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Abstract

Binary erasure-repairing codes protect information stored on multiple servers by adding parity servers.
A characteristic of a code is its cooperative locality; a measure of the amount of servers that need to
be accessed to repair erased servers. This report discusses the cooperative locality of Hamming codes
and shortened Hamming codes, using the row space of parity-check matrices of these codes. In some
cases, an equality for this locality is found, in other cases a bound is given.

vii





Contents

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Repetition Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Parity Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.3 (7,4)-Hamming Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.4 Key Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Linear Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Cooperative Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Research 9
2.1 Hamming Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Shortened Hamming Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Cooperative Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Hamming Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Shortened Hamming Codes with One Erasure . . . . . . . . . . . . . . . . . 12
2.3.3 Shortened Hamming Codes with Two Erasures . . . . . . . . . . . . . . . . . 15

2.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Conclusion and Recommendations 23
3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

A Appendix 25

B Appendix 27

Bibliography 29

ix





1
Introduction

This report discusses binary erasure-repairing codes and their qualities. In Section 1.1, an introduction
to the field of repairing erasures can be found. Section 1.2 discusses some fundamentals of erasure-
repairing codes.

1.1. Introduction
Every file on a computer is nothing more than a long row of 0’s and 1’s, called bits. Recently, files are
often stored in the cloud; this means that the file is spread over multiple servers, called data servers.
Due to numerous varying causes, servers can fail and get erased, referred to as an erasure. This means
part of the file is lost. The field of erasure-repairing codes finds ways to secure servers against erasures.
By adding extra servers in a smart way, the bits on an erased server can be retrieved. These ways
are called codes, and the added servers are called parity servers. In this report, it is assumed that all
servers contain the same amount of bits. In subsection 1.1.1, 1.1.2 and 1.1.3, three different codes are
discussed. Subsection 1.1.4 compares these codes based on three key factors.

1.1.1. Repetition Code
The most trivial code for securing servers against erasures, is the Repetition code. This code creates a
duplicate of every server, doubling the amount of servers. If a server were to get erased, its data can
be retrieved by copying the data of its duplicate server, into the erased server. In that way the servers
would return to their original state, repairing the erasure.

Example 1. Assume there are four servers containing data, call these servers S1, S2, S3 and S4. Four
parity servers are added, called P1, P2, P3 and P4. Here P1=S1, P2=S2, P3=S3 and P4=S4. If server
S3 gets erased, it can be repaired by copying the data of server P3 into S3.

Figure 1.1: Visual representation of the Repetition code.

1.1.2. Parity Code
A different way to secure servers, is to add one parity server in a smart way. This code is called the
Parity code. The bits in the parity server are chosen in a specific way; the 𝑖th bit of the parity server is

1



2 1. Introduction

a 0, if the sum of the 𝑖th bits of the data servers is even. If this sum is uneven, the 𝑖th bit in the parity
server will be a 1. That way the sum of the 𝑖th bits of all (data and parity) servers is always even.

If one server is erased, its data can be repaired bit by bit. The 𝑖th bit can be found with the sum of
the 𝑖th bits of all non-erased servers.

Example 2. Assume there are four data servers: S1 containing 1101, S2 containing 1010, S3 containing
1111 and S4 containing 0000, and one parity server P1. The sum of the first bits is 1 + 1 + 1 + 0 = 3,
which is uneven, therefore the first bit in the parity server P1 is a 1. Repeating this process for the
second, third and fourth bit, we find that P1 contains 1000.

Now assume S3 is erased. The sum of the first bits of S1, S2, S4 and P1 is 1+1+1+0=3. So the first
bit of S3 had to be a 1. Repeating this process for the second, third and fourth bit, we find that S3 must
contain 1111. Thus the erased data can be retrieved.

Figure 1.2: Visual representation of the Parity code.

1.1.3. (7,4)-Hamming Code
The Repetition code and the Parity code can repair one erasure, but if two erasures happen at the same
time, these codes can not guarantee that they can be repaired. The (7,4)-Hamming code is a code that
can repair two erasures, by adding three parity servers to four data servers. Call the data and parity
servers respectively S1, S2, S3, S4, P1, P2 and P3. Let the 𝑖th bit in S1 be 𝑠1 , and name the bits in the
other servers similarly.

Figure 1.3: Graphical depiction of the (7,4)-Hamming code.

The 𝑖th bits in the parity servers are again determined
by the 𝑖th bits in the data servers:

choose 𝑝1 such that 𝑠1 + 𝑠2 + 𝑠4 + 𝑝1 is even
choose 𝑝2 such that 𝑠1 + 𝑠3 + 𝑠4 + 𝑝2 is even
choose 𝑝3 such that 𝑠2 + 𝑠3 + 𝑠4 + 𝑝3 is even

These conditions are visually represented in Figure
1.3. The bits in P1, P2 and P3 are chosen in such
a way, that the sum of the bits in every circle is even.

Example 3. Assume there are four data servers: S1
containing 1101, S2 containing 1010, S3 containing
1111 and S4 containing 0000. Then using the condi-
tions above we can determine that P1 contains 0111,
P2 contains 0010, and P3 contains 0101.

Now assume S1 and P1 are erased. For all 𝑖 ∈
{1, 2, 3, 4}, the sum 𝑠1 +𝑠3 +𝑠4 +𝑝2 is even, so S1 can be repaired using S3, S4 and P2. Now P1 can
be repaired using S1, S2 and S4, since for all 𝑖 ∈ {1, 2, 3, 4}, the sum 𝑠1 + 𝑠2 + 𝑠4 + 𝑝1 is even. We
find that S1 contains 1101, and P1 contains 0111.

1.1.4. Key Factors
In subsection 1.1.1, 1.1.2 and 1.1.3, three different erasure-repairing codes are introduced. What makes
one code better than another?
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There are three key factors, which evaluate and represent the quality of a code:

• Repairability: The amount of simultaneous erasures a code can always repair.

• Information Rate: The amount of data servers divided by the total amount of servers.

– The fraction of the storage that contains data

• 𝑒-Cooperative Locality: The amount of servers accessed to repair 𝑒 erasures.
– Closely related to the time it takes to repair 𝑒 erasures.

Depending on the application, one key factor can be more important than another. If your data needs
to be very reliant, repairability is important. If the amount of storage is limited, the information rate is
important. If erasures need to be repaired quickly, the cooperative locality is important. In Example 4,
5 and 6, the key factors of our three codes are determined.

Example 4. Repetition code

• The Repetition code can repair one erasure, as seen in subsection 1.1.1. If two erasures hap-
pen, one in a data server and one in its duplicate parity server, the servers can not be repaired.
Therefore, the Repetition code has a repairability of one erasure.

• Since every data server is duplicated, this code has an information rate of .

• In order to repair an erasure, only one server needs to be accessed. So the 1-Cooperative Locality
of the code is 1.

Example 5. Parity code

• The Parity code can repair one erasure, as seen in subsection 1.1.2. If two erasures happen, the
servers can not be repaired. Therefore, the Parity code has a repairability of one erasure.

• Assume there are 𝑘 data servers. Since the Parity code adds one parity server, this code has an
information rate of .

• In order to repair an erasure, all 𝑘 other servers need to be accessed. So the 1-Cooperative Locality
of the code is 𝑘.

Example 6. (7,4)-Hamming code

• The (7,4)-Hamming code can repair up to two erasures, as seen in subsection 1.1.3. If three
erasures happen, they can not always be repaired. Therefore, the (7,4)-Hamming code has a
repairability of two erasures.

• Since this code adds three parity servers to four data servers, it has an information rate of .

• In order to repair one erasure, the servers in only one of the circles in Figure 1.3 need to be
accessed. This means only three servers need to be accessed to repair one erasure. So the 1-
Cooperative Locality of the code is 3.
In order to repair two erasures, the servers in only two of the three circles in Figure 1.3 need to
be accessed. This means four servers need to be accessed to repair two erased servers. So the
1-Cooperative Locality of the code is 4.

1.2. Fundamentals
An (𝑛, 𝑘)-code is a code that secures 𝑘 data servers, by adding 𝑛 − 𝑘 parity servers. So in total there
are 𝑛 servers. Filling our parity servers is called encoding. Codes determine these bit by bit. Therefore
encoding can be seen as an injective function 𝑓(x) ∶ (𝐹 ) → (𝐹 ) , where 𝐹 is the field with elements
{0, 1}. Notice that in this field 1 + 1 = 0. (𝐹 ) contains all binary vectors of length 𝑘. These vectors
are called message words. The image of function 𝑓(x) is called the code 𝐶. Elements of 𝐶 are called
codewords. Notice that 𝐶 ⊆ (𝐹 ) , and |𝐶| = |(𝐹 ) | = 2 .
The repairability of a code is dependent on the difference between codewords. The more the codewords
differ, the more erasures a code can repair.



4 1. Introduction

Definition 1. Let x = (𝑥 , 𝑥 , … , 𝑥 ) ∈ (𝐹 ) . Then the Hamming weight of x is 𝑤𝑡(x) = |{𝑖 ≤ 𝑛 | 𝑥 ≠
0}|.
Definition 2. Let x,y ∈ (𝐹 ) . Then the Hamming distance between x and y is 𝑑(x,y) = 𝑤𝑡(x+ y).

For a (𝑛, 𝑘)-code 𝐶, the distances between every pair of codewords can be calculated. The minimum
distance between two codewords is called the distance 𝑑 of a code. If 𝐶 has distance 𝑑, 𝐶 is called a
(𝑛, 𝑘, 𝑑)-code. The amount of erasures a code can always repair, is equal to 𝑑 − 1 [1].
Example 7. (4,2)-Repetition code
This code adds two parity servers to two data servers. The possible message words are (𝐹 ) =
{(00), (01), (10), (11)}. The encoding function 𝑓(x) projects different message words on different code-
words. The two parity servers are duplicates of the data servers, so the codewords are: 𝑓((00)) =
(0000), 𝑓((01)) = (0101), 𝑓((10)) = (1010) and 𝑓((11)) = (1111).

Notice that the minimum Hamming distance between any of these codewords is 2. Therefore, this
code is a (4, 2, 2)-code with a repairability of 1 erasure.

1.2.1. Linear Codes
In general, a code might have no structure and the codewords can be quite random. The focus in
this report is on an important subclass of codes with a clear structure called linear codes. Many of the
important and widely used codes, are linear codes.

Definition 3. A subspace 𝐶 of (𝐹 ) is a linear code.

From Definition 3 follows that 𝐶 is a linear code, if and only if any linear combination of codewords is
also a codeword. A linear (𝑛, 𝑘)-code is called a [𝑛, 𝑘]-code. If it has distance 𝑑, it is called a [𝑛, 𝑘, 𝑑]-code.
Example 8.
The Repetition code, Parity code, and (7,4)-Hamming code are examples of linear codes.

Since a [𝑛, 𝑘]-code 𝐶 is a subspace of (𝐹 ) , a basis for 𝐶 can be found. The dimension of 𝐶 is equal
to 𝑘, so this basis contains 𝑘 codewords. For linear codes, the encoding function 𝑓(x) is a linear map.
Definition 4. Let 𝐶 be a [𝑛, 𝑘]-code. The (𝑘×𝑛)matrix 𝐺 with a basis for 𝐶 as rows is called a generator
matrix for 𝐶.

If 𝐺 is a generator matrix for a code 𝐶, then the encoding function is the matrix multiplication
𝑓(u) = u𝐺. Notice that there can be many different bases for a code, hence there can also be many
different generator matrices for a code.

Often a code only adds parity servers, while the data servers stay intact. In that case, the generator
matrix needs to be of the form 𝐺 = (𝐼 | 𝐴), where 𝐼 is the (𝑘 × 𝑘) identity matrix. Such a matrix is
called a generator matrix in standard form. Every linear code has a unique generator matrix in standard
form.

Example 9. (6,3)-Repetition code
The Repetition code 𝐶 with 𝑛 = 6 and 𝑘 = 3 contains 2 = 8 codewords. These codewords are:

𝐶 = {(000000), (001001), (010010), (011011),
(100100), (101101), (110110), (111111)}

A basis for 𝐶 is 𝐵 = {(001001), (011011), (111111)}. With this basis a generator matrix can be con-
structed:

𝐺 = (
0 0 1 0 0 1
0 1 1 0 1 1
1 1 1 1 1 1

)

Notice that 𝐺 is not in standard form.
Another basis for 𝐶 is 𝐵 = {(100100), (010010), (001001)}. With this basis a different generator matrix
can be constructed:

𝐺 = (
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

)

Notice that 𝐺 is in standard form.
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Example 10. (5,4)-Parity code
The Parity code 𝐶 with 𝑛 = 5 and 𝑘 = 4 contains 2 = 16 codewords. These codewords are all the
words of (𝐹 ) with an even weight:

𝐶 =
⎧

⎨
⎩

(00000), (00011), (00101), (00110),
(01001), (01010), (01100), (01111),
(10001), (10010), (10100), (10111),
(11000), (11011), (11101), (11110)

⎫

⎬
⎭

A basis for 𝐶 is 𝐵 = {(10001), (01001), (00101), (00011)}. With this basis a generator matrix can be
constructed:

𝐺 = (
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

)

Notice that 𝐺 is in standard form.

