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Preface
In recent years, the concept of small satellites has become more and more important to the industry
of space-flight. But as we discover how to get more use out of ever smaller satellites, it also becomes
more important to fly transfer trajectories that use minimal amounts of fuel. Traditional options such as
Hohmann transfers are not viable for these missions, and so other options must be explored. Research
into such options can deliver significant improvements in mission transfer trajectories, and provides
an important base for future missions. It also allows the researcher to gain a deep understanding
of the workings of a specific area of transfer design. This combination of factors has inspired me to
look into this field of research, where I was introduced with the concept of low energy trajectories.
Although the concept of such trajectories is not new, they have only been used a few times so far, and
many possibilities have not yet been explored at all. With this knowledge, I set out into a search for
improvements on the known uses of low energy trajectories.

During my entire thesis, I have encountered significant help. First and foremost I would like to thank my
supervisor, Bart Root, for all the enthusiasm and continuously challengingme to go one step deeper into
the research. Secondly, I would like to thank Dominic Dirkx for his help with the TU Delft Astrodynamics
Toolbox. Thirdly, my thanks Ron Noomen for introducing me with the concept of low energy trajectories.
And lastly, of course, all my friends who where there for me and provided me with motivation when I
most needed it.
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Abstract
To learn more about the origin of the universe, scientist wish to make measurements in the low-
frequency radio wave region. Such measurements suffer greatly from disturbances by man-made
signals. Therefore, missions are proposed which use the Moon as a shield from these disturbances, by
making use of the Earth-Moon 𝐿 Lagrange point, a point in space behind the Moon in which spacecraft
can remain stable with respect to the Earth and the Moon. Especially missions using large numbers of
small satellites are considered valuable, because such groups could together work as an antenna with
a very large aperture, which is beneficial for low-frequency measurements.

This research explores the use of low energy trajectories for a mission to the Earth-Moon 𝐿 point. Low
energy trajectories are found in the circular restricted three body problem, originating in the vicinity of
the Lagrange points. They may be divided into four classes: The periodic ellipse around the Lagrange
point, asymptotic trajectories spiralling into or out of this ellipse, non-transit trajectories which stay ei-
ther on the main body’s side of the Lagrange point or stay on the other side, and the transit trajectories
which move from one side of the Lagrange point to the other.

Although low energy trajectories have been researched for 50 years and used in missions such as
Hiten and Genesis, there has hardly been research on the use of low energy trajectories for a mission
to the Earth-Moon 𝐿 point. This leads to the following research question: What is the optimal configu-
ration for a low energy transfer for a small satellite mission from an Earth-orbit to a lunar 𝐿 orbit, when
allowing for ballistic and non-ballistic transfers? The research assumes that the launcher vehicle will
inject the small satellite into the transfer trajectory.

The design of the mission transfer trajectory using low energy trajectories can be performed with dif-
ferent approaches. Each approach uses a combination of the low energy trajectory categories. Four
configurations are considered:

1. The standard approach found in literature, which uses a non-transit trajectory in the Sun-Earth
system coupled at the vertical Poincaré cut through the Earth with an asymptotic trajectory ap-
proaching the Earth-Moon 𝐿 in the Earth-Moon system.

2. An approach with three asymptotic trajectories, which first travels to the Sun-Earth 𝐿 point, then
back in the direction of Earth, to be coupled to a final segment in the Earth-Moon system to arrive
at the Earth-Moon 𝐿 point.

3. An approach that uses the same segments as the standard approach, but that allows the location
of the link between segments to be at any point instead of only on the vertical Poincaré cut.

4. An approach which allows up to six linked trajectories and has no restriction on the classes of low
energy trajectories used or the location of their links.

These four low energy transfer configurations were compared to answer the research question. The
first comparison is made based on Δ𝑉. Here we see that the third approach is most efficient with a Δ𝑉
below 10 m/s (standard approach: 30 m/s). The second comparison, on transfer time, also shows that
the third approach is the most efficient, with a total transfer time of approximately 120 days (standard
approach: 140 days). Third, we look at the scheduling restrictions: How much does Δ𝑉 increase when
the moment of launch changes. Clearly optimal here is the second approach, which allows for a station-
keeping orbit around the Sun-Earth 𝐿 point. Lastly, we look at the location of orbit insertion. Insertion
near to the Earth means that the launcher requires less Δ𝑉, which is beneficial for total mission cost.
Again, the third approach performs best, with a starting point at a distance of 11,790 km from the Earth.

It can then be concluded that the third approach is the optimal configuration for a low energy transfer
for a small satellite mission from an Earth-orbit to a lunar 𝐿 orbit. However, when additional mission
objectives can be performed at the Sun-Earth 𝐿 , the second approach might be a good alternative. In
general, this research has shown that significant improvements over the standard approach found in
literature are possible.
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1
Introduction

Scientist are intrigued by the origin of our universe. To obtain more information about, low-frequency
radio waves, below 30 MHz, are measured. In this region, not only the ’dark ages’ (early cosmos)
can be measured at high hydrogen red-shifts, but a view of space-weather, solar burst in other solar
systems and new exo-planets may be found (Bentum et al., 2009). Unfortunately measurements in
this frequency band have proven difficult to obtain, since the ionosphere scatters and reflects these
signals, and because human-made signals interfere with the signals from space. Measurements from
the Earth itself are useless for these studies. The the ionospheric disturbance in an Earth orbit is also
too great (Jester and Falcke, 2009) (Alexander et al., 1975).

The difficulty of measuring low-frequency radio waves from Earth orbits, is one of the reasons why sci-
entist are proposing missions to an orbit ’behind’ the Moon, where satellites are shielded from terrestrial
interference (Engelen et al., 2010). Missions such as the Orbiting Low-Frequency Antennas for Radio
astronomy (OLFAR) propose satellite trajectories around the second Earth-Moon Lagrange point (𝐿 )
(Vermeiden, 2014) (Bentum et al., 2009). Satellites in such trajectories are shielded from terrestrial
interference most of the time, but at the tips of their elliptic trajectories they have a direct line of sight
with the Earth to allow direct communications.

An additional challenge for measuring low-frequency radio waves is the required aperture of the an-
tenna, which is in the range of kilometres (Dekens et al., 2014). This is not possible to reach with a
single satellite. However, a swarm of small satellites flying in specific formations may result in a similar
quality of data. Although Jester and Falcke (2009) predicts that an order of 10 − 10 antennas would
be required for ideal results, a lot of science could already be performed with a thousand satellites,
which is a far less improbable number (Engelen et al., 2010).

The challenge for such missions is to get large numbers of small satellites into an orbit around the
Earth-Moon 𝐿 Lagrange point. The traditional high thrust method of transfer for a mission to the Earth-
Moon 𝐿 Lagrange point would be a Hohmann transfer (Szebehely and Mark, 1998). The first burn
of the Hohmann can be performed by the launcher. The second burn, which slows down the satellite
into the desired trajectory, must be performed by the satellite itself, and requires a Δ𝑉 of about 1 km/s
(Riesbroek and Janin, 2000). Most small satellites are not capable of delivering this amount of Δ𝑉 due
to limited fuel storage and engine size. The traditional low thrust method of transfer would be a slowly
widening spiral around Earth (Betts and Erb, 2003). Such transfers are very complex when encoun-
tering three body dynamics (Ozimek and Howell, 2010). It is thus required to look at non-traditional
options. The 1991 Hiten mission proved that it is also possible to use a transfer made up of so-called
’low energy trajectories’, which make use of the perturbation of a third body (Uesugi et al., 1991).

Conley (1968) was amongst the first to describe the concept of low energy trajectories in the restricted
three body problem. It was further developed by, amongst others, Lo and Ross (2001), who describe
this type of trajectories as the ”Interplanetary Superhighway System” (IPS). These low energy trajecto-
ries form ’tunnels’ throughout the solar system, running around the Sun, planets and Moon, originating
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2 1. Introduction

in the vicinity of the Lagrange Points. Belbruno (2004) describes how manifold trajectories may be
used in space mission, including applications for escape and capture trajectories.

Low energy trajectories are found on the invariant manifolds of the circular restricted three body prob-
lem (CR3BP). An invariant manifold is a subspace of the solution space of a problem (Wiggins, 2003)
(Abraham et al., 1990). This subspace has two main characteristics: First of all, it has less dimensions
than the solution space. Second, any solution that is at any point in this subspace, is in the subspace
for all points. Thus, an invariant manifold of the CR3BP is a collection of trajectories which can be
found in a subspace of the CR3BP. Trajectories that are in this subspace at any point do not leave it
without forces acting on it. Thus, if a solution to the equations of motion in the subspace can be found,
a set of trajectories are found through the CR3BP for which no burns are needed.

Koon et al. (2001) proved that using low energy transfers over invariant manifolds could decrease the
required fuel by around 20% when comparing to the Hohmann transfer, with the majority of required
fuel used up when injecting into the trajectory from an Earth orbit and no burn needed at the end of
the trajectory to insert into the orbit around the Earth-Moon 𝐿 . This is especially beneficial for small
satellites, for which the launcher vehicle could provide the initial boost away from Earth.

The use of low energy trajectories over invariant manifolds for a transfer to the 𝐿 point of the Moon has
been demonstrated by several mission. Most famous amongst them are Genesis (Lo and Ross, 2001)
and Hiten (Koon et al., 2001). Research has also been done into the design and optimisation of such
transfers, amongst others by Parker (2007), Mingotti et al. (2011) and Davis et al. (2013). Both the
missions and the research uses transfer trajectories of two different low energy trajectory segments.
The first segment starts near the Earth, then passes close to the Sun-Earth 𝐿 Lagrange point before
going back into the direction of Earth. At a specified location, the spacecraft transfers to a trajectory
towards the Earth-Moon 𝐿 point. In theory, this transfer can be performed without the need of a burn.
Therefore, such transfer trajectories are named ’ballistic low energy transfers’. In reality, a small burn
in the order of 20-40 m/s is required to perform the transfer (Koon et al., 2001). Nonetheless, such
transfers are still considered ’ballistic’. A few examples of such transfers are shown in Figure 1.1.
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Figure 1.1: Examples of low energy ballistic transfers from the Earth to an Earth-Moon orbit. The blue asterisk at the origin
is the Earth, the blue circle around this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth
Lagrange point. The Sun is positioned on the negative x-axis. All other, black lines in the figure are low energy ballistic transfers.
Transfers start on the negative y-axis and end at the Earth-Moon Lagrange point.



3

The researched low energy trajectories have always been of the ballistic type. However, there are
several types of possible transfer layouts using low energy trajectories which are not ballistic. Such
layouts could make it possible for the satellite to enter an ellipse around the Sun-Earth Lagrange point
for some time, either for scheduling purposes or for additional research. (Parker, 2007) suggest that
it might be possible to reduce the amount of change in velocity (Δ𝑉) required by replacing the single
transition of the ballistic transfer with several transitions requiring even smaller burns, and urges for
additional research in this area. For this research, such transfers with more than one transition are
named ’non-ballistic low energy transfers’. Non-ballistic options have never been researched in pub-
lished work, and are one of the two focusses of this research.

The traditional ballistic low energy transfer uses a specified location for the link between the two seg-
ments of the transfer. There has been some research into the advantages of changing the location
of this link, for missions towards the Sun-Earth 𝐿 and/or 𝐿 . For such missions it has been shown
that a decrease in required Δ𝑉 is possible when changing the link location (Langemeijer, 2018). Such
research has not yet been performed for the transfer to the Moon. Such work is the second focus of
this research.

This report on possible alterations on the ’standard’ low energy transfer from the Earth to the Earth-
Moon 𝐿 , with the aim of finding feasible transfers for low frequency measurement missions. The main
research question is thus formulated as follows:

What is the optimal configuration for a low energy transfer for a small satellite mission from an
Earth-orbit to a lunar 𝐿 orbit, when allowing for ballistic and non-ballistic transfers?

Note that this means the research is not meant to find the optimal transfer itself: The research is
limited to looking at different configurations and comparing them, after which a conclusion may be
reached on the optimal configuration. This research question is answered using four sub-questions,
each concerning a possible configuration for the transfer:

1. What is the range for Δ𝑉 and transfer time, for the ’standard’ ballistic transfer?

2. What is the range for Δ𝑉 and transfer time, for the ballistic transfer, when the location of the
transfer from the first section to the second section is allowed to vary?

3. What is the range for Δ𝑉 and transfer time, for a non-ballistic transfer with three segments (Earth
- Sun-Earth 𝐿 , Sun-Earth 𝐿 - Moon influence, Moon influence - Earth-Moon 𝐿 )?

4. What is the range for Δ𝑉 and transfer time, for a non-ballistic transfer with up to five burns in
unspecified locations?

The first sub-question is used for validation of the results, since there has been some previous re-
search into transfers with such lay-outs. The subsequent sub-questions each present a new, not yet
researched configuration for the transfer.

It should be noted that each of the questions is about the required Δ𝑉 and transfer time for the transfer,
only. This means that the injection into this transfer is not taken into account. This is done because it
is likely that the injection into the transfer is performed by the launcher vehicle instead of the satellite
itself. This research seeks to minimize the Δ𝑉 for the satellite, because many of the missions that will
use transfers such as these will involve small satellites with very limited fuel resources.

Several assumptions will be made to allow for answering the research question. Most important of
these is that the trajectories of the Sun, Earth and Moon are assumed to be planar and circular, and
that each of these bodies are treated as point masses. The second important assumption is that the
transition between two three body problems is instant: At one moment the spacecraft is influenced by
the Sun and the Earth, and at the next moment it is influenced by the Earth and the Moon. These
two assumptions greatly simplify the mathematics and allows the entire research to take place in a
two dimensional environment. It should be noticed that it also limits the options for the types of low
energy trajectories used. However, for the comparison between transfer layouts, the two dimensional
environment is sufficient. It should also be noticed that the simplifications used result in transfers that
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are not directly of use in real life missions. However, the purpose of this report is that of comparison of
methods, not of transfer design.

The report starts with explaining the theory of low energy trajectories. The basic physics of the CR3BP
and Lagrange points are explained in Chapter 2, followed by the dynamical systems theory used to
create low energy trajectories in Chapter 3. Both chapters also include the implementation of these
concepts into a model. Making use of the trajectories created through these chapters, it is possible to
start combining trajectories into complete transfers. The different approaches to trajectory linking are
explained in Chapter 4, and the results of these approaches are discussed in Chapter 5. This Chapter
also discusses the validation of the trajectories and transfers, and a discussion on the robustness of
the model. Chapter 6 then describes the comparison between the results of different approaches, and
the implications to the research question. This leads to a conclusion to the research in Chapter 7.



2
Underlying Physics: The CR3BP

The theory of low energy trajectories builds on the Circular Restricted Three Body Problem (CR3BP)
and its equilibria. This problem describes a small body following a trajectory about two larger bodies
which both follow a circular orbit around the barycentre of the system. Within the CR3BP, the Lagrange
Libration points are found. Low energy trajectories originate from the Lagrange points. As such, an
understanding of these points and the underlying CR3BP is fundamental to understanding how the low
energy trajectories are found.

2.1. Three Body Problems
The three body problem describes the motion of three bodies in space. It was first described in the
Principia by Newton (1687). After this, many people have tried solving the problem with no success,
until it was proven by Bruns (1887) that there could be no algebraic function to describe the problem,
and by Poincaré (1893) that there could be no analytical solution to the problem either. This led to the
simplifications of the problem described in Section 2.2.

The general Three Body Problem describes how three given point masses move under their mutual
gravitational attraction. The three bodies are named 𝑃1, 𝑃2 and 𝑃3, and have masses 𝑚 , 𝑚 and
𝑚 . When placed into the standard inertial XYZ frame with the origin in the centre of mass, and using
Newtons laws, this gives the following equation for the motion of each of the bodies (Wakker, 2015,
page 45-49):

𝑑 �̄�
𝑑𝑡 = 𝐺

𝑚
𝑟 �̄� + 𝐺𝑚𝑟 �̄� (2.1)

Where 𝑡 is time, �̄� is the distance of body 𝑃 to the origin, �̄� the distance between bodies 𝑃 and 𝑃 , and
𝐺 is the universal gravitational constant.

