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Abstract—Optimizing the routes of firefighting aircraft can lead to
better containment of wildfires, hence yielding great environmental
and societal value. In this paper, a novel formulation of the Vehicle
Routing Problem (VRP) is customized to address the needs of
Aerial FireFighting (AFF). The resulting formulation, named Aerial
FireFighting Vehicle Routing Problem (AFFVRP), is a capacitated
multi-trip VRP with time-windows and hierarchical objectives.
The primary objective is to minimize the time of carrying out
all requested water drops (to extinguish wildfires quicker), and
the secondary objective is to minimize the total flight time. The
multi-trip nuance is adopted to be able to model different aircraft
types that might require to revisit the depot for after refueling.
Because the model is intended to operate as a decision-making
tool to support firefighters, users can input the number and types
of aircraft available, the location of the airfield, fires, nearest
water body, intensity of each fire, etc. Several random cases
and case studied based on real wildfires were solved within the
expert-recommended time limit of 5 minutes, yielding good-quality
solutions in terms of gap optimality. The problem is scalable and
sizes ranging from one to 80 water drops were tested and solved
within 22 minutes. Strategic fleet planning is also demonstrated
in a case study with the use of Monte Carlo simulation, in order
to compare the performance of different fleet options for a given
setting. Therefore, the model is not only applicable in live situations,
but can also be used as a supportive tool in planning for upcoming
fire seasons, or reviewing and learning from past fires.

Keywords—Aerial Firefighting; Vehicle Routing Problem; Min-
max problem; Time-windows; Wildfires

1. INTRODUCTION

With the escalating impact of climate change, the frequency
and intensity of forest fires are on the rise, influenced by
shifts in temperature, precipitation patterns, and vegetation [1]].
The global surge in wildfires is evident, leading to extensive
destruction of forested regions. illustrates the increased
burnt area in European Union countries in 2023 compared to
the average in the 2006-2022 period, highlighting the increas-
ing urgency of the issue. This study aims to aid firefighting
authorities in mitigating wildfires by optimizing the routing of
aerial firefighting aircraft and hence acting as a decision-making
tool supporting human operators. This research paper presents a
novel adaptation of a Vehicle Routing Problem (VRP) to Aerial
Firefighting (AFF), namely the Aerial Firefighting Vehicle Rout-
ing Problem (AFFVRP). VRPs adaptations to address disaster
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relief are not novel in the literature. We refer readers to [2] for
an example focused on crowdsourcing or [3] for an example
focused on post-disaster relief distribution. Notwithstanding, to
the best of the authors’ knowledge, no existing work addresses
the unique needs and features of AFF wildfire relief missions.
The model considers the wildfires to be known in advance and,
given their intensity, a fire-specific amount of water needed to
extinguish them is computed. Hence, the primary objective of
the model is to minimize the time of carrying out all requested
water drops. In AFF operations, high-capacity aircraft (tankers)
can be used that are filled with water at the airbase and must
discharge all of it at every drop. Conversely, lower-capacity
aircraft (scoopers) can also be adopted that can collect water
from water bodies and hence do not need to return to the airbase
after every drop. To allow tankers to perform several drops, a
multi-trip variant of the VRP was adopted. The model has been
tested both with random scenarios and with scenarios based on
real wildfires. Because of the operational nature of the problem at
hand, a maximum computational time of 5 minutes was adopted.
Routing solutions across all instances were of good algorithmic
quality and were also validated via expert judgment.

23) (ha)  — Average (2006 -2023) (ha

Figure 1. Burnt area (ha) in EU countries in 2023 compared to the 2006-2022
average [4].

We believe the AFFVRP contributes to the existing body of
literature on optimization-based models addressing disaster re-
lief. Furthermore, it serves as a first step toward the development
of decision-making tools to assist AFF human operators and
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reduce the environmental and societal impact of wildfires. This
paper is structured as follows. The approach and underlying
assumptions are presented in [section IIl [section III| presents
the mathematical formulation of the AFFVRP. The results are
discussed in while conclusions and recommendations
are discussed in [section V1

II. MODELING APPROACH

In this section, we define and discuss the main modeling
assumptions and simplifications of the AFFVRP.

