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Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Distributed Dataflow Transactions

by Alexander Walker

As serverless computing grows in popularity, developers are demanding more from
existing serverless models. One example is the emergence of Stateful Function as
a Service (SFaaS), in which state is added to operators in existing Function as a
Service (FaaS) models, to support microservice-type applications while utilising
the benefits of a serverless architecture. However, current SFaaS systems cannot
provide performant transactions across operators with strong semantics.

In this thesis, we present three conceptual transaction protocols for SFaaS
dataflow systems based on Two-phase Commit (2PC), Deterministic Databases
and Conflict-free Replicated Datatype (CRDT)s. Based on these insights, we imple-
ment Rhea, a deterministic transaction protocol in the prototype SFaaS execution
engine, Universalis. Two optimizations are implemented for Rhea: deterministic
reordering and a fallback mechanism, to reduce aborts caused by Read-after-write
(RAW) and Write-after-write (WAW) dependencies, respectively.

We present a transaction benchmarking client for Universalis that supports
workloads from the Transaction Processing Performance Council Benchmark C
(TPC-C) and the Yahoo! Cloud Serving Benchmark (YCSB). Using the client, we
compare Rhea to a 2PC baseline microservice application. We found that Rhea
can provide more than twice the throughput and half the latency of 2PC in the
baseline application across a variety of workloads.
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Chapter 1

Introduction

Modern-day computing relies heavily on distributed systems. Since the early
1990s, the wide-scale adoption of the web has driven businesses to strive for
increased performance and scalability of their computer systems, beyond the
capabilities of pure monolithic systems Steen and Tanenbaum [2016]. The de-
parture from monolithic systems led to the rise in popularity of the microservice
architecture, where systems are divided into modules each focused on a limited
amount of functionality, enabling them to be scaled horizontally Dragoni et al.
[2017].

Traditionally, these systems are deployed on infrastructure hosted by cloud
providers such as Microsoft’s Azure1 where customers are charged based on their
resource allocation. More recently, there has been an emergence of serverless
computing, where compute resources are provided and charged on demand, which
is more cost-effective for customers and can free up resource capacity for cloud
providers Baldini et al. [2017].

A popular model of serverless computing is FaaS, such as AWS Lambda2 and
Google Cloud Functions3. In this model, applications are deployed as a “set of
stateless functions which are executed in response to user or system-generated
events” Shahrad et al. [2019]. In addition to reducing costs, FaaS systems abstract
away operational concerns such as provisioning, deployment and scaling from the
application developers, enabling them to focus on application-level programming.
These advantages can be leveraged in microservice applications by mapping each
microservice to a set of functions Eyk et al. [2019]; Garriga [2018]. However,
microservices frequently require reading and writing to state, which in FaaS
necessitates the application developer manually provisioning, deploying, and
scaling an external database, negating the auto-scaling and provisioning benefits
of serverless deployment. Furthermore, calls to the state incur network round
trips which add unnecessary latency to the application.

As a result of these downsides, the development of Stateful Function as a
Service SFaaS systems, such as Flink Statefun4 and Cloudburst Sreekanti et al.
[2020]. These systems couple state to each serverless function, moving the difficult
operational and scalability concerns of the state away from the user. However,
SFaaS systems alone do not provide guarantees about data consistency, fault
tolerance, and durability between functions.

1https://azure.microsoft.com/
2https://aws.amazon.com/lambda/
3https://cloud.google.com/functions/
4https://nightlies.apache.org/flink/flink-statefun-docs-stable/

https://azure.microsoft.com/
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/
https://nightlies.apache.org/flink/flink-statefun-docs-stable/
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These guarantees can be supported by dataflow systems (synonymous with
stream processors), which perform computations through operators on streams of
data over time, such as events. Modern dataflow systems such as Apache Flink5

provide exactly-once processing guarantees while maintaining high throughput
and availability Carbone et al. [2015b]. Significant efforts have been made to
leverage dataflow execution engines in SFaaS applications to reap the benefits of
both paradigms Akhter et al. [2019].

Recent work on SFaaS dataflow systems has focused on improving the de-
veloper experience, such as the introduction of novel programming abstrac-
tions Zorgdrager et al. [2021]. However, a lack of transactional support inhibits
many of the potential use cases for distributed applications Katsifodimos and
Fragkoulis [2019]. As a result, we identified that no current SFaaS dataflow sys-
tem: (i) supports transactions with Atomicity, Consistency, Isolation and Durability
(ACID) semantics; (ii) abstracts coordination and execution away from the applica-
tion developer; and (iii) maintains high throughput (> 1000 transactions per second
(tps)).

In this paper, three conceptual transaction protocols for SFaaS systems are
presented. Based on these concepts, we provide an implementation of Rhea, a
deterministic transaction protocol, within the Universalis SFaaS dataflow execu-
tion engine. Additionally, we offer a benchmarking client for Universalis, which is
used to evaluate the implementation of Rhea based on operational metrics such
as throughput and request latency.

1.1 Research Questions

In light of the aforementioned challenges and based on the lack of transactional
support in SFaaS dataflow systems, we provide multiple conceptual transaction
protocols, which leads us to the first research question:

RQ1: How can distributed transactions be implemented in SFaaS dataflow
systems?

Moreover, distributed transactions often come at a cost to system performance
and latency, especially when supporting stricter guarantees. This leads us to our
second research question:

RQ2: How do distributed transaction protocols perform in SFaaS dataflow
systems?

Transaction isolation is an important property to define to application developers
in a transaction processing system. Given this, we define the third research
question as:

RQ3: Which isolation guarantees can be supported in distributed transac-
tion protocols within SFaaS dataflow systems?

5https://flink.apache.org/

https://flink.apache.org/
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1.2 Contributions

The contributions of this work can be summarised as follows:

• We offer conceptual designs for SFaaS transactions that are based on CRDTs
and 2PC.

• Rhea, a deterministic transaction protocol, is designed and implemented
in Universalis, a prototype SFaaS execution engine. We implement two
optimisations for Rhea, deterministic reordering and a fallback strategy, to
reduce RAW and WAW aborts respectively.

• We provide a benchmarking application for Universalis that supports com-
mon transaction benchmark workloads and can measure multiple metrics.
For comparison with Universalis, we implement a baseline microservice
application using the 2PC transaction protocol.

• We evaluate Rhea within Universalis under various conditions and, where
feasible, compare the outcomes to the baseline.

1.3 Outline

The structure of the thesis is as follows: in Chapter 2 we present background
information on distributed transaction processing. In Chapter 3, we examine the
existing literature in the disciplines of Distributed Database Management Systems
(DDBMS) and operational dataflow systems. In Chapter 4, we describe the archi-
tecture of Universalis, our prototype SFaaS execution engine. In Chapter 5 we
present the conceptual protocols designed in this project, and the implementation
of the deterministic protocol, Rhea. Chapter 6 includes the experimental design
and evaluation findings for Rhea. In Chapter 7, we discuss the outcomes of this
project and highlight the constraints we encountered. Finally, in Chapter 8 we
conclude by summarising our work in relation to our research questions and
proposing future study that could be conducted as a result of this effort.
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Chapter 2

Database Transaction
Processing

Understanding distributed dataflow transactions requires familiarity with database
transaction processing concepts. Although dataflow transactions are heavily
based on distributed database transactions, it is important to note that they are
not identical to DDBMS transactions because they operate on a higher level
similar to microservice transactions and incorporate database state changes with
operational user-defined logic.

2.1 ACID Transactions

A transaction is an atomic unit of work performed by a database system, typically
consisting of multiple operations with an emphasis on data integrity. A bank
transfer from account A to account B is a simple example of a transaction. The
transfer amount must be deducted from account A and added to account B in
one unit of work. In the event of a failure at any stage of the transaction, both
account balances should revert to their previous states. Database systems strive
to support ACID transactions, where ACID is an acronym for:

• Atomicity: The entire group of operations in a transaction must be executed
in full, or not at all.

• Consistency: A transaction’s changes must always be read and written to
the database in a consistent manner, adhering to all integrity constraints.

• Isolation: Concurrent transactions must not impede the execution of a
transaction, so that each transaction has the impression that it is being
executed independently.

• Durability: The result of a transaction is persistently stored, even if the
transaction fails.

Although ACID is the most prevalent transactional model in database systems,
other models, such as Basic Availability, Soft-state, Eventual consistency (BASE),
loosen ACID’s constraints to increase flexibility Medjahed et al. [2009]. How-
ever, in this thesis, we are only interested in ACID transactions, as they provide
application developers with more consistent results.
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2.2 Isolation

As alluded to in Section 2.1, database systems must support concurrent transac-
tions. In a database system, concurrency is typically achieved through parallel
execution by the database system and multi-user access; however, in distributed
databases, network access can add additional concurrency.

This necessitates isolation levels, which establish the visibility of concurrent
transactions to one another. Higher isolation levels impose more stringent con-
straints, which reduces performance because fewer transactions can be executed
concurrently. Lower isolation levels improve performance at the expense of trans-
action reliability, as they become more susceptible to read phenomena, in which
concurrent data changes cause inconsistent reads within the scope of a transac-
tion. Consequently, many database systems permit the application developer to
select the isolation level based on their specific needs.

2.2.1 Read phenomena

Typically, isolation levels are classified according to the phenomena that can
be experienced at each level. These phenomena are defined by the concept
of commit, which occurs when a transaction’s changes are made permanent
following a successful execution. If the database system adheres to ACID’s
durability property, the committed data is always the most recent view of the data.

Dirty Read

A dirty read occurs when transaction 1 reads data that was modified by transaction
2, but not yet committed. If transaction 2 fails, this can lead to inconsistencies in
transaction 1, as transaction 1 will have an incorrect view of the database.

Non-repeatable Read

Transactions may perform multiple reads on the same data throughout their
execution. If transaction 1 reads data multiple times and transaction 2 concur-
rently modifies the same data, transaction 1 may have different read values for
the same data during its execution, called non-repeatable reads, which result in
inconsistencies.

Phantom Read

Phantom reads occur when new rows are added concurrently by transaction
2 while transaction 1 is running. If transaction 1 operates on a range of data
into which transaction 2 has inserted rows, transaction 1 will read the newly
inserted rows prior to committing. As with dirty reads, transaction 1 will have an
inconsistent view of the database if transaction 2 fails.

2.2.2 Isolation Levels

As defined in the ISO SQL standard Michels et al. [2018], there are 4 levels of
isolation. The strongest level is serializability, in which transactions must be
executed as if they were in a serial order. Depending on the mechanism used to
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Isolation Level Dirty Reads Non-Repeatable Reads Phantom Reads
Serializable × × ×
Repeatable Read × × ✓
Read Committed × ✓ ✓
Read Uncommitted ✓ ✓ ✓

Table 2.1: Possible read phenomena from each isolation level

enforce isolation, this may be accomplished by utilising locks to prevent other
transactions from reading or writing data used by a transaction.

The second level, repeatable reads, utilises row-level read and write locks to
prevent concurrent access, but not range-level locks. The third level is read com-
mitted, in which write locks are held until the end of the transaction but read locks
are released after all reads have been performed in all active transactions. The
weakest isolation is read uncommitted, where no locks are held and transactions
can modify data as they execute.

In addition to the four levels outlined in the ISO standard, other isolation levels
exist in practice. Snapshot isolation guarantees that all reads in a transaction
are on a consistent database view, and aborts if the view has been modified by a
competing transaction at commit time. Moreover, it can be implemented such that
it does not encounter any read phenomena, similar to serialization Berenson et al.
[1995].