Example 11. (7,4)-Hamming code
The (7,4)-Hamming code 𝐶 with 𝑛 = 7 and 𝑘 = 4 contains 2 = 16 codewords:

𝐶 =
⎧

⎨
⎩

(0000000), (0001111), (0010011), (0011100),
(0100101), (0101010), (0110110), (0111001),
(1000110), (1001001), (1010011), (1011100),
(1100011), (1101100), (1110000), (1111111)

⎫

⎬
⎭

A basis for 𝐶 is 𝐵 = {(1000110), (0100101), (0010011), (0001111)}. With this basis a generator matrix
can be constructed:

𝐺 = (
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

)

Notice that 𝐺 is in standard form.

For a linear [𝑛, 𝑘]-code 𝐶, there is an easy way to check whether a given word in (𝐹 ) is a codeword
or not.

Definition 5. Let 𝐶 be a [𝑛, 𝑘]-code. Then a binary ((𝑛 − 𝑘) × 𝑛) matrix 𝐻 over 𝐹 , such that x ∈ 𝐶 ⟺
𝐻x = 0, is called a parity-check matrix of 𝐶.

Since 𝐶 is a subspace of (𝐹 ) with dimension 𝑘, such a parity-check matrix 𝐻 can always be found [2].

If a generator matrix of a code 𝐶 is of the standard form 𝐺 = [𝐼 | 𝐴], then a parity-check matrix of 𝐶
is 𝐻 = [𝐴 | 𝐼 ]. Knowing this, parity-check matrices for the codes in Example 9, 10 and 11 can easily
be found.

Example 12. (6,3)-Repetition code
In Example 9, a standard generator matrix for 𝐶 was found: 𝐺 = [𝐼 | 𝐴] with 𝐴 = 𝐼 . Then a parity
check matrix for 𝐶 is:

𝐻 = [𝐴 | 𝐼 ] = [𝐼 | 𝐼 ] = (
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

)

Example 13. (5,4)-Parity code
In Example 10, a standard generator matrix for 𝐶 was found: 𝐺 = [𝐼 | 𝐴] with 𝐴 = (1111) . Then a
parity check matrix for 𝐶 is:

𝐻 = [𝐴 | 𝐼 ] = (1 1 1 1 1)
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Example 14. (7,4)-Hamming code
In Example 11, a standard generator matrix for 𝐶 was found: 𝐺 = [𝐼 | 𝐴] with

𝐴 = (
1 1 0
1 0 1
0 1 1
1 1 1

) .

Then a parity check matrix for 𝐶 is:

𝐻 = [𝐴 | 𝐼 ] = (
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

)

A code can have many parity-check matrices. Let 𝐻 be a parity-check matrix of a code 𝐶. Then every
matrix with a basis for the row space of 𝐻 as rows, is a parity-check matrix for 𝐶. In fact, the rows of
every parity-check matrix of 𝐶 form a basis for the row space of 𝐻 [2].

1.3. Cooperative Locality
The focus in this report, is finding the cooperative locality of shortened Hamming codes. The cooperative
locality of a code is equal to the amount of servers that need to be accessed to repair erasures. In that
way, the cooperative locality of a code describes the time it takes to repair erasures. The concept of
cooperative locality is introduced by Rawat, Mazumdar, and Vishwanath [3]. In this section, cooperative
locality will be properly defined, and ways of determining the cooperative locality of a code will be
explored.

Definition 6. Let 𝐶 be a linear [𝑛, 𝑘, 𝑑]-code. The set 𝑅 ∈ {1, 2, ..., 𝑛} is a cooperative repair set for a set
𝐸, disjoint from 𝑅, if every codeword in 𝐶 which is zero on 𝑅 is also zero on 𝐸. [3]
Definition 7. A linear-[𝑛, 𝑘, 𝑑]-code 𝐶 has (𝑟, 𝑒)-cooperative locality, where 1 ≤ 𝑒 < 𝑑, if every set 𝐸 of
size 𝑒 has a cooperative repair set of size 𝑟 or less. [3]
Lemma 1. Let 𝐶 be a linear [𝑛, 𝑘, 𝑑]-code. The set 𝑅 ⊆ {1, 2, … , 𝑛} is a cooperative repair set for the
nonempty set 𝐸 ⊆ {1, 2, … , 𝑛} disjoint from 𝑅 if and only if there are |𝐸|words x = (𝑥 , , 𝑥 , , … , 𝑥 , ), 𝑖 ∈ 𝐸
as rows in a parity-check matrix of 𝐶, such that for each 𝑖 ∈ 𝐸, x , = 1 and x , = 0 for 𝑗 ∉ 𝑅 ∪ {𝑖}. [4]

Lemma 1 says, that the cooperative locality of a code can be found by looking at the rows of parity-
check matrices of 𝐶. Since all parity-check matrices of a code can be found from the row space of one
single parity-check matrix, Lemma 1 can be simplified.

Lemma 2. Let 𝐶 be a linear [𝑛, 𝑘, 𝑑]-code. The set 𝑅 ⊆ {1, 2, … , 𝑛} is a cooperative repair set for the
nonempty set 𝐸 ⊆ {1, 2, … , 𝑛} with |𝐸| < 𝑑 disjoint from 𝑅 if and only if there are |𝐸| independent
words x = (𝑥 , , 𝑥 , , … , 𝑥 , ), 𝑖 ∈ 𝐸 in the row space of a parity-check matrix of 𝐶, such that for each
𝑖 ∈ 𝐸, x , = 1 and x , = 0 for 𝑗 ∉ 𝑅 ∪ {𝑖}.
Proof. Let 𝐻 be a parity-check matrix of 𝐶. Then a matrix 𝐻 of the same size as 𝐻 is a parity-check
matrix of 𝐶 if and only if 𝐻 has the same row space as 𝐻. This means that all parity-check matrices of 𝐶
have 𝑛−𝑘 independent words as rows, and that all independent sets of 𝑛−𝑘 words in the row space of
𝐻 construct a parity-check matrix of 𝐶, with these words as rows. Let 𝑅 be a cooperative repair set of 𝐸.
Lemma 1 says, that there are |𝐸| words x = (𝑥 , , 𝑥 , , … , 𝑥 , ), 𝑖 ∈ 𝐸 as rows in a parity-check matrix of
𝐶, such that for each 𝑖 ∈ 𝐸, x , = 1 and x , = 0 for 𝑗 ∉ 𝑅∪{𝑖}. Notice that {x | 𝑖 ∈ 𝐸} is an independent
set of words. Since the row spaces of all parity check matrices of 𝐶 are equal, {x | 𝑖 ∈ 𝐸} ⊆ Row(𝐻).

Now let 𝐸 ⊆ {1, 2, … , 𝑛} with |𝐸| independent words x = (𝑥 , , 𝑥 , , … , 𝑥 , ), 𝑖 ∈ 𝐸 in the row space of
a parity-check matrix 𝐻 of 𝐶, such that for each 𝑖 ∈ 𝐸, x , = 1 and x , = 0 for 𝑗 ∉ 𝑅 ∪ {𝑖}.
The Singleton Bound says that 𝑑 ≤ 𝑛 − 𝑘 + 1 [2]. 𝑑 ∈ ℤ and |𝐸| < 𝑑, so |𝐸| ≤ 𝑑 − 1. Therefore
|𝐸| ≤ 𝑑 − 1 ≤ 𝑛 − 𝑘.
So {x | 𝑖 ∈ 𝐸} is an independent set with |{x | 𝑖 ∈ 𝐸}| ≤ 𝑛−𝑘 words. We can extend the set {x | 𝑖 ∈ 𝐸},
by defining a set 𝑃 ⊆ Row(𝐻) of 𝑛 − 𝑘 − |{x | 𝑖 ∈ 𝐸}| independent words, such that {x | 𝑖 ∈ 𝐸} ∪ 𝑃 is
a set of 𝑛 − 𝑘 independent words in Row(𝐻).
Then {x | 𝑖 ∈ 𝐸} ∪ 𝑃 spans Row(𝐻), so 𝐶 has a parity-check matrix with {x | 𝑖 ∈ 𝐸} ∪ 𝑃 as rows. With
Lemma 1, follows that 𝑅 is a cooperative repair set for 𝐸.
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With Lemma 2, the cooperative locality of the three codes can be determined.

Example 15. (6,3)-Repetition code
In Example 12, a parity-check matrix for 𝐶 was found:

𝐻 = (
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

)

The non-zero words in the row space of 𝐻 are:

h1 =(100100)
h2 =(010010)
h3 =(001001)

h4 = h1 + h2 =(110110)
h5 = h1 + h3 =(101101)
h6 = h2 + h3 =(011011)

h7 = h1 + h2 + h3 =(111111)
Let 𝐸 = {3}.

According to Lemma 2, if we find a x = (𝑥 , , 𝑥 , , … , 𝑥 , ) in this row space of 𝐻 , such that 𝑥 , = 1
and choose 𝑅 ⊆ {1, 2, … , 6} ⧵ {3}, such that 𝑅 = {𝑗 | 𝑥 , = 1}, then 𝑅 is a cooperative repair set for 𝐸.
There are four different words in the row space of 𝐻 with their third element equal to 1, these are h , h ,
h , and h . Each one of these constructs a cooperative repair set for 𝐸 = {3}, containing the positions
of the other elements equal to 1 in that word. We find:

𝑅 = {6}
𝑅 = {1, 4, 6}
𝑅 = {2, 5, 6}

𝑅 = {1, 2, 4, 5, 6}
We have found four different cooperative repair sets for 𝐸 − {3}, with different sizes. The smallest
cooperative repair set for 𝐸 = {3} is 𝑅 , which has size 1.
If we repeat this process for all six sets 𝐸 of size one, we can determine the (𝑟, 1)-cooperative locality
of 𝐶 . Notice that, since every column of 𝐻 has weight ≥ 1, we can find such a word x and thus
a cooperative repair set for all 𝐸 of size 1. Finding these sets can be a very time consuming process,
especially if the code becomes bigger.

Observe that since h , h , h have weight 2 and every column of 𝐻 has weight ≥ 1. It follows that for
all sets 𝐸 of size 1, a cooperative repair set of size 1 can be found. So 𝐶 has (𝑟 = 1, 𝑒 = 1)-cooperative
locality.

Example 16. (5,4)-Parity code
In Example 13, a parity-check matrix for 𝐶 was found:

𝐻 = (1 1 1 1 1)
The only non-zero word in the row space of 𝐻 , is h1 = (11111). Choose an 𝑖 ∈ {1, 2, 3, 4, 5} and let
𝐸 = {𝑖}.

According to Lemma 2, if we find a x = (𝑥 , , 𝑥 , , … , 𝑥 , ) in this row space of 𝐻 , such that 𝑥 , = 1
and choose 𝑅 ⊆ {1, 2, … , 5} ⧵ {𝑖}, such that 𝑅 = {𝑗 | 𝑥 , = 1}, then 𝑅 is a cooperative repair set for 𝐸.
ℎ is the only non-zero word in the row space of 𝐻 , so there is one cooperative repair set for 𝐸 possible:
𝑅 = {1, 2, … , 5} ⧵ {𝑖}. Notice that |𝑅 | = 4. 𝑖 was chosen randomly, so 𝐶 has (𝑟 = 4, 𝑒 = 1)-cooperative
locality.

Example 17. (7,4)-Hamming Code
In Example 14, a parity-check matrix for 𝐶 was found:

𝐻 = (
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

)
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The non-zero words in the row space of 𝐻 are:

h1 =(1101100)
h2 =(1011010)
h3 =(0111001)

h4 = h1 + h2 =(0110110)
h5 = h1 + h3 =(1010101)
h6 = h2 + h3 =(1100011)

h7 = h1 + h2 + h3 =(0001111)

Choose 𝑖 ∈ {1, 2, … , 7} and let 𝐸 = {𝑖}.
According to Lemma 2, if we find a x = (𝑥 , , 𝑥 , , … , 𝑥 , ) in this row space of 𝐻 , such that 𝑥 , = 1

and choose 𝑅 ⊆ {1, 2, … , 7}⧵{𝑖}, such that 𝑅 = {𝑗 | 𝑥 , = 1}, then 𝑅 is a cooperative repair set for 𝐸 = {𝑖}.
Notice that all non-zero words in the row space of 𝐻 have weight 4 and every column of 𝐻 has weight
≥ 1. Therefore, for all 𝑖 ∈ {1, 2, … , 7}, we can find a cooperative repair set 𝑅 for 𝐸 = {𝑖} with |𝑅| = 3. So
𝐶 has (𝑟 = 3, 𝑒 = 1)-cooperative locality.