Although the three body problem can be solved numerically, it can only be solved algebraically or
analytically for some special cases, such as the case wherein the bodies are on an equilateral triangle
(Lagrange case), and the case wherein the three bodies are on a straight line (Euler case). More
general information about the three body problem can for example be found in Poincaré (1893) or
Wakker (2015).

2.2. The Circular Restricted Three Body Problem
The CR3BP is one of the possible simplifications on the three body problem (Wakker, 2015, page
55-59). It is described briefly in Section 2.2.1, in order to understand further information concerning
the manifold orbits. Then, the implementation of the CR3BP into the code used for the research is
explained in Section 2.2.2.

5



6 2. Underlying Physics: The CR3BP

2.2.1. Equations of motion of the CR3BP
In the CR3BP, three bodies are present, which we shall call 𝑃 , 𝑃 and 𝑃 . It is assumed the masses
of the first two bodies, 𝑚 and 𝑚 , are so much larger than the mass of the third body, 𝑚 , that the
gravitational effects of 𝑚 on the system can be neglected. Also, it is assumed that the larger bodies
are in circular orbits around the barycentre of the system. Since the mass of the third body is neglected,
the two remaining masses represent a simple two body problem. Using the solutions for the two body
problem described by Wakker (2015), we can determine that both bodies rotate around the barycentre
at the same, constant angular velocity.

The CR3BP uses a reference frame with the origin at the barycentre, which rotates at the same angular
velocity as the two main bodies. The X-axis is the line between 𝑃 , the barycentre, and 𝑃 , with the
positive direction from the barycentre towards 𝑃 . The Z-axis is the axis around which the system
rotates. In this system, 𝑃 and 𝑃 always remain on the same location on the X-axis. 𝑃 is free to move
in each of the three dimensions. This system is shown in Figure 2.1.

Figure 2.1: Coordinate system of the CR3BP. and are the main bodies, which are placed on the x-axis. The entire system
rotates at a rate around the z-axis. is the spacecraft which moves freely.

In this system, distances 𝑟, 𝑟 and 𝑟 are also defined. They are the distances from 𝑃 to, respectively,
the origin, 𝑃 and 𝑃 . With this knowledge, the equation of motion of the body 𝑃 with respect to the
rotating reference frame can be determined:

𝛿 �̄�
𝛿𝑡 = −𝐺 (𝑚𝑟 ̄𝑟 + 𝑚𝑟 ̄𝑟 ) − 2�̄� × 𝛿�̄�𝛿𝑡 − �̄� × (�̄� × �̄�) (2.2)

Where 𝜔 is the angular velocity of the two bodies in the inertial reference system. The first term on
the right hand side is the motion of the body had it been in a inertial reference frame. The second
term is the Coriolis acceleration. The third term is the centrifugal acceleration. These last terms are
introduced due to the rotation of the system. Because the system rotates at a constant rate, there is
no Euler acceleration.

The system is simplified by the use of different units of mass. We set (𝑚 +𝑚 ) as a unit of mass, and
introduce the unitless variable 𝜇 to get:

𝑚 = 1 − 𝜇 (2.3)

𝑚 = 𝜇 (2.4)

As a unit of length, we use the distance between 𝑃 and 𝑃 . Then, since O is the barycentre, the
following holds:

𝑂𝑃
𝑂𝑃 = 𝑚

𝑚 = 𝜇
1 − 𝜇 (2.5)
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𝑂𝑃 = 𝜇 (2.6)

𝑂𝑃 = 1 − 𝜇 (2.7)

Lastly, we set a unit of time as 1/𝜔. Then, we rewrite equation 2.2, using the new units for 𝑟 and 𝑡, to
get:

𝛿 �̄�
𝛿𝑡 = − 𝐺

𝜔 [1 − 𝜇𝑟 ̄𝑟 + 𝜇
𝑟 ̄𝑟 ] − 2 ̄𝑒 × 𝛿�̄�𝛿𝑡 − ̄𝑒 × ( ̄𝑒 × �̄�) (2.8)

Here ̄𝑒 is the unit vector in the direction of the z-axis.

This can be further simplified when we use the equation for the circular motion of body P2:

𝑚 𝜔 (𝑂𝑃 ) = 𝐺 𝑚 𝑚
(𝑃 𝑃 ) (2.9)

Which we can translate to:

𝐺
𝜔 = (𝑂𝑃 )(𝑃 𝑃 )

𝑚 = 1 − 𝜇
1 − 𝜇 = 1 (2.10)

Combining equations 2.8 and 2.10 gives:

𝛿 �̄�
𝛿𝑡 = [1 − 𝜇𝑟 �̄� + 𝜇

𝑟 �̄� ] − 2�̄� × 𝛿�̄�𝛿𝑡 − �̄� × (�̄� × �̄�) (2.11)

From the coordinate system that was defined, we know:

�̄� = (𝜇 + 𝑥)�̄�𝑥 + 𝑦�̄� + 𝑧�̄� (2.12)

�̄� = −(1 − 𝜇 − 𝑥)�̄� + 𝑦�̄� + 𝑧�̄� (2.13)

�̄� = 𝑥�̄� + 𝑦�̄� + 𝑧�̄� (2.14)

𝛿�̄�
𝛿𝑡 = �̇��̄� + �̇��̄� + �̇��̄� (2.15)

�̄� × 𝛿�̄�𝛿𝑡 = �̇��̄� − �̇��̄� (2.16)

�̄� × (�̄� × �̄�) = −𝑥�̄� − 𝑦�̄� (2.17)

Here, 𝑥, 𝑦 and 𝑧 are the locations of the spacecraft on each axis, �̄� is the unit vector in the direction of
the x-axis, �̄� is the unit vector in the direction of the y-axis and dots are used to indicate derivatives to
time.

Equations 2.12 through 2.17 can be used to rewrite equation 2.11 into three scalar equations:

�̈� − 2�̇� = 𝑥 − 1 − 𝜇𝑟 (𝜇 + 𝑥) + 𝜇
𝑟 (1 − 𝜇 − 𝑥) (2.18)

�̈� + 2�̇� = 𝑦 − 1 − 𝜇𝑟 𝑦 − 𝜇
𝑟 𝑦 (2.19)

�̈� = −1 − 𝜇𝑟 𝑧 − 𝜇
𝑟 𝑧 (2.20)
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Where double dots are used to indicate second derivatives to time. Then the scalar function U is
introduced (Koon et al., 1999):

𝑈 = 1
2(𝑥 + 𝑦 ) + 1 − 𝜇𝑟 + 𝜇

𝑟 + 𝜇(1 − 𝜇)2 (2.21)

Wakker (2015) formulates this function slightly different (equation 2.22), in a matter that is sufficient for
the problem at hand in his work. However, equation 2.21 is more complete. In following steps, this
more complete notation allows for additional simplifications, such as in equations 2.29 and 2.30. The
shorter version of Wakker does not result in these simple equations.

𝑈 = 1
2(𝑥 + 𝑦 ) + 1 − 𝜇𝑟 + 𝜇

𝑟 (2.22)

By using partial differentiation of equation 2.21 and comparing to equations 2.18 through 2.20 we get:

�̈� − 2�̇� = 𝜕𝑈
𝜕𝑥 (2.23)

�̈� + 2�̇� = 𝜕𝑈
𝜕𝑦 (2.24)

�̈� = 𝜕𝑈
𝜕𝑧 (2.25)

Equations 2.21, 2.23, 2.24 and 2.25 together describe the solution to the CR3BP.

Chapter 3 will show that the system of equations must be linearised to find low energy trajectories. In
preparation of this, the system abovemay be written in a simplified form, which is easier to linearise. For
this purpose the Hamiltonian function, a measure of the energy of the system, is mentioned here.The
Hamiltonian of the system described above is found to be (Koon et al., 2000b):

𝐻 =
(𝑝 + 𝑦) + (𝑝 − 𝑥)

2 − 𝑥 + 𝑦
2 − 1 − 𝜇𝑟 − 𝜇

𝑟 − 𝜇(1 − 𝜇)2 (2.26)

Here, variables 𝑝 and 𝑝 are introduced. They are created to simplify the equation and are defined
with respect to location and velocity as follows:

�̇� = 𝛿𝐻
𝛿𝑝 = 𝑝 + 𝑦 (2.27)

�̇� = 𝛿𝐻
𝛿𝑝 = 𝑝 − 𝑥 (2.28)

�̇� = −𝛿𝐻𝛿𝑥 = 𝑝 − 𝑥 + 𝜕𝑈𝜕𝑥 (2.29)

�̇� = −𝛿𝐻𝛿𝑦 = −𝑝 − 𝑦 + 𝜕𝑈𝜕𝑦 (2.30)

This set of equations describes exactly the same system as equations 2.23 through 2.25, but in a form
that allows for very easy linearisation, as will be shown in Chapter 3.
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2.2.2. Implementation of the CR3BP in TUDAT
The low energy trajectories will be calculated through propagation from a starting position, as will be
explained in Chapter 3. For this purpose, an ephemeris model must be created that fits to the CR3BP.
This is done using the TU Delft Astrodynamics Toolbox (TUDAT (Delft University of Technology, 2016)),
which provides a functional base for such work and allows for re-use of the written code for later re-
search at the TU Delft or associated parties.

The ephemeris model that was created is not a direct implementation of the CR3BP. TUDAT works with
an inertial reference frame, not with the rotating frame of the CR3BP. Therefore, the ephemeris model
uses rotating circular orbits for the main bodies. While this does not influence the forces on and motion
of a spacecraft with respect to the bodies, the coordinates changes. This has to be taken into account
when the initial conditions are calculated.

𝑇 = 2𝜋√𝑟𝜇 (2.31)

For this research, two ephemeris models are created: One with the Sun and the Earth as the main
bodies, and one with the Earth and the Moon as the main bodies. The bodies are created with the
gravitational parameters (𝜇) and orbital periods (𝑇 ) as defined by TUDAT, which can be found in Table
2.1. From these constants, and being restricted to circular orbits, the radius of the orbits (𝑟) can be
calculated using equation 2.31 (Wakker, 2015).This creates the constants for the three main bodies
found in Table 2.1.

Table 2.1: Ephemeris model constants for the three main bodies

𝜇 [𝑚 𝑠 ] 𝑇 [sec] 𝑟 [m]
Sun 1.3271244⋅10
Earth 3.9860044⋅10 31558149.5 149597873474.7
Moon 4.9048695⋅10 2354175.3 384051120.5

In each of the models, the larger of the two bodies is located at the origin of the coordinate system.
The other body is given a constant circular orbit around the origin, using the orbital period and radius
as described above. At 𝑡 = 0 the secondary body is placed on the positive x-axis, then moves counter-
clockwise over the xy-plane. Any third body placed within this system will feel the attraction of each of
the two larger bodies, but it will not affect the orbits of the two main bodies, as befits the third body in
the CR3BP. For more details on the written script, refer to Appendix A.2.

To verify both the models, it was checked if the trajectories are truly circular, by plotting the change in
distance between the two bodies. These plots are shown in Figures 2.2a and 2.2b for the Sun-Earth
and Earth-Moon system respectively. These plots show erratic behaviour, caused by the rounding
errors of the numerical approximation of circular trajectories. There is no drift visible on the long term,
nor are there strange outliers. Figure 2.2b shows some periodic behaviour, with a period equal to half
the orbit period of the Moon. The error is larger when the Moon is in line with Earth and the Sun. This
is caused by the way the data are saved in the script: The location of the Moon is first saved relative
to the Sun, then is converted to be relative to the Earth. Because the Earth and the Moon both start
on the positive x-axis, the x coordinate of the Moon is far larger than the y coordinate at the start of the
run. Due to the way TUDAT saves coordinates, this results in larger rounding errors. If the plot were to
extend to more orbital periods, it would become visible that the peaks changed to the positions where
the Moon is on the y-axis relative to the Earth, due to it’s location with respect to the Sun changing. We
can thus conclude that the erratic behaviour is indeed due to rounding errors and will not show drift.
Therefore, the trajectories are considered sufficiently precise on the long term.
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Figure 2.2: Change in distance between the two main bodies, as a fraction of the starting distance

This ephemeris model is a representation of the theory discussed in Section 2.2.1. Due to the foun-
dation of TUDAT, the code can immediately be used to calculate the movement of any spacecraft with
given initial conditions.

2.3. Lagrange Libration Points
In the equations of motion of the CR3BP, equilibrium points may be found. These are the Lagrange
Points, where the third body can remain in the same position in reference to the two main bodies for
a longer period of time. They are essential to manifold orbits, since all the manifold trajectories start
or end at an orbit around one of these points. Before we can calculate the locations of low energy
trajectories, we must find the locations of the Lagrange points.

2.3.1. Location of the Lagrange Points
The Lagrange points are found on the equilibrium points of the CR3BP, in other words, the places where
both the velocity and the acceleration of the third body can be zero. To find these locations, we first
look at the places where the velocity is zero, which are called the surfaces of Hill. These can be found
by setting an equation for the velocity, Jacobi’s integral, to zero.

Jacobi’s integral is used to determine the velocity of P3 in the reference frame used for the CR3BP. It
is formed by multiplying equation 2.23 with �̇�, 2.24 with �̇� and 2.25 with �̇�, followed by a summation of
these equations, to get:

�̇��̈� + �̇��̈� + �̇��̈� = �̇� 𝜕𝑈𝜕𝑥 + �̇�
𝜕𝑈
𝜕𝑦 + �̇�

𝜕𝑈
𝜕𝑧 (2.32)

The right side of this equation can be simplified when one realizes that 𝑈 is only a function of 𝑥, 𝑦 and
𝑧, so:

𝑑𝑈
𝑑𝑡 =

𝜕𝑈
𝜕𝑥 �̇� +

𝜕𝑈
𝜕𝑦 �̇� +

𝜕𝑈
𝜕𝑧 �̇� (2.33)

Now, these equations can be combined and integrated to get Jacobi’s integral:

�̇� + �̇� + �̇� = 2𝑈 − 𝐶 (2.34)

Here, 𝐶 is the integration constant. The right side of the equation is directly related to the definition of
velocity 𝑉 of the particle:

𝑉 = 2𝑈 − 𝐶 (2.35)

The constant 𝐶, Jacobi’s constant, can be found when combining equation 2.21 and 2.35:
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𝐶 = 𝑥 + 𝑦 + 2(1 − 𝜇)𝑟 + 2𝜇𝑟 + 𝜇(1 − 𝜇) − 𝑉 (2.36)

Jacobi’s constant is the only conserved quantity in the three body problem, and is thus an important
description for the state of a spacecraft as it travels under the influence of the two main bodies.

To find the equilibria of the CR3BP, from which useful low energy trajectories originate, we first look at
those locations where the velocity of 𝑃 is zero. The Jacobi’s integral and constant are reduced to:

2𝑈 = 𝐶 (2.37)

𝐶 = 𝑥 + 𝑦 + 2(1 − 𝜇)𝑟 + 2𝜇𝑟 + 𝜇(1 − 𝜇) (2.38)

Equation 2.38 combined with the equations 2.12 and 2.13, which define 𝑟 and 𝑟 , lead to two conclu-
sions. First of all, the surfaces of Hill are symmetric with respect to the XY- and XZ-planes. In the case
𝜇 = 1/2, it is also symmetric with respect to the YZ plane. Second, the surface are outwardly bound
by a cylinder around the Z-axis, with a radius of √𝐶. This is found when increasing 𝑧 , which causes
an increase in 𝑟 and 𝑟 until the limit case 𝑥 + 𝑦 = 𝐶 is reached.

This means that we can determine which areas of the XYZ space can be reached by P3, for given initial
conditions set in 𝐶, as shown in Figure 2.3. The blue regions are called the surfaces of Hill Wakker
(2015), and a satellite with the specified energy 𝑐 cannot reach these regions.