2.3 Concurrency Control

For database systems to enforce the transaction isolation mentioned in Section 2.2,
they utilise concurrency control mechanisms. These methods offer varying levels
of performance and isolation and are utilised by numerous database systems.

2.3.1 Two-phase Locking

Two-phase Locking (2PL) is a serializable concurrency control algorithm Eswaran
et al. [1976]. The algorithm has two phases: the growing phase and the shrinking
phase. A transaction acquires locks for all the data it needs to access during the
growing phase. Exclusive locks are used for writing, while shared locks are used
for reading.

Exclusive locks are incompatible with shared and other exclusive locks, so
they cannot be held simultaneously. Conversely, shared locks are compatible with
other shared locks, so they can be held at the same time. The niaeve strategy
for overcoming lock incompatibility is to wait until they are released, but this
can result in deadlocks between competing transactions. To circumvent this, the
following waiting protocols are utilised:

• NO_WAIT: Abort transaction and release all locks if transaction tries to
acquire a lock that is incompatible with that held on the data.

• WAIT_DIE: Wait for a lock if the transaction timestamp is lower than that of
the transaction holding the lock, otherwise abort the transaction.
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Once the transaction has completed its data operations and no longer requires
a lock, it can release the lock. Once a transaction releases its locks, it enters
the shrinking phase, during which it is unable to acquire new locks. Other
variants of 2PL impose stricter constraints on the release of locks, for example, in
Strict 2-phase Locking (S2PL), the transaction retains its exclusive locks until it
commits or aborts.

2.3.2 Optimistic Concurrency Control

2PL is considered a pessimistic concurrency control method due to the use of
locking and waits. Optimistic Concurrency Control (OCC) does not rely on such
techniques to achieve isolation, instead, it executes transactions concurrently
and employs a validation phase to check if the result is serializable Kung and
Robinson [1981]. In order to perform this check, the system validates the current
transaction against all committed transactions since the transaction started, and
all other transactions in the validation phase to check for concurrent accesses. In
contentious environments, optimistic concurrency control tends to abort transac-
tions significantly more frequently than pessimistic concurrency control Harding
et al. [2017].

2.3.3 Multiversion Concurrency Control

Multiversion Concurrency Control (MVCC) belongs to the timestamp class of con-
currency control methods, which use timestamps to determine the order of concur-
rent transactions. In MVCC, multiple versions of each database record are main-
tained with a timestamp indicating when they were written so that transactions
can operate on a snapshot of the data closest to their execution time Bernstein and
Goodman [1983]. As with OCC a validator checks for conflicts based on concurrent
writes to the data within a snapshot during the execution of a transaction. When a
transaction commits, a new version of the record is appended with a timestamp
corresponding to the commit time. MVCC generally facilitates snapshot isolation
as discussed in Section 2.2.

2.4 Distributed Transaction Protocols

Supporting distributed transactions over data that is stored across a network
on multiple constituents while maintaining the ACID properties mentioned in
Section 2.1 is one of the greatest challenges in transaction processing. Therefore,
a protocol is required to ensure that each property is satisfied while performance
is maintained. Distributed transaction protocols often make use of existing con-
currency control methods as raised in Section 2.3, to adapt them for DDBMS.

2.4.1 Two-phase Commit

2PC Bernstein and Goodman [1981] is an atomic commit protocol, meaning it can
support atomicity and consistency between constituents in a distributed system.
2PC relies on a coordinator to handle the communication between the participants
of a transaction, which can be replicated for fault tolerance Gray and Lamport
[2006]. In addition, 2PC is designed to overcome many types of failures that can
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Coordinator A
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Commit

Ok
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B

T1

Figure 2.1: Example of a successful two-phase commit execution

occur in distributed settings, primarily due to the prominent use of durable logs
that can be read on recovery. The two phases in the protocol are the prepare
phase and the commit phase.

Prepare phase

In 2PC, the client notifies the coordinator that a transaction must be carried
out. The coordinator then initiates the transaction by sending a prepare message
to all participant nodes, as indicated in Figure 2.1. Upon receiving a prepare
message, each node acquires locks on any data required by the transaction on its
partition and then notifies the coordinator that it has successfully prepared. The
coordinator logs the status of the 2PC execution in a write ahead log so that, in
the event of a failure, it can recover to the most recent state.

During this phase, if any problems arise, such as incompatible locks, the
participant notifies the coordinator that its preparations were unsuccessful. The
coordinator then sends an abort message to all other participants, prompting
them to discard their temporary transaction logs. Moreover, if all participants
respond with an OK to the coordinator, the execution advances to the commit
phase, and the coordinator assumes that the transaction will be committed and
cannot be reversed.

Commit phase

In the commit phase, the coordinator sends a message to each participant instruct-
ing them to write the transaction effects from the temporary log to the durable
storage. As the prepare phase checks for application and integrity level failures,
the most common type of failure at this level is a system-level failure, such as a
node crashing. In this scenario, the coordinator will detect that a node is offline
and ensure that the commit message is sent to it, when it recovers. Generally, 2PC
uses two-phase locking to maintain isolation between concurrent transactions, as
described in Section 2.3.1, however, there are other implementations of 2PC that
utilise different concurrency control mechanisms to maximise performance Lu
et al. [2021].
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2.4.2 Deterministic Databases

Deterministic databases are a more recent concept in DDBMS, as introduced in
Calvin Thomson and Abadi [2010]; Thomson et al. [2012]. The central concept
revolves around minimising replica divergence in transactional, partitioned, and
replicated systems. Abadi and Faleiro [2018].

The read and write sets of each transaction must be known in advance for
deterministic databases, which is not always possible. In cases where this is not
possible, the sets are determined by executing the transactions in advance to
define the values that will be substituted. Pre-execution can also be used to elimi-
nate nondeterminism from transactions, such as random number generator calls.
However, pre-execution cannot always eliminate nondeterminism; consequently, a
deterministic database cannot execute every type of transaction.

The primary benefit of these systems is that distributed commit protocols are
not required during execution. Deterministic databases define a global serial order
of transactions via a sequencing layer, which is periodically sent to the schedulers
of the participant nodes at set batch intervals. As the order of operations and
their outcomes are deterministic, the schedulers in every node will reach the same
conclusion regarding which transactions will be committed and which will be
aborted. As described in Figure 2.2, the scheduling layer uses the read and write
sets of each transaction to generate a lock queue for each data record in order to
prevent deadlocks. This also permits numerous optimizations, as transactions can
be executed in parallel with relative ease.

t4 t3 t2 t1
Sequencer

R/W Set k2, k5 k1, k2, k5k1, k5k3, k6

Requests locks Scheduler

t1 t2
t1 t3
t4

t1 t2 t3

k1
k2
k3
k4
k5
k6 t4

Key locks

Figure 2.2: Example of deterministic locking, image inspired by Mo-
hammad Roohitavaf [2020]
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Chapter 3

Related Work

As the need for larger-scale and more efficient database systems has grown, the
field of database systems has continuously advanced. This work is based on a
substantial amount of research conducted in this field, specifically concerning
distributed database management systems and operational dataflow systems.

3.1 Distributed database management systems

Since the late 1970s, proposals for DDBMS have been published, with a focus
on adapting concurrency control techniques from non-distributed systems to
distributed databases. This is evident in an early survey by Bernstein and Goodman
[1981], which evaluates a variety of concurrency control techniques. Despite
surveying over 20 DDBMS concurrency control methods, the authors conclude that
they all rely on two fundamental ideas: 2PL and timestamp-ordered concurrency
control. The authors chose to evaluate the correctness of the algorithms rather
than their performance because, at the time, many algorithms could not be proven
correct or did not guarantee correctness. As time has progressed and research
into concurrency control methods has advanced the field, the emphasis has shifted
from correctness of the protocols to performance, as demonstrated by the survey
by Harding et al. [2017]. This survey adds optimistic and deterministic protocols
to the classifications of concurrency control methods used in existing DDMBS
systems presented by Bernstein and Goodman.

Figure 3.1: Summary of results comparing distributed concurrency
control algorithms from the paper by Harding et al. [2017]

According to the results displayed in Figure 3.1, locking and timestamp ordering
protocols performed relatively better in workloads with low contention but be-
came bottlenecks in workloads with high contention, and vice versa for optimistic
and deterministic protocols. In addition, all concurrency techniques exhibited
bottlenecks for multi-partition transactions and two-phase commit delays, leading
the authors to conclude that all concurrency control methods had varying scalabil-
ity issues. Despite the unfavourable findings of Harding’s survey, transactional
DDBMS with satisfactory performance under realistic workloads do exist. One
example is Google Cloud Spanner, which enables fully serializable transactions
with robust consistency guarantees.
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TrueTime, a GPS-synchronized clock, is the most significant innovation within
Spanner, allowing any node in the system to generate a globally increasing times-
tamp. The global timestamp order provides each node with a consistent view
of the database when used in conjunction with MVCC. However, Spanner does
not provide full support for SQL syntax and is missing features like referential
integrity constraints. In addition, supporting a TrueTime-based method would
require the creation and maintenance of a GPS-synchronized clock system, which
is impractical for the majority of use cases. This results in the use of alternative
time synchronisation methods, such as Network Time Protocol (NTP) in Cock-
roachDB Taft et al. [2020]. CockroachDB provides the same guarantees of strong
consistency and serializable transactions as Spanner, but the use of the relatively
inefficient NTP increases latency by up to 250 milliseconds.

Google Spanner stimulated additional research in the field, such as the emer-
gence of deterministic databases. Calvin was one of the earliest deterministic
implementations. Calvin Thomson et al. [2012] is a layer that can be added on top
of any database that supports Create, Read, Update and Delete (CRUD) opera-
tions in order to facilitate distributed transactions that do not require coordination
to commit. Calvin utilises a sequencing layer for this purpose, which collects the
read and write sets described in and determines the global order of transactions.
This layer can be scaled by partitioning the sequencers and using Paxos Lamport
[1998] or Raft Ongaro and Ousterhout [2014] to maintain consensus; however,
doing so increases latency and requires the user to provision additional hardware.

Because sequenced transactions are logged persistently and can be replayed
by failing nodes upon their recovery, fault tolerance is simplified as a result of
Calvin’s determinism. Calvin’s drawbacks are the requirement to have the read
and write sets of every transaction in advance and, as a result, the lack of support
for interactive or nested transactions. Numerous later deterministic DDBMS,
such as GRIT Zhang et al. [2019] and Aria Lu et al. [2020], were inspired by
Calvin. Both systems aim to improve upon Calvin’s deficiencies by not requiring
the read/write sets for each transaction in advance and by implementing methods
to determine the read/write sets.

GRIT employs a global transaction manager across all data partitions and
local transaction managers at each node to resolve global and local transaction
conflicts, respectively. At commit time, each local transaction manager reports to
the global transaction manager which transactions it can commit based on OCC
conflict checking. The global transaction manager collects all results and aborts
transactions that, according to the local transaction managers, contain at least
one conflict.

