
Property-Based Testing in Haskell
An Analysis of QuickCheck usage in Open-Source Haskell Projects

Ye Zhao

Supervisor(s): Andreea Costea, Sára Juhošová

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Ye Zhao
Final project course: CSE3000 Research Project
Thesis committee: Andreea Costea, Sára Juhošová, Marco Zuñiga Zamalloa

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Property-Based Testing (PBT) with QuickCheck
has become a cornerstone of reliable software de-
velopment in Haskell, yet there is little systematic
understanding of how developers employ it in pro-
duction quality libraries. In this study, we per-
form an empirical analysis of QuickCheck usage
in nine representative open-source Haskell projects
(aeson, attoparsec, bytestring, containers,
hashable, lens, megaparsec, pandoc-type ,
text and vector). We extract thousands of
QuickCheck properties and manually sample 217
of them to classify property types such as invari-
ants, roundtrip checks, algorithm correctness, and
idempotence. We also analyze all extracted prop-
erties to identify patterns in generator and shrink-
ing strategies. Our Results show that invariants and
test-oracle tests dominate the sampled properties,
while custom generators are used in 55.8% of all
properties and custom shrinkers in only 22.12%.
We discuss how these patterns vary across different
domains (data structures, text processing, optics,
hashing) and highlight the tension between default
and custom test infrastructure. Finally, we reflect
on the implications for tool support, education, and
future research particularly automatic generator in-
ference and improved shrinking utilities to lower
the barrier to effective PBT in large codebases.

1 Introduction
In modern software engineering, ensuring the correctness
and reliability of software systems remains a critical chal-
lenge. Traditional testing approaches, such as unit testing
and integration testing, rely heavily on manually written
example-based tests. However, such approaches are often
insufficient for uncovering edge cases or providing strong
correctness guarantees. Property-Based Testing (PBT) has
emerged as a complementary technique, where instead
of specifying individual test cases, developers describe
properties that the software should satisfy, and the testing
framework automatically generates numerous random inputs
to check these properties.

One of the most mature and influential tools in this
area is QuickCheck for Haskell, pioneered by Koen Claessen
and John Hughes in 2000 [2]. QuickCheck introduced the
concept of automatic test data generation and shrinking to
simplify failing test cases, leveraging Haskell’s strong type
system and functional purity. Besides safe default generators,
QuickCheck still allows users to write custom generators for
constrained or recursive structures. Its shrinking heuristic
tries nearby candidates (sub-lists, smaller numbers, shallower
trees) until the smallest failing input is found. Its design has
inspired similar tools in other languages, such as Hypothesis
in Python, proptest in Rust, and jqwik in Java. However,
recent studies highlight a lag in evaluation: even experienced
developers often lack feedback on how well random gen-
erated inputs exercise the code under test, leading to high

rejection rates and blind trust in ”All tests passed” [8].
Beyond tooling concerns, why and how practitioners use
PBT in the wild is still only partially understood. Goldstein
et al. [7] report that developers lean on a handful of “high-
leverage” idioms—round-trip, differential, and model-based
properties—while generator authoring and shrinking remain
pain points. Complementary work on Python’s Hypoth-
esis shows a similar concentration of property kinds and
raises questions about external validity across languages
[3]. While there is abundant documentation and tutorials
on how to write property-based tests with QuickCheck,
there is a lack of systematic analysis on how QuickCheck
is actually used in open source projects of real-world Haskell.

Questions remain about the types of properties devel-
opers choose to write, the extent of generator customization,
and how shrinking strategies are employed in practice. This
project seeks to bridge this knowledge gap by conducting an
empirical analysis of existing Haskell open-source projects.
This analysis will answer a main research question:

How is Property-Based Testing with QuickCheck
applied in real-world Haskell open-source projects?

To answer this question, we decompose it into follow-
ing research questions:

RQ1: What types of properties are typically tested us-
ing QuickCheck?

RQ2: Which types of quantifiers and logical connectives are
used in these properties?

RQ3: How does property-based testing complement other
testing strategies such as unit tests?

RQ4: How and when are generators implemented?
RQ5: In which scenarios do developers explicitly define
shrinking strategies?

