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Chapter 1

Introduction

1.1 Quantum science and technology
These are exciting times for experimental quantum physicists. Although the the-
ory of quantum mechanics has been around for more than a century, some of
the most powerful applications, which exploit the quantum nature of solid-state
systems, have only recently started to appear on the technological horizon. The
incredible developments in nanotechnology and mesoscopic physics, which deal
with creating and understanding solid-state systems operating at the smallest
scales, have led to new experiments in research and technology. In these experi-
ments, quantum states are used to create a new class of solid-state devices with
unprecedented performance and capabilities.

Out of all the current goals in quantum science and technology, the realisa-
tion of the quantum computer can probably considered to be the biggest. In a
quantum computer bits are replaced by quantum objects called qubits [1], which
can be in an arbitrary superposition of 0 and 1. The quantum computer enables
a dramatic speed-up for some types of computational tasks for which the com-
plexity increases exponentially with the size of the problem. Examples of such
problems are prime factorization of large numbers [2] and simulations of large
quantum systems [3, 4].

As an illustration, suppose we want to a quantum system (e.g., a molecule
with several atoms) on a “classical” computer. Determining the exact level struc-
ture of such a system using the combined computational power of every classical
computer that exists in the world today takes much longer than the current life-
time of the universe. And even if future computers are fast enough, storing a
maximal superposition state of a system with 500 degrees of freedom (such as our
molecule) on a classical computer, requires many more bits than there are atoms
in the universe. This sets a rather fundamental limit to what is possible with
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Chapter 1

conventional computational means. On a quantum computer, however, superpo-
sition states are directly encoded in superposition states of qubits, and therefore
do not require such large resources.

More conventional areas of technology also stand to gain tremendously by
exploiting quantum states and their evolution. Extremely sensitive magnetic and
electric field probes with nanoscale resolution can be created by tracking the
evolution of a superposition state of a single spin. Such probes can be used for
example in data storage or to image the protons in single molecules [5].

The operation of devices based on isolated quantum systems requires the
initialization and read out of fragile quantum states, and an exceptionally high
level of control over the evolution of these quantum states. Experiments involving
isolated quantum systems in the solid state could only be performed after the
incredible advancements made in device fabrication and experimental control
techniques since the start of the eighties of the last century. Since then, quantum
control has been achieved in a rich variety of single solid state quantum systems
such as single electrons in quantum dots [6], superconducting circuits [7] and
defects in solids [8, 9].

The main challenge in all of these experiments is to avoid the loss of quan-
tum coherence by control errors and uncontrolled coupling to the environment.
Although these experiments demonstrate a level of control that is sufficient to per-
form the first proof-of-principle experiments, the perfection needed to use them
in actual applications is still lacking. The inherent contradiction of controlling
and coupling such systems together on the one hand and isolating them from
their environment on the other, is what makes these experiments so challeng-
ing. However, by controlling its evolution with high precision, a quantum system
can be efficiently isolated from its environment [10], while, if so desired, main-
taining the internal coherent couplings between its components (e.g., to perform
computational tasks [11]).

Achieving high-fidelity control of quantum systems and using it to study and
counteract decoherence of quantum systems in the solid state are the main moti-
vations for the experiments in this thesis. We demonstrate that we can preserve
the quantum state of a single electron spin with carefully designed sequences of
high fidelity pulses (chapter 4 of this thesis) and that they can be used to in-
crease the storage time of quantum information. Furthermore, as is demonstrated
experimentally in this thesis, these sequences can also be used to dramatically
reduce the magnetic field noise of a single spin magnetometer and improve its
sensitivity to time-varying magnetic fields. These experiments provide an illus-
tration of how high-fidelity control over the evolution of an isolated quantum
system enables the development of new devices with superior performance.

Apart from the possible technological applications, studying quantum control
and decoherence of quantum systems with increasing complexity will aid in our
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understanding and interpretations of some of quantum mechanics’ most peculiar
predictions. Take, for instance, the projective quantum measurement, during
which the state of the observed system probabilistically changes to the state
corresponding to the observation [12]. Although there is a working formalism
for dealing with this so-called “collapse” of the wavefunction, to this day it is
unknown how this collapse occurs exactly. On a related issue it is still somewhat
of a mystery how the macroscopic “classical” world, the one we experience every
day, emerges from the quantum world. Interesting ideas in this respect have been
put forward, where decoherence is thought to be able to bridge the gap between
the quantum and classical world [13].

In the final two experiments of this thesis we focus more on the fundamental
aspects of decoherence and the interactions between quantum systems. Using
the techniques developed in the first part of this thesis we demonstrate quantum
control of a mesoscopic spin ensemble and a single spin and study the interaction
between them. Finally, we explore the coupling between a large spin ensemble
and a superconducting circuit. Apart from being interesting from a fundamental
perspective, one can also think of constructing such hybrid devices where two or
more systems are combined in a single device with superior performance.

1.2 Diamond spins in quantum science and tech-
nology

Spins in diamond are now used by many research groups around the world in
experimental quantum information and computation as well as in other areas of
quantum science and technology. Spins in diamond demonstrate long spin co-
herence times that can be coherently controlled, even at room temperature, and
therefore form a unique platform to study spin-spin interactions and decoherence.
Figure 1.1 shows a few of the paramagnetic impurities that exist in typical dia-
mond samples. The two main defects used in the experiments described in this
thesis are the single substitutional nitrogen impurity and the nitrogen vacancy
(NV) color center. The latter has a unique combination of highly useful proper-
ties for experiments on single spins, whereas ensembles of nitrogen spins can be
used in hybrid devices based on the combination of diamond and superconducting
circuits.

1.2.1 The nitrogen-vacancy center in diamond
The most promising paramagnetic impurity in diamond for applications in quan-
tum technologies is the nitrogen-vacancy (NV) color center [15], which is a single
substitutional nitrogen atom with a vacancy in one of the adjacent lattice sites
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Figure 1.1: Spins in diamond. The nitrogen vacancy (NV) center consists of a substi-
tutional nitrogen atom adjacent to a vacancy in the diamond carbon lattice. Its electron
spin is coupled to the nuclear spin of its own nitrogen atom, and can furthermore be cou-
pled to nuclear spins of nearby 13C atoms or to electron spins of nearby substitutional
nitrogen impurities. The NV center has spin-dependent optical transitions, allowing
its quantum state to be transmitted over long distances through the use of photons.
Picture adapted from [14].

(Fig. 1.1). The NV center has a spin triplet electronic ground state and strong
spin dependent optical transitions within the band gap of diamond. The list of
attractive features of the NV center is quite long. One of the main features of the
NV center is that it is a bright and stable source of single photons [16]. Its elec-
tronic spin state can be initialized and read out by simple optical means [17]. It
exhibits long coherence times, even at room temperature, ranging from 3 µs [18]
to almost 2 ms [19] and its spin state can be coherently manipulated on ns
timescales [20, 21] using electron spin resonance techniques. Furthermore, the
strong coupling to its host 14N nuclear spin make it a basic two qubit register
which can readily be turned into three qubits if all the spin levels are used and
even more qubits can be contained in the register when nearby 13C spins are
located close the NV centers [22,23].

NV centers can be used as spin based magnetic field sensors, or magnetome-
ters, which may find applications in areas such as material science, data storage
and biomedical science [5, 24, 25]. They are highly sensitive due to the long spin
coherence times and nanoscale resolution can be achieved by using shallow NV
centers or nanocrystals. NV magnetometers in nanocrystals have already been
shown to be compatible with living human cells [25], potentially allowing new
ways of exploring intracellular processes.

From a more fundamental perspective the NV center forms a excellent testbed
to study decoherence [26–30]. Its magnetic environment can be tailored to range
from highly dense and dynamic [26], to slow [31], to being practically devoid of
any magnetic activity [19].

The experiments in this thesis involving NV centers are all conducted at
room temperature. However, the already impressive list of favorable properties
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becomes even longer when NV centers are used at low (< 10 K) temperatures. At
these temperatures, both the electronic and nuclear spin states of an NV center
can be projected and read out in a single measurement shot [32]. The optical
transitions at these temperatures have narrow line widths and can be coherently
controlled [33]. By addressing the right optical transitions the electronic spin of
the NV center can be entangled with its emitted photon [34]. This means that in
principle the spin states of multiple distant NV quantum registers can be coupled
together by interfering their emitted photons on a beam splitter [35, 36]. These
properties can be used to close some of the loop holes, such as the communication
and detector loopholes, in Bell test experiments and, although there are many
challenges ahead, such a network of multiple, optically coupled NV qubit registers
may some day be used to perform multi-qubit quantum algorithms [35].

1.2.2 Nitrogen impurities
The parent defect of the NV center is the single substitutional nitrogen atom.
It is a paramagnetic defect which has an electron spin (S = 1/2). Ensembles of
nitrogen impurities can be used in solid-state hybrid architectures as a long term
memory. Solid-state qubits such as those created using superconducting circuits
are easy to couple together and relatively straightforward to scale up [37], but
they generally suffer from relatively short coherence times. Spin ensembles can
be used as a long term quantum memory for superconducting qubits by stor-
ing quantum information in a collective mode involving the collective motion
of ∼ 1012 spins [38, 39]. Apart from the possible application, it is mind bog-
gling that such a large ensemble of independent systems can move in unison and
demonstrate quantum coherence with a single microwave photon.

Research with solid-state hybrid devices is still in its infancy, but already quite
remarkable advancements have been made by using ensembles of NV centers in
quantum circuits in which a single microwave photon was coherently swapped
back-and-forth between a superconducting qubit and the NV ensemble [40, 41] .
The advantage of using NV ensembles is that they can be used at zero magnetic
field. However, for every NV center created there are several nitrogen impurities.
These impurities will cause dephasing and degrade the memory performance.
Instead highly pure ensembles of nitrogen impurities can be used at high magnetic
field. This implies that one has to develop new architectures for superconducting
qubit devices which are able to operate at high magnetic fields. Efforts by our
collaborators are under way to creating such superconducting circuits, but they
do not yet exist at this time.
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1.3 Thesis overview
Chapter 2 provides an introduction to the theoretical and experimental concepts
that are aimed in providing a basis for understanding the subsequent chapters. I
start by explaining some of the basic theory of quantum control, quantum pro-
cesses and spin-spin interactions. A detailed description of the most common
magnetic impurities found in diamond is given in the next section. A mean field
theoretical model is provided that provides an accurate description of the deco-
herence mechanism for a single NV spin which interacts with a bath of electron
spins. The final section gives an overview of the experimental techniques used in
this thesis.

The first experiment described in 3 describes a new technique that is used
to measure pulse errors using erroneous pulses in a bootstrap protocol. It also
describes how the acquired knowledge of pulse errors can be used for corrections
in quantum process tomography.

In chapter 4 we show that an arbitrary state of a single quantum object, a
single NV spin, can be protected from decoherence by applying self correcting
dynamical decoupling sequences. We use these self-correcting dynamical decou-
pling sequences in chapter 5 as sensing sequences to enhance the sensitivity of a
single-spin magnetometer.

In chapter 6 we demonstrate control of the spin bath surrounding the NV
spin and use that to suppress dephasing of the NV spin and probe the quantum
dynamics and temporal correlations of the nitrogen spin bath.

Chapter 7 demonstrates experimentally that strong coupling can be achieved
between an ensemble of nitrogen spins and a superconducting microwave res-
onator. We use this device to study depolarization and spin diffusion of the
nitrogen spin ensemble.

In the final chapter the main results of this thesis are summarized and dis-
cussed and an outlook for the future is given.
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Chapter 2

Quantum control of interacting
spins in diamond

The theoretical concepts and the experimental techniques covered in this chapter
form the foundation for all the experiments described in the rest of this thesis.
All the experimental studies presented in this thesis involve the manipulation
and detection of coupled spins using quantum control techniques. I therefore
start with a section containing basic theory behind spin control, the description
and characterization of quantum processes and spin-spin interactions. The next
section of this chapter gives a detailed description of the various species of spins
that are typically present in diamond samples. The details of the experimental
techniques that are used throughout this thesis will be given in 2.4.
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Figure 2.1: Bloch sphere representation for a qubit. The state of the qubit is indicated
by the arrow.

2.1 Basic theory
Before I go into the specific details regarding interacting spins in diamond, I first
provide a brief introduction of few basic concepts regarding quantum control,
the characterization of quantum processes and spin-spin interactions. For more
details on the subjects covered in this section, the reader is referred to the books
listed by refs. [1, 2].

2.1.1 Qubits and quantum operations
The two-level system is the simplest quantum system. Spins with S = 1/2 are the
canonical examples of two-level systems. A qubit can be created from any multi-
level system which has two levels that can be isolated and selectively addressed.
These two levels can then be treated as an effective two-level system, or pseudo
spin-1/2.

Spins are magnetic moments and they will therefore respond to magnetic fields
much in the same way as classical magnetic moments. As we will show in this
section, the most direct way to manipulate a spin is to use oscillating magnetic
fields. A convenient geometrical tool to describe what happens to a spin which
is subject to a magnetic field is to represent its state as a vector in the Bloch
sphere (Fig. 2.1) which points along its magnetization. The eigenstates | ↑⟩ and
| ↓⟩ are on the poles located on the z-axis. For an arbitrary pure state of a qubit,
neglecting a global phase, we can write

|Ψ⟩ = cos θ
2

| ↑⟩ + sin θ
2
eiφ| ↓⟩ (2.1)

with θ and φ defined as in Fig. 2.1. We can now label a superposition along the
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x or y axis of the Bloch sphere as

|X⟩ = | ↑⟩ + | ↓⟩√
2

(2.2)

|Y ⟩ = | ↑⟩ + i| ↓⟩√
2

(2.3)

Equivalently, one can write its density matrix ρ = |Ψ⟩⟨Ψ| in terms of the
expectation values rx,y,z = ⟨Ψ|σx,y,z|Ψ⟩

ρ = 1
2

(I + rxσx + ryσy + rzσz) (2.4)

with σi the Pauli spin matrices (i.e. with eigenvalues -1 and +1). The vector in
the Bloch sphere is simply −→r = (rx, ry, rz). The superposition state along the
x(y)-axis is ρ = I

2 + σx(y)
2 . A pure state corresponds to |−→r | = 1 and |−→r | < 1

implies that the state is mixed. This mixing may be the result of the qubit
being entangled with another quantum system (e.g. the nitrogen nuclear spin),
or due to qubit decoherence. It is therefore convenient to represent spin states
using the density matrix representation when they are analyzed in the context of
decoherence.

Driving spin transitions is done by generating an oscillating magnetic field.
This magnetic control field Bx is oriented perpendicular to the quantization axis
z of the spin and with its frequency tuned in resonance with the transition. All
experiments in this thesis involve quantum control of spins which have transi-
tion frequencies in the microwave (MW) and radiofrequency (RF) regime. The
Hamiltonian that describes the electron spin resonance (ESR) of a spin, quan-
tized along the z direction and with angular transition frequency ω0, is given
by

Hdr = ω0Sz + Ω1 cos(ωct+ ϕ)Sx (2.5)

where Ω1 = γeBx is the driving strength and ωc and ϕ are the carrier fre-
quency and phase of the oscillating magnetic field respectively. The time de-
pendence in (2.5) can be removed by applying the transformation Sx′,y′,z′ =
exp(−iωctSz)Sx,y,z exp(iωctSz), i.e. move to the frame that rotates around the
z axis with angular frequency ωc, and disregard the terms which oscillate with
angular frequency ω0 + ωc. This is the well known rotating wave approxima-
tion, which is valid for Ω1 << ω0. The result is the time-independent effective
Hamiltonian for a driven two level system with detuning ∆ = ω0 − ωc given by

H ′
eff = ∆Sz′ + Ω1

2
[Sx′ cos(φ) + Sy′ sin(φ)] (2.6)

where the Sx′,y′,z′ are the operators in the rotating frame.
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Applying the driving to the state |Ψi⟩ will cause it to precess according to the
evolution operator U(t) = exp[−iH ′

efft]. The operator U(t) describes a rotation of
the state vector in the Bloch sphere around the axis −→n = (ω1 cosφ, ω1 sinφ,∆) /ωeff
with angular frequency ωeff =

√
ω2

1 + ∆2 and ω1 = Ω1/2 and U(t) = exp−iωefft−→n ·−→σ .
From Eq. (2.6) we see that when ωc = ω0 (i.e. the carrier is in resonance with

the spin transition) and ϕ = 0, then U(t) = I cos( ω1tp

2 ) + σx sin( ω1tp

2 ). The state
vector will start to rotate around the x′-axis in the rotating frame with frequency
ω1. The driving will induce coherent oscillations between the populations of the
levels involved. These oscillations are known as Rabi oscillations and they are
key ingredients for gate operations in quantum information and other quantum
technologies with spins.

Arbitrary gate operations Rφ(θ) can be applied to the qubit by driving it on
resonance with a pulsed oscillating magnetic field with phase φ and pulse length
tp such that θ = ω1tp. These gate operations rotate the state vector −→r around
the axis cos(φ)x′ + sin(φ)y′. Any rotation over an arbitrary angle and around
any axis can be constructed from multiple successive rotations. In this thesis we
will use sequences of π-pulses, or R0o(90o)(π) rotations, which are denoted by the
short-hand notation as X(Y ) pulses. The R0o(90o)(π/2) rotations used to prepare
and project superposition states on the x′ and y′ axes Bloch sphere are denoted
as X/2(Y/2).

2.1.2 Quantum process tomography (QPT)
So far we have only described unitary, or reversible, operations on a qubit. How-
ever, decoherence due to energy relaxation or dephasing are processes which are
irreversible and therefore not unitary. Such processes can be described using
the product operator formalism [1], where the quantum process is defined in
terms of basis operators. For operations on a single qubit a complete set of
operations is given by the 2 × 2 identity matrix and the 2 × 2 Pauli matrices
{E0, E1, E2, E3} = {I, σx, σy, σz}. Any process ε(ρi) acting on a initial state ρi

can then be decomposed into these four basic operations

ρo = ε(ρi) =
3∑

k,m=0

EkρiE
†
mχkm (2.7)

The process is then completely characterized by the process matrix χ. The goal
of quantum process tomography (QPT) is to find χ.

An example of the χ matrices for two processes is given in Fig. 2.2. The
upper matrices represent the real and imaginary part of the χ matrix for the
unitary process that describes a π/2 rotation around the z axis, respectively,
which is given by ε(ρ) = 1

2 (I + iσz)ρ(I − iσz). In this case χ00 = χ33 = 1
2 and
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Figure 2.2: Top: Real (left) and imaginary (right) parts of the process matrix χ for
the unitary process of a π/2-pulse around the z axis. Bottom: Proces matrix describing
pure dephasing.

χ03 = −χ30 = i
2 and all other elements are zero. Depicted on the bottom of

Fig. 2.2, is the non-unitary process of complete dephasing, characterized by the
process ε(ρ) = 1

2 (IρI + σzρσz). Here χ00 = χ33 = 1
2 and all other elements

including the off-diagonal terms are zero.
QPT is performed by preparing an independent set of input states ρi onto

which the quantum process is applied. State tomography is then performed on
each resulting output state. The process can be reconstructed from the correla-
tions between the resulting output states by following the recipe found in Ref. [1].

That QPT can be used to determine if processes are unitary or non-unitary is
especially relevant when QPT is used to test the performance of quantum control
protocols and allows one to separate systematic errors from decoherence. The
experimental setup for quantum control of spins and the experimental implemen-
tation of QPT are detailed in section 2.4.2 and chapter 3, respectively.

There are two issues that arise when QPT is performed experimentally. First
there is the problem of measurement noise in the results of state tomography.
A second problem arises from the systematic errors in the preparation and read
out pulses. Both these problems may result in correlations between output states
that result in a unphysical χ matrix, meaning that it has negative eigenvalues [1].
Chapter 3 addresses the issue that arises when states are prepared and read out
using pulses that contain systematic errors and how to correct for those errors if
needed. That leaves the problem of measurement noise. This leads to random
errors which can not be corrected. Instead, a physical χ matrix is found using
maximum likelihood estimation (MLE) [3], which is the closest match to the
measured χ matrix, the details of which can also be found in chapter 4.
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2.1.3 The magnetic dipole coupling
Many of the effects described in this thesis are the result of spin-spin interactions.
The direct interaction between two spins usually results from the magnetic dipole
coupling. Two spins sense each other’s magnetic fields that are generated by their
magnetic moments. A magnetic dipole with moment µ will produce a magnetic
field δbdip, at some distance r from the dipole, that is given by [2]

δbdip = µ0

4πr3 (3n (µ · n) − µ) , (2.8)

where µ0 the magnetic permeability and n the unit vector that points towards
the moment. To get a feeling for the numbers; for an electron spin with moment
µe = γe~Ŝ with γe = 2.8 MHz/G, the prefactor in Eq. (2.8) has a magnitude of
∼ 2 G at 3 nm distance. For two electron spins, with spin operators Ŝi and Ŝj

and gyromagnetic ratios γi and γj , the dipole-interaction term of the Hamiltonian
can be derived from Eq. (2.8)

Hdip = µ0γiγj~2

4πr3

[
Ŝi · Ŝj − 3

(
Ŝi · nij

)(
Ŝj · nij

)]
(2.9)

The strength and nature of the coupling depends on the exact geometry of the
situation and whether or not the two spins Ŝi and Ŝj belong to the same species
(i.e. have similar resonance frequencies). In most of the situations in the experi-
ments described in this thesis the dipolar term is not the dominating term in the
Hamiltonian and can therefore be treated as a perturbation.

2.1.4 Electron-nuclear hyperfine interaction
A typical situation that occurs in defects in solids is when an electronic spin S
interacts with nuclear spin I. The nature of the coupling depends heavily on
the orbital wavefunction Ψe of the electron. One contribution to the hyperfine
interaction is the result of the dipolar interaction averaged over the electron
orbital wavefunction

⟨Hdip⟩Ψe =
∫
Hdip|Ψe(r)|2d3r (2.10)

where r is taken with respect to the nuclear spin. From this it can be shown that
the dipolar interaction only contributes to the hyperfine interaction when Ψe(r)
is not spherically symmetric with respect to the nucleus carrying the nuclear
spin. Contact hyperfine interaction results when Ψe(0) ̸= 0 (e.g. when the atom
occupies an s-type orbital of the atom containing the nuclear spin). If one assumes
that Ψe(r) = Ψe(0) (i.e. the electron wavefunction does not vary over volumes
comparable to that of the nucleus) the contact term Hcont can be determined by
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calculating the energy of the electron spin S which interacts with the magnetic
field Bnuc produced by the nuclear spin I. Eq. (2.10) then reduces to the volume
integral of the magnetic field produced by the nuclear magnetic moment which
occupies a volume bounded by RN [4]

Hcont = γS~|Ψe(0)|2S ·
∫

r<RN

Bnucd
3r (2.11)

= −2
3
µ0γSγI~2|Ψe(0)|2S · I (2.12)

The total hyperfine interaction is the HHF = Hcont + ⟨Hdip⟩Ψe . The contact
hyperfine interaction is always isotropic and results from the s-type contribution
of Ψe(r). Any anisotropy in HHF is therefore the result from orbital contributions
to Ψe which are of p, d, f or higher. In diamond s and p-type orbitals are the
lowest energy orbitals that are available for bonds. Therefore, any anisotropy in
the electron-nuclear hyperfine interaction with nuclei located within defects in
diamond are the result from the p-type contribution to Ψe(r).

2.2 Paramagnetic impurities in diamond
The experiments described in this thesis are all performed using paramagnetic
defects in diamond. This section therefore will provide a detailed description
of the defects studied in these experiments. We start with the most important
defect.

2.2.1 The NV color center
The nitrogen vacancy center was already introduced briefly in section 1.2.1. NV
center research has intensified a great deal in the past fifteen years. This section1

provides an overview of the current level of understanding details on the electronic
level structure, spin properties of the optical transitions and spin level structure
of the electronic ground state of the NV center.

Electronic level structure

The electronic structure of the NV center has been the subject of intensive theo-
retical and experimental studies in recent years [6–9]. The NV center can exist in
two charge states: the neutral state NV0 and the negatively charged state NV−.
In this thesis we deal exclusively with the NV− center, and for brevity we will
denote this as the NV center.

1The following section is adapted from [5]
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Figure 2.3: a, Energy level diagram of the NV center. The ground state of the NV
center is a spin triplet with zero-field splitting DGS = 2.87 GHz which is connected
to the excited state by an optical transition with a zero-phonon-line (ZPL) at 637 nm.
At room temperature, the excited state can be described as a spin triplet with zero-
field splitting DES = 1.4 GHz. To explain the properties of the NV center relevant
for the experiments described in this thesis, it suffices to summarize the singlet states
states into one level. b, Energy level diagram explaining the optical spin readout and
initialization mechanism. The red lines indicate optical transitions, the dashed lines
indicate the other primary (dark) transitions. Spin polarization into the ms = 0 state
is a result of spin-dependent decay via the singlet states. Decay from the excited state
into the singlet states happens primarily from the ms = ±1 states, and decay from the
singlet states into the ground state happens primarily into the ms = 0 state.

There are six electrons associated with the NV center [6]: three from the
dangling bonds of the vacancy, two from dangling bonds of the nitrogen atom, and
one additional electron which is attracted from somewhere else in the diamond,
presumably another nitrogen atom. The electronic ground state is a spin triplet,
of which the ms = 0 and ms = ±1 states, where ms denotes the quantum
number of the spin projection along the symmetry axis (z-axis) of the NV center,
are split in energy due to spin-spin interaction by a zero-field splitting D = 2.87
GHz (Fig. 2.3a).

The electronic excited state is also a spin triplet but an orbital doublet. It
is connected to the electronic ground state by a strong optical transition with a
zero-phonon line (ZPL) at 637 nm (1.945 eV). At room temperature, rapid inter-
orbital transitions within the excited state lead to an effective averaging of the
spin properties of the orbitals [10]. As a result, the orbital doublet nature can
be neglected and the electronic excited state can be described as a single spin
triplet, of which the spin states ms = 0 and ms = ±1 are split by a zero-field
splitting DES = 1.4 GHz (Fig. 2.3a).

It is now believed that there exist at least three singlet states that lie between
the electronic ground and excited state [11]. Recent ensemble measurements
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have shown that there is an optical transition at 1046 nm between two of these
states [12]. Since this transition is estimated to be ∼ 104 times weaker than
the 637 nm ZPL, passage through the singlet states is essentially a dark pro-
cess. As we will describe in section 2.2.1, passage through the singlet states
is strongly spin-dependent. Therefore the spin state of the NV center can be
detected through the spin-dependent photoluminescence rate which is used as
the standard method for room-temperature readout of the spin state of the NV
center.