A. Network representation

The AFFVRP is defined on a directed graph G = (N, A),
where N is the set of nodes and A the set of arcs. Three
node types are defined: the airfield, the water body, and fires.
Note that, with fire nodes, water drop locations are meant. While
most water drops are carried out to extinguish fires, sometimes
water drops might be performed to lay lines ahead of the fire
front. Notwithstanding, we define and model both occurrences
as fire nodes. The airfield is assumed to be the location of take-
off and landing of all available aircraft, and the water body is
the nearest water body suitable for water refilling operations.
These assumptions represent well real firefighting operations
according to expert feedback. Exceptions could be that multiple
water bodies are used, if there are several suitable ones near
the fire. Multiple airfields can be employed for two key reasons.
First, to mitigate congestion by leveraging available alternatives,
and second, in scenarios where extensive wildfires demand a
substantial fleet, necessitating operations from more than one
airfield. This last variation, which is not modeled in the work
presented here, bears a similarity with the multi-depot variants
of the VRP.

B. Types of aircraft

As anticipated in in this work, we consider two types
of aircraft, namely scoopers and tankers. Scoopers can pick up
water from a body of water, and continue to perform subsequent
requested drops, while tankers must return to the airfield after
a drop and refill before they can head out again to another
fire (albeit being faster and able to carry more water). Because
cruise speed and water capacity are parameters to the model,
the AFFVRP can function with a wider variety of vehicles. For
example, helicopters can be represented as a scooper variant.

C. Fire intensity

Fire intensity, for the purposes of this research, is defined as the
number of scooper drops (because of their lower water capacity)
required to extinguish a fire.
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D. Subfires

In VRP formulations, a common constraint is that each node
is visited only once. An alternative approach, the Split Delivery
VRP [5], allows a node to be visited by multiple vehicles so that
its demand can be split among them. In the AFFVRP, fires might
require more than one water drop to be extinguished. Instead of
employing a split delivery approach, we decided to segment each
fire into smaller components known as subfires. For instance, a
fire with intensity 5 (hence, five scooper water drops are required
to extinguish it) can be divided into five subfires, each with a
unitary intensity and represented by a distinct node. These nodes,
clustered in close proximity, denote the drop locations for that
fire, with each having a demand matching a scooper’s capacity. A
downside of such an approach is that it increases the cardinality
|| of the set of nodes with respect to a split delivery framework.

E. Tanker multi-trips and subfire drops

Tankers cannot scoop up water from a water body. Once they
make a drop, they must return to the airfield to refill the tank
with water. The planning horizon for the model assumes a
single trip for the scoopers (although with multiple drops), but
it does provide the option of multiple trips for tankers. The
water capacity of tankers exceeds that of scoopers, meaning a
single drop on one subfire might be wasteful. For instance, if
the tanker’s capacity is 10 units and the demand of each subfire
is 5 units, the tanker would waste half its capacity by dropping
water on only one subfire. To resolve this, tankers are allowed
to make several drops as long as their capacity allows, but only
across subfires mapping the same fire.

F. Scooper time matrix and water bodies

Scoopers must visit a water body to refill between consecutive
drops. While the sequence of subfires to be visited by each
scooper is unknown beforehand, the water body location is
a known parameter. Hence, when computing the flight time
between subfires for a scooper, the following logic is adopted.
For the time matrix of scoopers, the distance between two
drop locations is calculated as the distance between the first
location and the water body plus the distance from the water
body to the second location. Hence, the necessity of visiting the
water body is accounted for without unnecessarily complicating
routing decisions in the mathematical model.