Figure 2.3: Schematic picture of the surfaces of Hill for decreasing values of . The two black dots on the x-axis are the two
main bodies. The blue lines are the outlines of the surfaces of hill. The spacecraft cannot access the blue shaded areas.

The equilibria of the CR3BP are called Lagrange points. Useful low energy trajectories originate from
the Lagrange points, and thus it is essential to know how to find these points. Figure 2.3 already shows
the Lagrange Points. When 𝐶 grows, the inaccessible area becomes smaller. At specific times, two
parts of the surfaces of Hill touch. This is where the Lagrange points are. Each of the four subfigures
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of Figure 2.3 shows a value of C at which a Lagrange point is found.

Equilibria are found when the conditions of the third body are unchanging. Thus, when looking at the
equations, the Lagrange points must satisfy the following condition:

𝜕𝑈
𝜕𝑥 =

𝜕𝑈
𝜕𝑦 =

𝜕𝑈
𝜕𝑧 = 0 (2.39)

Combining equation 2.39 with 2.18, 2.19, 2.20. 2.23, 2.24 and 2.25 gives:

𝑥 − 1 − 𝜇𝑟 (𝜇 + 𝑥) + 𝜇
𝑟 (1 − 𝜇 − 𝑥) = 0 (2.40)

𝑦(1 − 1 − 𝜇𝑟 − 𝜇
𝑟 ) = 0 (2.41)

𝑧(1 − 𝜇𝑟 + 𝜇
𝑟 ) = 0 (2.42)

First of all, it must be noted that for all Lagrange points, 𝑧 = 0, because 𝑟 and 𝑟 are positive, and
0 < 𝜇 ≤ 1/2. The other two equations lead to the locations of the Lagrange Points, after extensive
analytical exploration that shall not be discussed here. For more information, one can for example
refer to Wakker (2015). The first three points are on the x-axis. Their location is shown by Figure 2.4
and equations 2.43 through 2.47. The first two equations introduce useful constants, which make for
a shorter notation in the last three equations. These last three equations give the values for 𝛾 , 𝛾 and
𝛾 as defined in Figure 2.4.

Figure 2.4: Locations of the first three Lagrange Points, relative to the two main bodies, using the variables from equations 2.43
through 2.47.

𝛼 = 𝜇
1 − 𝜇 (2.43)

𝛽 = (13𝛼)
/ (2.44)

𝛾 = 𝛽 − 13𝛽 − 19𝛽 − 2381𝛽 + 𝑂(𝛽 ) (2.45)

𝛾 = 𝛽 + 13𝛽 − 19𝛽 − 3181𝛽 + 𝑂(𝛽 ) (2.46)

𝛾 = 1 − 7
12𝛼 +

7
12𝛼 − 1322320736𝛼 + 𝑂(𝛼 ) (2.47)

Where 𝑂(𝛽 ) and 𝑂(𝛼 ) indicates terms of the order 𝛽 and 𝛼 respectively, that are emitted from the
equation. These terms are small enough to be ignored for most cases.

Lagrange points 𝐿 and 𝐿 are found at the following coordinates:

𝑥 = 1
2 − 𝜇 (2.48)
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𝑦 = ±12√3 (2.49)

For this research, only the location of 𝐿 is required, since this is the Lagrange point from which low
energy trajectories used for an Earth to Moon transfer originate. From the equations, it can be seen
that 𝐿 moves away from 𝑃 as the difference is mass between 𝑃 and 𝑃 decreases. So, relative to the
distance between the twomain bodies, the Sun-Earth 𝐿 point is closer to the Earth than the Earth-Moon
𝐿 point is to the Moon.

2.3.2. Implementation of the Lagrange Points in TUDAT
The low energy trajectories used in this research all find their origin in the second Lagrange point of
either the Sun-Earth system or the Earth-Moon system. Starting positions of the trajectories are found
relative to this Lagrange point, as will be explained in Chapter 3. Therefore, the precise location of both
the Sun-Earth and Earth-Moon 𝐿 point must be included in the ephemeris model.

TUDAT already has a script for finding the Libration Points, which uses equations 2.43 through 2.47
with increased series expansions. However, when placing a spacecraft on the location given by these
equations in the created ephemeris models, the velocity and acceleration relative to the twomain bodies
quickly increased, while a spacecraft in a Libration Point should stay still relative to the bodies: The
script for finding Libration Points suffers from rounding errors. It was then decided to use minor manual
adjustments to the location of the Lagrange points, until the stable location was found. If a spacecraft is
placed too far on the positive x-axis, it drifts away from the two main bodies, whereas if it is not placed
far enough on the x-axis, it drifts towards the main bodies. This property can be used to locate the
correct equilibrium position. This was done as best possible using TUDAT’s double-precision floating-
point format, which ensured the highest possible precision within the limits of the program. For more
information about the written script and the manual adjustments, refer to Appendix A.2.
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Figure 2.5: Change in distance between the largest of the main bodies and the point, as a fraction of the starting distance

To verify the model, it was checked if the trajectories are truly circular, by plotting the change in distance
between the spacecraft originating in 𝐿 and the central body. These plots are shown in Figures 2.5a
and 2.5b. Note that the timespan of the two plots is different, because it is related to the orbital period
of the second body. The Earth-Moon system shows a clear oscillation of one lunar revelation around
the Earth. This indicates that the spacecraft origination from the calculated 𝐿 point follows a slightly
elliptical trajectory in the rotating system, instead of the desired circular trajectory with a period equal to
that of the Moon. Apart from this, both plots show small, erratic oscilation, which is caused by rounding
effects. There is no drift present.
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Figure 2.6: Change in location of the point with respect to the rotating coordinate system of the CR3BP

Additionally, the location of the 𝐿 point in the rotating system of the CR3BP is plotted in Figures 2.6a and
2.6b. From these plots we can see that the location of the 𝐿 point is not entirely accurate, and moves
with rather erratic behaviour. This fits the expectation of errors due to rounding effects. The divergences
remain well within 0.1% of the distances between the main bodies, and spacecraft placed in the 𝐿 point
at the start of the propagation period remain near to this point during the entire propagation. This is the
best possible precision while using TUDAT’s double-precision floating-point format, and is sufficient
according to Howell et al. (2006), where errors up to 0.05% are allowed (p.7). Note that the Earth-
Moon 𝐿 shows different behaviour than the Sun-Earth 𝐿 . The along-track error of the Earth-Moon 𝐿
is significantly larger, almost to the limits of the allowed error. This fits with the previous observation
that the Earth-Moon 𝐿 follows a slightly elliptic trajectory in the rotating system: Near the perigee it will
move ahead and near the apogee it will stay behind the ’true 𝐿 ’, even though the ellipse itself is only
very lightly deviated from a circle.



3
Creating Low Energy Trajectories:

Dynamical Systems Theory
The CR3BP creates a model for the problem of an orbit influenced by two major bodies, such as a satel-
lite in the Sun-Earth or Earth-Moon system, as was described in Chapter 2. There are many possible
trajectories within the CR3BP. This research focusses on low energy trajectories, which can be found
on the invariant manifolds of the CR3BP. Using the theory on low energy trajectories, a database of
such trajectories is created. The trajectories in this database will be used as segments for the transfers
in Chapter 4.

There is more than one way to find low energy trajectories. Two methods are discussed in detail in liter-
ature. The linearised subspace method described by Conley (1968) and Koon et al. (2000b), amongst
others, finds a solution to the problem in a linearised subspace. In the solution, several classes of
trajectories can be distinguished. The eigenvector method described by Guzman et al. (1998) and
Topputo et al. (2005), amongst others, uses the eigenvectors of the problem to describe a vector off-
set. It allows for the creation of homoclinical and heteroclinical connections (van der Ham, 2012).

For this research it is necessary to study different classes of low energy trajectories, because combina-
tions of such classes lead to the possible configurations which are compared. Therefore, it is essential
to choose a method which is capable of finding low energy trajectories per specified class. The eigen-
vector method has no simple way to do so. For this reason, it was chosen to use the linearised subspace
method, which is based on nine classes within four categories. These classes provide possible com-
binations leading to the four configurations specified by the sub-questions of this research.

The linearised subspace method of finding invariant manifolds consists of a few steps. The first step is
the linearisation of the non-linear system of equations. For low energy trajectories, this linearisation is
performed at the location of the Lagrange points, where the different classes of invariant manifolds of
the CR3BP come together. The second step is to find the eigenvectors of the linearised problem, and
use these as the axis of the subspace. This results in the equations of motion within the subspaces. As
the third step, these equations are studied to find classes of solutions. These solutions are the initial
conditions of trajectories in the invariant manifolds. The fourth step is to translate the initial conditions
of the found classes of solutions back into the original solution space, to get the initial conditions of
low energy trajectories in the linearised system. These initial conditions can then be integrated in the
CR3BP to find the full trajectories.

3.1. Linearisation of the CR3BP
The first step in finding the invariant manifolds of the CR3BP is the linearisation of the CR3BP near the
co-linear Lagrange libration points (Koon et al., 2000b). In the coordinate system of the CR3BP, the co-
linear Lagrange point has coordinates (𝑘, 0). For the linearisation, we change the coordinate system to
have the origin in the Lagrange point. The direction of the axis remains unchanged.The quadratic terms

15
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of Hamiltonian equation 2.26 as expanded over the equilibrium point in the new coordinate system are
used to get the linearised Hamiltonian equation:

𝐻 = 1
2 [(𝑝 + 𝑦) + (𝑝 − 𝑥) − 𝑎𝑥 + 𝑏𝑦 ] (3.1)

As before, 𝑥 and 𝑦 are the coordinates of a particle and 𝑝 and 𝑝 are the momentum variables in the
direction of the 𝑥-axis and the 𝑦-axis. The axis have the same directions as those of the CR3BP, but
the origin is moved to the equilibrium point. Variables 𝑎 and 𝑏 were introduced to keep the equation
readable:

𝑎 = 2𝜌 + 1 (3.2)

𝑏 = 𝜌 − 1 (3.3)
For simplicity, both use the variable 𝜌, defined as:

𝜌 = 𝜇(𝑘 − 1 + 𝜇) + (1 − 𝜇)(𝑘 + 𝜇) (3.4)
The variable 𝜇 again is the mass variable defined as 𝑚 /(𝑚 + 𝑚 ) and 𝑘 is the x-coordinate in the
CR3BP of the Lagrange point around which the linearisation is performed. The variable 𝜌 is thus
different for each of the Lagrange points, meaning that the Hamiltonian is different for each of the
Lagrange points. This will eventually result in differences in the path the low energy trajectories follow.
Nonetheless, the method remains the same for each of the three co-linear Lagrange points.

From the linearised Hamiltonian around the Lagrange point, the following system of linearised equations
is created:

�̇� = 𝛿𝐻
𝛿𝑝 = 𝑝 + 𝑦 (3.5)

�̇� = 𝛿𝐻
𝛿𝑝 = 𝑝 − 𝑥 (3.6)

�̇� = −𝛿𝐻𝛿𝑥 = 𝑝 − 𝑥 + 𝑎𝑥 (3.7)

�̇� = −𝛿𝐻𝛿𝑦 = −𝑝 − 𝑦 − 𝑏𝑦 (3.8)

However, computations can be simplified by a transformation from the momenta to the velocities in the
rotating system with 𝑣 = 𝑝 +𝑦 and 𝑣 = 𝑝 −𝑥. This gives the following linearised system to describe
the CR3BP near the co-linear Lagrange points:

�̇� = 𝑣 (3.9)

�̇� = 𝑣 (3.10)

�̇� = 2𝑣 + 𝑎𝑥 (3.11)

�̇� = −2𝑣 − 𝑏𝑦 (3.12)
Note that the Hamiltonian is directly related to the Jacobi constant through equations 2.26 and 2.38, and
that the energy level of the particle travelling through the system can thus be chosen by determining
the value for 𝐻. We may also take the integral of the Hamiltonian:

𝐸 = 1
2(𝑣 + 𝑣 − 𝑎𝑥 + 𝑏𝑦 ) (3.13)

This is the energy integral of the Hamiltonian, which is also related to the Jacobi constant. When we
wish to consider the Hamiltonian as a function of position and velocity, we may use E, while we use H
when we consider a function of position and momentum.



3.2. Transformation of CR3BP to Subspaces 17

3.2. Transformation of CR3BP to Subspaces
Invariant manifolds can be found in the subspaces defined by the eigenvectors of a system of equations.
The eigenvectors become the new axes of the coordinate system, and the equations of motion are
rewritten to match to these axes. Then, solutions to these equations of motion may be found.

From the system of equations of the linearised system, equation 3.9 through 3.12, the eigenvalues
can be found through linear algebra (Lay, 1994). The eigenvalues of the linearised system are of
the form 𝜆 = 𝜆, 𝜆 = −𝜆, 𝜆 = 𝑖𝑣 and 𝜆 = −𝑖𝑣, where 𝜆 and 𝑣 are positive constants dependent
on the variables in the Hamiltonian, and 𝑖 = √−1 (Koon et al., 2000b). Through linear algebra, the
eigenvalues lead to the eigenvectors. For this, two constants 𝜎 and 𝜏 are introduced, which may be
positive or negative. This leads to the four eigenvectors 𝑢 , 𝑢 , 𝑤 and 𝑤 in 𝑥, 𝑦, 𝑣 , 𝑣 coordinates:

𝑢 =
⎡
⎢
⎢
⎣

1
−𝜎
𝜆
−𝜆𝜎

⎤
⎥
⎥
⎦

𝑢 =
⎡
⎢
⎢
⎣

1
𝜎
−𝜆
−𝜆𝜎

⎤
⎥
⎥
⎦

𝑤 =
⎡
⎢
⎢
⎣

1
−𝑖𝜏
𝑖𝑣
𝑣𝜏

⎤
⎥
⎥
⎦

𝑤 =
⎡
⎢
⎢
⎣

1
𝑖𝜏
−𝑖𝑣
𝑣𝜏

⎤
⎥
⎥
⎦

Like the eigenvalues, the eigenvectors change dependent on the variables in the Hamiltonian. These
are dependent on the system that is used (Sun-Earth, Earth-Moon, etc.) and on which of the co-linear
Lagrange points is currently considered.

The subspace in which the invariant manifolds are situated can now be created, with the eigenvectors
as the new axes. To make clear difference between the coordinates of the CR3BP and of the subspace,
we do not use variables which were used before such as 𝑥 and 𝑦 for the subspace. Instead, we use
as coordinates 𝜉 for the 𝑢 axis, 𝜂 for the 𝑢 axis, 𝜁 for the 𝑤 axis and 𝜁 for the 𝑤 axis. Equations
3.9 through 3.12 are rewritten to fit to the new coordinate system. This gives the following differential
equations:

̇𝜉 = 𝜆𝜉 (3.14)

�̇� = −𝜆𝜂 (3.15)

̇𝜁 = 𝑣𝜁 (3.16)

̇𝜁 = −𝑣𝜁 (3.17)

Additionally, the energy integral of the Hamiltonian, equation 3.13 can be rewritten into the new coor-
dinate system:

𝐸 = 𝜆𝜉𝜂 + 𝑣2(𝜁 + 𝜁 ) (3.18)
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Note that this new set of differential equations in the transformed coordinate system is simpler than the
original set of equations in the linearised CR3BP. This is exactly the purpose of the transformation: The
equations are rewritten in a simpler set of differential equations, of which a solution may be found.

The solution of this system of differential equations, in the form of trajectories through the subspace,
can be described as follows, using initial conditions 𝜉 , 𝜂 and 𝜁 = 𝜁 +𝑖𝜁 (Boyce and DiPrima, 2010):

𝜉(𝑡) = 𝜉 𝑒 (3.19)

𝜂(𝑡) = 𝜂 𝑒 (3.20)

𝜁(𝑡) = 𝜁 (𝑡) + 𝑖𝜁 (𝑡) = 𝜁 𝑒 (3.21)

This describes the subspace of the invariant manifold. Note that 𝐸 from equation 3.18 should be con-
stant, and therefore the functions 𝜂𝜉 and |𝜁| = 𝜁 + 𝜁 must be constant along solutions.