Let 𝐸 = {3, 4}. According to Lemma 2, if we find x = (𝑥 , , 𝑥 , , … , 𝑥 , ) and x = (𝑥 , , 𝑥 , , … , 𝑥 , ) ≠
x in the row space of 𝐻, such that 𝑥 , = 𝑥 , = 1 and 𝑥 , = 𝑥 , = 0, and choose 𝑅 ⊆ {1, 2, … , 7}⧵{3, 4},
such that 𝑅 = {𝑗 | 𝑥 , = 1 or 𝑥 , = 1}, then 𝑅 is a cooperative repair set for 𝐸 = {3, 4}. There are two
words in the row space of 𝐻 with their third element equal to 1 and their fourth element equal to 0, h
and h . There are also two words with their third element equal to 0 and their fourth element equal to
1, these words are h and h . Every combination of these words constructs a cooperative repair set for
𝐸 = {3, 4}, containing the positions of the other elements equal to 1 in those words. We find:

𝑅 , = {1, 2, 5, 6}
𝑅 , = {2, 5, 6, 7}
𝑅 , = {1, 2, 5, 7}
𝑅 , = {1, 5, 6, 7}

We have found four different cooperative repair sets for 𝐸{3, 4}, with |𝑅 , | = |𝑅 , | = |𝑅 , | = |𝑅 , | = 4.
If we repeat this process for all sets 𝐸 of size two, we can determine the (𝑟, 𝑒 = 2)-cooperative locality
of 𝐶 . This is again a time consuming process.

Observe that all columns of 𝐻 are different and have weight ≥ 1. Therefore, for all 𝑖 , 𝑖 ∈ {1, 2, … , 7}
with 𝑖 ≠ 𝑖 , we can find a x and x in the row space of 𝐻 , such that 𝑥 , = 𝑥 , = 1 and
𝑥 , = 𝑥 , = 0. So for all 𝑖 , 𝑖 ∈ {1, 2, … , 7} with 𝑖 ≠ 𝑖 , a cooperative repair set for 𝐸 = {𝑖 , 𝑖 } exists.

Notice that for every pair of non-zero words x ,x in the row space of 𝐻 , there is exactly one
position 𝑗, such that x , = x , = 0. This means that, for all 𝑖 , 𝑖 ∈ {1, 2, … , 7} with 𝑖 ≠ 𝑖 , a
cooperative repair set 𝑅 for 𝐸 = {𝑖 , 𝑖 } must have |𝑅| = 4.

So 𝐶 has (𝑟 = 4, 𝑒 = 2)-cooperative locality.



2
Research

This chapter is dedicated to finding the cooperative locality of shortened Hamming codes. In section
2.1 we will define Hamming codes. Section 2.2 explains how a code can be shortened, and what a
shortened Hamming code looks like. In section 2.3, the cooperative locality of Hamming codes and
shortened Hamming codes will be determined.

2.1. Hamming Codes
In examples 3, 6, 11 and 14, the (7,4)-Hamming code is discussed; this is one example of a Hamming
code. Hamming codes form a class of codes, invented by Richard Hamming. For each 𝑚 ≥ 2, there is a
linear [2 − 1, 2 − 1 −𝑚, 3]-code called a (2 − 1, 2 − 1 −𝑚)-Hamming code.
Definition 8. The 𝐻𝑎𝑚(2,𝑚) code is a linear [2 − 1, 2 −1−𝑚, 3]-code, generated by the (2 −1−
𝑚 × 2 − 1) generator matrix 𝐺 = [𝐼 | 𝐴], where 𝐴 is a (2 − 1 −𝑚 ×𝑚) matrix, with all words
in (𝐹 ) with weight ≥ 2 as rows.
Remark. A parity-check matrix 𝐻 ∶ (𝑚×2 −1) of 𝐻𝑎𝑚(2,𝑚) is: 𝐻 = [𝐴 | 𝐼 ]. Notice that 𝐻 contains
all non-zero words in (𝐹 ) as columns. In fact, all parity-check matrices of 𝐻𝑎𝑚(2,𝑚), contain all
non-zero words in (𝐹 ) as columns.

Example 18. 𝐻𝑎𝑚(2, 2) is a [3, 1, 3]-code with the following generator matrix and parity-check matrix:

𝐺 = (1 1 1)

𝐻 = (1 1 0
1 0 1)

Example 19. 𝐻𝑎𝑚(2, 3) is the (7, 4)-Hamming code.

2.2. Shortened Hamming Codes
There are multiple possible modifications that alter a code; this report will only discuss shortening codes.

Definition 9. A [𝑛, 𝑘, 𝑑]-code can be shortened by deleting a data server from the encoding process.
The resulting code is a [𝑛 − 1, 𝑘 − 1, 𝑑]-code.
Remark. This is equivalent to deleting a row and it’s corresponding data column from the generator
matrix, and to deleting a column from the parity-check matrix of the code.

Example 20. We shorten the 𝐻𝑎𝑚(2, 3) code 𝐶 . This code has generator matrix:

𝐺 = (
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

)

9
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To shorten the code, first we delete the second row. Then we get the matrix:

(
1 0 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 1 1

)

The corresponding data column is the second column, notice it contains only zero’s. If we delete this
column we get the generator matrix of our shortened code 𝐶 :

𝐺 = (
1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 1 1

)

Notice that 𝐶 is a [6, 3, 3]-code. 𝐺 is in standard form, so a parity-check matrix can easily be found:

𝐻 = (
1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1

)

Notice that 𝐻 could have been constructed from the parity-check matrix of 𝐶 (see example 14), by
removing the second column.

Lemma 3. A 𝑠 times shortened 𝐻𝑎𝑚(2,𝑚) code 𝐶 is a [2 − 1 − 𝑠, 2 − 1 − 𝑚 − 𝑠, 3] code, with a
((2 −1−𝑚−𝑠)×(2 −1−𝑠)) generator matrix 𝐺 = [𝐼 | 𝐴], where 𝐴 is a ((2 −1−𝑚−𝑠)×𝑚)
matrix, with all but 𝑠 different words in (𝐹 ) with weight ≥ 2 as rows.
𝐶 has a (𝑚 × (2 − 1 − 𝑠)) parity-check matrix 𝐻 = [𝐴 | 𝐼 ].
Proof. This follows from Definition 8, applying shortening as defined in Definition 9 𝑠 times.

2.3. Cooperative Locality
In Example 17, we found that the 𝐻𝑎𝑚(2, 3) code has (𝑟 = 3, 𝑒 = 1)-cooperative locality and (𝑟 =
4, 𝑒 = 2)-cooperative locality. In this section, the cooperative locality of Hamming codes and shortened
Hamming codes will be researched. First some useful definitions and lemmas are given. In subsection
2.3.1 the cooperative localities of unshortened Hamming codes will be determined. Subsection 2.3.2 will
discuss the 1-cooperative locality of shortened Hamming codes, and subsection 2.3.3 the 2-cooperative
locality of these codes.

Lemma 4. Let 𝐴 be a (𝑏 × 𝑐) binary matrix with independent rows and non-zero columns. Pick 𝑠 ≤ 𝑐
different columns i1, i2, … , is. If these columns form an independent set, then for all possible words
k = (𝑘 , 𝑘 , … , 𝑘 ) in (𝐹 ) , there are 2 different words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐴) with 𝑥 =
𝑘 , 𝑥 = 𝑘 ,… , 𝑥 = 𝑘 .

Proof. The rows of 𝐴 are independent, so |Row(𝐴)| = 2 . Take 𝑠 = 1, and pick a column i1 of 𝐴. Note
that i1 is nonzero. Then exactly half of the words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐴) have 𝑥 = 0 (so the
other half has 𝑥 = 1). This means there are 2 words x in Row(𝐴), with 𝑥 = 1 and 2 words x
in Row(𝐴), with 𝑥 = 0. So the Lemma is true for 𝑠 = 1.
Pick 𝑡 ≤ 𝑐 − 1 different columns 𝑖 , 𝑖 , … , 𝑖 , such that these columns form an independent set. Assume
that for all possible words k = (𝑘 , 𝑘 , … , 𝑘 ) in (𝐹 ) , there are 2 different words x = (𝑥 , 𝑥 , … , 𝑥 ) in
Row(𝐴) with 𝑥 = 𝑘 , 𝑥 = 𝑘 ,… ,𝑥 = 𝑘 . Assume that a column 𝑗 ≠ {𝑖 , 𝑖 , … , 𝑖 } exists, such that the
set of all columns 𝑖 , 𝑖 , … , 𝑖 , 𝑗 is independent. Pick a k ∈ (𝐹 ) . Since the set of columns 𝑖 , 𝑖 , … , 𝑖 , 𝑗 is
independent, exactly half of the words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐴) with 𝑥 = 𝑘 , 𝑥 = 𝑘 ,… ,𝑥 = 𝑘
have 𝑥 = 0 (so the other half has 𝑥 = 1). So for k = (𝑘 , 𝑘 , … , 𝑘 , 𝑙) ∈ (𝐹 ) and 𝑙 ∈ {0, 1}, there
are 2 /2 = 2 ( ) different words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐴) with 𝑥 = 𝑘 , 𝑥 = 𝑘 ,… ,𝑥 = 𝑘 ,
𝑥 = 𝑙. Since k was chosen randomly, this is true for all k = (𝑘 , 𝑘 , … , 𝑘 ) ∈ (𝐹 ) . With induction
follows that Lemma 4 is true for all 𝑠 ≤ 𝑐.

Lemma 4, is a useful tool in finding the x ’s for Lemma 2 in the row space of a parity-check matrix of
a code. In Example 21 the consequences of Lemma 4 are investigated for a parity-check matrix of the
𝐻𝑎𝑚(2, 3) code.
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Example 21.
We take

𝐻 = [
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

]

𝐻 is a parity check matrix of the 𝐻𝑎𝑚(2, 3) code. We pick 2 different columns: 𝑖 = 1 and 𝑖 = 2.
Since two different words in (𝐹 ) are always independent, the set 𝑆 formed by these two columns is
independent:

𝑆 = {[
1
1
0
] , [
1
0
1
] }

Then Lemma 4 says that for all words k = (𝑘 , 𝑘 ) in (𝐹 ) , there are 2 = 2 different words x =
(𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐴) with 𝑥 = 𝑘 and 𝑥 = 𝑘 .
The row space of 𝐻 contains the following words:

x = (0000000)
x = (1101100)
x = (1011010)
x = (0111001)

x = x + x = (0110110)
x = x + x = (1010101)
x = x + x = (1100011)

x = x + x + x = (0001111)
The four different words k = (𝑘 , 𝑘 ) in (𝐹 ) are:

k = (00)
k = (01)
k = (10)
k = (11)

Notice that the row space of 𝐻 has precisely two rows x with 𝑥 , = 𝑘 , = 0 and 𝑥 , = 𝑘 , = 0, these
are x and x . In fact, for all k’s, there are two such rows, which is precisely what Lemma 4 says.

Definition 10. Let a and b be words in (𝐹 ) . Then 𝑍(a,b) = {𝑖 | 𝑎 = 0 ∧ 𝑏 = 0} ⊆ {0, 1, … , 𝑛}.
Lemma 5. Let a and b be words in (𝐹 ) . Write 𝑤𝑡(a) = 𝛼,𝑤𝑡(b) = 𝛽 and 𝑤𝑡(a + b) = 𝛾. Then
|𝑍(a,b)| = 𝑛− .

Proof. Define 𝐴 = {𝑖 | 𝑎 = 1 ∧ 𝑏 = 1} ⊆ {1, 2, … , 𝑛}. For all 𝑖, if (𝑎 + 𝑏) = 1, then either 𝑎 = 1 and
𝑏 = 0 or 𝑎 = 0 and 𝑏 = 1. If 𝑖 ∈ 𝐴, then (𝑎 + 𝑏) = 0. From these observations the following formula
can be derived: 𝛼 + 𝛽 = 𝛾 + 2 ⋅ |𝐴|. So:

|𝐴| = 𝛼 + 𝛽 − 𝛾
2 .

We know that |𝑍(a,b)| = 𝑛 − 𝛾 − |𝐴|, so:

|𝑍(a,b)| = 𝑛 − 𝛾 − 𝛼 + 𝛽 − 𝛾2 = 𝑛 − 𝛼 + 𝛽 + 𝛾2 .

.

Example 22. Let a = (0, 1, 1, 1, 0, 0, 0, 0, 1) and a = (1, 1, 1, 0, 1, 0, 0, 1, 0). Then 𝑍(a,b) = {6, 7}. We
know that a+ b = (1, 0, 0, 1, 1, 0, 0, 1, 1). So 𝑤𝑡(a) = 4, 𝑤𝑡(b) = 5 and 𝑤𝑡(a+ b) = 5. Lemma 5 says:

|𝑍(a,b)| = 9 − 4 + 5 + 52 = 2.

Lemma 5 can be used as a tool to determine the size of a repair set for two erasures.
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2.3.1. Hamming Codes
Theorem 6. The 𝐻𝑎𝑚(2,𝑚) code has (𝑟 = 2 − 1, 𝑒 = 1)-cooperative locality.

