.

Problem Size There are two main aspects we can vary that influence the problem size: the number of pilots
and the amount of missions they have to execute. For these tests, the number of pilots is varied between 10, 23
(reference scenario), 50 and 75. The number of sorties required is varied between the amount in the reference
scenario and twice the amount in the reference scenario. The results are given in Table 11. It can be seen
that even for the largest scenario, the computation time stays within 10 minutes. However, the total training
completion ratio is below the threshold τ . As the scenario size increases, the completion ratio falls further below
the specified value of τ of 95%. Additionally, we see that the model also has some difficulties with handling
smaller problem sizes. This could logically be the result of a smaller solution space, so that resources can not
always be allocated efficiently. We also ran some preliminary tests to look into the effect of increasing the
amount of aircraft available per go. For the reference scenario, doubling the amount of aircraft available results
in an increase in runtime of roughly 50% and a reduction in required weeks by 50%, while the amount of training
completed and percentage of sorties used remains the same.

Table 11: FPTSAP model results for varying problem sizes.

#pilots sorties required d [s] w TTot [%] TR [%] TI [%] TT [%] sorties used [%]
10 Ref 136 13 93.47 92.11 98.42 97.10 68.33
Ref Ref 205 23 95.05 94.16 99.64 98.18 84.40
50 Ref 244 45 90.92 88.96 95.37 98.25 89.73
75 Ref 305 65 89.26 87.37 93.00 98.08 88.61
10 2 ∗ Ref 91 20 90.66 88.81 95.58 96.54 81.20
Ref 2 ∗ Ref 195 41 91.22 89.67 97.36 97.89 88.76
50 2 ∗ Ref 263 88 88.67 86.33 90.93 99.06 88.53
75 2 ∗ Ref 434 127 87.27 85.41 89.12 97.26 88.33

Note: d is runtime; w is number of weeks used; T stands for training completion, with subscripts R, I and
T for recurrent, initial and transition training respectively.

Threshold Value τ is the training threshold value. If for instance it is set to 0.95, the MPr should theoretically
construct a weekly schedule that enables the SPrs to come up with a solution that has a total training completion
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of 95%. In this Section, τ is adjusted between 80% and 100%. This is done for the reference scenario. Ideally,
total training completion should follow the value of τ . It can be concluded from Figure 5 that it only does
when τ is set to 95%. For lower values of τ , the inaccuracies in total completed training are a result of the MPr
formulation. The MPr schedules the minimum integer amount of weeks per mission category that is required
to fulfill the mission demand specified by τ for that mission category. However, for some mission categories the
amount of weeks required to meet a τ of 80% might be the same as the amount of weeks required to meet a τ
of 82.5% and and so forth. Therefore, low values of τ can result in higher than required values of total training
completed. The inaccuracies in total training completion for values of τ higher than 95% can be attributed
to inefficiencies in the SPrs and the RH approach that does not use a prediction horizon. While this optimal
value of 95% is acceptable, this value is specific to our test case. For other cases, the value where total training
completion meets τ might be lower and unacceptable.

Figure 5: Average total completed training for varying τ .

5.3 Deployments
One advantage that the FPTSAP model has over the RBA, is that it can factor in deployments and adequately
prepare those pilots that are assigned to the deployment. This has impact on the schedule, because the de-
ployment pilots might need to perform extra missions and because they are taken out of the schedule during
their deployment. It is investigated here to what extent this could influence their ability to fulfill their training
requirements. The pilots that are selected to go on a deployment, are chosen before constructing the preliminary
schedule. In the current model, the pilots are chosen arbitrarily and the only requirement is that they should be
able to form a 4-ship formation. More requirements on the choice of pilots that go on deployment could easily
be defined if the user demands this. The selected pilots have to complete the deployment work-up program
before the start of the deployment. In some iterations of the FPTSAP model, this leads to an infeasibility in
one of the SPrs. The infeasibilities come from the solution to the MPr, which does not always provide the SPrs
with the solution space required to have the selected pilots complete the work-up program in time. Still, since
we perform 4 iterations per run, a feasible solution to the overall problem is output every run.

Including the deployment in the scenario leads to an average total training completion ratio of 94.28%, a
decrease of 0.77 percentage points compared to the scenario without deployment. This decrease primarily is the
result from a decrease in transition training completed. The mission category planning per week typically reflects
the precedent relations between the missions in those mission categories. A pilot who is sent on deployment can
not perform training missions during his deployment. During that period, the pilot can miss out on weeks that
provide opportunities to perform a mission which is a critical precedent to other missions. Then if the pilot
returns from his deployment, it is harder to continue the transition training syllabus, because the pilot does not
meet the precedent requirements for the missions that can be scheduled in the following weeks. This results in
lower average completion of transition training. This problem only occurs for transition training, as recurrent
training missions do not have precedents and SPs (in initial training) can not go on deployments. As such, we
can conclude that for this scenario, it is possible to implement a deployment in the schedule which only leads
to a minor decrease in total training completed.

6 Conclusion
In this paper a model is proposed that schedules and assigns fighter pilot training missions. The ultimate
goal of this model is to increase the personnel readiness of fighter pilots in the RNLAF. Previously proposed

17



solutions to the FPTSAP often focused on scheduling either initial training or recurrent training and did not
include transition training at all. Our model is capable of scheduling initial training, recurrent training and
transition training. Additionally, an option is included in the model that enables pilots to train for and go on
deployments. The model was originally designed to be able to schedule for a full year, starting at the beginning
of the calendar year. However, with a few alterations, it could be used to maximize the amount of training for
any horizon length, with any starting situation and for a variety of weapon systems.

To solve the FPTSAP, we split the overarching problem into two stages both formulated as a MIP model.
This choice was primarily made for computational efficiency. An additional benefit that comes from this
two-stage approach is that the different schedules, which have different levels of detail, can be used during
different stages of the planning process and on different organizational levels. During the first stage, the MPr,
a preliminary schedule is created. This schedule determines which mission category is scheduled for each week
in the scheduling horizon. Subsequently in the second stage, a detailed schedule is constructed for every week
by the SPrs using a RH approach.

The model was tested on a case that studied two RNLAF fighter squadrons and compared to a RBA that
resembles the current scheduling process at the RNLAF. The metric that represents readiness of personnel in
the model is the amount of training completed averaged over all the pilots. For this metric, the proposed model
results in an increase of more than 15 percentage points when compared to the RBA. This leads to an average
of 95% of training completed per pilot, which is consistent with the requirements set by the threshold value. At
the same time, in this particular case the FPTSAP model succeeds to have 67% of all the pilots complete their
full recurrent training syllabus compared to zero pilots completing all their training in the RBA solution. Our
FPTSAP model solves the reference scenario within 4 minutes. This runtime easily allows for new schedules
to be built throughout the year when changes occur in training demand or resource availability. Furthermore,
we implemented the option to include a deployment into the schedule at the cost of a marginal decrease of one
percentage point in average total training completion.

On the other hand, on average the model only uses 85% of the sorties available for scheduling. This is
mainly a consequence of formulation of the MPr, which lacks flexibility in scheduling options. Moreover, for
larger problem instances the average of total training completed is below the desired threshold. This is also
attributable to the MPr formulation. For larger problem instances, the MPr can have a large amount of solutions
with the same objective value. The cuts that are used at each iteration fail to decrease the solution space fast
enough to be able to come to a good quality solution within the number of iterations specified.

We can therefore conclude that for our reference scenario, the proposed model succeeds to increase the
readiness of personnel to the desired value. However, improvements can be made in terms of schedule efficiency
and scalability. A possible starting point to realise these improvements would be to reformulate the MPr
objective in such a way that every solution produces its own unique value for the objective function. Further
improvements could also be made by increasing the efficiency of the cuts that are implemented after each iteration
of solving the overarching problem or by introducing more flexibility in scheduling the mission categories.
Additionally, there is also room for improvement in the formulation and solution process of the SPrs. The RH
currently has no prediction horizon and only takes into account past weeks and the current weeks. However,
inclusion of a prediction horizon could be beneficial to prevent infeasibilities in some cases where hard deadlines
are set, such as when a pilot has to complete a deployment work-up program before the start of the deployment.
For this reason, future research could be dedicated to implementing a prediction horizon in the model.

Lastly, the semantics, sets and subsets in the model as well as some assumptions have their origin in the
RNLAF fighter branch. However, the model was developed with the aim to be applicable to other Air Forces as
well. With some minor adjustments to the model, this should still be the case. Besides, interest into a similar
tool is also expressed by the rotary aviation sector of the RNLAF. To those ends, future research could be
dedicated to test the model in other Air Forces and other branches of military aviation.
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Appendices
A Appendix 1
A partial example of a schedule constructed by the FPTSAP model is given in Table 12. The table visualizes
the planning per go. In this schedule, we can see that pilot 16-F2-4 is assigned to mission 1 during the AM
go of day 1. In the scenario used, a maximum of eight aircraft is available per week. If less than eight aircraft
are available for a given week, the schedule is completed with na. If an aircraft was available, but not used for
scheduling, the schedule displays Empty AC.

Table 12: Partial example of a schedule output by the FPTSAP model.

Aircraft
1 2 3 4 5 6 7 8

AM1 1: 16-F2-4 1: 22-SP-1 1: 23-SP-2 1: 2-IP-2 1: 7-IP-7 1: 8-F4-1 2: 18-F2-6 2: 19-WM-1

PM1 1: 5-IP-5 1: 6-IP-6 2: 22-SP-1 2: 23-SP-2 2: 2-IP-2 2: 3-IP-3 3: 18-F2-6 3: 19-WM-1

AM2 1: 13-F2-1 1: 1-IP-1 2: 12-F4-5 2: 14-F2-2 38: 19-WM-1 38: 20-WM-2 38: 2-IP-2 38: 7-IP-7

PM2 1: 15-F2-3 1: 9-F4-2 35: 23-SP-2 35: 7-IP-7 39: 20-WM-2 39: 5-IP-5 4: 10-F4-3 4: 1-IP-1

AM3 2: 4-IP-4 2: 7-IP-7 2: 8-F4-1 2: 9-F4-2 3: 1-IP-1 3: 22-SP-1 3: 23-SP-2 3: 3-IP-3

PM3 2: 20-WM-2 2: 5-IP-5 35: 1-IP-1 35: 23-SP-2 39: 19-WM-1 39: 3-IP-3 4: 22-SP-1 4: 7-IP-7

AM4 1: 10-F4-3 1: 11-F4-4 1: 12-F4-5 1: 14-F2-2 1: 20-WM-2 1: 4-IP-4 2: 16-F2-4 2: 21-WM-3

PM4 1: 18-F2-6 1: 3-IP-3 2: 10-F4-3 2: 11-F4-4 2: 13-F2-1 2: 6-IP-6 3: 16-F2-4 3: 21-WM-3

AM5 35: 11-F4-4 35: 19-WM-1 3: 17-F2-5 3: 20-WM-2 4: 23-SP-2 4: 6-IP-6 5: 1-IP-1 5: 22-SP-1

PM5 1: 17-F2-5 1: 21-WM-3 2: 15-F2-3 2: 1-IP-1 35: 6-IP-6 5: 23-SP-2 5: 2-IP-2 Empty AC

...

AM121 36: 10-F4-3 36: 13-F2-1 51: 12-F4-5 51: 19-WM-1 51: 1-IP-1 51: 6-IP-6 na na

PM121 29: 16-F2-4 29: 20-WM-2 36: 12-F4-5 36: 13-F2-1 Empty AC Empty AC na na

AM122 29: 18-F2-6 29: 7-IP-7 36: 11-F4-4 36: 15-F2-3 Empty AC Empty AC na na

PM122 29: 10-F4-3 29: 16-F2-4 36: 5-IP-5 36: 6-IP-6 Empty AC Empty AC na na

AM123 29: 17-F2-5 29: 21-WM-3 36: 12-F4-5 36: 22-SP-1 Empty AC Empty AC na na

PM123 36: 17-F2-5 36: 1-IP-1 51: 15-F2-3 51: 20-WM-2 51: 4-IP-4 51: 7-IP-7 na na

AM124 29: 16-F2-4 29: 20-WM-2 36: 14-F2-2 36: 4-IP-4 Empty AC Empty AC na na

PM124 29: 17-F2-5 29: 7-IP-7 36: 15-F2-3 36: 22-SP-1 Empty AC Empty AC na na

AM125 29: 18-F2-6 29: 20-WM-2 36: 15-F2-3 36: 22-SP-1 Empty AC Empty AC na na

PM125 29: 17-F2-5 29: 21-WM-3 36: 20-WM-2 36: 2-IP-2 Empty AC Empty AC na na
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B Appendix 2
This Appendix provides pseudo-code that describes the high-level solution process of the proposed FPTSAP
model.

Algorithm 1 High level solution process of the FPTSAP model
1: Input Pilot Data, Mission Data, number of iterations I
2: for i to I do
3: Solve MP: minimize required weeks, construct mission category schedule
4: With the MP solution:
5: for w to W do
6: Solve SP: maximize training value in current week
7: Update completed sorties
8: Continue to next week
9: end for

10: Save total training value
11: if Total training value exceeds stopping criteria then
12: Proceed to step 18
13: else
14: Implement cuts
15: Continue to next iteration
16: end if
17: end for

// ∗ denotes best iteration
18: Select best solution from iterations
19: return Minimum number of weeks, maximum training value
20: Output Schedules, Training Completion Values
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C Appendix 3
This Appendix provides pseudo-code that describes the RBA that reflects the current scheduling process and
that is used to benchmark the FPTSAP model.

Algorithm 2 Pseudo-code of the RBA
1: Input Pilot Data, Mission Data, number of weeks W

// mc is mission category, start at first in list
2: for w to W do
3: Schedule mc for week w
4: Move to next mc in list
5: if mc = last mc in list then
6: Restart at first mc
7: end if
8: end for
9: for w to W do

10: With mc = scheduled mc in week w
11: for go in w do
12: for s in [transition, initial, recurrent] do
13: if pilots & aircraft available, executions required then
14: Plan missions, larger missions first
15: Update pilot & aircraft availability
16: Update completed executions
17: else
18: Continue to next syllabus
19: end if
20: end for
21: if All missions in mc executed then
22: Remove mc from future schedule
23: end if
24: end for
25: end for
26: Output Training schedules, training completion values
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1
Introduction

It is a well accepted point of view that being a fighter pilot belongs to the most demanding jobs in the world.
In order to become a fighter pilot, a long lasting and intensive initial training is required. But even after pi-
lots have completed the initial training, much of their yearly flying program consists of sortie with the aim of
maintaining their level of proficiency. As the RNLAF resides among the best trained and most advanced air
forces in the world, their fighter pilot training programs are equally ambitious. While the Lockheed Martin
F-35 is now being introduced in the RNLAF, the RNLAF currently operates the General Dynamic (now Lock-
heed Martin) F-16 ’Fighting Falcon’ as their only Fully Operationally Capable (FOC) fighter aircraft. The F-16
is designed and operated as a day-and-night all weather multi-purpose fighter aircraft. As a result, Dutch
F-16 pilots have to be trained to be proficient in carrying out all sorts of tasks in any weather condition.