The solution of the differential equations of the linearised problems in this manifold are possible trajec-
tories for a spacecraft where no burns are needed. It is now possible to classify the possible trajectories
into groups, to make further study of the trajectories through invariant manifolds easier.

Figure 3.1: The nine classes of trajectory on the - plane. The origin is the Lagrange Point. The first class is the periodic orbit,
where , which is seen here as a dot in the origin. The second, third, fourth and fifth class are asymptotic trajectories,
where , shown by the solid arrows on the axis. The sixth and seventh class are transit trajectories, where , shown
by the dotted arrows in the left bottom and right top. The eight and ninth class are non-transit trajectories, where , shown
by the dashed arrows in the left top and right bottom.

3.3. Classes of Trajectories in the Subspaces
To find the invariant manifolds which are relevant to the problem, we look at the projection of several
trajectories on the 𝜉-𝜂 plane. Because there are no burns in the trajectories of interest, we know that
the Hamiltonian function (equation 3.18) must remain constant, so 𝜂𝜉 is constant, and |𝜁| = 𝜁 + 𝜁 is
constant. Using this, Koon et al. (2000b) describes 9 different classes of trajectories found in Equations
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3.19 through 3.21, divided into four categories. For each of the found classes, we know that the 𝜁 plane
describes only circles.

1. 𝜂 = 0 and 𝜉 = 0. The black dot in the origin of the plane of Figure 3.1 is the periodic solution. In
the subspace, a spacecraft can be at rest in this point.

2. 𝜂𝜉 = 0. The full arrows in Figure 3.1 indicate the four classes of asymptotic trajectories. For
𝜉 = 0, they are asymptotic towards the centre of the coordinate system for increasing time, and
for 𝜂 = 0 they are asymptotic towards the origin of the coordinate system for decreasing time.

3. 𝜂𝜉 = 𝑐 > 0. The dotted arrows in Figure 3.1 indicate two classes of transit trajectories. In the
subspace they first approach the origin of the coordinate system along the 𝜂 axis, then move
away again along the 𝜉 axis.

4. 𝜂𝜉 = 𝑐 < 0. The dashed arrows in Figure 3.1 indicate the two classes of non-transit trajectories.
In the subspace they behave similarly to the transit trajectories, but in different segments. They
first approach the origin of the coordinate system along the 𝜂 axis, then move away again along
the 𝜉 axis.

Note that the four categories together form a saddle point around the origin of the subspace.

3.4. Classes of Trajectories in the CR3BP
The projection of the four categories of trajectories on the 𝜉-𝜂 plane is not sufficient for designing
low energy trajectories. Equations 3.19 through 3.21 must be transformed back from the subspaces,
into the 𝑥, 𝑦, 𝑣 , 𝑣 coordinates of the CR3BP. Conley (1968) shows that a system of equations with
eigenvalues 𝜆, −𝜆, 𝑖𝑣 and −𝑖𝑣, and with eigenvectors 𝑢 , 𝑢 , 𝑤 and 𝑤 , has the following general, real
solution:

⎡
⎢
⎢
⎣

𝑥(𝑡)
𝑦(𝑡)
�̇�(𝑡)
�̇�(𝑡)

⎤
⎥
⎥
⎦
= 𝛼 𝑒

⎡
⎢
⎢
⎣

1
−𝜎
𝜆
−𝜆𝜎

⎤
⎥
⎥
⎦
+ 𝛼 𝑒

⎡
⎢
⎢
⎣

1
𝜎
−𝜆
−𝜆𝜎

⎤
⎥
⎥
⎦
+ 2ℝ(𝛽𝑒

⎡
⎢
⎢
⎣

1
−𝑖𝜏
𝑖𝑣
𝑣𝜏

⎤
⎥
⎥
⎦
) = 𝛼 𝑒 𝑢 + 𝛼 𝑒 𝑢 + 2ℝ(𝛽𝑒 𝑤 ) (3.22)

Note that this equation is very similar to a combination of equations 3.19 through 3.21. They are
essentially the same, but in different reference frames. Also note that 𝛼 and 𝛼 are real constants,
and 𝛽 is a complex constant. We can vary the values of 𝛼 and 𝛼 , to get the same nine classes as
were defined in the subspace. The value of 𝛽 has no effect on the class, but it does influence the
energy level of the trajectory.

1. The periodic orbit is found when 𝛼 = 𝛼 = 0. It is shown as the black ellipse around the centre
Figure 3.2: A Lyapunov Orbit. It can be shown that the size of the ellipse is set Conley (1968):
The major axis has a length of 2𝜏√𝐻 /𝜅 and the minor axis has a length of 2√𝐻 /𝜅, where 𝐻
is the Hamiltonian, and constant 𝜅 = −𝑎 + 𝑏𝜏 + 𝑣 + 𝑣 𝜏 . Here, 𝑎 and 𝑏 are the variables
defined by Equations 3.2 and 3.3, and 𝜏 and 𝑣 where defined in the eigenvectors. Thus, as the
Hamiltonian function (and thus the energy) increases, the ellipse grows.

2. The asymptotic trajectories are found for 𝛼 𝛼 = 0. They are shown by the full, blue, spiralling
trajectory in Figure 3.2. A distinction can be made between trajectories with 𝛼 = 0, which are
bound by the lines

𝑦 = 𝜎𝑥 ± 2√𝐻 (𝜎 𝜏 )/𝜅 (3.23)

and the trajectories with 𝛼 = 0, which are bounded by the lines

𝑦 = −𝜎𝑥 ± 2√𝐻 (𝜎 𝜏 )/𝜅 (3.24)

Here, 𝜎 and 𝜏 are the values that were found in the eigenvector, 𝐻 is the Hamiltonian and 𝜅 was
defined in the first category of trajectories. These strips are shown in grey in Figure 3.2 and touch
on the periodic orbit.
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Figure 3.2: The nine classes of trajectories on the plane. The grey areas are the surfaces of Hill. The origin is the Lagrange
Point. The first class is the periodic orbit, where , which is seen here as a black ellipse around the origin. The second,
third, fourth and fifth class are asymptotic trajectories, where . For clarity, only one is shown by the solid spiralling blue
arrow on the axis. In reality, there would be one spiralling arrow in each of the four quadrants. The sixth and seventh class are
transit trajectories, where , shown by the dotted blue arrows. The eight and ninth class are non-transit trajectories,
where , shown by the dashed blue arrows in the left top and right bottom. The four grey lines are determined by
Equations 3.23 and 3.24.

3. The transit trajectories are found for 𝛼 𝛼 < 0. They are shown by the dotted, blue trajectories
in Figure 3.2. They transit from the inner regions of the surfaces of Hill to the outer region or vice
versa.

4. The non-transit trajectories are found for 𝛼 𝛼 > 0. They are shown by the dashed, blue trajec-
tories in Figure 3.2. They stay on one side of the surfaces of Hill.

Note that all these trajectories are found in the linearised space around the Lagrange point, and are
therefore only reliable near these points. Therefore, equation 3.22 can be used to find initial conditions
near the Lagrange point, from which the path should be propagated to get the full trajectory.

3.5. Implementation of trajectories in TUDAT
This research will use the different classes of low energy trajectories to create different configurations
for a transfer. As described above, these trajectories are created using initial conditions in the vicinity
of the Lagrange Libration points. In order to create the database of trajectories that is necessary for
this research, the TUDAT script discussed in Section 2.3.2 was expanded to allow the creation of low
energy trajectories in each of the nine classes. This script has two main parts: The initial condition
creation and the propagation of the trajectory.

The creation of initial conditions for each of the nine classes is done using equation 3.22. As described
in Section 3.4, the value for 𝛼 and 𝛼 decides in which of the classes the trajectory belongs. Varying
the value of 𝑡 changes the location at which the trajectory starts. 𝛽 can also be varied to get different
sets of initial conditions for the specified class. The choice of possible values for 𝛼 , 𝛼 , 𝛽 and 𝑡 consists
of three steps: First the minima and maxima for each variable are found. Then the sampling interval
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is chosen. Lastly, a check is performed to see if the resulting initial conditions are within the allowed
energy range. The used variables can be found in Appendix A.3. THe process will be described in
more detail below.

The first variable for which the minimum and maximum value are determined is 𝑡. Here, the values
should be chosen in such a way that a full resolution of the periodic orbit is passed. When this full
revolution is passed, higher values of 𝑡 will give the same results. The minimum value of 𝑡 is always
set to zero. The maximum value was found through experimentation on initial conditions for the pe-
riodic orbit. Here, 𝛼 = 𝛼 = 0. Through manual experimentation it was found that the value of 𝑡 at
which a full revolution of the periodic orbit is past, is not dependent on 𝛽. Through this method the
maximum required value for 𝑡 is found. The value is then rounded up to an integer. This is done for
two reasons: First of all, it ensures that the entire range is indeed used, and not shortened by rounding
errors and such. Secondly, it ensures that no matter what the sampling interval will be, it will not be
exactly mirrored over the periodic ellipse. This is beneficial because it ensures there is a larger variety
in the resulting trajectories.

To determine the minimum and maximum values for 𝛼 , 𝛼 and 𝛽, the allowed energy levels must be
considered. For this research, only energy levels are allowed at which the Hill-sphere has already
opened at 𝐿 but not yet at 𝐿 (see Figure 2.3). Trajectories with energy levels where the Hill-sphere
has not yet opened at 𝐿 are not useful for this research, because the research focusses on the low en-
ergy trajectories on the 𝐿 manifold. Trajectories with energy levels where the Hill-sphere has already
opened al 𝐿 move at such distances from the main body or at such high speeds that it is not possible
to create a link between the Sun-Earth and Earth-Moon segments of the transfers.

The second variable for which the minimum and maximum value are determined is 𝛽. Again, the pe-
riodic solution is used, where 𝛼 = 𝛼 = 0. First, the minimum value for 𝛽 is determined. Starting
from 𝛽 = 0 and moving down with steps of 0.5 ∗ 10 , the initial conditions for that value of 𝛽 and three
values of 𝑡 are calculated. The values of 𝑡 are the minimum value, the maximum value, and the value
exactly in-between. When this is done, the energy level of these initial conditions are calculated using
equation 2.38. When each of the energy levels falls outside of the allowed range, the current value of
𝛽 is set as the minimum. All higher values fall within the energy levels. The same is then done for the
maximum value, but instead of moving down steps from 𝛽 = 0, steps of the same size are moved up.
This results in a minimum and maximum value of 𝛽.

The process for finding minimum and maximum values for 𝛼 and 𝛼 work in similar ways. For 𝛼 un-
stable asymptotic trajectories are used, where 𝛼 = 0. For 𝛼 stable asymptotic trajectories are used,
for which 𝛼 = 0. For both 𝛽 and 𝑡 the minimum, maximum and the value exactly in between are used.
Moving away from 𝛼 = 0 or 𝛼 = 0 with a step-size of 0.5 ∗ 10 again, the initial conditions and their
associated energies are calculated. The first value for 𝛼 or 𝛼 for which all initial conditions fall without
the allowed energy range are the minimum and maximum.

Having found the initial conditions, the sampling size for each of the variables must be chosen. The
sampling size has effect on the number of trajectories that are found. The research would benefit from
a large set of trajectories, and as such the sampling size should be large. However, a larger sam-
pling size results in longer computation times. Therefore, the sampling size is limited by the scheduled
running time for the trajectory creation script. From manual experimentation it was found that a large
sample size for 𝛽 has more variety in trajectories as a result than a large sample size for the other
variables. As such, it was decided that 𝛽 would have a sample size four times larger than the other
variables. Using this decision, the sample size for each of the variables was manually varied to find
the sample size resulting in the largest set possible within allowed running times for the scripts. The
resulting values for the variables are found in Appendix A.3.

Having created sampling sets for each of the variables, a complete set of initial conditions can be cre-
ated. At this point it is important to perform an additional check on the energy levels, because certain
combinations on variables may result in initial conditions which do not fit within the allowed ranges.
As such, for every initial condition found, the energy is again calculated using Equation 2.38. Initial
conditions with energies out of the allowed ranges are then discarded.
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Initial conditions are created per trajectory class. When the initial conditions of one trajectory class are
created, the trajectories can be propagated, using scripts build into TUDAT. Using a variable step size
Runge-Kutta-Fehlberg-78 integrator and Cowell propagator, the initial conditions are propagated in the
CR3BP (Fehlberg, 1969). Dependent on the class of the initial conditions, this is either a backwards
or a forwards propagation. For the transit and non-transit trajectories, each of the initial conditions was
propagated in both directions. The propagated trajectories are then written to a file. In order to limit
the amount of space used, only 1000 states of each trajectory are saved, linearly distributed over the
original states. This means that in the places that had a smaller time-step due to the variable step
size integration, more states will still be saved. The files are each given a name which includes the
trajectory class, and the values of 𝛼 , 𝛼 , 𝛽 and 𝑡, so the initial conditions may be reproduced.

Using this script, it is possible to create a database of trajectories, divided over the different classes
of trajectories. The only class of trajectory that is not created is the periodic orbit, since these are not
used for the different configurations of transfers. For more details about the script, refer to Appendix A.

The final database includes over 4000 trajectories per class of trajectories in the Sun-Earth system,
and over 400 trajectories per class of trajectories in the Earth-Moon system. The choice was made to
use less trajectories in the Earth-Moon system, since these trajectories will later be plotted at several
angles due to the rotation of the Moon, and a larger number of used trajectories would slow down the
code too significantly. This is further discussed in Chapter 4. The question of whether these numbers
of trajectories are sufficient to create a robust transfer creation script is discussed in Section 5.5, where
a test is performed to see if the results would be the same with less trajectories available.

Unfortunately the linear subspace method as described by Conley (1968) is used rarely in research,
since other methods are more favourable for, amongst others, computation time, and many types of re-
search do not need the classification of trajectories. Because of this, there are no example trajectories
found which are created using this methodology, which makes the validation of the resulting trajecto-
ries difficult. What can be done is a visual comparison of each class of trajectories with visual sources
from literature. Sources such as Conley (1968), Koon et al. (2001) and Koon et al. (1999) have figures
depicting the trajectory classes, which show that the results from the propagation are at least visually
the same, and that the initial conditions created per trajectory class also deliver trajectories of this class
only.

This, of course, is not sufficient validation of the trajectories. As an additional validation, the first sub-
question of the research is used. This combines non-transit trajectories in the Sun-Earth system with
stable asymptotic trajectories in the Earth-Moon system. Koon et al. (2001) describes the creation of
such a transfer and shows their ideal transfer. In Chapter 5 their solution will be compared with the
solution found from the trajectory database, to further validate the database.



4
Creating Low Energy Transfers:

Trajectory Linking
Having created a database of trajectories as described in Chapter 3, the next step of the research is to
create transfers from the vicinity of the Earth to the Earth-Moon 𝐿 Lagrange point. This is done using
four different configurations, as described by the sub-questions of the research:

1. What is the range for Δ𝑉 and transfer time, for the ’standard’ ballistic transfer?

2. What is the range for Δ𝑉 and transfer time, for the ballistic transfer, when the location of the
transfer from the first section to the second section is allowed to vary?

3. What is the range for Δ𝑉 and transfer time, for a non-ballistic transfer with three segments (Earth
- Sun-Earth 𝐿 , Sun-Earth 𝐿 - Moon influence, Moon influence - Earth-Moon 𝐿 )?

4. What is the range for Δ𝑉 and transfer time, for a non-ballistic transfer with up to five burns in
unspecified locations?

Each of the four configurations are discussed in here. The resulting transfers are discussed in Chapter
5.

4.1. Standard approach
The standard approach is considered the validation approach. It follows a similar configuration as
described by Koon et al. (2001), which is a simplified version of the transfer the Hiten mission used
(Uesugi et al., 1991). The Hiten mission has the closest similarity of all flown missions to the mission
that is discussed in this thesis. The main difference is the desired final state. Where we research a
mission which ends in an elliptic orbit around the Earth-Moon 𝐿 Lagrange point, the Hiten mission was
intended to end in an orbit around the Moon, in which it should be ballistically captured. Unfortunately,
there have been no missions to the Earth-Moon 𝐿 using low energy trajectories, nor has there been
much research into such missions. Therefore, the Hiten mission is our go-to mission for verification
purposes.