Proof. 𝐻𝑎𝑚(2,𝑚) is a [2 − 1, 2 − 1−𝑚, 3] code, with a parity-check matrix 𝐻 with as columns all the
2 − 1 non-zero words in (𝐹 ) . Since the columns of 𝐻 are all 2 − 1 non-zero words in (𝐹 ) , the
rows of 𝐻 all have weight 2 .

Pick a 𝑖 ∈ {1, 2, … , 2 − 1} and let 𝐸 = {𝑖}. Pick a row x = (𝑥 , 𝑥 , … , 𝑥 ) of 𝐻, such that 𝑥 = 1.
Such an x exists, since all columns of 𝐻 are non-zero. Notice that 𝑤𝑡(x) = 2 . Let 𝑅 = {𝑗 | 𝑥 = 1} ⊆
{1, 2, … , 2 − 1} ⧵ {𝑖}. From Lemma 1 follows that 𝑅 is a cooperative repair set for 𝐸. 𝑤𝑡(x) = 2 and
𝑥 = 1, so |𝑅| = 2 − 1.

For an arbitrary 𝐸 of size 1 a cooperative repair set 𝑅 can be found with |𝑅| = 2 −1. So 𝐻𝑎𝑚(2,𝑚)
has (𝑟 = 2 − 1, 𝑒 = 1)-cooperative locality.

Theorem 7. The 𝐻𝑎𝑚(2,𝑚) code has (𝑟 = 3 ⋅ 2 − 2, 𝑒 = 2)-cooperative locality.

Proof. 𝐻𝑎𝑚(2,𝑚) is a [2 − 1, 2 − 1−𝑚, 3] code, with a parity-check matrix 𝐻 with as columns all the
2 − 1 non-zero words in (𝐹 ) .

Pick 𝑖 , 𝑖 ∈ {1, 2, … , 2 −1} and let 𝐸 = {𝑖 , 𝑖 }. Choose two different rows x = (𝑥 , , 𝑥 , , … , 𝑥 , )
and x = (𝑥 , , 𝑥 , , … , 𝑥 , ) in Row(𝐻), such that 𝑥 , = 𝑥 , = 1 and 𝑥 , = 𝑥 , = 0. These
exist, since every column of 𝐻 is different and nonzero. All non-zero words in Row(𝐻) have weight
2 , so 𝑤𝑡(x ) = 𝑤𝑡(x ) = 𝑤𝑡(x +x ) = 2 . Let 𝑅 = {𝑗 | 𝑥 = 1∨ 𝑦 = 1} ⊆ {1, 2, … , 2 − 2} ⧵ 𝐸.
Lemma 2 says that 𝑅 is a cooperative repair set for 𝐸. Notice that |𝑅| = 2 − 1 − |𝑍(xi1

,xi2
)| − 2.

Lemma 5 says:

|𝑍(xi1
,xi2

)| = 2 − 1 − 2 + 2 + 2
2 = 2 − 1 − 3 ⋅ 2 .

So |𝑅| = 2 − 1 − (2 − 1 − 3 ⋅ 2 ) − 2 = 3 ⋅ 2 − 2. So 𝐻𝑎𝑚(2,𝑚) has (𝑟 = 3 ⋅ 2 − 2, 𝑒 = 2)-
cooperative locality.

Theorem 8. The 𝐻𝑎𝑚(2,𝑚) code does not have (𝑟 = 2 − 2, 𝑒 = 1)-cooperative locality.

Proof. 𝐻𝑎𝑚(2,𝑚) is a [2 − 1, 2 − 1−𝑚, 3] code, with a parity-check matrix 𝐻 with as columns all the
2 − 1 non-zero words in (𝐹 ) . All words in the row space of 𝐻 have weight 2 , so from Lemma
2 follows that every repair set 𝑅 for 𝐸 with |𝐸| = 1 has |𝑅| = 2 − 1. So 𝐻𝑎𝑚(2,𝑚) does not have
(𝑟 = 2 − 2, 𝑒 = 1)-cooperative locality.

Theorem 9. The 𝐻𝑎𝑚(2,𝑚) code does not have 𝑒 ⋅ 2 − 3, 𝑒 = 2)-cooperative locality.

Proof. 𝐻𝑎𝑚(2,𝑚) is a [2 − 1, 2 − 1−𝑚, 3] code, with a parity-check matrix 𝐻 with as columns all the
2 − 1 non-zero words in (𝐹 ) . All words in the row space of 𝐻 have weight 2 , so with Lemma 4
we find that for every pair x,y ∈ 𝑅𝑜𝑤(𝐻), |𝑍(x,y)| = 2 − 1 − 3 ⋅ 2 . From Lemma 2 follows that
every repair set 𝑅 for 𝐸 with |𝐸| = 2 has |𝑅| = 2 − 1 − (2 − 1 − 3 ⋅ 2 ) − 2 = 3 ⋅ 2 − 2. So
𝐻𝑎𝑚(2,𝑚) does not have (𝑟 = 3 ⋅ 2 − 3, 𝑒 = 1)-cooperative locality.

From Theorem 6 and 8 can be concluded that the smallest 𝑟 for which 𝐻𝑎𝑚(2,𝑚) has (𝑟, 𝑒 = 1)-
cooperative locality is 𝑟 = 2 − 1. From Theorem 7 and 9 can be concluded that the smallest 𝑟 for
which 𝐻𝑎𝑚(2,𝑚) has (𝑟, 𝑒 = 2)-cooperative locality is 𝑟 = 3⋅2 −2. We find that for Hamming codes,
if one server gets erased, roughly half of the servers need to be accessed to repair said server. If two
servers get erased, roughly three quarters of the servers need to be accessed.

2.3.2. Shortened Hamming Codes with One Erasure
Theorem 10. Let 𝑚 ≥ 3. A one times shortened Ham(2,m) code has (𝑟 = 2 −2, 𝑒 = 1)-cooperative
locality.

Proof. Let 𝐻 be a parity-check matrix of a [2 − 1, 2 − 1 − 𝑚, 3] Hamming code 𝐶 . Choose 𝑝 ∈
{1, 2, … , 2 − 1}. Let 𝐻 be a parity-check matrix of a [2 − 2, 2 − 2 − 𝑚, 3] shortened Hamming code
𝐶, obtained from 𝐻 by removing the 𝑝th column. Choose 𝑖 ∈ {1, 2, … , 2 − 2} and let 𝐸 = {𝑖}.

The 𝑖th column of 𝐻 is also a column in 𝐻 , say the 𝑗th column of 𝐻 , and is not equal to the 𝑝th column
of 𝐻 , since every column of 𝐻 is different. Therefore the set of these two columns is independent.
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Lemma 4 says that for all possible words k = (𝑘 , 𝑘 ) in (𝐹 ) , there are 2 different words
x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 𝑘 and 𝑥 = 𝑘 . Since (1, 1) ∈ (𝐹 ) , there are 2 ≥ 1
different words x in Row(𝐻 ) with 𝑥 = 1 and 𝑥 = 1.

Choose one such x . All words in Row(𝐻 ) have Hamming weight equal to 2 , so 𝑤𝑡(x ) = 2 .
x constructs a cooperative repair set for 𝐸 in the following way:

Let x be the word in Row(𝐻), constructed from x by removing the 𝑝th element. Let 𝑅 = {𝑗 | 𝑥 = 1} ⊆
{1, 2, … , 2 −2}⧵𝐸. With Lemma 2 follows that 𝑅 is a cooperative repair set for 𝐸. Since 𝑤𝑡(x) = 2 −1,
|𝑅| = 2 − 2, so 𝐶 has (𝑟 = 2 − 2, 𝑒 = 1)-cooperative locality.

Theorem 11. Let 𝑚 ≥ 3. Let 𝐻 be a parity-check matrix of a [2 − 1, 2 − 1 − 𝑚, 3] Hamming code
𝐶 . Choose 2 ≤ 𝑠 ≤ 𝑚 different 𝑝 , 𝑝 , … , 𝑝 ∈ {1, 2, … , 2 − 1}. Call the 𝑝th, 𝑝th, … , 𝑝th columns of 𝐻
respectively p1, p2, … ,ps. Let 𝐻 be a parity-check matrix of a [2 − 1 − 𝑠, 2 − 1 −𝑚− 𝑠, 3] shortened
Hamming code 𝐶, obtained from 𝐻 by removing said columns p1, p2, … ,ps. Then if {p1,p2, … ,ps} form
an independent set, 𝐶 has (𝑟 = 2 − 𝑠, 𝑒 = 1)-cooperative locality.

Proof. Assume {p1,p2, … ,ps} is an independent set. Choose a 𝑖 ∈ {1, 2, … , 2 − 1 − 𝑠} and let 𝐸 = {𝑖}.
The 𝑖th column of 𝐻 is also a column of 𝐻 , say the 𝑗th column of 𝐻 . Call this column j. Notice that
j ∉ {p1,p2, … ,ps}, since all columns of 𝐻 are different. Let 𝑆 = {j,p1,p2, … ,ps}. We consider the cases.
1.) 𝑆 is an independent set.
2.) 𝑆 is a dependent set.

1.) Assume 𝑆 is an independent set. Notice that this is only possible if 𝑠 ≤ 𝑚−1. (1, 1, … , 1) ∈ (𝐹 ) ,
from Lemma 4 follows that there are 2 ( ) ≥ 1 different words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 )
with 𝑥 = 1, and 𝑥 = 1 for all 𝑡 ∈ {1, 2, … , 𝑠}. Choose one such x . All words in Row(𝐻 ) have Hamming
weight equal to 2 , so𝑤𝑡(x ) = 2 . x constructs a repair set for 𝐸 in the following way: Let x be the
word in Row(𝐻), constructed from x by removing the 𝑝th, 𝑝th,… , 𝑝th elements. Then 𝑤𝑡(x) = 2 −𝑠,
since the removed elements are all ones. Let 𝑅 = {𝑘 | 𝑥 = 1} ⊆ {1, 2, … , 2 − 1 − 𝑠} ⧵ 𝐸. From Lemma
2 follows that 𝑅 is a cooperative repair set for 𝐸. We know that |𝑅| = 𝑤𝑡(x) − 1 = 2 − 𝑠 − 1.

2.) Assume 𝑆 is a dependent set. Then j = 𝑐 p1 + 𝑐 p2 + ⋯ + 𝑐 ps. Choose one 𝑡 ∈ {1, 2, … , 𝑠}
with 𝑐 = 1. Then pt = 𝑐 p1+𝑐 p2+⋯+0⋅pt+⋯+𝑐 ps+ j. Notice that 𝑆 = {j,p1,p2, … ,ps}⧵{pt}
is an independent set.
(1, 1, … , 1) ∈ (𝐹 ) , from Lemma 4 follows that there are 2 ≥ 1 different words x = (𝑥 , 𝑥 , … , 𝑥 )
in Row(𝐻 ) with 𝑥 = 1, and 𝑥 = 1 for all 𝑘 ∈ {1, 2, … , 𝑠} ⧵ {𝑡}.
Choose one such x . Notice that 𝑥 = 0 or 𝑥 = 1. All words in Row(𝐻 ) have Hamming weight equal
to 2 , so 𝑤𝑡(x ) = 2 . x constructs a repair set for 𝐸 in the following way:
Let x be the word in Row(𝐻), constructed from x by removing the 𝑝th, 𝑝th,… , 𝑝th elements. Then
𝑤𝑡(x) = 2 − 𝑠 or 𝑤𝑡(x) = 2 − (𝑠 − 1), depending on the value of 𝑥 . Let 𝑅 = {𝑘 | 𝑥 = 1} ⊆
{1, 2, … , 2 − 1 − 𝑠} ⧵ 𝐸. From Lemma 2 follows that 𝑅 is a cooperative repair set for 𝐸. We know that
|𝑅| = 𝑤𝑡(x) − 1 = 2 − 𝑠 − 1 or |𝑅| = 2 − 𝑠. So |𝑅| ≤ 2 − 𝑠
In both cases we find a cooperative repair set for 𝐸 with 𝑅 ≤ 2 − 𝑠, so 𝐶 has (𝑟 = 2 − 𝑠, 𝑒 = 1)-
cooperative locality.

Theorem 12. Let 𝑚 ≥ 3. Let 𝐻 be a parity-check matrix of a [2 − 1, 2 − 1 − 𝑚, 3] Hamming code
𝐶 . Choose 2 ≤ 𝑠 < 2 − 1−𝑚 different 𝑝 , 𝑝 , … , 𝑝 ∈ {1, 2, … , 2 − 1}. Call the 𝑝th, 𝑝th, … , 𝑝th columns
of 𝐻 respectively p1, p2, … ,ps. Let 𝐻 be a parity-check matrix of a [2 − 1 − 𝑠, 2 − 1 − 𝑚 − 𝑠, 3]
shortened Hamming code 𝐶, obtained from 𝐻 by removing said columns p1, p2, … ,ps. Then 𝐶 does
not have (𝑟 = 2 − 𝑠 − 1, 𝑒 = 1)-cooperative locality.