To gain and maintain the RNLAF’s pilots level of proficiency, several training syllabi, such as the Mission
Qualification Training (MQT) and the OPS V-40 have been composed. These documents describe, among
other things, a set of specific training missions that have to be flown by each pilot so that he can achieve or
maintain his currency. While scheduling these sorties, the available resources as well as the imposed con-
straints have to be taken into account. For example, different pilot qualifications, airframe and crew avail-
ability and different mission types have to be considered. Furthermore, fighter pilot operations are typically
carried out by formations of jets rather than individually and as such, so are the training missions. Con-
sequently, completion of pilots’ training programs depend on the availability of other pilots. All in all, it is
apparent that the planning process is a heavily constrained and complex environment. Nevertheless, plan-
ning is currently done manually as a secondary task by (ex-)fighter pilots who do not have scheduling as their
main area of expertise. As such, planning is regularly done ad-hoc or on a very short notice with few, if any de-
cision support tools available to the schedulers Consequently, scheduling is a time consuming task and now
results in sub-optimal and even infeasible schedules. The research succeeding this literature survey aims to
provide a planning tool that assists schedulers in forming a feasible and effective yearly schedule, so that all
pilots can fulfill their training requirements.

To achieve this goal, it is insightful to explore the research that has already been done on fighter pilot
scheduling and closely related subjects. The aim is to identify where the succeeding research fits in the exist-
ing literature, where the research gap lies and how the existing literature can provide useful insights for the
research to follow.

The structure of this report is as follows. After this introduction, the research context the problem fits
into is investigated in Chapter 2. The methodologies which are frequently used in scheduling problems and
which have been applied in aircrew training scheduling literature are discussed in Chapter 3. Lastly, Chapter
4 determines how our research can contribute to the existing literature and how this contribution can be
realized.
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2
Defining the research context

In this chapter, we explore existing literature that focuses on the scheduling and assignment of aircrew train-
ing. By doing so, we aim to identify the current level of understanding of aircrew training scheduling and as-
signment, how several works interrelate, the advantages and shortcomings and recommendations for future
research. As the problem of scheduling and assigning aircrew training in military aviation is vastly different
from that in civil aviation, those two fields of research are split up over two sections. Section 2.1 outlines
literature that focuses on scheduling problems that relate to military aviation, more specifically for fighter
pilots. The majority of this research was done at the Air Force institute of Technology (AFIT). Subsequently,
Section 2.2 focuses on training scheduling problems that have been researched in the civil aviation sector.
The last section, Section 2.3 combines the findings from the previous sections to define the research gap in
scheduling and assigning fighter pilot training.

2.1. Scheduling training in military aviation
While extensive research exists on all kinds of scheduling problems within aviation and other fields of work,
the military scheduling environment is so different from the civil environment that this research can only par-
tially be applied to military studies. As scheduling within military aviation units often is still done manually
however, research dedicated to optimizing military aircrew scheduling could result in great improvements in
efficiency and costs. Some research already exists that focuses on the FPTSAP. This existing literature can be
divided into two fields of research; scheduling initial training and scheduling recurrent training.

2.1.1. Scheduling fighter pilot initial training
There have been a few studies on fighter pilot scheduling, the earliest to be discussed is the research paper
by Nguyen [17]. Nguyen attempts to build a decision support tool to support planners at a United States
Air Force (USAF) fighter training squadron that provides initial training. He states that the FPTSAP is com-
plex. Despite the complexity, scheduling and assignment at USAF squadrons is often done manually by ex-
perienced fighter pilots who do not have scheduling as their expertise. Therefore, he develops a model that
supports the planner in scheduling both classroom sessions for groups of students as well as assigning in-
dividual sorties and simulator sessions. The main organizational objective of such a tool is to decrease the
time spent on constructing feasible schedules drastically. The training squadron Nguyen focuses on has to
provide multiple classes of fighter pilot trainees with a 120-day training program. The syllabus that is to be
completed is fixed, but at any time different classes within the squadron are at a different point in the train-
ing syllabus. Consequently, each class requests different training requirements. At the end of each week, a
weekly schedule is developed for the next week, while each day is split up into three goes. This schedule has
to be constructed in such a way that students can complete their training syllabus within 120 days. Nguyen
also recognizes that the environment is prone to many dynamic aspects, such as aircraft maintenance and
weather, and tries to implement this in the decision support tool as well. He simulates these effects with a
so-called attrition model that renders some missions unsuccessful based on a predetermined fixed probabil-
ity. A basic representation of how Nguyen sees the scheduling environment is given in Figure 2.1. In order
to solve the problem mentioned above, Nguyen uses a Visual Interactive Modelling (VIM) approach and a
Construction Heuristic (CH) which makes its choices based on several dispatching rules (3.2.2). The main
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Figure 2.1: Basic representation of Nguyen’s scheduling problem environment [17].

objective of the model is to complete the training syllabus within 120 days, while maximizing sorties and also
adhering to the classroom and simulator sessions requirements. Nguyen concludes that feasible schedules
with sorties above the minimum required amounts can be developed in reasonable time on a decision sup-
port tool that is easy to use for the squadron schedulers. For future research, he recommends to expand the
attrition model he used and to further explore the usage of dispatching rules [17].

In many aspects, the research done by Aslan is similar to that of Nguyen [1]. Both works focus on providing
a decision support tool to assist schedulers in scheduling and assignment of fighter pilot initial training. In
Aslan’s research, much like in Nguyen’s, the syllabus and sequence within the syllabus that each student has
to complete is known. On top of that, the Turkish Air Force (TUAF) squadron Aslan’s research is based on also
has operational mission demand which influences instructor availability. To plan a sortie, a single student
and a single instructor have to be planned simultaneously. The research does not take into account that the
availability of fighter jets is limited. The goal of the research is to develop a model which is able to reduce
the time in which, contrary to Nguyen’s weekly schedule, a daily schedule can be found. Aslan model splits
the problem into three sub-problems in accordance with the pilots’ qualifications and solves each of these
sub-problems with a CH. During the construction of such a schedule, additional objectives are to balance
the workload over the instructors and to balance the training sorties over the students. The results of this
research are promising: Aslan manages to decrease the duration of the standard training program by about 20
percent. He does however make an important note that more thought could be put in to resource availability
and influences such as weather and pilot absence [1].

2.1.2. Scheduling recurrent fighter pilot training
Both Nguyen and Aslan have researched scheduling problems in fighter pilot initial training. As a result,
training requirements are fixed and sequentially ordered according to a predetermined syllabus. Scheduling
recurrent training for pilots in (operational) fighter squadrons is more complicated due to the nature of the
training and complexity of the training missions. There are two main differences between recurrent training
of readily qualified fighter pilots and initial training of trainee pilots. The first one lies in the syllabi. During
initial training, the missions within the syllabus are followed in a strictly sequentially order. During recurrent
training however, precedence relations might exist, but they are often not as strict as during initial training.
The second difference is that fighter pilot trainees often only fly alone or in simple formations, while qual-
ified fighter pilots have to perform missions in larger formations and also rely on supporting aircraft. As a
result, completion of single pilot training programs is dependent on the availability of other pilots. These
pilots in turn have their own training requirements. For example, one could be in a program to become an in-
structor or to upgrade his qualification to be allowed to lead larger flights, both of which add extra complexity.

Research on such scheduling problems was carried out by Newlon, Yavuz, Erdemir, Taks and Guljé ([16],
[30], [4], [26], [9]). Newlon’s research is a scheduling and assignment problem, with a scheduling horizon of
one week, based on an USAF squadron [16]. The main goal of the operations within this squadron is focused
on maintaining pilot currencies in accordance with different criteria. Therefore, all pilots have to undergo
a recurrent training syllabus. Every day in the week is divided into two go in which sorties can take place.
The schedule has to consider planning flight sorties, simulator flights and ground events to be carried out
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by pilots. In planning the sorties, pilot qualifications have to be taken into account. Newlon differentiates
between three pilot qualifications: Instructor Pilot (IP), Flight Lead (FL) and Wingman (WM). At the same
time however, Newlon assumes that there is a freely available and unlimited amount of reserve pilots which
can be used to fill gaps in the schedule. Similar to Nguyen and Aslan earlier, Newlon’s goal is to find a feasible
schedule in reduced time. Newlon formulates the problem as a Mixed Integer Programming (MIP) problem,
which can either be solved for a whole week or be divided into ten sub-problems (one for each go). The model
objective is to minimize the pilot tardiness for all recurrent training requirements. The model developed by
Newlon creates two feasible schedules in a matter of minutes, but as noted above he assumes an unlimited
supply of reserve pilots. Furthermore, the three pilot qualifications he uses could be split further, as flight
leads are generally classified as either 4-ship Flight Lead (4-FL) or 2-ship Flight Lead (2-FL) [16].

Yavuz’ research also studies on a TUAF squadron, but takes a readily available weekly schedule and only
performs pilot assignment [30]. However, he has taken note of some of Newlon’s recommendations and ac-
counts in his research for the difference between 4-FL and 2-FL. On top of that, he adds to each pilot a quali-
fication which states in which weather conditions they are allowed to fly. The weather forecasts are not highly
accurate, since they have to be forecasted a week in advance. Yavuz specifies that all pilots should main-
tain their currencies and perform some yearly checkflights. He does not take into account any sortie abort
or rescheduling factors or dynamic resource availability. Yavuz splits his problem into four phases and the
model objective is to maximize a scoring function which is based on pilot time to currency expiry and bal-
ancing sorties over the pilots. In the first phase of his model, the scheduler manually inputs high priority
missions. In the second and third phase, a Greedy Randomized Adaptive Search Procedure (GRASP) heuristic
(3.2.2) is used to assign instructor pilots and other pilots respectively. During the last phase, the scheduler
evaluates and manually adjusts the schedule if necessary. The main benefits of the developed method over
fully manual scheduling are that the total amount of training events is balanced better between the pilots
and that feasible assignments are found faster. The downside to this work is that it is an assignment problem
rather than an integrated scheduling and assignment solution [30].

The goal of the research done by Yavuz was to construct an optimal daily schedule and assign pilots to the
schedule for recurrent training missions in a TUAF squadron [4]. The planning environment and constraints
are in many ways the same as that of Newlon and Yavuz. Additionaly, Erdemir adds the option that some
of the aircraft are two-seated aircraft and that the backseats of those aircraft can only be manned by IPs. To
solve the problem, Erdemir uses a GRASP heuristic (3.2.2). The main objective is to keep all pilots within
their currency, while also maximizing sorties and aircraft usage. The model searches through all possible for-
mations in a candidate list, picks the best formation, then updates the candidate list and continues. On top
of that, the scheduler has the ability to manually schedule or exclude a specific pilot, formation or mission.
Every iteration the model chooses another formation as the first best candidates, until all feasible schedules
have been constructed. Afterwards all schedules are scored in accordance with the objectives and the best
schedule is chosen. For small instances, the model is able to find optimal solutions within seconds. When
Erdemir uses realistically sized data samples using twenty pilots however, the runtime increases to more than
one hour. As such, Erdermir suggests to further investigate heuristics to reduce runtime. If reduced runtime
can be realized, he also suggests to expand the scheduling horizon beyond his scope of a single day [4].

Due to the complex nature of the fighter pilot scheduling and assignment problem, all of the literature
in this subsection so far considers building daily or weekly schedules. From an organizational point of view
however, it would be beneficial to expand this planning horizon. On top of that, training requirements are
often specified for a period of one year, so longer term planning is desired. Taks researches a case in the
RNLAF where fighter pilots in an operational squadron have to complete a yearly recurrent training program
[26]. Furthermore, the studied squadron also has to facilitate initial training to newly arriving pilots at the
squadron. Taks aims to provide squadron schedulers with a baseline reference schedule, which would ease
the schedulers’ decision making process. Taks schedules and assigns all recurrent and initial training for ev-
ery pilot for a whole year in three different ways. In each of his approaches he splits his problem into multiple
sub-problems which are solved individually, either manually or with a MIP. It is impressive that he succeeds
to find a yearly schedule within several minutes, but a lot of simplifications have been made to reduce the
complexity of the problem. On top of that, when the required number of sorties increases the model is no
longer able to find feasible solutions. In order to make Taks’ work come closer to reality again, extensions
should be made with respect to, for instance, dynamic resource availability. Despite Taks’ effort, his model
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Figure 2.2: Representation of the airline crew rostering problem [13].

has not been adapted by the RNLAF [26].

Guljé studies almost the same problem as Taks, but adds more complexity to the problem and runs the
yearly planning process as a simulation [9]. Apart from scheduling and assigning the flight sorties, he also
plans simulator duties and he adds the requirement of night-flying into the recurrent training. On top of that,
he makes the environment more dynamic by accounting for influences by weather, sickness, leave and other
probabilistic factors. The objective of his model is to have as many pilots as possible achieve full completion
of the yearly training program, by scheduling one month at a time. To create the schedules. Guljé uses a
MIP which is based on the Generalized Assignment Problem (GAP) and uses priority scores based on pilot
currencies and mission complexity. On the other hand of the spectrum than Taks, Guljé concludes that his
model might be too complex. Computation times are in excess of multiple hours and completion of the
training program is under par. He believes further research could be dedicated towards simplifying the model
while at the same time looking into aircraft availability. In spite of his conclusion, Guljé still feels like his
method holds a lot of potential, but like Taks, Guljé did not see his model adapted by the RNLAF [9]:

"... the performance of the method is under par, we believe that there are still many aspects which
can be further investigated, and which may possibly improve performance. Thus the method
could be seen as a first step for creating monthly schedules in this largely restricted scheduling
problem." [9]

2.2. Scheduling training in civil aviation
It goes without saying that pilots in civil aviation also have to meet requirements in able to maintain their level
of training and that the environment in which this training has to be scheduled is complex. A visualization
of the complexity of such a problem is given from Kohl and Karisch in Figure 2.2. The differences between
fighter pilot training and civil pilot training however, are substantial. The main difference is that the train-
ing curriculum for civil pilots mainly consists of classroom and simulator sessions in between their regular
flight schedule, while the training of fighter pilots essentially is their flight schedule, with some extra simula-
tor sessions in between. As a result, cost induced by training in civil aviation not only comes from assigning
resources, but also from the fact that each day a pilot is in training, the pilot is not available to part-take in the
regular flight schedule. Yu et al. state that "the cost of training is measured primarily by the amount of time
pilots spend in training and secondarily by the favourable assignment of training resources." [31] Differences
between fighter pilot training scheduling and civil pilot training scheduling exist in many more aspects, but
it is the similarities that we are interested in, not the differences. This section provides a brief overview of lit-
erature that has studied the scheduling or assignment problem (or a combination of both) of aircrew training
within civil airlines and which has aspects that resemble the military environment.

