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ABSTRACT

Single-cell genomics is now producing an ever-
increasing amount of datasets that, when integrated,
could provide large-scale reference atlases of tis-
sue in health and disease. Such large-scale atlases
increase the scale and generalizability of analyses
and enable combining knowledge generated by in-
dividual studies. Specifically, individual studies of-
ten differ regarding cell annotation terminology and
depth, with different groups specializing in different
cell type compartments, often using distinct termi-
nology. Understanding how these distinct sets of
annotations are related and complement each other
would mark a major step towards a consensus-based
cell-type annotation reflecting the latest knowledge
in the field. Whereas recent computational tech-
niques, referred to as ‘reference mapping’ meth-
ods, facilitate the usage and expansion of exist-
ing reference atlases by mapping new datasets (i.e.
queries) onto an atlas; a systematic approach to-
wards harmonizing dataset-specific cell-type termi-
nology and annotation depth is still lacking. Here,
we present ‘treeArches’, a framework to automati-
cally build and extend reference atlases while enrich-
ing them with an updatable hierarchy of cell-type an-
notations across different datasets. We demonstrate
various use cases for treeArches, from automatically
resolving relations between reference and query cell
types to identifying unseen cell types absent in the
reference, such as disease-associated cell states. We

envision treeArches enabling data-driven construc-
tion of consensus atlas-level cell-type hierarchies
and facilitating efficient usage of reference atlases.

INTRODUCTION

Single-cell sequencing technologies have revolutionized our
understanding of human health. Hereto, large single-cell
datasets - referred to as ‘reference atlases’ - have been built
to characterize the cellular heterogeneity of whole organs.
An example is all the organ- and body-scale cell atlases con-
structed within big consortia such as the human cell atlas
(HCA) (1-5). Users can contextualize their datasets within
these references to identify novel cell types. This enables the
discovery of disease-affected cell types that can be priori-
tized for treatment design (6-8).

To create a reference atlas, one would ideally leverage in-
formation from multiple scRNA-seq datasets and harmo-
nize their cell annotations. This, however, is not as easy as
it seems since all datasets are annotated at a different res-
olution. Furthermore, matching cell types based on their
names is difficult. Databases such as ‘Cell Ontology’ try
to overcome this problem, but a complete naming conven-
tion is still missing (9). When constructing the Human Lung
Cell Atlas (HLCA), for instance, the cell type labels of 14
datasets had to be manually harmonized, which is a time-
consuming process (2). To accelerate the construction of
reference atlases, we developed scHPL: a method to auto-
matically match the cell-type labels of multiple datasets and
construct a cell-type hierarchy (10). In follow-up, Novella-
Rausell et al. showed how scHPL simplified the process
when building a mouse kidney atlas (11).

The concept of a ‘reference atlas’, however, suggests
it should help analyze and interpret new datasets (here
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denoted as ‘query’). This is, however, complicated by batch
effects between the reference and query, limited computa-
tional resources, and data privacy and sharing. Recently,
we, along with others, developed computational approaches
(known as ‘reference mapping’ methods) to address these
challenges (4,12,13). Such methods could for instance be
used to map a query dataset to the reference and annotate
the cells. Currently, there is no method available that tackles
both challenges simultaneously.

To address these challenges, we present treeArches, a
framework that builds upon single-cell architectural surgery
(scArches) (12) and single-cell Hierarchical Progressive
Learning (scHPL) (10) to progressively build and update
a reference atlas and corresponding hierarchical classifier.
Our approach allows users to build a reference atlas using
existing integration methods supported by scArches (e.g.
scVI, scANVI, totalVI and all others described in (14)).
Next, we use scHPL to augment this reference atlas by
learning the relations between cell types to construct a cell-
type hierarchy. Afterward, query data, which can be either
annotated or unannotated, can be mapped to the reference.
If the query is annotated, the query cells can expand the
newly updated tree by highlighting potential novel cell types
and their relationship with other cell types in the reference.
Otherwise, the created reference can be used to annotate the
query cells and identify new unseen cell types in the query.
Unlike existing methods, we show that treeArches can be
used to create a reference atlas and corresponding cell-type
hierarchy from scratch, update an existing reference atlas
and the hierarchy by finding novel relations between cell
types, and leverage a reference atlas to transfer labels to a
new dataset.