Proof. Let y = p1 + p2. Then y is a column of 𝐻 , say the 𝑦th column.
Consider two options.

1.) y ∈ {p1,p2, … ,ps}, so y = pt for some 𝑡 ∈ {1, … , 𝑠}.
2.) y ∉ {p1,p2, … ,ps}.

1.) Choose 𝑖 ∈ {1, 2, … , 2 − 1 − 𝑠} and let 𝐸 = {𝑖}. The 𝑖th column of 𝐻 is also a column of
𝐻 , say the 𝑗th column. Choose a x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1. Notice that since
y = p1 + p2, 𝑥 = 𝑥 + 𝑥 . So 𝑥 , 𝑥 and 𝑥 can not all be ones. Let x be the word in Row(𝐻),
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constructed from x by removing the 𝑝th, 𝑝th,… , 𝑝th elements. Notice that then 𝑤𝑡(x) ≥ 2 − (𝑠 −1).
Let 𝑅 = {𝑘 | 𝑥 = 1} ⊆ {1, 2, … , 2 − 1 − 𝑠} ⧵ 𝐸, the cooperative repair set constructed from x. Then
|𝑅| ≥ 2 − (𝑠 − 1) − 1 = 2 − 𝑠. So for all 𝑖 ∈ {1, 2, … , 2 − 1 − 𝑠}, all cooperative repair sets 𝑅 for
𝐸 = {𝑖} have |𝑅| ≥ 2 − 𝑠.

2.) The columns of 𝐻 are all nonzero words in (𝐹 ) , so y is a column of 𝐻 , and since y ∉
{p1,p2, … ,ps}, also a column of 𝐻. Choose 𝑖 ∈ {1, 2, … , 2 − 1 − 𝑠}, such that the 𝑖th column of 𝐻 is
y, and let 𝐸 = {𝑖}. The 𝑖th column of 𝐻 is also a column of 𝐻 , say the 𝑗th column. y = p1 + p2,
so for any x ∈ Row(𝐻 ), if 𝑥 = 1, then either 𝑥 = 0 or 𝑥 = 0. Every cooperative repair set for
𝐸 = {𝑖} is constructed from one of these x . Choose one such x . Let x be the word in Row(𝐻), con-
structed from x by removing the 𝑝th, 𝑝th,… , 𝑝th elements. Notice that then 𝑤𝑡(x) ≥ 2 −(𝑠−1). Let
𝑅 = {𝑘 | 𝑥 = 1} ⊆ {1, 2, … , 2 − 1 − 𝑠} ⧵ 𝐸, from Lemma 2 follows that this is a cooperative repair set
for 𝐸. Then |𝑅| ≥ 2 − (𝑠 − 1) − 1 = 2 − 𝑠. For this specific 𝑖, all cooperative repair sets 𝑅 have
|𝑅| ≥ 2 − 𝑠.

In both cases we can find a 𝑖 ∈ {1, 2, … , 2 − 1 − 𝑠}, such that there is no cooperative repair set 𝑅
for 𝐸 = {𝑖} with |𝑅| < 2 − 𝑠. So 𝐶 does not have (𝑟 = 2 − 𝑠 − 1, 𝑒 = 1)-cooperative locality.

Theorem 13. Let 𝑚 ≥ 3. Let 𝐻 be a parity-check matrix of a [2 − 1, 2 − 1 − 𝑚, 3] Hamming code
𝐶 . Choose 2 ≤ 𝑠 ≤ 𝑚+1 different 𝑝 , 𝑝 , … , 𝑝 ∈ {1, 2, … , 2 − 1}. Call the 𝑝th, 𝑝th, … , 𝑝th columns of 𝐻
respectively p1, p2, … ,ps. Let 𝐻 be a parity-check matrix of a [2 − 1 − 𝑠, 2 − 1 −𝑚− 𝑠, 3] shortened
Hamming code 𝐶, obtained from 𝐻 by removing said columns p1, p2, … ,ps. Let 𝑘 be the biggest even
number in {1, 2, … 𝑠 −1}. Then if {p1,p2, … ,ps 1} form an independent set, and ps = p1+p2+⋯+pk,
𝐶 has (𝑟 = 2 − 𝑠, 𝑒 = 1)-cooperative locality.

Proof. Assume {p1,p2, … ,ps 1} is an independent set, and ps = p1 + p2 + … ,pk. Choose a 𝑖 ∈
{1, 2, … , 2 − 1 − 𝑠} and let 𝐸 = {𝑖}. The 𝑖th column of 𝐻 is also a column of 𝐻 , say the 𝑗th col-
umn of 𝐻 . Call this column j. Notice that j ∉ {p1,p2, … ,ps}, since all columns of 𝐻 are different.
Consider the set 𝑆 = {j,p1,p2, … ,ps 1}. There are two different cases.

1.) 𝑆 is an independent set.
2.) 𝑆 is a dependent set.

1.) Assume 𝑆 is an independent set. Notice that this is only possible if 𝑠 ≤ 𝑚−1. (1, 1, … , 1) ∈ (𝐹 ) ,
from Lemma 4 follows that there are 2 ≥ 1 different words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with
𝑥 = 1, and 𝑥 = 1 for all 𝑡 ∈ {1, 2, … , 𝑠 − 1}. Choose one such x . All words in Row(𝐻 ) have Hamming
weight equal to 2 , so 𝑤𝑡(x ) = 2 .
x constructs a repair set for 𝐸 in the following way:

Let x be the word in Row(𝐻), constructed from x by removing the 𝑝th, 𝑝th,… , 𝑝th elements. Then
𝑤𝑡(x) ≤ 2 −(𝑠−1), since 𝑥 = 1 for 𝑡 ∈ {1, 2, … , 𝑠−1}. Let 𝑅 = {𝑘 | 𝑥 = 1} ⊆ {1, 2, … , 2 −1−𝑠}⧵𝐸.
From Lemma 2 follows that 𝑅 is a cooperative repair set for 𝐸. We know that |𝑅| ≤ 𝑤𝑡(x)−1 = 2 −𝑠.

2.) Assume 𝑆 is a dependent set. Then j = 𝑐 p1 + 𝑐 p2 + ⋯ + 𝑐 ps 1. Choose one 𝑡 ∈
{1, 2, … , 𝑘} with 𝑐 = 1. Then pt = 𝑐 p1 + 𝑐 p2 + ⋯ + 0 ⋅ pt + ⋯ + 𝑐 ps 1 + j. Notice that
𝑆 = {j,p1,p2, … ,ps 1} ⧵ {pt} is an independent set. (1, 1, … , 1) ∈ (𝐹 ) , from Lemma 4 follows that
there are 2 ( ) ≥ 1 different words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1, and 𝑥 = 1 for
all ℎ ∈ {1, 2, … , 𝑠 − 1} ⧵ {𝑡}.

Choose one such x . Notice that 𝑥 = 0 or 𝑥 = 1. If 𝑥 𝑝 = 0, since ps = p1+p2+⋯+pk, 𝑡 ≤ 𝑘,
and 𝑘 is even, 𝑥 𝑝 = 1. If 𝑥 𝑝 = 1, then 𝑥 𝑝 = 0. All words in Row(𝐻 ) have Hamming weight equal
to 2 , so 𝑤𝑡(x ) = 2 . x constructs a repair set for 𝐸 in the following way:

Let x be the word in Row(𝐻), constructed from x by removing the 𝑝th, 𝑝th,… , 𝑝th elements. Then
𝑤𝑡(x) = 2 − (𝑠 − 1). Let 𝑅 = {ℎ | 𝑥 = 1} ⊆ {1, 2, … , 2 − 1 − 𝑠} ⧵ 𝐸. From Lemma 2 follows that 𝑅
is a cooperative repair set for 𝐸. We know that |𝑅| = 𝑤𝑡(x) − 1 = 2 − (𝑠 − 1) − 1 = 2 − 𝑠.

In both cases we can find a cooperative repair set 𝑅 for 𝐸 = {𝑖} with |𝑅| = 2 − 𝑠. So 𝐶 has
(𝑟 = 2 − 𝑠, 𝑒 = 1)-cooperative locality.
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With Theorem 10 we found that if 𝑠 = 1, 𝐶 has (𝑟 = 2 − 2, 𝑒 = 1)-cooperative locality. With
Theorem 12, we found that for all 𝑚 > 2 and 2 ≤ 𝑠 < 2 − 1 − 𝑚 the 𝑠 times shortened 𝐻𝑎𝑚(2,𝑚)
code 𝐶 does not have (𝑟, 𝑒 = 1)-cooperative locality with 𝑟 = 2 − 𝑠 − 1.

With Theorem 11 we found that if the 𝑠 deleted columns from the parity-check matrix of the non-
shortened 𝐻𝑎𝑚(2,𝑚) code form an independent set, 𝐶 has (𝑟 = 2 − 𝑠, 𝑒 = 1)-cooperative locality.
The 𝑠 deleted columns can only form an independent set if 𝑠 ≤ 𝑚. Theorem 13 says that if 𝑠 − 1 of the
𝑠 deleted columns form an independent set, and the last deleted column is a specific linear combination
of the first 𝑠 columns, 𝐶 also has (𝑟 = 2 − 𝑠, 𝑒 = 1)-cooperative locality. This is only possible if
𝑠 ≤ 𝑚 + 1.

So if 𝑠 ≤ 𝑚+1, and a 𝐻𝑎𝑚(2,𝑚) code is shortened 𝑠 times in a specific way, the smallest 𝑟 for which
this code has (𝑟, 𝑒 = 1)-cooperative locality is 𝑟 = 2 −𝑠. For 𝑚, 𝑠 ≤ 9, Table A.1 in Appendix A shows
the smallest 𝑟, for which a 𝑠 times shortened 𝐻𝑎𝑚(2,𝑚) code can have (𝑟, 𝑒 = 1)-cooperative locality.
Notice that if a code with (𝑟, 𝑒)-cooperative locality is shortened, the locality can only decrease.

2.3.3. Shortened Hamming Codes with Two Erasures
Theorem 14. Let𝑚 ≥ 3. A one time shortened Ham(2,m) code has (𝑟 = 3⋅2 −3, 𝑒 = 2)-cooperative
locality.

Proof. Let 𝐻 be a parity-check matrix of a [2 − 1, 2 − 1 − 𝑚, 3] Hamming code 𝐶 . Choose 𝑝 ∈
{1, 2, … , 2 − 1}. Let 𝐻 be a parity-check matrix of a [2 − 2, 2 − 2 − 𝑚, 3] shortened Hamming code
𝐶, obtained from 𝐻 by removing the 𝑝th column. Call this column p Choose two different 𝑖 , 𝑖 ∈
{1, 2, … , 2 − 2} and let 𝐸 = {𝑖 , 𝑖 }.

The 𝑖th and 𝑖th columns of 𝐻 are also columns in 𝐻 , say the 𝑗th and 𝑗th column of 𝐻. Call these
columns j1 and j2. Notice that j1 and j2 are not equal to p, since every column of 𝐻 is different.
Consider the set 𝑆 = {j1, j2,p}, containing these three columns. There are two different cases.

1.) 𝑆 is an independent set.
2.) 𝑆 is a dependent set.

1.) Assume 𝑆 is an independent set. (1, 0, 1) ∈ (𝐹 ) , from Lemma 4 follows that there are 2 ≥ 1
different words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1, 𝑥 = 0, and 𝑥 = 1. Also, since
(0, 1, 1) ∈ (𝐹 ) , there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 ) in Row(𝐻 ) with 𝑦 = 0,
𝑦 = 1, and 𝑦 = 1.

2.) If 𝑆 is an dependent set, since it contains 3 elements, j1 + j2 + p = 0. The set {j1, j2} is
independent, and (1, 0) ∈ (𝐹 ) , so with Lemma 4 we find that there are 2 ≥ 1 different words
x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1 and 𝑥 = 0. Notice that then 𝑥 = 1. Also, (0, 1) ∈ (𝐹 ) ,
so with Lemma 4 we find that there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 ) in Row(𝐻 ) with
𝑦 = 1 and 𝑦 = 0. Notice that then 𝑦 = 1.

In both cases we find that there exist a x and y in Row(𝐻 ) with 𝑥 = 1, 𝑥 = 0, 𝑥 = 1, 𝑦 = 0,
𝑦 = 1, and 𝑦 = 1. All words in Row(𝐻 ) have Hamming weight equal to 2 , so 𝑤𝑡(x ) = 2 and
𝑤𝑡(y ) = 2 . Notice that also 𝑤𝑡(x + y ) = 2 . x and y construct a cooperative repair set for 𝐸
in the following way:

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th element.
Then 𝑤𝑡(x) = 2 − 1 and 𝑤𝑡(y) = 2 − 1, since the removed elements are ones. Notice that
𝑤𝑡(x + y) = 2 . Let 𝑅 = {𝑗 | 𝑥 = 1 ∨ 𝑦 = 1} ⊆ {1, 2, … , 2 − 2} ⧵ 𝐸. Lemma 2 says that 𝑅 is a
cooperative repair set for 𝐸. Notice that |𝑅| = 2 − 2 − |𝑍(x,y)| − 2. Lemma 5 says:

|𝑍(x,y)| = 2 − 2 − 2 − 1 + 2 − 1 + 2
2 = 2 − 2 − 3 ⋅ 2 + 1.

