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Who Needs Real Data Anyway? Exploring the Use of Synthetic Data in

Economic Evaluations of Health Interventions

Naomi van der Linden, PhD, Xavier G.L.V. Pouwels, PhD, Beate Jahn, PhD, Uwe Siebert, MD, Hendrik Koffijberg, PhD

Objectives: Data needed for economic evaluations in healthcare are often subject to privacy reg-
ulations and confidentiality, limiting accessibility. This poses challenges for conducting, reviewing,
and validating health economic evaluations. The use of “synthetic data” may solve this problem.

Methods: An economic evaluation compared “shamectomy” with “usual care” for the prevention of
a fictitious disease called shame. A data set (Dorg) was created, consisting of 1000 patients in the
base case. Next, synthetic data (Dsyn) were created from Dorg. Dorg and Dsyn were used, sepa-
rately, to inform a model-based economic evaluation, and the similarity of the results was assessed
for various scenarios: different sizes of Dorg, order of synthetization, method of synthetization,
number of synthesized data sets, and missing data.

Results: With standard settings, incremental cost-effectiveness ratio (ICER)-results for shamectomy
were €25 848/quality-adjusted life-year in Dorg and on average €25 857 in 500 Dsyns, 95% Cl
(€16 776; €60 021). In the base case, 15% of the generated Dsyns resulted in an ICER leading to
a positive reimbursement decision, as opposed to a negative decision when using Dorg. With
smaller Dorg data sets (n = 50 and n = 500), ICER ranges increased to 95% CI (negative; €151 542)
and 95% CI (negative; €669 717), respectively.

Conclusions: Outcomes and conclusions of economic analyses based on synthetic data may deviate
from those obtained by using the original data. For data sets < 1000 patients, which are common,
deviations may be substantial and lead to suboptimal policy decisions. Based on our results, we
propose a stepwise approach to using synthetic data for model-based health economic evaluations,

o This simulation study seeks to

illustrate the benefits and
limitations of using synthetic data
in economic evaluations of health
interventions.

Outcomes and conclusions of
economic analyses based on
synthetic data may deviate from
those obtained by using the original
data.

Data synthesizers should generate a
large number of synthetic data sets
with the same size as the original
data.

using a large number of synthetic data sets (ie, >100) with the same size as the original data.
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The health and economic impact of health interventions is
often evaluated based on a combination of (1) clinical data, eg,
data on treatment effectiveness from randomized controlled trials,
(2) patient-reported outcomes, eg, quality of life, (3) resource use,
and (4) cost estimates. Compared with aggregate data, individual
patient data (IPD) reflects details and heterogeneity more
accurately.

In the absence of IPD, researchers often rely on aggregate data,
such as published survival curves or summary statistics, which are
digitized and converted into quasi-IPD using algorithms such as
the Guyot algorithm.! Although this approach is common practice,
it is not ideal. Aggregate data lack the granularity to capture
patient-level variation, correlations between model parameters,
and the influence of patient characteristics on event timing and
outcomes. For example, it cannot adequately reflect how baseline
factors might affect time to progression or resource use. This
limitation can lead to oversimplified models that fail to capture
the complexity of real-world patient experiences. In many cases,

however, IPD with detailed information do exist, such as clinical
trial data or patient registries, but they are often not collected for
health technology assessment purposes and may not be directly
usable because of privacy or accessibility constraints. This poses
significant challenges for conducting, reviewing, and validating
health economic evaluations.

Although various methods have been developed to address
these hurdles,” these are not-yet common practice. Developments
in data science from 1993° onward have led to methods that allow
the creation of “synthetic data,” which is an artificial reproduction
of the original IPD with nearly identical statistical properties.*
These methods provide data owners, including researchers,
governmental parties, and clinical institutions, with a means to
share synthetic data with the same relevance as the original data
set, without revealing the (potentially) sensitive information
contained in that original data set.

Importantly, the generation of synthetic data is typically per-
formed by the owner of the original data set, who has direct access
to the data and the necessary permissions to process it. This en-
sures compliance with privacy regulations while enabling external
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modelers to conduct analyses using synthetic data that mimic the
original data set’s statistical properties. Generating synthetic data
can, therefore, increase the usefulness of empirical data sets,
through use of synthetic derivatives for developing, extending, or
reviewing economic evaluations.

Synthetic data can be created from different types of data sets,
including randomized controlled clinical trial data but also
observational data from patient registries. The result could be
used in different types of health economic evaluations. For
example, synthetic data could be the basis for a model-based
economic evaluation but also as part of a purely empirical (eg,
trial-based) economic evaluation. In this article, we illustrate the
impact of using synthetic data in a model-based economic eval-
uation because models are often needed to project results beyond
the clinical trial duration or to combine data from different
sources.