The outcome will contribute to our understanding of
how developers apply PBT in practice, potentially guiding
better tooling, documentation, and education in the Haskell
community and beyond.

The remainder of this paper is organized as follows.
Section 2 details our methodology, covering repository
selection and data-collection, the open-coding procedure and
responsible research. Section 3 reports the empirical results,
providing qualitative findings. Section 4 discusses those
findings in depth, highlights limitations. Section 5 concludes
with answers to our research questions and directions for
future work.

2 Methodology
This section explains the approach undertaken in our research
procedure. It includes the selection of target Haskell open-
source repositories and methodology for data collection. Fur-
thermore, we address the principles of responsible research,

1



emphasizing transparency, reproducibility, and the mitigation
of potential biases. The aim is to provide a clear and replica-
ble account of how the evidence was gathered and analyzed
to answer the stated research questions.

2.1 Repository Selection and Data Collection
To investigate the application of Property-Based Testing
(PBT) with QuickCheck in real-world Haskell open-source
projects, we first selected a set of prominent and actively
maintained libraries. The criteria for project selection
was designed to ensure both the relevance of the chosen
projects to the domain of PBT and their representativeness
of common Haskell development practices. The selected
projects are listed in Table 1.

Table 1: Selected Repositories

Repository Stars Version

aeson 1.3K 2.2.3.0
attoparsec 524 0.14.4
bytestring1 298 0.13.0.0
containers 341 0.8
hashable 103 1.5.1.0
lens 2.1K 5.3.4
megaparsec 946 9.7.0
pandoc-types 112 1.23.1
text 415 2.1.2
vector 379 0.13.2.0

1 bytestring is excluded from the qualitative sample.

We first performed a broad search using the GitHub API
to identify a candidate pool of repositories. We retained
Haskell repositories if they had (i) commits within the last
12 months, (ii) import the Test. QuickCheck library, and
(iii) a permissive license. This process initially produced
over twenty diverse repositories, containing hundreds of
QuickCheck test files. From this candidate pool, manual
selection will ensure the chosen repositories are suitable and
contain meaningful QuickCheck test cases. We considered
functional domain coverage and community impact in this
manual step so that we build a varied and influential sample
rather than being an arbitrary selection. It finally determined
a set of 10 repositories for analysis as listed in Table 1.

Once identified, the property-based test cases, along
with their associated generator and shrinking code, will be
extracted from these projects for further analysis. Inside
each test/ hierarchy we located QuickCheck declarations
via a regex that matches either testProperty (the tasty
registration API) or an explicit property $ call. Every
match, typically a prop function, is treated as one sampling
unit.

This extraction yielded a large corpus Property-Based
Tests. Recognizing that some projects contain large clusters
of similar tests and that a manual analysis of all properties
is infeasible with time constraint, we decided to random
sample from each repository. In this sampling procedure,

we excluded the bytestring test suite. On one hand it has
over thousand test cases, on the other hands, it registers
many property in a way that the regex heuristic can not
capture easily. To avoid systematic under-counting we
removed that suite from the qualitative phase. All subsequent
analyses therefore concern the remaining nine libraries. After
exclusion, the random draw resulted in 217 tests.

2.2 Data Analysis
With the test cases collected, the coding analysis phase
focuses on thoroughly examining each property. We ap-
plied open coding, a standard qualitative analysis technique,
to inductively identify and classify key characteristics of
QuickCheck property usage in the Haskell ecosystem. This
research is a sub-project of a multi-environment project,
therefore, we combined our findings in the early stage of the
study, ensuring the consistency across different languages and
frameworks analysis. We collaboratively developed a shared
dictionary with existing literatures2 and checklist of general
dimensions, then adjust them carefully based on specific en-
vironment:

• Python/Hypothesis[4],
• Rust/proptest[1],
• Rust/QuickCheck[5],
• Java/jqwik[9].

For the Haskell and QuickCheck analysis, each extracted
property will be manually labeled and categorized based on
4 dimensions:

• the type of property (as defined below),
• the complexity and logical structure (noting the presence

of quantifiers or logical operators),
• the use of generators (distinguishing between default

and custom implementations),
• the shrinking strategy (whether explicitly defined or

relying on QuickCheck’s default behavior).