In Aria Lu et al. [2020], transactions are batched and sequenced to produce as-
cending Transaction Identifier (TID)s, after which they are optimistically executed
in parallel and their results are saved in temporary storage. After the execution
phase concludes, the commit phase commences, during which a deterministic
conflict detection algorithm is used to determine whether conflicting operations
between transactions have occurred. To maintain serializability, Aria checks for
RAW and WAW dependencies and aborts any transaction that exhibits one of these
dependencies and occurs later in the global order. Conflicting transactions are
rescheduled to the following batch so that they can be executed until they commit
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Figure 3.2: System architecture Calvin as displayed in the paper
by Thomson et al. [2012]

or fail due to an application or integrity constraint error. The transaction proto-
col produced in this work, Rhea is heavily influenced by Aria, and is described
in Section 5.3.

Aria is used as a comparison in a later paper by Lu et al. [2021], in which an
optimised version of 2PC is presented, COCO. COCO aims to decrease the 2PC
overhead in replicated systems by batching transactions into epochs and treating
the entire epoch as a single 2PC commit unit. The system employs optimistic
concurrency control such that, during the prepare phase of 2PC, all transactions
in the epoch are executed concurrently without the use of locks. In addition, the
commit phase is divided into three distinct phases: (i) locks are acquired for the
write sets of each transaction; (ii) read sets are validated for read/write conflicts;
and (iii) the transactions are committed to the database. Despite the fact that
COCO’s evaluated throughput is 2.3 times lower than Aria’s in single-node mode,
the authors claim that COCO’s default configuration of three replicas per partition
provides a higher level of availability.

3.2 Operational dataflow systems

As businesses have adopted technologies such as dataflow systems to supplement
or replace traditional DDBMS, the need to support operational concerns such as
transactions in these systems has increased.

S-Store, which combines streaming functionality with acid transactions, or-
dered execution, and exactly-once processing guarantees, is described in the
paper by Meehan et al. [2015]. To accomplish this, the authors augment an
existing DDBMS, H-Store Kallman et al. [2008], which includes transaction pro-
cessing capabilities, with streaming execution. In S-Store, the application user
can define their transactional application in the form of a dataflow graph, in which
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Figure 3.3: Transactional Dataflow Graph in S-store Meehan et al.
[2015]

transactions can occur between data streams, which can then be outputted as
a stream or to a database table. S-store transactions operate between streams
similarly to operators, but they do not provide operator-to-operator transactions
and do not contain state, so they cannot support stateful operator transactions.

Cloudburst Sreekanti et al. [2020], which is built on top of the Anna Wu et al.
[2018] key-value store, employs a similar architecture for streaming functionality
over an existing distributed store. In Cloudburst, users can submit the structure
of their functions in the form of a directed graph, which is then applied to the data
streams. Allowed are both synchronous and asynchronous function calls, and all
functions have complete access to shared state. However, Cloudburst does not
provide any guarantees regarding isolation levels for concurrent accesses, which
can result in replicas diverging. Cloudburst handles these divergences by default
by selecting the most recent write as the final value, but the authors also offer
a CRDT Shapiro et al. [2011] based solution to eliminate the replica divergence
issue. As a result of the lack of transactional guarantees, Cloudburst is less suited
as a platform for distributed dataflow transactions.
Beldi Zhang et al. [2020] implements a runtime that is compatible with existing
FaaS platforms like AWS Lambda. Beldi is exposed to the user as an API that
can be invoked by user-defined serverless functions to provide access to other
functions with transactional guarantees and a key-value store. For fault tolerance,
Beldi logs all API accesses to provide a durable record of user actions that can
be used to reproduce events after a system failure. The performance evaluation
revealed that the authors could not support more than 800 requests per second
because AWS’s compute service only permits 1,000 concurrent accesses.

Using coordinator functions, serializable and ACID stateful operator trans-
actions are supported via 2PC and SAGAs in the paper by Heus et al. [2021].
The implementations, however, are implemented on the Flink Statefun dataflow
system, which was not designed for transactional workloads; as a result, the sys-
tem’s optimization potential is limited when compared to a transactional dataflow
system such as Universalis.
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Chapter 4

Universalis

In previous work described in Chapter 3, we discovered that serverless dataflow
systems that support transactions or transaction-like behaviour do exist. However,
these systems frequently have drawbacks, such as poor performance, complex
programming models for application developers, and limited transactional guar-
antees.

We believe this is due to the fact that many of the aforementioned systems are
built on top of existing dataflow systems that were not intended for transaction
processing. In response, we present Universalis, a SFaaS system designed from
the ground up with a dataflow-based execution engine and transaction processing
support as one of the primary design goals. At the time of writing, Universalis is a
prototype and not a production-ready system. The design elements described in
this chapter are therefore susceptible to change. In addition, Universalis is not a
direct contribution of this thesis; rather, it is part of Kyriakos Psarakis’s ongoing
research.

4.1 Design Philosophy

Universalis targets application developers who want to create distributed applica-
tions, such as microservice applications. Accessibility, Predictability, Performance,
and Scalability are the fundamental philosophies that guide the design of Univer-
salis.

4.1.1 Accessibility

The need for accessibility necessitates that Universalis provide interfaces that
disrupt application developers’ workflow as little as possible. Specifically, the
interface must be usable by developers with minimal knowledge of SFaaS systems.
Universalis should provide developers with a programming model that allows them
to write their applications as they would a standard microservice. Universalis
achieves accessibility by providing application developers with a high-level API
corresponding to standard CRUD operations. In addition, the internal implemen-
tations are concealed from the developer so as not to overwhelm the user with
unnecessary information.

4.1.2 Predictability

Universalis must define and provide consistency and transaction guarantees to
ensure predictability. This enables developers to construct their applications
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around these guarantees without fear of introducing additional bugs due to the
system’s unpredictable behaviour. In addition, a predictable system can recover
from failure in a secure manner, eliminating the need for application developers
to implement specific recovery methods. Universalis provides exactly-once pro-
cessing guarantees and serializable ACID transactions to address predictability.
As described in 4.2.5, Universalis makes extensive use of checkpointing to handle
failures, so that the system can recover reliably in the event of a failure.

4.1.3 Performance

With a performant execution engine, the application developer can concentrate on
optimising application code rather than focusing on lower level details. Due to the
fact that Universalis was designed from the ground up, execution and transaction
logic have been optimised at a lower level, as described in Chapter 5.

4.1.4 Scalability

Universalis must demonstrate the capacity to scale in the face of increased
workloads. Scalability is a core reason why the serverless architecture has become
so widely adopted, due to the decoupled nature of the applications, which allow
for more elasticity in scaling up and down. Universalis is designed for scalability
by employing a highly decoupled and partitioned architecture, as shown in 4.2.

4.2 System Architecture

Universalis is written in Python as this has enabled rapid prototyping of features,
despite the performance disadvantage compared to lower-level languages com-
monly used in distributed systems, such as C++, Go, and Scala. Despite this,
Python is one of the most commonly used languages for software development1,
thus building Universalis in Python easy support for applications written in Python.
By default Python does not support concurrency, so Universalis makes prominent
use of the asyncio 2 library for asynchronous code..

4.2.1 Interface

Universalis provides a Python library which exposes an API that application devel-
opers use to interact with the Universalis execution engine. Application developers
must define their application as a stateflow graph, which is a graph consisting of
operators as nodes and directed edges to indicate network access between the
operators as shown in Figure 4.1. An operator is similar to a microservice, with
stateful or stateless functions. As the underlying state of operators are partitioned,
the user must also define the number of partitions per operator in the dataflow
graph for their stateful functions. An example of code to define a stateflow graph
in Universalis can be found in Figure A.1.
Each operator function must be defined as a class that extends the ’Function’
or ’StatefulFunction’ class in the Universalis Library. The primary distinction

1https://insights.stackoverflow.com/survey/2021
2https://docs.python.org/3/library/asyncio.html

https://insights.stackoverflow.com/survey/2021
https://docs.python.org/3/library/asyncio.html
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Figure 4.1: Example of a Universalis stateflow graph consisting of
3 stateful operators with differing partitions.

between the two classes is that StatefulFunction permits the use of CRUD methods
for state updates. These CRUD methods are fundamental to the implemented
transaction protocol described in Section 5.3. As demonstrated in Figure A.2, the
function’s execution logic must be placed in the ’run()’ method for each function
type, which will be invoked by the system in response to a user request. In
addition, Universalis is compatible with any storage engine that supports CRUD
operations. Redis3, a flexible in-memory key-value store, is utilised by default in
Universalis. Redis supports the durability property of ACID by providing a variety
of persistence options, such as Redis Database, which periodically logs in-memory
data to nonvolatile storage.

4.2.2 Coordinator

In order to submit a stateflow graph, a Universalis execution engine must be
deployed on a server. The execution engine contains a coordinator, which is a
stateless component responsible for managing the engine’s components. The
coordinator’s primary responsibility is to manage network discovery so that com-
ponents, as shown in Figure 4.2, can detect new components dynamically when
horizontally scaling. The coordinator also instantiates the workers based on the
submitted graph, using a deterministic round robin scheduling algorithm to as-
sign operator partitions to the system’s workers. Using heartbeat timeouts, the
coordinator can also detect and manage component failures. Furthermore, by
using Paxos/Raft for consensus, the coordinator can be partitioned and replicated
for scalability and fault tolerance.

4.2.3 Event Ingress and Egress

Universalis uses Apache Kafka4, a distributed event streaming platform, to manage
incoming and outgoing messages. Kafka facilitates performant messaging and
is partitioned for scalability. Due to the inherent replication and logging of the
system, Kafka can also be configured to support exactly once messaging, ensuring

3https://redis.io/
4https://kafka.apache.org/

https://redis.io/
https://kafka.apache.org/
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Figure 4.2: Universalis execution engine consisting of two workers
with different operator configurations

that messages are delivered. A Kafka cluster is configured with three workers by
default in Universalis; however, the application developer can configure this to
meet their needs. When functions are sent from an external client to a Universalis
instance, they are ingested by the Kafka workers, given a timestamp, and then
broadcast so that consumers within the workers can consume them. Messages
are forwarded to the Kafka cluster so that they can be output as part of the egress
when workers need to return a response to an external participant.

4.2.4 Worker

After a user submits a dataflow graph, the coordinator assigns operators to
workers. Workers are concurrent Python modules composed of operators and their
respective states/functions. Workers are responsible for managing the execution of
stateflow functions and any associated transaction logic. The number of workers in
the execution engine can be fixed based on the needs of the application developer,
or horizontally scaled as the number of operators grows. Moreover, operator
partitions can be distributed across multiple workers in order to scale operators.
A simple modulo hash function is used to assign partition keys based on the
number of partitions defined for an operator.

As highlighted in Figure 4.3, a worker contains a Kafka consumer that is
subscribed to function call events for the instance’s operators. The events are sent
to the transaction layer, which applies the transaction protocol according to the
implementation described in Chapter 5. To maintain the ACID properties for all
function calls, each event, even if it does not call any remote operators, is treated
as a transaction. The transaction layer manages remote function calls, also known
as multi-partition transactions, which may require network communication with
other worker. If a function is defined to return output, the response is sent to a
Kafka producer, which then forwards it to the event egress.
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Figure 4.3: Worker flow of execution

4.2.5 Fault Tolerance

Universalis aims to maintain exactly-once guarantees, using a fault tolerance
mechanism similar to Apache Flink, however, at the time of writing, the fault
tolerance mechanism for Universalis was not fully implemented. The central
concept of the mechanism is the periodic insertion of barriers into the streams for
use as a marker for checkpoints and as an alignment measure between streams.
The state of the underlying dataflow system and corresponding operator states
are periodically aligned (if required) and saved to durable storage at checkpoint
time.