Although the use of synthetic data in health economic evalua-
tions seems a promising development, its impact on outcomes and
conclusions from such analyses is currently unclear. This article
aims to evaluate the extent to which, and the conditions under
which, the use of synthetic data leads to the same health economic
outcomes and conclusions as the use of original data. It will do so
based on one software package to generate synthetic data: the
“synthpop” package in R.>® Other software packages for synthetic
data generation are also available, and several packages have been
compared within review articles.””' We chose to use synthpop in R
because the use of R seems to be increasing among health econo-
mists, and we were most familiar with synthpop ourselves.

By providing an illustration using synthpop, our findings will
contribute to a better understanding of the potential benefits and
limitations of using synthetic data in economic evaluations of
health interventions.

For our analysis of synthetic data sets, we will focus on a hy-
pothetical disease called “shame.”'’ Once individuals develop
“shame,” their quality of life decreases, and they cannot be cured.
Shamectomy is an expensive procedure, to be performed during
the asymptomatic state, “to prevent being ashamed in the first
place”'! and hereby delaying or preventing the onset of shame.
The goal is to evaluate cost-effectiveness of “shamectomy” versus
“usual care” for the prevention of “shame.”

Figure 1A'" shows the steps taken in this study. The next
subsections of the article discuss each of these steps separately. In
summary, to test synthetic data sets within this decision-making
framework, first a fictitious data set (data set original: Dorg) was
created, in which relevant characteristics (such as size and cor-
relation between variables) can be manipulated. After this, 500
synthetic data sets (Dsyn) were created from Dorg. The model-
based economic evaluation was then performed using Dorg and
again using all 500 Dsyns, to assess the extent to which the results
were similar. This was tested for a range of scenarios reflecting
different characteristics of Dorg and different approaches taken in
the synthesis approach, specified in the section “Define scenarios.”

A Markov model for cost-effectiveness analysis was created
using the R package “heemod.” Similar to a prior illustration of
this package by Filipovi¢-Pierucci et al,'' a model is created to
reflect an imaginary disease called “shame.” The model has 3
health states: shameless (asymptomatic), ashamed
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(symptomatic), and death being an absorbing state, see
Figure 1B."" In the model, once patients become symptomatic,
their quality of life decreases, and they cannot be cured. The model
aims to determine the cost-effectiveness of a preventative surgical
treatment called “shamectomy” compared with “usual care,”
which slows the progression from shameless to ashamed. The
model is run for 25 cycles, with a cycle length of 1 year (90% of
modeled individuals died within 25 years).

Transition probabilities were estimated for the Markov model,
separately based on Dorg and based on Dsyn. All transition
probabilities were dependent on the time spent in the health state
and estimated from the data set (described in next section) using
Weibull models, which were fitted separately for each treatment
arm, using the “flexsurv” package. In the first cycle of the
shameless state, diagnostic costs were incurred. Additionally, in
the shamectomy strategy, costs of the procedure were incurred in
this first cycle. Mean utilities for each health state (shameless,
ashamed, and death) were calculated from the data. Final out-
comes were expressed as costs (in Euros, discounted at 3%) per
quality-adjusted life-year (QALY) gained (discounted at 1.5%), in
line with the Dutch guideline for health economic evaluations.'? In
the base-case analysis, total discounted costs and discounted
QALYs of shamectomy were compared with usual care. Incre-
mental costs and QALYs of shamectomy versus usual care were
summarized in an incremental cost-effectiveness ratio (ICER) and
compared with a willingness-to-pay (WTP) threshold of €20 000/
QALY. Incremental net monetary benefit (iNMB) was calculated as
the difference in QALYs multiplied by a WTP value of €20 000/
QALY, minus the difference in costs ((deltaE x WTP) — deltaC).

All analyses were performed in R version 4.3.0.° We created a
data set to reflect the results of the fictitious SHAME-OFF trial,
which investigated the cost-effectiveness of “shamectomy” versus
“usual care” for the prevention of an imaginary, terminal disease
called “shame.”!! Table 1 provides the steps taken in generating
Dorg. Dorg is a dataframe of 1000 rows, each representing a
simulated individual, and 10 columns. Each column is explained in
Table 1. Although the data set is fictitious, we made our data
generation choices to reflect “commonly seen” data characteris-
tics, similar to what one would encounter in, for example,
oncology trials.

The synthetic data set was created with the “synthpop” pack-
age in R.° The R code used for the analyses is provided in Appendix
1 in Supplemental Materials found at https://doi.org/10.1016/j.
jval.2025.06.007.

All data were synthesized using the default command “syn()”
in the synthpop package.® By default, the algorithm synthesizes all
variables in columns from left to right. When synthesizing the
data, for every variable to be synthesized, a value is drawn from a
conditional distribution, which is defined based on the variable of
interest and values of previously synthesized columns: this is
called “simple synthesis.”

Note that “Time to death” was transformed to “Time from
progression to death” before creating the synthetic data sets so
that the correct order of events remained intact.