So |𝑅| = 2 − 2 − (2 − 2 − 3 ⋅ 2 + 1) − 2 = 3 ⋅ 2 − 3.
So a one time shortened 𝐻𝑎𝑚(2,𝑚) code has (𝑟 = 3 ⋅ 2 − 3, 𝑒 = 2)-cooperative locality.

Theorem 15. Let 𝑚 ≥ 3. A two times shortened 𝐻𝑎𝑚(2,𝑚) code has (𝑟 = 3 ⋅ 2 − 4, 𝑒 = 2)-
cooperative locality.
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Proof. Let 𝐻 be a parity-check matrix of a [2 − 1, 2 − 1 − 𝑚, 3] Hamming code 𝐶 . Choose two
different 𝑝 , 𝑝 ∈ {1, 2, … , 2 − 1}. Let 𝐻 be a parity-check matrix of a [2 − 3, 2 − 3 −𝑚, 3] shortened
Hamming code 𝐶, obtained from 𝐻 by removing the 𝑝th and 𝑝th columns. Choose two different 𝑖 , 𝑖 ∈
{1, 2, … , 2 − 3} and let 𝐸 = {𝑖 , 𝑖 }.

The 𝑖th and 𝑖th columns of 𝐻 are also columns in 𝐻 , say the 𝑗th and 𝑗th column of 𝐻 , and are not
equal to the 𝑝th or 𝑝th column of 𝐻 , since every column of 𝐻 is different. Call the 𝑝th, 𝑝th, 𝑗th and 𝑗th
columns of 𝐻 respectively p1, p2, j1 and j2. Consider the set 𝑆 = {p1,p2, j1, j2} containing these four
columns. There are two different cases.

1.) 𝑆 is an independent set.
2.) 𝑆 is a dependent set.

1.) Assume 𝑆 is an independent set. (1, 0, 1, 1) ∈ (𝐹 ) , from Lemma 4 follows that there are 2 ≥ 1
different words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1, 𝑥 = 0, 𝑥 = 1 and 𝑥 = 1. Also, since
(0, 1, 1, 1) ∈ (𝐹 ) , there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 ) in Row(𝐻 ) with 𝑦 = 0,
𝑦 = 1, 𝑦 = 1 and 𝑦 = 1.

Choose one x and one y , such that 𝑥 = 1, 𝑥 = 0, 𝑥 = 1, 𝑥 = 1, 𝑦 = 0, 𝑦 = 1,
𝑦 = 1 and 𝑦 = 1. All words in Row(𝐻 ) have Hamming weight equal to 2 , so 𝑤𝑡(x ) = 2 and
𝑤𝑡(y ) = 2 . Notice that also 𝑤𝑡(x + y ) = 2 . x and y construct a cooperative repair set for 𝐸
in the following way:

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th and 𝑝th element.
Then 𝑤𝑡(x) = 2 − 2 and 𝑤𝑡(y) = 2 − 2, since the removed elements are ones. Notice that
𝑤𝑡(x+ y) = 2 . Let 𝑅 = {𝑗 | 𝑥 = 1 ∨ 𝑦 = 1} ⊆ {1, 2, … , 2 − 3} ⧵ 𝐸. From Lemma 2 follows that 𝑅 is
a cooperative repair set for 𝐸. Observe that |𝑅| = 2 − 3 − |𝑍(x,y)| − 2. Lemma 5 says:

|𝑍(x,y)| = 2 − 3 − 2 − 2 + 2 − 2 + 2
2 = 2 − 3 − 3 ⋅ 2 + 2.

So |𝑅| = 2 − 3 − (2 − 3 − 3 ⋅ 2 + 2) − 2 = 3 ⋅ 2 − 4.

2.) 𝑆 is a dependent set with 4 elements. Then either {p1, j1, j2}, or {p2, j1, j2} is an independent set.
Assume without loss of generality that {p1, j1, j2} is an independent set. Then p2 is a linear combination
of p1, j1 and j2, write p2 = 𝑐 p1 + 𝑐 j1 + 𝑐 j2. We consider the four options:

a) 𝑐 = 0, 𝑐 = 1, 𝑐 = 1
b) 𝑐 = 1, 𝑐 = 0, 𝑐 = 1
c) 𝑐 = 1, 𝑐 = 1, 𝑐 = 0
d) 𝑐 = 1, 𝑐 = 1, 𝑐 = 1

a) (1, 0, 1) ∈ (𝐹 ) , so with Lemma 4 we find that there are 2 ≥ 1 different words x =
(𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1, 𝑥 = 0 and 𝑥 = 1. Notice that then 𝑥 = 1. Also,
(0, 1, 1) ∈ (𝐹 ) , so with Lemma 4 we find that there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 )
in Row(𝐻 ) with 𝑦 = 0, 𝑦 = 1 and 𝑦 = 1. Notice that then 𝑦 = 1.

Choose one such x and one such y . All words in Row(𝐻 ) have Hamming weight equal to 2 , so
𝑤𝑡(x ) = 2 , 𝑤𝑡(y ) = 2 and 𝑤𝑡(x + y ) = 2 .

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th and 𝑝th element.
Then 𝑤𝑡(x) = 2 − 2 and 𝑤𝑡(y) = 2 − 2, since the removed elements are ones. Notice that
𝑤𝑡(x+ y) = 2 . Lemma 5 says:

|𝑍(x,y)| = 2 − 3 − 2 − 2 + 2 − 2 + 2
2 = 2 − 3 − 3 ⋅ 2 + 2.

b) (1, 0, 1) ∈ (𝐹 ) , so with Lemma 4 we find that there are 2 ≥ 1 different words x =
(𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1, 𝑥 = 0 and 𝑥 = 1. Notice that then 𝑥 = 1. Also,
(0, 1, 0) ∈ (𝐹 ) , so with Lemma 4 we find that there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 )
in Row(𝐻 ) with 𝑦 = 0, 𝑦 = 1 and 𝑦 = 0. Notice that then 𝑦 = 1.

Choose one such x and one such y . All words in Row(𝐻 ) have Hamming weight equal to 2 , so
𝑤𝑡(x ) = 2 , 𝑤𝑡(y ) = 2 and 𝑤𝑡(x + y ) = 2 .
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Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th and 𝑝th element.
Then 𝑤𝑡(x) = 2 − 2 and 𝑤𝑡(y) = 2 − 1. Notice that 𝑤𝑡(x+ y) = 2 − 1. Lemma 5 says:

|𝑍(x,y)| = 2 − 3 − 2 − 2 + 2 − 1 + 2 − 1
2 = 2 − 3 − 3 ⋅ 2 + 2.

c) (1, 0, 0) ∈ (𝐹 ) , so with Lemma 4 we find that there are 2 ≥ 1 different words x =
(𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1, 𝑥 = 0 and 𝑥 = 0. Notice that then 𝑥 = 1. Also,
(0, 1, 1) ∈ (𝐹 ) , so with Lemma 4 we find that there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 )
in Row(𝐻 ) with 𝑦 = 0, 𝑦 = 1 and 𝑦 = 1. Notice that then 𝑦 = 1.

Choose one such x and one such y . All words in Row(𝐻 ) have Hamming weight equal to 2 , so
𝑤𝑡(x ) = 2 , 𝑤𝑡(y ) = 2 and 𝑤𝑡(x + y ) = 2 .

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th and 𝑝th element.
Then 𝑤𝑡(x) = 2 − 1 and 𝑤𝑡(y) = 2 − 2. Notice that 𝑤𝑡(x+ y) = 2 − 1. Lemma 5 says:

|𝑍(x,y)| = 2 − 3 − 2 − 1 + 2 − 2 + 2 − 1
2 = 2 − 3 − 3 ⋅ 2 + 2.

d) (1, 0, 0) ∈ (𝐹 ) , so with Lemma 4 we find that there are 2 ≥ 1 different words x =
(𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1, 𝑥 = 0 and 𝑥 = 0. Notice that then 𝑥 = 1. Also,
(0, 1, 1) ∈ (𝐹 ) , so with Lemma 4 we find that there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 )
in Row(𝐻 ) with 𝑦 = 0, 𝑦 = 1 and 𝑦 = 1. Notice that then 𝑦 = 0.

Choose one such x and one such y . All words in Row(𝐻 ) have Hamming weight equal to 2 , so
𝑤𝑡(x ) = 2 , 𝑤𝑡(y ) = 2 and 𝑤𝑡(x + y ) = 2 .

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th and 𝑝th element.
Then 𝑤𝑡(x) = 2 − 1 and 𝑤𝑡(y) = 2 − 1. Notice that 𝑤𝑡(x+ y) = 2 − 2. Lemma 5 says:

|𝑍(x,y)| = 2 − 3 − 2 − 1 + 2 − 1 + 2 − 2
2 = 2 − 3 − 3 ⋅ 2 + 2.

In all four cases we can find a x and y in Row(𝐻) with 𝑥 = 1, 𝑥 = 0, 𝑦 = 0, 𝑦 = 1 and
|𝑍(x,y)| = 2 −3−3 ⋅ 2 +2. These x and y construct a cooperative repair set for 𝐸 in the following
way:

Let 𝑅 = {𝑗 | 𝑥 = 1∨𝑦 = 1} ⊆ {1, 2, … , 2 −3} ⧵𝐸. From Lemma 2 follows that 𝑅 is a cooperative re-
pair set for 𝐸. Observe that |𝑅| = 2 −3−|𝑍(x,y)|−2 = 2 −3−(2 − 3 − 3 ⋅ 2 + 2)−2 = 3⋅2 −4.

In both cases 1.) and 2.) we can find a cooperative repair set for 𝐸 with |𝑅| = 3 ⋅ 2 − 4, so a two
times shortened 𝐻𝑎𝑚(2,𝑚) code has (𝑟 = 3 ⋅ 2 − 4, 𝑒 = 2)-cooperative locality.

Theorem 16. Let 𝐻 be a parity-check matrix of a [2 − 1, 2 − 1 − 𝑚, 3] Hamming code 𝐶 . Choose
3 ≤ 𝑠 ≤ 𝑚 different 𝑝 , 𝑝 , … , 𝑝 ∈ {1, 2, … , 2 − 1}. Call the 𝑝th, 𝑝th, … , 𝑝th columns of 𝐻 respectively
p1, p2, … ,ps. Let 𝐻 be a parity-check matrix of a [2 − 3, 2 − 3 − 𝑚, 3] shortened Hamming code 𝐶,
obtained from 𝐻 by removing said columns p1, p2, … ,ps. Then if {p1,p2, … ,ps} in an independent set,
𝐶 has (𝑟 = 3 ⋅ 2 − 2 − 𝑠, 𝑒 = 2)-cooperative locality.

Proof. Assume {p1,p2, … ,ps} is an independent set. Choose two different 𝑖 , 𝑖 ∈ {1, 2, … , 2 − 1 − 𝑠}
and let 𝐸 = {𝑖 , 𝑖 }. The 𝑖th and 𝑖th columns of 𝐻 are also columns in 𝐻 , say the 𝑗th and 𝑗th column of
𝐻 . Call the 𝑗th and 𝑗th columns of 𝐻 respectively j1 and j2. Notice that j1 and j2 and are not equal to
any of the columns p1,p2, … ,ps, since every column of 𝐻 is different. Consider the following cases:

1. {j1, j2,p1,p2, … ,ps} is an independent set.

2. {j1,p1,p2, … ,ps} is an independent set and {j2,p1,p2, … ,ps} is a dependent set.

3. {j1,p1,p2, … ,ps} and {j2,p1,p2, … ,ps} are both dependent sets.

(a) j1 and j2 are both linear combinations of an even amount of columns p1,p2, … ,ps.

(b) j1 and j2 are both linear combinations of an uneven amount of columns p1,p2, … ,ps.



18 2. Research

(c) j1 is a linear combination of an uneven amount of columns p1,p2, … ,ps and j2 is a linear
combination of an even amount of columns p1,p2, … ,ps.

Notice that without loss of generality, these cases describe all possible cases.

1.) Notice that {j1, j2,p1,p2, … ,ps} can only be an independent set, if 𝑠 ≤ 𝑚−2. (1, 0, 1, 1, 1, … , 1) ∈
(𝐹 ) , from Lemma 4 follows that there are 2 ( ) ≥ 1 different words x = (𝑥 , 𝑥 , … , 𝑥 ) in
Row(𝐻 ) with 𝑥 = 1, 𝑥 = 0, and 𝑥 = 1 for all 𝑡 ∈ {1, 2, … , 𝑠}. Also, since (0, 1, 1, 1, 1, … , 1) ∈ (𝐹 ) ,
there are 2 ( ) ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 ) in Row(𝐻 ) with 𝑦 = 0, 𝑦 = 1, and
𝑦 = 1 for all 𝑡 ∈ {1, 2, … , 𝑠}.