In the event of a failure at the system level, the coordinator waits for all partic-
ipants to recover and for each participant to regain their previous checkpointed
state. This can be performed efficiently in systems with lower throughput and
state, but it can become costly in larger systems with higher throughputs and
more state to maintain. Support for exactly-once processing can be enabled by
aligning the streams before checkpointing to a durable log. Additional information
regarding how fault tolerance operates in Apache Flink and Universalis can be
found in the work by Carbone et al. [2015a].

checkpoint
barrier n-1

data stream

stream record
(event)

checkpoint
barrier n

newer records

part of
checkpoint n-1

part of
checkpoint n

part of
checkpoint n+1
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Figure 4.4: Example of a stream barrier from the Apache Flink
Documentation5

5https://nightlies.apache.org/flink/flink-docs-release-1.3/internals/stream_checkpointing.html

https://nightlies.apache.org/flink/flink-docs-release-1.3/internals/stream_checkpointing.html
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Chapter 5

SFaaS Transactions

In prior sections, it was emphasised that transactions in SFaaS systems, such
as Universalis, have only been implemented in a handful of instances. In this
chapter, we present the initial transaction protocol concepts for Universalis:
based on CRDTs Section 5.1 in and 2PC Section 5.2, and provide insight into why
they ultimately were not implemented and evaluated in Universalis. In addition,
the development of these concepts led to the design and implementation of the
deterministic transaction protocol Rhea, which is described in. Section 5.3.

5.1 CRDT Based Approach

Figure 5.1: Conceptual design of the CRDT based SFaaS transaction
protocol: Traga

CRDTs, initially proposed in Shapiro et al. [2011] are targeted at reducing the
divergence of replicas in distributed systems, by resolving the merge process of
the diverging replicas. To enable this, the state updates that can be applied must
be commutative, meaning that the order the operations are applied in does not
matter, as the result will always be the same. When the replicas merge, no matter
how far they have diverged, the CRDT can easily maintain consistency due to the
commutativity of operations.

Traga, a CRDT-based transaction protocol, attempts a similar strategy by
treating each row of the key/value store as the state and transactions with state-
affecting operations as state operations. As imposing the commutativity constraint
on transaction operations would significantly restrict the range of supported
transactions, the order of transactions is determined by the timestamp at which
they were applied to the state at a given time. When a transaction performs an
operation on a row within the store, the resulting state change of the operation is
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appended to a tree-like structure on the ’left’ branch, while the original value, or
the value if the transaction operation fails, is appended to the ’right’ branch. State
modifications caused by subsequent operations are added to the tree’s leaves, as
shown in Figure 5.1. If a transaction commits, the operation value stored on the
left branch of each sub-tree is merged to the sub-root, tree’s the level is deleted,
and the sub-trees below rebalance accordingly. When a transaction fails, the same
procedure is followed, with the exception that the values stored on the correct
subtree branch are merged.

The perceived benefit of Traga was that it did not require costly concurrency
control methods to maintain isolation while supporting serializability of trans-
actions.Nevertheless, as transaction operation results were added to the tree’s
leaves, Traga’s memory consumption grew exponentially. High contention trans-
actions that spanned multiple rows and required each row to construct a tree
exacerbated these issues. Moreover, when resolving these trees after transactions
had been committed, the algorithmic complexity required to rebalance the trees
grew exponentially, as each level contained n2 elements of the elements in the
level above. Due to the inherent nature of these issues in the architecture of the
concept, we decided not to implement it in Universalis.

5.2 2PC Based Approach

Epoch
Coordinator

Operator A1

Operator B1

Worker B

Worker A

Prepare

Execute local Execute remote

Execute remoteExecute local

Commit

Validate Lock Write

Validate Lock Write

Figure 5.2: Conceptual design of the 2PC based SFaaS transaction
protocol: Epoch 2PC

Epoch 2PC is a proposed transaction protocol for Universalis that draws inspira-
tion from the COCO algorithm outlined in Lu et al. [2021]. Even though Universalis
is not a replicated system, which is COCO’s primary use case, many of the algo-
rithm’s features, such as message batching, are still effective. In the Epoch 2PC
protocol, incoming transactions are divided into epochs at predetermined inter-
vals. In a coordination protocol similar to the standard 2PC protocol introduced
in Figure 2.1, each epoch is then treated as a single commit unit instead of each
individual transaction. This method’s advantage over the standard 2PC protocol
is the ability to batch network calls between constituents to reduce networking
overhead. Additionally, Epoch 2PC employs OCC so that locks do not need to be
held between the prepare and commit phases, thereby increasing the concurrency
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potential. To manage the creation of epochs and the coordination of the currently
active epoch, the algorithm employs an external participant known as the epoch
coordinator. This coordinator determines when the current epoch may transition
between the protocol’s execution and commit phases.

5.2.1 Epoch Coordinator

The epoch coordinator is added between the workers and the ingress as a layer. It
is not responsible for the execution of transactions, but rather for the advancement
of epochs. As with COCO Lu et al. [2021], incoming transactions are assigned a
unique TID and batched into epochs every 10 milliseconds. Each epoch is added
to a first-in, first-out queue that is persistently logged so that it can be recovered
in the event of a failure. The order in which transactions occur in an epoch is used
to determine the serial order by the concurrency control methods. Moreover, if
any transaction within an epoch fails due to a system failure, the entire epoch is
aborted and retried when the system recovers completely, preserving atomicity.

5.2.2 Execution Phase

The epoch coordinator initiates the execution phase by sending a prepare message
to all workers that have operators involved in the epoch. The prepare message for
each worker contains a list of all required transactions and their corresponding
TIDs. The involved workers execute the transaction logic in an optimistic manner,
storing the read and write sets locally but not modifying the state. The read
values are based on the snapshot state, which is the last committed state after the
previous epoch.

In the event of an integrity or application level error, such as a negative integer
value, the transaction is terminated as an application abort. The developer of
the application can define exceptions to be thrown in the event of these aborts,
which are directed to the egress so they can be handled appropriately. Any remote
function calls made during the execution of a transaction are collected so that they
can be sent in bulk to the workers that contain the remote transactions. These
transactions are executed by their corresponding workers, who respond to the
host worker regarding the success or failure of the remote call. If any remote
call for a given transaction fails, the transaction must be terminated. The host
worker cannot respond to the epoch coordinator until all remote function calls
have returned a response. When the epoch coordinator receives responses from
all participating workers, the execution phase for that epoch concludes.

5.2.3 Commit Phase

The epoch coordinator sends a commit message to all participating workers in the
current epoch once the execution phase has concluded. Due to the algorithm’s
optimistic concurrency control, the commit phase is essentially the validation
phase. The commit phase is performed in three stages for each worker. Because
each stage must be completed before proceeding to the next, they are executed in
separate network round trips.

The first stage is to acquire locks for the rows in the write set of all transactions,
to prevent conflicts through WAW dependencies. The locks are acquired in order
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of TID, such to preserve the serializability property of writes. To remove deadlocks,
the NO_WAIT avoidance scheme is used, as discussed in 2.3.1, which performs
well in high contention environments Harding et al. [2017]; Lu et al. [2021]. Aborts
at this stage are considered concurrency aborts and can be retried in the next
epoch, so the worker collects these transactions to send to the epoch coordinator
after the commit phase.

Remote function calls must also acquire locks, which are batched and trans-
mitted after the locking phase for host transactions has concluded. As in the
execution phase, if any remote function call fails to acquire a lock, the entire trans-
action is terminated as a concurrency abort and any locks it may have acquired
are discarded. After each transaction’s write sets have been successfully locked
or the transaction has been aborted, the worker begins the validation phase. The
validation phase is intended to verify the read sets of each transaction in order
to abort any transactions that have RAW dependencies. This is accomplished by
ensuring that no rows within the read set of a transaction are locked by another
transaction. Similar to the previous phase, if a transaction’s validation fails, it
must discard its locks and abort as a concurrency abort.

The application stage is the third and final stage. All writes from the remaining
transactions are applied to the respective operator states at this stage. After
completing this phase, the worker notifies the epoch coordinator that it has
executed the commit phase, along with any transactions that were aborted. When
all workers have responded to the epoch coordinator, the coordinator prepends
any aborted transactions to the next epoch in the queue and prepares to execute
the next epoch.

Despite providing advantages over a standard 2PC protocol, the implementa-
tion of Epoch 2PC in Universalis necessitated additional provisioning and scaling
for the epoch coordinator. This would further complicate the deployment of a
Universalis instance, thereby affecting the accessibility aspect of the design phi-
losophy presented in Section 4.1.1. Due to this limitation and the time constraints
associated with the project, Epoch 2PC was not implemented or evaluated in this
endeavour.
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Figure 5.3: Rhea transaction protocol

The final transaction protocol produced in this project was Rhea, which is based
on the deterministic database system, Aria Lu et al. [2020]. Compared to previous
concepts of transaction protocols, messaging and coordination are drastically
reduced, and fault tolerance is simplified, as will be explained in greater detail
below.

5.3.1 Design

As described in Epoch 2PC from Section 5.2, Rhea processes transactions in
epochs, which are collections of transactions spanning a predetermined time
period. The workers process the epoch in two phases: the execution phase and the
commit phase. Each worker contains a sequencer that determines the global order
of transactions, eliminating the need for an external coordinator and allowing
the sequencers to scale proportionally with the number of workers. The system
ingress delivers incoming transaction calls directly to the workers.

In contrast to other deterministic methods, such as Calvin Thomson et al.
[2012], the read and write sets are determined during the algorithm’s execution
phase, so they do not need to be known beforehand. As the execution phase
can be run in parallel, this approach to locking is more efficient than Calvin’s
singlethreaded approach described in Figure 2.2. After this phase, the protocol can
commit deterministically, as the defined read/write sets and deterministic conflict
checking algorithm ensure that the same transactions will commit regardless of
the order in which they are executed during the commit phase.

Sequencer

In deterministic protocols, such as Calvin Thomson et al. [2012], the sequencing
layer is often implemented separately from the execution layer and partitioned in
order to scale. This strategy has the disadvantage of requiring costly coordination
protocols, such as Paxos Lamport [1998], across partitions, which increase latency
and complexity. In Rhea, rather than implementing a completely separate layer,
sequencing is performed at the worker level, where each worker contains a
sequencer that coordinates epoch progression and determines the global execution
order of transactions. The sequencers are capable of producing distinct increasing
TIDs without the need for coordination during the sequencing phase.
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The sequencing phase proceeds as follows: The sequencer of each worker
collects transactions into batches at a predetermined interval of time known as
the epoch interval. During this phase, the sequencer assigns a unique ascending
TID to each transaction. Given that the coordinator of Universalis assigns a unique
identifier to each worker and that each worker stores the number of peer workers
in the system, the following formula can be used to determine the TID:

TID = Worker Identifier + Transaction Count × Number Of Workers

The combination of a unique worker identifier multiplied by the number of workers
ensures that deterministic and unique ranges of TIDs are assigned to each worker.

Execution Phase

After the sequencer assigns a TID to each transaction, the execution phase begins.
In this phase, all the transactions in the epoch for the given worker are executed.
The transaction’s host worker executes the logic as defined by the user, retrieving
the values of any reads from the previously committed state. The keys and values
of each transaction’s writes are stored alongside the transaction identifier in
per-key write reservations on the state. Write reservations may only be made on a
key in the state if the TID is less than all other TIDs on the same key; otherwise,
the reservation must fail. If the TID is less than the one currently stored for a
given key, the new reservation will replace the existing one. Similar to Epoch 2PC,
any application level failures that occur at this stage in Rhea are caught and these
transactions are aborted, with any error output forwarded to the egress to notify
the user.