Using the NV center spin as qubit

The energy spectrum of the electron spin of the NV center in the electronic
ground state is described by the Hamiltonian

HNV = DGSS
2
z + γeB · S (2.13)

where S = [Sx, Sy, Sz], the Si are the Pauli spin operators, and γe = 2.8 MHz/G
is the gyromagnetic ratio of an electron spin with total spin S = 1. The first term
describes the zero-field splitting and the second term the Zeeman interaction with
a magnetic field B. The energy spectrum of Eq. (2.13) is shown in Fig. 2.4 as a
function of a magnetic field applied along the NV symmetry axis. The zero-field
degeneracy of the ms = ±1 states is lifted by a magnetic field. If the energy
separation between the ms = ±1 is large enough so that this transition can be
driven selectively means that the ms = 0 and ms = −1 levels form a pseudo
spin-1/2 which we can use as a qubit.

m
s 
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= -1

m
s 
= +1

E
n

e
rg

y

Magnetic �eld along z

1028 G

D
GS

Figure 2.4: Energy spectrum of the NV center electron spin in a magnetic field applied
along the symmetry axis of the NV center. The energies of the ms = ±1 states shift
with 2.8 MHz/G.

One of the most remarkable properties of the NV center is that its electron
spin can be initialized and read out by off-resonant excitation, even at room tem-
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perature. Together with full coherent control of its spins state the initialization
and read out, make that most of the basic requirements for a qubit are found
in the NV center. The mechanism responsible for optical spin polarization and
readout will be explained below.

Due to a spin-dependent relaxation mechanism between electronic ground
and excited state, the NV center electron spin polarizes into the ms = 0 state
under optical excitation. During optical cycling, spin-flips mainly occur through
decay via the singlet states (Fig. 2.3b) [6, 11]. Decay from the excited state into
the singlet states occurs primarily for the ms = ±1 states, and decay from the
singlet states into the electronic ground state occurs primarily into the ms = 0
state. After just a few optical cycles the system therefore mainly occupies the
ms = 0 state. By following the optical excitation with a few microseconds of dark
waiting time to allow deshelving of remaining population in the singlet states, the
electron qubit is initialized in the ms = 0 state with a typical spin polarization
between 80% and 95% [11,13].

The spin-dependent relaxation mechanism between electronic excited and
ground state responsible for spin polarization also allows optical detection of
the NV center spin state. Because the system is more likely to decay via the dark
singlet states if it is in the ms = ±1 states than if it is in the ms = 0 state, the
photoluminescence (PL) is spin-dependent and can be used to detect the spin
state of the NV center. Fig. 2.5 depicts a optically detected magnetic resonance
(ODMR) spectrum of a single NV center in small magnetic field (B = 29G). It
clearly demonstrates how the detected PL decreases when microwaves are applied
that are in resonance with the ms = 0 to the ms = ±1 transitions which induce
population of the ms = ±1 sublevels. The experimental details on how ESR
and read out is achieved are explained in section 2.4. The three dips observed in
the ESR spectrum of Fig. 2.5b are associated with hyperfine coupling to the 14N
nuclear spin of the NV center’s own nitrogen atom. The 14N isotope, the most
common species (99.63% natural abundance), carries spin I = 1 which couples
to the NV electronic spin. The energy spectrum can therefore be understood by
analyzing the the Hamiltonian of the coupled system

H = HNV + PI2
z + γnB · I +A||SzIz +A⊥(SxIx + SyIy) (2.14)

Here, P = 4.95 MHz is the nuclear quadrupolar splitting, γn = 0.30 kHz/G is
the nuclear gyromagnetic ratio, and A|| = 2.16 MHz and A⊥ = 2.1 MHz are the
hyperfine coupling parameters.

The flip-flop terms (the terms containing SxIx and SyIy) in Eq. (2.14) can be
neglected as long as the applied field Bz is such that the electronic spin transitions
are far off-resonant from the nuclear spin transitions. This is the case in the
experiments described in this thesis, where the electron (nuclear) spin resonances
in the electronic ground state are of order GHz (MHz). Terms in Eq. (2.14)
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Figure 2.5: ODMR spectrum of an NV center in a field of Bz = 29 G. Plotted is
the detected photoluminescence under continuous optical excitation as a function of
the frequency of an applied microwave field. a, ODMR spectrum showing the two dips
associated with the electron spin transitions from ms = 0 to the ms = ±1 states. b,
Zoom-in on the ms = 0 ↔ ms = −1 ODMR dip of a showing the three dips associated
with the three different spin states of the host 14N nuclear spin.

containing only nuclear spin operators do not affect the electron spin transition
frequencies. The three resonance frequencies observed in the ESR spectrum of
Fig. 2.5 consequently differ by A||.

2.2.2 Nitrogen impurities
Substitutional nitrogen impurities together with the NV center are the key players
for all the experiments in this thesis. Each nitrogen defect has an unpaired
electron (S = 1/2) and a nuclear spin (I = 1) from the 14N atom. In Ib diamond
nitrogen impurities are the dominant impurity species and form a bath of electron
spins which shows interesting many-body dynamics. Perhaps the most interesting
behavior results from the interplay between the nitrogen spin bath and a single
NV center. This configuration is often called the central spin problem [14], which
plays an important role in the study of decoherence and coherence protection
of spins in the solid state. First, we discuss the physical properties of a single
nitrogen defect which results in a rather rich level structure. Second, we will give
a theoretical description of the spin bath formed by the nitrogen electron spin
ensemble.
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Figure 2.6: A single substitutional nitrogen defect in diamond. Its symmetry is broken
by the static Jahn-Teller effect, which shortens one of the four N-C bonds along one of
the four ⟨111⟩ directions (indicated red).

Level structure

Substitutional nitrogen impurities in diamond (also called P1 centers in liter-
ature) give rise to a deep donor levels well below the conduction band of dia-
mond, with optical and thermal ionization energies of 2.2 eV and 1.7 eV respec-
tively [15]. The unpaired electron (S = 1/2) of the nitrogen atom is responsible
for a paramagnetic resonance signal which was first observed by Smith et al.
[16]. Nitrogen impurities exhibit trigonal symmetry due to a static Jahn-Teller
distortion (Fig. 2.6 which elongates one of the four N-C bonds. The unpaired
electron predominantly occupies an antibonding orbital at the elongated bond,
which is predominantly of s and p-type character [17].

A strong anisotropic hyperfine interaction exists between the electron spin and
nuclear spin (I = 1) of the host 14N atom (99.6% abundance). The hyperfine
interaction of the nitrogen impurity is given by [16]

Ĥint = Â||ŜZ ÎZ +A⊥(ŜX ÎX + ŜY ÎY ) − P Î2
Z (2.15)

with A|| = 114 MHz, A⊥ = 86 MHz and P = 4.2 MHz and Ŝ and Î are the
operators for the electron and nuclear spin respectively of the nitrogen impurity.
The direction of the anisotropy (z) axis is set by the JT distortion axis, which
is randomly oriented along one of the four ⟨111⟩ directions (Fig. 2.6). Similarly
if the carbon atom of the N-C bond is 13C (1.1% abundance), which has nuclear
spin (S = 1/2), it too will interact with the electron spin. The 13C hyperfine
parameters are [16] A′

|| = 341.2 MHz and A′
⊥ = 141.6 MHz. Hyperfine coupling

strength with 13C located at all other sites is at most one order of magnitude
smaller then the aforementioned values. Much information can be extracted from
the hyperfine interaction about the distribution of the wavefunction Ψe of the
donor electron. As the largest hyperfine parameters are found for the N and C
atom of the N-C bond indicates that the majority of Ψe is shared mostly between
those sites.

As is explained in section 2.1.4, the s character of the oprbital wavefunction is
responsible for the isotropic part of the hyperfine interaction and the p character
is responsible for the anisotropy in the hyperfine interaction. Given the trigonal
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Figure 2.7: Magnetic field dependence of the energy levels of the nitrogen impurity
defect center for a field applied along one of the four ⟨111⟩ directions. a, Energy levels
(upper panel) and spin mixing (lower panel, see text) for the eigenstates of a nitrogen
impurity with the JT axis (red, see inset) aligned with the externally applied field. At
low magnetic field (B < 100 G) the eigenstates are entangled states of the electron
and nuclear spin (mixtures are indicated in the lower panel). Gray arrows indicate the
allowed transitions for B > 100 G which drive the electron spin and preserve the nuclear
spin state. b, Same as in a, but then for a nitrogen impurity with its JT axis aligned
with one of the three other equivalent ⟨111⟩ directions. c Combined energy spectrum
of an ensemble of P1 centers.

symmetry of defect the relative contributions of the p and s part can be estimated
by [17]

A|| = O + 2P (2.16)
A⊥ = O − P (2.17)

with P representing the p type contribution to the hyperfine interaction and O
is the contribution of the s character of Ψe. Plugging the values for A|| and A⊥
into Eq. (2.17) shows that the majority of the hyperfine interaction for both 13C
and 14N originates from the contact term. From O the overlap of the electron
with the nuclear spin can be directly calculated since

O = 2
3
µ0γSγI~2|Ψe(0)|2 (2.18)

whereγS and γI are the gyromagnetic ratios for the electron en nuclear spin
respectively.

In Fig. 2.7 the magnetic field dependence of the energy levels of the nitrogen
defect is depicted. At low magnetic field the states are entangled states of the
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electron and nuclear spin. The lowest energy states are At high magnetic field
the eigenstates of the nitrogen impurity consist of pure electron spin and nuclear
spin states and Sz = +1/2,−1/2 and Iz = +1, 0,−1 can be considered to be good
quantum numbers for the electron and nuclear spin respectively. The transitions
that can be driven most efficiently using RF irradiation are the ones which involve
electron spin transitions (indicated by the gray arrows in Fig. 2.7. To get a feeling
for how well the eigenstates are defined by the electron spin quantum numbers
Sz = +1/2,−1/2 the quantity R =

√
⟨Sx⟩2 + ⟨Sy⟩2 + ⟨Sz⟩2 is plotted in the

lower panels of Fig. 2.7 for all the levels as a function of the magnetic field. The
experiments described in this thesis are all performed at fields Bext > 100 G
where R > 0.9. In Ib diamond the local concentration of nitrogen impurities
is between 1 and 200 ppm. In these samples the bath of nitrogen electron spins
forms the main contribution to the magnetic environment. As we show in chapter
6 we can identify several spectral sub-ensembles, or groups, distinguished by their
JT orientation and nuclear spin projection for Bext > 100 G.

The dipolar interactions between the spins belonging to the same spectral
group, as well as the off-resonant dipolar interactions between spins from differ-
ent spectral groups induces dynamics on short < 50 µs timescales. The activation
energy for the reorientation of the JT-axis is ∼ 0.7 eV [17]. At room temperature
both the reorientation of the JT-axis [18] and spin-lattice relaxation times range
from milliseconds to hours for the electron spins [19] and nuclear spins [20] respec-
tively. In section 2.3 we will explain how all these processes and their timescales
influence the coherence of single NV centers.

2.2.3 13C spins
The nuclear spin of 13C is a paramagnetic impurity that is present in most di-
amond samples due to its 1.1% natural abundance. In pure diamonds where
nitrogen concentrations are in the 1 < ppb regime the magnetic environment can
be considered to be fully determined by 13C nuclear spins. NV centers in such
samples demonstrate excellent coherence with line widths typically 150 kHz and
coherence times T2 ∼ 300 µs [21]. This can be reduced dramatically in isotopi-
cally engineered diamonds with 0.3% 13C abundance. In such samples line widths
and coherence times are reduced to 55 kHz and 1.8 ms, respectively [22].

2.3 Quantum dynamics of spins in diamond
In this section we will describe the decoherence resulting from the interaction of a
single quantum system with a dynamic environment. The two most well known
models applicable in solid state systems are the spin-boson model [23], which
describes a spin coupled to a bath of bosons and the central spin problem [14]
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where a single central spin is coupled to an ensemble, or bath, of spins. The
central spin problem is found in many solid state systems besides diamond [24],
such as as in quantum dots [25] and phosphorous donors in silicon [26]. It is
an important model in the context of quantum information with spin qubits.
Furthermore, studying the central spin problem is of fundamental importance as
decoherence plays an important role in theories that describe how the classical
world emerges from interacting quantum systems [27].

In diamond, the NV center takes the role as central spin (or qubit) and the
nitrogen electron spins forms the quantum environment or spin bath. In this
thesis we mainly study NV centers in Ib diamonds with high (10-100 ppm) ni-
trogen content. Although these nitrogen concentrations are still roughly two
orders of magnitude lower than the 13C nuclear spin concentration (1.1 % natu-
ral abundance), the magnetic environment for NV centers in such samples is fully
dominated by the electron spins belonging to nearby nitrogen defects. This is a
direct consequence of the large gyromagnetic ratio for the electrons (γe/2π = 2.8
MHz/G) compared to that for 13C nuclear spins (γ13C/2π = 1.07 kHz/G).

An important consequence of the large gyromagnetic ratio for bath spins is
that the internal bath coupling strengths are similar to the coupling strength
between a bath spin and an NV, for which γNV ≈ γe. This means that for each
bath spin the coupling to the single NV spin is completely overshadowed by the
coupling to all the other bath spins. There is therefore no back-action of the NV
spin to the spin bath2.

The decoherence the spin bath induces for the NV spin is then the result of
the fluctuating dipolar field δbz(t) at the site of the NV spin, which is generated
by the statistical polarization of nearby bath spins. Having no backaction on the
spin bath by the NV spin, means that a single NV center can also be regarded
as a non-invasive probe of its own magnetic environment (see chapter 6). The
next section explains the model for the dynamics of δbz(t) and how this results
in decoherence of the central spin.

2.3.1 Dynamics of the nitrogen electron spin bath
The Hamiltonian of the dipolarly coupled spin bath is given by

HB =
∑
k,l

HN↔N,kl +
∑

k

H0,k (2.19)

Here, the internal Hamiltonian of each bath spin H0,k contains the Zeeman term
and local hyperfine interaction with the 14N nuclear spin (see Eq. (2.15)) and

2The opposite regime is found for a 13C nuclear spin bath [21], where the coupling to the
central spin dominates the intra-bath coupling strengths
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HN↔N,kl is the intra-bath coupling term [2]

HN↔N,kl = Ckl[Sz,kSz,l − 1
4

(S+,kS−,l + S−,kS+,l)] (2.20)

with Ckl = µ0γ
2
e~2/|rkl|3(1 − 3 cos2(θkl)) , rkl = rk − rl is the vector connecting

the k-th bath spin to the l-th bath spin and θkl is the angle this vector makes
with the z-axis which is set by the external field if B > 100G. The flip-flop
terms (i.e. terms that contain S−S+ in Eq. (2.20) only commute with H0,k and
H0,l when bath spins k and l belong to the same spectral group (see chapter 6),
meaning that either they have equivalent Jahn-Teller orientations or when the
14N nuclear spins of both bath spins have nuclear spin projection mI = 0. For
all other combinations these terms induce transtions between levels which do
not conserve energy and can be neglected. This means that the local hyperfine
interaction suppresses the dynamics. As is shown in the next section this slows
down the local environment for a single NV spin and typical dephasing times are
much shorter then its coherence times.

2.3.2 Decoherence of a single NV spin interacting with an
electron spin bath

Spin bath dynamics

At moderate external fields (B < 300 G) the NV spin level splitting between
ms = 0 and ms = −1 is > 2 GHz (Fig. 2.4). These are used as the qubit levels
|0⟩ and |1⟩ respectively in all our experiments. Bath spins have level splittings
< 1 GHz (Fig. 2.7). The detuning therefore greatly exceeds the typical coupling
strengths between the NV spin and nearby bath spins, which are at most several
MHz. Flip-flops between the NV spin and bath spins are therefore forbidden and
the interaction between the NV spin and the spin bath is [28]

HNV↔N = Sz,NV
∑

k

akSz,k (2.21)

where we take Sz,NV the pseudo-spin 1/2 operator for the NV center for the
ms = 0 and ms = −1 levels and where coupling constants are given by ak =
µ0γ

2
e~2[1−3 cos2(θ)]/4πr3

k with rk the length of the vector rk connecting the NV
spin and k-th bath spin. The angle θ is the angle between the external field (
which is oriented along the NV symmetry axis) and rk. The prefactor ak is of
order 1 MHz for rk = 5 nm, which is roughly the average nearest-neighbour N-N
or N-NV distance in diamond with 100 ppm nitrogen content.

Each bath spin k shifts the ms = 0 ↔ ms = −1 level splitting up or down by
the amount ak/2, depending whether the k-th bath spin is pointing up or down.
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The decoherence of the NV spin is the result of the time-dependent fluctuations in
the level splittings, which originates from the reorientation of bath spins. There
are many bath spins that contribute significantly to the fluctuation in the level
splitting so we can apply the central limit theorem and model the fluctuation as
a normally distributed random value with zero mean, and variance given by

b2 = 1
4
∑

k

a2
k. (2.22)

For Ib diamond with nitrogen contents ranging from 10-100 ppm typical values
for b range from 0.4-4 MHz [20]. The self- and interaction Hamiltonians combined
give the Hamiltonian for the complete central spin system

Htot = HNV +HNV↔N +HB (2.23)

with HNV given by Eq. (2.13). The reorientation of bath spins is generated by the
internal Hamiltonian of the spin bath HB. The influence of the spin bath on the
NV spin can be calculated by transforming to the interaction representation [28]

Hsys = HNV + Sz,NVδb̂z(t) +HB (2.24)

where δb̂z(t) = expiHBt
∑

k akSz,k exp−iHBt. All the influence of the spin bath
on the NV spin is now captured by δb̂z(t). The last term HB in Eq. (2.24) can
therefore be disregarded since we are only interested in the NV spin.

Following refs. [28, 29] we replace the operator δb̂z(t) by the z-component of
a random dipolar field δbz(t). The time dependence of δbz(t), which is generated
by the flip-flops between bath spins, is highly complex and results from the many-
body dynamics of the spin bath. To a good approximation, however, the process
can be regarded as a stochastic process in which flip-flops occur randomly with
some probability. This probability is fixed in time, since there is negligible back
action of the NV spin on the bath spins and intra-bath couplings do not change
over time (bath spins do not change their location in the diamond lattice). The
fluctuations in the dipolar field δbz(t) therefore resembles a Markovian process,
which is Gaussian by virtue of the central limit theorem, with variance given by
Eq. (2.22). Furthermore, δbz(t) has zero mean for all times, which means that
the process is also stationary.

A process which is stationary, Markovian and Gaussian is by definition a
Ornstein-Uhlenbeck process [30] with correlation function

C(t0, t0 + t) = ⟨δbz(t0)δbz(t0 + t)⟩ = b2 exp −|t|/τC (2.25)

with τC the correlation time. At low frequencies the spin bath can therefore be
modeled as classical noise with a Lorentzian power spectral density with its cutoff
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Figure 2.8: Classical model for the spin bath. a, Distribution of the dipolar field
generated by the spin bath at the location of a single NV spin. The distribution is
Gaussian with variance b2. b, Power spectral density of the spin bath with a hard
cut-off at ωuv.

frequency at f = 1/(2πτC) (Fig. 2.8). At very high frequencies the spectrum will
be cut-off by ωuv since highest spectral component is determined by the maximum
flip flop rate. The highest rates occur for bath spins located only a few lattice
sites away from each other, giving coupling strengths in the hundreds of MHz.
This model has been previously applied successfully to describe free induction
and spin-echo decay in solid state spin systems [29, 31] and, as we will show in
chapter 4 and 6, is also very useful in explaining experiments involving more
complicated pulse sequences.

The correlation time τC is determined by the flip-flop rate R = 1/τC . The
flips-flop rate between bath spins is suppressed due to the local hyperfine inter-
action with the N nucleus, which limits the flip-flops to occur only between bath
spins from the same spectral group. However, all bath spins surrounding a single
bath spin k, including those from other spectral groups, contribute to its inho-
mogeneous broadening (see Ch. 6). In the regime where the average transition
rate T = ⟨C2

kl⟩/16 Eq. (2.20) is much smaller than the ensemble inhomogeneous
line width ∆e, the flip-flop rate R is given by [31]

R = π

9
⟨C2

kl⟩
16∆e

(2.26)

A rough estimate for Ckl for bath spins belonging to spectral group III which
have 14N nuclear spin projection I = 0 is given by Ckl = ∆e/

√
3 (Ch. 6). In

a 100 ppm sample where ∆e ≈ 4 MHz the correlation time is estimated to be
a few tens of microseconds. The electron spin bath of nitrogen spins is thus
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expected to be a quasistatic environment for the NV spin since b >> R. This is
directly evidenced by the shapes of the decays during free evolution, spin echo
and dynamical decoupling sequences [29] (see Ch. 4).

NV spin decoherence

Decoherence results from either energy relaxation where there is energy transfer
between the qubit and its environment or dephasing which is an energy con-
serving process. Energy relaxation and dephasing are also called longitudinal
and transverse relaxation respectively in literature. The origin of these terms
becomes clear when we visualize what happens to a spin which is subject to de-
coherence on the Bloch sphere. Energy relaxation is any processes in which a
spin exchanges energy with its environment, resulting in a change of the rz com-
ponent of the state vector −→r and a reduction of the transverse rx,y components.
Dephasing always only reduces the rx,y components.

The relaxation process of the NV center arises from the coupling to lattice
phonons via the spin-orbit interaction. Another term for the energy relaxation
of spins is therefore also called spin-lattice relaxation. Note that the energy
relaxation can either take ρ to a pure state (its ground state with rz = +1)
when kBT is less than the level splitting between | ↑⟩ and | ↓⟩, since then the
qubit can only give its energy to the environment and not vice versa. At room
temperature the level splitting is generally much lower and energy transfer occurs
in both directions. In that case ρ decays to a mixed state (i.e. rz = 0). Spin-
orbit coupling strengths for both NV and N centers is small since for both, the
electronic spin g-factors are isotropic and close to that of free electrons [17]. Both
NV and N centers therefore have spin-lattice relaxation times T1 > 1 ms at room
temperature and even become seconds at low temperature [19, 32]. Decoherence
of NV spins is therefore completely dominated by the dephasing induced by the
dipolar coupling to the spin bath.

As we discussed in the previous sections the spin bath around an NV spin
can be modeled as a quasistatic random classical magnetic field δbz(t) with a
Gaussian distribution with width b. The pure dephasing can be measured using
the Ramsey pulse sequence π/2 − τ − π/2 (Fig. 2.9). The experiment starts by
initializing the qubit along the z-axis in ρ0 = |0⟩⟨0|. For an NV spin this is done
by preparing it in the ms = 0 state by optical pumping (see section 2.4.1). The
first π/2 pulse applies the operator Ry(π/2) which is a rotation around the y axis
by a π/2 angle and which creates a superposition along the x axis in the Bloch
sphere. During the free evolution time τ the superposition is let to precess freely.
The random field δbz(t) causes a precession of the state vector around the z axis
described by the evolution operator

δZ(τ) = e
−i
∫ τ

0
δbz(t)Szdt (2.27)

29



Chapter 2

z

x

y

z

x

y

initialize free evolution readout

π
2

τπ
2

Figure 2.9: Ramsey experiment. A fist π/2 pulse initializes the state vector along the
x-axis followed by a period of free evolution. During this free evolution period the NV
spin picks up a random phase which is determined by δbz(t) which is different for every
experimental run (indicated by the spread in evolution of the state vector). The final
x-component of the state vector is then determined by a final π/2 rotation. After this
the z projection is measured using the optical spin read out.

After this another π/2 pulse is applied which rotates the x-component of the state
back onto the z-axis. The total evolution of the whole sequence is then U(τ) =
Ry(π/2)δZ(τ)Ry(π/2). After this the optical readout is used to determine the
z-projection ⟨Sz⟩ of the state vector (see section 2.4.1). In order to build statistics
the experiment is repeated many (∼ 106) times so the signal will be the average
over many realizations of δbz(t)

⟨Sz⟩ =
⟨
Tr
[
SzU(τ)ρ0U

†(τ)
]⟩

= −
⟨

exp

i τ∫
0

δbz(t) dt

⟩ (2.28)

where ⟨· · · ⟩ denotes the averaging. Since for an electron spin bath δbz(t) is
generated by a Gaussian process, eq. (2.28) can be calculated explicitly [33]

⟨Sz⟩ = −e−χ(τ) (2.29)

The minus sign results from the two π/2 rotations. The exponent χ(τ) is deter-
mined by the correlation function C(t0, t) = ⟨δbz(t0)δbz(t)⟩ and a time-domain
filter function fR(t) belonging to the Ramsey sequence [34]

χ(τ) = 1
2

τ∫
0

dt

τ∫
0

dt0 C(t0, t)fR(t0)fR(t) (2.30)

For a Ramsey sequence with total free evolution time τ the filter function fR(t) =
u(t) − u(t− τ) with u(t) the unit-step function.
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Eq. (2.29) can also be written in the frequency domain by using the fact that

the power spectral density of δbz(t) is given by SC(ω) =
+∞∫

−∞
dt e−iωtC(t0, t0 + t)

and that (2.29) represents a convolution. The exponent χ(τ) calculated in the
frequency domain is then

χ(τ) = 2
π

∞∫
0

dω SC(ω) |F (ω)|2 (2.31)

where F (ω) is the Fourier transform of the filter function. The frequency domain
counterpart of fR(t) is FR(ω) = 1/iω [1 − exp(iωτ)].

Using the correlation function 2.25 from the classical model for the electron
spin bath we get for the decay during free evolution

⟨Sz⟩ = − exp
[
− b2

R2 (Rτ + e−Rτ − 1)
]
. (2.32)

If b < R (i.e. a fast bath) the Ramsey signal will decay exponentially with
time-constant T ∗

2 = R/(b2). Since the line shape in the frequency domain is
given by the Fourier transform of the time-domain decay shape this will result
in a Lorentzian line shape with full-width-half-maximum (FWHM) ∆ = 1/πT ∗

2 .
This linewidth is a factor b/R smaller then what one would expect from the
Gaussian distribution of δbz(t) which has width b. This phenomenon is called
motional narrowing in literature [2] and is the result of the time integral of bz(t)
approaching zero for τ >> 1/R.