Qi et al. investigate a class scheduling problem in the specific case of Continental Airlines [20]. Twice a
year at Continental Airlines, a bidding process takes place, the result of which are numeral transitions of pi-
lots between aircraft fleet, qualifications and bases. Consequently, many of those transitioning pilots have to
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attend training sessions in order to be qualified for their new position. The research of Qi et al. is concerned
with scheduling those classes and assigning the pilots to the classes, where each schedule spans roughly one
month. Each class has a predetermined number of candidates and a template that it has to follow. To mini-
mize the cost induced by pilots’ unavailability for the flight schedule, the goal of Qi et al. is to minimize the
total weighted footprint of the classes. To solve the optimization problem, they created a Branch-and-Bound
(B&B) algorithm (3.2.1) which is assisted by a rolling horizon approach (3.1.4). Qi et al. state that their model
is able to solve the problem and obtain high quality schedules within several minutes, but it has to be noted
that crew availability and detailed crew assignment is not taken into account [20].

Also within Continental Airlines Yu et al. take the research done by Qi et al. a step further and aim to find
an integrated approach to allocating crew and training resources within Continental Airlines in an effective
manner [31]. The process that Yu et al. aim to optimize is also that of the result of the bidding process. They
divide the problem into four modules, the last of which is the training optimization module, which solves
an aircrew training scheduling problem. This module takes as input training curricula, existing schedules
and device and instructor availability and has as output training schedules, instructor schedules and device
schedules (Figure 2.3). In addition to Qi et al. and nearly all the research in Section 2.1, Yu et al. also take crew
availability due to vacation in account, which is an important improvement. They use the B&B (3.2.1) and
rolling horizon approach (3.1.4) developed by Qi et al. to develop a class schedule and additionally have de-
veloped a MIP to perform detailed crew assignments. Yu et al. state that using their solver, the process which
used to take weeks is now solvable within hours with huge savings in costs and more effective allocation of
training resources [31].

Figure 2.3: The training optimization module from Yu et al. [31].

Holm then takes the models proposed by Qi et al. and Yu et al. and adjusts them to fit her research prob-
lem within legacy carrier Scandinavian Airlines [11]. She follows the recommendation of Yu et al. to include
recurrent training in the problem: she looks to schedule transition and recurrent training with the objective
of minimizing costs. One of the main challenges in Holm’s research comes from the fact that she wants to
obtain a schedule for a whole year. According to Holm, cost is induced by the way pilots transition, training
itself, pay protection systems and shortages in the flight schedule. The problem is to schedule a known num-
ber of classes with a known number of attendants in fixed crew compositions. Holm designs the problem as a
set-partitioned (3.1.3) MIP. The model proposed by Holm solves the problem in about 18 hours, resulting in
savings in cost up to 10%. As however, training resource availability is not constrained and as crew freetime
can be bought back to resolve shortages, applicability of her research loses ground quickly [11].

The research done by Van Kempen also researches yearly recurrent and transition training in a European
legacy carrier (not mentioned by name) [29]. He bases the training demand on historical data which is pro-
vided by the carrier and isolates the problem for each aircraft type in the fleet. All training events Van Kem-
pen schedules are defined by yardsticks, which state per event their simulator and instructor demand. One
simplification he makes is that the length and composition of these yardsticks are not based on pilot rank,
experience or position. Aside from the scheduling and assignment of those yardsticks, Van Kempen also ded-
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icates part of his research to developing a model which is robust with regards to schedule disruptions. The
main objective of the thesis is to minimize the costs. To solve the problem, Van Kempen combines a selec-
tion heuristic and a priority heuristic before entering a MIP. The objective of the MIP is to minimize a sum of
costs induced by simulator, trainee and instructor costs. The model is able to find optimal solutions within
five minutes. Van Kempen however notes that not all of these solutions are feasible, because the heuristics
can select solutions which are feasible in theory but not in practice [29].

Kozanidis moves away from the transition training scheduling and focuses solely on the monthly assign-
ment of recurrent training [14]. The goal of Kozanidis’ research is to have pilots fulfill their recurrent training
before their currency expires. Kozanidis assumes that a set of training sessions is already scheduled and
therefore focuses on assigning aircrew to these training sessions. He aims to find optimal assignment to a
monthly training schedule, based on crew preference and seniority relations and to minimize the number of
unassigned crew. The research differentiates between planning simulator sessions, which need to be carried
out by a Captain (CPT) and a First officer (FO), and classroom sessions, which can be attended by all sorts of
crew compositions. He solves both problem with a set-partitioned (3.1.3) MIP that uses crew preference and
seniority related scoring functions. The model he proposes performs well, which is backed by the fact that it
is actually integrated into the AIMS Airline Software suite. Kozanidis claims that the problem he encounters
is found in military aviation as well and that his model could be adjusted for military use [14].

2.3. Synthesis on the research context
Having outlined some existing literature in both military and civil aviation, we can now move on to find which
areas of scheduling are still partially unexplored and how the problem briefly described in the introduction
fits into the existing literature. Table 2.1 gives an overview of the characteristics of all of the literature dis-
cussed in Sections 2.1 and 2.2. The first two columns in Table 2.1 indicate whether the indicated research
is either a scheduling problem, an assignment problem or a combination of both. The third column, ’type
of training’, states which type of training the research tries to schedule for. The column ’length of schedule’
denotes the length for which a fixed schedule is made, which is different from the ’length of program’ column.
In the latter column, the total length of a training program is given. For example, Nguyen constructs weekly
schedules with the long-term goal of completing a training program within 120 days. The second-to-last col-
umn indicates if the training to be scheduled has a fixed, precedented sequential syllabus or not. Finally, the
last column represents the different pilot classifications which have to be taken into account during schedul-
ing.

Table 2.1: Overview of the characteristics of the discussed literature.

Scheduling Assignment Type of training Length of schedule Length of program Sequential syllabus Classifications

Military:
Nguyen[17] Yes Yes initial 1 week 120 days Yes Student Pilot (SP), IP

Aslan[1] Yes Yes initial 1 day 25 weeks Yes SP, IP, Bandit
Newlon[16] Yes Yes recurrent 1 week 90 days No IP, FL, WM
Yavuz[30] No Yes recurrent 1 week 1 year No IP, 4-FL, 2-FL, WM

Erdemir[4] Limited Yes recurrent 1 day n/a No IP, 4-FL, 2-FL, WM
Taks[26] Yes Yes recurrent & initial 1 year 1 year No IP, 4-FL, 2-FL, WM, SP
Gulje[9] Yes Yes recurrent 1 month 1 year No 4-FL, 2-FL, WM

Civil:
Qi et al. [20]. Yes No transition ± 1 month 1 year Yes CPT, FO
Yu et al. [31] Yes Yes transition ± 1 month 1 year Yes CPT, FO

Holm[11] Yes Yes transition & recurrent 1 year 1 year Yes CPT, FO
Kempen[29] Yes Yes transition & recurrent 1 year 1 year yes CPT, FO

Kozanidis[14] No Yes recurrent 1 month 1 year Yes CPT, FO

The length of schedules at each iteration in Qi et al. and Yu et al. is based on the number of classes that are being scheduled and is not fixed in time.

It can be seen from Table 2.1 that almost all literature discussed, focuses on both the scheduling and as-
signment problems within the aircrew training scheduling problem. This makes sense in the way that every
pilot has different availability and different training requirements, so only scheduling the training events in
an optimal way would not always assure feasibility in the assignment problem and vice versa.

We have split up the research into research into military aviation and research into civil aviation. From the
table, it becomes clear that both fields have their main focus on different types of training, which is a direct
result from how these two different sectors operate. Fighter pilots are trained for a large range of different



2.3. Synthesis on the research context 35

operations and therefore require a lot of recurrent training. Civil airliner pilots are only required to be able
to safely operate their aircraft on standard flights, thus they require less recurrent training. Where fighter
pilots normally keep operating the same aircraft type for a long time and thus have little to no need for type
transition training, airline pilots want to move up in their positions in the fleet and therefore require more
transition training. Consequently, transition training is the main focus of civil airline crew training problems.
What all of the research in the military field however fails to mention, is that some transition training can be
identified within fighter pilot squadrons when pilots move up in the ranks as well. For example, WM might
be selected to upgrade to 2-FL, 2-FL to 4-FL and so on.

The literature is further characterized by the nature of the syllabus that has to be scheduled and the dif-
ferent classifications pilots can have. These two aspects, as well as the type of training to be scheduled are
closely interrelated. In civil aviation the differentiation is made between CPT and FO. These captains and first
officers all have to attend type conversion training, which follows a fixed sequential syllabus. The fact that
there are only two types of pilots and that the syllabus is fixed, vastly reduces problem size and solution space
when comparing to the problem of recurrent training scheduling for fighter pilots. Fighter pilots are generally
classified as IP, 4-FL, 2-FL, WM or SP. All these pilots have to fulfill a recurrent syllabus which contains more
training events than the transition training for airline pilots. To allow for more flexibility in scheduling these
events, while preference exists, no specific order is defined for these training events. Therefore, problem size
and solution space for scheduling recurrent training in a yearly training program for fighter pilots (like Taks
and Guljé) increase quickly.

In terms of the characteristics as defined by Table 2.1, our research focuses on a scheduling and assign-
ment problem for a yearly initial, recurrent and transition training program for IP, 4-FL, 2-FL, WM and SP,
which is not strictly sequentially fixed. This closely resembles the research of Taks and Guljé, as their re-
search as well as ours is based on fighter pilots in the RNLAF. While the work by Guljé and Taks is closest to
our problem, overlaps exist with all the other literature presented. Therefore, Chapter 3 further explores the
methodologies the different works above used to model and solve the problems at hand.





3
Methodologies for formulating and solving

scheduling problems

Having identified previous research into scheduling and assignment of training in aviation, it is now impor-
tant to consider which solution methodologies are often adapted in order to solve such problems. There-
fore, in this chapter we discuss solution methodologies that have been used by the researchers mentioned in
Chapter 2 as well as some additional methodologies. These additional methodologies are considered as well,
because they have been used effectively in other fields of scheduling problems or because they seem to offer
a good framework to build our FPTSAP on. Section 3.1 briefly explains the concept of MIP, before elaborating
on multiple approaches that can be used to ease the solution process of a MIP problem. Subsequently, in
Section 3.2, we elaborate on methodologies that can be used in order to solve a MIP model. Lastly, in Section
3.3, we conclude the chapter with a summary of our findings.

3.1. Mixed Integer Programming
In operations optimization and scheduling problems, the fundamental methodology to formulate most prob-
lems is MIP. In MIP an objective function is defined, which is in turn maximized (or minimized) while re-
specting a set of constraints and predefined parameters. An example of a generalized MIP is the GAP which
is elaborated on in Subsection 3.1.1. MIP is a straightforward tool and the advantage is that the concept is
relatively simple and can be widely applied. Applying MIP to real size real world problems however, often
results in large problems with rapidly increasing computation times. In fact, crew scheduling is known as
a NP-hard problem, which means that no solution method is known to solve the problem within polyno-
mial time[2]. As such, crew scheduling problems and their MIP models are often reformulated in one of the
ways described in Subsections 3.1.1-3.1.5 in order to make them manageable to the solution methodologies
discussed in Section 3.2.

3.1.1. Generalized assignment problem
The generalised assignment problem in its most basic form is a very straightforward scheduling problem, in
which a set of tasks has to be performed by a set of agents. Each agent-task combination results in a cost
or profit corresponding to that specific combination. The most basic form of the generalized assignment
problem is formulated as a MIP problem as

mi ni mi ze
∑
i∈I

∑
j∈J

ci j xi j (3.1)

sub j ect to
∑
j∈J

ri j xi j ≤ bi ∀i ∈ I (3.2)∑
i∈I

xi = 1 ∀ j ∈ J (3.3)

xi j ∈B ∀i ∈ I , j ∈ J (3.4)

for I the set of agents, J the set of tasks, ci j the cost associated with agent i ∈ I performing task j ∈ J , ri j the
resources agent i ∈ I requires to perform task j ∈ J and bi the amount of resources available to agent i ∈ I
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[23]. The idea of applying the general assignment problem to a scheduling problem or workforce planning
problem is widely accepted, as Öncan details in his overview of applications of the general assignment prob-
lem in scheduling and other areas [32].

Both Yavuz and Guljé ([30], [9]) link fighter pilot scheduling to the GAP, but Guljé is the only one to ac-
tually base his MIP on it. Instead of minimizing cost, he seeks to maximize value. He defines the value as a
priority score to determine at every scheduling decision which is the most important mission to schedule.
This priority score is a function of how many times a pilot should execute a mission, the current currency
of the pilot and how many times he had executed the mission in the previous cycle. This scoring function
provides a relatively simple yet clear categorisation of which missions are most important and could also be
applied to our problem. He further expands the GAP with more constraints with respect to go restrictions,
sequencing restrictions, formation restrictions and more.

In the civil domain, all of Holm, Kozanidis, Van Kempen, Qi et al. and Yu et al. use a form of the GAP ([11],
[14], [29], [20], [31]). However, all their cost or value parameters are based on either the cost of pilot absence
in the flight schedule or the combined cost of instructor or simulator capacity usage. Given the nature of our
fighter pilot problem where the cost of each sortie is the same and influence on the flight schedule is not a
factor, these parameters are not of our interest.

3.1.2. Creation of sub-problems
Dividing a problem into several sub-problems is a simple method to improve computational efficiency within
MIP, but it also has a downside. When one divides the problem into sub-problems, one should consider how
this affects the performance of the model. The creation of sub-problems might have as a consequence that an
optimal solution can no longer be found. One way to split a main problem into sub-problems is by defining
the sub-problems in such a way that they can be solved simultaneously, as has been done for the airline recov-
ery problem by Petersen et al.[18] A simpler method is to split the main problem into several sub-problems
which can then be solved sequentially. This methodology has been used by Aslan, Erdemir, Taks and Yu et al.