The standard approach consists of two segments. The first segment is a non-transit trajectory on
the inside of the Hill-sphere in the Sun-Earth system, and the second segment is a stable asymptotic
trajectory outside of the Hill-sphere of the Earth-Moon system. Traditionally, the link between these
two segments is placed on a line through Earth and perpendicular to the axis on which the Sun and
Earth move. This line where the trajectories link is called the Poincaré cut. A schematic overview of
the standard approach is shown in Figure 4.1.

To find standard approach transfers, the crossing with the Poincaré cut (positive y-axis) of all Sun-Earth
non-transit trajectories inside the Hill-sphere are compared with the crossing with the Poincaré cut of
all Earth-Moon stable asymptotic trajectories outside of the Hill-sphere. Because the trajectories are
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Figure 4.1: A schematic overview of the standard approach. The blue lines are the transfer trajectory that is followed. The red
dots are links between segments, where a burn is required.

saved as a collection of 1000 state vectors, it is unlikely that each trajectories has a state vector exactly
on the Poincaré cut. Therefore, for each trajectory, the last vector before and the first vector after
the Poincaré cut are located. A line is drawn between these two points, on which both position and
velocity are assumed to change linearly. The timespan between two points is less than five minutes,
and the links are made in regions far from the 𝐿 point, so the motion here is stable and not chaotic. The
position error of the link was found to be less than 5% of the distance between the two points. The lines
between the points are then used to find intersections of the first and second segment of the transfer.
If an intersection between two trajectories is found, a standard approach transfer is constructed.

4.2. Three asymptotic segments
The first diversion from the standard approach uses three asymptotic segments. The first two segments
are similar to the trajectory followed by the Genesis mission (Koon et al., 1999), or researched by
(Barden et al., 1996) and (Mingotti et al., 2010). The third segment is somewhat similar to the research
by (Koon et al., 2000a), although they do research for Jovian Moons instead of the Earth’s Moon.

The first segment is a stable asymptotic trajectory on the inside of the Hill-sphere in the Sun-Earth
system, the second segment is an unstable asymptotic trajectory on the inside of the Hill-sphere in the
Sun-Earth system and the third segment is a stable asymptotic trajectory outside of the Hill-sphere of
the Earth-Moon system. The link between the first two segments is on the elliptical orbit around the
𝐿 point. The link between the last two segments is the same as for the standard approach: On the
Poincaré cut. A schematic overview of the three asymptotic segments approach is shown in Figure
4.2.

The benefit of using three segments is the time that can be spent in orbit around the Sun-Earth 𝐿
point. The asymptotic trajectories automatically converge to an elliptic orbit around this point, and the
amount of Δ𝑉 required to leave it again does not change with the time spent there. This allows for
additional mission objectives which can be performed at this point. Also, it allows for a station-keeping
orbit which makes the scheduling of the transfer far easier. Without this station-keeping orbit, a launch
delay of a day will result in a changed transfer trajectory, because the Moon would have moved away
from the desired arrival location. With a station-keeping orbit, a delay of a day does not need to mean
any change in transfer trajectory at all, it only means that a delay will occur while the satellite stays in
orbit around the 𝐿 point, waiting for the Moon to be in the ideal position again.

To find transfers using the three asymptotic segments approach, all possible links between the first two
segments are first computed. The entire trajectories are compared to establish if an intersection exists.
If only one intersection exists for a specific combination of trajectories, this link is saved. If multiple
intersections exists, the Δ𝑉 needed to perform this link is checked. Only the link which requires the
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Figure 4.2: A schematic overview of the three asymptotic segments approach. The blue lines are the transfer trajectory that is
followed. The red dots are links between segments, where a burn is required.

least Δ𝑉 is saved. For each saved link, then, the intersection with the third segment is searched.
This happens in the same manner as for the standard approach. When two consecutive intersections
between the three trajectories are found, a three asymptotic segment transfer is constructed.

4.3. Free location of linking
The second diversion from the standard approach has the same two segments, but does not use the
Poincaré cut as the link location. Instead, this location is left free, and can be different for each transfer
option. This diversion has been researched for low energy trajectories which are completely in the
Sun-Earth system (Langemeijer, 2018) and proven more beneficial than using the standard Poincaré
cut. However, no such research has yet been performed for low energy trajectories to the Moon. A
schematic overview of the free linking approach is shown in Figure 4.3.

Figure 4.3: A schematic overview of the free linking approach. The blue lines are the transfer trajectory that is followed. The red
dots are links between segments, where a burn is required. The dashed line is the new location of the Poincaré cut.

To find free linking approach transfers, the entire trajectories of all Sun-Earth non-transit trajectories
inside the Hill-sphere are compared with the entire trajectories of all Earth-Moon stable asymptotic
trajectories outside of the Hill-sphere. With this method, any angle between the Poincaré cut and the
y-axis is allowed. If only one intersection exists for a specific combination of trajectories, this link is
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saved. If multiple intersections exists, the Δ𝑉 needed to perform this link is checked. Only the link
which requires the least Δ𝑉 is saved. If an intersection between two trajectories is found, a free linking
approach transfer is constructed.

4.4. All classes, all link locations
The third diversion from the standard approach is chosen to take away as many of the limitations of
this approach as possible. The classes of trajectories that are used are not limited, with the exception
of using a stable asymptotic trajectory outside of the Hill-Sphere in the Earth-Moon system as the last
segment of the transfer, which is necessary to arrive in an orbit around the Earth-Moon 𝐿 Lagrange
point. The number of segments is not pre-defined, although the limit is set to six segments to limit
the computation time. There is no literature on using low energy trajectories in this way. A schematic
overview of the limitless approach is shown in Figure 4.4.

Figure 4.4: A schematic overview of the limitless approach. The blue lines are the transfer trajectory that is followed. The red
dots are links between segments, where a burn is required.

The method to find transfers with the limitless approach is quite different from the approaches used
before. To start with, all the trajectories are compared to each other, to find all the possible links. All
links with a Δ𝑉 above 50 m/s are discarded, since they will not result in transfers with a sufficiently
low Δ𝑉 to compete with transfers from other approaches. Using the resulting set of links, a branching
approach is used to find transfers. To clarify the branching method, a simplified visualisation is shown
in Figure 4.5. In this image, each arrow is a representation of a trajectory. The desired starting location
of the transfer is shown on the left, the desired destination on the right. The branching approach works
in several steps:

1. Identify all trajectories that pass through the desired starting location. In Figure 4.5.1 these are
shown in red. In the case of real trajectories, these are trajectories that pass along the negative
y-axis of the CR3BP while travelling in the direction of the positive x-axis.

2. For each of the trajectories found in step 1, perform steps 3 through 17. Name the currently
chosen trajectory the ’starting segment’. The starting segment chosen in the simplified figures is
shown in blue in Figure 4.5.2.

3. Find all the trajectories that cross the path of the starting segment. These trajectories are shown
in red in Figure 4.5.2.

4. For each of the trajectories found in step 3, perform steps 5 through 17. Name the currently
chosen trajectory the ’second segment’. The starting segment and second segment chosen in
the simplified figures are shown in blue in Figure 4.5.3.
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Figure 4.5: Schematic overview of the branching method, as described in steps one through eight of the numbered list.

5. Check if the desired ending criteria are met. In the simplified figures, this would happen if the
second segment passed through the end region. Note that this is not the case. In the case of
real situations, this would happen if the second segment is a stable asymptotic trajectory outside
of the Hill-Sphere of the Earth-Moon system. If the criteria are met, the transfer is saved and the
script returns to the next trajectory of step 4. Otherwise, the script continues with step 6.

6. Find all the trajectories that cross the path of the second segment after it has crossed the starting
segment. These trajectories are shown in red in Figure 4.5.3.

7. For each of the trajectories found in step 6, perform steps 8 through 17. Name the currently
chosen trajectory the ’third segment’. The starting, second and third segment chosen in the
simplified figures are shown in blue in Figure 4.5.4.

8. Check if the desired ending criteria are met. In the simplified figures, this would happen if the third
segment passed through the end region. Note that this is the case. In the case of real situations,
this would happen if the third segment is a stable asymptotic trajectory outside of the Hill-Sphere
of the Earth-Moon system. If the criteria are met, the transfer is saved and the script returns to
the next trajectory of step 7. Otherwise, the script continues with step 9.

9. Find all the trajectories that cross the path of the third segment after it has crossed the second
segment.

10. For each of the trajectories found in step 9, perform steps 11 through 17. Name the currently
chosen trajectory the ’fourth segment’.

11. Check if the desired ending criteria are met. This would happen if the fourth segment is a stable
asymptotic trajectory outside of the Hill-Sphere of the Earth-Moon system. If the criteria are met,
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the transfer is saved and the script returns to the next trajectory of step 10. Otherwise, the script
continues with step 12.

12. Find all the trajectories that cross the path of the fourth segment after it has crossed the third
segment.

13. For each of the trajectories found in step 12, perform steps 14 through 17. Name the currently
chosen trajectory the ’fifth segment’.

14. Check if the desired ending criteria are met. This would happen if the fifth segment is a stable
asymptotic trajectory outside of the Hill-Sphere of the Earth-Moon system. If the criteria are met,
the transfer is saved and the script returns to the next trajectory of step 13. Otherwise, the script
continues with step 15.

15. Find all the trajectories that cross the path of the fifth segment after it has crossed the fourth
segment.

16. For each of the trajectories found in step 15, perform step 17. Name the currently chosen trajec-
tory the ’sixth segment’.

17. Check if the desired ending criteria are met. This would happen if the sixth segment is a stable
asymptotic trajectory outside of the Hill-Sphere of the Earth-Moon system. If the criteria are met,
the transfer is saved and the script returns to step 2. Otherwise, the script returns to the next
trajectory of step 16. No more than six segments are allowed, to limit the running time of the
script.

This script results in a collection of transfers constructed with the limitless approach. Two things should
be noted here. First of all, when using all the trajectories in the database, the limitless approach script
running time became longer than the planning of this research allowed. Therefore, the choice was
made to use only 25% of the database, chosen at random. Section 5.5 discusses the robustness of
the script using this amount of trajectories. The second thing that should be noted is that, theoretically,
the transfers found with the previous approaches should also be found through the limitless approach
if the full dataset is used. However, since only a section of the database is used, it is entirely possible
that the best transfers from other approaches are not found in the limitless approach.



5
Complete Low Energy Transfers:

Results
This Chapter shows the results for each of the four transfer approaches, including the complete set of
possible transfers, their required Δ𝑉 and transfer time, and explanations of phenomenon encountered
in these results. Sections 5.1 through 5.4 take a look at the transfers per configuration. Additionally,
the robustness of the results is discussed in Section 5.5. The results are compared in Chapter 6.

5.1. Standard approach
The set of 37 standard approach transfers found with a Δ𝑉 below 150 m/s is shown in Figure 5.1a. The
starting points of each transfer are on the negative y-axis. From here, they follow non-transit trajectories
which bring them to the vicinity of the Sun-Earth 𝐿 point, seen on the right side of the image.
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Figure 5.1: Standard approach transfers, shown in the CR3BP. The blue asterisk at the origin is the Earth, the blue circle around
this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth Lagrange point. The Sun is positioned
on the negative x-axis. All other lines in the figure are standard approach transfers. Transfers start on the negative y-axis and
end at the Earth-Moon Lagrange point. (a) shows each of the standard approach transfers with a below 150 m/s. The
colours indicate the required amount of . (b) shows the standard approach transfer with the lowest . This transfer requires
a of 28.2 m/s and a transfer time of 152.5 days.

Note that not all of the transfers travel all the way past the Lagrange point: Some non-transit trajectories
start their return in the direction of the Earth before they reach this distance. This is expected for non-
transit trajectories. Asymptotic trajectories would not show this behaviour. When the transfer return in
the direction of Earth, they link into an asymptotic trajectory in the Earth-Moon system on the positive

29
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y-axis. The figures clearly shows that some of these links require a change in direction, visible as a
sudden curve in the transfer. This change in direction required Δ𝑉, as can be seen from the fact that
transfers with a larger change in direction are bright red in the image. After the link, the transfer follows
the asymptotic trajectory in the Earth-Moon system until arrival at the Earth-Moon 𝐿 point. The location
of this point upon arrival of the spacecraft is variable with the rotation of the Moon around the Earth.

Figure 5.1b shows the transfer with the least Δ𝑉. The change in direction at the link on the positive
y-axis is seen to be small, as expected for a transfer with low Δ𝑉. This transfer requires a Δ𝑉 of 28.2
m/s, and has a transfer time of 152.5 days. The starting point of the transfer is at approximately 115,700
km from the centre of the Earth.

This optimal transfer, and the total set of transfers, is now compared to the transfer shown by Koon
et al. (2001), in order to validate the found trajectories and transfers. The transfer described in the
paper is a simplification of the transfer used by the Hiten mission. It uses a non-transit trajectory in
the Sun-Earth system, which transfers to a trajectory which allows ballistic capture by the Moon. This
second segment is different from the standard approach described here, since it does not end at the
Earth-Moon 𝐿 point. However, lacking any other literature giving a detailed description of a low energy
transfer to the Moon, the Hiten transfer is the best available option for validation.

The Hiten transfer has a Δ𝑉 of 34 m/s, in the same range as the optimal standard approach transfer
found. A visual comparison of the two transfers shows that, although the first segment of the Hiten
transfer is very similar to many of the standard approach transfers shown in Figure 5.1a, the second
segment follows a different path. Thus, the standard approach works exactly as would be expected
based on Koon et al. (2001): A very similar first segment with a different second segment, and with a
Δ𝑉 in the same range.
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Figure 5.2: The transfer time and for the standard approach transfers. The transfer time starts where the transfer leaves the
negative y-axis, and ends when it arrives at an elliptical orbit around the Earth-Moon Lagrange point.

Figure 5.2 shows the relationship between Δ𝑉 and transfer time for the standard approach. Note that
the minimum transfer time for this type of transfers seems to be around 100 days. A lot of options for
transfers near the minimum transfer time are possible, over a large range of Δ𝑉. The lowest Δ𝑉 near
the minimum transfer time is 52.5 m/s, at a transfer time of 114 days. To get the minimal Δ𝑉 an increase
in transfer time is required.

To further understand the relationship between transfer time and Δ𝑉, we compare the behaviour of
transfers which are near the minimum of both these variables. Figure 5.3a shows the ten transfers
with the lowest Δ𝑉, and Figure 5.3b shows the ten transfers with the lowest transfer time. Figure 5.3a
shows that there is some variety in low Δ𝑉 transfers. Both the first and the second segment show
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Figure 5.3: Standard approach transfers, shown in the CR3BP. The blue asterisk at the origin is the Earth, the blue circle around
this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth Lagrange point. The Sun is positioned
on the negative x-axis. All other lines in the figure are standard approach transfers. Transfers start on the negative y-axis and
end at the Earth-Moon Lagrange point. The colours indicate the required amount of . The transfer with the lowest
has been made bold. (a) shows the ten standard approach transfers with the lowest . (b) shows the ten standard approach
transfers with the lowest transfer time.

different options. In comparison, Figure 5.3b shows very little variety. The ten transfers all follow one
out of two non-transit trajectories in the first segment, only deviating in the second segment. These
two non-transit trajectories are both trajectories that stay relatively close to Earth when compared to
the full set shown in Figure 5.1a. This explains the shorter transfer time. The transfers with low Δ𝑉, in
comparison, may take a longer non-transit trajectory, allowing their link to the second segment to be
smoother.