MATERIALS AND METHODS
Overview

treeArches consists of two main steps: (i) removing the
batch effects between datasets and (ii) matching the anno-
tated cell types to construct a cell-type hierarchy (Figure 1).
Starting with multiple labeled datasets, hereafter called ref-
erence datasets, we first use neural network-based reference-
building models (e.g. sc(AN)VI (14) or scGen (15)), which
are top performers in recent data benchmarking efforts (16)
and compatible with scArches, to construct a latent space.
Next, we use scHPL to construct the cell-type hierarchy
(Figure 1A). For each dataset, we train a classifier in the
learned latent space and cross-predict the labels of the other
dataset(s). Using the confusion matrices, we automatically
match the cell types to create a hierarchy. This hierarchy
also represents a hierarchical classifier where every node
represents a cell type in one or more of the datasets. Af-
terwards, we can map new query datasets to the learned la-
tent space using architectural surgery, a transfer learning
approach to map query datasets to references, implemented
by scArches (Figure 1B). Architectural surgery brings the
advantage that the count matrices of the reference datasets
are not needed anymore for querying the model. Instead, we
only use the pre-trained neural network architecture. The
query datasets can either be labeled or unlabeled. In the
case of a labeled dataset, we match the cell types from the
query to the reference and again update the hierarchy we

had learned on the reference datasets. In the case of an un-
labeled query, we annotate the cells using the learned hier-
archy.

When matching the cell types or predicting labels of a
query dataset, it is important to identify new cell types that
are not present in the reference. This is only possible when
biological variation is preserved when mapping the datasets
to the latent space and when the classifier in scHPL recog-
nizes unseen cells, i.e. cells that are not present in the tree.
Therefore scHPL adopts a rejection strategy, which rejects
these unseen cells and identifies them as a new cell type.
Within scHPL, a cell is rejected if it meets one of the follow-
ing criteria: (i) if the posterior probability of the classifier is
lower than a threshold which means the predicted label is
ambiguous, (ii) if the distance between a cell and its clos-
est neighbors is too big and (iii) if the reconstruction error
(when mapping to a reduced PCA space and back) is above
a threshold, which means the query cell is too different from
the reference cell types. These three thresholds are automat-
ically set based on the distribution of the data.

treeArches is a framework built around scArches (version
0.5.3) (12) and scHPL (version 1.0.1) (10). A detailed de-
scription of scArches and scHPL can be found in their orig-
inal papers (10,12). Here, we only describe changes to the
original methods when combined in the treeArches frame-
work. We enhanced the original version of scHPL by adding
the option to use a k-nearest neighbor (kNN) classifier. The
dimensionality of the latent space learned by scArches is
relatively low (varying between 10 and 30 dimensions). We
noticed that the linear SVM originally implemented doesn’t
perform well, since the cell types are not linearly separable
anymore. Therefore, it is better to use scHPL with the kNN
classifier in this case. In contrast to the linear SVM, we train
a multiclass classifier for every parent node instead of a bi-
nary classifier for every child node (10). During training, we
set the default number of neighbors to 50. However, when
there are cell types in the dataset that consist of less than
50 cells, this is not ideal. Therefore, we added an extra op-
tion (dynamic_neighbors) to automatically decrease k to the
size of the smallest cell type across the direct child nodes.
Since the tree consists of multiple classifiers, it can thus be
that they all use a different number of neighbors because of
this option. For the kNN classifier itself, we implemented
alternatives using either the FAISS library (17) or the scikit-
learn library (18). The FAISS implementation is faster than
the scikit-learn library but is only available on Linux.