Remote calls are required to execute the logic and determine if the remote
operator can commit for multi-partition and sub-transaction transactions. These
operators may be stored on the same worker or on a remote worker, requiring
an additional phase after the local execution phase. As they are sub-transactions
of the host transaction and must be ordered in the same manner by the remote
workers, the workers execute any remote transaction calls under the same TID as
the host transaction. Note that if the local execution phase of a host transaction
was aborted, this phase is skipped for that transaction.

Remote workers execute the logic of remote transactions identically to local
transactions, using the TID of the host transaction to make write reservations.
In certain circumstances, remote transactions may trigger additional remote
transactions; this is known as transaction chaining. Due to the recursive definition
of remote transaction handling, remote transactions are executed similarly to
other remote function calls. Because the transaction logic is stored in stateful
functions within the operators, the host transaction does not know beforehand how
many sub-transactions are contained in a chain or how many acknowledgements
it must wait for. As shown in Figure 5.4, each sub-transaction stores a fraction
containing its share of the proportion given by the transaction that called it. This
fraction is returned to the host transaction if a sub-transaction is the final one in a
chain, meaning it does not call any remote transactions. When the total sum of
fractions returned equals 1, the host transaction determines that all responses
have been received and can proceed to the next phase. The use of fractions rather
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Figure 5.4: Transaction chaining in Rhea. Fractions indicate the
proportion of the total chain each sub-transaction represents

than decimal numbers mitigates any potential issues with floating point precision
when performing the summation.

If a remote transaction terminates due to an application abort or concurrency
abort, the remote worker notifies the host worker that the transaction has termi-
nated. The host will then mark the entire transaction as aborted and notify the
related workers. Before moving on to the next phase, each worker must await
acknowledgment for every transaction.

Commit Phase

After the execution phase, each worker performs local conflict checking using the
TIDs to detect and abort WAW dependencies and RAW dependencies. If a value
in the write set has a write followed by a write or a read for a transaction, the
transactions with TIDs that are greater than the write are aborted as concurrency
aborts. This ensures serializability as transactions cannot observe the result
values of subsequent transactions, effectively preserving the serial execution
order. As reads have no effect on the stored value, they can occur in any order;
no checking is performed unless a write on the same key has occurred. The Aria
paper Lu et al. [2020] provides a formal demonstration of serialisation for this
conflict resolution method.
After conflict checking, there is a synchronisation point between workers, as each
worker cannot begin the commit process until all other workers have signalled
their readiness to commit. In the notification message, the workers transmit
all local transactions that were aborted due to concurrency errors, allowing any
remote transactions that were called on other workers to be aborted as well. Each
worker sends remote function commits and waits for a response before committing
their local commits, as the transaction must be rolled back if concurrency aborts
occur. In addition to sending remote aborts, the commit point is also used to
synchronise the transaction count of all workers, with each worker setting its
transaction count to the maximum transaction count of all workers. This decreases
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the amount transaction counts fluctuate between workers, as the distribution of
transactions across workers is frequently not uniform.

In the final step of the commit phase, the write values are made durable in
the local state of the operator by updating the values accordingly. The result of
a committed or application-aborted transaction can be sent to the event egress
after the local values have been committed. Finally, the epoch counter is incre-
mented and aborted concurrency transactions are prepended to the next epoch of
transactions.

5.3.2 Implementation

Rhea is implemented in the transaction layer of the workers shown in 4.3. To
support write reservations and buffering read/write sets in the state without
directly applying the results, the state layer was expanded. The read and write
sets are stored in Python dictionaries that map each TID to a set of affected keys
and key/value pairs for the read set. Using dictionaries that map each key to an
asyncio lock, per-row locks that restrict concurrent access from other co-routines
were implemented.

State Operations

async def get(self, key, t_id: int, operator_name: str):
async with self.read_set_locks[operator_name]:

if t_id in self.read_sets[operator_name]:
self.read_sets[operator_name][t_id].add(key)

else:
self.read_sets[operator_name][t_id] = {key}

async with self.writing_to_db_locks[operator_name]:
db_value = await self.redis_connections[operator_name].get(key)

if db_value is None:
if t_id in self.write_sets[operator_name] and key in

self.write_sets[operator_name][t_id]:↪→

return self.write_sets[operator_name][t_id][key]
else:

raise ReadUncommitedException(
f'Read uncommitted or {key} does not exist in DB'

)
else:

self.reads[operator_name][key] =
min(self.reads[operator_name].get(key, t_id), t_id)↪→

value = msgpack_deserialization(db_value)
return value

Figure 5.5: Overwritten get operation in the operator state to
support Rhea

As get operations to the state within a transactions are read only, the get operation
in the state was extended to include the TID for the key to be read for that
transaction. The reads retrieve the value directly from the state, which contains
the key’s most recent committed value as of the most recent epoch. Additionally,
some transactions may require reading a value that was previously written. In
order to facilitate this, the write set of that transaction is examined to retrieve the
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previously written value, which is then used as the read result. The implementation
of the get operation is shown in Figure 5.5.

async def put(self, key, value, t_id: int, operator_name: str):
async with self.write_set_locks[operator_name]:

if t_id in self.write_sets[operator_name]:
self.write_sets[operator_name][t_id][key] = value

else:
self.write_sets[operator_name][t_id] = {key: value}

self.writes[operator_name][key] =
min(self.writes[operator_name].get(key, t_id), t_id)↪→

Figure 5.6: Overwritten put operation in the operator state to
support Rhea

To support put operations, the TID is added to the write set along with the write’s
value, as shown in Figure 5.6. As some transactions may write to the same key
more than once, the most recent version is persisted in the write set to preserve
the serializability of the operation.

async def commit_operator(self, operator_name: str) -> set[int]:
updates_to_commit = {}
committed_t_ids = set()
if len(self.write_sets[operator_name]) == 0:

return committed_t_ids
for t_id, ws in self.write_sets[operator_name].items():

if t_id not in self.aborted_transactions:
updates_to_commit.update(ws)
committed_t_ids.add(t_id)

if updates_to_commit:
serialized_kv_pairs = {key: msgpack_serialization(value) for key,

value in updates_to_commit.items()}↪→

async with self.writing_to_db_locks[operator_name]:
await

self.redis_connections[operator_name].mset(serialized_kv_pairs)↪→

return committed_t_ids

Figure 5.7: Commit operation in the operator state to support Rhea

According to Section 5.3.1, writes in Rhea are only made durable when a trans-
action commits. The worker commits per operator by applying to the state any
writes in the write set. Redis is used as the backend in this instance, so writes are
applied directly to Redis. The committed TIDs are returned so that they can be
used in the optimisation of the fallback strategy, as described in Section 5.3.3.

Conflict checking

As described in Section 5.3.1, the conflict checking algorithm detects RAW de-
pendencies that violate serializability. This is accomplished by determining if
there are any TIDs with a lower value than the current TID for each key in the
transaction’s write set. If a conflict is detected, the transaction is added to the
list of aborted transactions and returned so that it can be handled by the fallback
mechanism described in Section 5.3.3 or retried in the next epoch.
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def check_conflicts(self) -> set[int]:
for operator_name, write_set in self.write_sets.items():

for t_id, ws in write_set.items():
ws = write_set[t_id]
rs = self.read_sets[operator_name].get(t_id, set())
keys = rs.union(set(ws.keys()))
for key in keys:

if key in self.writes[operator_name] and
self.writes[operator_name][key] < t_id:↪→

self.aborted_transactions.add(t_id)
return self.aborted_transactions

Figure 5.8: WAW and RAW conflict checking algorithm in Rhea

5.3.3 Optimisations

Due to the optimistic parallel execution of transactions, the protocol underlying
Aria and Rhea can result in a significant number of aborts under high contention
loads. As aborts due to concurrency are appended to the next epoch, this can
result in repeated retries of transactions before they are finally executed. In
Aria, the authors present two optimisations designed to mitigate issues in high
contention environments. This section describes the optimisations: deterministic
reordering and the fallback mechanism, as well as how they are adapted for SFaaS
transactions in Universalis.

Deterministic Reordering

Figure 5.9: Deterministic reordering algorithm in Aria to change
RAW dependencies to Write-after-read (WAR) Lu et al. [2020]

By default, the deterministic execution in Rhea can result in a high rate of aborts
and a large number of RAW dependencies in high contention workloads. To
circumvent this, the authors of Aria Lu et al. [2020] proposed a deterministic
reordering scheme that allows cases of RAW dependencies to be converted to
Write-after-read (WAR) dependencies without affecting serializability. In the ex-
ample at the top of Figure 5.9, the given epoch is comprised of three transactions:
T1, T2 and T3. T3 has a RAW dependency on T1 and T2, which also has a RAW
dependency on transaction T1. This means that if T1 commits first, T2 and T3 will
abort according to the conflict checking algorithm described in Section 5.3.1.

If these transactions are reordered such that T3 → T2 → T1 is the commit
order, each of the RAW dependencies becomes a WAR dependency, and all three
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transactions in the epoch can commit. Deterministic reordering holds for any
transaction with RAW dependencies as long as they do not also have WAR depen-
dencies, as these would become RAW dependencies after reordering and thus
would breach serialiazability. The authors of Aria demonstrate that the result is
deterministic due to the fact that the reordering is determined solely by the write
reservation and read/write sets of the transaction.

def check_conflicts_deterministic_reordering(self) -> set[int]:
for operator_name, write_set in self.write_sets.items():

for t_id, ws in write_set.items():
rs_keys = self.read_sets[operator_name].get(t_id, set())
ws_keys = set(ws.keys())
waw = self.has_conflicts(t_id, ws_keys,

self.writes[operator_name])↪→

war = self.has_conflicts(t_id, ws_keys,
self.reads[operator_name])↪→

raw = self.has_conflicts(t_id, rs_keys,
self.writes[operator_name])↪→

if waw or (war and raw):
self.aborted_transactions.add(t_id)

return self.aborted_transactions

Figure 5.10: Adapted conflict checking to support deterministic
re-ordering. RAW dependencies are allowed if no WAR dependency

exists

In order to implement deterministic reordering in Universalis, the conflict check-
ing function presented in Figure 5.8 is modified to allow RAW dependencies if the
transaction does not also have WAR dependencies. The implementation code can
be found in Figure 5.10, which facilitates the deterministic reordering algorithm.

Fallback Mechanism

While the deterministic reordering algorithm focuses on reducing aborts caused by
RAW dependencies, the authors of Aria Lu et al. [2020] propose a fallback strategy
that aims to reduce aborts caused by a large number of WAW conflicts.After
the commit phase, the read/write sets of all transactions in the epoch are fully
determined. The fallback mechanism aims to utilise these dependencies between
aborted transactions to generate a serial order that can be re-executed at the
end of an epoch, similar to Calvin’s Thomson et al. [2012] deterministic locking
method. Note that the fallback mechanism is activated after the initial commit
phase, meaning that transactions that could commit prior to the fallback phase
are not executed.