The property intent labels are defined below:
Invariant. The transformation must leave some projection
of the value unchanged for all inputs and branches (includes
error-handling and boundary checks).
Test-Oracle Behaviour is validated by comparing against
a trusted reference—either a standard-library function or a
simpler ”golden” implementation.
Hard-to-Prove / Easy-to-Verify Algebraic or structural laws
that would be tedious to prove formally (e.g. monoid or lens
laws) but are trivial to check on random data.
Round-Trip Applying an operation and its inverse—encode
then decode, set then get—must yield the original value.
Different Paths, Same Destination Intended for checks that
multiple execution routes converge to the same result
Idempotence Repeating an operation has no further effect: f
(f x) == f x.

2https://fsharpforfunandprofit.com/posts/property-based-
testing-2/

2



Structural Induction Explicit base-case and inductive-step
properties over a recursive structure.

Although some QuickCheck properties naturally satisfy
more than one of our categories, we assign exactly one
label per property. This decision keeps frequency statistics
interpretable and prevents double-counting. We use a simple
priority rule:

• Round-Trip beats Invariant (round-trip is the clearer in-
tention).

• Test-Oracle beats Idempotence or Invariant (the key idea
is to compare with a reference).

• Hard-to-Prove / Easy-to-Verify wins whenever the prop-
erty states an algebraic or structural law (e.g. lens), even
if it also happens to be an invariant.

We applied these definitions and rules on sampled dataset to
detect patterns in generator and shrinking configurations, en-
suring consistency. The findings will be summarized through
visualizations in Section 3 to clearly illustrate the distribution
and characteristics of the observed patterns.

2.3 Responsible Research
Our data sources are open and license-friendly. All analysis
objects are public repositories under permissive licenses
such as BSD-3. These licences explicitly allow inspection,
archival, and redistribution of source code for research
purposes, provided copyright notices are retained. Our
study therefore modified no code and operate all analysis on
read-only clones.

No personally identifiable information is collected or
processed during the research process, so no additional
IRB(Institutional Review Board) approval is required.

We respect the work of developers. When citing code
snippets, we annotate the library name, and file path to
ensure that contributors receive transparent and traceable
academic citations.We give fair presentation of results. When
reporting observations, we only make objective descriptions
based on the published version and do not evaluate individual
developers.

We used Large Language Model(LLM) throught out
the research workflow. It played a role as a writing assistant
and secondary verifier after manual extraction and coding
steps. We used OpenAI GPT-4 to generate preliminary
paragraph drafts, phrasing suggestions, and title variants,
then always reviewed and edited those content. We also
use it for grammar and spell check in writing process. We
viewed and approved all methodological decisions, data
collection and analysis. The LLM assistant did not contribute
original research ideas. There was no executable code pasted
verbatim and no AI-generated code appears in the final
dataset.

3 Results
This section presents the empirical results derived from the
systematic analysis of QuickCheck property tests across

Figure 1: Lines Of Code in Haskell

the selected Haskell open-source projects. We begin by
providing a general overview of PBT adoption. Then we go
through the main findings related to the types of properties
commonly tested, the prevalent use of quantifiers and logical
connectives, and the observed patterns in generator and
shrinking strategy implementations. Detailed breakdowns,
supported by illustrative examples from the codebase, will
highlight the practical application of QuickCheck features.

This study analyzes 9 repositories and examines all
sampled tests to answer research questions.The data set
resulting from our analysis of all 217 property-based tests is
also available[6]. We present the results of our qualitative
analysis below, organized by research question.

Table 2: Selected Repositories Tests Ratio

Repository Name Total PBT Other tests PBT Percentage

aeson 287 1876 13.3 %
attoparsec 70 0 100 %
containers 1171 423 73.5 %
hashable 21 15 58.3 %
lens 25 55 31.3 %
megaparsec 386 573 40.3 %
pandoc-types 23 114 17.2 %
text 492 262 65.3 %
vector 171 2637 6.1 %

3.1 Property-Based Testing
Figure 1 plots the approximate lines-of-code (LOC) for
each library’s production code. Codebases vary by nearly
an order of magnitude, from 2709 LOC in pandoc-types to
72353 LOC in containers. However, LOC alone does not
explain PBT uptake: the tiny attoparsec suite is 100% PBT,
while the similarly compact hashable mixes property and
example tests, and the large containers project still manages
a 73% PBT ratio. This suggests that domain characteristics
and oracle availability, rather than sheer code size, drive
QuickCheck adoption.