Aslan divides his problem into three problems according to the pilot positions. He solves the problem
first for students, then assigns instructors to the students and lastly adds an additional pilot if this is neces-
sary. This works efficiently for his problem, where he has to match a single student and an instructor. If the
problem would capture more complex formations and pilot qualifications however, the later sub-problems
might become infeasible[1].

Erdemir divides his problem based on the most crucial tasks. In the first stages, he enforces critical tasks
to be carried out by certain pilots. However, this might come at the cost of sacrificing optimality in the later
stage, because certain pilots are no longer available[4].

Taks chooses to split his problem in time. During each sub-problem only missions in a specific category
can be flown. He makes this decision based on practical implications and for the sake of continuity in the
training program. As a result, the schedules his model provide are clear, but not by definition optimal[26].

Yu et al. make the logical decision to split their model up into two sub-problems based on model function-
ality. The first sub-problem schedules the classes and simulator sessions, while the second sub-problem does
the detailed assignment of the crew members. In their approach they claim this two-stage approach comes at
a cost of sacrificing minimal solution quality. The challenge in this approach is to construct a schedule which
allows for feasibility in the assignment phase[31].

3.1.3. Set-partitioning
Another way to simplify a problem, much like dividing the problem into sub-problems, is to apply set parti-
tioning to the problem. Set partitioning is defined by Garfinkel and Nemhouser as:

"...considering a set of S of m elements to be partitioned into subsets chosen from a prescribed
family {S1, ...,Sn} of subsets of S. The subset S j , j = 1, ...,n is represented by the binary vector A j

where ai j = 1 if i ∈ S j and 0 if i ∉ S j ."[6]

Effective set partitioning can reduce the problem size and solution space significantly even in the pre-
processing phase and can often be applied by just using common sense. For example, in an aircrew training
scheduling and assignment problem one could apply set partitioning to the pilots by dividing them into dif-
ferent sets in accordance with their qualifications as has been done in almost all the research discussed in
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Chapter 2. Subsequently, if only pilots with certain qualifications are allowed to fulfill a specific duty or mis-
sion, the model only has to consider this set of pilots to assign to that mission and the number of variables can
be decreased. Widely applied (sub)sets in fighter pilot scheduling are to divide missions into sets according
to their formation size or duration or to divide pilots into sets according to which training programs and cur-
rencies they have to fulfill. A detailed example of set-partitioning applied in the Vehicle and Crew Scheduling
Problem (VCSP) is given by Mesquita and Paias[15]. They define the decision variables in the problem as bi-
naries instead of integers. This, combined with their definition of tasks and the fact that they partition the set
of trips into multiple subsets of so-called deadhead trips, results in a decrease in the number of constraints.

3.1.4. Rolling horizon

The rolling horizon approach could be seen as a specific case of solving a model in several sub-problems. In-
stead of trying to find a solution for the whole problem at once, when a rolling horizon is used in modelling,
the whole scheduling horizon which should be considered within a problem is split into discrete time periods.
At each iteration, the problem is solved for the current time period but it can take into account information
from past time periods or forecast data from upcoming time periods, often known as the prediction horizon.
This process is schematically visualized by Silvente et al. in Figure 3.1 [25]. The challenge with this approach
lies within determining how long the control and prediction horizons should be and in how to obtain forecast
data from the prediction horizon. Rolling horizon approaches have been used by Qi et al. and Yu et al. and
Guljé.

Figure 3.1: Schematic visualization of the concepts associated with rolling horizon approach [25].

Qi et al. and Yu et al. use the same implementation of the rolling horizon approach. Their objective is
to schedule n classes, indexed in non-decreasing order of their earliest start dates, over a total scheduling
horizon T . They argue that two classes that do not have any overlap, can only impact each other through a
third class. Considering class 1, the further you would go down the list, the less likely this class is to have any
overlap with the next classes. Therefore, at each iteration they only consider scheduling h classes, fix the op-
timal schedule of the current class given the h classes to be scheduled and then move on to the next iteration.
They conclude that if they want to construct yearly schedules within a few minutes, while preserving solution
quality, h should equal 4 or 5 ([20], [31]).

Guljé also uses a rolling horizon approach, but does so in an adjusted manner. At the beginning of each
month m, Guljé already has a schedule which he developed at the beginning of month m −1. Guljé forecasts
how factors like weather or pilot absence will influence the schedule completion in the upcoming month m
(prediction horizon) by simulation. He then uses the results of this simulation to schedule for the subsequent
month m+1 (control horizon). Guljé does not report on the performance of his rolling horizon implementa-
tion, as he has not benchmarked it against an alternative [9].
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3.1.5. Benders decomposition
Benders Decomposition (BD) is a decomposition method that is often used in scheduling and assignment,
as can be seen from the literature review by Rahmaniani et al. [21]. In BD the problem is split into a master
problem and a subproblem, which are solved in turns iteratively. The master problem, which is initially un-
constrained, is solved independently from the subproblem and the results are input as fixed variables into the
subproblem. With these variables fixed, now the subproblem is solved. If it is unfeasible, an infeasibility cut
is added to the master problem. If the sub-problem finds an optimal solution, an optimality cut is added to
the master problem. With this new information, the master problem enters the next iteration. A detailed ex-
planation of the Benders decompostion algorithm is given by Taskin in his chapter ’Benders decomposition’
in the ’Wiley Encyclopedia of operations research and management science’ [27].

While none of the research mentioned in Chapter 2 uses BD to solve their problem, it is a useful approach
for large-scale problems that contain so-called complicating variables. When fixing these variables, the prob-
lem that remains becomes significantly easier to solve[21]. Considering this, Benders decomposition could
be of use for a scheduling and assignment problem. One could see creating and fixing a schedule as fixing the
complicating variables and with a fixed schedule, the assignment problem becomes significantly easier.

3.2. Solution methodologies
Now that some approaches have been discussed which can potentially speed up the solution process, we
can elaborate on some of the methods that can be used to actually compute the solutions. One of the most
popular methodologies is the B&B algorithm which is discussed in Subsection 3.2.1. Apart from the B&B
algorithm, several heuristic methods are discussed in Subsection 3.2.2.

3.2.1. Branch and Bound
Clausen states that "B&B is by far the most widely used tool for solving large scale NP-hard combinatorial
optimization problems." [2] A B&B algorithm is able to search the whole solution space of a problem. This
however is also its greatest pitfall. If one does not carefully specify the upper and lower bound and fathoming
criteria at each iteration, the danger arises that a B&B algorithm turns into an exhaustive search of the whole
solution space. The idea behind B&B is best described by Clausen in the paragraph below and is visualized
in Figure 3.2. This process continues until no unexplored solution space remains and at that point the best
solution is offered as the optimal solution. For a more detailed description and examples, one can consult the
work of Clausen[2]. Considering the previously discussed literature, it becomes apparent that B&B is indeed
a popular tool; it is applied in the research of Holm, van Kempen, Qi et al. and Yu et al.

"At any point during the solution process, the status of the solution with respect to the search of
the solution space is described by a pool of yet unexplored subsets of this and the best solution
found so far. Initially only one subset exists,namely the complete solution space, and the best
solution found so far is ∞. The unexplored subspaces are represented as nodes in a dynamically
generated search tree, which initially only contains the root, and each iteration of a classical B&B
algorithm processes one such node. The iteration has three main components: selection of the
node to process, bound calculation, and branching."[2]

Qi et al. develop their own B&B algorithm. At each node D the current calendar day t and the partial
schedule PS are considered. At each node, every class that has not yet finished is said to be active. One
can move from note D to successor node D ′ by attempting to schedule an event, which is either a day off
or a training event. To fathom nodes that are either infeasible or sub-optimal, node-elimination constraints
and a lower-bound calculation are used. The node-elimination constraints are based on rules such as that a
training event can not take place during weekends or that a day off results in violating the latest start date of a
class. Lower-bound calculation is done by estimating the number of future days off in each partial schedule.
Qi et al. state that they had first tried to solve the problem using CPLEX. Due to the nature and size of the
problem, they were unable to find feasible solutions. With their own B&B algorithm however in combination
with the rolling horizon approach (Subsection 3.1.4), they were able to find feasible yearly schedules within a
few minutes [20].

Contrary to Qi et al. and Yu et al., all of Guljé, Holm and Taks solve their problem with a readily available
commercial solver. It is important to note this aspect at this point, because almost all commercial solvers use
a sophisticated B&B algorithm to solve the MIP models they are confronted with.
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Figure 3.2: An example of a B&B search tree [2]. Note that subsets S23 and S24 should actually be indexed S31 and S32.

3.2.2. Heuristics
Even though commercial solver use highly complex and efficient B&B algorithms, solving large-scale prob-
lems to an exact and optimal solution often still results in excessive runtimes. To overcome this problem, we
now take a look at heuristics. A heuristic is described by Salcedo-Sanz as follows.

"Different from exact methods, which guarantee an optimum solution for the optimization prob-
lem, heuristic methods try to obtain a good (though not necessarily the optimum) solution.
In other words, a heuristic algorithm is a problem-solving method which tries to obtain good-
enough solutions for a given optimization problem at a reasonable computational cost, but with-
out guaranteeing either their feasibility nor optimality. the majority of heuristics approaches for
optimization are based on specific characteristics of the problem, and in a local or global search
carried out with some specific methods."[24]

In other words, heuristics are just smart tricks that attempt to decrease the computation time in which an
acceptable solution to very large problems can be found. To illustrate the effect of heuristics, we can consider
the work by Kim and Kim. Their model needs 3 hours to solve using exact optimization methods, but solves
within seconds when applying their heuristic [12].

GRASP The GRASP is an iterative process which is divided into two phases: the construction phase and
the local search phase [22]. In each iteration, the construction phase picks a random feasible candidate so-
lution and adds this to the partial solution. The incremental cost from adding this candidate to the solution
is then evaluated, so that a Restricted Candidate List (RCL) is formed. This RCL consists of the best candi-
dates. A random candidate from the RCL is then fed into the partial schedule and the lists are updated until
a feasible schedule is found. Pseudo code for the construction phase can be found in Figure 3.3. During the
next phase, the local search phase, the neighborhood of the schedule is investigated until a local optimum is
found. Pseudo code for this phase is given in Figure 3.4. As with every local search procedure, the effective-
ness of GRASP is determined by the definition of the neighborhood and the neighborhood search algorithm.
The neighborhood search may either be based on the first-improving or best-improving strategy, but Resendo
and Ribeiro state that both strategies often lead to the same final solution, while the first-improving strategy
results in better computation time [22]. GRASP has already been used in the fighter pilot scheduling and
assignment problem by Yavuz and by Erdemir.

Yavuz implements a simplified adaptation to the GRASP heuristic, which does not include a local search
phase. To assign pilots to missions, he uses GRASP to assign IPs and the remaining pilots separately, but both
methods are the same. Before every assignment, every pilot receives a grade based on multiple factors which
indicates how preferable it is to assign said pilot to the current mission. A number of these pilots is put into
the RCL, based on a weighting factor α which is set by Yavuz. Then a random assignment is made from the
RCL, the grades are updated and this continues until either no pilots are left or no missions are left to schedule
[30].

Erdemir uses a slightly different GRASP implementation which consists of multiple iterations. Every time
a scheduling decision has to be made, a candidate list is constructed which consists out of feasible pilot
formations. All candidates receive a random scoring function and are sorted in decreasing order. A candidate
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Figure 3.3: Pseudo code for the GRASP construction phase [22].

Figure 3.4: Pseudo code for the GRASP local search phase [22].

formation is chosen from the list and the list is updated by removing formations that have become infeasible
as a result of selecting the first candidate. This continues until no feasible formations remain or no resources
remain. Then the algorithm will continue to the next iteration. At the first step during iteration n, the nth
candidate is chosen from the ordered list. During all subsequent stepts, the first candidate is chosen. Once
the algorithm has looped through all n formations, the schedule with the best overall score is fixed [4].

Tabu Search Tabu Search (TS) is a meta-heuristic first introduced in 1986 ([8]) that effectively is an exten-
sion of classical local search methods like GRASP [7]. During a tabu search, non-improving moves are allowed
to move away from local optima. Complementary, to prevent the search method to cycle back to these local
optima, tabus are implemented. The tabu-list keeps track of a list of disallowed moves[7]. Every time a certain
mutation is made to the schedule, the exact reverse of this mutation can be added to the tabu-list. This new
entry is then added to the top of the tabu-list and all other entries are pushed down and consequently the last
entry is deleted[19]. The search can be terminated when either a specific threshold value has been met, after
a predetermined number of iterations or after a predetermined number of iterations without improvement in
the objective function. A simple and straightforward example of TS implementation is given by Pinedo ([19]),
while a clear template of the method by Gendreau is seen in Figure 3.5. While we have not found any litera-
ture which implements TS in (fighter) pilot training scheduling & assignment problems, it could possibly be
applied in a similar manner as Yavuz and Erdemir implement the GRASP heuristic, since TS is in essence an
extension of GRASP.

Dispatching rules Dispatching rules find their origin in the field of Machine Scheduling (MS). Dispatch-
ing rules are a means to select the most important task to be carried out first. An example of a dispatching
rule would be Least Flexible Job (LFJ), which stats that the job which is the least flexible to perform has to be
scheduled first. In fighter pilot scheduling, this could for instance be the job that has to be flown by the largest
amount of aircraft. Both Aslan and Nguyen use dispatching rules in the construction phase of their model.
Aslan uses a scoring function which combines three dispatching rules to construct his schedule. The scoring
is based on LFJ, Largest Number of Successors (LNS) and Largest Number of Modes (LNM) dispatching rules
[1]. Nguyen also implements dispatching rules in a scoring function, but lets the scheduler decide between
one of three rules: LFJ, Longest Processing Time (LPT) and MS[17]. For a more detailed description of Min-
imum Slack (MiS) in general and dispatching rules in specific, one can consult Pinedo’s book ’Scheduling.
Theory, algorithms and systems.’ [19].
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Figure 3.5: Template of the TS heuristic method [7].

3.3. Conclusion on methodologies
Almost all recent literature that discuss pilot training scheduling & assignment, use MIP to formulate their
problem. A straightforward MIP model however will often result in computation times of multiple hours, if
feasible solutions can be found at all. Therefore, some additional formulation approaches can be applied to
help structure a problem and the input data into efficient formats which could ease the computation time.
For example, we could take GAP as a basic framework. The agents defined by the GAP would then corre-
spond to pilots, the tasks to missions and the resources are available aircraft and training slots. Additional
constraints would have to be developed to fully fit the problem, as done by Guljé [9]. Additionally, previous
literature has proven that it is beneficial to split the problem into sub-problems or to apply set-partitioning
or rolling horizon. Lastly it has been noted that the nature of the FPTSAP might also be suitable to approach
with BD.