G. Time windows

Time windows are used to indicate the priority of different fires.
A fire does not adhere to a time-window in the traditional sense
as in delivery service-relayed VRPs. However, operators might
need to prioritize a specific fire, for instance, because it is near
a residential area or poses a high risk of fast spreading due to
wind patterns. In this case, a time-window can be used to set
an earlier upper bound on the maximum time of delivering a
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drop, forcing the model to prioritize such a fire over others. The
lower bound for all fires is always set to zero, as there is no
disincentive to extinguishing fires as early as possible.

H. Hierarchical objectives

Two objectives are identified based on expert advice. Firstly, all
water drops must be carried out as soon as possible. Secondly,
the total flight time should be minimized. The first objective is
more important than the second because it is tied to the success
of the mission in terms of safety and disaster relief. The second
objective is desirable by operators, to minimize the operation
costs. A hierarchical structure is used where the mathematical
model is initially solved only accounting for the first objective.
Then, the second objective is optimized under the result of the
first. In the primary objective, the time of performing the last
drop needs to be minimized. However, the time when the drops
are carried out is only computed as a result of the model. A
min-max approach is then employed via the definition of an
auxiliary decision variable that allows to compute, across all
sets of feasible routings, the one that minimizes the time when
the latest drop is carried out.

III. METHODOLOGY

The AFFVRP is modeled as a Mixed Integer Linear Program
(MILP) model. As such, the sets, parameters, and decision
variables defining the MILP are defined in [Table 1] [Table I1] and

Table III.| respectively. For the sake of readability, we employ a
calligraphic style for sets, upper-case letters for parameters, and

lower-case letters for decision variables.

TABLE 1. SETS OF THE AFFVRP.

|72]
a
-

Description

Set of original fires, indexed by h

Set of all subfires, indexed by ¢ or j

Set of subfires associated with original fire h € H, indexed by i or j
Set of scoopers, indexed by p

Set of tankers, indexed by k

Set of tanker trips, indexed by w. The first trip is denoted by 0

Set of all nodes, indexed by ¢ or j. The airfield is denoted by 0

Set of all arcs: A = {(¢,5) € N X N : i # j}

Set of arcs a tanker can fly

Set of arcs a scooper can fly

ZRAVINNE
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The mathematical formulation of the AFFVRP is:
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The objectives are given by equation (I)) and equation (2).

The former is the min-max objective with higher priority, which
minimizes the time of the latest drop. The latter minimizes
the total flying time by all active aircraft. With the notation
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TABLE II. PARAMETERS OF THE AFFVRP.

Parameter | Description
Tf Time distance between nodes ¢ and j for a tanker
T; i Time distance between nodes ¢ and j for a scooper
D; Demand quantity of subfire node %
R; Processing time at subfire node ¢, i.e., the time it takes for the full dropping maneuver
Rp Processing time at the airfield, assumed to be the same for tankers and scoopers
Ck Capacity of tanker k € IC
Cp Capacity of scooper p € P
(170, T} Time-window for subfire ¢
Big arbitrary value
TABLE III. DECISION VARIABLES OF THE AFFVRP.