After the base-case analysis on Dorg, this analysis was repeated
for 500 different sets of Dsyn, created by using 500 different seeds
(1:500), to check the variation in outcomes. Subsequently, sce-
nario analyses were performed as described in Table 2.
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(A) Analyses steps. (B) Model structure for the “usual care” strategy, adapted from Filipovi¢-Pierucci et a

A 1. Define data & model 2. Define scenarios

a)Create model for Define all scenarios
the eco'nomic to run, based on:
evaluation. a) Size of the original
b)Determine dataset dataset.
characteristics for b) Size of the
Dorg. synthetic dataset.
c)Determine ¢) Order of
synthesis method to synthetisation.
create Dsyn from d) Method of
Dorg. synthetisation.
e) Handling missing
data.
~— —

p_disease_base
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Iﬂ

3. For each scenario,
repeat

4. Report differences

a)Generate a dataset a) Aggregate

Dorg. differences per
b)Derive a SESENG,

corresponding b) Report differences

synthetic dataset in model outcomes

(3e) and

from Dorg: Dsyn. .
conclusions (3f).

c)Perform a model-
based CEA informed
by Dorg.

d)Perform a model-
based CEA informed
by Dsyn.

e)Compare the model
outcomes of 3c and
3d.

f)Compare the
conclusion based on
model outcomes
from 3c and 3d.

—

p_death_all

p_death_symp

CEA indicates cost-effectiveness analysis; Dorg, original data set; Dsyn, synthetic data set.

To validate all variables in the data sets, conditional means by
treatment arm, and covariance matrices for Dorg versus 500
Dsyns were determined. Subsequently, estimated ICERs and NMB
were compared between the original analysis and the analysis
based on synthetic data in the base-case scenario and all addi-
tional scenarios. Mean ICER based on all Dsyns was reported, to
evaluate whether any systematic deviation existed compared
with the ICER based on Dorg. Intermediate outcomes were also
provided: event-free survival (EFS), overall survival, costs, and
QALYs.

A measure for the utility of synthetic data, the propensity
mean squared error (pMSE), was calculated to signal the extent to
which the data can be classified as “original data” versus “syn-
thetic data.” The pMSE quantifies how well the synthetic data

replicate the statistical properties of the original data set by
comparing the propensity scores of the original and synthetic data
sets. The propensity score represents the probability that a record
belongs to the synthetic data set rather than the original data set.
The formula for pMSE is as follows:

n
pMSE:% Z(p;—O.S)Z
i=1

in which n is the number of records in the data set, p; is the
predicted probability (propensity score) that the i-th record is
synthetic. If all p; values equal 0.5, the synthetic and original data
sets are indistinguishable, and pMSE would equal 0."° Note that
PMSE quantifies the similarity of data sets, not the similarity of
any outcomes obtained from analyzing those data sets.
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Steps taken in generating Dorg.

Person ID, column 1
Numeric, person identifier
Time-to-event data (clinical), columns 2 and 3

Time_to_shame and time_to_death were generated for both treatment strategies separately, from correlated Weibull distributions. For
time_to_shame, the shape parameter was set at 1.5 and the scale parameter was set at 8 for usual care. For death, the shape parameter was
set at 1.5 and the scale parameter was set at 12 for usual care. Correlation was set at 0.8, using a Gaussian copula (transforming the marginal
distributions of the variables into uniform distributions and then using the correlation parameter to adjust the dependency between them).
Time_to_shame was capped at time_to_death, so that progression from shameless to ashamed could never take place after death.
Furthermore, time_to_death was transformed to time_from_shame_to_death before creating the synthetic data sets, to ensure that
progression will always take place before or at the time of death.

The probability of developing symptoms was assumed lower for individuals in the “shamectomy” strategy. This was implemented by
multiplying time_to_shame by 2 for all patients in the ‘shamectomy’ strategy.

Status death, column 4

Dichotomous variable indicating whether a simulated participant was death or alive at the end of follow up. 1 = death, 0 = alive.

Status shame, column 5

Dichotomous variable indicating whether a simulated participant experienced shameless during follow up. 1 = ashamed, 0 = shameless.
Strategy, column 6

Dichotomous variable indicating in which strategy a simulated participant belongs. 1 = shamectomy, 0 = usual care. Per strategy, data were
generated for 500 individuals.

Cost data, columns 7 and 8

The diagnostic costs incurred in the shameless state were randomly drawn from a normal distribution with a mean of €5000, SD of €2000 and
truncated at €0 for each patient, irrespective of the arm.

Additionally, patients in the shamectomy arm were assigned an additional cost of the surgery, defined by a right-skewed beta distribution with
shape 1 = 2, shape 2 = 7, multiplied by €100 000. This results in a different cost per patient, with mean surgical cost of ~€22 000.