3



Across these libraries we observed a striking variation
in the reliance on QuickCheck-style PBT versus conven-
tional example-based tests (unit or integration). attoparsec
employ PBT exclusively, eschewing any testCase-style or
benchmark tests. At the opposite end of the spectrum,
aeson and vector mix heavily in favor of traditional tests.
In between, several core libraries show strong but not
exclusive adoption of PBT: containers, text, and hashable.
The parser combinator library megaparsec and the optics
package illustrate a blended approach that leverages PBT
for core algebraic laws but retains example-based checks for
intricate error-reporting and performance scenarios. Finally,
pandoc-types sits nearer to the Aeson/Vector end of the
spectrum, reflecting its role as a high-level document AST
library.

Table 3: property-type-distribution

Property Type Count %

Invariant 97 44.7 %
Test Oracle 62 28.5 %
RoundTrip 31 14.3 %
Hard to prove, easy to verify 24 11.1%
Idempotence 3 1.4 %
DifferentPaths 0 0.0 %
StructuralInduction 0 0.0 %

From these repositories we selected a purposive sample of
217 PBT cases that included custom generators or shrinkers.
The distribution is above. As shown in Figure 2 and Table 3:
we found real-world QuickCheck practice is highly skewed
toward three high-leverage idioms. Invariant takes
account for 48.5% percent, followed by Test Oracle and
RoundTrip. Algebraic laws that are Hard to prove,
easy to verify contribute another 12%. Idempotence is
also rare.

We found no clear instances of the DifferentPaths
and Structural Induction patterns. Such tests if present
are likely classified under broader invariant or round-trip
properties.

These findings reflect the variety of property types de-
velopers write, with invariants and test-oracle tests being the
most common.
Figure 3 (per-repository breakdown) and Figure 4 (corpus
totals) show how often the main QuickCheck quantifiers and
logical connectives occur in the 217-property sample.

Conjunction .&&. (or and) appears 38 times, account-
ing for almost two-thirds of all explicit logical operators.
Authors typically chain two independent checks—for in-
stance, an invariant plus a sanity predicate—rather than
embedding deep Boolean logic.

Pre-condition implication is secondary (15 times) and
close to the frequency of Explicit quantification(14 times).

Figure 2: Pie Chart of Property Distribution

Figure 3: Quantifier and Connectives Distribution per Repository

==> (or an if . . . then . . . expression that plays the same role)
is used 15 times. These properties guard against illegal inputs
(e.g. empty vectors, out-of-range indices) before asserting
the actual law. The pattern clusters in vector and containers,
both of which expose partial operations that would otherwise
throw exceptions.

Negation is occasional and disjunction almost absent.
Unary not shows up 7 times, mainly to express failure
branches. We found a single explicit disjunction(||), con-
firming the community preference for small, conjunctive
specifications.

Library-level differences. aeson and containers con-
tain the bulk of conjunctive clauses, reflecting richer
composite laws (e.g. encode–decode round-trip and length
preservation).vector contributes the most implications,
guarding partial index operations. Parsing libraries (mega-
parsec, attoparsec) hardly use connectives at all—most of
their properties are atomic round-trip checks.

4



Figure 4: Quantifier and Connectives Distribution in Sampled
Dataset

3.2 Generator and Shrinking
Generator and shrinker usage analysis further illustrated
developer behavior: in this same 217-test sample, 121 tests
(55.8 %) used custom input generators. However, we found
the actual amount of defined instance Arbitrary was
only 12. They, with a few inline forall generators are
heavily reused by 121 tests.