Variable | Description

xzju Binary. Unitary if tanker k travels from ¢ to j on trip u

z;; Binary. Unitary if scooper p travels from ¢ to j

Thu Continuous. Time when tanker k starts processing node 4 on trip u

sz Continuous. Time when scooper p starts processing node @

T Continuous. Time when tanker k returns to depot on trip u

TJBO Continuous. Time when scooper p leaves the airfield

Tpy Continuous. Time when scooper p returns to the airfield

Continuous. Time of last drop

(1,7) € Ak and (i, ) € Ap we imply that tankers and scoopers
can use different arc subsets because of the different features of
the two aircraft types, as pointed out in[section II| Constraints
and (Ef]} are the min-max constraints for the tankers and scoopers,
respectively, used to determine the time of the latest water drop.
Constraint (3 ensures that every subfire is visited exactly once.
In such a constraint set and in some others in the formulation,
the expression ¢ € A"\ {j} is used in the definition of routing
variables xfj“ and x% for tankers and scoopers respectively.
Although not explicitly stated, it holds that (i,j5) € Ax in
the first case and (4,j) € Ap in the second case. The same
concept applies to some other constraints in the formulation.
Constraint @ ensures that, on a given trip, tankers leave the
airfield at most once. Constraint is the equivalent one for
scoopers. Constraint @I) ensures that, for a tanker, trip u+ 1 can
only start if trip w has ended. Constraint (9)) ensures that scoopers
leaving the airfield return to it. Constraint (I0) is a classic
VRP flow conservation constraint. It ensures that the scooper
visiting a subfire node leaves the same node. Constraint
is for the tanker conservation flow around subfires: it ensures
that tanker entering a subfire on a certain trip, also leaves that
subfire during that trip. Constraint (I2) does the same but for
the airfield. Tankers leaving the airfield return to it for each
trip they make. Constraint ensures that the demand of each
subfire is satisfied or exceeded, with the latter case being possible
if a tanker performs the water drop. Constraint (I4) ensures
tankers can visit several subfires within the same fire, as long
as the total demand of those subfires does not exceed the tanker
capacity. Constraints (I5)-(20) are time precedence constraints.
Constraint ensures that the time of a tanker drop on a certain

trip is later than the time of leaving the airfield, the processing
time at the airfield, and the travel time from the airfield to the
drop location. Constraint is the counterpart for scoopers.
Constraint ensures that the time of a scooper drop is later
than the previous drop operation, in addition to the processing
time and the travel time. Constraint (I8)) enforces the same for
the time of a scooper returning to the airfield after the last
subfire drop. Constraint ensures time precedence of trips
for a given tanker. It ensures that a trip can only start at the
airfield after the previous trip has concluded. Constraint ([20)
is for time precedence of tankers between subfires belonging
to the same original fire h € H. Note that no processing time
is included here because when tankers visit multiple subfires, in
reality, that represents just one drop that the tanker is performing
on the same fire. Finally, constraints @-@) define the nature
of the decision variables. In particular, @-@ define the time-
windows when the water drop for each subfire can be performed.

IV. RESULTS

This section is structured in three parts. [Section [V-A| describes

the general settings and and some computational insights.
presents a case study to demonstrate example results
and limitations of the model. Finally, shows another
use case of the model, namely strategic fleet planning through
the use of a Monte Carlo simulation to compare different fleet
compositions.

A. General settings and computational insights

According to expert insights, a maximum time of 5 minutes
is to be set to run the model and obtain results for a given
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wildfire instance. This ensures that operators can access the
results before the aircraft take-off, such that the results can be
employed without causing any delays to the live urgent response
operations. The MILP was programmed in Python and solved
with the commercial optimization solver Gurobi. The Gurobi
version used is Gurobi Optimizer version 9.5.1 build v9.5.1rc2.
All instances were solved using a laptop with an Intel64 Family
6 processor with 6 cores and 12 logical and 16 Gb of RAM.
To gain more insight into the performance of the model and
the time it takes to obtain useful results, several instances of
the simulation with various numbers of fires and subfires were
tested, and the performance parameters were recorded and are
presented in While this experimental campaign was
not extremely exhaustive, and instances of similar size might be
characterized by relatively different solution times (to optimal-
ity), some conclusions can still be drawn. This investigation used
a time limit of 21,600 seconds, or 6 hours, at which point the
simulation was stopped and the computational insights recorded.
The model limitations are observed here as the optimality gap at
the S5-minute time limit is higher than 50% in problems with 15
subfires, which are medium-sized according to expert judgment.
For larger problems, the gap increased further, and remains high
even after 6 hours.

TABLE IV. COMPUTATIONAL INSIGHTS FOR PROBLEMS OF VARIOUS SIZES.