Utility data, columns 9 and 10

Each unique patient was assigned a random utility from a normal distribution with a mean of 0.8, SD of 0.05 and truncated between 0 and 1.
This utility value represents their quality of life before developing “shame.” Utility values associated with the ashamed state of each individual
were approximately halved, by multiplying the “shameless” utility by 0.5 and by a random noise variable drawn from a uniform distribution

with minimum 0.95 and maximum 1.05, to prevent collinearity in the data set. Dead patients were assigned a utility of 0.

For each of the scenarios, it was evaluated in which proportion
of cases the policy-relevant advice would change when using
synthetic instead of original data. This was based on whether the
ICERs were above or below the WTP threshold of €20 000/QALY.

In addition to generating results for 500 Dsyn, based on 1 seed
value for Dorg, all scenarios 1 to 4 were performed with 50 Dsyn
for 20 different seed values for Dorg.

A comparison of conditional means by treatment arm and
covariance matrices for Dorg versus 500 Dsyns is provided in
Appendix 2 in Supplemental Materials found at https://doi.org/1
0.1016/j.jval.2025.06.007.

The base-case ICER was €25 848/QALY gained, based on Dorg
(with n = 1000), which is above the €20 000/QALY-gained WTP
threshold and would lead to the advice not to reimburse shame-
ctomy. The iNMB was —€4857.

The ICER estimated based on dividing the mean incremental
costs by the mean incremental QALYs across the 500 Dsyns was
€25 857/QALY gained. The mean iNMB in the synthetic data sets
was —€4,865 and ranged from —€20,739 to €11,166 (Fig. 2,
Table 3).

See Appendix 2 in Supplemental Materials found at https://doi.
org/10.1016/j.jval.2025.06.007 for the results of the missing data
scenarios (5A-5F, Appendix Table 4), and the scenario results
based on the average of 20 runs (repeats with different seeds)
with 50 synthetic data sets (see Appendix Table 5 in Supplemental
Materials found at https://doi.org/10.1016/j.jval.2025.06.007). For
scatterplots of each of the scenarios, see Appendix 3 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
025.06.007. In summary, results were largely determined by the
size of Dorg (scenario 1). Larger sizes of Dsyn reduced spread in
the outcomes (scenario 2).

With the smallest Dorg (n = 50), the parameters of the
model could not be defined for 17% of the synthesized sets
because of a lack of progression and/or death events generated
in Dsyn. For all scenarios with n = 1000 in Dorg, the ICERs were
rather similar, with less than €800 difference between ICERs.
However, in up to 24% of the generated Dsyn sets with a Dorg
of n = 1000, an advice on reimbursement based solely on the
ICER would have been positive, as opposed to negative in the
base case. With smaller Dorg data sets (n = 50 and n = 500),
estimated ICERs lay further apart, with more than €35 000
difference between ICERs. Smaller values of pMSE were
observed for larger Dsyns, which captured all variation present
in Dorg.
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Scenario analyses.

Scenario 1: Size of the original data set

Scenario 2: Inflated synthetic data set

Scenario 3: Order of synthetization

Scenario 4:
Proper synthesis

Scenario 5: Missing data, prior

NOVEMBER 2025

The base case on Dorg includes (2 X 500 =) 1000 individuals. Three subscenarios are
performed to determine the impact of size of the original (training) data set:

1A: Dorg contains (2 X 25 =) 50 patients to create the synthetic data.

1B: Dorg contains (2 X 250 =) 500 patients to create the synthetic data.

1C: Dorg contains (2 X 5000 =) 10 000 patients to create the synthetic data.

In the base case and scenario 1, the size of Dsyn is equal to the size of Dorg. In
scenario 2, the synthetic data sets are inflated to contain 10 000 individuals. Three
subscenarios are performed, with different sizes of Dorg:

2A: Dorg contains 50 patients and is used to create Dsyn with 10 000 individuals.
2B: Dorg contains 500 patients and is used to create Dsyn with 10 000 individuals.
2C: Dorg contains 1000 patients and is used to create Dsyn with 10 000 individuals.

By default, the algorithm synthesizes all variables in columns from left to right. To
determine the impact of synthetization order, the analysis is repeated with the
opposite order: from right to left. This is done by using the visit.sequence argument in
the synthpop package.”

When synthesizing the data, observed values are replaced by sampling from a
probability distribution conditional on the following: the variable to be synthesized,
the values from previously synthesized columns of the original data set, and the fitted
parameters of either (1) the conditional distribution (this is called “simple synthesis”)
or (2) the posterior predictive distribution of parameters (this is called “proper
synthesis”).*

In the base-case analysis, “simple synthesis” is performed. This scenario uses “proper
synthesis,” by setting the argument “proper” to “TRUE” in the synthpop package.”

When part of the data are missing, several approaches are possible to impute the
missing values. We test 2 of these: (1) to impute missing values before synthesis
(scenarios 5A-5C), and (2) not to impute missing values before synthesis, but complete
them as part of the synthesis procedure (scenarios 5D-5F).