In the opposite regime where the bath is slow Rτ << 1 and b > R the first
order terms in (2.32) cancel and second order terms become the leading terms. In
this case the decay is ⟨Sz⟩ = − exp

(
−b2τ2/2

)
. If we take the Fourier transform

to determine the linewidth in frequency ∆ ≃ b/π it indeed corresponds to the
distribution of δbz(t). This is also expected since now the dipolar field δbz(t) is
quasistatic (i.e. it does not change during the measurement, but is different each
time a measurement is repeated).

The filter function appearing in Eqs. (2.30) and (2.31) provides a convenient
tool to calculate the signal for any pulse sequence such as the Hahn-echo, or spin
echo (SE) sequence [35] π/2−τ/2−π−τ/2−π/2 (Fig. 2.10). The sequence works
as follows. As in the Ramsey sequence, the state vector is rotated in the xy-plane
of the Bloch sphere by the first π/2 pulse. After this a period of free evolution
of length τ/2 follows during which the spin starts to precess in the random field
δbz(t). A π pulse is then used to flip the spin by rotating it around the y-axis by
180o (hence the name π-pulse). During the second free evolution period the spin
will continue to precess. If δbz(t) remains constant during the whole sequence the
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Figure 2.10: Spin echo experiment. As in the Ramsey experiment a fist π/2 pulse
is used to initialize the state vector along the x-axis. This is followed by a first initial
period of free evolution τ/2 during which a random phase accumulates. A π pulse half
way during the sequence is used to rotate the state vector around the y axis by 180o.
The evolution continues and if during the total free evolution time τ δbz(t) does not
change the statevector will end up along the x-axis irrespective of the exact value of
δbz(t). The final π/2 pulse is used for the read out of the x-component of the state
vector the same way as in the Ramsey experiment.

spin will be aligned again along the x-axis after the second period of free evolution
and an echo is formed. This refocusing of the state vector is independent of the
value of δbz(t) as long as it does not change during the sequence. Finally, the last
π/2 pulse rotates the x-component of the state vector back to the z-axis which
followed by the read out.

Another way of looking at the spin echo sequence is by moving to the reference
frame which is turned up-side-down whenever a π-pulse is applied. In this so-
called toggling frame the spin is no longer being flipped but it is the random field
δbz(t) which changes sign whenever a π-pulse is applied. We can therefore write
for the filter function of the SE sequence fSE = u(t) − 2u(t − τ/2) + u(t − τ).
Plugging this into (2.29) gives the signal for the SE dacay

⟨Sz⟩ = exp
[
−b2/R2(Rτ + 4e−Rτ − e−Rτ − 3 )] (2.33)

The signal is now no longer negative because of the extra π-pulse in the SE
sequence. Again, looking at the case of fast bath where R > b we see that the
spin echo decays with the same rate as the Ramsey signal. This reflects the
fact that for this situation there is no correlation between δbz(t) during the first
free evolution period and the second and the refocussing effect of the π-pulse is
diminished.

For a slow bath, where b > R, we only have a signal at τ << 1/R. In
that case all terms in the exponent up to the second order cancel and the signal
decays as ⟨Sz⟩ = exp

(
−b2Rτ3/12

)
and so we have for the spin-echo decay time,

or coherence time, T2 = [12/(b2R)]1/3. The decay is slowed down dramatically
at times τ << T2 which means that we can expect state fidelities to be high in
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this regime.

Dynamical decoupling

It would be convenient if this favorable short timescale behavior, on which there
is such a small influence of decoherence, could be extended. One natural way
is to just apply more π-pulses. A sequence with N pulses which are applied at
times δjτ with 0 < δj < 1 results in a time-domain filterfunction

f(t) = u(t) + (−1)N + 1u(t− τ) + 2
N∑

j=1
(−1)ju(t− δjτ) (2.34)

which in the freqeuncy domain becomes

F (ω) = 1
iω

1 + (−1)N + 1eiωτ + 2
N∑

j=1
(−1)jeiωδjτ

 (2.35)

By applying N cycles of the echo sequence each of which has length τ/N , we
get the so-called Carr-Purcell (CP) sequence π/2 − [τ/2N − π − τ/2N ]N − π/2
and for which δj = (2j − 1)/2N . Sequences with CP timing of the π-pulses can
indeed be used to extend the coherence time of a single NV spin as we show in
Ch. 4.

From the shape of the spin echo decay we can estimate what the new decay
shape will be when we apply the N -pulse CP sequence. For short τ the spin
refocusses along the x-axis after each echo cycle. The next cycle will then be
a refocussed echo of the previous echo. We therefore expect the amplitude of
the echo to decrease exponentially with N according to ∼ exp

[
−N (τ/T2)3

]
.

Rewriting this in terms of the total free evolution time tfe = Nτ we get for the
decay ∼ exp

[
−t3fe/

(
N2T 3

2
)]

and we get for the new 1/e coherence decay time
T1/e = N2/3T2. A more rigorous proof of this scaling behavior is given in Ch. 4 by
using the filter function approach. There we also show that this scaling continues
even in the case that the total free evolution time exceeds the correlation time of
the spin bath.

The scaling can in principle be generalized to any spin echo decay shape
for which exp

[
− (τ/T2)k

]
where an exponent k ̸= 3 can be the result from a

spectrum other than a Lorentzian spectrum. For instance classical noise can have
a power-law spectrum S(ω) ∼ ω−β . In this case the coherence time characterized
by the 1/e time of the coherence decay curves is T1/e = N1−1/kT2 and there
is a simple relation between the power of the exponent k of the SE decay and
the power β of the noise spectrum which is given by β = k − 1 [36]. In cases
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where signal quality is too low to determine the exact decay shape of the Hahn-
echo dynamical decoupling can be used to estimate β. Aside from prolonging
qubit coherence, dynamical decoupling can be used to extract information of the
noise sources that couple to a qubit. Another practical application of dynamical
decoupling sequences is in magnetometry. In Ch. 5 we show how flipping a
single spin in resonance with an externally applied AC magnetic field dramatically
improves the sensitivity of spin-based magnetometers. In addition to diamond,
dynamical decoupling has been implemented in a variety of systems, such as
trapped ions [37], superconducting qubits [38], rare-earth ions [39], quantum
dots [40] and donors in silicon [41], in the context of quantum information and
metrology.

There are many other types of sequences that can be constructed and which
are not necessarily periodic in the timing of the pulses. One example is the Uhrig
DD sequence [42]. This sequence is efficient with Ohmic spectra or in cases where
there is a hard high-frequency cut-off in the spectrum [37]. In the case of the
electron spin bath the power spectrum decays with ω−2, which can be considered
soft. The hard cut-off of the electron spin bath is at such a high frequency
(∼ 1 GHz) and it is impossible to apply π-pulses on such short timescales. The
periodic sequences CP therefore work best for a bath of electron spins and we
will therefore not focus on aperiodic sequences in this thesis.

2.4 Experimental techniques
This section gives an overview of the experimental techniques involved in the
control and read out of the spin sates of single NV centers. The optical detection
is discussed first3. The rest of this section discusses how quantum control of the
spin states is achieved using microwave magnetic fields and how the performance
of processes is characterized using quantum process tomography (QPT).

2.4.1 Detecting single NV centers
The 637 nm ZPL of the NV center is accompanied by a broad phonon sideband
(PSB), both in emission and absorption (Fig. 2.3a). The PSB is associated with
transitions between electronic ground and excited state which, in addition to the
emission/absorption of a photon, involve the excitation/absorption of a (local)
vibration of the NV center [43]. These vibronic states, which have short ≪ 1ps
lifetimes corresponding to tens of nanometer spectral widths, give the PSB its
characteristic spectral shape (Fig. 2.12a).

3The description of the detection of single NV centers is adapted from [5]
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The PSB allows efficient excitation of the NV center by off-resonant laser
light at e.g. 532 nm. The short optical lifetime (∼ 12 ns in bulk diamond),
in combination with a high quantum efficiency for radiative relaxation (η ∼ 1),
allows relatively straightforward detection of the photoluminescence of single NV
centers. NV centers were first observed individually in 1997 by Gruber et al.
using a confocal microscope [44].

Nowadays, the confocal microscope has become the standard tool to optically
isolate and study single NV centers. Fig. 2.11 schematically shows one of the
confocal microscopes built for the experiments described in this thesis. NV cen-
ters are excited by a 532 nm laser which is focused to a diffraction limited spot
by a high numerical aperture (NA) objective (typically NA=0.95). Photolumi-
nescence originating from the sample is separated from the excitation light by a
dichroic mirror and optical filters. A photoluminescence map of a sample is made
by scanning the position of the excitation laser across the sample and detecting
the position-dependent photoluminescence using avalanche photodiodes. A con-
focal microscope employs a pinhole to increase the signal-to-background ratio of
the detected photoluminescence by blocking out-of-focus light.

The diffraction limit limits the spatial resolution of a confocal microscope to
the order of a wavelength. NV centers can therefore only be optically isolated
if the distance to neighbouring NV centers is large enough [44]. In our bulk
diamond samples the typical seperation between NV centers is a few µm and the
spot size sufficiently small < 400 nm, allowing us to address single centers.

That the photoluminescence detected from a diffraction-limited spot origi-
nates from a single NV center, can be checked if the statistics of the photolumi-
nescence corresponds to that of a single photon emitter. A single photon emitter
emits only one photon when it decays from the excited state to the ground state.
This single photon nature can be revealed by measuring the second order auto-
correlation function g2(τ) of the emitted photoluminescence, defined as

g2(τ) = ⟨I(0)I(τ)⟩
⟨I2(t)⟩

(2.36)

where I(t) is the detected photoluminescence intensity at a time t.
For large time differences there is no correlation in the emitted photolumines-

cence, so g2(τ → ∞) = 1. However, a single photon emitter will have an anti-
bunching dip in its autocorrelation function at zero time difference (g2(0) = 0)
because two photons are never emitted at the same time. Fig. 2.12b shows a mea-
surement of the autocorrelation function of NV center photoluminescence. The
anti-bunched nature of single NV center emission was first observed by Kurtsiefer
et al. [45].
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Figure 2.11: Schematic of the confocal microscope used to study single NV centers.
A 532 nm laser (Coherent Compass 315M, frequency doubled Nd:YAG) is used for
excitation. An acousto-optical modulator (AOM, Crystal Technologies 3200-121), in
double-pass configuration to increase the extinction ratio to about 60 dB, can be used
to create laser pulses with a risetime of about 10 ns. A fast steering mirror (FSM,
Newport FSM-300-01) is used to scan the laser over the sample. Two lenses image the
FSM onto the back focal plane of a microscope objective (MO). The objective (NA=0.95,
Olympus MplanApo50x) focuses the laser to a diffraction limited spot of about 500 nm.
The same microscope objective collects the photoluminescence. The excitation light is
separated from the photoluminescence by a dichroic mirror and further suppressed by
an optical filter. The photoluminescence is focused onto the core of an optical single
mode fiber by a fiber coupler (fc) and detected using an avalanche photodiode (APD,
Perkin & Elmer SPCM-AQR-14-FC). The fiber core acts as the confocal detection
pinhole. For samples with very low background fluorescence, the fiber is replaced by a
multimode fiber to increase collection efficiency. The beamsplitter (BS) is only used for
antibunching measurements and is usually taken out of the beam path.
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Figure 2.12: a, Room temperature photoluminescence spectrum of a single NV cen-
ter. The spectrum is characterized by the zero-phonon line around 637 nm, which is
accompanied by a broad phonon sideband. b, Autocorrelation function of single NV
center luminescence, measured by splitting the photoluminescence to two detectors in
a Hahnbury-Brown-Twiss setup.

2.4.2 Setup for quantum control
As explained in section 2.1.1 spins can be controlled with pulsed oscillating mag-
netic fields. The challenge in quantum control is to achieve high control fidelities.
The characterization of quantum control pulses is the subject of chapter 3. In this
section provides a brief overview of the origin of pulse errors and the measures
taken to prevent them.

There are several effects that can limit control fidelity. The first is inhomoge-
neous broadening and local hyperfine interaction with the nitrogen nucleus which
causes the transition frequency of the NV spin to vary from one measurement shot
to another. For pulse sequences that are longer than the bath correlation time τC ,
the transition frequency can even change within one measurement. We therefore
need π pulses which are much shorter then the dephasing time (T ∗

2 > 100 ns for
the NV spin). For a Gaussian decay the pulse fidelity is roughly Fp ≈ 1− t2p/T

∗2
2 .

In order to reduce the error resulting from inhomogeneous broadening to < 1 %
means tp < 10 ns. Such strong driving can be realized by using high power (∼ 30
W) amplifiers and on-chip waveguides that confine the large microwave power
to small volumes. The electronic setup and the preparation of the sample are
described in section 2.4.2.

Another source for errors in the control pulses are phase transients in the
tails of the control pusles which may arise from limited bandwidth and reflec-
tions. As we will explain in the next section we use high-bandwidth on-chip
coplanar waveguides to deliver the microwave pusles to the sample. Reflections
can be reduced by placing attenuators at locations in the setup where impedance
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mismatches occur (e.g. at the ports of the amplifiers and microwave launchers
of the PCB containing the sample). Attenuators placed after the amplifier will
reduce the microwave power at the sample. In our setup we can achieve Rabi
frequencies in excess of 200 MHz (see Fig. 2.14, for our setup, however, ∼ 60
MHz driving is sufficient. The surplus of power is therefore enough to reduce
reflections by roughly an order of magnitude.

Electronic setup

The timing between all optical, microwave and trigger pulses is controlled by
the AWG. A schematic overview of the setup is depicted in Fig. 2.13. Each
measurement cycle consists of three steps (Fig. 2.13). First, the NV center is
initialized in the spin ground state ms = 0 by a laser pulse (600 ns length). Then
the desired MW pulses are applied. Finally, another green pulse is applied and
the photoluminescence (PL) is measured during an integration time of about 600
ns.

For the experiments performed in chapter 6 two vector signal generators are
used to simultaneously control the NV and surrounding Nitrogen electron spins.
A bath spin have multiple transitions depending on which spectral group it be-
longs to. This means that in order to control all spectral groups simultaneously in
one experiment we need to generate sequences containing multi-frequency control
pulses. These are synthesized using two of the analog channels of the AWG and
the high bandwidth (250 MHz) IQ modulation input of a vector source operating
in the RF range. The undesired image frequency for each pulse in the sequence
is rejected by giving each pulse in the I and Q sequence the proper phase that
selects the sum or difference frequency.

Sample preparation

The diamond sample is a single crystal type Ib plate from Element Six, with a
Nitrogen concentration specified to be less than 200 ppm. In order to achieve high
sufficiently strong driving of the NV spin we need to apply oscillating magnetic
fields of > 35 G in the microwave range perpendicular to the ⟨111⟩ orientation of
the NV center.

We achieve this by sending RF and MW signals through a coplanar waveg-
uide (CPW), which is fabricated directly on the diamond substrate using e-beam
lithography. The amplitude of the MW current is the highest at the edges of the
conductors. This current will produce a microwave magnetic field B1 between
the Au conductors of the CPW (Fig. 2.14). By making the lateral dimensions
of the waveguide sufficiently small (seperation between the conductors ∼ 10 µm)
the current distribution profile of the waveguide will be compressed and resulting
in large induced magnetic fields B1 near the conductors of the CPW.
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Figure 2.13: a, Room temperature electronic setup. An arbitrary Waveform Gener-
ator (AWG, Textronix AWG5014) is at the core of the electronic setup, synchronizing
the input signals to the instruments through multiple channels. The AWG provides the
I/Q modulation of a Rohde & Schwartz SMBV 100A vector signal generator (Vector
source). To increase the MW source on/off ratio, the pulse modulation input (labeled
G) is used as gate which suppresses the microwave leakage by < 80 dB. The MW bursts
are amplified by a high power amplifier (Amplifier Research 25S1G4, bandwidth 0.8 -
4.2 GHz). Pulses of ac current in the radio frequency range (∼MHz) are generated by
a separate vector source operating the in the RF range. After amplification (Amplifier
Research 30W1000B, bandwidth 1 MHz - 1 GHz ), the RF and MW bursts are combined
and sent to the sample via the printed circuit board (PCB). The PCB is terminated by
50 Ω at the output of the PCB. The PCB is is mounted in a 4 coil vector magnet which
allows for a careful alignment of the static magnetic fields along the NV symmetry
axis. The AWG also provides the modulation to the AOM to generate laser pulses, and
triggers a multiple-event time digitizer (FastComTec P7889) to start counting photons
detected by the APD. Picture adapted from [5]. b, Basic measurement pulse sequence.
The NV center is first initialized in ms = 0 using a 600 ns green (532 nm) laser pulse.
After that the manipulation stage follows where microwave and (optionally) RF pulse
sequences are applied. Gate pulses are defined around the MW and RF pulses to sup-
press leakage. MW pulses with inter-pulse delays shorter than 10 ns share a single gate.
Optical read out is followed where a laser pulse is applied. At the same time a trigger
is sent to the P7889 data acquisition (DAQ) board which records the photon detections
events coming from the APD during a time window of 600 ns.

Close to the surface B1 will be oriented perpendicular to the substrate surface
which has its normal along the ⟨001⟩ orientation. The component of B1 perpen-
diclar to the ⟨111⟩ orientation will therefore be roughly 0.8B1. We are able to
generate oscillating magnetic fields of > 100 G and achieve a Rabi frequency well
in excess of 100 MHz. Typical driving strengts used for pulses in this thesis range
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Figure 2.14: a, Current distribution in a CPW (top) and schematic picture of the
sample (bottom). The current distribution peaks at the edges of the Au conductors
(yellow). The CPW (Au) is fabricated directly on the diamond substrate. The ampli-
tude profile of the vertical component of the driving field B1 is determined using the
above current profile. An exposed section of ⟨001⟩ oriented diamond is located between
the Au conductors. NV centers between the conductors of the CPW have their quan-
tization axis along one of the four ⟨111⟩ directions. The driving field B1 is oriented
predominantly along the ⟨001⟩ direction. b, Coherent oscillations of the NV spin for
increasing power. For the highest powers we achieve Rabi frequencies well in excess of
100 MHz. The single trace shows coherent oscillations of 60 MHz.

between 50 and 80 MHz. This is mainly to prevent pulses from being distorted
by non-linearities in the electronics and to prevent heating of the sample for long
sequences with high duty cycles.

Data normalization and noise reduction

The spin state is determined from the spin-dependent PL. Normalization is per-
formed by measuring the spin-dependent fluorescence belonging to the ms = 0
(|0⟩) ms = −1 (|1⟩) before each individual data point. Normalization measure-
ments give the maximum and minimum PL levels respectively, and are used
to rescale the data. The maximum PL is found by performing a readout after
polarization, while the minimum PL is found by applying a π-pulse after the
polarization and before the readout. The effectiveness of population inversion
after a π-pulse is confirmed by process tomography (F ≈ 0.99, see Ch. 3) and by
comparison with adiabatic inversion experiments [46].

To prevent 1/f noise in the PL induced by drifts in the setup, a single data
point, including its normalization, is measured once before moving to the next
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data point. This results in fast (∼ 1 ms) sweeps during which all data points
are measured. These sweeps are repeated until the desired signal-to-noise ratio
is achieved. Noise in both data and normalization is due to Poissonian statistics
of the photon detection events. Due to the low readout efficiency (∼ 1%), the
typical number of averages to get reduce the noise to 2% is of the order of 106.
We average the normalization points ten times more than the data points to limit
the noise introduced by the normalization.
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Chapter 3

Bootstrap tomography of the
pulses for quantum control

V. V. Dobrovitski, G. de Lange, D. Ristè and R. Hanson

Long-time dynamical decoupling and quantum control of qubits require high-
precision control pulses. Full characterization (quantum tomography) of imper-
fect pulses presents a bootstrap problem: tomography requires initial states of
a qubit which can not be prepared without perfect pulses. We present a pro-
tocol for pulse error analysis, specifically tailored for a wide range of the single
solid-state electron spins. Using a single electron spin of a nitrogen-vacancy (NV)
center in diamond, we experimentally verify the correctness of the protocol, and
demonstrate its usefulness for quantum control tasks.

This chapter has been published in Physical Review Letters 107, 077601 (2010)
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3.1 Introduction
Coherent manipulation of single and few electron spins has recently been achieved
in several solid-state systems such as quantum dots and diamond defect centers.
Such systems are promising candidates for quantum information processing [1,2],
precise metrology [3–5] and ultra-sensitive magnetometry [6–8]. They also present
an excellent testbed for studying the fundamental problems of quantum dynamics
of open systems [9–16]. High-speed manipulation of the system’s quantum state
can be achieved by using microwave or optical pulses [17–22], which must be fine-
tuned to provide a high degree of fidelity. For example, sequences of quantum
control pulses can be used to extend the coherence time via dynamical decoupling
[23–28]. For long sequences, even small errors in the pulses will destroy the
coherence that one attempts to preserve [27, 29] and may even lead to artificial
saturation [30–32]. Therefore, precise characterization of errors is essential for
successful implementation of complex quantum control protocols. With known
errors, composite pulses and/or special pulse sequences can be chosen to mitigate
the problem.

Complete information on the action of a pulse can in principle be gained
with quantum process tomography (QPT) [33]. However, QPT of an imperfect
pulse requires preparation and measurement of a complete set of reference states,
whereas in many solid-state qubit systems (e.g. quantum dots, diamond defect
centers, superconducting circuits) only one state can be prepared reliably (with-
out the imperfect pulses), and only one observable can be directly measured.
All other states can be prepared only with the imperfect pulses themselves, and
therefore have errors [34]. This presents a bootstrap problem: the reference states
contain the very same errors that we want to determine.

The problem of pulse error analysis has been studied extensively in the areas
of NMR and ESR [35–38]. However, single electron spins in solid-state settings
present new opportunities and challenges, and call for new approaches tailored at
the specific demands of these systems. The driving pulse field can be tightly con-
fined in the vicinity of the target spin. The resulting strong, nanosecond-timescale
pulses enable fast spin manipulation, but the standard pulse error analysis [35–39]
used in NMR becomes inapplicable. At strong driving, the spin dynamics changes
noticeably [22]. The non-secular terms in the rotating frame can become impor-
tant. The ac-Stark and Bloch-Siegert shifts can significantly detune the pulse
frequency from resonance [22] and tilt the rotation axis towards the z-axis. Also,
the pulse edges constitute a much larger fraction of the short pulse, and the
driving field at the edges varies much faster and stronger than in typical NMR
pulses. The resulting errors [22] (e.g. tilting of the rotation axis) can go beyond
the standard treatment, and can not always be removed by symmetrizing the
pulse shape.
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Also, typical NMR systems have long coherence times that exceed the pulse
width by orders of magnitude. The standard tune-up protocols [35–38] exploit
this advantage, and use sequences with tens or hundreds of pulses to achieve
outstanding precision in pulse parameters. But single solid-state electron spins
are dephased faster, on a timescale T ∗

2 of microseconds down to tens of nanosec-
onds [9]. After only tens of pulses the signal becomes a complex mixture of pulse
errors and decoherence [30–32]. To ensure a reliable measurement of the errors,
the sequences for single electron spins must be short so that decoherence during
each sequence would be negligible.

3.2 The Bootstrap protocol
Here, we present a systematic approach to pulse characterization for single solid-
state electron spins, which is usable at shorter coherence times and much stronger
driving power compared to traditional NMR systems. The proposed protocol con-
tains four series of measurements, each having only 1–3 pulses, thus minimizing
the effect of decoherence. The measured signal quantifying the pulse errors grows
linearly with the errors to ensure a good accuracy for small errors. Also, the sig-
nal is zero for zero errors for good relative accuracy. The protocol determines all
pulse errors: the rotation angle and all three components of the rotation axis. We
experimentally demonstrate the protocol on a single spin of a nitrogen-vacancy
(NV) defect center in diamond. By deliberately introducing known pulse er-
rors, we verify the accuracy and self-consistency of the protocol, and use it to
significantly increase the fidelity of QPT.

Our goal is to determine the parameters of four pulses, πX , πY , π/2X , and
π/2Y applied to a two-level quantum system (πX denotes a rotation by an angle
π around the x-axis in the rotating frame; other notations are analogous). Min-
imization of the pulse errors and pulse optimization are not the subjects of this
paper. This set of pulses allows implementation of universal decoupling XY se-
quences [23–25], full tomography of the density matrix, and universal single-qubit
gates [33]. We assume that the pulse errors are reasonably small, and consider
only the first-order terms in these quantities (since we want the signal to grow
proportionally to errors). We also assume that the pulse width tp is small in
comparison with the dephasing time T ∗

2 ; in this case the impact of decoherence
is of second order, (tp/T ∗

2 )2, and is negligible for short sequences. Under this
assumption the evolution of a spin during the pulse can be described a unitary
rotation. For example, for S = 1/2, the evolution (in the rotating frame) during
an imperfect πX pulse is given by

UX = e−i(n⃗σ⃗)(π+2ϕ)/2 ≈ −ϕ1 − i(σx + ϵyσy + ϵzσz), (3.1)

where σx,y,z are the Pauli matrices, 1 is a 2×2 identity matrix, the rotation angle
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error is 2ϕ and the rotation axis n⃗ has small components ny = ϵy and nz = ϵz.
Similarly, a π/2X pulse U ′

X has the rotation angle error 2ϕ′, and the small rotation
axis components ϵ′y and ϵ′z along y and z, respectively. Note that two π/2 pulses
do not yield the same evolution as one π pulse due to errors introduced by the
pulse edges. Analogous parameters for y-pulses will be denoted as 2χ, vx, and
vz (angle and axis errors for πY ), and 2χ′, v′

x, and v′
z (angle and axis errors for

π/2Y ).
The bootstrap protocol shares ideas with standard QPT, and with the NMR

tune-up sequences. Before each measurement, the spin is in the state | ↑⟩, and
the measured signal is ⟨ψ|σz|ψ⟩, where |ψ⟩ is the wavefunction after the pulse.
The preparation and the readout axes are usually fixed: e.g., for NV centers,
they both coincide with one of the crystallographic ⟨111⟩ directions. A possible
mismatch between these axes in other systems can be taken into account, but
complicates the protocol, and is not considered here. An imperfect pulse Uj

can be represented as a product Uj = U
(0)
j Vj ≈ U

(0)
j (1 − iKj), where U (0)

j is a
corresponding ideal rotation and the Hermitian operator Kj is proportional to
small pulse errors. Applying two pulses U1 and U2 in succession, we obtain up
to linear order in Kj

U21 = U2U1 ≈ U
(0)
2 U

(0)
1 − iU

(0)
2 K1 − iK2U

(0)
1 , (3.2)

and the terms U (0)
2 K1 and K2U

(0)
1 contain different matrix elements of the opera-

tors K1 and K2. E.g., if U1 and U2 are the (imperfect) π/2Y and π/2X rotations,
the signal detected after this sequence, S21 = Tr(σzU21| ↑⟩⟨↑ |U†

21), contains
a linear combination of the matrix elements ⟨↑ |K1|Y ⟩ and ⟨↑ |K2|X⟩ (where
|Y ⟩ = | ↑⟩ + i| ↓⟩ and |X⟩ = | ↑⟩ + | ↓⟩). Combining different pulses, we obtain
a sufficient number of such linear combinations of various matrix elements of Kj

to uniquely determine all of them. A general approach to bootstrap tomography
can be formulated in the language of QPT, by expanding the operation element
operators [33] in terms of small errors. More complex bootstrap protocols appli-
cable to more complex systems (higher spins, few qubits, etc.) can be designed
in a similar manner. Here, we focus on a single two-level system.