The fallback mechanism in Universalis is implemented utilising a lock manager
that is stored in each operator state and grants read/write locks to transactions
in ascending TID order. As part of the fallback method, multi-partition transac-
tions are also executed, necessitating the synchronisation of all workers prior to
initiating the fallback procedure. Each worker sends aborted remote functions
to the relevant workers so that they have a sequence of aborted transactions
that have reads or writes on the state of the worker. Once all workers have
responded, dependency graphs can be generated to determine the read and write
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set dependencies for each transaction. After calculating these dependencies, they
are locked to prevent concurrent access.

Before continuing with multi-partition transactions, workers must confirm that
all other workers have locked the related keys to the transaction. When all workers
have confirmed that the transaction’s keys are locked, the workers can execute
and commit their portion of the transaction and release the locks. If a transaction
is still unable to commit as part of the fallback, it is added to the next epoch so
that it can be retried. In addition, application aborts are still possible during
the fallback phase, as the read/write values may have been modified by earlier
transactions that committed prior to the fallback. As this optimization requires
additional networking calls and computational resources, it is only enabled when
the abort rate for a given Epoch exceeds 10%.

def fallback_locking_mechanism(self, t_id, operator_name, key):
key_id = (operator_name, key)
if key_id in self.dibs:

for dep_t_id in self.dibs[key_id]:
event = asyncio.Event()
if t_id in self.waiting_on_transactions:

self.waiting_on_transactions[t_id][dep_t_id] = event
else:

self.waiting_on_transactions[t_id] = {dep_t_id: event}
if dep_t_id in self.waiting_on_transactions_index:

self.waiting_on_transactions_index[dep_t_id].append(event)
else:

self.waiting_on_transactions_index[dep_t_id] = [event]
self.dibs[key_id].add(t_id)

else:
self.dibs[key_id] = {t_id}

Figure 5.11: The fallback locking mechanism operation for Rhea
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Chapter 6

Evaluation

Multiple experiments are conducted to assess the Rhea transaction protocol in
Universalis. In these tests, the system is subjected to a variety of workloads while
metrics are used to evaluate various system aspects.

6.1 Workloads

To create scenarios in which the system can be evaluated, we use a subset of
workloads from popular database benchmark specifications. We chose to adapt
the YCSB Cooper et al. [2010] with the transactional extension, YCSB+T Dey et al.
[2014], and the TPC-C specification Leutenegger and Dias [1993].

6.1.1 YCSB+T

YCSB is a flexible benchmarking specification designed to provide a standard
method for comparing contemporary distributed databases. The standard YCSB
does not support multi-partition transactions, but it remains a solid benchmark
for single-key workloads, an essential workload type for Universalis. In the
YCSB, all records to be used in the workload are inserted before the benchmark’s
operations are executed. We utilised the YCSB+T specification, which enforces
atomic transactions in the workloads and adds multi-partition workloads, as
the YCSB does not natively support multi-partition transactions. The evaluation
functions we utilised are described in in Figure 6.1.

YCSB+T simulates a simple account system, where each row corresponds to a
users account, containing an identifier and balance. Operations are performed
on these accounts to emulate system usage. YCSB+T introduces the concept of a
ModifyReadWrite transaction. As with the paper by Heus et al. [2021], we rename
this function to transfer for simplicity. This function simulates the transfer
of funds between accounts. In addition, YCSB+T defines a “closed economy
workload" to measure transactional consistency, wherein no money enters or
leaves the system during the workload.

After the workload has been completed, the account values for each account
inserted are read during a validation phase in order to compute the consistency.
These values are used in the following formula, as defined in Dey et al. [2014]
to produce an anomaly score, where a score of 0 indicates there are no balance
anomalies and the system is consistent:

anomaly score =
|total initial account balance − total final account balance|

number of operations
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Insert(key, value):

1. Insert the value at the given key

Update(key):

1. Retrieve the value at the given key

2. Increment the value by 1

3. Store the new value

Read(key):

1. Retrieve the value at the given key

Transfer(key_a, key_b):

1. Retrieve the values stored at key_a and key_b

2. Subtract 1 from the value stored at key_a and increment the value
stored at key_b

3. If the value at key_a becomes negative, return failure to the user, else
continue

Figure 6.1: Pseudocode of the implemented operator functions to
support the YCSB workloads

In addition, for all YCSB+T, we select transaction keys using a Zipfian distribution.
This distribution is a more realistic workload than a uniform workload because
it simulates “hot" records, which are frequently accessed keys. In a real-world
context, hot records could refer to items on a web store that are more frequently
purchased than others, thereby inciting contention.

6.1.2 TPC-C

While the YCSB+T focuses on modern distributed applications, the TPC-C is
an established benchmark designed to simulate a "generic wholesale supplier
workload" Leutenegger and Dias [1993]. The transactions defined within the
TPC-C contain significantly more operations and affect more partitions than the
YCSB+T transactions. The TPC-C transactions can be compared to database
system transactions rather than microservice transactions, providing insight into
how Rhea performs under a traditional transactional workload.

In addition, the TPC-C imposes stringent limitations on the initial seeding of
databases prior to executing transactional workloads. The order system is parti-
tioned by warehouses, with each table seeded according to the set cardinalities
specified in Table B.1. These cardinalities are used as a factor to control key
contention, where decreasing the number of elements per warehouse decreases
the key range for workload transactions, thereby increasing contention. In addi-
tion, by adding more warehouses, scalability experiments can be conducted to
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gain insight into the performance of transactions across an increased number of
partitions.

Due to the fact that Universalis does not currently support range queries,
only the NewOrder and Payment transactions have been implemented, as detailed
in Figure B.2. However, these two transactions account for 88% of the standard
workload mix of the benchmark Lu et al. [2020]. Due to time constraints, we were
unable to implement the isolation and consistency experiments specified by the
specification for this project.

6.2 Metrics

Focusing on the operational metrics of throughput, latency, and concurrency abort
rate, we evaluate the transaction implementation within Universalis.

6.2.1 Latency

Latency, which is synonymous with response time, is the duration a system re-
quires to process a transaction. This provides an indication of the transaction
implementation’s performance, as longer response times indicate system inef-
ficiency. Response time in Universalis is calculated as the difference between
the time a transaction is queued in the Kafka ingress and the time it reaches the
system egress. In the baseline application, transaction latency is measured as the
duration of an HTTP request between the server and the benchmarking client.

6.2.2 Throughput

In terms of transaction processing, throughput is the number of transactions that
a system can process per second. Maximum throughput is used as an indicator of
the maximum theoretical performance a system is capable of achieving; however,
for operational concerns, response time should also be considered, as a system
with a high throughput but a lengthy response time is not user-friendly. Keeping
this in mind, we calculate the number of transactions that enter the egress per
second, which can only be measured when latency falls within the 90th percentile
of the calculated latency.

6.2.3 Abort Rate

The transaction abort rate is an essential metric for optimistic concurrency control
methods, such as those used in Rhea. The abort rate is the number of workload
terminations that occur per second. This can be used as an indicator of the
efficiency of the transaction system’s underlying concurrency control methods.
When calculating the abort rate, application aborts are excluded because they
are based on user-defined application logic and are not inherent to concurrency
control methods.
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6.3 Benchmarking Clients

In order to evaluate Universalis, a benchmarking client was developed to support
the execution of transactional workloads on the system. In addition, we imple-
mented a baseline benchmarking application for use with the various metrics as a
baseline measurement.

6.3.1 Universalis Client

Universalis Instance

Kafka Cluster
Benchmark Client

Workload

 

Workers

Workload
Operator

Ingress

Egress

Requests

Responses

Figure 6.2: Universalis benchmark application

To use the YCSB+T and TPC-C workloads with Universalis, a stateful graph
consisting of operators with the required function implementations for the given
workload was created, as shown in Appendix B. At the start of a workload’s
execution, the created graph is submitted to Universalis.

The benchmark client contains the parameters that can be altered for each
workload, such as the desired mix of transactions (e.g., read/update mix in acycsb¸ );
the distribution of the data; and the number of rows and operations to execute in
the benchmark.

In addition, the benchmark client can be scaled to simulate concurrent function
calls and increased load on the system. To send messages to Universalis, the
benchmark client utilises the Universalis library’s built in TCP call functionality.
As responses from Universalis are returned asynchronously via a Kafka producer,
the client utilises a Kafka consumer to collect the response messages. As each
transaction is assigned a request id by Universalis upon ingestion, the benchmark
client can link the request and response messages to calculate the metrics.

Before running the transaction mixture for both benchmark workloads, the
desired number of rows are seeded with data, allowing the benchmark client to
determine which keys are in use for each workload. As the insertions are not
strictly part of the workload, they are not measured. After a YCSB+T workload
has been executed, a validation phase commences, during which the benchmark
client sends read requests for all the keys present in the workload, allowing the
values to be checked for consistency.

For each transaction’s start and end timestamps, the benchmark client records
the timestamp when the message is sent to Universalis and the timestamp assigned
by the Kafka consumer when receiving the response. The start and end times are
used to calculate the latency and throughput of each transaction by dividing the
time into one-second intervals and determining the number of transactions.
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6.3.2 Baseline Client

Baseline Application

2PC CoordinatorBaseline Client

Workload

 

Workload ServicesHTTP 
 Requests Redis

Prepare  
Requests

Commit 
 Requests

Figure 6.3: Baseline benchmark microservice client

In order to compare Rhea to other application designs, a microservice application
supporting distributed transactions via 2PC was developed. This application de-
sign is standard for microservices, which are widely utilised in the real world. The
baseline application was implemented in Python, with each service utilising the
Quart1 framework to provide asynchronous HTTP endpoints and a shared Redis
instance for the state. To provide a fair comparison to Universalis, the microser-
vices in the baseline also make use of concurrent execution of transactions using
asyncio. The 2PC coordinator was implemented as a Quart HTTP client, with
communication between with each service performed via HTTP. Using a simple
modulo partitioning scheme based on the number of services, a distinct key range
for the state is assigned to each service.

Moreover, the 2PC coordinator along with NGINX acts as a gateway for incom-
ing requests from the benchmarking clients. The prepare and commit phases of
each transaction are implemented using two HTTP round trips, with aborts deter-
mined using the HTTP status codes 409 and 500, respectively. Within the services,
2PL, as described in Section 2.3.1 is used as a locking algorithm to provide serial-
izable transactions, with the NO_WAIT deadlock avoidance scheme, as it performs
better in high contention and allows for more straightforward measurements of
the abort rate compared to other deadlock avoidance algorithms.

The baseline client accepts workload input parameters in the same format as
the Universalis benchmarking client described in, making parameter consistency
between the two benchmarks effortless. Due to time constraints, only workloads
from the YCSB+T was implemented for the baseline client, with each microservice
implementing the functions listed in Figure 6.1.

6.4 Experiments

To evaluate Rhea, four experiments were conducted. So that we could evaluate
the validity of the results, each experimental workload was repeated five times
under identical conditions. The first experiment assessed the effect of modifying
the sequencers epoch interval parameter. Next, we assessed the impact of the
optimisations introduced in Section 5.3.3. The third experiment compared Rhea’s
transaction performance to the baseline under varying levels of write contention.
Lastly, we compared Rhea’s scalability to that of the baseline implementation.

1https://quart.palletsprojects.com/en/latest/

https://quart.palletsprojects.com/en/latest/
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The first three experiments were conducted on a computer with a 32GB
RAM and an 8-core, 16-thread AMD Ryzen 3700X processor. Experiment four’s
scalability tests were conducted on a machine with a 64-core, 128-thread AMD
EPYC 7H12 processor and 256GB of RAM.