Num. original Num. Computation | Optimality Gap after
fires (|H|) subfires (|.F|) time [s] Gap [%] 5 mins [%]
1 5 1 0 0.0
3 10 69.5 0 0.0
5 15 21,600 39.7 58.1
7 20 21,600 60.7 73.2
8 25 21,600 77.4 81.7
9 30 21,600 85.0 86.9
10 35 21,600 79.2 81.2
10 40 21,600 75.2 89.9
10 45 21,600 78.3 92.1
12 50 21,600 99.9 100.0

B. Case Study

The assumptions used to set up the case study are based on
input from an active firefighting pilot who has worked in
different regions of the world. A summary of the expert insights
is given here before the case study representing the realistic
scenario is presented.

Fire size
Most of the fires requiring AFF are still relatively small, the
maximum number of fires dealt with by one airbase is around
5. Those fires require a few drops (2 to 4) in order to be kept
small (up to about 2 hectares) such that the ground firefighters
can control them. However, sometimes fires can get out of
control and become medium or large fires that require more
AFF involvement. These are classified as medium fires to
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keep a simple categorization, although in reality they may be
considered large. A medium fire may have up to 20 fire fronts,
requiring about 15 to 20 drops. The extremely large fires are
referred to as campaign fires. These fires are very large and
the main purpose of AFF is to protect property by laying lines
ahead of areas with valuable assets, such as homes or residential
areas. These fires require hundreds of drops and are outside
the current computational capabilities of the presented AFFVRP.

Number of aircraft

Usually, an AFF base has about 2 aircraft on standby, in case
a fire starts in the area. If there are already fires in the area,
the airfield can have up to 6 aircraft (tankers) on standby. More
than 6 is unusual because it can cause traffic issues, and delays
when the aircraft need refueling, as well as taking turns to
take-off and land. If scoopers are available, up to 6 scoopers can
also join the airbase in addition to the maximum of 6 tankers
mentioned previously. Scoopers are less of a concern for airfield
operations since they do not need to be at the airfield much, as
they can scoop up water from water bodies. In addition, they
can even refuel at another airfield if necessary. This is because
many airfields have the infrastructure for refueling aircraft, but
the main airbase is particularly prepared for AFF operations,
and tankers need that infrastructure to refill the retardant or
water tanks. Furthermore, if helicopters are available, up to
about 6 helicopters can also operate out of the same airfield.
In summary, the maximum number of aircraft can be up to
6 tankers, 6 scoopers, and 6 helicopters. For the purposes of
this paper, that means up to 6 tankers and 12 scoopers (since
helicopters are treated as scoopers with different parameters).

Scooper operations
There are two relevant insights concerning the operation of
scoopers. Firstly, scoopers tend to work in pairs or groups of
3. The reason is to increase efficiency. In a pair, twice the
capacity is achieved for the same operational effort. Secondly,
scoopers can deliver 100 or more drops if the water body is
nearby. They can manage the scooping operation quickly (under
a minute) and return to the fire. Depending on the location of
the water body, this could mean up to a drop every 5 minutes.
Furthermore, aircraft can operate for up to 12 hours a day,
limited by darkness and weather conditions among other factors.

Computation time requirements
The model presented in this paper can have multiple use cases.
One of the uses is live during a fire, to determine the routes
for the available aircraft. This use case is highly time-sensitive.
From the moment that a fire is reported and known to the
airbase, it usually takes about 20 minutes before the aircraft
are in the air. Hence, the maximum computation time should
not exceed this. However, having preliminary results after 5
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minutes is preferable, so that this information is available at the
right time in the decision-making process for operators.