Subsequently, two widely applied solution methodologies to solve MIP models have been discussed. B&B
is the go-to exact optimization solution methodology and is implemented byy almost all commercial solvers.
If however, B&B falls short in terms of runtime, one could resort to heuristics. Heuristics could drastically
speed up the solution process while sacrificing minimal solution quality. Both methodologies have been
used to solve crew scheduling problems before and have proven their worth.

When problem size continues to grow or when allowed computation time for a model is very short, ex-
act optimization through B&B algorithms solely might no longer be preferable. Therefore we also explored
some heuristics. Heuristics methods rely on smart algorithms that can find high quality, but sub-optimal so-
lutions to large-size problems within relatively short time. Numerous heuristics exist, but among the most
widely used in scheduling problems are GRASP and the implementation of dispatching rules in a construc-
tion heuristic. At the same time, TS is also an option as a smarter alternative to GRASP.

In this chapter, basic modelling and formulation approaches and solution methodologies in previous re-
search have been presented, as well as some formulation approaches and solution methodologies that could
be applicable to the FPTSAP, but to the best of our knowledge have not been used before.





4
Conclusion & Contribution to research

Chapter 2 presented an overview of the literature that is available in the field of aircrew training scheduling
and assignment. Aircrew training is a costly factor for airlines and improving training scheduling could be
highly beneficial; Yu et al. report that their work spared Continental Airlines more then 10 million dollars in a
year [31]. Nevertheless, literature on aircrew training scheduling and assignment is not as widely available as
one would expect. Still, we managed to find several relevant research papers and master theses, all of which
focus on their own specific problem in the research context. However, it can be concluded from Chapter 2 in
general and from Table 2.1 in Section 2.3 in specific that none of the works measures up to all of the following
criteria at the same time:

1. The research is focused on a military fighter squadron.

2. The research aims on developing a baseline schedule for a whole year.

3. The research aims on scheduling initial, recurrent and transition training.

4. The model can obtain near-optimal results for a realistic use case.

5. The model used can solve a realistic use case within minutes or a few hours.

For example, if we consider the work done by Holm, we can see that her work did focus on building a
yearly schedule while remaining close to reality thereby satisfying requirements 2 and 4. However, her re-
search is focused on transition and recurrent training within a civil airline and the model needs 18 hours to
solve, so her research does not comply with criteria 1, 3 and 5 [11]. The works that come closest to fulfill-
ing all requirements are that of Taks and Guljé. Taks, a fighter pilot himself, nonetheless noted in a personal
conversation that his research contains too much simplifications and assumptions, therefore failing to fulfill
requirement 4 [26]. Guljé’s work on the other hand meets requirements 1 up till 3, but he himself notes in his
work that the results are under par and that computational efficiency could be better [9]. We can therefore
conclude that to the best of our knowledge, no literature exists that succeeds to fulfill all five of these require-
ments and as such we have identified a gap in the research which can be described by the following research
objective:

The research objective is to develop a realistic model that can obtain near-optimal yearly sched-
ules for initial, recurrent and transition training in a military fighter squadron within several min-
utes to a few hours.

As to the best of our knowledge no other research has yet fulfilled this objective, we must also develop an
adequate methodology to approach this problem. In Chapter 3 we discussed the methodologies that are most
commonly used in scheduling problems. Initially we formulate the model as a MIP. As we have to deal with a
total scheduling horizon of one year, the number of variables within the model will rise quickly, thus we have
to come up with methods to work around this, which have been provided in Section 3.1. Subsequently, Sec-
tion 3.2 has detailed methodologies to solve the MIP model. In a later stadium of our research it will become
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clear which (combination) of these is the most suitable.

As to focus the research and provide a clear path throughout the whole research and writing process, it
is imperative to have a clear and concise research question. This research question follows from combin-
ing the research objective and the problem statement given to us by our client, the RNLAF. Since writing a
master’s thesis is a complex and lengthy process, it is wise to split the main research question into several
sub-questions.

How can we develop a decision support tool that is able to aid Royal Netherlands Air Force (RN-
LAF) fighter squadron schedulers in constructing a baseline yearly schedule?

• What are the current challenges in scheduling training flights within a typical RNLAF fighter
squadron?

• What are the requirements of the initial, recurrent and transition training programs?

• What resources are available and how is the planning environment constrained?

• What model form is suitable to find a solution to this problem within the specified require-
ments?

• What methodology is suitable to solve the model and balance runtime and solution quality?

In the end, the project can be concluded by clearly answering each sub-question and if by doing so, one
can also provide an answer to the main research question in such a way that the research objective has been
met and that the gap in the research has been closed.
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5
FPTSAP model

The solution methodology for the FPTSAP model is discussed in detail in the scientific paper in Part I. This
chapter serves as a guide to understand the flows and processes within the model. First, Section 5.1 gives
some insight on the setup that is used to write the model, run the model and obtain the results. In Section 5.2
the model architecture is explained and put into context of the solution methodology. Section 5.3 provides
an explanation of the pre-processors that are used in the model.

5.1. Model Setup
The model is written in the Python programming language, version 3.7. As such, for more information with
regards to the terms and semantics used to describe the model, one can consult the Python documentation
[5]. For the ease of programming and debugging, the Spyder IDE is used to write the model script [3]. To solve
the optimization problems in the model, Gurobi is used [10]. Advertised as "the fastest solver in the world",
Gurobi uses a combination of a complex B&B algorithm and several heuristics to solve the models it is offered.
The Master Problem (MP) solves with all parameters set at their default value. For every Sub Problem (SPr)
however, a runtime limit of 20 seconds is imposed. In general the SPrs solve to optimality within this time
limit, but exceptions can occur where a SPr has difficulties to converge from a solution with an optimality gap
of less than 5% to the optimal solution. To prevent the model from getting stuck within such a SPr, the time
limit is set. Information on the machine used to run the model and obtain the results is found in Table 5.1.

Table 5.1: Specifications of the used system.

Operating System Windows 10 Home
Processor Intel Core i5-7200U 2.5GHz
RAM 8.00 GB
System Type x64-based

5.2. Model Architecture
An overview of the high-level architecture of the FPTSAP model is given in Figure 5.1. The core of the model
is marked yellow, required input is marked blue, functions that serve as pre-processors are pink, output is
represented by green and the control sequence that handles the number of runs is maintained white.

The core of the model is defined as a Python class, that possesses multiple methods. Before the program
is run, the user has to specify the values for the user-defined import parameters defined. Then, when the
model is initiated, the Init method assigns these parameters to an attribute and also defines other attributes
that are used later. The Read method reads the two workbooks that contain the input data on the scenario.
Subsequently, all data is structured in such a way that it is easily accessible by the Prep method and the
accompanying functions that act as pre-processors. The contents and functionalities of these pre-processors
are elaborated upon in Section 5.3. Then, the Build MP method constructs the MP constructs the MIP that will
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Figure 5.1: Flow chart of the FPTSAP model.
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be passed on to Gurobi. Next, the Solve method takes care of the solution process, which is explained further
in the next paragraph. The Results method processes the results for this iteration. Out of all iterations made,
it decides which one offers the best solution. For this solution, the schedules and all relevant information on
completed training are output. Afterwards, either a new run is started by returning to init and creating a new
problem instance, or the full model is stopped and the combined data of all runs is output.

The Solve method is more complex as it also calls other methods. This process is visualized in Figure 5.2.
It begins by calling the Gurobi solver to optimize the MP. Subsequently, the first SPr is constructed using the
solution from the MP, which states what mission category is scheduled for the current week. The current SPr
is then solved by Gurobi. Method SPr Results stores the results of the current SPr, such as the schedule and
completed training per pilot. Additionally, it stores a MIP start for the initial conditions of this SPr. These
MIP starts and the completed training data are used as input for future SPrs. When the results have been
processed, the model checks if the current SPr was the last in the scheduling horizon. If this is not the case,
the model moves to the next week and returns to the Build SPr method. If the scheduling horizon is finished,
the results for the current iteration of the full scheduling horizon are stored by the method IP Results. This
method also cuts off the current solution, so the MP should come up with another solution in future itera-
tions. Subsequently, if the objective value for the current iteration is lower than the set limit, a new iteration is
started by optimizing the MP again. If it was the last iteration, the model leaves the solve block and continues
in Figure 5.1.

5.3. Pre-Processors
Pilot Naming This pre-processor assigns a unique identifier to each pilot, based on the total number of
pilots, the qualification of the pilot and the number of pilots with that qualification. Normally, the model
user could just input the actual names of the pilots. For this thesis however, the actual data from the RNLAF
is classified and as such a semi-random scenario is used. Then, assigning an identifier like this is an easy
manner to be able to distinguish the pilots.

Pilot Executions Taking as input the pilot data and mission data workbooks, this function calculates how
many times every pilot should complete every specific training mission in order to obtain full completion of
the assigned training syllabi. This information is obtained from the syllabi that are assigned to the pilot and
the level of experience of the pilot.

Pilot Availability This function takes care of assigning days off to the pilots. If the FPTSAP model is used to
build a schedule on a real case, this function would be obsolete, because the availability of the pilots would
be known. In this case however, the function takes as input the pilots, the scheduling horizon and how many
days off should be assigned to every pilot. For the reference scenario, every pilot is awarded one day off
for every ten working days. This is roughly in line with the guidance set in the collective labor agreement for
Dutch military personnel. These days off are randomly spread out over the scheduling horizon for every pilot.

Aircraft Availability Analog to the Pilot Availability pre-processor, this function maps the availability of the
number of aircraft throughout the scheduling horizon, as no real (unclassified) data is available on the aircraft
availability. In day-to-day practice however, it can be seen that it is common to have either 4, 6 or 8 aircraft
available for training missions at every go. At the same time, the maintenance organisation aims to have
a constant amount of aircraft available during a single week. Combining these aspects, this function takes
the scheduling horizon in terms of weeks and makes either 4, 6 or 8 aircraft available, randomized over all
weeks, but with an average of 6 aircraft. If however, there are deployments in the schedule, these weeks are
automatically only assigned 4 available aircraft, since some aircraft are also used to carry out the deployment.
These numbers are specific to the case, but could also be changed.

Deploy Pilots Depending on the size of the deployments, every deployment must be filled with a number
of pilots of adequate qualifications. This pre-processor takes as input the size of the deployments and the
number of deployment periods. Then for every deployment period, the function assures that enough pilots
are scheduled to go on the deployment and that the pilots that are chosen have the right qualifications to
meet the demands that are set for the deployment.
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Figure 5.2: Detailed process of the Solve method from 5.1
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Create Precedents In initial training as well as in transition training, certain missions have one or more
precedents. This means that those missions can only be completed after having completed all of the required
precedents. This function structures the missions and precedents in such a way that they can be easily read
by the model, independent of how many precedents a mission has.
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A
Scenario Data

This appendix provides an overview of the data that is used as input to test the FPTSAP model. Section A.1
gives an overview of the pilot data and the same is done in Section A.2 for the mission data.

A.1. Pilot Data
Tables A.1 - A.4 give an overview of the sets of pilots that are used in the different testing scenarios. Each
pilot has a qualification, a status indicating his experience and is assigned one or more syllabi that he should
complete. RT means a pilot has to complete recurrent training, IL means a pilot has to complete initial train-
ing, U2 means a pilot should complete transition training from WM to 2-FL and U4 means a pilot should
complete transition training from 2-FL to 4-FL.

Table A.1: Pilot data for the scenario with 10 pilots.

P ID Qualification Status Syllabi

1 IP exp RT
2 IP exp RT
3 IP exp RT
4 F4 exp RT
5 F4 exp RT
6 F2 exp RT, U4
7 F2 exp RT
8 WM inexp RT, U2
9 WM inexp RT
10 SP inexp IL
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Table A.2: Pilot data for the reference scenario.

P ID Qualification Status Syllabi

1 IP exp RT
2 IP exp RT
3 IP exp RT
4 IP exp RT
5 IP exp RT
6 IP exp RT
7 IP exp RT
8 F4 exp RT
9 F4 exp RT
10 F4 exp RT
11 F4 exp RT
12 F4 exp RT
13 F2 exp RT, U4
14 F2 exp RT
15 F2 exp RT
16 F2 inexp RT
17 F2 inexp RT
18 F2 inexp RT
19 WM inexp RT, U2
20 WM inexp RT, U2
21 WM inexp RT
22 SP inexp IL
23 SP inexp IL
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Table A.3: Pilot data for the scenario with 50 pilots.

P ID Qualification Status Syllabi

1 IP exp RT
2 IP exp RT
3 IP exp RT
4 IP exp RT
5 IP exp RT
6 IP exp RT
7 IP exp RT
8 IP exp RT
9 IP exp RT
10 IP exp RT
11 IP exp RT
12 IP exp RT
13 IP exp RT
14 IP exp RT
15 F4 exp RT
16 F4 exp RT
17 F4 exp RT
18 F4 exp RT
19 F4 exp RT
20 F4 exp RT
21 F4 exp RT
22 F4 exp RT
23 F4 exp RT
24 F4 exp RT
25 F4 exp RT
26 F2 exp RT, U4
27 F2 exp RT
28 F2 exp RT
29 F2 inexp RT
30 F2 inexp RT
31 F2 inexp RT
32 F2 exp RT, U4
33 F2 exp RT, U4
34 F2 exp RT, U4
35 F2 inexp RT
36 F2 inexp RT
37 F2 inexp RT
38 F2 inexp RT
39 WM inexp RT, U2
40 WM inexp RT, U2
41 WM inexp RT
42 WM inexp RT, U2
43 WM inexp RT, U2
44 WM inexp RT
45 WM inexp RT, U2
46 SP inexp IL
47 SP inexp IL
48 SP inexp IL
49 SP inexp IL
50 SP inexp IL
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Table A.4: Pilot data for the scenario with 75 pilots.