5A: In this scenario, 10% missings are introduced to the data in Dorg. This was done
at random locations before imputation and the generation of each of the 500
Dsyn. The missing data were imputed (m = 5) using the mice package, before
synthesis, creating 3 synthetic data sets for each of the 2500 imputed Dorg files.

5B: In this scenario, 25% missings are introduced to the data in Dorg. This was done
at random locations before imputation and the generation of each of the 500
Dsyn. The missing data were imputed (m = 5) using the mice package, before
synthesis, creating 3 synthetic data sets for each of the 2500 imputed Dorg files.

5C: In this scenario, 50% missings are introduced to the data in Dorg. This was done
at random locations before imputation and the generation of each of the 500
Dsyn. The missing data were imputed (m = 5) using the mice package, before
synthesis, creating 3 synthetic data sets for each of the 2500 imputed Dorg files.

5D: In this scenario, 10% missings are introduced to the data in Dorg, at random lo-
cations for each of 500 different sets. The data are not imputed before synthesis
but completed as part of the synthesis procedure, creating 3 synthetic data sets
for each of the 500 files.

SE: In this scenario, 25% missings are introduced to the data in Dorg, at random lo-
cations for each of 500 different sets. The data are not imputed before synthesis
but completed as part of the synthesis procedure, creating 3 synthetic data sets
for each of the 500 files.

5F: In this scenario, 50% missings are introduced to the data in Dorg, at random lo-
cations for each of 500 different sets. The data are not imputed before synthesis,
but completed as part of the synthesis procedure, creating 3 synthetic data sets
for each of the 500 files.

The mean of 20 runs (repeated with different seeds) of 50

Dsyns confirmed that the outcomes and conclusions based on an
individual synthetic data set may deviate substantially from the
means obtained using all synthetic data sets.

The missing data scenarios suggest that the imputation of
missing data as part of the synthesis procedure outperforms our
current approach in scenarios 5A to 5C, in which missing data
were imputed before synthesis, with respect to the similarity of
the scenario results to the Dorg results.

In Figure 3, we suggest a stepwise approach to the use of
synthetic data to inform model-based health economic evalua-
tions, based on the findings of this simulation study.

This simulation study using the synthpop package in R in-
dicates that both outcomes and conclusions of cost-effectiveness
analyses based on synthetic data may deviate from those ob-
tained by cost-effectiveness analyses based on the underlying
original data. Unless the original data set is very large, deviations
may be substantial and lead to different, that is, suboptimal, policy
decisions regarding reimbursement of interventions. Based on our
findings, we recommend considering the use of synthetic data
only when the original data set contains more than 1000 records.
For substantially smaller data set sizes, a comprehensive analysis
demonstrating sufficient similarity between synthetic and original
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Base-case results for Dorg and results for 500 sets of Dsyn (not a probabilistic analysis).

@ ICEROf Dorg

25000

20000

Incr. costs in EUR

15000

4 Mean ICER of all 500 synthetic datasets

/" Willingness-to-pay threshold 20,000 EUR/QALY

1.0 15 20

Incr. QALYs

Dorg indicates original data set; Dsyn, synthetic data set; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-year.

data would be warranted but may still not lead to acceptance of
results based on synthetic data.

Currently available synthetic healthcare data sets reported on in
a literature review by Gonzales et al,'® contain data on 30 000 to 6.8
million people, with up to 300 million records. An example is
Medicare and Medicaid claims data, with 6.8 Million beneficiary
records and 112 million claims records.'® However, although large
underlying (“true”) databases are common for administrative
health record data, this is not the case for primary health data
collections, such as clinical trial data. In clinical trials, sample sizes
<100, and between 100 and 1000 are very common, and only 6% of
trials have a sample size > 1000.'® Consequently, one should be
careful when using synthetic data based on such trials to inform
health economic analyses and guide policy making in healthcare. At
minimum, extensive and transparent validation of the similarity of
the synthetic data to the original data is needed to start building
confidence in health economic analyses using those synthetic data.

For data owners, when generating synthetic data, we strongly
recommend publishing of a large number of synthetic data sets
(ie, at least 100) all generated based on the same original data set
and with that sample size and using the same synthetization
settings. This allows analysts to gain insight into the uncertainty
introduced by the synthetization process, by exploring the spread
in outcomes. In the absence of bias in this process, this also allows
for obtaining a more realistic approximation of the original data
outcomes by averaging the synthetic data outcomes (such as in
Fig. 2).

Some data owners may be tempted to inflate synthetic data
sets to a large and potentially “round” number (eg, generating
10 000 records from an original data set of 1234). This may
incorrectly appear to be beneficial because larger data sets are
often associated with greater statistical power and precision
and narrower confidence intervals, potentially leading to
broader use. However, this practice is misleading because
inflated synthetic data no longer properly reflect the true vari-
ability and uncertainty present in the original data set. There-
fore, synthetic data sets should maintain the same sample size
as the original data set to ensure that the variability and un-
certainty inherent in the original data are accurately
represented.