When comparing Figures 5.2, 5.3a and 5.3b, some conclusions may be drawn. First of all, from the low
variety in the first segment of transfers with low transfer time, it may be concluded that the difference
between transfer times of the first segment trajectories is larger than the differences in transfer time of
the second segment trajectories. This is expected, since the spatial differences of these trajectories
are larger than the differences of trajectories in the second segment. Also, some transfers are in the
best ten when concerning both Δ𝑉 and transfer time. However, a reduction of transfer time of some
percentage will lead to an increase in Δ𝑉 of a far larger percentage.
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Figure 5.4: The and y-location of the link between segments for each of the standard approach transfers. The y-location is
measured as a multiplication of the semi-major axis of the Moon’s orbit.
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The standard approach also allows for a simple visualization of the relation between the link location
and the required Δ𝑉 for this link. Because the link between the segment is always on the positive y-
axis, the y coordinate is the only variable in the location of the link. Figure 5.4 shows this relation. It
is immediately noticed that no links where found at a distance of less than approximately 1.2 times the
distance of the Moon from the Earth. This limit is caused by the limits set for the Hill spheres as were
discussed in Chapter 3. The trajectories of the second segment do not come in the region closer to
the Earth because of the Hill sphere of the Earth-Moon system. Since there are no second segment
trajectories present in this region, there are no links possible.

It is further noticed that all the transfers with a relatively low Δ𝑉 are very near to this Hill sphere. This is
supported by an inspection of the links on the positive y-axes in Figure 5.1a. The change in direction
between the two segments is larger for transfers with a link on a high y-coordinate than for a link on a
lower y-coordinate.

5.2. Three asymptotic segments
The set of 92 three asymptotic segment transfers found with a Δ𝑉 of less than 250 m/s is shown in
Figure 5.5a. The starting point of each transfer is on the negative y-axis. From there, an asymptotic
trajectory is followed toward an elliptic orbit around the Sun-Earth 𝐿 . From this ellipse, a link is made
to an asymptotic trajectory back into the direction of the Earth. Note that the elliptic orbit itself is not
shown, to prevent cluttering of the figure. The asymptotic trajectory in the direction of the Earth links
with an asymptotic trajectory in the Earth-Moon system at the positive y-axis. Note that only two options
are found for this link, which both clearly show a change in direction. This change in direction requires
Δ𝑉. This is also seen in the colour of the transfers: All found transfers are bright red, indicating high
values for Δ𝑉.

Figure 5.5b shows the transfer with the least total Δ𝑉. This transfer requires a total Δ𝑉 of 184.0 m/s,
and has a transfer time of 288.2 days. The starting point of this transfer is at approximately 266,000
km from the centre of the Earth.
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Figure 5.5: Three asymptotic segments approach transfers, shown in the CR3BP. The blue asterisk at the origin is the Earth, the
blue circle around this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth Lagrange point. The
Sun is positioned on the negative x-axis. All other lines in the figure are three asymptotic segment approach transfers. Transfers
start on the negative y-axis and end at the Earth-Moon Lagrange point. (a) shows each of the three asymptotic segments
approach transfers with a below 250 m/s. The colours indicate the required amount of . (b) shows the three asymptotic
segments approach transfer with the lowest . This transfer requires a of 184.0 m/s and a transfer time of 288.2 days.

Figure 5.6 shows the relationship between total Δ𝑉 and transfer time for the standard approach. When
looking closely at this image, one can identify sets of points which together form a line with a somewhat
negative slope. These lines are visible throughout the entire dataset, but most prominently at the top of
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the image. Additionally, near the minimum transfer time a set of individual points is seen that do not fol-
low the previously described lines. These phenomenon are not easily explained through only this figure.
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Figure 5.6: The transfer time and for each of the three asymptotic segments approach transfers. The transfer time starts
where the transfer leaves the negative y-axis, and ends when it arrives at an elliptical orbit around the Earth-Moon Lagrange
point.

To gain additional insights into the phenomenon observed, Figure 5.7a shows the ten transfers with the
lowest Δ𝑉, and Figure 5.7b shows the ten transfers with the lowest transfer time.
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Figure 5.7: Three asymptotic segments approach transfers, shown in the CR3BP. The blue asterisk at the origin is the Earth,
the blue circle around this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth Lagrange point.
The Sun is positioned on the negative x-axis. All other lines in the figure are three asymptotic segments approach transfers.
Transfers start on the negative y-axis and end at the Earth-Moon Lagrange point. The colours indicate the required amount
of . The transfer with the lowest has been made bold. (a) shows the ten three asymptotic segments approach transfers
with the lowest . (b) shows the ten three asymptotic segments approach transfers with the lowest transfer time.

Figure 5.7a shows that all the transfers with lower Δ𝑉 use the same second and third segment. This
suggests that the impact of the second link on the total Δ𝑉 is larger than the impact of the first link. This
does not directly explain the behaviour seen if Figure 5.6.

Figure 5.7b shows that the variation of transfers with low transfer time is larger than seen for low Δ𝑉.
This seems to relate to the individual points with low transfer time seen in Figure 5.6. These transfers
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stay close to the Earth in each of the three segments, compared to the other transfers seen in Figure
5.5a. This explains their low transfer times. Additionally, they use different links between the second
and third segment. It is thus seen that the transfers which use the same second link follow the trend-
lines in Figure 5.6, and those that use different links do not follow the trendlines.
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Figure 5.8: The relation between the first and the second burn of the three asymptotic segment approach transfers. The first
burn is performed near the ellipse around the Sun-Earth Lagrange point. The second burn is performed on the Poincaré cut
on the positive y-axis.

To further understand the trend-lines, Figure 5.8 shows the Δ𝑉 required for the first and second link
of each transfer. It shows that the second burn has a far higher Δ𝑉 required than the first burn. This
explains the trend-lines in Figure 5.6: Each of these curves belongs to a specific combination of second
and third segments. This link determines most of the Δ𝑉, and the link between the first and second
segment contributes only little to the total Δ𝑉. Additionally, it becomes apparent that when the second
link uses less Δ𝑉, the transfer time becomes higher, which causes the shape of the curves.

This difference in Δ𝑉 for the two different burns is explained by the layout of the transfers. The first
burn takes place on the ellipse around the Sun-Earth 𝐿 Lagrange point, where trajectories run in almost
exactly the same direction. There is no change in direction needed, only a small change in speed, which
is done with a low Δ𝑉 requirement. The second burn, on the other hand, requires a significant change
in direction, as can be seen in Figure 5.5a. It can be concluded that the layout of asymptotic segments
is not a good fit to a link on the Poincaré cut on the positive y-axis. It is possible that links in other
locations required less Δ𝑉. If this is the case, it should be found in the limitless approach, which uses
all trajectories and all locations of linking, thus including three asymptotic segment approach transfers
with a free location of the second link.

5.3. Free location of linking
The set of 2140 transfers found with a Δ𝑉 of below 100 m/s is shown in Figure 5.9a. Again, the starting
point of each transfer is on the negative y-axis. From there, non-transit trajectories are followed which
approach the Sun-Earth 𝐿 point before returning in the direction of the Earth. There, they link up with
asymptotic trajectories in the Earth-Moon system. Because the location of this link is not set, some
interesting phenomena occur. First of all, it is noted that some transfers make an extra revelation
around the Earth. In Figure 5.9a, these ’detour transfers’ are visible as the set of curves moving about
halfway between the Earth and the Moon. Some of these are shown in green and thus have a low Δ𝑉.
Apparently, following this extra curve in the transfer allows for a smooth linking to the second segment.
The second phenomenon that is visible is what we will call ’shortcut transfers’. One of these is easy to
see in Figure 5.9a. It starts as the second lowest on the negative y-axis, at almost twice the distant of
the Moon to the Earth. From there, it immediately moves towards the Earth-Moon 𝐿 point, instead of
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first following the non-transit trajectory. These shortcut transfers all start at a distance from the Earth
that is larger than that of the Moon. As such, they are very ineffective, and are not considered viable
options for this research.

Figure 5.9b shows the transfer with the least Δ𝑉. This trajectory requires a Δ𝑉 of 8.8 m/s, and has a
transfer time of 119.2 days. The starting point of this transfer is at approximately 589,600 km from the
centre of the Earth.
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Figure 5.9: Free linking approach transfers, shown in the CR3BP. The blue asterisk at the origin is the Earth, the blue circle
around this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth Lagrange point. The Sun is
positioned on the negative x-axis. All other lines in the figure are free linking approach transfers. Transfers start on the negative
y-axis and end at the Earth-Moon Lagrange point. (a) shows each of the free linking approach transfers with a below
100 m/s. The colours indicate the required amount of . (b) shows the free linking approach transfer with the lowest . This
transfer requires a of 8.8 m/s and a transfer time of 119.2 days.
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Figure 5.10: The transfer time and for the free linking approach transfers. The transfer time starts where the transfer leaves
the negative y-axis, and ends when it arrives at an elliptical orbit around the Earth-Moon Lagrange point.

Figure 5.10 shows the relationship between Δ𝑉 and transfer time for the standard approach. The first
thing we notice here are the shortcut transfers that were also seen in Figure 5.9a. All the transfers
with a transfer time below 80 m/s are shortcut transfers. When looking at the rest of the set, it is noted
that low Δ𝑉 and low transfer time are distinctly different sets, although no clear trends are immediately
visible.
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To understand why Δ𝑉 and transfer time do not match, we compare Figure 5.11a, which shows the ten
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Figure 5.11: Free linking approach transfers, shown in the CR3BP. The blue asterisk at the origin is the Earth, the blue circle
around this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth Lagrange point. The Sun is
positioned on the negative x-axis. All other lines in the figure are free linking approach transfers. Transfers start on the negative
y-axis and end at the Earth-Moon Lagrange point. The colours indicate the required amount of . The transfer with the
lowest has been made bold. (a) shows the ten free linking approach transfers with the lowest . (b) shows the ten free
linking approach transfers with the lowest transfer time.

transfers with the lowest Δ𝑉, and Figure 5.11b, which shows the ten transfers with the lowest transfer
time (when not looking at shortcut transfers). From the comparison, it is immediately clear that the
two sets follow very different paths. To get a short transfer time, a non-transit trajectory is chosen that
does not fully reach the Sun-Earth 𝐿 point, similar to what was seen for standard approach transfers.
For low Δ𝑉 the angle at which the two segments meet is most important, and it appears that less of a
change in direction is needed for non-transit trajectories which do come very near to the elliptic orbit
around 𝐿 . Additionally, a detour transfer is seen, which makes an extra revolution around the Earth.
One thing that should be noted for the low Δ𝑉 transfers is their starting location: Some transfers have
their starting point far beyond the distance of the Moon from the Earth. This is not a particularly effective
way of transfer for the satellites. However, in the set of low Δ𝑉 transfers, several options starting near
to the Earth are also avaiable.
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Figure 5.12: The angle of the link location and for each of the free linking approach transfers. The angle of the link is
measured counter-clockwise with respect to the positive y-axis.

To take a look into the effect of freeing the location of the linking, Figure 5.12 shows the relationship be-
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tween the location at which the transfer segments meet and the required Δ𝑉. The location is described
as an angle, where 0 degrees is the Poincaré cut on the y-axis as is used in the standard approach, and
counter-clockwise rotation is positive. Note that shortcut transfers where removed in this figure. This
figure shows two distinguishable groups of transfers. The left, main group are the ’normal’ transfers.
For this group it can be seen that there is an optimal angle for the link angle at 14 degrees clockwise
from the y-axis. The second group, to the right of the image, is far more sparse. These are transfers of
which the first, non-transit segment folds around the Earth, whereas other non-transit trajectories move
away. Because the segment folds close to the Earth, they can meet up with the Earth-Moon segment
at a far higher angle. Although this is interesting behaviour, it does not result in lower Δ𝑉. Nonetheless,
from the main group it is clear that the variation of the Poincaré cut is beneficial for Δ𝑉, as was also
seen for transfers in the Sun-Earth system (Langemeijer, 2018).

5.4. All classes, all link locations
The 119 limitless approach transfers found with a Δ𝑉 below 50 m/s is shown in Figure 5.13a. First of all,
note that for this approach, the transfers do not start on the negative y-axis. Instead, they start at the
negative x-coordinate equal to the distance between the Earth and the Moon. This change was used
to allow some extra freedom in the links, allowing transfers between trajectories to happen somewhat
earlier. The effect of this change is visible in the large loops around the Earth onto the positive y-axis.
These loops exist of only one trajectory, so no links are used to make them. Secondly, in the lower
segment of the figure, the same shortcut transfers as seen with the free linking approach are present.
For the rest of the discussion, these transfers are ignored, since they are not useful for the research.
Lastly, this figure shows a far greater variety in transfers than the previous approaches. This is exactly
as expected; there are less restrictions and therefore more options become available.

Figure 5.13b shows the transfer with the least total Δ𝑉 when ignoring shortcut transfers. This transfer
requires a total Δ𝑉 of 19.5 m/s, has a transfer time of 260 days, begins at 138,2000 km from the centre
of the Earth and has two segments. This transfer fits under the free linking approach transfers, since it
begins with a non-transit trajectory in the Sun-Earth system and continues with an asymptotic trajectory
in the Earth-Moon system.
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Figure 5.13: Limitless approach transfers, shown in the CR3BP. The blue asterisk at the origin is the Earth, the blue circle around
this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth Lagrange point. The Sun is positioned
on the negative x-axis. All other lines in the figure are limitless approach transfers. Transfers start on the negative y-axis and end
at the Earth-Moon Lagrange point. (a) shows each of the limitless approach transfers with a below 50 m/s. The colours
indicate the required amount of . (b) shows the limitless approach transfer with the lowest . This transfer requires a of
19.5 m/s and a transfer time of 260 days.

Figure 5.14 shows the relationship between total Δ𝑉 and transfer time for the standard approach. Trans-
fer times start at 200 days. Everything below this was removed, since they were all shortcut transfers.
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The remaining data shows a trend towards a minimum at approximately 20 m/s and 260 days of trans-
fer time. Obviously, the data are somewhat sparse, so the actual minimum may actually be located
differently. It should be noticed here that transfer times are higher than for the free linking approach.
This is caused by the additional loop followed at the beginning of the transfer. Therefore, it seems that
the minimum of the limitless approach actually would match the minimum of the free linking approach
if the full dataset were used.

The limitless approach allows for a great variety in transfers. To understand what kind of transfers work
well for low Δ𝑉 and transfer time, we look at the top ten for each of these variables. Figure 5.15a shows
the ten transfers with the lowest Δ𝑉. Figure 5.15b shows the ten transfers with the lowest transfer time.
The first thing that should be noticed is that all transfers shown here also fall under the category of
free linking approach transfers, using only two segments. Secondly, we may note that there is more
variety in the low Δ𝑉 transfers. This fits the spreading of data-points seen in Figure 5.14, where there
is a dense clutter of low transfer time and more spread in the low Δ𝑉 range.
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Figure 5.14: The transfer time and for each of the limitless approach transfers. The transfer time starts where the transfer
leaves the negative y-axis, and ends when it arrives at an elliptical orbit around the Earth-Moon Lagrange point.
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Figure 5.15: Limitless approach transfers, shown in the CR3BP. The blue asterisk at the origin is the Earth, the blue circle around
this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth Lagrange point. The Sun is positioned
on the negative x-axis. All other lines in the figure are limitless approach transfers. Transfers start on the negative y-axis and
end at the Earth-Moon Lagrange point. The colours indicate the required amount of . The transfer with the lowest
has been made bold. (a) shows the ten limitless approach transfers with the lowest . (b) shows the ten limitless approach
transfers with the lowest transfer time.
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To see the effect of using more segments, we look at Figures 5.16a and 5.16b, which show the rela-
tionship between number of segments, Δ𝑉 and transfer time. It is immediately clear that an increased
number of links does not create transfers with a lower Δ𝑉 or transfer time. It can be concluded that any
one link which allows for making the transfer has a minimum Δ𝑉 that is so high, that any combination of
two links always results in a Δ𝑉 above that of the optimum transfer. Also, it can be concluded that the
use of additional transfers does not affect the total transfer time very much. There low transfer times
seen with one link are shortcut transfers. When these are discarded, transfer times are similar for each
number of links.
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Figure 5.16: The relationship between number of links in a transfer and (a) the total or (b) the total transfer time required.