The protocol is summarized in Table 3.1. It consists of three blocks of mea-
surement sequences. For each sequence the measured signal is given in terms of
the error parameters. The first block, with two single-pulse sequences, yields the
rotation angle errors for the π/2 pulses. This information is then used in the
second block, consisting of four two-pulse sequences, to find the rotation angle
errors and the components of the rotation axis along z for the π pulses. The
third block has six multi-pulse sequences, yielding six signals that are linearly
related to the remaining six pulse error parameters. This linear system is under-
determined, since the whole system of pulses is invariant under rotations around
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Table 3.1: Summary of the bootstrap protocol: pulse sequences (read from right to
left) and the resulting signals expressed in terms of the error parameters. Blocks of
sequences are separated by horizontal lines.

Sequence Signal
π/2X −2ϕ′

π/2Y −2χ′

π/2X -πX 2(ϕ+ ϕ′)
π/2Y -πY 2(χ+ χ′)
πY -π/2X −2vz + 2ϕ′

πX -π/2Y 2ϵz + 2χ′

π/2Y -π/2X −ϵ′y − ϵ′z − v′
x − v′

z

π/2X -π/2Y −ϵ′y + ϵ′z − v′
x + v′

z

π/2X -πX -π/2Y −ϵ′y + ϵ′z + v′
x − v′

z + 2ϵy
π/2Y -πX -π/2X −ϵ′y − ϵ′z + v′

x + v′
z + 2ϵy

π/2X -πY -π/2Y ϵ′y − ϵ′z − v′
x + v′

z + 2vx

the z-axis. We may put ϵ′y = 0, taking the phase of the π/2X pulse as the x
direction in the rotating frame. This fixes all other directions, and all errors are
uniquely determined. No unphysical results appear in this bootstrap protocol:
in experiments below, we use the bare measurement data imposing no additional
conditions.

3.3 Experimental verification of the protocol
We now demonstrate and verify the protocol experimentally by applying it to
a single solid-state spin system. We use the spin of a single Nitrogen-Vacancy
(NV) center, which is a defect in diamond composed of a substitutional nitrogen
atom with an adjacent vacancy [40]. The NV center’s spin can be optically
polarized and read out [40]. The unpolarized part of the spin’s density matrix is
proportional to the identity matrix, and gives no contribution to the signal (i.e.
the NV spin state is pseudo-pure as in traditional NMR/ESR). The experiments
are performed in a home-built confocal microscope at room temperature. NV
centers in nanocrystals are prepared on a chip with a lithographically-defined
waveguide allowing fast and precise spin rotations by magnetic resonance.

We controllably introduce two types of pulse errors, and use the bootstrap
protocol to extract their values. First, we vary the phase Φ of the nominal
π/2Y -pulse between −30◦ and 30◦ from its nominal value. In this way, we are
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Figure 3.1: Experimental verification of the bootstrap protocol by introducing varying
pulse errors. Duration of the π/2-pulses (π-pulses) is 5 ns (9 ns). (a) Measured error
parameters for different phases Φ of the π/2Y -pulse. The frequency of the driving field
is set at 2.4605 GHz. (b) Measured error parameters for various frequencies of the
driving field. Error bars everywhere are smaller than the symbol size.

changing the error parameter v′
x = − sin Φ ≈ −Φ(rad) while leaving all other

errors constant. Figure 3.1(a) shows the experimental results that clearly support
this expectation.

In the second experiment we detune the microwave excitation away from the
qubit transition frequency, thereby varying the z-components of the rotation axis
for all pulses. As shown in Fig. 3.1(b), the extracted error parameters vz, v′

z, ϵz,
and ϵ′z strongly change (roughly linearly) with the detuning as expected, while
the other error parameters stay virtually constant. The errors of the nominal π/2-
pulses vary about twice as much as the errors of the nominal π-pulses, indicating
that the errors originate largely from the pulse edges. Since the edges are the same
for all pulses, they have larger impact on shorter pulses. The data in Fig. 3.1(a)-
(b) demonstrate that the bootstrap protocol is indeed an effective and reliable
tool for extracting pulse errors.

3.4 Correcting QPT results for pulse errors
Due to experimental limitations it may be impossible to cancel all errors at
once. In that case, the choice of the optimal working point involves a trade-off,
and precise knowledge of the pulse errors becomes particularly important. For
example, when performing QPT, a set of the reference states is prepared using
the pulses πX , π/2X , and π/2Y . These states are acted upon by the process, and
rotated to the readout basis before measurement [33]. The operation elements
of the quantum process are expanded in the basis E0 = I, E1 = σx, E2 = σy,
and E3 = σz, and the process is completely characterized by the 4 × 4 expansion
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matrix χ [33]. When systematic pulse errors are present, the prepared initial
states differ from the reference states, and the read-out is also performed in the
incorrect basis, yielding an incorrect matrix χ. But with pulse errors known,
the raw measured data can be transformed into the correct basis prior to the
standard QPT data processing [33,34,41].

As a demonstration, and as a check of self-consistency of the bootstrap proto-
col, we perform QPT while introducing the same pulse errors as in Fig. 3.1. We
show that with the pulse errors deduced with the protocol, the QPT results can
be corrected. The comparison between raw and corrected data below is designed
to use no a priori assumptions about correctness of the bootstrap protocol.

First, we take the (imperfect) πY pulse as an example of a quantum process.
We introduce errors in the QPT procedure by changing the phase Φ of the nominal
π/2Y -pulse from −30◦ to 30◦. We first determine the reference matrix of our
quantum process. We perform QPT on this process using the π/2Y pulse with
Φ = 0, and the resulting reference matrix χ0 is calculated in two ways: (i) using
the raw uncorrected data, i.e. assuming that the pulses used for QPT are ideal
(we denote this matrix as χr

0), and (ii) using the data corrected for the known
pulse imperfections (the resulting matrix is χc

0). Next, we vary Φ, and use the
artificially deteriorated π/2Y pulses to determine the matrix χ of the quantum
process. This matrix is also determined in two ways, by using raw experimental
data (matrix χr), and by correcting the data for the known pulse errors (matrix
χc). For each value of Φ, we compare the raw-data matrices χr and χr

0 on one
hand, and the corrected matrices χc and χc

0 on the other.
The process we are studying does not depend on the phase of the nominal

π/2Y pulse. Thus, ideally, the matrices χ0 and χ should be the same. To quantify
the difference between χ0 and χ, we use two distance measures. One is the
process fidelity [33] F = Tr[χ0χ], which depends quadratically on the pulse errors.
The other measure is the Hilbert-Schmidt 2-norm ||M ||2 =

√
Tr[MM†] of the

difference matrix M = χ − χ0. This norm is linear in, and thus more sensitive
to, the pulse errors.

In Figs. 3.2(a)–(b), orange squares show the values of F and ||M ||2 for the
corrected-data matrices χc

0 and χc. The expectation that χ0 and χ should coin-
cide is confirmed with excellent precision. Almost independently of Φ, the fidelity
remains above 99%, and ||M ||2 stays small. This is not so for the raw-data ma-
trices χr

0 and χr (blue squares). The neglected phase error of the nominal π/2Y

pulse makes the matrix χr inaccurate, so F and ||M ||2 depend on Φ, with fidelity
dropping by 8% for Φ = 30◦.

In a second experiment (Figs. 2c and 2d), we perform tomography on an iden-
tity process. The reference matrix χ0 for an ideal identity process is known, and
needs no measurement. We detune the microwave excitation frequency away from
the qubit transition, introducing the errors ϵz, ϵ′z, vz, and v′

z (like in Fig. 3.1b)
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Figure 3.2: Correction of pulse errors in Quantum Process Tomography using the
bootstrap protocol. (a) Fidelity (F ) and (b) the 2-norm distance ||M ||2 between the
process measured at finite introduced π/2Y phase error and the process matrix measured
at zero introduced error. The process is a πY - pulse with zero introduced error. Driving
field frequency is 2.459 GHz. (c) F and (d) ||M ||2 between the measured process and
the actual process (identity). All measures are calculated both for the uncorrected and
for the corrected data.

into all pulses. We perform QPT on the identity process and, as above, determine
the corrected and the uncorrected matrices χr, and χc. These matrices are com-
pared with the ideal identity process. The results are shown in Fig. 3.2(c)–(d).
Again, the fidelities are high for the corrected data in the full range of introduced
errors, while for the uncorrected data the fidelity has dropped by as much as
10%. The same behavior is seen for ||M ||2. The key point here is that the cor-
rected matrix χc does not depend on the errors: orange points in Figs. 2c and
2d form a flat curve. Without correction (blue points), the measured χ-matrix
strongly depends on the pulse errors. Thus, even the effects of complex pulse
errors introduced by detuning the frequency can be effectively corrected using
the information from the bootstrap protocol.
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3.5 Conclusions
Summarizing, we have developed and experimentally demonstrated an effective
pulse error analysis protocol tailored to the specific requirements of single solid-
state spins. The methods described in this paper may help in accurate deter-
mination of the properties of different quantum processes, a key feature for the
fields of quantum information processing, quantum metrology and fundamental
studies of quantum decoherence.
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3.6 Additional material

Corrections of Quantum Process Tomography for pulse er-
rors
It is important to know the rotation parameters of the pulses which are used
for state preparation and tomography. This knowledge can be used to correct
the results of process tomography performed with imperfect pulses. If the spin
is rotated around an axis which deviates from the nominal rotation axis, then
the preparation and readout is done in a basis which deviates from the nominal
basis. Therefore, before applying the standard QPT recipe [33] to calculate the χ-
matrix of the process, we use the information gained from the bootstrap protocol
to transform the tomography data back to the proper basis. As the basis states,
one can choose ρ0 = |0⟩⟨0|, ρ1 = |1⟩⟨1|, ρx = |X⟩⟨X|/2, and ρy = |Y ⟩⟨Y |/2, which
we below denote as {b01XY }. Note that the matrices ρx and ρy are normalized,
while the states |X⟩ = |0⟩ + |1⟩ and |Y ⟩ = |0⟩ + i|1⟩ are not.

A general single-qubit QPT experiment consists of three basic steps. The first
step of QPT is the preparation of one of the reference states using an imperfect
pulse. Then, in the second step, the quantum process acts on the reference state.
Finally, in the third step, state tomography of the resulting density matrix is
performed, again using the pulses, to read out projections on the x, y, and z axes
of the Bloch sphere and therefore requires three measurements. This recipe is
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then repeated for each of the above mentioned reference states, giving a total of
twelve measurements. Both preparation and readout, where imperfect pulses are
used, introduce their own set of errors which might lead to unphysical and/or
incorrect QPT results. The correction is done by unwinding the propagation of
rotation axis errors.

To measure the distance between two process matrices, the theoretically ex-
pected reference matrix χ0, and the experimentally obtained matrix χ, we use
two metrics. One is the process fidelity F = Tr[χ0χ]. This metric is appropriate
for quantum-information analysis, but depends quadratically on the pulse errors
and therefore is less sensitive to them. The other measure is the Hilbert-Schmidt
2-norm ||M ||2 =

√
Tr[MM†] of the difference matrix M = χ− χ0. This norm is

linear in, and thus more sensitive to, the pulse errors. Note also that the 2-norm
||M ||2 is based on a quadratic function of the elements of the χ and χ0 matrices;
hence it includes the rms of experimental noise. The fidelity F , for a fixed χ0, is
a linear combination of the elements of χ.

State tomography corrections
We start our analysis from the final stage of the QPT, from the state tomography
of the density matrix

ρout = I + rxσx + ryσy + rzσz

2
. (3.3)

produced by the quantum process. To reconstruct this density matrix, we need
to determine the projections rx, ry and rz on the x, y, and z axes of the Bloch
sphere. We apply (imperfect) pulses, and measure the observable σz. In this
way, we find the projections of the density matrix on some other axes x′, y′, and
z′. The results r′

x, r′
y, and r′

z are obtained from the measurement of σz after
application, correspondingly, of the π/2Y pulse, π/2X pulse, and no pulse (so
that z and z′ axes coincide, and r′

z is equal to rz). These measurement results
are linearly related to the desired parameters rx, ry, and rz: r′

x

r′
y

r′
z

 = Mr

 rx

ry

rz

 . (3.4)

where the linear relation between the results is defined by the transformation
matrix

Mr =

 v′
xv

′
z − η v′

x + v′
zη v′2

z

ϵ′zξ − ϵ′y ξ + ϵ′yϵ
′
z ϵ′2z

0 0 1

 . (3.5)
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Here we used the shorthand notations

ξ =
√

1 − (ϵ′z)2 − (ϵ′y)2 (3.6)

and

η =
√

1 − (v′
z)2 − (v′

x)2. (3.7)

Here we assume, in accordance with our experimental situation, that the
rotation angle errors ϕ, ϕ′, χ, and χ′ are adjusted to zero within the experimental
accuracy. Note that rz and r′

z coincide because it is read out without pulses. Also
note that in the absence of errors x′ axis is parallel to x, but has the opposite
direction.

Inversion of the matrix Mr gives the correct state tomography values, which
determine the density matrix for the output state of the quantum process

ρout = I + rxσx + ryσy + rzσz

2
. (3.8)

Correcting for state preparation errors
The corrected density matrices are the result from the process acting on some
unknown prepared reference state as a result of pulse errors. Before the standard
recipe of QPT can be applied, one first needs to transform the density matrices
so that they resemble density matrices resulting from the proper reference states
{b01XY }. Also in this case, knowledge of the pulse errors can be utilized to
perform this transformation. For a process acting on an arbitrary state ρin =
a0ρ0 + a1ρ1 + axρx + ayρy one finds

ρout = E(ρin) (3.9)
= a0E(ρ0) + a1E(ρ1) + axE(ρx) + ayE(ρy). (3.10)

In the case of state preparation errors, states that are prepared can be written
as a linear combination of the proper reference states.

ρ′
0
ρ′

1
ρ′

x

ρ′
y

 = Mp


ρ0
ρ1
ρx

ρy

 (3.11)

where the primes denote the real prepared states in the unknown basis. Namely,
the state ρ′

1 is obtained by application of the imperfect πX pulse to the initial
state ρ0, the state ρ′

x is obtained using the π/2Y pulse, and the state ρ′
y — using
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the π/2X pulse. The explicit form of Mp is determined by the pulse errors and
is given by

Mp =


1 0 0 0

ϵ2z − γϵz − ϵyϵz 1 − ϵ2z − γϵz − ϵyϵz 2γϵz 2ϵyϵz
(λx + v′

z
2)/2 (λx − v′

z
2)/2 η + v′

xv
′
z v′

zη − v′
x

(λy + ϵ′z
2)/2 (λy − ϵ′z

2)/2 ϵ′y + ϵ′zξ ϵ′yϵ
′
z − ξ

 (3.12)

where γ =
√

1 − ϵ2y − ϵ2z, and we also introduced λx = 1 − η − v′
xv

′
z − v′

zη + v′
x

and λy = 1 + ξ − ϵ′yϵ
′
z − ϵ′zξ − ϵ′y. If the quantum process E acts on the states

prepared in the primed basis the result is
E(ρ′

0)
E(ρ′

1)
E(ρ′

x)
E(ρ′

y)

 = Mp


E(ρ0)
E(ρ1)
E(ρx)
E(ρy)

 (3.13)

The matrix (Mp)−1 can be used to generate the desired QPT output states. This
concludes the corrections for QPT.

Often, the results of the QPT procedure result in a χ-matrix which does not
satisfy the conditions of complete positivity and trace preservation (CPTP). In
this case, least-square fitting can be used to fit the results to a CPTP process.
No such fitting is used in this work.
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Chapter 4

Universal dynamical decoupling of
a single solid-state spin from a

spin bath

G. de Lange, Z.H. Wang, D. Ristè, V.V. Dobrovitski and R. Hanson

Controlling the interaction of a single quantum system with its environment is
a fundamental challenge in quantum science and technology. We strongly sup-
pressed the coupling of a single spin in diamond with the surrounding spin bath
by using double-axis dynamical decoupling. The coherence was preserved for
arbitrary quantum states, as verified by quantum process tomography. The re-
sulting coherence time enhancement is found to followed a general scaling with
the number of decoupling pulses. No limit was observed for the decoupling ac-
tion up to 136 pulses, for which the coherence time was enhanced more than 25
times compared to that obtained with spin echo. These results uncover a new
regime for experimental quantum science and allow to overcome a major hurdle
for implementing quantum information protocols.

This chapter has been published in Science 330, 60 (2010).
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4.1 Introduction
In the last decade, manipulation and measurement of single quantum systems
in the solid state have been achieved [1, 2]. This control has promising appli-
cations in quantum information processing [3, 4], quantum communication [5],
metrology [6], and ultra-sensitive magnetometry [7,8]. However, uncontrolled in-
teractions with the surroundings inevitably lead to decoherence of the quantum
states [9] and pose a major hurdle for realizing these technologies. Therefore, the
key challenge in current experimental quantum science is to protect individual
quantum states from decoherence by their solid-state environment. If a quan-
tum system can be controlled with high fidelity, dynamical decoupling can be
exploited to efficiently mitigate the interactions with the environment [10–12].
By reversing the evolution of the quantum system at specific times using control
pulses, the effect of the environment accumulated before the pulse is cancelled
during the evolution after the pulse. When viewed at the end of the control
cycle, the quantum system will appear as an isolated system that is decoupled
from its environment. Thanks to recent progress in quantum control speed and
precision [13]), we are now able to unlock the full power of dynamical decoupling
at the level of a single spin.

4.2 Experimental setup
We focused on electron spins of single nitrogen-vacancy (NV) defect centers in
diamond coupled to a spin bath (Fig. 4.1a). NV center spins can be optically
imaged, initialized and read out, as well as coherently controlled at room tem-
perature (Fig. 4.1b). These favorable properties have been exploited in the to
gain deeper insight into spin decoherence [14], as well as for demonstrating basic
quantum information protocols at room temperature [15,16].

We used nanosecond microwave pulses to manipulate single NV spins. To
raise the fidelity of our control to the required level for efficient decoupling, we
fabricated on-chip coplanar waveguide (CPW) transmission lines using electron
beam lithography (Fig. 4.1a). The high bandwidth of the CPW [13] combined
with efficient suppression of reflections and fine-tuned pulse calibration allows fast
and precise manipulation of the NV spin (Fig. 4.1b), leading to process fidelities
of 99% for the basic control pulses needed for dynamical decoupling (see section
4.6).
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Figure 4.1: (a) Left: A Nitrogen-Vacancy defect is formed by a single substitutional
nitrogen (14N) atom and an adjacent vacancy (V). The NV electron spin (orange arrow)
is coupled to the host 14N nuclear spin (blue arrow) through the hyperfine interaction.
Middle: The NV center is surrounded by a bath of electron spins located at sites of
substitutional nitrogen atoms in the diamond lattice [17]. Right: Confocal photolu-
minescence scan of a section of the device, where the golden regions are part of the
on-chip coplanar waveguide (CPW) used for applying quantum control pulses and NV
centers appear as bright spots in between the conductors of the CPW. (b) Energy level
diagrams of the NV center electron spin (left) and the electron spins in the bath (right).
An applied magnetic field splits the NV spin triplet electronic ground state; the effective
two-level system used here is formed by the spin sublevels ms = 0 (labeled |0⟩) and ms
= -1 (labeled |1⟩). (c) Coherent driven oscillations of NV1. For the pulsed experiments
the same Rabi frequency is used. (d) Decay during free evolution of NV1 probed using
Ramsey interference. Solid line is a fit (see section 4.6 and chapter 2). The fast oscil-
lating component is due to a detuning of the driving field of 15 MHz with respect to
the spin transition, whereas the beating is caused by the hyperfine interaction with the
host nuclear spin.

4.3 The magnetic environment of the NV center:
The spin-bath

The coherent dynamics of an NV spin are strongly influenced by the coupling
to neighboring spins (the spin bath) [14, 17]. Because such spin environments
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are very common in the solid state, our results are directly relevant for other
solid-state quantum bits such as spins in quantum dots [18, 19] and donors in
silicon [4,20]. For the NV centers studied here, the bath is composed of electron
spins localized on nitrogen impurity atoms. Resonant interactions (flip-flops)
between the bath spins and the NV spin are suppressed due to a large energy
mismatch [17]. Therefore, the impact of the spin bath on the NV spin is limited to
dephasing and can be described as a random magnetic field δB(t) that is directed
along the NVŠs quantization axis. The value of δB(t) is determined by the state
of the environment. We modeled the bath field δB(t) by an Ornstein-Uhlenbeck
process with the correlation function C(t) = ⟨δB(0)δB(t)⟩ = b2 exp(−|t|/τC),
where b is the coupling strength of the bath to the spin and τC is the correlation
time of the bath which measures the rate of flip-flops between the bath spins due
to the intrabath dipolar coupling [21].

The values of the parameters describing the bath field were extracted from
experiments. The bath-induced dephasing during free evolution had a Gaussian
envelope S(t) = exp(−b2t2/2), which yielded the value for b (see section 4.6);
we found b = (3.6 ± 0.1) µs−1 for NV1 (Fig. 4.1c), and b = (2.6 ± 0.1) µs−1

for NV2 (see section 4.6). The quasi-static dephasing could be undone using a
spin echo (SE) technique (Fig. 4.2a), revealing the much slower decay of spin
coherence caused by the dynamics of the spin bath. The spin echo signal decayed
as SE(t) = exp[−(t/T2)3], characteristic for a slowly fluctuating spin bath with
tauC = T 3

2 b
2/12 >> 1/b [21]. The values we found for τC , (25 ± 3) µs for NV1

(T2 = (2.8 ± 0.1) µs and (23 ± 3) µs for NV2 (T2 = (3.5 ± 0.2) µs, confirmed
this. The spin echo decay time T2 is often considered as the coherence or memory
time of the system. We took T2 as the starting point and demonstrated that the
coherence time could be markedly prolonged by dynamically decoupling the spin
from the surrounding spin bath.

4.4 Dynamcial decoupling of the NV spin
We first explored the potential of dynamical decoupling by extending the spin-
echo (SE) pulse sequence to periodic repetitions of the Carr-Purcell-Meiboom-
Gill (CPMG) cycle (Fig. 4.2a). The decoupling performance was characterized by
measuring the state fidelity Fs = ⟨Ψi|ρm|Ψi⟩, where |Ψi⟩ is the expected (ideal)
state after applying the sequence and ρm the measured density matrix of the
actual state. Although the coherence had vanished after 4 microseconds for the
SE case, we observe that the 8-pulse CPMG sequence preserved the coherence
almost completely during this same time.

The optimal decoupling sequence for a quantum system depends on the cou-
pling to its environment and the dynamics within the environment itself. In
Ref. [23], non-periodic inter-pulse spacing, now called the UDD sequence, was
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Figure 4.2: (a) Left: state fidelities for the CPMG decoupling sequence applied to
NV1. The blue curve is a spin echo measurement. High state fidelity is recovered
for increasing number of pulses N. Solid lines are fits to ∼ exp[−(t/Tcoh)3]. Right:
vertical lines indicate the location of π-pulses. (b) Comparison of decoupling with
CPMG (orange) and UDD (green) for N = 6 pulses. The solid lines are fits to ∼
exp[−(t/Tcoh)3]. The right panel shows the 1/e decay times from fits to data and
to simulations [22]. The same color scheme applies. (c) Single-axis decoupling for
different input states, showing state-selective decoupling for the CPMG sequence with
N = 12 operations (shown in the upper right). Bloch sphere on the right shows input
states and the decoupling axis. Solid lines are numerical simulations incorporating the
experimental pulse errors [22]. (d) Double-axis decoupling, with XY4 sequence with
N = 12, showing excellent decoupling for both input states. Pulse timings are the same
as for CPMG but with the decoupling axis alternating between X and Y, as is shown on
the right. The simulations for and yield virtually the same curve and therefore appear
as one.

found to achieve a strong improvement in decoupling efficiency over periodic
pulse spacing in the case of environmental noise spectra with a hard cut-off; this
was experimentally verified in Refs. [24, 25]. Recent theory [26, 27], however,
suggests that periodic, CPMG-like pulse spacing is ideal for decoupling from an
environment with a soft cut-off. We investigated the efficiency of these different
protocols in decoupling a single spin from a spin bath environment (Fig. 4.2b) and
observed that CPMG outperforms UDD for all numbers of pulses investigated in
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both simulations and experiments (Fig. 4.2b, right panel). These findings are in
agreement with our model of a Lorentzian bath noise spectrum, which exhibits a
soft cut-off (see section 4.6).
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Î

-1

0

1

Î
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Figure 4.3: QPT is performed at free evolution times of 4.4, 10 and 24 µs for XY4
with N = 8 (see Fig. 4.5). At t = 4.4 ţs the measured process matrix nearly equals the
identity process matrix ξ (fidelity of 0.96 ± 0.02) indicating close-to-perfect quantum
state protection. At longer free evolution times the process changes into pure dephasing
in accordance with our model of the spin bath.

For applications in quantum information processing, it is essential that the
decoupling protocol is universal, meaning that it can preserve coherence for ar-
bitrary quantum states. As pulse errors can severely degrade the coherence,
universal decoupling requires robustness to pulse errors for all possible quantum
states. In contrast, protocols that employ single-axis decoupling such as CPMG
optimally preserve only a limited range of quantum states, whereas for other
quantum states the pulse errors accumulate rapidly with increasing number of
control pulses. In Fig. 4.2c we demonstrated this experimentally by comparing
the decay curves of superposition states aligned (|x⟩) and perpendicular (|y⟩) to

68



Universal dynamical decoupling of a single solid-state spin from a spin bath

the CPMG decoupling axis. Even though the fidelity of the single-pulse control
was very high (see section 4.6) the remaining small errors caused a significant loss
of decoupling fidelity for state |y⟩ when the number of operations was increased
to 12 pulses; this effect was accurately reproduced by simulations (Fig. 4.2c) [22].