Custom shrinkers appeared less frequently, and 48 tests
(22.12 %) specify custom shrinking logic through forAll-
Shrink or dedicated shrink functions. There was only 4
defined shrinker. Such custom strategies are concentrated
in modules handling complex or recursively structured
data. By contrast, the remaining two-thirds of tests rely
on QuickCheck’s default shrinkers, reflecting that shrinker
customization remains a secondary priority, possibly due to
complexity or perceived low return on investment.

4 Discussion
Building upon the empirical findings presented in Section 3,
this section provides a comprehensive discussion of our re-
sults. We will systematically address each of the research
sub-questions posed in the Introduction, interpreting the im-
plications of our observations regarding property types, log-
ical constructs, and generator/shrinking strategies. A key fo-
cus will be on understanding the how and why behind specific
PBT application patterns identified in real-world projects.
We will also analyze how QuickCheck-based property test-
ing complements other software testing methodologies (e.g.
benchmarking, traditional unit testing) within these projects.
Finally, we acknowledge the limitations inherent in our study
design and data collection, offering insights into potential bi-
ases and outlining promising avenues for future research in
this domain.

4.1 Analysis of findings
Parsing and low-level data packages (e.g. attoparsec)
embrace PBT almost exclusively, leveraging randomized
inputs to flush out corner-case bugs in binary/text parsing.

Higher-level libraries (aeson, vector, pandoc-types) balance
PBT with targeted unit/integration tests. These projects
interact with external file formats, I/O layers, and tiny error
channels. Therefore, developers can benefit from hand-
written tests to validate user-facing behavior (serialization
options, exception messages, performance budgets) that
QuickCheck’s functional assertions cannot easily capture.
Middle-tier packages—containers, text, hashable, mega-
parsec, lens: PBT dominates the algebraic core, while
example tests document delicate corner cases or performance
hot-spots.

The data confirms that invariant-style checks form the
backbone of QuickCheck practice in the surveyed libraries:
nearly one half of the sampled properties simply assert
that a transformation leaves some projection of the value
unchanged. These micro-invariants are cheap to state, shrink
quickly on failure, and rarely require custom generators-
hence their popularity.

Round-trip, test-oracle and hard-to-prove-easy-to-verify
properties together contribute roughly another third of the
corpus patterns.These idioms are attractive, possibly because
they allow developers to confirm non-trivial behavior by
comparing against either an inverse function, a reference
implementation, or an easily checked post-condition. Devel-
opers get strong assurances without writing formal proofs
and QuickCheck supplies the diverse inputs.

Different-paths and idempotence appear sporadically,
reflecting domain-specific needs (e.g. parser branch cover-
age, duplicate-free updates).
Logical structure mirrors the above: a large majority are
single-clause properties and only a small part use an explicit
pre-condition (==>) or combine multiple logical conjuncts.
Simplicity keeps failure traces small and diagnosis fast.

Generator practice echoes this spectrum of complexity.
For simple scalar or list-like types, automatically derived
Arbitrary instances suffice. Custom generators concentrate
in modules with recursive or highly constrained struc-
tures—balanced trees, generalized lens optics, or parser
states—where default sampling would otherwise drown in
invalid cases. Shrinker customization remains uncommon:
only one quarter of properties define a custom shrink,
suggesting that developers either accept the quality of
QuickCheck’s generic shrinkers or think the extra effort
disproportionate to the expected debugging benefit.

4.2 Comparison with other environment
As mentioned before, this research is a sub-project of a multi-
environment project, there are other our other language /
framework pairs analysed. Across all five ecosystems tests
tends to rely on a single assertion. Test Oracle patterns dom-
inate in both Haskell and Python. Our 55.8 % rate is around
16 percent higher than Hypothesis and 26 percent above Rust
quickcheck. The likely cause is Haskell’s recursive, alge-
braic data structures: developers must hand-craft Arbitrary
instances once default derivation fails. By contrast, Hypoth-

5



esis ships rich built-in strategies, and QuickCheck’s deriva-
tions handle most flat structures. Custom shrinkers are nearly
absent in Hypothesis and jqwik, modestly used in Rust-qc (21
%), and highest in Haskell (22.12 %). QuickCheck’s generic
shrink tree works for scalars but performs poorly on deeply
nested ADTs, motivating hand-written shrink functions. Hy-
pothesis, in turn, embeds advanced tree-search heuristics that
remove the need for manual shrinking.