P ID Qualification Status Syllabi

1 IP exp RT
2 IP exp RT
3 IP exp RT
4 IP exp RT
5 IP exp RT
6 IP exp RT
7 IP exp RT
8 IP exp RT
9 IP exp RT
10 IP exp RT
11 IP exp RT
12 IP exp RT
13 IP exp RT
14 IP exp RT
15 IP exp RT
16 IP exp RT
17 IP exp RT
18 IP exp RT
19 IP exp RT
20 IP exp RT
21 IP exp RT
22 F4 exp RT
23 F4 exp RT
24 F4 exp RT
25 F4 exp RT
26 F4 exp RT
27 F4 exp RT
28 F4 exp RT
29 F4 exp RT
30 F4 exp RT
31 F4 exp RT
32 F4 exp RT
33 F4 exp RT
34 F4 exp RT
35 F4 exp RT
36 F4 exp RT
37 F4 exp RT
38 F2 exp RT, U4
39 F2 exp RT, U4
40 F2 exp RT, U4
41 F2 exp RT, U4
42 F2 exp RT, U4
43 F2 exp RT
44 F2 exp RT
45 F2 exp RT
46 F2 exp RT
47 F2 exp RT
48 F2 exp RT
49 F2 exp RT
50 F2 exp RT
51 F2 inexp RT
52 F2 inexp RT
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Table A.4: Pilot data for the scenario with 75 pilots.

P ID Qualification Status Syllabi

53 F2 inexp RT
54 F2 inexp RT
55 F2 inexp RT
56 F2 inexp RT
57 WM inexp RT, U2
58 WM inexp RT, U2
59 WM inexp RT, U2
60 WM inexp RT, U2
61 WM inexp RT, U2
62 WM inexp RT, U2
63 WM inexp RT
64 WM inexp RT
65 WM inexp RT
66 WM inexp RT
67 WM inexp RT
68 SP inexp IL
69 SP inexp IL
70 SP inexp IL
71 SP inexp IL
72 SP inexp IL
73 SP inexp IL
74 SP inexp IL
75 SP inexp IL

A.2. Mission Data
Table A.5 gives an overview of the set of missions that is used in the reference scenario. The most important
characteristics of each mission are the amount of times it should be performed per syllabus, the mission
category it belongs to, the mission size and the precedents to the mission. The abbreviations that denote
the number of executions required per syllabus are: R1 for recurrent training by experienced pilots, R2 for
recurrent training by inexperienced pilots, IL for initial training, DY for deployment work-up programs, U2
for transition training from WM to 2-FL and U4 for transition training from 2-FL to 4-FL.

Table A.5: Mission data for the reference scenario.

M ID S Blue size Total size Red mission #R1 #R2 #IL #DY #U2 #U4 Prec Same MC MC Alt

1 IL, RT 2 2 / 1 1 1 0 0 0 / / A1 /
2 IL, RT 2 2 / 1 1 1 0 0 0 1 / A1 /
3 IL, RT 2 2 / 0 1 1 0 0 0 2 / A1 /
4 IL, RT 2 3 35 1 1 1 0 0 0 3 / A1 /
5 IL, RT 2 3 35 1 1 1 0 0 0 4 / A1 /
6 IL, RT 2 4 35 3 3 1 0 0 0 5 / A2 /
7 IL, RT 2 4 36 2 3 1 0 0 0 6 / A3 /
8 IL 2 3 35 0 0 1 0 0 0 7 / A3 /
9 IL, RT 2 4 36 1 2 1 0 0 0 6 / A4 /

10 IL, RT 4 6 36 2 3 1 0 0 0 6 / A2 /
11 IL, RT 4 6 36 2 2 1 0 0 0 10 / A3 /
12 IL, RT 4 6 36 2 2 1 0 0 0 9 / A4 /
13 IL 2 3 35 0 0 1 0 0 0 6 / A2 /
14 IL 4 6 36 0 0 1 0 0 0 7 / A3 /
15 IL 4 6 36 0 0 1 0 0 0 9 / A4 /
16 IL 2 2 / 0 0 1 0 0 0 / / A5 /
17 IL 2 2 / 0 0 1 0 0 0 / / A5 /
18 IL, RT 2 2 / 1 2 1 0 0 0 / / G1 /
19 IL, RT 2 2 / 1 1 1 0 0 0 / / G1 /
20 IL, RT, DY 2 2 / 3 5 1 2 0 0 / / G2 /
21 IL, RT, DY 2 2 / 1 1 1 2 0 0 20 / G2 /
22 IL 2 2 / 0 0 1 0 0 0 20 / G2 /
23 IL 2 2 / 0 0 1 0 0 0 21 / G2 /
24 IL 2 2 / 0 0 1 0 0 0 21 / G2 /
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Table A.5: Mission data for the reference scenario.

M ID S Blue size Total size Red mission #R1 #R2 #IL #DY #U2 #U4 Prec Same MC MC Alt

25 IL 2 2 / 0 0 1 0 0 0 22, 23, 24 / G3 /
26 IL 2 2 / 0 0 1 0 0 0 25 / G3 /
27 IL 4 4 / 0 0 1 0 0 0 26 / G3 /
28 IL 2 2 / 0 0 1 0 0 0 22, 23, 24 / G3 /
29 IL, RT, DY 2 4 36 3 4 1 2 0 0 28 / G3 /
30 IL, RT, DY 4 6 36 3 3 1 1 0 0 29 / G3 /
31 IL 2 2 / 0 0 1 0 0 0 22, 23, 24 / G4 /
32 IL, RT 2 2 / 3 3 1 0 0 0 31 / G4 /
33 IL 2 2 / 0 0 1 0 0 0 32 / G4 /
34 RT 2 4 36 1 2 0 0 0 / / A4 /
35 ST 1 1 / 0 0 0 0 0 0 / / R /
36 ST 2 2 / 0 0 0 0 0 0 / / R /
37 ST 4 4 / 0 0 0 0 0 0 / / R /
38 UP2 2 2 / 0 0 0 0 1 0 / 3 A1 /
39 UP2 2 3 35 0 0 0 0 1 0 38 4 A1 /
40 UP2 2 4 36 0 0 0 0 1 0 39 6 A2 /
41 UP2 2 4 36 0 0 0 0 1 0 40 7 A3 /
42 UP2 4 6 36 0 0 0 0 1 0 41 11 A3 /
43 UP2 2 4 36 0 0 0 0 1 0 40 9 A4 /
44 UP2 4 6 36 0 0 0 0 1 0 43 12 A4 /
45 UP2 2 2 / 0 0 0 0 1 0 / 16 A5 /
46 UP2 2 2 / 0 0 0 0 1 0 / 19 G1 /
47 UP2 2 2 / 0 0 0 0 1 0 46 21 G2 /
48 UP2 2 2 / 0 0 0 0 1 0 46 32 G4 /
49 UP2 4 6 36 0 0 0 0 1 0 46, 50 30 G3 /
50 UP2 2 4 36 0 0 0 0 1 0 47 29 G3 /
51 UP2 4 6 36 0 0 0 0 1 0 42, 44, 45 12 A4 G3
52 UP4 4 6 36 0 0 0 0 0 2 / 10 A2 /
53 UP4 4 6 36 0 0 0 0 0 2 52 11 A3 /
54 UP4 4 6 36 0 0 0 0 0 2 52 12 A4 /
55 UP4 4 6 36 0 0 0 0 0 2 / 30 G3 /
56 UP4 4 6 36 0 0 0 0 0 1 53, 54, 55 12 A4 G3
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Example Schedule

An example of a schedule constructed by the FPTSAP model is given in Table B.1. The table visualizes the
planning per go. In this schedule, we can see that pilot 16-F2-4 is assigned to mission 1 during the AM go of
day 1. In the scenario used, a maximum of 8 aircraft is available per week. If less than 8 aircraft are available
for a given week, the schedule is completed with na. If an aircraft was available, but not used for scheduling,
the schedule displays Empty AC.

Table B.1: Example of a schedule output by the FPTSAP model.
Aircraft

1 2 3 4 5 6 7 8

AM1 1: 16-F2-4 1: 22-SP-1 1: 23-SP-2 1: 2-IP-2 1: 7-IP-7 1: 8-F4-1 2: 18-F2-6 2: 19-WM-1

PM1 1: 5-IP-5 1: 6-IP-6 2: 22-SP-1 2: 23-SP-2 2: 2-IP-2 2: 3-IP-3 3: 18-F2-6 3: 19-WM-1

AM2 1: 13-F2-1 1: 1-IP-1 2: 12-F4-5 2: 14-F2-2 38: 19-WM-1 38: 20-WM-2 38: 2-IP-2 38: 7-IP-7

PM2 1: 15-F2-3 1: 9-F4-2 35: 23-SP-2 35: 7-IP-7 39: 20-WM-2 39: 5-IP-5 4: 10-F4-3 4: 1-IP-1

AM3 2: 4-IP-4 2: 7-IP-7 2: 8-F4-1 2: 9-F4-2 3: 1-IP-1 3: 22-SP-1 3: 23-SP-2 3: 3-IP-3

PM3 2: 20-WM-2 2: 5-IP-5 35: 1-IP-1 35: 23-SP-2 39: 19-WM-1 39: 3-IP-3 4: 22-SP-1 4: 7-IP-7

AM4 1: 10-F4-3 1: 11-F4-4 1: 12-F4-5 1: 14-F2-2 1: 20-WM-2 1: 4-IP-4 2: 16-F2-4 2: 21-WM-3

PM4 1: 18-F2-6 1: 3-IP-3 2: 10-F4-3 2: 11-F4-4 2: 13-F2-1 2: 6-IP-6 3: 16-F2-4 3: 21-WM-3

AM5 35: 11-F4-4 35: 19-WM-1 3: 17-F2-5 3: 20-WM-2 4: 23-SP-2 4: 6-IP-6 5: 1-IP-1 5: 22-SP-1

PM5 1: 17-F2-5 1: 21-WM-3 2: 15-F2-3 2: 1-IP-1 35: 6-IP-6 5: 23-SP-2 5: 2-IP-2 Empty AC

AM6 18: 14-F2-2 18: 16-F2-4 18: 18-F2-6 18: 2-IP-2 46: 20-WM-2 46: 6-IP-6 na na

PM6 18: 15-F2-3 18: 20-WM-2 19: 19-WM-1 19: 23-SP-2 19: 4-IP-4 19: 5-IP-5 na na

AM7 18: 18-F2-6 18: 1-IP-1 18: 20-WM-2 18: 6-IP-6 19: 15-F2-3 19: 17-F2-5 na na

PM7 18: 10-F4-3 18: 12-F4-5 18: 13-F2-1 18: 17-F2-5 19: 18-F2-6 19: 1-IP-1 na na

AM8 18: 19-WM-1 18: 7-IP-7 19: 10-F4-3 19: 11-F4-4 19: 14-F2-2 19: 9-F4-2 na na

PM8 18: 22-SP-1 18: 4-IP-4 19: 20-WM-2 19: 3-IP-3 46: 19-WM-1 46: 7-IP-7 na na

AM9 19: 12-F4-5 19: 22-SP-1 19: 2-IP-2 19: 8-F4-1 Empty AC Empty AC na na

PM9 18: 11-F4-4 18: 21-WM-3 18: 8-F4-1 18: 9-F4-2 19: 13-F2-1 19: 16-F2-4 na na

AM10 18: 16-F2-4 18: 17-F2-5 18: 21-WM-3 18: 5-IP-5 Empty AC Empty AC na na

PM10 18: 23-SP-2 18: 3-IP-3 Empty AC Empty AC Empty AC Empty AC na na

AM11 20: 14-F2-2 20: 8-F4-1 47: 20-WM-2 47: 7-IP-7 na na na na

PM11 20: 1-IP-1 20: 22-SP-1 20: 23-SP-2 20: 7-IP-7 na na na na

AM12 21: 22-SP-1 21: 3-IP-3 22: 23-SP-2 22: 5-IP-5 na na na na

PM12 20: 3-IP-3 20: 4-IP-4 47: 19-WM-1 47: 5-IP-5 na na na na

AM13 21: 23-SP-2 21: 6-IP-6 22: 22-SP-1 22: 7-IP-7 na na na na

PM13 23: 23-SP-2 23: 2-IP-2 24: 22-SP-1 24: 7-IP-7 na na na na

AM14 20: 15-F2-3 20: 7-IP-7 24: 1-IP-1 24: 23-SP-2 na na na na

PM14 20: 10-F4-3 20: 2-IP-2 21: 11-F4-4 21: 1-IP-1 na na na na
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Table B.1: Example of a schedule output by the FPTSAP model.

Aircraft
1 2 3 4 5 6 7 8

AM15 20: 11-F4-4 20: 3-IP-3 23: 1-IP-1 23: 22-SP-1 na na na na

PM15 20: 12-F4-5 20: 8-F4-1 21: 10-F4-3 21: 4-IP-4 na na na na

AM16 28: 23-SP-2 28: 3-IP-3 36: 16-F2-4 36: 5-IP-5 50: 20-WM-2 50: 6-IP-6 na na

PM16 25: 23-SP-2 25: 2-IP-2 28: 1-IP-1 28: 22-SP-1 Empty AC Empty AC na na

AM17 25: 22-SP-1 25: 2-IP-2 36: 18-F2-6 36: 5-IP-5 50: 19-WM-1 50: 4-IP-4 na na

PM17 36: 14-F2-2 36: 19-WM-1 49: 20-WM-2 49: 2-IP-2 49: 4-IP-4 49: 9-F4-2 na na

AM18 26: 22-SP-1 26: 3-IP-3 29: 23-SP-2 29: 5-IP-5 36: 10-F4-3 36: 9-F4-2 na na

PM18 26: 1-IP-1 26: 23-SP-2 29: 22-SP-1 29: 6-IP-6 36: 17-F2-5 36: 8-F4-1 na na

AM19 30: 1-IP-1 30: 22-SP-1 30: 23-SP-2 30: 3-IP-3 36: 12-F4-5 36: 5-IP-5 na na

PM19 36: 10-F4-3 36: 5-IP-5 49: 14-F2-2 49: 19-WM-1 49: 1-IP-1 49: 3-IP-3 na na

AM20 36: 20-WM-2 36: 2-IP-2 55: 13-F2-1 55: 5-IP-5 55: 8-F4-1 55: 9-F4-2 na na

PM20 36: 16-F2-4 36: 20-WM-2 55: 12-F4-5 55: 13-F2-1 55: 3-IP-3 55: 5-IP-5 na na

AM21 na na na na na na na na

PM21 na na na na na na na na

AM22 na na na na na na na na

PM22 na na na na na na na na

AM23 na na na na na na na na

PM23 na na na na na na na na

AM24 na na na na na na na na

PM24 na na na na na na na na

AM25 na na na na na na na na

PM25 na na na na na na na na

AM26 20: 14-F2-2 20: 15-F2-3 20: 17-F2-5 20: 18-F2-6 20: 6-IP-6 20: 9-F4-2 21: 12-F4-5 21: 8-F4-1

PM26 20: 12-F4-5 20: 13-F2-1 20: 15-F2-3 20: 17-F2-5 20: 18-F2-6 20: 19-WM-1 20: 1-IP-1 20: 21-WM-3

AM27 20: 13-F2-1 20: 16-F2-4 20: 17-F2-5 20: 19-WM-1 20: 20-WM-2 20: 8-F4-1 Empty AC Empty AC