Insights into AFFVRP modifications to tackle large-scale
cases
Fires of this scale require several firefighting aircraft, and
hundreds of drops per aircraft per day. Thus, modeling the
problem can involve thousands of nodes if approached in
this way. However, the fire is dynamic and the drop requests
keep changing. The number and location of drops can change
on an hourly basis, or even quicker in some cases. Hence, a
more realistic approach to represent and apply the problem is
to optimize a snapshot of the problem at a certain moment,
and then re-run with the updated information at certain time
increments in a rolling-horizon approach. As an example,
consider a large fire that lasts for three days. At the first
hour of the first day, the fire is still small, perhaps only one
or two aircraft are available and deployed, and only a few
drop requests are identified. By the first hour of the third day,
reinforcements would have arrived and the fleet expanded to
several aircraft. The wind may have changed direction and
the fire may have advanced towards a residential area, so the
requested drop locations change accordingly. This means that
large fires cannot and should not be modeled at once with a
full fleet and all the drop requests at once. An incremental
approach is more useful with several runs of the model, where
the inputs are continuously updated and the model re-run. The
result is updated with optimized routes at every increment. This
approach has the benefit of solving the computation time issue.
The incremental approach divides this problem into smaller
problems, which can each be solved in minutes or seconds.
Hence, for large-scale fires, this approach features advantages
both computation-wise (smaller problems vs. a large one) and
application-wise (updated information is used dynamically to
revise aircraft routes according to the changes in the fire fronts).

Case Description

In July 2022, two large fires south of Bordeaux, in the
department of Gironde in France, burnt more than 20,800
hectares (ha) of land. One of the fires was in La Teste-de-Buch
and the other in Landiras, with the two areas about 50 km
apart. The fires started in the afternoon of July 12" 2022, and
progressed aggressively for the following days. The aircraft
types used to assist in fighting the fires were the Canadair
CL-415 and CL-215 as scoopers (Capacity of 6,140 and 4,800
liters, respectively) [6]], and the Bombardier Dash 8 400-AT
(capacity of 10,000 litres) [[7].

Case results
Two instances from the fire operation were selected to demon-
strate the use of the model for large fires. The assumed inputs
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are summarized in [Table VI

TABLE V. INPUTS OF THE BORDEAUX CASE STUDY SIMULATIONS.

Parameter Value
Scooper capacity 5,000 [litres]
Tanker capacity 10,000 [litres]

Scooper speed 6 [km/min]
Tanker speed 10 [km/min]
Planning horizon ca 1 [hour]

Required number [Teste-de-Buch,
of Landiras] [7, 13]
scooper drops for

simulation #1
Required number [Teste-de-Buch,

of Landiras] [30, 50]
scooper drops for
simulation #2
Preferred Time limit

5 [minutes]

The fire situations on July 16t and July 19", 2022 are

found through the EFFIS system and mapped accordingly. The
number and types of mobilized aircraft are obtained from the
press releases of the local authority [8]. The subfires, which can
be seen as the drop locations, are split among the two large
fire areas. In the first fire situation (July 16%), the Teste-de-
Buch (west) fire has 7 drop requests and the Landiras (east)
has 13. The resulting time carrying out all requested drops is
76.05 minutes. The resulting routes are visualized in
Note that the tanker is carrying out the drops at Landiras, which
are further from the water body, while the scoopers mainly tend
to the drops at Teste-de-Buch, which are near the water body.
This verifies the model as it is a logical assignment, as scoopers
can make use of the water body, and the tanker has a higher
cruise speed. Therefore, this routing leverages the strengths of
the different aircraft types.
In the second fire situation (July 19*"), the fires are larger and
out of control. The wind is moving south and hence the fires are
spreading in that direction. This case is the largest instance of
all attempted case studies so far with a total of 80 drop requests.
The fire at Teste-de-Buch (west) is estimated to have 30 drop
requests, while the fire at Landiras (east) is estimated to have 50.
According to the local press release [§]], the number of mobilized
scoopers on this day was 8, and the number of mobilized tankers
was 2. For this fleet combination, the resulting time to carry out
all requested drops is 98.7 minutes. The routes are shown in
At this size of the simulation, involving 80 subfires
and 10 aircraft, the model shows some limitations. A feasible
solution was not obtainable within the preferable time limit of 5
minutes. This solution was obtained with a time limit of 1,300
seconds, meaning in just under 22 minutes. This may still be
acceptable as it takes at least about 20 minutes before the aircraft
are in the air. Nonetheless, this demonstrates the size of the
problem at which the model surpasses the limit of the acceptable
time limit range.
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Tankers.