6.4.1 Epoch Interval
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Figure 6.4: Epoch interval experiments: Comparison in latency and
abort rate based on adjusting epoch interval in Universalis w/Rhea

In the first experiment, the epoch interval was varied in increments of 5 millisec-
onds to determine the effect on the abort rate and latency of Rhea for the YCSB+T
and TPC-C workloads. By increasing the duration of the epoch interval, the se-
quencers in the workers provide more time for transactions to enter the epoch,
thereby increasing the number of transactions being processed simultaneously.
Two Universalis workers and two partitions per operator were utilised in this
experiment, with a constant input request throughput of 50 tps. This allowed for
a stable throughput, as shown in Figure 6.4c. The TPC-C workload was executed
with 2 warehouses and a scale factor of 100. The YCSB+T workload consisted of
100 rows and 500 operations, of which 80% were read operations and 20% were
transfer operations. The outcomes of the experiments can be found in. Figure 6.4.

The first observation is that the TPC-C workload has a higher abort rate and
latency than the YCSB+T workload. This is because TPC-C-defined transactions
access more keys across partitions than YCSB+T-defined transactions. With
a greater number of keys accessed per transaction, the likelihood of conflicts
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increases. This is especially evident in Figure 6.4a, where the TPC-C results show
a much faster increase in the abort rate than the YCSB+T results. Moreover,
the observed increase in latency is the result of a greater number of aborts and
network round trips for the TPC-C workloads than for the YCSB+T workloads.
Consequently, each transaction takes longer to complete because it must wait for
responses of remote calls.

Furthermore, in Figure 6.4b, between the 5ms and 10ms interval, latency for
both workloads decreases slightly. This is due to the epoch mechanism’s overhead.
Smaller epoch intervals result in an increase in the number of transactions waiting
in the epoch queue. As the synchronisation point between workers adds overhead
to each epoch, this overhead is added to the latency caused by transaction pro-
cessing, resulting in an increase in request latency overall. After this threshold,
the latency and abort rate increase for both workloads, as an increasing number
of transactions must await the completion of remote function calls.

6.4.2 Optimisations
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Figure 6.5: Optimisation experiment results: Comparison in metrics
between optimisation strategies in Universalis w/Rhea

In the second experiment, we examine the impact of implementing the optimi-
sations defined in Section 5.3.3 under two YCSB+T workloads. On Rhea, the
workloads were executed under four conditions: no optimizations, deterministic
reordering, fallback strategy, and both optimizations. We decided not to run the
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fallback strategy for the high read workloads, as there would be very few WAW
conflicts and the strategy would not be activated. The A and B YCSB workloads
were executed to simulate write-intensive and read-intensive workloads, respec-
tively. To generate multi-partition write transactions, the update was replaced
with the transfer function from YCSB+T. Experiments were conducted with a
client request rate of 250 tps, which was well within the maximum throughput
tolerance for both types of workloads.

In Figure 6.5a, we observe a significant decrease in the average abort rate
with the fallback strategy optimisation under high write contention, which corre-
sponds to the observed decrease in average latency in Figure 6.5b. The fallback
mechanism reduces the number of transactions that are aborted and moved to
the subsequent epoch. Although the fallback mechanism increases the number of
waits for multi-partition transactions, this effect compensates for the sluggishness
caused by multiple retries following aborts. As the fallback mechanism is intended
to reduce WAW conflicts, this decrease in latency is primarily observed in the
transfer function. The fallback strategy causes a slight increase in latency for
read transactions, but this increase is negligible compared to the reduction in
latency for transfer transactions.

For write-intensive workloads, the deterministic reordering optimisation has
a negligible effect on the three metrics in Figure 6.5. This is expected, as the
reordering algorithm only reduces conflicts due to RAW dependencies, which
occur less frequently in workloads with fewer reads. In read-heavy workloads,
this we observe a small reduction in the latency of transfer and read operations.
We observe a small reduction in the latency of transfer and read operations
under read-intensive workloads. However, there is no discernible improvement in
throughput, indicating that the deterministic reordering is either ineffective or
incorrectly implemented.
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6.4.3 Performance
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Figure 6.6: Performance experiment results: Increasing write con-
tention in workload for baseline system & Universalis w/Rhea

In the third experiment, the transactional performance of Rhea is compared to that
of the system introduced in Figure 6.3. To achieve this, we observed the effects of
increasing write contention in the YCSB+T workload from 0% to 100%, utilising
a combination of the read and transfer functions to provide a closed economy
that can be used for consistency testing. The workload consisted of 1000 rows
and 10000 operations. We utilised an input throughput of 2500 tps for Rhea and
1000 tps for the baseline client, as these values represented 80% of the maximum
throughput calculated respectively for this workload. The baseline client and
Universalis instance for Rhea were assigned two microservice clients and workers,
respectively. The fallback mechanism was enabled for this experiment based on
the positive results of the fallback mechanism in write-intensive scenarios for
Rhea presented in. Section 6.4.2.

As both the baseline client and Rhea use aborts to maintain transaction iso-
lation, they exhibit a similar proportion of aborts as the number of transfer
operations in the workload increases, as shown in Figure 6.6a. This is because the
number of writes increases the number of WAW and RAW dependencies. As write
contention increases and Rhea retries aborted transactions, which may abort
multiple times in subsequent epochs, we observe a marginally higher abort rate.
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Figure 6.7: Average latency per throughput

As demonstrated in Figure 6.6b, the retrying of aborts in Rhea causes a signifi-
cant increase in latency as write contention nears 40% compared to the baseline
application. At 100% write contention, Rhea’s average latency increases to 4
seconds, with a significantly larger standard deviation, because some transactions
may be retried multiple times more frequently than others, resulting in a variance
in individual latency.

In Figure 6.6b, we observe that the additional latency at high write contention
reduces Rhea’s throughput to approximately 50% of its peak latency. The baseline
application’s throughput is significantly lower in all cases when compared to Rhea,
primarily due to the substantial overhead of 2PC, as we observe a 50% reduction in
throughput at 100% write contention compared to 0%. This effect occurs despite
the stable latency because in the baseline application, aborted transactions are
not retried. Additionally, as the aborted transactions are not included in the
calculation of throughput, fewer transactions are processed per second, which
becomes evident when we plot throughput against latency in Figure 6.7.

Lastly, we observe in Figure 6.6d that, under conditions of low write contention,
both Rhea and the baseline application experience few consistency anomalies.
Few rows are being updated with new values, reducing the likelihood of anomalies
occurring. Nevertheless, as the write contention exceeds 30%, we observe a
sharp increase in the anomaly score for Rhea, up to a score of approximately
0.15, whereas the anomaly score for the baseline application reaches a maximum
of approximately 0.01. The increase in anomalies is likely attributable to the
sequencer’s lack of support for linearizability of operations. This means that the
order in which transactions are applied may not be the same as the order in
which they were ingested into the ingress, which may result in inconsistencies as
transaction protocols may enforce a different order than the client expects.
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6.4.4 Scalability
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In the final experiment, we examined the impact of increasing the number of
partitions to scale up transaction protocols. n services and workers were added
to the base application and Rhea in order to add n partitions. As in previous
experiments, we utilised the YCSB+T workload A, exchanging the update and
transfer functions to simulate multi-partition transactions. To simulate additional
load, we also scaled up the client request throughput using the following formula:
throughput = number of partitions partitions × 1000, to simulate additional load.
We increased the number of operations linearly with client throughput using the
following formula: number of operations = number of partitions × 10000.

In Figure 6.8a, a 100ms increase in latency is observed as the number of
partitions increases from 2 to 5. This is likely due to the 2PC coordinator’s
increased workload reducing its capacity to fulfil requests to the microservices.
In contrast, Rhea experiences no change in latency as the number of partitions
increases, indicating that the system remains stable despite the increased load as
it scales upwards.

Furthermore, in Figure 6.8b, we observe a linear increase in throughput for
both the baseline and Rhea, with the rate of Rhea’s throughput increase being
greater than that of the baseline, as would be expected due to static latency. In all
cases, the throughput values for Rhea and the baseline are significantly lower than
the input throughput. In the case of Rhea, where we do not observe a significant
increase in latency, this may be due to the inability of the Kafka producers in
Universalis to scale.
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Chapter 7

Discussion

In this section, we will examine the contributions of this project as described
in Section 1.2. In addition, we will discuss the limitations we faced during the
process.

7.1 Contributions

In this thesis, we made four contributions to the field of distributed transactions,
specifically within SFaaS transactions.

Conceptual SFaaS transaction designs

Due to the exploratory nature of the thesis, multiple transaction protocol avenues
were studied. The increasing prevalence of CRDTs in distributed systems and
their use in stream processing systems such as Cloudburst Sreekanti et al. [2020]
prompted us to attempt a system implementation in Universalis. As demonstrated
in Section 5.1, this approach did not succeed primarily due to the method’s
exponentially increasing complexity. However, as CRDTs are a relatively new
concept, there is still the possibility of incorporating them into a transaction
processing system. For instance, CRDT-based methods could be used to optimise
transactions in which the operations commute, such as addition.

In addition, we presented an Epoch-based 2PC protocol that was not imple-
mented in Universalis due to time constraints. However, the use of message
batching in Epoch 2PC could result in a significant performance increase in Uni-
versalis compared to a standard 2PC protocol. If Universalis supports replication
in the near future, the optimistic concurrency control in Epoch 2PC could be a
good fit for the system, as locks are held for shorter durations than in a typical
2PC implementation. Nevertheless, the primary issue with 2PC-based methods is
the centralised coordinator, which, despite the fact that it could be partitioned to
improve performance and eliminate the single point of failure, would likely expe-
rience performance issues when horizontally scaling. In addition, an additional
coordinator adds complexity to Universalis, especially in terms of fault tolerance,
as the number of elements to be checkpointed increases.

Protocol implementation & optimisations

Rhea, the deterministic protocol that we designed and implemented in Universalis,
is heavily based on the Aria Lu et al. [2020] deterministic database, but has
been modified for stateful functions. The sequencer is designed for use with
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Universalis workers, generating TID based on worker identifiers and transaction
counts. Although this method generates unique TIDs between workers, it does
not create a linearizable ordering of functions across all workers within an Epoch,
which could result in inconsistencies with client input requests.

As the implementation utilises the built-in state operations within Universalis,
it has no effect on the user’s programming model. This adheres to the accessibility
design philosophy of Universalis, as described in Section 4.1.1, as users can create
transactional stateful functions without implementing transaction logic.

Both deterministic reordering and the fallback mechanism were implemented
in Rhea by adapting them from Aria. Due to the required additional locking and
network calls, the fallback mechanism added a significant amount of complexity to
the code within the Universalis workers. Moreover, in Section 6.4.2, we noted that
the deterministic reordering did not appear to have any effect on the evaluated
metrics, which may be due to implementation issues, specifically the reordering
algorithm.

Benchmarking applications

The benchmarking application for Universalis enables the calculation of transac-
tion metrics within Universalis. Since Universalis only supports asynchronous
endpoints and workloads must be converted to support stateflow graphs, no exist-
ing benchmarking client could be used; thus, a custom benchmarking client was
created. The client is able to execute workloads based on a configuration file and
generate abort rate, latency, and throughput metrics.