When receiving synthetic data from a data owner, the modeler
should first verify whether their size matches the original data set.
If the synthetic data set is inflated, uncertainty in model param-
eters may be underestimated. To address this, probabilistic esti-
mates can be derived from repeated random subsamples of the
synthetic data, each matching the original data set’s size. Although
a single subsample might not perfectly reflect the original data’s
properties, aggregating results across many subsamples helps
approximate the true variability.

For rigorous uncertainty quantification, particularly in proba-
bilistic or value of information analyses,”'® a more comprehen-
sive approach is needed. Similar to combining bootstrapping with
multiple imputation, the modeler can bootstrap the original data
set and generate multiple synthetic data sets per bootstrap sam-
ple. Robust methods'®?° can then be applied to derive parameter
estimates and distributions that appropriately reflect the com-
bined uncertainty.

Synthetic data can offer advantages over aggregate data by
capturing patient-level variation, correlations between vari-
ables, and the influence of patient characteristics on event
timing and outcomes. These features are lost when relying on
aggregated summaries. The added value of synthetic data
depends largely on the comprehensiveness of the underlying
clinical data. When the original data are limited in scope or
detail, synthetic data may offer little advantage over aggre-
gate data. However, when the original data set is rich and
detailed, synthetic data can provide a more nuanced repre-
sentation of patient-level variability, correlations, and in-
teractions. Further research would be needed to illustrate this
because this simulation study used highly simplified data and
modeling.

Our results depend directly on the use of the synthpop
package in R. The synthpop package uses sequential modeling,
generating replacements by drawing from conditional distribu-
tions fitted to the original data using parametric or classification
and regression trees models.” This is just one of many existing
methodologies to generate synthetic data. Other methods could
potentially result in different outcomes. However, experimental
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analysis by Goncalves et al’' suggests that there is no single
method that outperforms the others in all considered metrics,
such as metrics for data utility (eg, Kullback-Leibler divergence)
and privacy disclosure risk. Future studies could compare the
performance of alternative packages for creating synthetic data
for use in cost-effectiveness analyses and their influence on
decision making.

Although the use of the synthpop package in this study
provides a practical and accessible approach to synthetic data
generation, it is important to acknowledge that alternative
synthesis methods, such as Bayesian models, generative adver-
sarial networks, or tree-based models, were not explored.® These
methods may offer distinct advantages in terms of data fidelity,
flexibility, or scalability, depending on the context and
complexity of the data set. For instance, Bayesian approaches
can incorporate prior knowledge and uncertainty quantification,
generative adversarial networks excel in capturing complex data
distributions, and tree-based models may provide interpret-
ability and robustness.®?? Future research could focus on a
comparative analysis of these methods to identify their relative
strengths and limitations in generating synthetic health data,
particularly for use in health economic evaluations. Such
exploration could help determine whether alternative methods
might reduce the variability in outcomes observed in this study,

NOVEMBER 2025

especially for smaller data sets, and provide more robust syn-
thetic data for policy decision making.

In this study, we purposefully chose to use default settings in
most analyses. For example, the order of synthesis was left to right
in the base case, and right to left in scenario 3. In reality, another,
customized order of synthesis may better preserve the statistical
properties of the original data set (in our simulations, alternative
positioning of the “strategy” column in Dorg did not bring Dsyn ICER
or iNMB closer to Dorg outcomes, see Appendix Table 3 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2
025.06.007). Therefore, it may be possible to further reduce the
differences in estimates between Dorg and Dsyn by modifying some
of the synthesis choices. This study purposefully used readily
available functions to generate synthetic data, with their default
settings. We expect that these are likely to be used in practice
because optimizing the settings of such functions based on specific
data set(s) would require more advanced knowledge of the syn-
thetization algorithm, which might be lacking.

A range of measures have been proposed to quantify the utility
of synthetic data sets to compare different synthesis approaches
or to diagnose cases in which the original and synthetic data
distributions differ and thus tune the synthesis methods.”*
Although this could lead to more representative and useful syn-
thetic data sets, it also requires substantial statistical experience

Scenario results based on 1 Dorg and 500 synthetic data sets.