The use of sequences containing decoupling pulses over two axes, such as
XY4 (Fig. 4.2d) [28] avoids this selective robustness to pulse errors and can
compensate certain systematic pulse errors and coherent resonant perturbations
without increasing control overhead. We found that XY4 is indeed capable of
preserving both quantum states |x⟩ and |y⟩ (Fig. 4.2d).

We studied the decoupling performance in more detail with the use of quantum
process tomography (QPT), which allows for a complete characterization of any
quantum process [29]. Figure 4.3 shows the experimental QPT results for XY4
with N = 8 operations, at different free evolution times. For a free evolution
time of 4.4 microseconds, much longer than T2, the measured process matrix ξ
is in excellent agreement with the ideal process of identity that is expected for
perfect universal decoupling.

By taking snapshots of the process for different free evolution times, we moni-
tored how decoherence affects the quantum states. We observed that after t = 10
µs the process element corresponding to identity had decreased, while the σz −σz

element had grown. After 20 µs these elements had approximately equal ampli-
tudes. This behavior is characteristic for pure, off-diagonal dephasing [29] and is
consistent with our model of the environment, in which the magnetic dipolar cou-
pling with the bath leads to phase randomization. The independently measured
energy relaxation time T1 > 1 ms (see section 4.6) confirmed that longitudinal
decay is not relevant in this regime.

4.5 Scaling of the coherence time with the num-
ber of pulses N

Finally, we investigated how the coherence time scales with the number of control
pulses. A detailed theoretical analysis showed that for N perfect pulses, the
decoupling fidelity decayed as F (t) = exp[−ANt3/(2NτC)3], where the total free
evolution time t = 2Nτ and τ is the inter-pulse distance. For the XY4 sequence,
we found A = (2/3)b22τ2

C for both large and small N . The theory predicts two
interesting features: first, the decay follows the universal form exp[−(t/Tcoh)3]
for all N , and second, the 1/e decay time scales as Tcoh(N) = T 2N2/3.

In Fig. 4.4a we show XY4 decoupling for N = 4, 16, 72, as well as the
spin echo for comparison. These data indicate that the 1/e decay time indeed
scales with the number of pulses. For a thorough comparison with the theory
we renormalized the time axis to T2N

2/3 (Fig. 4.4b). We found that all data
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Figure 4.4: (a) Decoupling for different number of control pulses N . Increasing N
extends the coherence to longer times. Solid lines are simulations [22]. (b) Data rescaled
to the normalized time axis t/(T2N2/3). (c) Coherence 1/e decay time (Tcoh) plotted
as a function of the number of control pulses for NV1 and NV2. Solid lines are fits to
Tcoh(N) = T2N2/3 with T2 as free parameter.

collapse onto a single curve in line with the prediction. Then, we plotted the 1/e
decay time of coherence of NV1 and NV2, and fit to the expected scaling law.
The data of both NV centers showed excellent agreement with the theory over a
range in N spanning two orders of magnitude. For the longest sequence applied
(136 pulses) the coherence time was increased by a factor of ∼ 26.

Is there a limit to the coherence enhancement that can be achieved with
dynamical decoupling? Our results demonstrate that we can prolong the spin
coherence beyond the bath correlation time τC . Also, the nuclear spin bath, which
would affect the NV dynamics on a 5-microsecond timescale for the magnetic
field used here [14], is efficiently decoupled from the NV spin. In fact, the theory
indicates no fundamental limit to the coherence time. In practice the decoupling
efficiency will be limited by the minimum inter-pulse delay (of the order of the
pulse widths), and the longitudinal relaxation time.

Because the spin bath environment is common to solid-state quantum bits,
our findings can be transferred to other promising systems such as spins in quan-
tum dots [3,18,19] and donors in silicon [4,20]. Furthermore, the performance of
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spin-based magnetometers can greatly benefit from this work, because the mag-
netic field sensitivity scales with the coherence time [7, 8]. Finally, dynamical
decoupling can be applied to protect entangled states, which are at the heart of
quantum information science.

4.6 Additional material

Quantifying the decoupling fidelity
The performance of decoupling sequences can be characterized by different figures
of merit. One of them is state preservation fidelity, which is defined as the
overlap of the initial state Ψin with the state at the end of the sequence, i.e.
Fs = ⟨Ψin| ρout |Ψin⟩ [29]. The state density matrix ρout can be found by reading
the spin projections (⟨Sx⟩ , ⟨Sy⟩ , ⟨Sz⟩) along three orthogonal axes. In practice,
this is accomplished by applying a final pulse to rotate the spin instead of the
measurement basis, which is restricted to the quantization axis. The state can
then be reconstructed ρout = I

2 + ⟨Sx⟩σx + ⟨Sy⟩σy + ⟨Sz⟩σz. However, noise in
the measurement can result in unphysical density matrices resulting from state
tomography, yielding state vectors with a norm rρ =

√
⟨Sx⟩2 + ⟨Sy⟩2 + ⟨Sz⟩2

>

0.5. When this occurs the measured x, y and z-components are normalized by
rρ.

A more general way to characterize the process is through quantum process
tomography (QPT). A process can be identified by its effect on an arbitrary state
with the relation ρout =

∑
i,j χijEiρinE

†
j , where {Ei} = {σx, σy, σz, I}. For a sin-

gle qubit, the protocol consists of applying the process to a basis of four input
states (see Fig. 4.5). Knowledge of the resulting output states is sufficient to
reconstruct the matrix elements χij . Also in this case noise will introduce errors.
This can result in an unphysical process since it can introduce unphysical corre-
lations between the four density matrices measured for each input state. With a
technique akin to maximum likelihood estimation [30], we find an estimate of the
actual physical process matrix χest by imposing the trace-preserving constraint∑

i χ
est
ij E

†
iEj = I, while minimizing the distance from the measured matrix ele-

ments
∑

i,j |χest
ij −χmeas

ij |2. The optimization search is performed with the Python
function fmin_slsqp in the scipy.optimize package. If the process is a single pulse,
its accuracy is assessed through the process fidelity F = Tr(χidealχest), where
χideal is the matrix describing a perfect pulse. Similarly, when the process is a
decoupling sequence, its performance is given by the same equation, where χid

specifies the identity process.
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Figure 4.5: (a) Bloch sphere representation of the reference states for QPT. The
qubit is prepared in four independent reference states {|0⟩, |1⟩, (|0⟩ + |1⟩)/

√
(2), (|0⟩ −
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(2))}. After the decoupling process is applied, the resulting state ρm is recon-
structed using state tomography, which involves measuring its projection on the x, y
and z axis. (b) Two-cycle XY4 sequence with N = 8 control pulses for NV1. Data
points are state fidelities measured at varying free evolution times. Solid line is a sim-
ulation including pulse errors. Blue crosses are measured process fidelities determined
with QPT, where fidelity Fp = 1 implies the identity operation.

Ramsey interference
Ramsey fringes are characteristic of an NV center and its environment, yielding
the free induction decay time, the hyperfine coupling with the N nuclear spin
and the qubit energy splitting. The experiment is performed by applying the
sequence π

2 x
− τ − π

2 x
, where τ is a variable free evolution time. Fig. S3a shows

the measured probability that the spin is in state |0⟩ as a function of τ with a
detuning δω ≈ 15 MHz from the transition frequency for NV2. The beating of
three signals is a clear indication of the hyperfine coupling with a 14N nucleus
(Hhf = ωhfIz, with Iz = 0,±1 and ωhf = 2π · 2.2 MHz [31]). The data are well
reproduced by the fitting function:

P|0⟩(t) = exp
{

−1
2
b2t2

}
1
3

1∑
k=−1

Pk cos[(δω + kωhf)t+ ϕ], (4.1)

where the Gaussian envelope accounts for the dephasing due to the slow spin
bath (see main text). The different values of the fit parameters P0, P1, P−1 is a
signature of partial polarization of the nuclear spin, which indicates that the field
is properly aligned with the NV center [32]. A common phase ϕ is introduced
to include the effect of a rotation axis error in the π/2 pulses, arising from the
detuning δω. (Note that for all other experiments δω is set to zero to achieve
optimal pulse fidelities.)
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Additional data
In Fig. 4.5 we show the decay curve for the sequence used in Fig. 4.3 of the
main text, with the three free evolution times indicated where QPT has been
performed. In Fig. 4.6b we also present additional measurements on NV2 anal-
ogous to Figs. 4.1c, 4.1a and b on NV1 in the main text. The same behavior
was observed for NV2 as for NV1, both in the coherence enhancement and in
the decay shape. Fig. 4.7 shows a measurement of the spin relaxation on NV1,
yielding T1 > 1 ms.

1 10 100

0.50

1.00

free evolution time (µs)

N:
SE
4
16
72

F s
a

0.0 0.2 0.4 0.6 0.8
0

1

P
0

τ (µs)

c

0.1 1

0.50

1.00

SE
N= 4
N= 8
N=16
N= 36
N= 72
N= 108
N= 136

Normalized time (t / T2N
2/3)

F s

b

Figure 4.6: (a) Measurement of the Ramsey fringes of NV2. The fit to Eq.(4.1)
yields the detuning ω = 2π (15.67 ± 0.01) MHz, and the nuclear polarization P1,0,−1 =
0.50, 0.30, 0.20 (all ±0.01). (b) XY4 for increasing N for NV2. (c) Coherence decay
curves for NV2 on a normalized time axis.
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Figure 4.7: Decay of initial states |0⟩ and |1⟩ due to spin relaxation measured by
varying the delay between initialization and read out for NV1.
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Dynamical decoupling sequences
In our work, the spectrum of noise has Lorentzian shape (unless extremely high
frequencies ωuv are considered), which decreases very slowly at high frequencies.
Previous investigations [26, 27, 33, 34] show that for such a noise spectrum, the
periodic CPMG-type sequences would perform well, while Uhrig’s decoupling
sequence would demonstrate sub-optimal performance. This is also confirmed by
our experimental results. Thus, we focus our analysis on the case of periodic
sequences with CPMG-like pulse timings.

We consider evolution of the central spin between times t = 0 and t = T .
To analyze a complex pulse sequence, where the operator Sz changes sign many
times in a complex fashion, we introduce a time-domain filter function ξ(t), which
equals +1 at t = 0, and changes sign after each pulse [27, 35–37]. We assume
that ξ(t) = 0 at t < 0 and at t > T . The signal at t = T , after application of the
pulse sequence characterized by the function ξ(t), is

S(T ) =

⟨
exp

(
−i
∫ T

0
ξ(s)B(s)ds

)⟩
. (4.2)

Since B(t) is an OU process with zero average, the averaging can be done explic-
itly [38] to give S(T ) = exp [−b2 W (T )] where

W (T ) =
∫ T

0
ds exp (−Rs)

∫ T −s

0
ξ(t)ξ(t+ s)dt. (4.3)

We assume that the decoupling sequence contains N cycles, each of duration
Tc (so that T = NTc). Each cycle is characterized by the filter function ξ0(t).
The latter is defined analogously to ξ(t): it is zero at t < 0 and t > Tc (where
Tc is the period of the sequence), has initial value +1 at t = 0, and changes sign
after each pulse.

The dephasing exponent W (T ) can be expressed in terms of ξ0(t). First, we
calculate the integral W (T ) by breaking the domain [0, T ] of s into N pieces of
length Tc:

W (T ) =

{∫ Tc

0
+
∫ 2Tc

Tc

+ . . .

}
e−Rsp(s)ds =

N−1∑
m=0

∫ (m+1)Tc

mTc

e−Rsp(s)ds (4.4)

where p(s) is the convolution integral p(s) =
∫ T −s

0 ξ(t)ξ(t+ s)dt.
Next, we calculate p(s) at each segment s ∈ [mTc, (m+ 1)Tc] separately. We

represent s = mTc +s′ (with s′ < Tc), and take into account that ξ(t) and ξ(t+s)
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overlap over N −m full cycles. This gives

p(s) =
∫ T −s

0
ξ(t)ξ(t+ s)dt = (N −m)

∫ Tc−s′

0
ξ0(t)ξ0(t+ s′)dt (4.5)

+ (N −m− 1)
∫ s′

0
ξ0(t)ξ0(t+ Tc − s′)dt,

where the second term in the sum takes into account the non-overlapping part.
It is convenient to represent p(s) in the form

p(s) = (N −m)[q11(s′) + q12(s′)] − q12(s′) (4.6)

q11(s′) =
∫ Tc−s′

0
ξ0(t)ξ0(t+ s′)dt

q12(s′) = q11(Tc − s′) =
∫ s′

0
ξ0(t)ξ0(t+ Tc − s′)dt.

We substitute this answer into Eq. 4.4, and take into account that e−Rs =
e−mRTce−Rs′ . As a result, we obtain:

W (T ) = −
∫ Tc

0
e−Rs′

q12(s′)ds′ · {1 + e−RTc + e−2RTc + . . . (4.7)

+ e−(N−1)RTc} (4.8)

+
∫ Tc

0
e−Rs′

[q11(s′) + q12(s′)]ds′ · {N + (N − 1)e−RTc

+ (N − 2)e−2RTc + . . . } (4.9)

Now, we need to calculate the two sums (denoted by curly brackets) appearing
in the expression above. The first sum is the simple geometric progression, its
value is

PN =
N−1∑
m=0

e−mRTc = 1 − exp (−NRTc)
1 − exp (−RTc)

. (4.10)

The second sum is

ΣN =
N−1∑
m=0

(N −m) exp (−mRTc) = NPN −
N−1∑
m=0

m exp (−mRTc) (4.11)

= NPN + (1/Tc)dPN/dR.

Therefore we find

ΣN = N − (N + 1)e−RTc + e−(N+1)RTc

(1 − e−RTc)2 (4.12)
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Thus, we have a preliminary answer. We have a sequence containing N cycles,
each cycle has duration Tc and is characterized by a filter function ξ0(t), so that
the total evolution time is T = TcN . The transverse component of the central
spin is

S(T ) = exp [−b2 W (T )] (4.13)

where

W (T ) = ΣN [Q11 +Q12] − PNQ12 (4.14)

where the sums are

ΣN = N − (N + 1)e−RTc + e−(N+1)RTc

(1 − e−RTc)2 (4.15)

PN = 1 − exp (−NRTc)
1 − exp (−RTc)

.

and the integrals are

Q11 =
∫ Tc

0
e−Rsq11(s)ds (4.16)

Q12 =
∫ Tc

0
e−Rsq12(s)ds.

The partial convolution integrals in this expression are:

q11(s) =
∫ Tc−s

0
ξ0(t)ξ0(t+ s)dt (4.17)

q12(s) = q11(Tc − s) =
∫ s

0
ξ0(t)ξ0(t+ Tc − s)dt.

Thus, we only need to calculate q11(s) and q12(s), and Q11 and Q12 for specific
sequences.

XY4 and XY8

For XY4 sequence, the full period is d-X-d-d-Y-d-d-X-d-d-Y-d, where d denotes
a free evolution of duration τ . However, the filter function of a single XY4 period
has a twice shorter cycle, of total length only 2τ . Thus, it is convenient to take
the duration of each cycle Tc = 4τ , the number of cycles N equal to twice the
number of XY4 periods, and the single-cycle filter function

ξ0(t) =

 +1, for τ > t ≥ 0
−1, for 3τ > t ≥ τ
+1, for 4τ > t ≥ 3τ

(4.18)
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and zero otherwise.
The convolution integrals are:

q11(s) =


4τ − 5s, for τ > s ≥ 0

−s, for 2τ > s ≥ τ
3s− 8τ, for 3τ > s ≥ 2τ
4τ − s, for 4τ > s ≥ 3τ

(4.19)

and q12(s) = q11(4τ − s). Correspondingly, the integrals appearing in Eq. 4.14
are:

Q11 = [4Rτ − 5 + 4e−Rτ + 4e−2Rτ − 4e−3Rτ + e−4Rτ ]/R2 (4.20)

and

Q12 = [1 − 4e−Rτ + 4e−2Rτ + 4e−3Rτ − 4Rτe−4Rτ − 5e−4Rτ ]/R2. (4.21)

Now, we consider the experimentally interesting case when Rτ ≪ 1 and consider
the evolution at short times, when both RTc ≪ 1 and NRTc ≪ 1, and at long
times, when RTc ≪ 1 but NRTc ≫ 1. In both cases, we find the decay rate

WXY 4(T ) = −N 4
3

(Rτ)3 1
R2 . (4.22)

The symmetrized version of XY4, so-called XY8 sequence, does not require
separate analysis. Its filter function ξ(t) is the same as for the XY4 sequence, so
the decay rate is also the same.

Numerical Simulations
The simulations are performed for a spin S = 1/2 in the rotating frame. Evolution
of the spin in the random magnetic field B(t), created by the bath, was modeled
using the Runge-Kutta method of the 4-th order [39]. The random field B(t) was
modeled as an Ornstein-Uhlenbeck process [17,35,36,40–42]. with the correlation
function ⟨B(0)B(t)⟩ = b2e−R|t|. The experimentally determined parameters from
NV1 were used. The averaging was performed over 5000 realizations of B(t).

The hyperfine interaction A0S
zIz

0 between the electron spin and the nuclear
spin of the NV center [17] is taken into account. Since the intrinsic relaxation
time of the nuclear spin I0 is of orders of milliseconds, for a single experimental
run, Iz

0 is a constant of motion [17]. The mean of the Ornstein-Uhlenbeck process
is therefore taken as δB+A0I

z
0 , where δB is the small field along z-axis. This field

corresponds to the systematic detuning of the carrier frequency of the pulse from
the exact resonance. For different runs, corresponding to different realizations
of B(t), we sample Iz

0 = +1, −1, 0 randomly with probability p+ = 0.5, p− =
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0.2, p0 = 0.3, respectively. These values are obtained from the Ramsey fringe
experiment.

The control pulses are assumed to have infinitely small width, and are treated
as rotation operators. The pulse imperfections are taken into account by consid-
ering rotations with errors in both rotation axis and rotation angles. That is, for
π-pulses about X and Y axis, the rotation operators are

X̂ = e−i(π+ϵx)Ŝ·n⃗

and
Ŷ = e−i(π+ϵy)Ŝ·m⃗

respectively. Here ϵx and ϵy are the rotation angle errors and

n⃗ = (
√

1 − n2
y − n2

z, ny, nz) (4.23)

(close to X axis) and

m⃗ = (mx,
√

1 −m2
x −m2

z,mz) (4.24)

(close to Y axis) are the rotation axis.
The pulse errors ϵx, ϵy, ny, mx are taken as constant for the pulses in each

run and for different runs. Since the hyperfine coupling A0S
zIz

0 serves as a main
contribution to the errors nz and mz, these two errors are treated as static during
each run, but have different values for different runs, depending on the choice of
Iz

0 :

nz =


+n0 , if Iz

0 = 1
−n0 , if Iz

0 = −1
0 if Iz

0 = 0
(4.25)

mz =


+m0 , if Iz

0 = 1
−m0 , if Iz

0 = −1
0 if Iz

0 = 0
(4.26)

The values of the parameters above are ϵx = ϵy = −0.02, mx = 0.005, n0 = m0 =
0.05, ny = 0, and δB = −0.5 MHz. The simulations with these parameters have
been performed for Ramsey fringe, spin echo, single-axis DD, XY4 and UDD,
all yielding results in very good agreement with the experimental results. The
parameters characterizing the random bath field were taken from the Ramsey
and the spin echo experiments as described above, b = 3.6 µs−1 and R = 25 µs−1

for NV1, and b = 2.6 µs−1 and R = 23 µs−1 for NV2, see the main text.
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We note that all the simulations have been performed with the same set of
parameters. For the data in Fig. 2B, we also performed the simulations without
pulse errors and found the difference with the simulation results with pulse errors
to be smaller than 1% for all data points. This shows that the difference between
UDD and CPMG observed in Fig. 2B is not an artifact of pulse errors.
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Chapter 5

Single-spin magnetometry with
multi-pulse sensing sequences

G. de Lange, D. Ristè, V.V. Dobrovitski and R. Hanson

We experimentally demonstrate single-spin magnetometry with multi-pulse sens-
ing sequences. The use of multi-pulse sequences can greatly increase the sensing
time per measurement shot, resulting in enhanced ac magnetic field sensitivity.
We theoretically derive and experimentally verify the optimal number of sensing
cycles, for which the effects of decoherence and increased sensing time are bal-
anced. We perform these experiments for oscillating magnetic fields with fixed
phase as well as for fields with random phase. Finally, by varying the phase and
frequency of the ac magnetic field, we measure the full frequency-filtering charac-
teristics of different multi-pulse schemes and discuss their use in magnetometry
applications.

This chapter has been published in Physical Review Letters 106, 080802 (2011).
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Figure 5.1: (a) Magnetometry setup. A CPW transmission line, fabricated directly
on a Ib diamond sample, is connected to control lines on both ends. One control line
supplies 2.5 GHz microwave bursts for spin control. For details of this part of the setup
see Ref. [8]. We use the other side of the CPW to supply the low frequency (< 5 MHz) ac
field Bz(t) that we aim to detect. A single NV center located in between the conductors
of the CPW is used as the magnetometer. (b) Multipulse magnetometry. An ac field
Bz(t) modulates the phase of the NV electron spin. Timing π-pulses such that they
coincide with the nodes of Bz(t) effectively multiplies the field by Y (t). The bottom
trace shows the resulting Bz(t) in the toggling reference frame, which flips whenever a
π-pulse is applied to the spin.

5.1 Introduction
The ability to sense weak magnetic fields with nanometer scale resolution has
important applications in fundamental and biomedical sciences as well as infor-
mation storage technology. Several architectures for highly sensitive magnetome-
ters have been implemented, such as superconducting quantum interference de-
vices (SQUIDS) [1], Hall sensors [2], sensors based on magnetic resonance force
microscopy (MRFM) [3] and atomic vapors [4]. Recently, approaches to mag-
netometry based on tracking the evolution of a single electron spin have been
proposed [5–7].

The magnetic field to be detected shifts the energy levels of the spin through
the Zeeman effect. When a superposition of spin states is prepared, the Zeeman
shift leads to a phase difference proportional to the magnetic field, which can be
detected as a population difference after application of a suitable control pulse.

5.2 The NV center as single-spin magnetometer
The nitrogen vacancy (NV) defect center in diamond is a prime candidate for
single-spin magnetometry [6,7,9–13]. The NV center combines an excellent field
sensitivity with high spatial resolution resulting from the near-atomic size of the
defect. It has a ground state paramagnetic spin (S=1) with the ms = 0 and
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ms = ±1 levels split by 2.87 GHz at zero magnetic field, with the quantization
axis oriented along the symmetry axis of the defect. The NV center spin can
be initialized and its spin population difference can be detected optically by
measuring its spin-dependent photoluminescence (PL) [14]. First experimental
demonstrations of NV-based magnetometry using a sensing sequence with a single
π-pulse (spin echo) have outlined its potential as an ultra-sensitive detector [9–11];
even better performance can be achieved by applying more control pulses [7,15].

Here, we present a detailed experimental study of single NV center magne-
tometry with multi-pulse sensing sequences. We demonstrate that multi-pulse
sequences greatly improve the sensitivity to oscillating magnetic fields. We find
the optimal number of control pulses as function of field frequency and spin-echo
decay time. These studies are performed both for fields with known phase and
for fields with a phase that randomly fluctuates between measurement shots. We
finally show that multi-pulse sequences can be used to achieve a high degree of
frequency tunability and selectivity by exploiting their frequency-domain char-
acteristics.

5.3 Experimental setup
We use a single NV center in a nitrogen-rich Ib bulk diamond sample (Element
Six) as our magnetometer. The setup is shown schematically in Fig. 1(a). We
apply a static magnetic field oriented along the NV center’s quantization axis z
that allows us to selectively address the ms = 0 ↔ ms = −1 spin transition.
Within this subspace, the NV spin is equivalent to a spin-1/2. Using lithograph-
ically defined on-chip coplanar waveguides (CPWs) [16] we achieve high fidelity
(≈99%) control of the NV center electron spin state [8,29]. The length of a single
π-pulse used here is tp = 8 ns. With the CPW low-frequency magnetic fields can
be applied along the z-axis as well.

5.4 General principle of single-spin magnetome-
ters

We consider a time-varying oscillating magnetic field oriented along the quantiza-
tion axis z of the probing spin Bz(t) = bz sin(2πft+ ϕ). Components oscillating
along the transverse axes will average to zero due to the rapid (2.5 GHz) preces-
sion of the NV spin. The working principle behind detecting a field of the form
Bz(t) is outlined in Fig. 1(b). An electron spin initialized in a superposition
state precesses under the influence of the oscillating field. During each half-cycle
the electron spin phase acquires δΦ =

∫ 1/2f

0 2πγBz(t)dt = (2γbz/f) cosϕ, with
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γ = 28 GHz/T for the electron spin of an NV center. Since the field oscillates the
total phase after many cycles averages to zero. This can be prevented by using
an N -pulse sequence with evenly spaced π-pulses

[τ/2 − π − τ − π − τ/2]N/2. (5.1)

Note that this sequence has the same timing properties as the Carr-Purcell se-
quence (CP) [17] known from NMR. CP-like sequences have very recently been
explored with NV centers in the context of dynamical decoupling from decoher-
ence by a spin bath environment [15, 18, 29]. When the π-pulses of the sequence
coincide with the nodes of Bz(t), the electron accumulates a phase which in-
creases with the length of the sequence. This can be understood by moving to
the toggling reference frame of the electron spin from where Bz(t) → −Bz(t) after
each π-pulse. Formally, Bz(t) is multiplied by a time-domain filter function Y (t)
which changes sign each time a π-pulse is applied (Fig. 1(b)). After N π-pulses
(or half-cycles) the total phase of the electron spin state becomes ∆Φ = NδΦ.

5.5 Phase-locked magnetometry
We first analyze the case when Bz(t) always has the same phase relation with
respect to the sequence of π-pulses (ϕ = 0) [6,7]. This corresponds to a situation
where the phase of the field to be measured is under control of the experimenter
(e.g. when one aims to detect spins that can be adiabatically inverted periodi-
cally). In this case, for a spin initialized along the x-axis, the read out can be
performed by rotating the final state by π/2 around the same axis (see Fig. 2(a)).
The resulting signal is then Sz(bz) = 1

2 sin [(2Nγbz/f) cosϕ] after normalization
of the PL levels to

[
− 1

2 ,
1
2
]
.