The baseline client is based on a microservice architecture, using the 2PC
protocol. This serves as a good baseline, as one of the primary demographics
for which Universalis is intended are application developers who wish to create
microservice-like applications. However, the lack of a TPC-C workload implemen-
tation restricts the client’s evaluation capabilities, as it does not support large
multi-partition transactions.

In addition, although consistency testing has been implemented in both clients
for the YCSB+T, it is significantly less comprehensive than consistency testing
for other benchmarks. TPC-C provides significantly more rigorous consistency
testing than YCSB+T, yielding more accurate results and highlighting instances of
inconsistency. In addition, the client lacked isolation tests. Due to the absence of
these tests, there is still work to be done in order to bring the benchmark clients
up to par with existing benchmarks.

Evaluation of Rhea

In our evaluation of Rhea, we determined that in terms of throughput and latency
for YCSB+T workloads, Rhea performs significantly better than the baseline
application. In high write contention YCSB+T workloads, despite the substantial
benefits of the fallback strategy, we observed a significant increase in average
latency of up to 4 seconds per request. As reviewed in Harding et al. [2017], none
of the distributed transaction protocols performed well under comparable load
conditions. In addition, scenarios with high write contention could be mitigated,
for instance by employing dynamic partitioning to reduce key contention.
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As the write contention increased beyond 30%, we observed relatively high
anomaly scores in the YCSB+T consistency test. These issues could be influenced
by the sequencer’s lack of linearizability. However, it is also likely that there are
bugs within the transaction protocol or Universalis, which arise under specific
scenarios induced by high write contention.

7.2 Limitations

Throughout the duration of this project, we were confronted with obstacles that
affected the final outcome.

Limited state query support

The absence of extended query support, such as batch queries, range queries,
and deletes, which are crucial for many transaction use cases, was a significant
limitation of Rhea. In addition, the lack of such queries restricted the evaluation,
as many workloads from the YCSB+T and the TPC-C could not be utilised.

Lack of consistency & isolation testing

Consistency testing for the YCSB+T workloads were implemented in both the
Universalis and baseline benchmarking clients; however, the anomaly score pro-
duced by the closed economy workload is significantly less informative than the
multiple metrics produced by the TPC-C consistency tests. This restricted the
inferences we could make regarding the consistency of both systems. In addition,
the absence of transaction isolation tests, such as those defined in the TPC-C,
prevents us from pragmatically validating Rhea’s isolation level.

Lack of fault-tolerance mechanism

A major advantage of deterministic protocols is their simplified fault tolerance.
We were unable to implement and evaluate the fault tolerance mechanism for
Rhea, as Universalis lacked a fully implemented checkpointing mechanism. Due
to this, it was not possible to fully implement Rhea’s fault tolerance within the
project’s timeline.

Runtime instability

We encountered runtime issues while executing Universalis with Rhea during
the experiments. Particularly, we encountered freezing issues when executing
workloads with a large number of rows, such as in the TPC-C workloads with > 4
warehouses and YCSB+T workloads with > 1000 rows; and a large number of
partitions (> 5). Due to these issues, we were unable to scale the number of rows
with the number of partitions during our scalability tests.
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Chapter 8

Conclusion

In the concluding section of this thesis, we summarise our work in relation to the
research questions posed in Section 1.1 and outline potential future research.

8.1 Summary

The objective of this thesis was to implement transactional performance in a
SFaaS dataflow system. Following a review of the scientific literature in the
fields of distributed transaction processing and operational stream processing,
we determined that few SFaaS systems implement performant transactions while
maintaining a simple programming model. We created two conceptual protocols
and implemented a third protocol, Rhea, in the Universalis prototype SFaaS
dataflow system. Consequently, we were able to answer our initial research
question:

How can distributed transactions be implemented in SFaaS dataflow
systems?

A CRDT-based, 2PC-based, and deterministic-based strategy for SFaaS
dataflow transactions was presented. While there is still room for the first
two approaches to be utilised effectively, we determined that a deterministic-
based approach was best suited for SFaaS dataflow systems due to the lack
of a distributed coordinator, minimal changes to the programming model,
and streamlined fault tolerance.

After implementing the deterministic transaction protocol, Rhea, with two opti-
mizations to reduce transaction aborts, we conducted experiments to evaluate
its performance based on the metrics described in Section 6.2. Consequently, we
were able to provide an answer our second research question:



50 Chapter 8. Conclusion

How do distributed transaction protocols perform in SFaaS dataflow
systems?

Rhea outperformed the 2PC microservice application in performance experi-
ments, achieving more than double the write throughput and half the latency
at varying contention levels. However, Rhea’s average latency increased
exponentially in environments with high write contention, indicating that
despite the relatively strong performance, the cost of distributed transac-
tions in SFaaS dataflow systems remains high. In addition, we discovered
that there are still issues pertaining to transactional consistency that must
be resolved before we can reach a definitive conclusion to this question.

While performance is an important factor in distributed transactions, maintaining
a high level of transaction isolation is an equally important property. We address
this in our third research question:

Which isolation guarantees can be supported in distributed transac-
tion protocols within SFaaS dataflow systems?

Rhea is an adaptation of the deterministic database Aria Lu et al. [2020],
which supports serializable transactions. This isolation level is enforced
by disallowing RAW and WAW dependencies, preventing transactions from
reading values that were modified during or after their execution. We
cannot state with certainty that Rhea supports serializable transactions
because we were unable to conduct isolation experiments.

8.2 Future Work

As a result of the work presented in this thesis, we propose numerous future
research directions.

Expand the supported state queries

As identified in Section 7.2, Universalis lacks specific state queries, such as range
and delete queries. Extending the set of supported queries to include the state
would increase the system’s use cases and permit the implementation of additional
benchmarking workloads for further evaluation.

Explore further transaction protocols

While the purpose of this project was to support serializable transaction protocols
due to their reliability for application developers, future research could investigate
loosening transaction constraints to improve performance. For instance, future
work could examine the implementation of SAGAs in Universalis, which rely on
BASE properties to provide eventual consistency.
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Enhance benchmarking client

Future research could expand the benchmarking client to support additional
workloads, such as the entire YCSB+T and TPC-C workload sets. In addition,
addition of the TPC-C consistency and isolation tests would enable more rigorous
testing of transaction protocols. Future research could also employ multiple
benchmarking clients to simulate multiple users with distinct connections.

Support user-defined isolation levels

As discussed in Section 2.2, increased levels of isolation can negatively affect
performance. Numerous DDBMS enable users to set their preferred isolation
level, allowing them to optimise their application’s performance. Future research
could adapt or implement novel protocols that permit developers to determine
their own isolation levels.

Improved scalability tests

Universalis is intended to be deployed on large-scale, distributed machines; how-
ever, due to the runtime issues discussed in Section 7.2, we were unable to
effectively test its scalability. Future research could perform wide scale evalu-
ations on more powerful hardware. Future research could utilise more robust
hardware to conduct extensive evaluations. Additionally, research could conduct
wide area network (WAN) tests to evaluate global performance.





53

Appendix A

Universalis Programming Model

from universalis.common.local_state_backends import LocalStateBackend
from universalis.common.operator import Operator
from universalis.common.stateflow_graph import StateflowGraph
from universalis.common.stateflow_ingress import IngressTypes
from universalis.universalis import Universalis

user_operator = Operator('user', n_partitions=2)
stock_operator = Operator('stock', n_partitions=2)
order_operator = Operator('order', n_partitions=3)

g = StateflowGraph('cart', operator_state_backend=LocalStateBackend.REDIS)

user_operator.register_stateful_functions(
user.CreateUser(),
user.AddCredit(),
user.SubtractCredit()

)
g.add_operator(user_operator)

stock_operator.register_stateful_functions(
stock.CreateItem(),
stock.AddStock(),
stock.SubtractStock()

)
g.add_operator(stock_operator)

order_operator.register_stateful_functions(
order.CreateOrder(),
order.AddItem(),
order.Checkout()

)
g.add_operator(order_operator)

g.add_connection(order_operator, user_operator, bidirectional=False)
g.add_connection(order_operator, stock_operator, bidirectional=False)

await universalis.submit(g, user, order, stock)

Figure A.1: Definition of the Universalis stateflow graph from Fig-
ure 4.1
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from universalis.common.operator import StatefulFunction

class CreateItem(StatefulFunction):
async def run(self, key: str, name: str, price: int):

await self.state.put(key, {'name': name, 'price': price, 'stock': 0})
return key

class AddStock(StatefulFunction):
async def run(self, key: str, stock: int):

item_data = await self.state.get(key)
item_data['stock'] += stock
await self.state.put(key, item_data)
return item_data

class SubtractStock(StatefulFunction):
async def run(self, key: str, stock: int):

item_data = await self.state.get(key)
item_data['stock'] -= stock
await self.state.put(key, item_data)
return item_data

Figure A.2: Example stock operator definition in Universalis

from universalis.common.operator import StatefulFunction

class CreateUser(StatefulFunction):
async def run(self, key: str, name: str):

await self.state.put(key, {'name': name, 'credit': 0})
return key

class AddCredit(StatefulFunction):
async def run(self, key: str, credit: int):

user_data = await self.state.get(key)
user_data['credit'] += credit
await self.state.put(key, user_data)
return user_data

class SubtractCredit(StatefulFunction):
async def run(self, key: str, credit: int):

user_data = await self.state.get(key)
user_data['credit'] -= credit
await self.state.put(key, user_data)
return user_data

Figure A.3: Example user operator definition in Universalis
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Appendix B

Benchmarking

from universalis.common.stateful_function import StatefulFunction

class NotEnoughCredit(Exception):
pass

class Insert(StatefulFunction):
async def run(self, key: str):

await self.put(key, 1)
return key

class Read(StatefulFunction):
async def run(self, key: str):

data = await self.get(key)
return data

class Update(StatefulFunction):
async def run(self, key: str):

new_value = await self.get(key)
new_value += 1

await self.put(key, new_value)
return key

class Transfer(StatefulFunction):
async def run(self, key_a: str, key_b: str):

value_a = await self.get(key_a)

self.call_remote_async(
function=Update,
key=key_b,
params=(key_b,)

)

value_a -= 1

if value_a < 0:
raise NotEnoughCredit(f'Not enough credit for user: {key_a}')

await self.put(key_a, value_a)

return key_a

Figure B.1: Function definitions for code for YCSB operator in
Universalis
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NewOrder():

1. Select(whouse-id) from Warehouse

2. Select(dist-id, whouse-id) from District

3. Update(dist-id, whouse-id) in District

4. Select(customer-id, dist-id, whouse-id) from Customer

5. Insert into Order

6. Insert into New-Order

7. For each item (10 items):

• Select(item-id) from Item

• Select(item-id, whouse-id) from Stock

• Update(item-id, whouse-id) in Stock

• Insert into Order-Line

8. Commit

Payment():

1. Select(whouse-id) from Warehouse

2. Select(dist-id, whouse-id) from District

3. Select(customer-id, dist-id, whouse-id) from Customer

4. Update(whouse-id) in Warehouse

5. Update(dist-id, whouse-id) in District

6. Update(customer-id,dist-id,whouse-id) in Customer

7. Insert into History

8. Commit

Figure B.2: Pseudocode of TPC-Cs NewOrder and Payment func-
tions
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Table Name Cardinality

Warehouse 1
District 10
Customer 30k
History 30k
Order 30k
New-Order 9k
Order-Line 300k
Stock 100k
Item* 100k

Table B.1: TPC-C table cardinality per warehouse. *Item does not
scale with the number of warehouses
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