PM27 20: 16-F2-4 20: 19-WM-1 20: 20-WM-2 20: 5-IP-5 Empty AC Empty AC Empty AC Empty AC

AM28 20: 10-F4-3 20: 11-F4-4 20: 16-F2-4 20: 18-F2-6 20: 19-WM-1 20: 2-IP-2 20: 4-IP-4 20: 5-IP-5

PM28 20: 12-F4-5 20: 18-F2-6 20: 19-WM-1 20: 20-WM-2 20: 21-WM-3 20: 2-IP-2 20: 5-IP-5 20: 9-F4-2

AM29 20: 11-F4-4 20: 13-F2-1 20: 16-F2-4 20: 17-F2-5 20: 20-WM-2 20: 21-WM-3 21: 15-F2-3 21: 2-IP-2

PM29 20: 10-F4-3 20: 17-F2-5 20: 1-IP-1 20: 21-WM-3 20: 6-IP-6 20: 7-IP-7 21: 14-F2-2 21: 20-WM-2

AM30 20: 14-F2-2 20: 18-F2-6 20: 3-IP-3 20: 4-IP-4 20: 6-IP-6 20: 9-F4-2 Empty AC Empty AC

PM30 20: 16-F2-4 20: 20-WM-2 21: 13-F2-1 21: 17-F2-5 21: 18-F2-6 21: 19-WM-1 21: 21-WM-3 21: 9-F4-2

AM31 16: 10-F4-3 16: 8-F4-1 45: 19-WM-1 45: 1-IP-1 na na na na

PM31 Empty AC Empty AC Empty AC Empty AC na na na na

AM32 16: 1-IP-1 16: 22-SP-1 16: 23-SP-2 16: 2-IP-2 na na na na

PM32 16: 10-F4-3 16: 11-F4-4 17: 8-F4-1 17: 9-F4-2 na na na na

AM33 Empty AC Empty AC Empty AC Empty AC na na na na

PM33 Empty AC Empty AC Empty AC Empty AC na na na na

AM34 Empty AC Empty AC Empty AC Empty AC na na na na

PM34 17: 22-SP-1 17: 23-SP-2 17: 5-IP-5 17: 6-IP-6 na na na na

AM35 Empty AC Empty AC Empty AC Empty AC na na na na

PM35 45: 1-IP-1 45: 20-WM-2 Empty AC Empty AC na na na na

AM36 35: 2-IP-2 35: 7-IP-7 6: 11-F4-4 6: 12-F4-5 6: 23-SP-2 6: 6-IP-6 na na

PM36 35: 11-F4-4 35: 2-IP-2 6: 10-F4-3 6: 15-F2-3 6: 22-SP-1 6: 4-IP-4 na na

AM37 36: 15-F2-3 36: 17-F2-5 40: 19-WM-1 40: 1-IP-1 Empty AC Empty AC na na

PM37 36: 19-WM-1 36: 7-IP-7 52: 10-F4-3 52: 13-F2-1 52: 3-IP-3 52: 5-IP-5 na na

AM38 36: 17-F2-5 36: 7-IP-7 52: 12-F4-5 52: 13-F2-1 52: 3-IP-3 52: 6-IP-6 na na

PM38 36: 2-IP-2 36: 8-F4-1 40: 20-WM-2 40: 6-IP-6 Empty AC Empty AC na na
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Table B.1: Example of a schedule output by the FPTSAP model.

Aircraft
1 2 3 4 5 6 7 8

AM39 10: 15-F2-3 10: 2-IP-2 10: 4-IP-4 10: 6-IP-6 36: 13-F2-1 36: 17-F2-5 na na

PM39 10: 11-F4-4 10: 23-SP-2 10: 2-IP-2 10: 4-IP-4 36: 10-F4-3 36: 12-F4-5 na na

AM40 10: 10-F4-3 10: 15-F2-3 10: 22-SP-1 10: 5-IP-5 36: 2-IP-2 36: 4-IP-4 na na

PM40 13: 22-SP-1 13: 23-SP-2 13: 2-IP-2 13: 3-IP-3 35: 11-F4-4 35: 18-F2-6 na na

AM41 29: 11-F4-4 29: 15-F2-3 36: 1-IP-1 36: 23-SP-2 na na na na

PM41 27: 1-IP-1 27: 22-SP-1 27: 23-SP-2 27: 7-IP-7 na na na na

AM42 29: 13-F2-1 29: 3-IP-3 36: 2-IP-2 36: 7-IP-7 na na na na

PM42 29: 13-F2-1 29: 1-IP-1 36: 7-IP-7 36: 8-F4-1 na na na na

AM43 29: 12-F4-5 29: 1-IP-1 36: 14-F2-2 36: 18-F2-6 na na na na

PM43 29: 14-F2-2 29: 1-IP-1 36: 3-IP-3 36: 7-IP-7 na na na na

AM44 29: 6-IP-6 29: 9-F4-2 36: 14-F2-2 36: 1-IP-1 na na na na

PM44 29: 14-F2-2 29: 15-F2-3 36: 13-F2-1 36: 23-SP-2 na na na na

AM45 29: 11-F4-4 29: 12-F4-5 36: 20-WM-2 36: 4-IP-4 na na na na

PM45 29: 13-F2-1 29: 15-F2-3 36: 1-IP-1 36: 21-WM-3 na na na na

AM46 na na na na na na na na

PM46 na na na na na na na na

AM47 na na na na na na na na

PM47 na na na na na na na na

AM48 na na na na na na na na

PM48 na na na na na na na na

AM49 na na na na na na na na

PM49 na na na na na na na na

AM50 na na na na na na na na

PM50 na na na na na na na na

AM51 35: 1-IP-1 35: 3-IP-3 6: 10-F4-3 6: 14-F2-2 6: 2-IP-2 6: 8-F4-1 Empty AC Empty AC

PM51 35: 10-F4-3 35: 1-IP-1 6: 12-F4-5 6: 5-IP-5 6: 8-F4-1 6: 9-F4-2 Empty AC Empty AC

AM52 35: 1-IP-1 35: 2-IP-2 6: 11-F4-4 6: 13-F2-1 6: 14-F2-2 6: 3-IP-3 Empty AC Empty AC

PM52 35: 1-IP-1 35: 22-SP-1 6: 10-F4-3 6: 13-F2-1 6: 3-IP-3 6: 4-IP-4 Empty AC Empty AC

AM53 10: 12-F4-5 10: 14-F2-2 10: 1-IP-1 10: 9-F4-2 36: 17-F2-5 36: 18-F2-6 Empty AC Empty AC

PM53 35: 21-WM-3 35: 23-SP-2 6: 15-F2-3 6: 2-IP-2 6: 5-IP-5 6: 9-F4-2 Empty AC Empty AC

AM54 35: 15-F2-3 35: 5-IP-5 6: 13-F2-1 6: 14-F2-2 6: 1-IP-1 6: 6-IP-6 Empty AC Empty AC

PM54 35: 10-F4-3 35: 22-SP-1 6: 11-F4-4 6: 12-F4-5 6: 3-IP-3 6: 8-F4-1 Empty AC Empty AC

AM55 35: 17-F2-5 35: 19-WM-1 6: 15-F2-3 6: 1-IP-1 6: 7-IP-7 6: 9-F4-2 Empty AC Empty AC

PM55 10: 11-F4-4 10: 13-F2-1 10: 1-IP-1 10: 9-F4-2 36: 15-F2-3 36: 4-IP-4 Empty AC Empty AC

AM56 36: 21-WM-3 36: 6-IP-6 54: 11-F4-4 54: 12-F4-5 54: 13-F2-1 54: 1-IP-1 na na

PM56 36: 19-WM-1 36: 3-IP-3 43: 20-WM-2 43: 7-IP-7 Empty AC Empty AC na na

AM57 36: 10-F4-3 36: 17-F2-5 9: 1-IP-1 9: 23-SP-2 Empty AC Empty AC na na

PM57 36: 12-F4-5 36: 16-F2-4 54: 13-F2-1 54: 5-IP-5 54: 6-IP-6 54: 9-F4-2 na na

AM58 36: 10-F4-3 36: 14-F2-2 9: 22-SP-1 9: 3-IP-3 Empty AC Empty AC na na

PM58 12: 22-SP-1 12: 23-SP-2 12: 2-IP-2 12: 6-IP-6 36: 15-F2-3 36: 21-WM-3 na na

AM59 36: 1-IP-1 36: 23-SP-2 43: 19-WM-1 43: 5-IP-5 Empty AC Empty AC na na

PM59 36: 12-F4-5 36: 13-F2-1 44: 11-F4-4 44: 15-F2-3 44: 20-WM-2 44: 2-IP-2 na na

AM60 15: 22-SP-1 15: 23-SP-2 15: 6-IP-6 15: 7-IP-7 36: 16-F2-4 36: 9-F4-2 na na

PM60 36: 15-F2-3 36: 18-F2-6 44: 13-F2-1 44: 19-WM-1 44: 1-IP-1 44: 7-IP-7 na na

AM61 29: 7-IP-7 29: 8-F4-1 36: 13-F2-1 36: 6-IP-6 na na na na

PM61 29: 11-F4-4 29: 8-F4-1 36: 15-F2-3 36: 1-IP-1 na na na na

AM62 29: 10-F4-3 29: 9-F4-2 36: 1-IP-1 36: 6-IP-6 na na na na

PM62 29: 2-IP-2 29: 9-F4-2 36: 13-F2-1 36: 15-F2-3 na na na na
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Table B.1: Example of a schedule output by the FPTSAP model.

Aircraft
1 2 3 4 5 6 7 8

AM63 29: 14-F2-2 29: 2-IP-2 36: 1-IP-1 36: 23-SP-2 na na na na

PM63 29: 2-IP-2 29: 3-IP-3 36: 20-WM-2 36: 8-F4-1 na na na na

AM64 29: 3-IP-3 29: 4-IP-4 36: 13-F2-1 36: 1-IP-1 na na na na

PM64 29: 10-F4-3 29: 12-F4-5 36: 13-F2-1 36: 6-IP-6 na na na na

AM65 29: 4-IP-4 29: 5-IP-5 36: 13-F2-1 36: 15-F2-3 na na na na

PM65 29: 5-IP-5 29: 8-F4-1 36: 13-F2-1 36: 6-IP-6 na na na na

AM66 35: 21-WM-3 35: 22-SP-1 6: 17-F2-5 6: 19-WM-1 6: 20-WM-2 6: 7-IP-7 Empty AC Empty AC

PM66 35: 19-WM-1 35: 22-SP-1 6: 16-F2-4 6: 20-WM-2 6: 21-WM-3 6: 5-IP-5 Empty AC Empty AC

AM67 10: 13-F2-1 10: 19-WM-1 10: 20-WM-2 10: 7-IP-7 36: 2-IP-2 36: 6-IP-6 Empty AC Empty AC

PM67 35: 8-F4-1 35: 9-F4-2 6: 17-F2-5 6: 18-F2-6 6: 19-WM-1 6: 21-WM-3 Empty AC Empty AC

AM68 10: 14-F2-2 10: 18-F2-6 10: 19-WM-1 10: 8-F4-1 36: 11-F4-4 36: 4-IP-4 Empty AC Empty AC

PM68 10: 16-F2-4 10: 20-WM-2 10: 21-WM-3 10: 7-IP-7 36: 15-F2-3 36: 1-IP-1 Empty AC Empty AC

AM69 10: 16-F2-4 10: 18-F2-6 10: 19-WM-1 10: 8-F4-1 36: 13-F2-1 36: 1-IP-1 Empty AC Empty AC

PM69 35: 12-F4-5 35: 22-SP-1 6: 16-F2-4 6: 18-F2-6 6: 19-WM-1 6: 7-IP-7 Empty AC Empty AC

AM70 13: 10-F4-3 13: 16-F2-4 35: 2-IP-2 35: 8-F4-1 6: 17-F2-5 6: 21-WM-3 Empty AC Empty AC

PM70 35: 15-F2-3 35: 1-IP-1 6: 16-F2-4 6: 20-WM-2 6: 2-IP-2 6: 4-IP-4 Empty AC Empty AC

AM71 36: 18-F2-6 36: 6-IP-6 53: 10-F4-3 53: 12-F4-5 53: 13-F2-1 53: 4-IP-4 na na

PM71 36: 16-F2-4 36: 1-IP-1 7: 22-SP-1 7: 2-IP-2 Empty AC Empty AC na na

AM72 36: 14-F2-2 36: 17-F2-5 41: 1-IP-1 41: 20-WM-2 Empty AC Empty AC na na

PM72 11: 22-SP-1 11: 23-SP-2 11: 3-IP-3 11: 7-IP-7 36: 14-F2-2 36: 9-F4-2 na na

AM73 36: 15-F2-3 36: 17-F2-5 7: 23-SP-2 7: 4-IP-4 Empty AC Empty AC na na

PM73 36: 3-IP-3 36: 6-IP-6 41: 19-WM-1 41: 1-IP-1 Empty AC Empty AC na na

AM74 36: 3-IP-3 36: 6-IP-6 42: 11-F4-4 42: 20-WM-2 42: 2-IP-2 42: 7-IP-7 na na

PM74 36: 11-F4-4 36: 13-F2-1 42: 12-F4-5 42: 19-WM-1 42: 2-IP-2 42: 4-IP-4 na na

AM75 36: 11-F4-4 36: 6-IP-6 53: 13-F2-1 53: 3-IP-3 53: 5-IP-5 53: 8-F4-1 na na

PM75 14: 22-SP-1 14: 23-SP-2 14: 2-IP-2 14: 6-IP-6 36: 17-F2-5 36: 1-IP-1 na na

AM76 35: 2-IP-2 4: 14-F2-2 4: 4-IP-4 Empty AC Empty AC Empty AC na na

PM76 35: 23-SP-2 5: 14-F2-2 5: 9-F4-2 Empty AC Empty AC Empty AC na na

AM77 Empty AC Empty AC Empty AC Empty AC Empty AC Empty AC na na

PM77 35: 22-SP-1 35: 23-SP-2 4: 16-F2-4 4: 2-IP-2 5: 17-F2-5 5: 21-WM-3 na na

AM78 35: 22-SP-1 35: 23-SP-2 4: 11-F4-4 4: 15-F2-3 5: 13-F2-1 5: 18-F2-6 na na

PM78 35: 22-SP-1 35: 23-SP-2 4: 20-WM-2 4: 8-F4-1 5: 3-IP-3 5: 5-IP-5 na na

AM79 35: 22-SP-1 35: 23-SP-2 4: 13-F2-1 4: 18-F2-6 5: 19-WM-1 5: 4-IP-4 na na

PM79 35: 13-F2-1 35: 3-IP-3 4: 17-F2-5 4: 9-F4-2 5: 11-F4-4 5: 8-F4-1 na na

AM80 35: 1-IP-1 35: 23-SP-2 4: 12-F4-5 4: 19-WM-1 5: 6-IP-6 5: 7-IP-7 na na

PM80 35: 1-IP-1 35: 23-SP-2 5: 10-F4-3 5: 12-F4-5 5: 15-F2-3 5: 16-F2-4 na na

AM81 11: 14-F2-2 11: 17-F2-5 11: 21-WM-3 11: 6-IP-6 36: 10-F4-3 36: 23-SP-2 na na