In Fig. 2(b) we monitor the evolution of the NV electron spin under appli-
cation of an ac field with frequency f = 1 MHz for increasing N . The ac field
is phase-locked such that the π-pulses coincide with the nodes of Bz(t). We ob-
serve oscillations which demonstrate spin precession in the applied ac field. The
amplitude of the oscillations decays exponentially due to decoherence and pulse
imperfections. We can limit the influence of pulse imperfections on the signal
decay by using the XY4 sequence which is self-compensating for pulse errors [19]
and has the same timings as Eq. (5.1). We find the maximum number of pulses
that can be applied before pulse errors start to play a role to be ∼ 130 pulses [29].

In our type Ib diamond sample the coherence time is limited by dipolar in-
teractions with electron spins, which are located at the sites of substitutional
nitrogen atoms in the diamond lattice [20]. The one-pulse spin-echo signal de-
cays as ∼ exp[−(τ/T2)3] where T2 = (2.8 ± 0.1) µs for the NV center used
here [29]. Increasing the number of pulses to N reduces the signal by a fac-
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Figure 5.2: Phase-locked magnetometry. (a) Measurement scheme. A spin initialized
along the x-axis will accumulate a phase during the sensing stage due to Bz(t). A
final rotation around the x-axis is applied to transform the phase into a population
difference. (b) A 1 MHz ac field with constant amplitude is measured with increasing
number of pulses N . Solid line is a fit to Eq. (5.2), yielding bz = 1.6 µT. (c) Signal for
three ac fields with different frequency. The amplitude is rescaled by 1/N . Solid lines
are fits to Eq. (5.2) yielding 2Nγbz/f ≈ 0.2π and T2 = (2.86±0.04)µs (d) Sensitivities
calculated from the data (points) and from the fits (solid lines) in (c).
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tor ∼ exp[−N(τ/T2)3] for the CP sequence, which leads to the observed expo-
nential decay in the signal in Fig. 2(b). For Bz(t) oscillating with frequency
f = [2(τ + tp)]−1 ≈ (2τ)−1 (assuming tp ≪ τ) this gives a total signal of

Sz(bz) = 1
2

sin
(

2Nγbz

f
cosϕ

)
e−N/(2fT2)3

. (5.2)

The optical detection of the spin population is limited by shot noise, which de-
pends on the experimental parameters such as the number of photons collected
per measurement shot ς and the contrast C which combine to give the noise per
measurement shot σSz ≈ 1/(C√

ς) [7, 21]. The sensitivity for detecting a field
oscillating in phase (ϕ = 0) is given by combining the shot-noise limited min-
imum detectable field bmin = σSz |dbz/dSz| ≈ σSz

f
γN and the total integration

time T = N(τ + tp) = N/2f to give

η (f,N) = bmin
√
T = 1

γC

√
f

2ςN
eN/(2fT2)3

. (5.3)

It is instructive to consider two limiting cases. If N ≪ 2fT2, decoherence
is negligible and the use of a multi-pulse sequence improves the sensitivity by a
factor 1/

√
N . In the other extreme, where N ≫ 2fT2, decoherence has a detri-

mental influence on the sensitivity: η ∝ eN/(2fT2)3 . Thus, for a given frequency
of Bz(t) there exist an optimum number of pulses Nopt. By minimizing η we find
Nopt = 4T 3

2 f
3.

In Fig. 2(c) we demonstrate the detection of ac magnetic fields of three differ-
ent frequencies, for increasing N . In order to keep the signal in the linear regime
the amplitude of the field is rescaled as N increases so that the total acquired
phase after applying the sequence remains constant. For every measurement
shot we also measure the zero-field signal to account for possible drifts in the
setup. From the curves in Fig. 2(c) the sensitivity is calculated and depicted
in Fig. 2(d), along with the predicted Nopt (calculated using the independently
determined T2 = (2.8 ± 0.1)µs). We observe that there indeed exists an optimum
number of pulses for each frequency and find excellent agreement between the
predicted Nopt and the data.

5.6 Magnetometry of signals with random phases
We now turn to the case where Bz(t) has a phase which varies randomly between
measurement shots, but remains constant during each individual measurement
shot. The phase that a spin, initialized along x, acquires will be different for
each measurement shot with zero average, as depicted in Fig. 3(a). Rotating the
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Figure 5.3: Magnetometry for ac fields with random phase. (a) Measurement scheme.
In each measurement shot the spin, initialized along the x-axis, accumulates a different
phase during the sensing stage that depends on ϕ. A signal can nonetheless be measured
by applying the final π/2 rotation over the y-axis. (b) Measured signal for a field with
constant amplitude and averaged over ϕ for increasing N . Solid line is a fit to Eq. (5.4);
the expected signal for ϕ = 0 (dashed) is included as a reference. (c) Signal intervals
for a random-phase ac field of 651 kHz. The amplitude bz is rescaled by 1/N . Solid line
is a fit to Eq. (5.4) yielding 2Nγbz/f ≈ 0.47π and T2 = (2.77 ± 0.05)µs. (d) Interval
sensitivities calculated from the data (points) and from the fit (solid line) in (c).

final state over the x axis therefore yields zero signal when averaged over many
measurements. However, as shown in Fig. 3(a), the state can also be rotated
around the (orthogonal) y-axis. This will give a signal, when averaged over the
phase, of

Sz(bz) = 1
2

⟨
cos
(

2Nγbz

f
cosϕ

)⟩
ϕ

e−N/(2fT2)3

= 1
2
J0

(
2Nγbz

f

)
e−N/(2fT2)3

(5.4)

where ⟨⟩ϕ denotes averaging over ϕ and J0 is the zeroth-order Bessel function
of the first kind. In the absence of any field Sz(0) = 1

2 . The data in Fig. 3(b)
demonstrate that we can also detect the ac magnetic field if it has a random
phase.

A consequence of measuring the x-projection is that |dSz/dbz| ≈ 2N2γ2bz/f
2

will vanish as bz → 0, leading to a divergence in the differential sensitivity.
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We therefore turn to calculating the interval sensitivity [22] by extending the
definition of the minimum detectable field per measurement shot to that measured
for a given signal interval: bmin = σSzbz/ |Sz(bz) − Sz(0)|. The interval sensitivity
ηi for measuring oscillating fields with random phase is given by

ηi (f,N, bz) = 2bzσSz

|J0 (2Nγbz/f) − 1|

√
N

2f
e

N
(2fT2)3 . (5.5)

Analogously to the phase-locked experiment, we verify this expression exper-
imentally in Fig. 3(c). The corresponding calculated interval sensitivities are
depicted in Fig. 3(d). It shows a qualitatively similar picture as for the phase-
locked case. Since we rescale bz by 1/N , also here Nopt = 4T 3

2 f
3. Again, we

observe that the theory gives an excellent description of the data.

5.7 Frequency response
Until now we discussed the situation where the sequence was tuned exactly in
resonance with Bz(t). In order to analyze what happens when the sequence is
detuned with respect to Bz(t) (so τ ̸= 1

2f ) we move to the frequency domain. For
a sequence of evenly spaced pulses and ϕ = 0 the response of the magnetometer
in the frequency domain is given by [7]

YN (f, τ) = 1 − sec(πfτ)
2πτf

sin(2πNfτ). (5.6)

Figure 4(a) depicts the signal detected as a function of frequency of Bz(t)
(with ϕ = 0) for N = 4 to 80 for fixed τ , mapping out the complete filter function
Eq. (5.6). Figure 4(b) shows line traces for three different N . With increasing
N , the bandwidth of the response decreases by a factor N while the peak signal
increases N times. Therefore, by tuning τ a single frequency component can be
selected. This is useful for measuring the linewidth of Bz(t) or for spectroscopic
applications. The resolution is set by the full-width at half-maximum (FWHM)
∆f ≈ 0.3/(Nτ).

We study the influence of the phase of Bz(t) in more detail by performing a
measurement at a fixed number of pulses for a range of initial phases. The results
are depicted in Fig. 4(c). By averaging over the phase the response to fields with
random phase is retrieved (see top panel of Fig. 4(c)). The filter function of
sequences other than CP-like sequences can be investigated in a similar way.

The Uhrig dynamical decoupling (UDD) sequence [23] has been conjectured
as a valuable tool in detecting randomly fluctuating fields [24]. The N -pulse
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UDD sequence has pulses spaced irregularly according to τk = sin2[πk/(2N + 2)]
with τk the k-th pulse spacing. A characterization of the UDD sequence similar
to Fig. 4(c) is presented in Fig. 4(d). UDD is seen to give a broader frequency
response and reduced peak signal compared to a sequence with CP-like timings
(Eq. (5.1)). The higher peak signal and reduced bandwidth of the latter is
especially useful when gradients are used to achieve high spatial resolution. It
will in general depend on the nature of Bz(t) and the specific application for
which sequence the best performance will be achieved.

5.8 Conclusions
in this work we have reported a detailed investigation of spin-based magnetometry
with multi-pulse schemes. Our results show significantly enhanced performance
both for ac fields with known and with unknown phase. These results pave
the way towards unprecedented magnetic field sensitivity beyond the limit set
by the spin-echo sequence. Note that the multi-pulse sequences also make the
magnetometer insensitive to instabilities in the setup, such as drifts in the applied
static magnetic field or in temperature [25]. The insights gained here will help
guide experimenters in tailoring the pulse sequence and number of control pulses
to their specific application.

We gratefully acknowledge support from FOM, NWO, the EU SOLID and
the DARPA QuEST program. Work at Ames Laboratory was supported by the
Department of Energy — Basic Energy Sciences under Contract No. DE-AC02-
07CH11358.
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Chapter 6

Controlling the quantum
dynamics of a mesoscopic spin

bath in diamond

G. de Lange, T. van der Sar, M.S. Blok, Z. H. Wang, V.V. Dobrovitski, and R.
Hanson

Understanding and mitigating decoherence is a key challenge for quantum science
and technology. The main source of decoherence for solid-state spin systems is
the uncontrolled spin bath environment. Here, we demonstrate quantum control
of a mesoscopic electron spin bath in diamond at room temperature. The result-
ing spin bath dynamics are probed using a single nitrogen-vacancy (NV) center
electron spin as a magnetic field sensor. We exploit the spin bath control to
dynamically suppress dephasing of the NV spin by the spin bath. Furthermore,
by combining spin bath control with dynamical decoupling, we directly measure
the coherence and temporal correlations of different groups of bath spins. These
results uncover a new arena for fundamental studies on decoherence and enable
novel avenues for spin-based magnetometry and quantum information processing.

This chapter has been submitted for publication. See also http://arxiv.org/abs/1104.4648
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6.1 Introduction
In the past few years, new advances in quantum science and technology have
underscored the importance of understanding and controlling decoherence of sin-
gle solid-state spins [1–3]. Decoherence of a single central spin in contact with
a spin bath environment has been intensively studied in various systems such as
quantum dots [4–7], donors in silicon [8] and defects in diamond [9–12] through
control and readout of the central spin. Here, we implement quantum control of
both the central spin and its spin bath environment, thereby enabling a range of
new experiments on fundamentals of decoherence. Moreover, spin bath control
is a crucial ingredient of recent proposals for environment-assisted magnetome-
try [13], room-temperature quantum computing using spins in diamond [14, 15]
and spin squeezing [16].

Our study focuses on the electronic spin bath environment formed by ni-
trogen impurities surrounding a single NV center in diamond (Fig. 6.1a). The
electron spin of the NV center can be initialized and read out optically, and
coherently controlled with high fidelity at room temperature using microwave
magnetic pulses [17–19]. For controlling the quantum state of the bath spins,
we apply short (tens-of-nanoseconds) radiofrequency (RF) pulses to the sample.
The control fields for both the central NV spin and the bath spins are delivered
through a broadband coplanar waveguide (CPW) fabricated on the diamond sub-
strate.

6.2 A single NV center as a sensor to probe the
spin bath dynamics

The state of the (optically inactive) spin bath can in principle be monitored di-
rectly via the emitted RF radiation as in conventional electron spin resonance.
However, this method requires many orders of magnitude more spins than con-
tained in our mesoscopic region of interest, and is limited to high magnetic fields.
Instead, we exploit the coupling of the bath spins to the single NV center. The
near-atomic size of the NV center, combined with the strong (∼ 1/r3) distance
dependence of the dipolar coupling to the surrounding bath spins, renders the
NV spin mainly sensitive to a small number N (a few tens) of bath spins. This
local spin bath exhibits a large statistical polarization (∼ 1/

√
N) that is felt by

the NV center as a magnetic dipolar field δb. The spin bath polarization and the
corresponding value of the bath field δb change in time due to flip-flop processes
within the bath, leading to dephasing of the NV center spin on a timescale T ∗

2,NV
of about 300 ns [19]. This quasi-static dephasing is compensated in a spin echo
sequence with a refocusing π-pulse (Fig. 6.1b), yielding decay on a much longer
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Figure 6.1: Magnetic resonance spectroscopy of a spin bath using a single
spin sensor. a. Schematic of the system: a single NV center electronic spin (S = 1)
is surrounded by a bath of electron spins (S = 1/2) belonging to substitutional N
impurities. The applied external magnetic field B is aligned with the symmetry axis of
the NV center, which is oriented along the [111] crystallographic direction. Nitrogen
impurities exhibit a static Jahn-Teller distortion, which results in an elongation of one
of the four N-C bonds. As a result, the defect has a symmetry axis, also called the
Jahn-Teller axis (indicated red), which is oriented along randomly along one of the
crystallographic axes. Two geometric types of bath spins exist, distinguished by the
orientation of their Jahn-Teller axis w.r.t. to the external field B: those with their JT
axis at an angle α = 0o, and those with α = 109.5o. b, Measurement sequence for
spin bath spectroscopy. A spin echo sequence is applied to the NV spin using MW
pulses; bath spins are controlled by RF pulses. The evolution of the NV spin during
the sequence is sketched in the Bloch spheres at the bottom, both for the case of no
spin bath control (solid line), and for the case of a pulse applied to bath spins (dashed
line). c, Upper panel: Magnetic resonance spectroscopy of the spin bath. A magnetic
field B = 132 G is applied along the NV center symmetry axis. Roman numbers label
the different groups of N electron bath spins, according to their nuclear spin projections
mI and angle α between their Jahn-Teller axis and the external magnetic field: I,V:
mI = ±1 and α = 0◦, II,IV: mI = ±1 and α = 109.5◦, III: mI = 0 and α = 0◦ or
109.5◦. Lower panel: Calculation of the spectrum (See section 6.7).
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timescale T2,NV = 2.6(1) µs [19]. However, if we induce changes in the state of
the bath spins (thus changing the value of δb) by applying an RF pulse halfway
the NV spin echo sequence, the refocusing is ineffective and the NV spin echo am-
plitude is reduced (Fig. 6.1b). Therefore, by incorporating the spin bath control
within a spin echo sequence of the NV center the resulting spin bath dynamics
can be probed.

6.3 Magnetic resonance spectroscopy of bath spins
To identify the environmental spins we perform magnetic resonance spectroscopy
by sweeping the frequency of applied RF pulses while monitoring the NV spin
echo amplitude (upper panel of Fig. 6.1c). Several sharp dips are observed,
demonstrating that spins in the environment are being rotated at these spe-
cific frequencies. The obtained spectrum matches that of single electron spins
(S = 1/2) belonging to substitutional Nitrogen (N) impurities [20]. We find ex-
cellent agreement with a theoretical spectrum calculated using known values for
the Zeeman energy and the anisotropic hyperfine interaction with the N nuclear
spin (lower panel of Fig. 6.1c). Since the resonance frequencies are spaced by sev-
eral line widths, only spins that belong to the same spectral group can exchange
energy via flip-flop processes. The spin environment of the NV center can there-
fore be decomposed into different spectral groups of electron spins (labelled I to
V) that are distinguished by their hyperfine interaction with the host N nuclear
spin.
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Figure 6.2: Coherent control of the spin bath. a. Coherent driven oscillations of
group II bath spins, using RF pulses of 298 MHz. Revivals in NV echo amplitude are
observed whenever the bath spins from group II perform a 2π rotation. The maximum
Rabi frequency extracted from fitting the upper trace at 20 dBm source power is f1 =
20.5(1) MHz. b. Independent coherent control of all groups of bath spins. Solid lines
are fits to ∝ e−t/TD cos(2πf1t) with t the length of the RF pulse.

With the resonance frequencies known, we can coherently control the spin
environment. Fig. 6.2a shows the effect of short RF pulses at the resonance

98



Controlling the quantum dynamics of a mesoscopic spin bath in diamond

frequency of group II spins. Periodic revivals in the NV spin echo amplitude are
observed as a function of RF pulse length, with a frequency that increases with
RF pulse amplitude. This behaviour is the key signature of coherently driven
(“Rabi”) oscillations, demonstrating that we have achieved quantum control of
the spin environment. We note that the NV spin echo revives almost completely
whenever the bath spins are rotated by a multiple of 2π, indicating that the
environment has returned to the state it had before the RF pulse. We can control
all other spin bath groups in a similar manner (Fig. 6.2b). In addition, our setup
allows us to rotate several or all of the groups simultaneously.

6.4 Spin echo double resonance (SEDOR)
The ability to control both the NV center spin and its spin bath environment
opens up a range of new possible experiments aimed at studying and manipulating
the coupling between a central spin and a spin bath as well as investigating the
internal bath dynamics. We first apply the bath control to measure the coupling
of each of the bath spin groups to the NV center spin using a spin echo double
resonance (SEDOR) scheme [21] (Fig. 6.3a).

With this scheme the dephasing of the central spin induced by one particular
group of bath spins can be probed, while the effect of all other dephasing channels
(including other spin bath groups) is refocused. We find that, whereas the NV
spin echo amplitude decays as ∝ exp(−(2τ/T2,NV)3) , the SEDOR scheme yields
a faster, Gaussian-shaped decay (see Fig. 6.3a). The Gaussian shape indicates
that the decay observed with SEDOR is dominated by the quasi-static static
dephasing channel that we have selectively turned on. Therefore, the SEDOR
decay time TSEDOR,i directly yields the r.m.s. interaction strength bi between
the NV spin and the ith spin bath group via 1/TSEDOR,i = bi/

√
2 . We find

bI = 0.83(2) µs−1, bII = 1.59(3) µs−1, bIII = 1.58(4) µs−1 , bIV = 1.63(4) µs−1

and bV = 0.80(2) µs−1 (see Fig. 6.5 for the SEDOR data of groups III, IV, and V).
These values are close to the ratio of bI : bII : bIII : bIV : bV = 1 :

√
3 : 2 :

√
3 : 1

expected from the abundance of each spectral group [20], except for the slightly
lower value for group III. This group is actually composed of two subgroups which
spectrally do not coincide perfectly. The control fidelity is therefore lower for this
group which results in a lower measured coupling in the SEDOR experiment.

The r.m.s. field fluctuations generated by the full electron spin bath are given
by bspin-bath =

√∑
i b

2
i = 3.01(4) µs−1. This value falls short of the measured

total dephasing rate of btotal = 3.6(1) µs−1 (Fig. 6.6a), suggesting the presence
of additional dephasing channels, such as the carbon-13 nuclear spins [9,10] and
magnetic field drifts, with a strength of bexcess =

√
b2

total − b2
spin-bath = 1.97(4)

µs−1. This interpretation is supported by independent measurements on an NV
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with decay constant T ∗

2,NV = 278(5) ns (btotal = 3.60(6) µs−1) in the absence of the spin
bath control (red) and with decay constant T ∗

2,NV = 450(9) ns (bexcess = 2.11(7) µs−1)
in the case where the bath control pulses are applied (blue).

center in a pure diamond sample with low nitrogen content under the same ex-
perimental conditions that yield bexcess = 2.06(4) µs−1 (Fig. 6.6b).

For applications in quantum information processing [1] and spin-based dc-
magnetometry [2,3], suppressing dephasing is crucial. We now demonstrate that
quantum control of the spin bath can be used to eliminate the effect of the spin
bath on the free evolution dynamics of the NV center spin (see Fig. 6.3b). By
flipping all bath spins, the interaction between the NV center and bath spins
can be time-averaged to zero. This procedure is akin to dynamical decoupling as
recently demonstrated on single NV center spins [19,22,23], but has the advantage
that no control pulses on the NV center itself are required. We find that a
refocusing π-pulse applied simultaneously to all bath spins (Fig. 6.3b)) increases
T ∗

2,NV up to the limit set by bexcess, indicating that dephasing by the electron spin
bath is suppressed. Similar enhancement is achieved by continuous driving of all
bath spins (6.6a).
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6.5 Coherence and temporal correlations of bath
spins

By combining the spin bath control with the ability to freeze the evolution of the
NV spin by dynamical decoupling [19,22,23], coherence and temporal correlations
during free evolution within the spin bath can be directly probed. We replace the
single refocusing pulse of the spin echo sequence on the NV spin by a dynamical
decoupling (DD) sequence with a net π-rotation. The DD sequence provides a
means to temporarily turn off our sensor (the NV center) as it is made insensitive
to the magnetic environment for the duration of the DD sequence; the net π-
rotation ensures that the refocusing action of the sequence is preserved. The two
periods of free evolution τs of the NV spin now serve as sensing stages which each
sample the dipolar field generated by the bath spins. The NV echo amplitude is
therefore a measure of the correlation between the dipolar fields measured during
the two sensing stages. While the sensor is switched off, we can apply multi-pulse
RF sequences to individual spectral groups of bath spins to study their coherence
during free evolution.

An RF Ramsey sequence (Fig. 6.4a) and Hahn-echo sequence (Fig. 6.4b) is
applied to spectral group i to measure its spin dephasing time T ∗

2,i and coherence
time T2,i respectively. Data is shown for spectral groups I and II.

The values we find for T ∗
2,i are similar for the two groups as expected, since

all bath spins suffer from the same dephasing channels formed by spins from all
groups. From the value of T ∗

2,i we estimate the local density of bath spins to be
n = 6

√
3

π2T ∗
2

~
µ0g2µ2

B

= 100 parts per million [24,25].
The bath spin-echo sequence yields different decay times, T2,I = 1.9(6) µs−1

and T2,II = 0.89(13) µs−1, for spectral groups I and II. The difference in coherence
times between different spectral groups may arise due to dephasing caused spins
within the same group, in a process which is known as instantaneous diffusion [26,
27]. The RF π-pulse does not refocus the dipolar interactions between spins of
the same spectral group since these spins are themselves rotated by the RF π-
pulse. The resulting intra-group dephasing is much stronger in group II because
it contains three times more spins than group I.

To characterize the temporal correlations resulting from the dynamics in the
environment we perform a direct measurement of the auto-correlation function
and its 1/e decay time τC . The field generated by the complete magnetic en-
vironment is sampled during two sensing stages separated by a variable waiting
time during which we turn off the NV center sensor (Fig. 6.4c) and let the spin
bath evolve freely [28]. As the sensor off-time is increased, the initial correlation
between the two fields is gradually lost resulting in decreasing NV echo ampli-
tude. We observe a decay of the auto-correlation function on a timescale of about
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linearly with pulse separation ϕ = 2πfaτ . The fast modulation of Ramsey fringes for
group I (upper panel) result from off-resonant driving of the more abundant spins from
group II. Solid lines are fits to ∝ y0 +

∑
i=I,II Aie

−τ/T ∗
2,i cos(2πfaτ + ϕi). From the

fits we extract the decay constants T ∗
2,I = 97(11) ns and T ∗

2,II = 91(7) ns. b. Spin
echo on spin bath groups I and II. The phase of the final RF π/2-pulse is changed as
a function of total free evolution time τ as ϕ = 2πfaτ with fa = 10 MHz, resulting
in oscillations in the NV spin echo amplitude with free evolution time τ . Solid lines
are fits to ∝ e−τ/T2,i cos(2πfaτ + ϕi) from which the decay times T2,I = 1.9(6) µs and
T2,II = 0.89(13) µs are extracted. c. Measurement of temporal correlations on the full
environment and on spin bath group II alone. During the sensing stages marked by τS,
MW and RF π-pulses can be applied simultaneously to the NV spin and to the bath
spins to selectively measure the correlation time of a particular group of bath spins.
Solid lines are fits to ∝ exp(−b2τ2

S (1 − e−t/τC )).

20 µs. We can also find the correlation time of an individual spin bath group
by inserting a SEDOR sequence in the sensing stage, as demonstrated for group
II (Fig. 6.4c). The measured correlation time of group II is comparable to that
of the complete magnetic environment, indicating that the coherence time of the
NV center is indeed limited by the dynamics of the electron spin bath. The mea-
sured correlation time is comparable to the value τC = b2

spin-bathT
3
2,NV/12 ≈ 13

µs expected from mean-field theory [19,26].
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6.6 Conclusions
In conclusion we have demonstrated full quantum control of a spin bath sur-
rounding a single NV center. These results pave the way for a new class of exper-
iments on spin bath decoherence, such as manipulating the correlation time of
different spin bath groups and generating squeezed spin bath states [16]. Further-
more, the suppression of spin dephasing by spin-bath control may be exploited
for protecting coherence in spin-based quantum technologies [1–3, 14, 29, 30]. Fi-
nally, quantum control of nitrogen electron spins close to NV centers as demon-
strated here enables implementation of quantum registers of individual N electron
spins [31, 32], scalable coupling of NV center quantum bits via spin chains [15]
and ultra-sensitive environment-assisted magnetometry [13].

6.7 Additional material

Magnetic resonance spectroscopy
Pulses with a length of tp = 200 ns and Rabi frequency of f1 ≈ 2.5 MHz were used
on the RF channel to achieve lower Rabi frequency than the expected linewidth.
These experimental parameters reflect the trade-off in achieving equilibrium at
the end of the RF pulse, a long free evolution period for the NV spin to get high
signal and the limited spin echo decay time of the NV spin.

The theory curve of the magnetic resonance spectroscopy in Fig. 6.1 is calcu-
lated by assuming a Lorentzian distribution L(fRF ) with transition frequencies
given by the bath Hamiltonian eq. (1): E = {266, 298, 387, 394, 467, 491} MHz
with relative abundances [20].

D = {1/12, 3/12, 1/12, 3/12, 3/12, 1/12} .