Scenarios in which Dorg n = 1000

Original data (n = 1000) 10.69
Base case using synthetic data (n = 1000 10.73
in Dorg and Dsyn)

2c (n = 1000 in Dorg and n = 10 000 in 10.73
Dsyn)

3 (synthesis from right to left) 10.73
4 (proper synthesis) 10.69
Scenarios in which Dorg n = 50

Original data (n = 50) 9.07
1a (n = 50 in Dorg and Dsyn)* 8.41
2a (n=50in Dorg and n =10 000 in Dsyn) 8.56
Scenarios in which Dorg n = 500

Original data (n = 500) 9.52
1b (n = 500 in Dorg and Dsyn) 9.47
2b (n =500 in Dorg and n = 10 000 in 9.47
Dsyn)

Scenarios in which Dorg n = 10 000

Original data (n = 10 000) 9.98
1c (n =10 000 in Dorg and Dsyn) 9.96

6.71 3.98 11.42 10.41 1.01
6.71 4.02 11.49 10.38 1.1
6.72 4.01 11.49 10.38 1.1
6.71 4.02 11.49 10.38 1.1
6.70 3.99 11.48 10.27 1.22
8.95 0.12 9.67 14.64 —4.97
9.27 —-0.86 9.42 14.59 -5.17
9.41 —0.85 9.58 14.84 —5.26
6.90 2.63 10.33 10.50 -0.17
6.96 2.51 10.38 10.36 0.02
6.94 2.53 10.37 10.33 0.04
6.90 3.08 10.77 10.82 —-0.05
6.90 3.06 10.75 10.82 —-0.07

Comp indicates comparator; Dsyn, synthetic data; EFS, event-free survival; ICER, incremental cost-effectiveness ratio; Incr., incremental; INMB, incremental net monetary
benefit; OS, overall survival; pMSE, propensity score mean square error from the utility model; QALY, quality-adjusted life-year; WTP, willingness-to-pay threshold (in this

case €20 000/QALY, see below).

“In 86 of 500 (17%) of the synthesized data sets, the distributions for the model could not be fitted because of a lack of events generated in Dsyn.
*In 52 of 500 (10%) of the synthesized data sets, ICERs were negative because of negative incremental costs.
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and time, which may be limited in a practical clinical setting.
Users of synthetic data sets would benefit from extensive
reporting by the data owner on the synthetization steps and set-
tings and similarity to the original data. Furthermore, tools such as
“SynthRO”—a dashboard to evaluate and benchmark synthetic
tabular data—may help select the most suitable synthetic data
model for individual use cases.’”

In addition to the synthesis choices, other choices were made in
creating Dorg and building the Markov model. With each of these
choices, we aimed to keep our approach as simple and transparent
as possible, while still mimicking a realistic model-based economic
evaluation. For example, our analysis was based on a relatively
simple 3-state Markov model, which may not fully capture the
complexity of health economic evaluations. In practice, models
often include additional health states and more intricate cost and
outcome structures. Generalizability of our findings to other types
of data and models is, of course, not guaranteed. Future studies
should explore how the use of synthetic data in such complex
models influences outcomes and decisions because the increased
dimensionality and interactions between variables may amplify
deviations between outcomes based on synthetic versus original
data. Investigating these scenarios would provide a more compre-
hensive understanding of the strengths and limitations of synthetic
data in health economic evaluations and help identify contexts in

Continued

Scenarios in which Dorg n = 1000

21 468 0.83 25 848 —4857
21 476 (576) 0.83 (0.24) 25 857 —4865
21 455 (186) 0.82 (0.07) 26 148 —5045
21 476 (576) 0.83 (0.24) 25 857 —4865
20 396 (6565) 0.77 (0.37) 26 646 —5087
Scenarios in which Dorg n = 50

21724 0.50 43 567 -11 751
17 199 (15 302) 1.22 (0.80) 14 130" 7144
22 890 (191) 1.14 (0.06) 20 084 -95
Scenarios in which Dorg n = 500

22 226 0.37 59 513 —-14 757
14 989 (17 143) 0.37 (0.26) 40 875 —7655
22 757 (199) 0.30 (0.07) 75 973 —16 766
Scenarios in which Dorg n = 10 000

22 079 0.62 35 858 —9764
22 076 (184) 0.60 (0.07) 36 783 -10073
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which its use is most acceptable. To allow further exploration of this
research question, we provide our R code (see Appendix 3 in
Supplemental Materials found at https://doi.org/10.1016/j.jval.2025.
06.007) so that readers can modify the choices we made and
explore the resulting impact on the findings.

Although our study provides valuable insights into the use of
synthetic data in health economic evaluations, its reliance on a
self-created “original” data set limits external validity. In fact,
generating synthetic data from actual real-world data may well
lead to larger deviations in cost-effectiveness outcomes as shown
here if the occurrence of measurement errors, missing data pat-
terns, heterogeneity, and outliers negatively affects the accuracy of
data synthetization methods. To address this, future research
should replicate our methodology using real-world data sets to
support a more robust assessment of the utility of synthetic data
in practical settings. By validating our findings on real-world data
sets, researchers can better understand the generalizability of
synthetic data in health economic evaluations and refine synthesis
methods to improve their reliability.