Figure 3. Resulting routes for the July 19t" fire.

C. Strategic fleet planning with Monte Carlo simulation

The model can also be used for strategic fleet planning for a
given geographical region. This is demonstrated with a Monte
Carlo simulation. Random fires are generated within the bound-
aries of a given area. It is assumed that the existing fleet consists
of 1 scooper and 1 tanker, and the study is to compare the
performance of adding another scooper vs adding another tanker.
Thus, fleet A is composed by 2 scoopers and 1 tanker, and fleet
B by 1 scooper and 2 tankers. The results in show that,
on average, fleet B completes the mission sooner than fleet A
and hence is to be preferred for the area of interest.

V. VALIDATION TEST

The ultimate aim of the model is to craft a decision-support
tool that can help firefighting authorities contain fires more
efficiently. The AFFVRP model has been formulated and pro-
grammed to produce efficient AFF routes, but the question that
needs to be answered is if these routes are more efficient than
what human operators can come up with in a real or simulated
situation. To investigate this, a validation test is designed and
taken by an expert in the field (an active firefighting pilot),
and the results are compared with the outcome of the AFFVRP
model based on the same input. The hypothesis is that the model
will outperform the human, especially as the cases increase in
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Kernel Density Estimation for 1000 Simulations per Fleet Option
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Figure 4. Density estimation comparing the performance of Fleet A vs Fleet B
in a Monte Carlo simulation of a total of ,2000 fire situations

complexity. The available fleet consists of 2 scoopers (denoted
p1 and py) and 2 tankers (denoted k; and k2). The scoopers have
a capacity of 5 [k litres] and a speed of 5 [km/min]. The tankers
have a capacity of 10 [k litres] and a speed of 10 [km/min]. All
aircraft need 10 minutes at the airfield before take-off, and 1
minute for each drop maneuver. The time for scoopers to collect
water from the water body is considered negligible. All subfires
are considered to have equal urgency (thus no time windows are
used), and the only objective considered is the primary objective,
that is to minimize the time of the last drop, or to satisfy all
drop requests at the earliest time possible. The graphics used
to represent the situation are simple and clear. Furthermore, the
test layout and some examples are explained thoroughly to the
test taker before the test takes place. The test taker is also asked
to use a timer and attempt to solve each case within 5 minutes.
The same time limit is used when the model is run to solve the
given cases. The test contains 6 cases of varying complexity, the
simplest of which contains 2 main fires and 6 subfires, and the
most complex contains 7 main fires and a total of 23 subfires.
The results are reported in [Table VT]for cases 1-3 and [Table VII]
for cases 4-6. The main hypothesis was that the model will
provide more efficient routes, and earlier last drop times, than
the human expert. This is shown to be true in all cases except
case 1, where they both provided the same solution, as it was
a simple case and the optimal route was almost trivial to find.
Another hypothesis is that the advantage of the model will grow
in correlation with case complexity. As the cases become more
complex, it was expected that the human will have a harder time
finding good routes, resulting in a larger difference in the time of
the last water drop. In this validation test, this hypothesis is not
verified. An explanation for this is that with growing complexity,
the solution space increases as well, and the model takes longer
to find superior solutions. Hence, the hypothesis is still expected
to hold if no time limits are imposed (or more relaxed ones are
used), but for the used time limit of 5 minutes, the model also
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struggles to find good solutions as the optimality gap is still
large. This is best seen in case 6, the most complex case of the
test, involving 23 subfires and 4 aircraft. The resulting time of
the last drop by the expert was 61.3 minutes and by the model
58.4 minutes, as shown in This difference is smaller
than the difference observed in the less complex cases. However,
if the time limit is extended, the solution does improve further,
yielding a last drop time of 54.9 minutes for case 6 when the
time limit is extended to 10 minutes.