All transitions are assumed to suffer from the same inhomogeneous broadening
by ≈ 4 MHz as was measured in Fig. 6.4a. Since the Rabi frequency is of the
same order as the line-width, each point in the theory curve is determined by

SNV (fRF ) = W exp
[
−b2τ2

∫
R(fRF , f0)L(f0)df0

]
(6.1)

with fRF the RF driving frequency, the sensing time τ = 600ns which is given
by the delay between the π/2 and π-pulse on the NV spin, b ≈ 3 µs is the total
interaction strength between NV and its spin environment. The factor W is there
to take into acount the decay due to the limited coherence time T2 of the NV
spin and is given by W = exp

[
− (2τ/T2)3

]
. With the given τ and T2 = 2.6 µs,
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W ≈ 0.9. The factor R(fRF ) is the probability that a bath spin with resonance
frequency f0 is found to be flipped after the 200 ns RF pulse and is given by

R(fRF , f0) = f2
1

f2
1 + (f0 − fRF )2 sin2

(
π
√
f2

1 + (f0 − fRF )2tp

)
(6.2)

Coherent driven oscillations of bath spins
Curves are fit to ∝ e−t/Td cos 2πf1,itp to extract the Rabi frequency f1,i for
group i. As the length increases the effective sensing time decreases due to
the decoupling of bath spins from the NV spin while bath spins are driven (see
Fig. 6.3b). Improved fitting can in principle be achieved when these effects are
taken into acount but was not done for these measurements.

SEDOR and decoupling by continous driving
Pulses are calibrated by performing coherent oscillations of the bath spins at
various powers. Especially for group I and V the off-resonant driving of nearby
groups (II and IV respectively) prevents a proper calibration at high powers. For
this reason lower power is used for the outer two transitions (group I and V).
Fig. 6.5 shows the SEDOR curves for groups III to V.

The NV spin echo decay in a SEDOR experiment on group i, which is induced
by the other groups, will modulate the SEDOR decay shape. However, these
modulations can be ignored as its contribution becomes comparable when τ >
b2

iT
3
2 /4. Since bi >> 1/T2, the modulation only influences the tail of the SEDOR

curves and does not compromise the reliability of the fits.
The π-pulses used in the pulsed RF dynamical decoupling measurements from

Fig.6.3b are calibrated by driving all groups simultaneously with the same ampli-
tude while varying the pulse length resulting in a 83 ns multifrequency π-pulse.
We also dynamically decoupled the NV spin from the spin bath by continuously
driving all bath spins with a long multifrequency RF pulse with a length equal
to the free evolution time of the NV spin. The result is in Fig. 6.6a. Each tone
in the multifrequency RF pulse drives a single group with a Rabi frequency of 6
MHz.

Ramsey and spin echo decay of the nitrogen spin bath
To explain the origin of the signal of Figs. 6.4a. and b. we analyse a single
measurement cycle. At the beginning of the measurement cycle the spin bath is
in some randomly polarized state such that it induces a dipolar field δbz,1 along
the quantization axis of the NV center. Taking the sequence from Fig. 4a a MW
π/2-pulse on the NV spin creates a superposition of the ms = 0 and ms = −1
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Figure 6.5: SEDOR curves of groups III to V. Gray is the NV spin echo curve which
decays ∝ e−(2τ/T2)3

, observed for the case that no RF pulses are applied to the bath
spins. The colored curves are SEDOR data obtained as described in the main text.
They exhibit faster Gaussian decay ∝ e−2τ2b2

i . The parameters bi quantify the coupling
between NV spin and bath group i.
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Figure 6.6: (a) Decoupling of the NV spin by continuous driving of the spin bath.
Fitting the data with RF pulse (blue) to Gaussian decay gives bexcess = (2.02 ± 0.05)
µs−1. (b) Ramsey fringes for an NV center with a 15N atom in low nitrogen content
IIa diamond. The beating frequency is 3 MHz, because the hyperfine interaction of the
NV electron spin with a 15N nuclear spin has different strength compared to 14N. We
find a value of b = (2.06 ± 0.06) µs−1 for this NV center, in very good agreement with
bexcess.

NV spin states, which freely precesses during a time τs. During this period of
free precession the NV spin will accumulate a phase gµBδbz,1τs. The NV spin
state is then frozen for a fixed time and flipped by the sequence DD−X −DD,
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Figure 6.7: Same data as the upper panel of Fig 4a is shown (orange). The DD
sequence used is the XY4 sequence with τ1 = 32 ns. The total sensor off time is 400ns
and is kept constant for all data points. As a control measurement we perform the
same measurement with the exact same MW and RF sequences to NV and bath spins
respectively but now we set the sensing time τs = 0 (blue). For the control measurement
the full unperturbed NV echo amplitude is retrieved, verifying that indeed the NV sensor
is switched off during the DD sequence.

with DD the dynamical decoupling sequence.
During the DD−X −DD sequence on the NV sensor, an RF pulse sequence

is applied to the bath spins (a Ramsey and spin echo sequence in Figs 4a and 4b
respectively). This sequence is applied symmetrically with respect to the central
X-pulse. The interpulse delays in the DD sequence are kept short (τ1 = 30−50ns
compared to T ∗

2 in order to limit the perturbation of the NV spin during the
sensor-off time. That the sensor is indeed switched off is verified in Supplementary
figure S3. Note that the motion of the NV spin does not noticeably influence
the intra-bath dynamics, since the evolution of each bath spin is determined
primarily by the couplings to a large number of other bath spins, which completely
overshadow the impact of a single NV spin.

After the RF sequence and the DD sequence end the bath is in a new state and
generates a dipolar field δbz,2. The NV spin will continue to precess again under
the influence δbz,2 for a time τs. Due to the net π rotation the total phase accu-
mulated before and after the Ramsey sequence is then ∆ϕ = gµB(δbz,1 −δbz,2)τs.
A final MW π/2-pulse on the NV spin and subsequent optical read-out will then
measure the echo of the NV spin ∝ cos(∆ϕ). The NV spin echo amplitude will
therefore depend on the correlation between δbz,1 and δbz,2 giving maximum
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amplitude for a full correlation and minimum amplitude for anti-correlation.

Extracting the correlation time of the spin bath.
We consider first the protocol for measuring the correlation time of the environ-
ment as a whole. The protocol is very similar to that for measuring stimulated
echoes [21] and works as follows. We start with a π/2 pulse on the NV center,
which is assumed to be perfect. Then, there is a free evolution for the time τs, af-
ter which the XY4 DD sequence on the NV center is applied for time T (referred
to as the “sensor off-time” in Fig. 4c). As in the previous measurements, the
evolution of the NV spin during the DD period corresponds to a full π rotation.
During the sensor off-time T , the bath freely evolves and flip-flip processes within
the bath will change the statistical polarization of spins surrounding the NV spin.
After time T the DD sequence ends and another period of free evolution of the
NV spin of duration τs follows. Finally, another ideal π/2 pulse is applied to NV
center, and its state is read out.

The measured signal is proportional to

F = Tr
[
exp

(
iB̂τsŜ

NV
z

)
Ẑ exp

(
−iB̂τsŜ

NV
z

)
Ẑ†
]
. (6.3)

the operator Ẑ is simply

Ẑ = exp [−iT ĤB ]. (6.4)

Therefore, the unnormalized signal, the quantity F , can be written as

F = Tr
[
exp

(
iB̂τsŜ

NV
z

)
exp

(
−iB̂(T )τsŜ

NV
z

)]
. (6.5)

where B̂(T ) = exp [iT ĤB ]B̂ exp [−iT ĤB ]. Within the mean-field approximation,
we replace the operator B̂ by the effective dipolar field B(t), which is a random
Ornstein-Uhlenbeck (OU) process with rms b and the correlation time τC = 1/R.
In case of τs ≪ τC , we can take the field B(t) as static during both intervals τs.
Correspondingly, taking into account normalization, the measured signal is

SNV = ⟨exp (iB(t)τs) exp (−iB(t+ T )τs)⟩ , (6.6)

where the angular brackets denote the average over the OU process. To calculate
the average, we take into account that for a Gaussian random process B(t), the
characteristic functional can be calculated explicitly [33]

Φ[ξ(t)] =

⟨
exp

(
i

∫ T

0
B(t)ξ(t)dt

)⟩
= exp

(
−(1/2)

∫ T

0
dt

∫ T

0
ds ϕ(t, s)ξ(t)ξ(s)

)
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(6.7)

where, in our case, ξ(t) = τs[δ(t)−δ(t−T )], and the correlation function ϕ(t, s) =
b2 exp (−R|t− s|). The result is

SNV ∝ exp
[
−b2τ2

s

(
1 − e−RT

)]
. (6.8)
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Chapter 7

Probing the dynamics of an
electron-spin ensemble via a
superconducting resonator

V. Ranjan, G. de Lange, R. Schutjens, T. Debelhoir, J. P. Groen, D. Szombati,
D. J. Thoen, T. M. Klapwijk, R. Hanson, L. DiCarlo

We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen
impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic
field (80-300 mT). Measurements show mode- and temperature- dependent cou-
pling of hyperfine-split sub-ensembles to the resonator. Temperature-independent
spin linewidth and relaxation time suggest that spin diffusion limits spin relax-
ation. Depolarization of one sub-ensemble by resonant pumping of another indi-
cates fast cross-relaxation compared to spin diffusion. This has implications for
when sub-ensembles are used as independent quantum memories.

This chapter is still being redacted and may be subject to minor changes.
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7.1 Introduction
The study of spin ensembles magnetically coupled to superconducting integrated
circuits (SC) is of both fundamental and technological interest. An eventual
quantum computer may involve a hybrid architecture [1] combining supercon-
ducting qubits [2] for fast processing of information and solid-state spins [3,4] for
storage. Pioneering proof-of-principle experiments have demonstrated coherent
information transfer between a SC qubit and an ensemble of negatively charged
nitrogen-vacancy (NV) centers in diamond [5, 6]. Additionally, superconducting
resonators allow the study of spin ensembles at low temperatures with ultra-low
excitation powers and high spectral resolution [7,8]. While one spin couples very
weakly to a single microwave photon (bare magnetic coupling g ≈ 10 Hz), an
ensemble of N spins collectively couples with gens = g

√
N [9, 10], reaching the

strong-coupling regime gens > κ, γ at N & 1012 [10–12], where κ and γ are the
circuit damping and spin dephasing rates, respectively.

Among the solid-state spin ensembles under consideration, nitrogen defects
in diamond (P1 centers) [13] are excellent candidates for quantum information
processing. Diamond samples can be synthesized with P1 centers as only para-
magnetic impurities, leading to high-purity spin ensembles. Additionally, sam-
ples with spin densities ranging from highly dense (> 200 ppm) to very dilute
(< 5 ppb) are commercially available, allowing the tailoring of spin linewidth
(γ ∝ N [14]) and collective strength (gens ∝

√
N). In contrast to nitrogen-

vacancy centers in diamond [3] and rare-earth ions in Y2SiO5 [15,16], P1 centers
are optically inactive, making a coupled microwave resonator the ideal probe for
their study. However, similar to phosphorus in silicon [17], P1 centers lack zero-
field splitting. Lifting the constraint of near-zero magnetic field operation, would
allow using very pure and highly polarized ensembles of P1 centers at cryogenic
temperatures [12] for which decoherence is quenched [18]. Through dynamical
decoupling [19] long storage times be achieved with high fidelity, realizing a useful
quantum memory.

In this Letter, we investigate the internal dynamics of a P1 electron-spin en-
semble probed by controlled resonant and dispersive coupling to the two lowest-
frequency modes of a coplanar waveguide (CPW) resonator patterned on NbTiN
films [20] withstanding applied fields beyond the needed 300 mT. Three hyperfine-
split spin sub-ensembles are clearly resolved in spectroscopy, with mode-dependent
collective coupling strengths in accordance with magnetic-field- and temperature-
controlled spin polarization. Using a pump-probe technique in the dispersive
regime, we measure spin linewidth and relaxation time. The observed tempera-
ture independence below 1 K shows that internal spin equilibration is dominated
by spin diffusion across the mode volume [21] rather than spin-lattice relax-
ation [22]. Finally, as an initial test of the possible use of sub-ensembles as
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independent quantum memories, we measure the steady-state depolarization of
a sub-ensemble by resonant pumping of another. The pump-power dependence
observed indicates fast cross-relaxation compared to spin relaxation in the mode
volume, calling for follow-up experiments probing the millisecond scale.

7.2 Experimental setup
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Figure 7.1: (a) Schematic of the hybrid resonator-spin system. A single-crystal dia-
mond piece (1.7 mm × 1.7 mm × 1.1 mm, type Ib Sumicrystal, ∼ 200 ppm N content)
is placed on top of one of four CPW resonators capacitively coupled to a common feed-
line. The resonators are patterned on a NbTiN film (70 nm thick, critical temperature
Tc = 12.5 K) on sapphire (C-plane, 430 µm thick). An external magnetic field B∥ is
applied parallel to the film, along the diamond [100] direction. (b) Hyperfine interaction
A ≈ 94 MHz with the N host nuclear spin splits each electron-spin level into a triplet.
Only electron-spin transitions that preserve nuclear spin (solid arrows) are allowed. (c)
B∥ tunes the electron-spin energy levels through resonance with the λ/4 or 3λ/4 modes
of the resonator. The dashed line represents the thermal energy kBT/h ≈ 5 GHz at
T = 0.25 K.

Our hybrid system, shown schematically in Fig. 7.1, consists of four resonators
capacitively coupled to a common feedline and a type-Ib diamond sample placed
above one of them. The CPW structures are patterned on a film of disordered
superconductor (NbTiN [20], critical temperature Tc = 12.5 K) withstanding
in-plane fields up to 300 mT. The electron-spin ensemble consists of unpaired
electrons (spin-1/2) at substitutional nitrogen impurities (∼ 100 ppm density)
[Fig. 7.1(a)]. Each electron spin exhibits strong anisotropic hyperfine interaction
with the host nucleus (spin-1). The Hamiltonian for one defect is given by HN =
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Figure 7.2: Transmission spectroscopy. Image plots of normalized feedline transmis-
sion as a function of B∥ and frequency near the λ/4 and (3λ/4) mode resonances at
T = 0.25 K (a,b) and 1.2 K (c,d). Each plot reveals three avoided crossings, corre-
sponding to allowed hyperfine-split electron-spin transitions. Note that the frequency
span in (b,d) is 10 times larger than in (a,c). The arrow in (a) points to a flux jump
shifting the resonator frequency. All other image plots shown are corrected for these
events.

−m0B⃗ · S⃗ + hS⃗ · A · I⃗, with S⃗ and I⃗ the spin operators for the electron and
nitrogen nucleus, respectively, m0/h = 28.04 MHz/mT, h Planck’s constant, and
A = diag(81.33, 81.33, 114.03) MHz the hyperfine interaction tensor [23] [third
(first, second) index parallel (normal) to the Jahn-Teller axis]. Low-energy terms
only involving I⃗ have been left out. We tune the electron-spin transitions with a
magnetic field (B∥) applied along the diamond [100] direction. Because all N-C
bonds have ⟨111⟩ orientation and make the same angle with B∥, the hyperfine
interaction is the same for all impurities, creating three hyperfine-split electron-
spin transitions [13].

7.3 Magnetic field dependent transmission spec-
troscopy of the λ/4 and 3λ/4 resonator modes

Measurements of the feedline transmission |S21|(f,B∥) near the fundamental
(λ/4) and the second-harmonic (3λ/4) modes at T = 0.25 K and 1.2 K clearly
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show three avoided crossings, as expected for coherent coupling [24] (Fig. 7.2).
The coupling strength of each hyperfine transition to the 3λ/4 mode is evidently
stronger than to the λ/4 mode, and decreases for both modes with increasing
temperature. The hybridized dips observed when spin sub-ensembles are reso-
nant with the 3λ/4 mode [Fig. 7.3(a)] support strong coupling (2gens > γ, κ).
The absence of double dips on resonance with the λ/4 mode indicate 2gens < γ.

7.4 Temperature dependence of gens

We extract gens by the simple model in Ref. [12], treating the spin sub-ensembles
as separate harmonic oscillators coupled to the resonator, but not to each other:

S21(ω) = 1 + κe/2
i∆c − (κi + κe) /2 +

∑
n

g2
ens

i(∆n)−γ/2

. (7.1)

Here, ∆c = ω−fc is the frequency detuning between the probe and bare resonator
mode, κi and κe are resonator intrinsic and the extrinsic dissipation rates, ∆n =
ω−ωmI =n is the probe detuning from the mI = n hyperfine transition and γ is the
transition linewidth (assumed independent of mI). As shown in Figs. 7.3(a) and
7.3(b), fitting the double-dip spectrum for the 3λ/4 mode and the quality factors
(Q) for λ/4 mode at 0.25 K using Eq. (7.1) yields collective coupling strengths
gens/2π = 17.0 ± 0.4 MHz and 3.9 ± 0.2 MHz, respectively (see section 7.8).

To obtain gens(T ) for each mode, we measure transmission spectra at several
temperatures in the range 0.25 − 1.2 K and perform the same analysis as above.
The results for both modes are shown in Fig. 7.3(c) together with the best fits to

gens(T ) = gens(0)
√
P (B∥, T ) , (7.2)

where gens(0) is the zero-temperature coupling strength, and

P (B∥, T ) = tanh
(
m0B∥/2kBT

)
(7.3)

the spin polarization in thermal equilibrium, with kB the Boltzmann constant.
Two factors combine to make gens(T ) higher for the 3λ/4 mode. First, P increases
monotonically with the Zeeman energy m0B∥. Second, the bare spin-coupling
strength g increases as

√
fc owing to a larger vacuum magnetic field strength.

The ratio 2.7 between the best-fit gens(0)/2π values for the 3λ/4 and λ/4 modes
(22.7 ± 0.6 and 8.3 ± 0.2 MHz, respectively) differs from the expected

√
3. This

discrepancy may be due to inhomogeneous distribution of P1 centers in the mode
volume [25] (see further below).
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Figure 7.3: Extraction of collective coupling strength. (a) A vertical cut of Fig. 2(b)
at B∥ = 272.8 mT (dashed arrow) shows Rabi-split transmission dips. The best fit to
Eq. (1) gives gens = 17.0 MHz. (b) Measured loaded quality factor of λ/4 mode as a
function B∥ at T = 0.25 K. The best fit of Eq. (1) away from the avoided crossings gives
gens = 3.9 MHz. Arrows point to satellites resulting from hyperfine coupling of electron
spin to the nuclear spin of 13C atoms adjacent to some P1 centers. Only transitions
corresponding to energy splitting of mI = −1 and +1 are visible, the other four are
overshadowed by the 14N hyperfine lines. (c) Best-fit gens to the λ/4 (circles) and 3λ/4
(squares) modes as a function of temperature. Solid curves are the best fits of Eq. (2).
Error bars are smaller than the symbol size.

7.5 Relaxation time of the spin ensemble
Having characterized coherent coupling in the hybrid system, we now turn to
using the resonator as a probe of spin dynamics and equilibration. We first
measure linewidth γ of the mI = +1 transition in the dispersive regime [10],
with ∼ 70 MHz ≫ gens detuning between the λ/4 mode and mI = +1 transition.
We extract γ by measuring the resonator shift (∆f) immediately following a
pump pulse whose frequency is stepped through resonance with the mI = +1
transition [Fig. 7.4(b)]. The pump pulse slightly decreases the polarization of
the ensemble, red shifting the resonance. We fit a Lorentzian lineshape to |∆f |,
finding a full-width-at-half-maximum γ/2π = 9.0±0.3 MHz. A similar dispersive
measurement using the 3λ/4 mode at B∥ = 263 mT gives γ/2π = 12.0±0.7 MHz.
The increase in γ with B∥ is attributed to field inhomogeneity. Furthermore, we
find these values to be temperature independent below 1.2 K [Fig. 7.4(c)], which
is consistent with γ being limited by dipolar interactions and field inhomogeneity.

The spin relaxation time is measured by applying a pump pulse resonant
with the mI = +1 transition and monitoring the frequency shift in time as
the spin polarization returns to equilibrium. We observe a bi-exponential decay
response with time constants ∼ 20 s and ∼ 160 s [Fig. 7.4(d)]. These constants
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resonator interactions. (a) Schematic and (b) measurement of spin linewidth (T =
0.25 K, B∥ = 86 mT) obtained by probing the frequency shift of the λ/4 mode at
f = (fr − ∆fr/2) = 2.58 GHz after applying a pump pulse (0.4 s duration, −50 dBm
incident power) through resonance with the mI = +1 transition (60 s wait between
successive measurement points). A similar measurement of γ at B∥ = 263 mT is
obtained using the 3λ/4 mode. (c) γ at B∥ = 86 mT (circles) and B∥ = 263 mT
(squares) as a function of temperature. (d) Measurement of spin relaxation time T1
by probing the resonator shift as a function of time after the pump pulse switches
off. A bi-exponential decay is observed. (e) Temperature dependence of the two time
constants, extracted by probing with the λ/4 (circles) and 3λ/4 (squares) modes. Error
bars, unless shown, are smaller than the symbol size.

are independent of temperature below 1 K [Fig. 7.4(e)], suggesting that spin
polarization decay is not limited by spin-lattice relaxation [22] but spin diffusion
instead. Through dipolar flip-flop processes, the depolarization diffuses out of
the resonator mode volume, leading to repolarization of the ensemble. The rate
for this process depends on the dipolar coupling strength, which itself depends on
the spin density [14]. The two time constants may be explained by two diamond
sectors inside the mode volume with electron-spin densities differing by a factor
of ∼ 8 [25,26] (see section 7.8).
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7.6 Spin exchange between sub-ensembles
To investigate spin dynamics across sub-ensembles, we measure how pumping
one sub-ensemble can affect the coupling strength of other sub-ensembles to the
resonator (see section 7.8). As shown in Fig. 7.5(a), pumping at fmI =0(B∥)
completely suppresses the avoided crossing between the mI = 0 transition and the
resonator 2. Remarkably, partial depolarization is evident in the mI = ±1 sub-
ensembles. The coupling strengths of the undriven transitions (mI = ±1) to the
3λ/4 mode are reduced to gens/2π = 12.5 ± 0.5 and 12.0 ± 0.5 MHz, respectively.
To quantify this steady-state cross-relaxation, we measure the minimum-splitting
between the hybridized dips at B∥ = 269.1 mT [arrow in Fig. 4(a)] as a function
of pump power Pp. As shown in the inset of Fig. 7.5(b), the undriven mI = 1
sub-ensemble depolarizes further with increasing Pp. We can reproduce (see
section 7.8) this power-dependent steady-state cross-depolarization using a rate
equation including a spin diffusion rate Γo across the mode volume and a cross-
relaxation rate Γ between sub-ensembles [21]. We assume Γ ≫ Γo consistent
with previous measurements of cross-relaxation in high density P1-center samples
by Sorokin et al. [26]. Under these assumptions, the steady-state normalized
polarization of each sub-ensemble is P̄ = Γo/(Γo+Ω0/3), where Ω0 is the pumping
rate for the mI = 0 transition. Excellent agreement is found with the model, with
only the lever arm between Ω0 and Pp as free parameter. Using the best-fit lever
arm in combination with Fermi’s golden rule Ω0 = 2πg2Nphot/γ and the measured
Γo ≈ 0.05 s−1 and γ/2π ≈ 12 MHz, we estimate g ∼ 2.5 Hz. 3 Comparing this g
to gens(T = 0) suggests N ∼ 1014 spins in the resonator mode volume.

7.7 Conclusions
In conclusion, we have used resonant and dispersive interactions with the two
lowest-frequency modes of a NbTiN CPW resonator to probe the dynamics of a
P1 electron-spin ensemble in diamond at low temperature and polarizing mag-
netic field. The temperature independence of spin linewidth and relaxation below
1.2 K supports spin out-diffusion as the dominant relaxation mechanism within
the resonator mode volume. Resonant pumping of spin sub-ensembles reveals
strong cross-relaxation between sub-ensembles. Although this indicates exchange
of spin excitations between the sub-ensembles [21], we cannot pinpoint the exact
mechanism for cross-relaxation. Follow-up experiments probing the sub-ensemble

2This is surprising from a single-spin perspective, because the maximum Rabi driving
strength (fRabi = g

√
Nphot/2π ≈ 100 kHz for Nphot = 108 photons on mode resonance)

is significantly smaller than the spin linewidth
3Note that Nphot is lower than on mode resonance by the filter factor (κi+κe)2/(fc−fpump)2.
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Figure 7.5: (a) Transmission spectroscopy similar to Fig. 7.2(b), with an additional
pump pulse resonant with the mI = 0 transition (incident pump power Pp = −50 dBm,
100 ms duration) prior to |S21| measurement. A complete disappearance of the mI = 0
avoided crossing and a reduction in the coupling strength of the undriven transitions are
observed. Color scale is the same as in Fig. 7.2(b). (b) Inset: vacuum-Rabi-split dips at
B∥ = 269.1 mT as a function of Pp. The merging of dips with increasing Pp indicates
cross-relaxation between the sub-ensembles. Main panel: Extracted polarization P̄
(normalized to value without pump) for the undriven mI = +1 sub-ensemble. The curve
corresponds to the steady-state solution of a rate equation modeling fast equilibration
between sub-ensembles compared to T1 (see text and section 7.8 for details).

response to one or more resonant pump pulses on millisecond timescales could
shed light on the mechanism. The rate of cross-relaxation will ultimately set the
time scale over which sub-ensembles may serve as independent quantum memo-
ries.
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7.8 Additional material

Measurement setup
The device is operated in a 3He refrigerator with base temperature T = 0.25 K.
All measurements involve continuous-wave heterodyne detection of feedline trans-
mission S21 as a function of B∥ and T with 1 MHz intermediate frequency and
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80 ms integration. Incident power on the feedline ranges from −115 to −95 dBm
(−110 to −90 dBm) for the λ/4 (3λ/4) mode, corresponding to ∼ 103 to 105

intra-cavity photons on resonance (incident power for one photon on resonance
≈ ~fc(κi + κe)2/2κe [27]). All other microwave pulses are also applied through
the feedline. At B∥ = 0 the diamond-coupled resonator has λ/4 and 3λ/4 modes
at 2.59 and 7.67 GHz, respectively (∼ 11% lower than the values without the
diamond). The reduction in frequency of the resonator after mounting diamond
is due to the higher effective dielectric constant of the diamond (∼ 5.7). The
corresponding loaded quality factors are Q = fc/(κi +κe) = 1.8×104 and 6×103

(∼ 3 times lower than the values without the diamond). Increase in intrinsic
losses could come from the surface of the diamond itself or/and from the vacuum
grease used to glue it on top of the resonator. Increasing B∥ to 300 mT further
decreases Q by ∼ 15%. To release trapped magnetic flux and reduce losses in the
superconducting film the system is frequently reset by warming above the film
Tc at B∥ = 0.