It should be noticed that the optimum transfer as was found for the free linking approach is not included
in the result for the limitless approach, even though it should be possible to find this transfer using the
limitless approach. This is caused by the fact that the limitless approach uses only 1/4th of the entire
database, due to the required time to run the entirety of the script. Apparently, the trajectories which
are needed to find the optimum of the free linking approach are not present in this subset. This also
leads to the conclusion that the true optimum is not present in this set. Nonetheless, the trend shown in
Figure 5.16a shows that it is highly unlikely that the limitless approach would result in a better optimum
than the free linking approach.

Additional information that may be lifted from the results of the limitless approach is the behaviour
of transfers with three asymptotic segments and free linking. Section 5.2 discussed that the three
asymptotic segments approach was limited by the fixed location of linking. Since the limitless approach
allows for all classes of trajectories and has free linking, there must be a subset in the result of three
asymptotic segments with free linking. Because this subset behaves similarly to the normal free linking
approach, it is only discussed briefly here.

The full set of transfers with three asymptotic segments from the limitless approach is shown in Figure
5.17a, and the transfer with the lowest Δ𝑉 is shown in Figure 5.17b. First of all, note that the limit-
less approach transfers where adapted slightly to start at the negative y-axis, like the three asymptotic
segment approach transfers do, to have a fair comparison. Secondly, note that the main trends seen
for three asymptotic segment transfers are still visible, with two sets of asymptotic trajectories in the
Earth-Moon system. However, the sets are larger, and the links between the segments seem to be
smoother.

This is supported by Figure 5.18, which shows the Δ𝑉 and transfer time. The lowest Δ𝑉 is found to be
27.4 m/s, with a transfer time of 216 days. This is significantly better than the optimum three asymptotic
segment transfer with fixed linking location.
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Figure 5.17: Three asymptotic segments with free linking approach transfers, shown in the CR3BP. The blue asterisk at the
origin is the Earth, the blue circle around this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth

Lagrange point. The Sun is positioned on the negative x-axis. All other lines in the figure are limitless approach transfers.
Transfers start on the negative y-axis and end at the Earth-Moon Lagrange point. (a) shows each of the three asymptotic
segments with free linking approach transfers with a below 100 m/s. The colours indicate the required amount of . (b)
shows the transfer with the lowest . This transfer requires a of 27.4 m/s and a transfer time of 216 days.
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Figure 5.18: The transfer time and for each of the three asymptotic segments with free linking approach transfers. The transfer
time starts where the transfer leaves the negative y-axis, and ends when it arrives at an elliptical orbit around the Earth-Moon

Lagrange point.

It should be noted that these data were lifted from the full set of limitless approach transfers. For
this approach, only a part of the database was used. It is therefore possible that a slightly better option
exists within the full database. For comparison of the methods the available insights will have to suffice.

5.5. Robustness
All the results given above rely on the database that was created as discussed in Chapter 3. It is an
important validation step to check the robustness of this database for the purpose of finding the optimum
transfer. It is possible that the used database is too small, and that the use of a larger database would
result in significantly better results.

In order to test the robustness of the database, each of the approaches were also considered when
using subsets of the database. Runs using only 80%, 60% and 40% of the database, selected at
random, where performed, so the results can be compared. Table 5.1 shows the results of this run.
For each of the four approached, the lowest Δ𝑉 found and the associated transfer time has been shown.
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Table 5.1: Comparison of the found transfer with the lowest and the associated transfer time, when using only a specified
percentage of the total database. The selection of trajectories is performed randomly.

100% 80% 60% 40%
Δ𝑉[𝑚/𝑠] t [days] Δ𝑉[𝑚/𝑠] t [days] Δ𝑉[𝑚/𝑠] t [days] Δ𝑉[𝑚/𝑠] t [days]

Standard 28.2 152.5 32.2 140.6 28.2 152.5 34.0 114.2
Three segments 184.0 288.2 187.6 288.4 184.0 288.2 323.7 308.7
Free linking 8.8 119.2 8.8 119.2 8.8 119.2 8.8 119.2
Limitless 19.5 260.0 19.5 260.0 25.0 259.0 25.0 259.0

From this table, it becomes clear that even when using smaller databases, the results stay mostly the
same. Only for the three segment approach a sudden increase in minimum Δ𝑉 is seen when using
40% of the database. This can easily be explained by the removal of just a few trajectories from the
dataset: Especially the second segment of the three segment approach is important to overall Δ𝑉, as
explained in Section 5.2. As the database gets smaller, those second segment trajectories that result
in relatively low Δ𝑉 may be removed, resulting in a significant Δ𝑉 increase.

Overall, the database can thus be considered robust for the purpose of this study. There remains
some risk at residing at a local optimum, but for the purpose of comparing different approaches this is
allowable. Ongoing research into a transfer for a true mission might consider expanding the database,
but need only do this for the optimum approach found in this research.





6
Comparing Low Energy Transfers:

Discussion
This Chapter compares the results of the four approaches in areas important for transfer design, and
discusses advantages and disadvantages of each of the approaches. Note that for the three asymptotic
segments approach, the data for free linking from Section 5.4 are used. Section 6.1 discusses the
Δ𝑉 and transfer time of each of the approaches. Section 6.2 discusses the options for scheduling the
transfer for each of the approaches. Section 6.3 discusses the starting point of each of the approaches,
being the location where a launcher vehicle should enter the spacecraft into the transfer trajectory.
Based on these discussions, a complete comparison of the transfers and a list of their pros and cons
are discussed in Section 6.4.

6.1. Comparison of Δ𝑉and transfer time
Two elements to look at when choosing a transfer trajectory for any mission are the required Δ𝑉 and
transfer time. This research concerns transfers for small satellites, which do not have access to a large
engine or large amounts of fuel. Therefore, the required Δ𝑉 should be as low as possible. Transfer
time is of secondary importance for the missions considered. However, in the case that Δ𝑉 is in the
same range, transfer time can be a deciding factor.

Table 6.1 shows the Δ𝑉 and transfer time for two transfer trajectories per approach: Those of the
transfer with the lowest Δ𝑉 and of the transfer with the lowest transfer time.

Table 6.1: The and transfer time for the lowest transfer and lowest transfer time transfer of each of the four approaches.
Note that shortcut transfers found in the free linking and limitless approaches are not taken into account. Note that free linking
is assumed for the three asymptotic segments approach.

Lowest Δ𝑉 transfer Lowest transfer time transfer
Δ𝑉 [m/s] Transfer time [days] Δ𝑉 [m/s] Transfer time [days]

Standard 28.2 152.5 145.6 109.5
Three asymptotic segments 27.4 215.7 58.3 181.0
Free linking 8.8 119.2 126.9 71.9
Limitless 19.5 260.0 47.8 200.1

The first thing that may be noticed is that the three asymptotic segments approach and the standard
approach use over twice as much Δ𝑉 as the free linking and limitless approach. The transfer time of the
three asymptotic segments approach is also much higher. The free linking and limitless approaches
score better on both accounts. From Chapter 5 we know that the ideal case for the limitless approach
uses only one burn, and could therefore also be considered a free linking approach transfer. Apparently
the free linking approach has the best behaviour for Δ𝑉. This is caused by the angle at which the two
segments of this transfer meet. An important aspect of the required Δ𝑉 is the change in direction that

43
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is made at the link location. In the free linking approach, this change in direction is minimal, because
of the lay-out of the trajectories used. Although the standard approach uses the same trajectories,
the lay-out at the standard Poincaré cut is not optimal. The same was seen for the three asymptotic
segments approach: The Δ𝑉 when using free linking was significantly lower than without free linking.
However, the layout of the three asymptotic segments requires a larger change in direction, even when
free linking is allowed. This leads to the conclusion that for both Δ𝑉 and transfer time, the free linking
approach is the best option.

6.2. Comparison of scheduling
The scheduling options for the launch of a specific transfer are an important factor for mission planning.
In the case of low energy transfers, scheduling is mostly limited by the position of the Moon upon arrival.
With exception of the three asymptotic segments approach, none of the approaches have the option
for a ’pause’ in the transfer where the transfer may be synced with the Moon location, and therefore the
moment of launch should be timed right. The three asymptotic segments approach allows for a syncing
orbit around the Sun-Earth 𝐿 point, and is thus far less restricted in terms of scheduling. Especially
for a mission with over a thousand satellites, this is essential.
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(a) Standard approach
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(b) Free linking approach
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(c) Limitless approach

Figure 6.1: The angle of the Moon upon arrival and for each of the standard approach transfers. The angle of the Moon is
measured counter-clockwise with respect to the positive x-axis.

Figures 6.1a, 6.1b and 6.1c show the relationship between the required Δ𝑉 of a transfer, and the location
of the Moon upon arrival. The angle of the Moon is measured counter-clockwise with respect to the
positive x-axis. In other words, an angle of arrival of 0 degrees means the Moon is exactly between the
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Earth and the Sun-Earth 𝐿 point, whereas an angle of 180 degrees means the Moon is in between the
Sun and the Earth. Because this research only included a limited number of possible Moon locations
to limit the running time of the script, each of the figures shows data-points only on specific vertical
lines. Despite these limited lines, the trends seem clearly visible, and unclearity is caused more by
data sparsity than limited Moon locations.

Each of the approaches in Figure 6.1 shows a trend towards a minimum Δ𝑉 at specific angles of arrival,
with increasing Δ𝑉 as theMoonmoves away from that angle. The standard approach shows aminimum
in the vicinity of 150 degrees. The free linking approach shows aminimum in the vicinity of 180 degrees.
Interestingly, the free linking and limitless approach also show low values at very high angles. These
are the data-points associated with the shortcut transfers discussed in Chapter 5. When removing
these results, the limitless approach also shows a minimum around the 150 degree mark, which are
the one-burn only transfers that were found, and which can also be described as free linking approach
transfers.

It is interesting to study the situation around the optimum for each of the three approaches. The amount
of increase in Δ𝑉 per deviation from the optimum arrival angle tells us how important it is to have proper
scheduling. Although the sparsity of data in both the standard and the limitless approach makes it
complicated to draw certain conclusions, an attempt is made. It can be seen in the figures that the
free linking approach has the smallest sensitivity to a change in the angle of the Moon upon arrival.
Nonetheless, if the Moon moves 90 degrees, Δ𝑉 is doubled. The standard approach shows far more
sensitivity when the Moon Angle decreases then when it increases. This is fortunate, since a delay
in launch will result in an increased angle of arrival. The limitless approach shows different behaviour
around the optimum: There seems to be a somewhat flat base and after this, a sudden increase, when
the shortcut transfers are not taken into account. The flat base may show similar behaviour to the
free linking approach if more data-points are available, which would fit with the conclusion that limitless
approach transfer with low Δ𝑉 are actually free linking approach transfers.

When comparing the different transfer approaches on the subject of scheduling, we may then conclude
two things. First of all, the three segment approach is very beneficial for scheduling, since it allows
for a syncing orbit around the Sun-Earth 𝐿 point, which makes it possible to use any launch moment.
It should be noted that this significantly increases the transfer time: It will take almost one full month
before the moon has returned to the desired location. Of the remaining approaches, sparsity of data
makes definite conclusions impossible, but the free linking approach seems to show the most beneficial
behaviour for scheduling. The limitless approach may show the same behaviour, but more research is
required here to be certain.

6.3. Comparison of transfer starting point
Although this research is only concerned with the transfer itself in terms of Δ𝑉 and transfer time, the
starting location of the transfer should be taken into account for the comparison. The research con-
siders a transfer for small satellites, which are not capable of bringing themselves to the starting point
of the transfer due to fuel constraints. However, the launcher should be capable of bringing one or
multiple satellites into the transfer, and as such it is beneficial for the mission of the starting point of the
transfer is in the vicinity of the Earth.

For ease of reference, the figures with the top ten transfers in terms of Δ𝑉 for each of the approaches
have been repeated in Figures 6.2a through 6.2d. First of all, notice that both the standard approach
and the free linking approach offer options that start at 11,790 km from the centre of the Earth, making
use of the same non-transit trajectory. This is the starting point closest to the Earth from the low Δ𝑉
transfers. The free linking approach transfer with this starting point uses 8.8 m/s; the difference with
the transfer with the lowest Δ𝑉 being only 0.01 m/s. In terms of starting point, this is clearly the optimal
transfer.

When looking at the three asymptotic segments with free linking approach, the closest starting point
lies at 69,030 km from the centre of the Earth, with a Δ𝑉 of 42.3 m/s. The limitless approach has the
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(a) Standard approach
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(b) Three asymptotic segments approach
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(c) Free linking approach
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(d) Limitless approach

Figure 6.2: The ten transfers with the lowest of each of the approach transfers, shown in the CR3BP. The blue asterisk at the
origin is the Earth, the blue circle around this is the orbit of the Moon. The blue asterisk on the positive x-axis is the Sun-Earth

Lagrange point. The Sun is positioned on the negative x-axis. All other lines in the figure are the transfers. Transfers start on
the negative y-axis and end at the Earth-Moon Lagrange point. The colours indicate the required amount of . The transfer
with the lowest has been made bold.

closest starting point at 138,200 km from the centre of the Earth, with a Δ𝑉 of 19.5 m/s, which is the
lowest Δ𝑉 transfer for this approach. These options are both considerably further away from the Earth
than the option found for the free linking approach. This will increase the demands on the launcher
vehicle significantly. It can thus be concluded that the free linking approach is optimal where transfer
starting point is considered.

6.4. Complete comparison
Based on the topics discussed above we can look into each of the approaches and consider their
applications, pros and cons.

6.4.1. Standard approach
The standard approach is the approach that is most like the research available about low energy trans-
fers for lunar missions. It is described by (Koon et al., 2001) as a simplified version of the Hiten mission
Uesugi et al. (1991) and follows similar layouts as described by (Koon et al., 1999), although for differ-
ent planetary bodies.

This research has shown that the standard approach is not ideal in any situation. In any of the aspects
considered, the free linking approach performs better. For mission applications, the standard approach
is therefore discarded. However, the standard approach does have significant uses for validation, and
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in a theoretical setting. It is the only approach for which previous research is available, making it in-
valuable for validating a database of low energy trajectories. Additionally, computation times for the
standard approach are significantly lower than for any of the other approaches. As such, it can be
valuable for making first estimations on Δ𝑉 and transfer time, before a more detailed study is done
which allows a free location of linking.

6.4.2. Three segments approach
The three segments approach changes the standard approach to allow for a station-keeping orbit
around the Sun-Earth 𝐿 point. It could be seen as an intermediate form between the Hiten and Genesis
transfer trajectories Uesugi et al. (1991), Burnett et al. (2003), since the Hiten mission uses a transfer
to the Moon, whereas the Genesis goes to the Sun-Earth 𝐿 and 𝐿 .

This research has shown that the three segment approach, when using a free location of linking, has
similar Δ𝑉 requirements as the standard approach, although transfer times are longer and the starting
point of the transfer is further from the Earth. The advantage of this approach is the option of a station-
keeping orbit around the Sun-Earth 𝐿 point. Not only does this reduce the effect of a launch delay, it
also allows for additional mission objectives in this 𝐿 orbit.

The three segments approach is most useful for missions with somewhat larger satellites, allowing for
higher Δ𝑉 budgets and additional mission objectives at the Sun-Earth 𝐿 . Additionally, if a lunar mission
considers the flexibility in scheduling more important than the initial Δ𝑉 required for the launcher rocket,
it might be the best option for small satellite mission to the Earth-Moon 𝐿 . This would be very depen-
dent on the mission: Missions which require a high number of satellites might consider scheduling more
important than missions that require only few.

6.4.3. Free linking approach
The free linking approach allows for a free location of linking between the two segments of the standard
approach. This additional freedom was researched by (Langemeijer, 2018) for a transfer between the
Sun-Earth 𝐿 and 𝐿 , where it was found to be advantageous in Δ𝑉. This research now proves that the
same goes for a transfer to the Earth-Moon 𝐿 . Δ𝑉 reductions of over 60% are possible by freeing the
location of the link.