4.3 Threats to Validity
Our qualitative results are based on a hand-random, stratified
sample of 217 properties. While we preserved cross-project
balance, it may still under-sample infrequent property cate-
gories. A different random draw—or a larger sample—could
shift the observed proportions by a few percentage points.
Future replications should either enlarge the sample or use
adaptive sampling to force-include rare categories.

We discovered all properties with a regex-based method
that looks for the patterns prop_..., testProperty ...,
and property $. It ignored Template-Haskell splices,
run-time registration via tasty, and properties hidden behind
CPP flags. Though we tried to manually verify statistics,
consequently, a small number of tests may have been missed.
The under-count was severe enough in bytestring to force its
exclusion (as mentioned in Section 2.1). Future work should
replace the regex heuristic with a GHC API or HIE-AST pass
to capture dynamically generated properties.

Our assigning PropertyType labels is partly subjective.
Assigning each property a single Property-Type label
involved judgement and may introduce subjectivity.

1 prop_safeIndex :: Vector Int -> Int -> Property
2 prop_safeIndex v i =
3 not (V.null v) ==>
4 V.!? v i === fn (V.toList v) i
5 where
6 fn xs j = case drop j xs of
7 (x:_) | j >= 0 -> Just x
8 _ -> Nothing

Listing 1: Safe index property (vector/tests/Property vector.hs)

We deliberately counted each property once, using the rule
mentioned in Section 2.2, to avoid inflating percentages.
This means our category totals represent the primary testing
intention developers expressed, not an exhaustive set of
behaviors each property happens to cover. The trade-off buys
clarity at the cost of losing a small amount of nuance. Future
work that explores multi-label or hierarchical coding could
quantify those overlaps more precisely.

Beyond interpretive subjectivity, the coding process in-
volves mundane yet fallible data entry: copying a property’s
file path, filling ”custom generator” column, or pasting the
shrinker flag. Although we double-checked rows and an audit
sample was spot-verified, occasional slips (e.g. mis-counting
a forAll occurrence or overlooking a locally defined shrink
function) cannot be ruled out. Given the small absolute

numbers in our sample, even a handful of such slips could
impact percentages by one or two points.

We mitigate this risk by releasing the full coded data
csv file, and inviting replication studies to re-label inconsis-
tencies. In our judgement the residual error margin is not
big enough to overturn the qualitative patterns reported, but
readers should treat the exact percentages as approximate
rather than absolute.

Finally, we examined only the latest release of nine
high-impact libraries. Smaller domain-specific projects and
historical evolutions of properties were out of scope, limiting
external generalizability and obscuring temporal trends.
Future work that mines additional application-level code and
tracks property churn across commits would strengthen the
longitudinal picture of QuickCheck practice.

5 Conclusions and Future Work
This paper has presented an empirical investigation into
the practical application of Property-Based Testing with
QuickCheck in real-world Haskell open-source projects. By
analyzing a diverse set of influential libraries, we have ex-
plored the prevalent patterns, strategies, and challenges as-
sociated with PBT adoption in industrial-strength software
development. Our findings confirm the widespread use of
equivalence and invariant properties, the strategic deploy-
ment of custom generators and shrinking for complex data
types and scenarios, and the complementary nature of PBT
alongside other testing strategies. This research contributes a
valuable empirical foundation to the understanding of effec-
tive PBT practices, offering actionable insights for developers
aiming to leverage the full power of QuickCheck in their own
projects.

5.1 Answers to the Research Questions
RQ1: What types of properties are typically tested using
QuickCheck?

Property-based testing in Haskell library development is
dominated by a handful of canonical patterns—particularly
RoundTrip, Invariant, and Test Oracle, together three idioms
account for around 87.5%. This suggests that QuickCheck
excels when a simple oracle or inverse exists, echoing user
studies that highlight the ”high-leverage idioms” nature of
these patterns[7].

RQ2: Which types of quantifiers and logical connectives are
used in these properties?

Properties are normally a single equality or Boolean
clause; only one in five carries an explicit pre-condition and
barely one in ten chains multiple predicates. Practical value
instead of theoretical elegance—drives this pattern choice.