Choose one such x and one such y . All words in Row(𝐻 ) have Hamming weight equal to 2 ,
so 𝑤𝑡(x ) = 2 and 𝑤𝑡(y ) = 2 . Notice that also 𝑤𝑡(x + y ) = 2 . x and y construct a
cooperative repair set for 𝐸 in the following way:

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th, 𝑝th,… , 𝑝th
elements. Then 𝑤𝑡(x) = 2 − 𝑠 and 𝑤𝑡(y) = 2 − 𝑠, since the removed elements are ones. Notice
that 𝑤𝑡(x + y) = 2 . Let 𝑅 = {𝑗 | 𝑥 = 1 ∨ 𝑦 = 1} ⊆ {1, 2, … , 2 − 1 − 𝑠} ⧵ 𝐸. From Lemma 2 follows
that 𝑅 is a cooperative repair set for 𝐸. Observe that |𝑅| = 2 − 1 − 𝑠 − |𝑍(x,y)| − 2. Lemma 5 says:

|𝑍(x,y)| = 2 − 1 − 𝑠 − 2 − 𝑠 + 2 − 𝑠 + 2
2 = 2 − 1 − 3 ⋅ 2 .

So |𝑅| = 2 − 1 − 𝑠 − (2 − 1 − 3 ⋅ 2 ) − 2 = 3 ⋅ 2 − 2 − 𝑠.

2.) (1, 1, 1, 1, 1, … , 1) ∈ (𝐹 ) , so from Lemma 4 follows that there are 2 ( ) ≥ 1 different words
x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1 and 𝑥 = 1 for all 𝑡 ∈ {1, 2, … , 𝑠}. Also, since (0, 1) ∈
(𝐹 ) , and {j1, j2} is an independent set, there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 ) in
Row(𝐻 ) with 𝑦 = 0 and 𝑦 = 1.

Choose one such x and one such y . Define 𝑙 = |{𝑝 | 𝑦 = 1 ∧ 1 ≤ 𝑡 ≤ 𝑠}| to be the amount of
columns 𝑝 , where 𝑦 = 1, for 𝑡 ∈ {1, 2, … , 𝑠}. All words in Row(𝐻 ) have Hamming weight equal to
2 , so 𝑤𝑡(x ) = 𝑤𝑡(y ) = 𝑤𝑡(x + y ) = 2 . x and y construct a cooperative repair set for 𝐸 in
the following way:

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th, 𝑝th,… , 𝑝th
elements. Then 𝑤𝑡(x) = 2 − 𝑠 and 𝑤𝑡(y) = 2 − 𝑙. Notice that 𝑤𝑡(x + y) = 2 − 𝑠 + 𝑙. Let
𝑅 = {𝑗 | 𝑥 = 1 ∨ 𝑦 = 1} ⊆ {1, 2, … , 2 − 1− 𝑠} ⧵ 𝐸. From Lemma 2 follows that 𝑅 is a cooperative repair
set for 𝐸. Observe that |𝑅| = 2 − 1 − 𝑠 − |𝑍(x,y)| − 2. Lemma 5 says:

|𝑍(x,y)| = 2 − 1 − 𝑠 − 2 − 𝑠 + 2 − 𝑙 + 2 − 𝑠 + 𝑙
2 = 2 − 1 − 3 ⋅ 2 .

So |𝑅| = 2 − 1 − 𝑠 − (2 − 1 − 3 ⋅ 2 ) − 2 = 3 ⋅ 2 − 2 − 𝑠.

3.) In this case j1 = 𝑏 p1 + 𝑏 p2 +⋯+ 𝑏 ps, and j2 = 𝑐 p1 + 𝑐 p2 +⋯+ 𝑐 ps with 𝑐 , 𝑏 ∈ {0, 1},
for all 𝑡 ∈ {1, 2, … , 𝑠}. j1 ≠ j2, so there is at least one 𝑡 ∈ {1, 2, … , 𝑠}, such that 𝑏 ≠ 𝑐 .

a) Assume without loss of generality that 𝑏 = 1 and 𝑐 = 0. (0, 1, … , 1) ∈ (𝐹 ) , so from Lemma
4 follows that there are 2 ≥ 1 different words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 0 and
𝑥 = 1 for all 𝑡 ∈ {1, 2, … , 𝑠} ⧵ {𝑡 }. Pick one such x . Notice that 𝑥 = 1 and 𝑥 𝑗 = 0.

j1 + j2 + pt1
≠ 0, since j1 and j2 are both linear combinations of an even amount of columns

p1,p2, … ,ps. Therefore {j1, j2,pt1
} is an independent set, and (0, 1, 1) ∈ (𝐹 ) , so from Lemma 4

follows that there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 ) in Row(𝐻 ) with 𝑦 = 0, 𝑦 = 1
and 𝑦 = 1. Pick one such y . All words in Row(𝐻 ) have Hamming weight equal to 2 , so 𝑤𝑡(x ) =
𝑤𝑡(y ) = 𝑤𝑡(x + y ) = 2 . x and y construct a cooperative repair set for 𝐸 in the following way:

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th, 𝑝th,… , 𝑝th
elements. Let 𝑙 = |{1 ≤ 𝑘 ≤ 𝑠 | 𝑦 = 1∧𝑘 ≠ 𝑡 }|. Then 𝑤𝑡(x) = 2 −(𝑠−1), 𝑤𝑡(y) = 2 −(1+𝑙),
𝑤𝑡(x + y) = 2 − (𝑠 − 𝑙). Let 𝑅 = {𝑗 | 𝑥 = 1 ∨ 𝑦 = 1} ⊆ {1, 2, … , 2 − 1 − 𝑠} ⧵ 𝐸. From Lemma 2
follows that 𝑅 is a cooperative repair set for 𝐸. Observe that |𝑅| = 2 − 1 − 𝑠 − |𝑍(x,y)| − 2. Lemma 5
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says:

|𝑍(x,y)| = 2 − 1 − 𝑠 − 2 − (𝑠 − 1) + 2 − (1 + 𝑙) + 2 − (𝑠 − 𝑙)
2 = 2 − 1 − 3 ⋅ 2 .

So |𝑅| = 2 − 1 − 𝑠 − (2 − 1 − 3 ⋅ 2 ) − 2 = 3 ⋅ 2 − 2 − 𝑠.

b) Assume without loss of generality that 𝑏 = 1 and 𝑐 = 0. (0, 1, … , 1) ∈ (𝐹 ) , so from Lemma
4 follows that there are 2 ≥ 1 different words x = (𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 0 and
𝑥 = 1 for all 𝑡 ∈ {1, 2, … , 𝑠} ⧵ {𝑡 }. Pick one such x . Notice that 𝑥 = 0 and 𝑥 𝑗 = 1.

j1 + j2 + pt1
≠ 0, since j1 and j2 are both linear combinations of an uneven amount of columns

p1,p2, … ,ps. Therefore {j1, j2,pt1
} is an independent set, and (1, 0, 1) ∈ (𝐹 ) , so from Lemma 4 follows

that there are 2 ≥ 1 different words y = (𝑦 , 𝑦 , … , 𝑦 ) in Row(𝐻 ) with 𝑦 = 1, 𝑦 = 0 and
𝑦 = 1. Pick one such y . All words in Row(𝐻 ) have Hamming weight equal to 2 , so 𝑤𝑡(x ) =
𝑤𝑡(y ) = 𝑤𝑡(x + y ) = 2 . x and y construct a cooperative repair set for 𝐸 in the following way:

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th, 𝑝th,… , 𝑝th
elements. Let 𝑙 = |{1 ≤ 𝑘 ≤ 𝑠 | 𝑦 = 1∧𝑘 ≠ 𝑡 }|. Then 𝑤𝑡(x) = 2 −(𝑠−1), 𝑤𝑡(y) = 2 −(1+𝑙),
𝑤𝑡(x + y) = 2 − (𝑠 − 𝑙). Let 𝑅 = {𝑗 | 𝑥 = 1 ∨ 𝑦 = 1} ⊆ {1, 2, … , 2 − 1 − 𝑠} ⧵ 𝐸. From Lemma 2
follows that 𝑅 is a cooperative repair set for 𝐸. Observe that |𝑅| = 2 − 1 − 𝑠 − |𝑍(x,y)| − 2. Lemma 5
says:

|𝑍(x,y)| = 2 − 1 − 𝑠 − 2 − (𝑠 − 1) + 2 − (1 + 𝑙) + 2 − (𝑠 − 𝑙)
2 = 2 − 1 − 3 ⋅ 2 .

So |𝑅| = 2 − 1 − 𝑠 − (2 − 1 − 3 ⋅ 2 ) − 2 = 3 ⋅ 2 − 2 − 𝑠.

c) (1, 1, … , 1) ∈ (𝐹 ) , so from Lemma 4 follows that there are 2 ) ≥ 1 different words x =
(𝑥 , 𝑥 , … , 𝑥 ) in Row(𝐻 ) with 𝑥 = 1 for all 𝑡 ∈ {1, 2, … , 𝑠}. Pick one such x . Notice that 𝑥 = 1
and 𝑥 𝑗 = 0.
(0, 1) ∈ (𝐹 ) , and {j1, j2} is an independent set, so from Lemma 4 follows that there are 2 ≥ 1
different words y = (𝑦 , 𝑦 , … , 𝑦 ) in Row(𝐻 ) with 𝑦 = 0 and 𝑦 = 1. Pick one such y . All words
in Row(𝐻 ) have Hamming weight equal to 2 , so 𝑤𝑡(x ) = 𝑤𝑡(y ) = 𝑤𝑡(x + y ) = 2 . x and y
construct a cooperative repair set for 𝐸 in the following way:

Let x and y be the words in Row(𝐻) constructed from x and y by removing the 𝑝th, 𝑝th,… , 𝑝th
elements. Let 𝑙 = |{1 ≤ 𝑘 ≤ 𝑠 | 𝑦 = 1}|. Then 𝑤𝑡(x) = 2 − 𝑠, 𝑤𝑡(y) = 2 − 𝑙), 𝑤𝑡(x + y) =
2 − (𝑠 − 𝑙). Let 𝑅 = {𝑗 | 𝑥 = 1 ∨ 𝑦 = 1} ⊆ {1, 2, … , 2 − 1 − 𝑠} ⧵ 𝐸. From Lemma 2 follows that 𝑅 is
a cooperative repair set for 𝐸. Observe that |𝑅| = 2 − 1 − 𝑠 − |𝑍(x,y)| − 2. Lemma 5 says:

|𝑍(x,y)| = 2 − 1 − 𝑠 − 2 − 𝑠 + 2 − 𝑙 + 2 − (𝑠 − 𝑙)
2 = 2 − 1 − 3 ⋅ 2 .

So |𝑅| = 2 − 1 − 𝑠 − (2 − 1 − 3 ⋅ 2 ) − 2 = 3 ⋅ 2 − 2 − 𝑠.

In all cases we can find a cooperative repair set 𝑅 for 𝐸 with |𝑅| = 3 ⋅ 2 − 2 − 𝑠, so 𝐶 has
(𝑟 = 3 ⋅ 2 − 2 − 𝑠, 𝑒 = 2)-cooperative locality.

Theorem 17. Let 𝑚 ≥ 3. Let 𝐻 be a parity-check matrix of a [2 − 1, 2 − 1 − 𝑚, 3] Hamming code
𝐶 . Choose 1 ≤ 𝑠 ≤ 2 − 2−𝑚 different 𝑝 , 𝑝 , … , 𝑝 ∈ {1, 2, … , 2 − 1}. Call the 𝑝th, 𝑝th, … , 𝑝th columns
of 𝐻 respectively p1, p2, … ,ps. Let 𝐻 be a parity-check matrix of a [2 − 1 − 𝑠, 2 − 1 − 𝑚 − 𝑠, 3]
shortened Hamming code 𝐶, obtained from 𝐻 by removing said columns p1, p2, … ,ps. Then 𝐶 does
not have (𝑟 = 3 ⋅ 2 − 𝑠 − 3, 𝑒 = 2)-cooperative locality.

Proof. Pick any x ,y ∈ Row(𝐻 ), then 𝑤𝑡(x ) = 𝑤𝑡(y ) = 𝑤𝑡(x +y ) = 2 . Let x and y be the words
in Row(𝐻) constructed from x and y by removing the 𝑝th, 𝑝th,… , 𝑝th elements. Then 𝑤𝑡(x) +𝑤𝑡(y) +
𝑤𝑡(x + y) ≥ 3 ⋅ 2 − 2𝑠. Any repair set 𝑅 generated by x and y has |𝑅| = 2 − 1 − 𝑠 − (x,y)| − 2.
Lemma 5 says:

|𝑍(x,y)| = 2 − 1 − 𝑠 − 𝑤𝑡(x) + 𝑤𝑡(y) + 𝑤𝑡(x+ x)
2 ≤ 2 − 1 − 𝑠 − 32(2 − 2𝑠) = 2 − 1 − 3 ⋅ 2 .
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So |𝑅| ≥ 2 − 1 − 𝑠 − (2 − 1 − 3 ⋅ 2 ) − 2 = 3 ⋅ 2 − 2 − 𝑠.
So 𝐶 does not have (𝑟 = 3 ⋅ 2 − 𝑠 − 3, 𝑒 = 2)-cooperative locality.