Where Δ𝑉 and transfer time are concerned, the free linking approach clearly shows the best results
of the four approaches. Additionally, the transfer starts closest to the Earth of the four approaches.
However, where scheduling is concerned, the free linking approach is far more sensitive than the three
segments approach. While small delays do not impact the Δ𝑉 very much, a delay of a week could
potentially double the required Δ𝑉.

The free linking approach is most useful for missions with a very tight Δ𝑉 budget or limited time frames
for the transfer. The approach allows for a quick and ’cheap’ transfer to the Earth-Moon 𝐿 point.
However, for missions that require flexibility in scheduling, the free linking approach is not optimal. If
a mission considers flexibility in planning of lesser importance than Δ𝑉 and/or transfer time, the free
linking approach is the best option.

6.4.4. Limitless approach
The limitless approach was based on the suggestion by (Parker, 2007) that it might be possible to
reduce the Δ𝑉 of a transfer by using multiple segments. It is an entirely novel research, and there is no
available work for comparison.

The research has shown that the limitless approach does not improve upon the previous approaches.
Adding additional segments to the transfer increases both Δ𝑉 and transfer time. In terms of Δ𝑉 reduction
it converges to the free linking approach, and it shows very similar behaviour to this approach for
scheduling and transfer starting point. As such, there are no situations in which it is better to plan for
using a limitless approach over a free linking approach.

The advantage of the limitless approach is found in calculating the effects of deviations from a planned
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transfer. It may be used to anticipate the optimal location of an extra burn when a previous one did not
go entirely as planned, and to determine the amounts of extra fuel to bring for such situations.



7
Conclusions and Recommendations

This research intended to compare several options for combining low energy trajectories into transfers
from the Earth to the Earth-Moon 𝐿 Lagrange point, aiming for low Δ𝑉 to allow small satellites to fly
missions to this location. This Chapter discusses the best options for such missions, reflects on the
methods used to get to these conclusions and does some recommendations for future work.

7.1. Conclusions of the research
Four configurations were created for this research, and their Δ𝑉, transfer time, scheduling and trans-
fer starting points were compared. It should be noted that of these factors, Δ𝑉 is the most important,
because the effort of this research is to find a transfer which may be used by small satellites with very
strict fuel constraints.

The free linking approach, using a non-transit trajectory in the Sun-Earth system and a stable asymp-
totic trajectory in the Earth-Moon system, with a free location of linking, is the optimal configuration
for a low energy transfer for a mission from an Earth-orbit to a lunar 𝐿 orbit on tight Δ𝑉 constraints.
Δ𝑉 requirements of below 15 m/s are possible while starting very close to the Earth, small delays of
launch do not cause significant increases in Δ𝑉, and the transfer time is relatively short for low energy
transfers.

When a similar mission is considered with slightly less tight Δ𝑉 constraints, where either freedom in
scheduling is considered more important than Δ𝑉, or additional mission objectives at the Sun-Earth
𝐿 are considered, the three asymptotic segments approach with free linking is the best option. This
approach allows for a station-keeping orbit around the Sun-Earth 𝐿 point at the cost of increasing Δ𝑉
to approximately 30 m/s, and moving the starting point of the transfer further away from the Earth.

Overall, it can be concluded that the standard approach which is used throughout literature can be
improved upon to gain transfers which are of more use to missions going to the Earth-Moon 𝐿 point.
Future missions intending to send small satellites towards this point, such as OLFAR, could make use
of the methods described in this research to create their own transfer, bringing new discoveries about
the origins of our universe another step closer.

7.2. Reflection on the methods
At the end of the research, some conclusions may be drawn about the methods used. Some choices
turned out to not be ideal, whereas other decisions seem to have worked out quite well.

To get to the results of this research, a very linear approach was used. Initially, the full database of low
energy trajectories was created. Only when this was done, the linking scripts were created to get to
the full transfers. The advantage of this method is that the work-packages are very clear, and that no
two parts of the work are happening at the same time. This is a great advantage in both planning and
in effective working.
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The downside of the linear approach is that it does not allow for much changes in previously finished
steps. The research showed that specific classes of trajectories get used more often than others. For
example, even in the limitless approach, transit trajectories are not used. Additionally, the trajectories
with higher energy levels do not get used. This means that a significant portion of the database is
useless. On the other hand, there is a sparsity of data at some points. As such, it might have been
better to create a smaller initial database, and expand it after a initial linking is performed. This way,
the database can get expanded only in those areas where it is used. The same goes for the angles of
the Moon upon arrival. An initial run of the linking script with smaller database may have shown where
the optimum conditions for the location of the Moon are, allowing the final run to focus on this area.

7.3. Recommendations for future work
Due to time constraints, this research was limited in many areas. For future research with more avail-
able time, the following adaptations are recommendable:

• Use the full database in the limitless approach. In this research, only 25% of the trajectories were
used. This could prove with certainty that the limitless approach converges to the free linking
approach.

• Expand the database with trajectories similar to those that provide optimal transfers. This would
include non-transit trajectories in the Sun-Earth system and stable asymptotic trajectories in the
Earth-Moon system.

• Use a smaller interval between the possible angles of the Moon upon arrival, possibly only using
a specific interval. From the results it is clear that there is an optimum location of the Moon.
Additional research into more angles around this optimum could result in a further decrease of
Δ𝑉 requirements.

• Set a restriction on the starting location of transfers. This restriction should be a specified distance
from the Earth, likely somewhere within the orbit of the Moon. Transfers that do not fit within this
restriction are not feasible for missions. This restriction will also prevent the shortcut transfers
that were found for the free linking and limitless approach.

• Improve the script for finding the Lagrange Points. The current script uses manual adjustments,
which should be automated.

Additionally, from this research follow some recommendations for future research:

• Additional research into the free linking and three asymptotic segments with free linking ap-
proaches in a three dimensional, non-circular four body system. This research only looks into
two coupled planar CR3BP’s. When taking the ellipticity and inclination of the orbits of the main
bodies and the attraction of a third body into account, the results are bound to change. This
report showed that the free linking approach is the most interesting for small satellite missions.
Additional research is required if such a mission is to truly use such transfers.

• Additional research into the three asymptotic segments approach for dual-objective missions.
This research focussed on small satellite missions with only an objective in orbit around the Earth-
Moon 𝐿 point. However, additional scientific goals may be achieved by using a single satellite for
a mission in orbit around the Sun-Earth 𝐿 which later moves on to the Earth-Moon 𝐿 . Because
the fuel demands would be higher, this would have to be a larger satellite. More research into
this area might prove or disprove the feasibility of such a mission.

• Investigate low thrust options. The current research assumes high-thrust burns at the linking
locations. For small satellites low thrust options might be interesting. It might be possible to
use the same combination of trajectories, or possibly other trajectory combinations become more
interesting when using low thrust methods.

These conclusions and recommendations finalize the research on combinations of low energy trajec-
tories for a Lunar 𝐿 mission.



A
Appendix: Trajectory creation script

details
This appendix gives an overview of the code, settings, constants and other parameters used in the
low energy trajectory creation script in TUDAT. Note that the full script can be found through Github
(https://github.com/AMPronk/Thesis). To begin with, the constants which are used throughout the entire
script are discussed in Section A.1. The script is covered in parts: Section A.2 covers the creation of
the ephemeris model, which includes the Sun, Earth, Moon, spacecraft and 𝐿 points. Section A.3 the
calculation of the sets of initial conditions, and Section A.4 the propagation of the trajectories.

A.1. Constants
The trajectory creation script makes use of a set of constants as the basis for all other variables. These
constants are found in Table A.1, including their origins.

Table A.1: Constants used

Variable Symbol Value Origin
Gravitational Parameter of the Sun 𝜇 1.32712440018E20 𝑚 𝑠 TUDAT value
Gravitational Parameter of the Earth 𝜇 3.986004418E14 𝑚 𝑠 TUDAT value
Gravitational Parameter of the Moon 𝜇 4.9048695E12 TUDAT value
Orbital period of the Earth (sidereal year) 𝑇 31558149.504 sec TUDAT value
Sidereal day 𝑡 86164.091 sec TUDAT value
Orbital period of the Moon 𝑇 27.322 sidereal days Wertz et al. (2011)
Astronomical Unit AU 149597873474.74 m Eq. A.1
Moon orbit radius 𝑟 384051120.54 m Eq. A.2

The distances between the main bodies are calculated using the re-ordened versions of equation 2.31:

𝐴𝑈 = √(𝜇 + 𝜇 )𝑇2𝜋 (A.1)

𝑟 = √(𝜇 + 𝜇 )𝑇2𝜋 (A.2)

A.2. Ephemeris Creation
The ephemeris creation script begins with creating the three main bodies: Sun, Earth and Moon. Each
body is given the correct gravitational parameter, as found in Section A.1, and the initial conditions
shown in table A.2.
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Table A.2: Constants used

Sun Earth Moon
semi-major axis 0 1 AU 1 𝑟
eccentricity 0 0 0
inclination 0 0 0
argument of periapsis 0 0 0
longitude of ascending node 0 0 0
true anomaly 0 0 0

Note that the Sun and the Earth both have the solar system barycentre as the point of origin, whereas
the Moon uses the Earth as the point of origin as reference for the initial conditions. For these three
bodies, the trajectories are not propagated. Instead, constant Keplerian trajectories are calculated by
TUDAT.

Besides the three main bodies, a massless spacecraft is created in the ephemeris model. Depending
on the class of trajectory that the ephemeris is used for, this spacecraft is either attracted by the Sun
and the Earth, or the Earth and the Moon. At this point, the spacecraft does not yet have a position in
the ephemeris model, since this will be added later.

The last thing to be added to the ephemeris model are the locations of the Lagrange points. They are
implemented as massless spacecraft with initial conditions in the ephemeris model, attracted either by
the Sun and the Earth, or the Earth and the Moon. When the initial condition has been set correctly,
these spacecraft remain in the same relative position to their two main bodies. As explained in Section
2.3, the TUDAT script for finding Lagrange point turned out to have some rounding errors. Therefore,
manual adjustments were performed to both the initial location and velocity. In the Sun-Earth system,
the location of the Lagrange point was moved away from the Earth by 507.776127 meters, and the
velocity in the rotating system was decreased by 4.48950212∗10 4 m/s. In the Earth-Moon system,
the location of the Lagrange point was moved away from the Moon by 99,971.83293 meters, and the
velocity in the rotating system was decreased by 0.95575 m/s.

A.3. Initial Conditions Calculation
Initial conditions for the spacecraft are created using equation 3.22. The values of 𝛼 , 𝛼 , 𝛽 and 𝑡 were
varied to get different initial conditions. The sample size for each was found through trial and error, to
get as much possible results within the allotted time. The minimum and maximum value were set in
such a way that the entire range of allowed energy levels was covered, as was described in Section
3.5. Tables A.3 through A.8 show the used variables for the Sun Earth system, and tables A.9 through
A.14 for the Earth Moon system

Table A.3: Used variables for stable asymptotic trajectories in the Sun-Earth system

lowest value highest value sample size
𝛼 0.0 0.0 1
𝛼 -5.0E-2 5.0E-2 17
𝛽 -5.0E-2 5.0E-2 68
𝑡 0.0 3.0 17

Table A.4: Used variables for unstable asymptotic trajectories in the Sun-Earth system

lowest value highest value sample size
𝛼 -5.0E-2 5.0E-2 17
𝛼 0.0 0.0 1
𝛽 -5.0E-2 5.0E-2 68
𝑡 0.0 3.0 17
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Table A.5: Used variables for non-transit trajectories inside the Hill-sphere of the Sun-Earth system

lowest value highest value sample size
𝛼 -5.0E-2 0.0 17
𝛼 -5.0E-2 0.0 17
𝛽 -5.0E-2 5.0E-2 68
𝑡 0.0 3.0 17

Table A.6: Used variables for non-transit trajectories outside the Hill-sphere of the Sun-Earth system

lowest value highest value sample size
𝛼 0.0 5.0E-2 17
𝛼 0.0 5.0E-2 17
𝛽 -5.0E-2 5.0E-2 68
𝑡 0.0 3.0 17

Table A.7: Used variables for transit trajectories into the Hill-sphere of the Sun-Earth system

lowest value highest value sample size
𝛼 -5.0E-2 0.0 17
𝛼 0.0 5.0E-2 17
𝛽 -5.0E-2 5.0E-2 68
𝑡 0.0 3.0 17

Table A.8: Used variables for transit trajectories out of the Hill-sphere of the Sun-Earth system

lowest value highest value sample size
𝛼 0.0 5.0E-2 17
𝛼 -5.0E-2 0.0 17
𝛽 -5.0E-2 5.0E-2 68
𝑡 0.0 3.0 17

Table A.9: Used variables for stable asymptotic trajectories in the Earth-Moon system

lowest value highest value sample size
𝛼 0.0 0.0 1
𝛼 -1.0E-2 1.0E-2 17
𝛽 -1.0E-2 1.0E-2 68
𝑡 0.0 3.0 17

Table A.10: Used variables for unstable asymptotic trajectories in the Earth-Moon system

lowest value highest value sample size
𝛼 -1.0E-2 1.0E-2 17
𝛼 0.0 0.0 1
𝛽 -1.0E-2 1.0E-2 68
𝑡 0.0 3.0 17

Table A.11: Used variables for non-transit trajectories inside the Hill-sphere of the Earth-Moon system

lowest value highest value sample size
𝛼 -1.0E-2 0.0 17
𝛼 -1.0E-2 0.0 17
𝛽 -1.0E-2 1.0E-2 68
𝑡 0.0 3.0 17

Based on these variables, sets of initial coordinates and velocities in the rotating system of the CR3BP
can be calculated using equation 3.22. From these initial conditions, the energy level is calculated. If
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Table A.12: Used variables for non-transit trajectories outside the Hill-sphere of the Earth-Moon system

lowest value highest value sample size
𝛼 0.0 1.0E-2 17
𝛼 0.0 1.0E-2 17
𝛽 -1.0E-2 1.0E-2 68
𝑡 0.0 3.0 17

Table A.13: Used variables for transit trajectories into the Hill-sphere of the Earth-Moon system

lowest value highest value sample size
𝛼 -1.0E-2 0.0 17
𝛼 0.0 1.0E-2 17
𝛽 -1.0E-2 1.0E-2 68
𝑡 0.0 3.0 17

Table A.14: Used variables for transit trajectories out of the Hill-sphere of the Earth-Moon system

lowest value highest value sample size
𝛼 0.0 1.0E-2 17
𝛼 -1.0E-2 0.0 17
𝛽 -1.0E-2 1.0E-2 68
𝑡 0.0 3.0 17

the energy level is within the allowed range, the set of initial conditions is converted to the system of
the ephemeris model, and then saved for further use.

A.4. Propagation
For each of the initial conditions that are found through the method describes in Section A.3, a full
trajectory is propagated. This is done using the Cowel propagator and Runge-Kutta-Fehlberg 7(8)
integrator that are available in TUDAT. The following settings were used for the Sun-Earth system:

Initial Step Size 1.0 sec
Minimum Step Size 500.0 sec
Maximum Step Size 1.0 sec
Relative Error Tolerance 1.0E-20
Absolute Error Tolerance 1.0E-12
Propagation Time 0.7 sidereal years

For the Earth-Moon system, the following settings were used:

Initial Step Size 1.0 sec
Minimum Step Size 0.1 sec
Maximum Step Size 50.0 sec
Relative Error Tolerance 1.0E-20
Absolute Error Tolerance 1.0E-12
Propagation Time 0.3 sidereal years

It should be noticed that in case of stable asymptotic trajectories, backwards propagation is required.
For transit and non-transit trajectories, both forward and backward propagation is required, both at half
the full propagation time.

The resulting trajectories are saved with 1000 states per trajectory, linearly divided over the original set
of states. This means that in those areas where the propagator used a small time-step, there will still
be more states saved. The files are all given a name which includes the values of 𝛼 , 𝛼 , 𝛽, 𝑡, and an
indicator of the trajectory class.
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