RQ3: How does property-based testing complement other
testing strategies such as unit tests?

6



Our data show a pragmatic division of labor rather than an
outright replacement: When an API is pure and determin-
istic, developers prefer QuickCheck. A single invariant or
roundtrip property explores thousands of cases that would
be impractical to enumerate manually. When correctness
depends on I/O side-effects, performance envelopes, or
precise error messages, authors fall back on illustrative tests,
sometimes derived from shrunk counter-examples—to lock
in the behavior.

RQ4: How and when are generators implemented?

For most properties, QuickCheck’s defaults will be suf-
ficient. But in domains with recursive or highly-constrained
data, default sampling would drown in invalid cases and thus
custom generator is needed.

RQ5: In which scenarios do developers explicitly de-
fine shrinking strategies?

Custom shrinkers are less authored but once necessary,
it’s always in the same recursive domains that need custom
generators. They are indispensable to achieving meaningful
random exploration and efficient failure minimization.

5.2 Future research directions
From our data we can say that a few custom generator
defined can cover a huge scope of property. Thus we
think investigating approaches to derive custom generators
automatically from data type definitions will be worthy to
reduce developer effort.

Besides, only one quarter of the properties bother with
a custom shrinker, yet many blog posts claim that good
shrinking is a life-saver when a test fails. Conduct user
studies on debugging time saved by custom shrinkers versus
default, to quantify practical impact.

References
[1] Antonios Barotsis. Property-Based Testing in Open-

Source Rust Projects: A Case Study of the proptest Crate.
Bachelor Thesis, Delft University of Technology.

[2] Koen Claessen and John Hughes. QuickCheck: A
lightweight tool for random testing of Haskell programs.
In Proceedings of the 5th ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages
268–279, 2000.

[3] Arthur Lisboa Corgozinho, Marco Tulio Valente, and
Henrique Rocha. How developers implement property-
based tests. In 2023 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages
380–384. IEEE, 2023.

[4] David de Koning. Property-Based Testing in Practice
using Hypothesis: In-depth study on how developers
use Property-Based Testing in Python using Hypothesis.
Bachelor Thesis, Delft University of Technology, 2025.

[5] Max Derbenwick. Property-Based Testing in Rust, How
is it Used?: A case study of the quickcheck crate used in
open source repositories. Bachelor Thesis, Delft Univer-
sity of Technology.

[6] Max Derbenwick, Harald Toth, David de Koning,
Antonios Barotsis, Ye Zhao, Andreea Costea, and
Sára Juhošová. Property-based testing in the wild!
4TU.ResearchData, 2025. doi: 10.4121/368f63ab-10fc-
4603-a15a-bde25e72e778.

[7] Harrison Goldstein, Joseph W. Cutler, Daniel Dickstein,
Benjamin C. Pierce, and Andrew Head. Property-based
testing in practice. In Proceedings of the 46th Inter-
national Conference on Software Engineering (ICSE),
2024.

[8] Harrison Goldstein, Jeffrey Tao, Zac Hatfield-Dodds,
Benjamin C. Pierce, and Andrew Head. Tyche: Mak-
ing sense of pbt effectiveness. In Proceedings of the 37th
Annual ACM Symposium on User Interface Software and
Technology, UIST ’24, New York, NY, USA, 2024. As-
sociation for Computing Machinery.

[9] Harald Toth. Property-Based Testing in the Wild!: Ex-
ploring Property-Based Testing in Java: An Analysis of
jqwik Usage in Open-Source Repositories. Bachelor The-
sis, Delft University of Technology, 2025.

7

https://doi.org/10.4121/368f63ab-10fc-4603-a15a-bde25e72e778
https://doi.org/10.4121/368f63ab-10fc-4603-a15a-bde25e72e778

	Introduction
	Methodology
	Repository Selection and Data Collection
	Data Analysis
	Responsible Research

	Results
	Property-Based Testing
	Generator and Shrinking

	Discussion
	Analysis of findings
	Comparison with other environment
	Threats to Validity

	Conclusions and Future Work
	Answers to the Research Questions
	Future research directions