With Theorem 17, we found that for all 𝑚 > 2 and 3 ≤ 𝑠 < 2 − 1 − 𝑚 the 𝑠 times shortened
𝐻𝑎𝑚(2,𝑚) code 𝐶 does not have (𝑟, 𝑒 = 2)-cooperative locality with 𝑟 = 3 ⋅ 2 − 3 − 𝑠.

With Theorem 16 we found that if the 𝑠 deleted columns of the parity-check matrix of the non-
shortened 𝐻𝑎𝑚(2,𝑚) code form an independent set, 𝐶 has (𝑟 = 3 ⋅ 2 − 2 − 𝑠, 𝑒 = 2)-cooperative
locality. The 𝑠 deleted columns can only form an independent set if 𝑠 ≤ 𝑚. With Theorem 14 and 15 we
found that this equality also holds for 𝑠 = 1 and 𝑠 = 2.

So if 𝑠 ≤ 𝑚, and a 𝐻𝑎𝑚(2,𝑚) code is shortened 𝑠 times in a specific way, the smallest 𝑟 for which this
code can have (𝑟, 𝑒 = 2)-cooperative locality is 𝑟 = 3 ⋅ 2 − 2 − 𝑠. For 𝑚, 𝑠 ≤ 9, Table A.2 in Appendix
A shows the smallest 𝑟, for which a 𝑠 times shortened 𝐻𝑎𝑚(2,𝑚) code can have (𝑟, 𝑒 = 2)-cooperative
locality. Notice that if a code with (𝑟, 𝑒)-cooperative locality is shortened, the locality can only decrease.

2.4. Performance Comparison
Table B.1 in Appendix B, shows the information rate of some shortened Hamming codes. This rate is
equal to the amount of data servers divided by the total amount of servers. Every time a code is short-
ened, a data server is deleted, so both the numerator and the denominator decrease by one. Since the
numerator is smaller than the denominator, the rate decreases. This means that every time a code is
shortened, more storage is needed to store the same amount of data. Notice that when 𝑚 increases, the
information rate of shortened 𝐻𝑎𝑚(2,𝑚) codes increases. This means less storage is needed to store
the same amount of data.

Table B.2 in Appendix B, shows the repairability divided by the total amount of servers, of some
shortened Hamming codes. This fraction is a measure for the reliability of the code. If a code uses more
servers, it is more likely to suffer from erasures. Every time a code is shortened, a server is deleted,
so this fraction will increase. This means that every time a code is shortened, storage becomes more
reliable. Notice that when 𝑚 increases, this fraction for shortened 𝐻𝑎𝑚(2,𝑚) also codes increases. This
means that storage becomes less reliable.

Table A.1 and A.2 in Appendix A, show the cooperative localities of some shortened Hamming codes,
a measure of the time it takes to repair erasures. Notice that a more shortened code means a lower co-
operative locality. This means that shortening a code more often, results in faster repair speeds. Notice
that when 𝑚 increases, the cooperative locality for shortened 𝐻𝑎𝑚(2,𝑚) codes increases. This means
erasure are repaired more slowly.

If 𝑚 increases, with a (shortened) 𝐻𝑎𝑚(2,𝑚) code, less storage is needed, but the servers are also
less reliable and it will take more time to repair erasures. If such a code is shortened more often, more
storage is needed, but the servers are also more reliable and erasures can be repaired faster. Which
code is the best, depends on which key factor(s) are most important for the situation.

Notice that if a 𝐻𝑎𝑚(2,𝑚) code is shortened 𝑠 = 2 − 1 times, the resulting code is a [2 − 1 −
𝑠, 2 −1−𝑚−𝑠, 3] = [2 −1−(2 −1), 2 −1−𝑚−(2 −1), 3] = [2 , 2 −1−(𝑚−1), 3]-code.
A 𝐻𝑎𝑚(2,𝑚 − 1) code is a [2 − 1, 2 − 1 − (𝑚 − 1), 3]-code. The 𝐻𝑎𝑚(2,𝑚 − 1) is similar to the
shortened 𝐻𝑎𝑚(2,𝑚) code, but has an extra parity server. In terms of reliability and information rate,
the 𝐻𝑎𝑚(2,𝑚 − 1) code is better then the shortened 𝐻𝑎𝑚(2,𝑚) code. But the cooperative locality of
the shortened 𝐻𝑎𝑚(2,𝑚) code can be lower than that of the 𝐻𝑎𝑚(2,𝑚 − 1) code, as example 23 will
show.

Example 23. A 𝑠 = 2 − 1 = 7 times shortened 𝐻𝑎𝑚(2, 4) code 𝐶 can have a parity-check matrix

𝐻 = (
0 1 0 1 1 0 0 0
0 1 1 0 0 1 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 0 0 1

) .

Notice that 𝐶 is a [8, 4, 3]-code.
With the four rows in 𝐻, a cooperative repair set for all sets 𝐸 ⊆ {1, 2, … , 8} with |𝐸| = 1 can be
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found. Therefore, it is easy to see that 𝐶 has (𝑟 = 2, 𝑒 = 1)-cooperative locality. A 𝐻𝑎𝑚(2, 3) code has
(𝑟 = 3, 𝑒 = 1)-cooperative locality, so in terms of cooperative locality, the shortened 𝐻𝑎𝑚(2, 4) code is
better then a 𝐻𝑎𝑚(2, 3) code.





3
Conclusion and Recommendations

3.1. Conclusion
In this report, we researched the cooperative locality of shortened Hamming codes. Shortened Hamming
codes can be constructed from Hamming codes, by deleting columns of its parity-check matrix. A 𝑠 times
shortened 𝐻𝑎𝑚(2,𝑚) code adds 𝑚 parity servers to 2 − 𝑚 − 1 − 𝑠 data servers, and can repair up to
two simultaneous erasures.

First we found that the cooperative locality of a code can be found, by analyzing the Hamming weight
of the rows of its parity-check matrices. This is equivalent to analyzing the row space of one parity-check
matrix.

Then we found that the smallest 𝑟, for which a 𝐻𝑎𝑚(2,𝑚) code has (𝑟, 𝑒 = 1)-cooperative locality, is
𝑟 = 2 − 1. The smallest 𝑟, for which this code has (𝑟, 𝑒 = 2)-cooperative locality, is 𝑟 = 3 ⋅ 2 − 2.
A one time shortened Hamming code has (𝑟, 𝑒 = 1)-cooperative locality with as smallest 𝑟 = 2 − 2.

We found that the cooperative locality of a shortened Hamming codes depends on the deleted
columns. If the columns of a 𝑠 ≥ 2 times shortened 𝐻𝑎𝑚(2,𝑚) code are independent, the smallest
𝑟, for which a shortened Hamming code has (𝑟, 𝑒 = 1)-cooperative locality, is 𝑟 = 2 − 𝑠. This is only
possible, if 𝑠 ≤ 𝑚. We also discovered that for 𝑠 = 𝑚+1, if the 𝑠 deleted columns are picked in a specific
way, we get the same smallest 𝑟.

If the columns of a 𝑠 ≥ 1 times shortened 𝐻𝑎𝑚(2,𝑚) code are independent, the smallest 𝑟, for which
a shortened Hamming code has (𝑟, 𝑒 = 2)-cooperative locality, is 𝑟 = 3⋅2 −2−𝑠. This is only possible
if 𝑠 ≤ 𝑚.

Also, for all 2 ≤ 𝑠 < 2 − 1 − 𝑚 − 𝑠, we found that a 𝑠 times shortened 𝐻𝑎𝑚(2,𝑚) code does not
have (𝑟 = 2 − 𝑠 − 1, 𝑒 = 1) and (𝑟 = 3 ⋅ 2 − 3 − 𝑠, 𝑒 = 2)-cooperative locality.

At last, we compared different shortened Hamming codes, in terms of information rate, reliability
and repair speed. We found that for 𝑠 times shortened 𝐻𝑎𝑚(2,𝑚) codes, a higher 𝑠 results in a lower
information rate, more reliability, and higher repair speed. A higher 𝑚 results in a higher information
rate, less reliability, and lower repair speed.

3.2. Recommendations
For a big 𝑚, a 𝐻𝑎𝑚(2,𝑚) code can be shortened much more often than 𝑚 times. The bounds on the
smallest possible cooperative locality of these many times shortened Hamming codes are not so strong.
A possibility for tighter bounds can be researched.

This report only focuses on the cooperative locality of shortened Hamming codes, while leaving other
very popular codes out. The cooperative locality of such codes can be researched.

Which code is best, is dependent on the situation. A way to find the best code in a certain situation
can be researched.
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Table A.1: Smallest , for which a times shortened ( , ) code has ( , )-cooperative locality.

𝑟 𝑚
3 4 5 6 7 8 9

𝑠

0 3 7 15 31 63 127 255
1 2 6 14 30 62 126 254
2 2 6 14 30 62 126 254
3 1 5 13 29 61 125 253
4 4 12 28 60 124 252
5 3 11 27 59 123 251
6 2 ≤ 𝑟 ≤ 3 10 26 58 122 250
7 1 ≤ 𝑟 ≤ 2 9 ≤ 𝑟 ≤ 10 25 57 121 249
8 1 ≤ 𝑟 ≤ 2 8 ≤ 𝑟 ≤ 10 24 ≤ 𝑟 ≤ 25 56 120 248
9 1 ≤ 𝑟 ≤ 2 7 ≤ 𝑟 ≤ 10 23 ≤ 𝑟 ≤ 25 55 ≤ 𝑟 ≤ 56 119 247

Table A.2: Smallest , for which a times shortened ( , ) code has ( , )-cooperative locality.

𝑟 𝑚
3 4 5 6 7 8 9

𝑠

0 4 10 22 46 94 190 382
1 3 9 21 45 93 189 381
2 2 8 20 44 92 188 380
3 1 7 19 43 91 187 379
4 6 18 42 90 186 378
5 5 ≤ 𝑟 ≤ 6 17 41 89 185 377
6 4 ≤ 𝑟 ≤ 6 16 ≤ 𝑟 ≤ 17 40 88 184 376
7 3 ≤ 𝑟 ≤ 6 15 ≤ 𝑟 ≤ 17 39 ≤ 𝑟 ≤ 40 87 183 375
8 2 ≤ 𝑟 ≤ 6 14 ≤ 𝑟 ≤ 17 38 ≤ 𝑟 ≤ 40 86 ≤ 𝑟 ≤ 87 182 374
9 1 ≤ 𝑟 ≤ 6 13 ≤ 𝑟 ≤ 17 37 ≤ 𝑟 ≤ 40 85 ≤ 𝑟 ≤ 87 181 ≤ 𝑟 ≤ 182 373
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Table B.1: Information rate of a times shortened ( , ) code.

𝑚
3 4 5 6 7 8 9

𝑠

0 0,571 0,733 0,839 0,9048 0,9449 0,96863 0,98239
1 0,5 0,714 0,833 0,9032 0,9445 0,96850 0,98235
2 0,4 0,692 0,828 0,9016 0,944 0,96838 0,98232
3 0,25 0,667 0,821 0,9 0,9435 0,96825 0,98228
4 0,636 0,815 0,8983 0,9431 0,96813 0,98225
5 0,6 0,808 0,8966 0,9426 0,968 0,98221
6 0,556 0,8 0,8947 0,9421 0,96787 0,98218
7 0,5 0,792 0,8929 0,9417 0,96774 0,98214
8 0,429 0,783 0,8909 0,9412 0,96761 0,98211
9 0,333 0,773 0,8889 0,9407 0,96748 0,98207

Table B.2: Repairability divided by total amount of servers of a times shortened ( , ) code.

= 𝑚
3 4 5 6 7 8 9

𝑠

0 0,286 0,133 0,06452 0,0317 0,01575 0,00784 0,003914
1 0,333 0,143 0,0667 0,03226 0,01587 0,00787 0,003922
2 0,4 0,154 0,0690 0,0328 0,016 0,00791 0,003929
3 0,167 0,0714 0,0333 0,01613 0,00794 0,003937
4 0,182 0,0741 0,0339 0,01626 0,00797 0,003945
5 0,2 0,0769 0,0345 0,01639 0,008 0,003953
6 0,222 0,08 0,0351 0,01653 0,00803 0,003960
7 0,25 0,0833 0,0357 0,01667 0,00806 0,003968
8 0,286 0,0870 0,0364 0,01681 0,00810 0,003976
9 0,333 0,0909 0,0370 0,01695 0,00813 0,003984
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