PM81 11: 15-F2-3 11: 19-WM-1 11: 1-IP-1 11: 20-WM-2 36: 16-F2-4 36: 6-IP-6 na na

AM82 36: 14-F2-2 36: 7-IP-7 7: 11-F4-4 7: 3-IP-3 Empty AC Empty AC na na

PM82 11: 11-F4-4 11: 19-WM-1 11: 20-WM-2 11: 6-IP-6 36: 10-F4-3 36: 5-IP-5 na na

AM83 11: 16-F2-4 11: 18-F2-6 11: 21-WM-3 11: 5-IP-5 36: 12-F4-5 36: 22-SP-1 na na

PM83 11: 13-F2-1 11: 17-F2-5 11: 18-F2-6 11: 9-F4-2 36: 7-IP-7 36: 8-F4-1 na na

AM84 36: 18-F2-6 36: 7-IP-7 7: 11-F4-4 7: 8-F4-1 Empty AC Empty AC na na

PM84 35: 18-F2-6 35: 20-WM-2 8: 22-SP-1 8: 23-SP-2 8: 6-IP-6 8: 7-IP-7 na na

AM85 11: 15-F2-3 11: 1-IP-1 11: 8-F4-1 11: 9-F4-2 36: 10-F4-3 36: 20-WM-2 na na

PM85 11: 10-F4-3 11: 13-F2-1 11: 14-F2-2 11: 16-F2-4 36: 15-F2-3 36: 5-IP-5 na na

AM86 12: 20-WM-2 12: 21-WM-3 12: 3-IP-3 12: 8-F4-1 36: 18-F2-6 36: 23-SP-2 na na

PM86 12: 16-F2-4 12: 18-F2-6 12: 19-WM-1 12: 7-IP-7 36: 11-F4-4 36: 23-SP-2 na na



67

Table B.1: Example of a schedule output by the FPTSAP model.

Aircraft
1 2 3 4 5 6 7 8

AM87 36: 11-F4-4 36: 22-SP-1 56: 10-F4-3 56: 13-F2-1 56: 17-F2-5 56: 5-IP-5 na na

PM87 12: 10-F4-3 12: 14-F2-2 12: 20-WM-2 12: 9-F4-2 36: 23-SP-2 36: 7-IP-7 na na

AM88 12: 12-F4-5 12: 13-F2-1 12: 19-WM-1 12: 8-F4-1 36: 17-F2-5 36: 22-SP-1 na na

PM88 34: 7-IP-7 34: 9-F4-2 36: 19-WM-1 36: 1-IP-1 Empty AC Empty AC na na

AM89 36: 13-F2-1 36: 16-F2-4 9: 14-F2-2 9: 8-F4-1 Empty AC Empty AC na na

PM89 12: 15-F2-3 12: 18-F2-6 12: 3-IP-3 12: 4-IP-4 36: 13-F2-1 36: 16-F2-4 na na

AM90 36: 12-F4-5 36: 8-F4-1 9: 13-F2-1 9: 9-F4-2 Empty AC Empty AC na na

PM90 12: 14-F2-2 12: 16-F2-4 12: 21-WM-3 12: 4-IP-4 36: 13-F2-1 36: 20-WM-2 na na

AM91 30: 10-F4-3 30: 13-F2-1 30: 14-F2-2 30: 15-F2-3 36: 1-IP-1 36: 23-SP-2 na na

PM91 30: 10-F4-3 30: 12-F4-5 30: 19-WM-1 30: 9-F4-2 36: 1-IP-1 36: 22-SP-1 na na

AM92 30: 11-F4-4 30: 21-WM-3 30: 2-IP-2 30: 4-IP-4 36: 23-SP-2 36: 5-IP-5 na na

PM92 30: 11-F4-4 30: 14-F2-2 30: 15-F2-3 30: 8-F4-1 36: 23-SP-2 36: 3-IP-3 na na

AM93 30: 13-F2-1 30: 18-F2-6 30: 19-WM-1 30: 6-IP-6 36: 17-F2-5 36: 20-WM-2 na na

PM93 30: 10-F4-3 30: 17-F2-5 30: 19-WM-1 30: 2-IP-2 36: 18-F2-6 36: 20-WM-2 na na

AM94 30: 20-WM-2 30: 21-WM-3 30: 4-IP-4 30: 6-IP-6 36: 1-IP-1 36: 3-IP-3 na na

PM94 30: 11-F4-4 30: 6-IP-6 30: 7-IP-7 30: 8-F4-1 36: 1-IP-1 36: 3-IP-3 na na

AM95 30: 12-F4-5 30: 13-F2-1 30: 15-F2-3 30: 7-IP-7 36: 22-SP-1 36: 3-IP-3 na na

PM95 30: 1-IP-1 30: 20-WM-2 30: 5-IP-5 30: 7-IP-7 36: 22-SP-1 36: 3-IP-3 na na

AM96 36: 7-IP-7 36: 9-F4-2 9: 2-IP-2 9: 6-IP-6 Empty AC Empty AC na na

PM96 34: 14-F2-2 34: 2-IP-2 36: 7-IP-7 36: 9-F4-2 Empty AC Empty AC na na

AM97 36: 7-IP-7 36: 9-F4-2 9: 11-F4-4 9: 18-F2-6 Empty AC Empty AC na na

PM97 34: 10-F4-3 34: 8-F4-1 36: 7-IP-7 36: 9-F4-2 Empty AC Empty AC na na

AM98 34: 11-F4-4 34: 4-IP-4 36: 7-IP-7 36: 9-F4-2 Empty AC Empty AC na na

PM98 34: 5-IP-5 34: 6-IP-6 36: 7-IP-7 36: 9-F4-2 Empty AC Empty AC na na

AM99 34: 12-F4-5 34: 1-IP-1 36: 7-IP-7 36: 9-F4-2 Empty AC Empty AC na na

PM99 36: 7-IP-7 36: 9-F4-2 9: 10-F4-3 9: 12-F4-5 Empty AC Empty AC na na

AM100 36: 7-IP-7 36: 9-F4-2 9: 15-F2-3 9: 4-IP-4 Empty AC Empty AC na na

PM100 34: 15-F2-3 34: 3-IP-3 36: 7-IP-7 36: 9-F4-2 Empty AC Empty AC na na

AM101 34: 17-F2-5 34: 20-WM-2 36: 10-F4-3 36: 19-WM-1 Empty AC Empty AC na na

PM101 36: 18-F2-6 36: 8-F4-1 9: 17-F2-5 9: 20-WM-2 Empty AC Empty AC na na

AM102 36: 10-F4-3 36: 5-IP-5 9: 16-F2-4 9: 21-WM-3 Empty AC Empty AC na na

PM102 34: 18-F2-6 34: 19-WM-1 36: 17-F2-5 36: 23-SP-2 Empty AC Empty AC na na

AM103 36: 11-F4-4 36: 19-WM-1 9: 17-F2-5 9: 18-F2-6 Empty AC Empty AC na na

PM103 34: 16-F2-4 34: 18-F2-6 36: 14-F2-2 36: 9-F4-2 Empty AC Empty AC na na

AM104 34: 16-F2-4 34: 20-WM-2 36: 12-F4-5 36: 4-IP-4 Empty AC Empty AC na na

PM104 36: 20-WM-2 36: 5-IP-5 9: 16-F2-4 9: 21-WM-3 Empty AC Empty AC na na

AM105 34: 17-F2-5 34: 21-WM-3 36: 16-F2-4 36: 2-IP-2 Empty AC Empty AC na na

PM105 34: 13-F2-1 34: 21-WM-3 36: 10-F4-3 36: 1-IP-1 Empty AC Empty AC na na

AM106 36: 17-F2-5 36: 1-IP-1 7: 14-F2-2 7: 8-F4-1 Empty AC Empty AC na na

PM106 36: 21-WM-3 36: 8-F4-1 7: 10-F4-3 7: 6-IP-6 Empty AC Empty AC na na

AM107 36: 1-IP-1 36: 20-WM-2 7: 13-F2-1 7: 15-F2-3 Empty AC Empty AC na na

PM107 36: 1-IP-1 36: 8-F4-1 7: 15-F2-3 7: 9-F4-2 Empty AC Empty AC na na

AM108 36: 22-SP-1 36: 8-F4-1 7: 2-IP-2 7: 9-F4-2 Empty AC Empty AC na na

PM108 36: 11-F4-4 36: 8-F4-1 7: 10-F4-3 7: 5-IP-5 Empty AC Empty AC na na

AM109 36: 12-F4-5 36: 14-F2-2 7: 6-IP-6 7: 7-IP-7 Empty AC Empty AC na na

PM109 36: 11-F4-4 36: 22-SP-1 7: 13-F2-1 7: 14-F2-2 Empty AC Empty AC na na

AM110 36: 17-F2-5 36: 9-F4-2 7: 12-F4-5 7: 3-IP-3 Empty AC Empty AC na na

PM110 36: 10-F4-3 36: 8-F4-1 7: 12-F4-5 7: 4-IP-4 Empty AC Empty AC na na
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Table B.1: Example of a schedule output by the FPTSAP model.

Aircraft
1 2 3 4 5 6 7 8

AM111 36: 1-IP-1 36: 23-SP-2 7: 18-F2-6 7: 19-WM-1 na na na na

PM111 36: 21-WM-3 36: 7-IP-7 7: 17-F2-5 7: 20-WM-2 na na na na

AM112 36: 15-F2-3 36: 1-IP-1 7: 16-F2-4 7: 17-F2-5 na na na na

PM112 36: 17-F2-5 36: 19-WM-1 7: 16-F2-4 7: 20-WM-2 na na na na

AM113 36: 21-WM-3 36: 8-F4-1 7: 16-F2-4 7: 20-WM-2 na na na na

PM113 36: 14-F2-2 36: 3-IP-3 7: 21-WM-3 7: 5-IP-5 na na na na

AM114 36: 18-F2-6 36: 9-F4-2 7: 19-WM-1 7: 7-IP-7 na na na na

PM114 36: 1-IP-1 36: 7-IP-7 7: 18-F2-6 7: 19-WM-1 na na na na

AM115 36: 23-SP-2 36: 2-IP-2 7: 17-F2-5 7: 21-WM-3 na na na na

PM115 36: 23-SP-2 36: 2-IP-2 7: 18-F2-6 7: 21-WM-3 na na na na

AM116 32: 11-F4-4 32: 12-F4-5 32: 14-F2-2 32: 16-F2-4 32: 17-F2-5 32: 1-IP-1 32: 20-WM-2 32: 21-WM-3

PM116 32: 10-F4-3 32: 11-F4-4 32: 13-F2-1 32: 15-F2-3 32: 16-F2-4 32: 17-F2-5 32: 1-IP-1 32: 8-F4-1

AM117 32: 12-F4-5 32: 16-F2-4 32: 20-WM-2 32: 21-WM-3 32: 3-IP-3 32: 4-IP-4 32: 6-IP-6 32: 9-F4-2

PM117 31: 22-SP-1 31: 4-IP-4 32: 17-F2-5 32: 19-WM-1 32: 21-WM-3 32: 8-F4-1 48: 20-WM-2 48: 6-IP-6

AM118 31: 23-SP-2 31: 3-IP-3 32: 13-F2-1 32: 14-F2-2 32: 18-F2-6 32: 5-IP-5 32: 7-IP-7 32: 8-F4-1

PM118 32: 13-F2-1 32: 15-F2-3 32: 20-WM-2 32: 22-SP-1 32: 23-SP-2 32: 3-IP-3 32: 4-IP-4 32: 7-IP-7

AM119 32: 10-F4-3 32: 18-F2-6 32: 19-WM-1 32: 1-IP-1 32: 5-IP-5 32: 7-IP-7 33: 23-SP-2 33: 3-IP-3

PM119 32: 10-F4-3 32: 18-F2-6 32: 2-IP-2 32: 4-IP-4 32: 5-IP-5 32: 9-F4-2 33: 1-IP-1 33: 22-SP-1

AM120 31: 13-F2-1 31: 14-F2-2 31: 16-F2-4 31: 18-F2-6 32: 11-F4-4 32: 12-F4-5 32: 15-F2-3 32: 2-IP-2

PM120 32: 14-F2-2 32: 2-IP-2 32: 3-IP-3 32: 9-F4-2 48: 19-WM-1 48: 6-IP-6 Empty AC Empty AC

AM121 36: 10-F4-3 36: 13-F2-1 51: 12-F4-5 51: 19-WM-1 51: 1-IP-1 51: 6-IP-6 na na

PM121 29: 16-F2-4 29: 20-WM-2 36: 12-F4-5 36: 13-F2-1 Empty AC Empty AC na na

AM122 29: 18-F2-6 29: 7-IP-7 36: 11-F4-4 36: 15-F2-3 Empty AC Empty AC na na

PM122 29: 10-F4-3 29: 16-F2-4 36: 5-IP-5 36: 6-IP-6 Empty AC Empty AC na na

AM123 29: 17-F2-5 29: 21-WM-3 36: 12-F4-5 36: 22-SP-1 Empty AC Empty AC na na

PM123 36: 17-F2-5 36: 1-IP-1 51: 15-F2-3 51: 20-WM-2 51: 4-IP-4 51: 7-IP-7 na na

AM124 29: 16-F2-4 29: 20-WM-2 36: 14-F2-2 36: 4-IP-4 Empty AC Empty AC na na

PM124 29: 17-F2-5 29: 7-IP-7 36: 15-F2-3 36: 22-SP-1 Empty AC Empty AC na na

AM125 29: 18-F2-6 29: 20-WM-2 36: 15-F2-3 36: 22-SP-1 Empty AC Empty AC na na

PM125 29: 17-F2-5 29: 21-WM-3 36: 20-WM-2 36: 2-IP-2 Empty AC Empty AC na na
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