TABLE VI. VALIDATION TEST RESULTS COMPARING PERFORMANCE OF
EXPERT HUMAN AND AFFVRP MODEL FOR CASES 1-3. TIME OF LAST DROP

IN MINUTES.
Case 1 Case 2 Case 3
Expert | Model | Expert | Model | Expert | Model
Overall 14.0 14.0 30.9 26.9 31.1 27.8
p1 14.0 14.0 30.9 26.9 23.0 23.0
D2 14.0 14.0 259 23.2 23.0 18.9
k1 12.0 14.0 12.0 27.0 145 14.5
ko 14.0 12.0 14.0 14.0 31.1 27.8

TABLE VII. VALIDATION TEST RESULTS COMPARING PERFORMANCE OF
EXPERT HUMAN AND AFFVRP MODEL FOR CASES 4-6. TIME OF LAST DROP

IN MINUTES.
Case 4 Case 5 Case 6
Expert | Model | Expert | Model | Expert | Model
Overall 539 422 48.7 43.6 61.3 58.4
p1 539 37.7 48.7 413 61.3 52.5
P2 40.9 38.3 437 39.0 61.0 52.8
k1 43.7 349 40.5 43.6 49.9 58.4
ko 29.5 42.2 29.5 33.7 49.9 46.8

VI. CONCLUSIONS AND RECOMMENDATIONS

The AFFVRP model makes use of a combination of features
from various types of well-studied VRPs. It is a capacitated
multi-trip VRP with time windows and hierarchical objectives.
Two types of aircraft are used which can represent most fire-
fighting aircraft by simply changing the capacity and speed. The
two types are tankers and scoopers. The main difference is that
scoopers can make use of natural bodies of water to refill their
tank. Helicopters can also be represented by this type. Hence, the
model is flexible and can capture significantly different real-life
situations. While the model itself should undergo algorithmic
enhancements to tackle larger instances, results are encouraging
as the AFFVRP already defines an effective decision-support
tool to assist human decision-makers in planning faster wildfire
containment routing strategies. In particular, a validation via
expert judgment, albeit limited in size, showed that non-optimal
solutions obtained within the recommended 5 minute time limit
can still outperform manually-obtained solutions by expert op-
erators. To enhance and extend this work, several recommen-
dations are suggested. Firstly, expanding the problem setting is
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paramount. The current AFFVRP utilizes a single airfield and
considers only one (nearest) water body. For more comprehen-
sive coverage, especially in addressing large fires, the model can
be extended to involve multiple airbases handling the same fires
and accommodating situations where multiple accessible water
bodies are feasible. This inclusion would enhance the model’s
realism. Secondly, the aircraft selection should be broadened.
The current simulation allows the use of only one type of scooper
and one type of tanker. Expanding this capability to model
various scoopers, helicopters, and tanker types concurrently for
a given fire simulation would provide greater flexibility for
incorporating and analysing diverse fleets. Lastly, for creating
a split delivery VRP, the current discretization approach splits
large fires into subfires, allowing an aircraft to visit each subfire
once. However, this approach poses a drawback, as aircraft with
a capacity larger than the smallest subfire risk wasting part
of their capacity. Besides further developments of the problem
definition, improving the solution quality via tailored algorithms
is also recommended. The optimality gap with a 5 minute time
limit was larger than 80% for problems comprising of 25 subfires
and more. For non-urgent use of the model, this is acceptable as
better solutions, and eventually an optimal solution, are found
when more time is afforded. However, for the live application
where a 5 minute time limit is a constraint, a faster convergence
towards quasi-optimal solutions is recommended. Using suitable
heuristics to find such solutions within this time limit, can make
this work more useful in real-life applications.
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