Alternatively, future studies could enhance the realism of
synthetic data by introducing greater separation between the
stages of data generation, synthesis, and analysis. For example, the
team generating Dorg could be independent of the team synthe-
sizing Dsyn, and analysts building the economic model could be

NA NA NA

—5286; —4443 0.15 (75/500) 0.000; 0.183; 0.192
—20739; 11 166

—5172; —4918 0.00 (0/500) 0.029; 0.031; 0.032
—9274; —404

—5286; —4443 0.15 (75/500) 0.171; 0.181; 0.193
—20739; 11 166

—5833; —4342 0.24 (122/500) 0.175; 0.186; 0.194

—22572; 27 817

NA NA NA

5456; 8832 0.61 (252/414) 0.218; 0.243; 0.250
—24 662, 55 016

—212; 21 0.50 (248/500) 0.001; 0.002; 0.002
—4286; 3862

NA NA NA

—9101; —6209 0.18 (89/499) 0.190; 0.203; 0.214
—24 369; 43 193

—16 893; —16 639 0.00 0.015; 0.017; 0.018

—21098; —12 322

NA NA NA

—10 204; —9942 0.00 0.069; 0.071; 0.074
—15 267, —6062
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1730 VALUE IN HEALTH

NOVEMBER 2025

Stepwise approach to the use of synthetic data in health economic models, distinguishing activities performed and controlled
by the data owner (or individuals with full data access) from activities performed and controlled by the health economic modeler. *If
characteristics or outcomes are known, or thought, to vary substantially between subgroups of individuals (for example, in different
treatment arms of nonrandomized studies) then generation and checking of synthetic data sets separately per subgroup should be
considered in step 3 and 4. Similar to the process of performing multiple imputation in subgroups, generating synthetic data sets per
subgroup is likely slightly less efficient than ignoring subgroups but also more robust in capturing potential interaction effects.'

-

[1] Request information on the original dataset

edescription & target population

edata dictionary
emissing data

ecovariance matrix

Stepwise approach to the use of synthetic data to inform model-based health economic evaluations \

enumber of individuals and (number of repeated) measurements

esummary statistics and empirical distributions and for each variable

[2] Identify potential consistency issues that may occur due to synthetization

scheck the logical relationship between values of variables
eidentify variable transformations that may be needed to ensure consistency (for example in time-to-event variables)

[3] Request many (>= 100) synthetic datasets*

eafter variable transformation if needed (step [2])

ewith reporting on error/similarity measures (e.g. pMSE)

swith synthetic datasets all of size identical to the original dataset
eincluding imputation of missing data as part of the synthesis procedure, if needed
swith reporting on synthesis method and all settings applied

ecompare covariance matrix
scheck data consistency (alighment with step [2])

[4] Check synthetic datasets - compare characteristics of synthetic data with original data (step [1])*

ecompare summary statistics and distributions for each variable

[5] Perform health economic analysis using the synthetic data

ereport on the results of step [1]-[4] in a technical appendix
suse all of the synthetic datasets to reflect uncertainty in model parameter values (e.g. in the probabilistic analysis)
«if the size of the original dataset is less than 1,000 label all results as explorative

[6] Consider improvements to the validity and credibility of the health economic analysis

edetermine key model parameters, for example using Value of Information analysis, and report on their characteristics in the
original data, synthetic data, and preferable other data sources

erequest to repeat the synthesis process with different synthesis methods and/or settings to reflect structural uncertainty

sinvestigate whether the completed and validated health economic simulation model might be run locally at the site of the original
data, by the data owner, to use the original data (if the infrastructure allows and only one site supplied synthetic data)

Requires support of the
K owner of the original data

Can be performed by the
health economic modeler /

pMSE indicates propensity mean squared error.

blind to the rules used to generate Dorg. This would better reflect
real-world scenarios in which modelers lack access to the un-
derlying data generation process.

Although we investigated the use of synthetic data as an
alternative to original data in performing a model-based economic
evaluation, there are alternative potential applications of synthetic
data in cost-effectiveness analyses and alternative methods to
preserve privacy, see Appendix 5 in Supplemental Materials found
at https://doi.org/10.1016/j.jval.2025.06.007.

Synthetic data should not be used as complete replacement of
original data to inform health economic models aiming to support
reimbursement decisions. Quoting Nowok et al: “The original aim

of producing synthetic data has been to provide publicly available
data sets that can be used for inference in place of the actual data.
However, such inferences will only be valid if the model used to
construct the synthetic data is the true mechanism that has
generated the observed data, which is very difficult, if at all
possible, to achieve.” In line with this, Giuffré and Shung?’
conclude “[...] while synthetic data possess the potential to
revolutionize healthcare by offering improved research capabil-
ities and cost-effective solutions, overcoming the challenges
related to biased information, data quality concerns, and potential
privacy risks are of paramount importance.” This is true for clinical
studies, as well as economic evaluations. For now, it would
therefore be safest and valuable to use synthetic data only for
exploration and potentially model building, while validating re-
sults with the original data (or asking the data owner to do so)
before using them to inform policy decisions.
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