Avoided crossings
Transmission spectroscopy measurements in Fig. 2 reveal two regimes of spin-
resonator coupling. Rabi-split dips are clearly resolved [Fig. 3(a)] when the mI =
0 transition is resonant with the 3λ/4 mode, evidencing strong coupling (2gens >
γ, κ). To extract gens in this case, we fit Eq. (1) to |S21|(f) [12]. For this
fit, we fix κi, κe and γ to independently-measured values: κi = 1.4 ± 0.1 MHz
and κe = 120 ± 10 kHz are extracted on both sides of the avoided crossings,
and γ/2π = 12.0 ± 0.7 MHz is obtained from dispersive pump-probe linewidth
measurements (Fig. 5).

The λ/4 mode is weakly coupled to the resonator with 2gens < γ and Rabi-
split dips are not resolved on resonance. The extraction of a coupling strength
to this mode involves several steps. First, we extract the field-dependent loaded
quality factor Q by fitting a lineshape

S21(ω) = Smin
21 + i2Q(ω − fr)/fr

1 + i2Q(ω − fr)/fr

to the measured |S21|(ω) at each magnetic field. Figure 3(a) shows Q(B∥) near
the avoided crossings for the λ/4 mode at T = 0.25 K. The decrease in Q when
the spin transitions are tuned into resonance with the resonator is caused by
absorption of microwave energy by the spin ensemble. An analytic approximation
of Q = fr/∆fr valid away from the avoided crossings can be obtained from Eq. (1)
and noting that on resonance, where |S21| is minimum, Im(S21) ≈ 0. Here,
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∆fr = (κi + κe) +
∑

n

g2
ens

γ/2
(∆2

n + γ2/4)

and ∆n = ωr −ωmI =n. The fixed values, γ/2π = 9.0±0.3 MHz, κi = 140±10 kHz
and κe = 32 ± 1 kHz, are obtained by the same methods as described for the
3λ/4 mode.

The extraction of gens requires accounting for all ensembles in the last term
of ∆fr. We also observe two small dips ∼ 4.1 mT away from the avoided cross-
ings with the mI = ±1 transitions [indicated by arrows in Fig. 3(b)]. These
dips are consistent with coupling to the nuclear spin (I = 1/2) of a 13C (1.1%
natural abundance) at the nearest-neighbor carbon site present on the Jahn-
Teller axis (A13C,a = diag(141.8, 141.8, 340.8) MHz [28]). These give rise to
six sub-ensembles with coupling strengths ga

ens,13C ≈ gens
√

0.011/2. The fac-
tor 1/2 comes from the fact that 13C has nuclear spin of I = 1/2 in con-
trast to 14N (I = 1) Additionally, there are six more 13C transitions with
A13C,b = diag(32.1, 32.1, 41.0) MHz [28], which arise from 13C located at the
three remaining nearest-neighbor sites. These are three times more abundant
with gb

ens,13C ≈
√

3ga
ens,13C. Although they are not visible as separate dips in the

data, they do modify Q(B∥). We therefore include all of these sub-ensembles in
our modeling.

One can in principle also find an analytical expression for the dispersive shift
of the resonance with respect to fc and use it to extract gens for the λ/4 mode.
In our experiments, however, this is problematic due to sudden changes in fc
[indicated by the arrow in Fig. 3(a)] caused by flux jumps in the NbTiN film. The
absorption, however, only depends on fr, which is extracted with high precision
from the transmission lineshape.

Pumping and depolarization of sub-ensembles
To study the dynamics of spins within and between the sub-ensembles, we reso-
nantly pump the mI = 0 transition and measure the effect on the sub-ensembles.
The pulse sequence used for transmission spectroscopy |S21|(f,B∥) in Fig. 4(a)
is shown in Fig. 7.6.

We model the depolarization of spin ensembles due to pumping with a simple
rate equation. In addition to the pumping rate Ω0 for the driven transition
(mI = 0), we include a spin-equilibration rate Γo (spin diffusion rate across the
resonator mode volume) within each sub-ensemble and a dipolar flip-flop rate
Γ that characterizes cross-relaxation between the sub-ensembles. The rate of
change of polarization (equal for mI = ±1 due to symmetry), is modeled by
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Figure 7.6: Schematic of pump- and probe-tone timings used in Fig. 4. At each
B∥ setting, following a 5 s waiting time, pump pulses resonant on driven transitions
are applied for 20 s. This is followed by a periodic series of pumping and probing
steps (period 2τ), with the probe frequency f stepped at the start of every cycle. The
probe is always on, but |S21|(f) only measured for a time τ − τ ′. Here τ ′ is a settling
time of 20 ms. While for 2-D transmission spectroscopy [Fig. 4(a)], τ = 100 ms, for
measurements of Rabi-split dip separation as a function of pump power at fixed B∥
[Figs. 4(b)], τ = 270 ms.

d

dt
P̄ = −MP̄ + Γ, (7.4)

with

P̄ =
[
P̄ (±1)
P̄ (0)

]
,

Γ = Γo

[
1
1

]
,

and

M =
[
Γo + Γ −Γ
−2Γ Γo + Ω0 + 2Γ

]
.

The steady-state polarization (dP̄ /dt = 0 condition) is P̄ = M−1Γ, yielding

P̄ (±1) = Γo(Γo + 3Γ + Ω0)
Γo(Γo + 3Γ + Ω0) + ΓΩ0

.

For Γ ≫ Γo [26], this expression simplifies to P̄ (±1) = P̄ (0) = Γo/(Γo +Ω0/3). In
this limit, the fast equilibration between sub-ensembles causes pumping of each
transition with an effective rate Ω/3, even though only one transition is directly
driven by the pump.
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Figure 7.7: Best-fit amplitudes of the two exponential terms observed in the relaxation
measurement as function of pump frequency. Lorentzian fits have widths γ1 = 8.5 ±
0.5 MHz (solid circles) and γ2 = 10.7 ± 1.5 MHz (open circles) for fast and slow decays,
respectively. Within error bars, these widths are consistent with the spin linewidth
measurements in Fig. 5(b-c).

Spin polarization recovery time
Measuring the relaxation of pumped spins over time reveals bi-exponential decay
curves. A possible reason for this observation would be the presence of two sec-
tors with different densities of spins in our diamond sample. This is corroborated
by several tests. First, we repeat the experiment with the pump far detuned
from any spin transition and observe no shift in the resonance frequency. This
excludes the possibility that one of the time constants results from the pump in-
fluencing the resonator shift (for example, through heating). Second, we perform
the experiment varying the pump pulse frequency around fmI =+1 and observe
that the amplitudes of both exponentials are modulated by the spin linewidth
(see Fig. 7.7). This excludes the possibility of a broad background spin ensemble
such as paramagnetic impurities on the surface of NbTiN or diamond itself. In
addition, the ratio of gens(T = 0) values for the two modes differs from the ex-
pected

√
3 by a factor ∼ 1.6. This further hints at a strong inhomogeneity of P1

concentration across the diamond.
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Conclusions and outlook

The field of quantum control with single quantum objects has developed beyond
the point of proof of principle experiments. We are now at the stage where there
is a need to perfect these control techniques and use them to push the boundaries
in quantum science and technology further. The research presented in this thesis
demonstrates how pulse sequences with high fidelity can be applied in the fields
of metrology and experimental quantum information science. A summary of the
achieved results is given below.

8.1 Summary and conclusions
The experiments in this thesis were aimed to improve, and provide new avenues
for, quantum science and technology with spins. The second goal of this thesis was
to provide more insight into decoherence in the central spin problem and solid-
state spin systems. High fidelity quantum control was used to extend storage
times of quantum information stored in a single electronic spin by dynamical
decoupling from its spin bath environment.

We showed that multi-pulse sequences can be used to increase the interro-
gation time of a single-spin magnetometer, improving to improve its sensitivity,
and to tune its spectral properties. The demonstration of quantum control of
the nitrogen spin environment surrounding a single NV center is the first experi-
mental step towards achieving the coherent coupling of distant NV centers using
chains of nitrogen impurities [1, 2] and environment assisted magnetometry [3].
Additionally, it has provided a means to directly observe the decay of correlations
in the spin bath.

In our experiments we observed that we can extend the coherence time of
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the central spin beyond the bath correlation time. Our results are accurately
reproduced theoretically by taking a mean-field approach to the central spin
problem. This theory predicts that there is no fundamental limit as to how well
the central spin can be decoupled from the spin bath. In practice the limit for
the coherence time will be set by spin-lattice relaxation and finite pulse lengths.

These findings can be directly transferred to other systems with a spin bath
environment such as quantum dots [4,5] and donors in silicon [6,7]. Furthermore,
the techniques developed in this thesis enabled the first demonstration of dynam-
ically protected quantum gates [8]. In addition to diamond dynamical decoupling
has found use in a variety of systems, such as trapped ions [9], superconducting
qubits [10], rare-earth ions [11], quantum dots [5] and donors in silicon [12], in
the context of quantum information and metrology.

Lastly, we have investigated the spin physics of a high-density nitrogen spin
ensemble using a superconducting resonator. We investigated the spin dynamics
on long timescales and observed spin diffusion and considerable cross-relaxation
between hyperfine transitions. Understanding these dynamics is important if
one is to consider using a nitrogen spin ensemble as a long term memory for
superconducting qubits.

8.2 Open issues and future directions of the field
Although NV centers and nitrogen impurities in diamond are systems with excep-
tional properties they are far from perfect. A few of the open issues will be listed
in this section which have to be dealt with in order for them to reach their true
potential. There are already many highly creative ideas put forward and large
ongoing experimental efforts underway to tackle these issues. In the process, they
will undoubtedly lead to new insights and applications that may impact many
other areas of quantum science and technology.

The coherent coupling of distant NV centers
There are several approaches to achieving the coherent coupling between distant
NV quantum registers. Two approaches seem to be the most promising.

First, there is the coupling by optical means to achieve entanglement and do
computations. All ingredients for this proposal, such as spin-photon entangle-
ment [13], single-shot read out [14] and two photon interference [15] of two NV
centers have been demonstrated experimentally. The biggest issue here will be
the success probability of generating an entangled NV pair. The main limita-
tion seems to be the limited number of photons emitted in the zero phonon line
(ZPL). Several approaches have been investigated to increase the emission into
the ZPL using optical cavities in GaP [16] and diamond [17] films. In the latter
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experiment the emission into the ZPL was enhanced to 70% of the total emission.
The challenge is now to enhance the extraction efficiency of the enhanced ZPL
emission.

Second, there is the approach using magnetic coupling either direct, or medi-
ated by a chain of nitrogen spins. The direct coupling between two NV centers
roughly 10 nm apart has been demonstrated [18]. However, the unfavorable 1/r3

scaling of coupling strengths with NV separation poses a severe limitation of
this approach. One can also think of a more indirect way of magnetically cou-
pling two distant NV centers which uses chains of nitrogen electron spins [1, 19]
to transfer quantum information. When a achain of spins is used the effective
coupling strength between remote registers scales more favorably with distance
then the direct coupling by dipolar means. This approach requires implanta-
tion techniques which are in principle available. It also requires coherence of
the nitrogen spins in the chain which might be limited by the presence of other
magnetic moments. As we have demonstrated in chapter 6 the nitrogen spins can
be controlled on nanosecond timescales and it is in principle possible to apply
decoupling techniques to extend the coherence of chain spins.

Diamond based magnetometry
Single spin magnetometers based on NV centers are perhaps most promising
because of their compatibility with living cells and high spatial resolution [20].
In order to achieve high spatial resolution NV magnetometers can be created
using diamond nanocrystals, which can be as small as 5 nm.

Such small nanocrystals in general contain large concentrations of nitrogen
impurities and may have many strain induced structural defects with a magnetic
moment. Together with magnetically active states on the surface of the nanocrys-
tal, which are in close proximity to the NV centers in nanocrystals, these defects
form a highly dynamic environment that causes decoherence of the NV spin and
degrades sensitivity. In principle this problem can be removed by dynamical
decoupling. However, this only works for slow magnetic environments with a
relatively long correlation time. In most present nanocrystals, however, a con-
siderable portion of the magnetic environment has a relatively short correlation
time.

It seems that for improving the quality of nanocrystals the problem is one of
material science. It is interesting to note that if the magnetic moments associ-
ated with defects other then nitrogen impurities can be eliminated, the nitrogen
impurities can be controlled and turned into a resource [3] to further improve the
sensitivity of such magnetometers. An increased understanding of the type of
defects involved and new developments in the growth of cleaner nanocrystals (in
terms of additional magnetic moments besides N and NV centers) may ultimately
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enable us to use of NV magnetometers to image protons in single molecules.

Strong coupling between superconducting resonators and ni-
trogen spin ensembles
Although this is a relatively new research area, already remarkable results have
been achieved in diamond with NV centers [21–24] and nitrogen spins [25]. In
chapter 7 we explored the properties of a high-density nitrogen spin ensemble
coupled to a superconducting NbTiN resonator.

The purity of the nitrogen spin ensemble and quenched decoherence at high
polarizing magnetic field [26] are desirable features when nitrogen spin ensembles
are used as long-term memory for superconducting qubits. However, the density
of the nitrogen spin ensemble studied here is too high with too strong coupling
between the spins in the ensemble. As a consequence inhomogeneous broadening
and cross-relaxation between sub-ensembles pose a severe obstacle for using these
ensemble as a quantum memory. Lower density samples should be used instead.
The nominal spin-spin coupling scales linearly with density [27]. Reducing the
density, however, will reduce the coupling strength between resonator and spin
ensemble, but this reduction scales with the square root of the density.

There are certainly more significant developments needed on both the super-
conducting and spin ensemble side before nitrogen spins ensemble can be used as
quantum memory. First, to access the long memory times for the storage of quan-
tum information, high fidelity quantum control at dilution-fridge temperatures
of the spin ensemble needs to be developed in order to apply the required echo
techniques. Achieving strong driving requires large amplitude and homogeneous
microwave magnetic fields to be delivered to the whole ensemble. This can be
done by either using the superconducting resonator itself to drive the ensemble
or by an external driving circuit [28]. This is challenging to achieve in a dilution
fridge, but not fundamentally impossible.

Second, high magnetic fields are required in order to polarize the nitrogen spin
ensemble. Operating superconducting quantum circuits at high in-plane magnetic
fields is challenging and superconducting qubits that survive high magnetic fields
have not yet been demonstrated. Approaches that are being pursued in our
group today use ultra-thin aluminum films and disordered superconductors such
as those used in Ch. 7 to create such qubits. Their development is essential if
one is to use solid-state spin ensembles as a quantum memory.
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Summary

Quantum control and coherence of interacting spins in dia-
mond
In this thesis we describe experiments on solid-sate spins in diamond in the con-
text of quantum science and technology. In particular we focus on the spin
associated with single nitrogen vacancy (NV) centers and nitrogen impurities.
The NV center is a fluorescing defect in diamond which consists of a single sub-
stitutional nitrogen atom and an adjacent vacancy in the diamond carbon lattice.
The electronic spin associated with the NV center can be initialized and read out
optically and coherently controlled with high fidelity at room temperature using
microwave pulses. The nitrogen impurity also consists of a single substitutional
nitrogen atom and has an electron spin associated with it. Unlike the NV center,
the nitrogen impurity is optically inactive and can only be detected through its
magnetic moment.

Research on spins in diamond started already in the late 50’s and an extensive
literature already exists on the subject. Recently, research with diamond spins,
especially with NV centers, has intensified dramatically owing to their unique
properties that are useful for applications in quantum science and technology. In
this thesis we use spins in diamond to investigate quantum control techniques
in the context of quantum information technology, spin-based metrology and to
study the fundamentals of decoherence.

To be able to exploit quantum control of isolated quantum systems, control
errors have to be kept at a minimum. Minimizing these errors starts by knowing
what they are exactly. In chapter 3 we have developed, and experimentally
verified, a pulse tomography technique that determines the rotation axis and
angle errors for pulses used in quantum control. We also show how knowledge of
these errors can be used to correct the results of quantum process tomography.

In chapter 4 we apply quantum control and show that we can preserve an
arbitrary quantum state of a single NV spin by self-correcting dynamical decou-
pling sequences. In dynamical decoupling the refocussing effect is used that is
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achieved by periodically inverting the state of a two level system by a sequence
of π pulses. We performed quantum process tomography to show that our dy-
namical decoupling protocol indeed is equal to the identity process and that no
decoherence is introduced by the operations. The scaling of the coherence time
with the number of pulses is accurately predicted by our mean-field theoretical
model of the electron spins bath. From this theory we conclude that with dynam-
ical decoupling, decoherence caused by the spin bath no longer sets the upper
limit for the coherence time, but is set by spin-lattice relaxation and finite length
of the pulses.

The spin of the NV center can also be used as an extremely sensitive magnetic-
field probe. In chapter 5 we used dynamical decoupling pulse sequences as sensing
sequences to improve the sensitivity of a NV spin magnetometer for AC magnetic
fields by eliminating the magnetic noise resulting from its direct magnetic envi-
ronment. We showed this improvement for both phase locked signals as well as
for signals that do not have a well defined phase. We also demonstrated the
spectral filtering characteristics of both the periodic CPMG-like sequences and
the aperiodic UDD sequence.

In chapter 6 we demonstrated magnetic resonance spectroscopy and quantum
control of the mesoscopic spin environment of a single NV spin. In these ex-
periments we use the NV center as a probe to detect resonances and quantum
dynamics of its local spin environment. The interaction strengths between the
NV spin and individual spectral groups within the spin bath were measured. De-
phasing of the NV spin was suppressed by controlling the spin bath. The ability
to extend the dephasing time of the NV spin will improve the sensitivity when
it is used as a DC magnetometer. We used double resonance techniques to per-
form a direct measurement of the spin dephasing, spin echo and correlation times
of the spin bath. We find that our results are in excellent agreement with the
mean-field theoretical model referred to previously.

Ensembles of diamond spins can also be used in hybrid devices where they
are coupled to other quantum systems such as superconducting quantum circuits.
In such devices the spin ensemble can be used as a quantum memory for qubits
with short coherence times. Understanding the internal dynamics of the spin
ensemble and how it depends on the ensemble density is, apart from a fundamen-
tal perspective, an important aspect in finding the optimum design parameters
for such hybrid devices. In chapter 7 we demonstrate that strong coupling can
be achieved between a high-density ensemble of nitrogen spins and a NbTiN su-
perconducting coplanar waveguide resonator. We observed hyperfine transitions
associated with the 14N nitrogen and 13C nuclei. We further demonstrate strong
depolarization of the whole ensemble by selectively pumping one hyperfine transi-
tion. The power dependence of the depolarization is consistent with considerable
cross-relaxation between hyperfine transitions. Finally, we probe the coupling
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strengths, spin line-width and spin-relaxation time as a function of temperature.
We find a bi-exponential decay with the two time constants independent of tem-
perature. From the temperature dependence we conclude that spin relaxation is
dominated by dipolar processes instead of spin lattice relaxation.

Gijs de Lange
Delft, 2012
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Samenvatting

Quantum controle en coherentie van interacterende spins in
diamant
In dit proefschrift worden experimenten beschreven waarin onderzocht wordt hoe
quantumcontrole van spins in de vaste stof gebruikt kan worden voor toepassin-
gen in nieuwe quantum technologieën en fundamenteel onderzoek in de quan-
tumfysica. In onze experimenten gebruiken we de spintoestand van geïsoleerde
nitrogen-vacancy (NV) centra en stikstofverontreinigingen in diamant. Het NV
centrum is een fluorescerend defect in diamant bestaande uit een substitutioneel
stikstofatoom naast een lege plek in het kristalrooster. De spintoestand van het
NV centrum kan optisch worden geïnitialiseerd en uitgelezen. Tevens kan zijn
toestand coherent worden gemanipuleerd met hoge precisie met behulp van micro-
golfpulsen. De stikstofverontreiniging, ook wel P1 centrum genoemd, bestaat uit
een enkel substitutioneel stikstofatoom in het kristalrooster van diamant met een
donorelektron gelokaliseerd bij het defect. Anders dan het NV centrum zijn stik-
stofverontreinigingen niet optisch actief en zij kunnen alleen worden waargenomen
door middel van het magnetisch moment geassocieerd met de spin toestand van
het donorelektron.

Het onderzoek naar spins in diamant begon al aan het einde van de vijftiger
jaren. Er bestaat dan ook al een aanzienlijke hoeveelheid literatuur over het
onderwerp. In de laatste tien jaar heeft het onderzoek naar spins in diamant,
in het bijzonder dat naar het NV centrum, een enorme vlucht genomen vanwege
zijn unieke eigenschappen, die erg gunstig zijn voor toepassingen in nieuwe quan-
tumtechnologieën en voor fundamentele quantumwetenschap. Dit proefschrift
concentreert zich hoofdzakelijk op de onderzoeksgebieden quantum informatie,
metrologie en de fundamentele studie naar decoherentie.

Om quantumcontrole van geïsoleerde quantumsystemen te kunnen gebruiken
voor nieuwe toepassingen is het nodig dat fouten in de microgolfpulsen, die ge-
bruikt worden voor het manipuleren van quantumtoestanden, tot een minimum
worden beperkt. Het analyseren en minimaliseren van pulsfouten begint met
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weten wat ze zijn. In hoofdstuk 3 hebben we een nieuwe pulstomografie tech-
niek ontwikkeld, en experimenteel getest, waarmee de fouten in de rotatie-hoeken
en assen van quantumcontrolepulsen kunnen worden bepaald. Tevens laten we
zien hoe de kennis van deze fouten kan worden gebruikt om de resultaten van
quantumprocestomografie, waarin quantumcontrolepulsen worden gebruikt, te
corrigeren.

In hoofdstuk 4 passen we quantumcontrole toe om de spintoestand van een
enkel NV centrum te beschermen tegen de verstorende invloed van het bad van
elektronspins, behorende bij omringende stikstofverontreinigingen, met behulp
van zelfcorrigerende dynamische ontkoppelingspulssequenties. In dynamische on-
tkoppeling wordt de herfocusserende werking van het herhaaldelijk inverteren
van een twee-niveausysteem met π-pulsen gebruikt om omgevingsinvloeden uit
te middelen. We laten zien met behulp van quantumprocestomografie dat het
dynamische-ontkoppelingsproces gelijk is aan de identiteitsmatrix en dat elke
spintoestand met hoge precisie bewaard kan worden. In onze experimenten laten
we zien dat de coherentietijd van de spintoestand van het NV centrum kan worden
verlengd met meer dan een factor 25. De schaling van de coherentietijd met het
aantal ontkoppelingspulsen wordt exact gereproduceerd door een model waarin
de invloed van het elektronspinbad wordt benaderd met behulp van gemiddelde-
veldtheorie. Deze theorie voorspelt dat met dynamische ontkoppeling de limiet
voor het verlengen van de coherentietijd van een enkel elektron in een langzaam
spinbad niet gesteld wordt door de interactie met het spinbad, maar dat de (veel
langere) spin-relaxatietijd en eindige pulslengte de limiet zijn voor de coherenti-
etijd.

De spintoestand van het NV centrum kan ook gebruikt worden als extreem
gevoelige magneetveldsensor. In hoofdstuk 5 laten we zien hoe dynamische on-
tkoppelingssequenties gebruikt kunnen worden als meetsequenties om de gevoe-
ligheid en spectrale selectiviteit van op spin gebaseerde magneetveldsensoren te
verbeteren. We laten zien dat de verbetering geldt zowel voor AC signalen die
een goed gedefinieerde fase hebben, als AC signalen met een willekeurige fase.
Ook meten we de spectrale filterkarakteristiek van deze sensoren voor zowel de
periodieke CPMG sequentie, als de aperiodieke UDD sequentie.

In het onderzoek naar individuele quantumsystemen speelt decoherentie een
hoofdrol. Voor het NV centrum in diamant wordt decoherentie veroorzaakt door
de magnetische interactie met spins in de directe mesoscopische omgeving. In
hoofdstuk 6 laten we zien hoe het NV centrum gebruikt kan worden om mag-
netische resonantiespectroscopie en quantum controle van de spins in zijn directe
omgeving te meten. Tevens meten we de bijdragen van verschillende spectrale
groepen in het spinbad aan het toestandsverval van het NV centrum. Het toe-
standsverval van de spintoestand van het NV centrum kan worden onderdrukt
door de dynamische ontkoppeling toe te passen op de spins in de omgeving van
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het NV centrum. Dit is belangrijk wanneer het NV centrum wordt gebruikt als
DC magneetveld sensor. We gebruiken dubbele resonantietechnieken om de lijn-
breedtes, spinecho vervaltijden en correlatietijden van spectrale groepen van het
spinbad te meten en laten zien dat deze resultaten eveneens met grote precisie
worden gereproduceerd door de eerder gebruikte gemiddelde veldtheorie.

Ensembles van spins in diamant kunnen ook gebruikt worden in hybride struc-
turen waarin ze zijn gekoppeld aan andere quantumsystemen zoals supergelei-
dende quantumcircuits. Hiermee kan de spin dynamica worden gemeten en het
ensemble zou als quantumgeheugen voor supergeleidende qubits met korte coher-
entietijden kunnen fungeren. Het begrijpen van de dynamiek in zulke ensembles
is, afgezien van een fundamenteel oogpunt, een belangrijk onderdeel voor het
vinden van het optimale ontwerp parameters voor zulke hybride structuren. In
hoofdstuk 7 demonstreren we sterke koppeling tussen een ensemble van stik-
stofspins en een supergeleidende resonator. We observeren de hyperfijne tran-
sities behorende bij kernspin behoudende elektronspintransities van het stikstof
spinensemble. Daarnaast demonstreren we sterke depolarisatie van het gehele
ensemble wanneer op een van deze transities word gepompt. De afhankelijkheid
van de depolarisatie als functie van het pompvermogen is consistent met een
uitwisseling van excitaties tussen de verschillende hyperfijne transities, die vele
malen sneller is dan de tijdschaal waarop het hele ensemble herpolariseert. Tevens
is de temperatuursafhankelijkheid gemeten van de koppelingsterkte met de res-
onator, de spin lijnbreedte en de herpolarisatiesnelheid van het spin ensemble.
De koppelingsterkte hangt af van de polarisatie welke de Boltzmann statistiek
volgt. De tijd waarin het ensemble herpolariseert is onafhankelijk van temper-
atuur. Hieruit wordt geconcludeerd dat de spin relaxatie dynamica gedomineerd
wordt door dipool processen in plaats van spin-rooster relaxatie.

Gijs de Lange
Delft, 2012
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