Detecting new or diseased cell types

We have implemented three methods to detect new or dis-
eased cell types: (i) a threshold on the posterior probabil-
ity, (ii) a threshold on the reconstruction error and (iii) a
threshold on the distance between query and reference. The
first two options were already implemented in the previous
version of scHPL. The default threshold for the first op-
tion is 0.5. The threshold for the second rejection option
is determined using a nested cross-validation loop. It is the
median reconstruction error that gives a certain amount
of false negatives on the test folds (default = 0.5%). The
third option rejects cells whose distance to the predicted
class is too big. The threshold for rejection is determined by
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Figure 1. A schematic version of treeArches and an example using PBMC and bone marrow datasets. (A) Pre-training of a latent representation using
labeled public reference datasets. After integration, a cell-type hierarchy is created by matching the cell types of the different datasets. Here, for instance,
cell types (CT) 1 and 2 from study (S) 2 are subtypes of CT1 from S1. (B) (Un)labeled query datasets can be added to the latent representation by applying
architectural surgery. After integration, the cell-type hierarchy is updated with labeled query datasets. Unlabeled query datasets can be annotated using the
learned hierarchy. (C) UMAP embedding showing the integrated latent space of the three reference datasets. (D) Cell-type hierarchy learned from the three
reference datasets. MC derived DC: monocyte-derived dendritic cells, MC: monocytes, pDC: plasmacytoid dendritic cells, HSPC: hematopoietic stem and
progenitor cell. (E) Updated hierarchy after the 10X dataset was added. (F) UMAP embedding showing the integrated latent space of the reference and
query datasets.
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calculating the neighbors for all cells in the training set, av-
eraging the distance across the neighbors, and taking the
99th percentile.

Datasets
PBMUC datasets

The dataset was obtained from the recent data in-
tegration benchmark (16). The data contains bone
marrow samples from Oetjen et al. (19) and also
PBMC samples that were obtained from 10x Ge-
nomics https://support.10xgenomics.com/single-cell-
gene-expression/datasets/3.0.0/pbmc_10k_v3, Freytag et al.
and Sun et al. (20,21), the original url and the preprocessing
and annotation details can be found in Luecken et al. (16).
Marker genes specific to early erythrocytes and platelets
were downloaded from Azimuth (4).

Brain datasets

We used datasets from the primary motor cortex of three
species: human, mouse, and marmoset (22). We down-
loaded the datasets from the Cytosplore comparison viewer.
In these datasets, genes were already matched based on
one-to-one homologs. For the analysis, we only kept these
one-to-one matches (15860 genes in total). We selected
2000 highly variable genes based on the reference datasets
(mouse and marmoset) and used those counts as input for
treeArches. The datasets are annotated at three different res-
olutions: Class, Subclass, and RNA _cluster. The class level
contains three broad brain cell types: GABAergic neurons,
glutamatergic neurons, and non-neuronal cells. At the sub-
class level, the cells are annotated at a higher resolution (5—
10 subclasses per class). The RNA _cluster level contains the
highest resolution. Here, we will use the subclass level to
match the cell types. Marker genes used for visualization
were chosen based on Supplementary Tables 5 and 6 from
the original paper (22).

Human lung cell atlas

The human lung cell atlas (HLCA) is a carefully con-
structed reference atlas for the human respiratory system
(2). Sikkema et al. aligned 14 datasets, harmonized the
annotations, and built a cell-type hierarchy consisting of
five levels. When matching the cell types, we used the la-
tent space generated in their original paper (downloaded
from https://zenodo.org/record/6337966#.YqmGIidBx3g).
When updating the hierarchy with the IPF data, we re-
moved the cell types smaller than 10 cells. Marker genes
were downloaded from the lung reference v2 from Azimuth
(2,4). Marker genes for the Meyer cell populations were ob-
tained from [26].

We annotated the fibrosis-specific cell types in greater de-
tail by sub clustering the cell types of interest (macrophages,
epithelial cells, myofibroblasts) and identifying the
subtypes by marker gene expression. We identified
transitioning/basaloid epithelial cells by KRT5/KRT17
expression, inflammatory monocyte-derived macrophages
by SPP1 expression, and myofibroblasts by the expression
of CTHRCI.

The runtime and memory usage of treecArches on the dif-
ferent datasets can be found in Supplementary Table S1.

Comparisons
FR-match

We ran FR-Match (v2.0.0) with default settings on all pair-
wise combinations of the PBMC reference datasets (23,24).
Before running FR-Match, marker genes have to be selected
for each cell type. We do this using the method recom-
mended by the authors of FR-Match: NS-Forest (25). We
ran NS-Forest (v3.0) on each dataset separately using the
default settings.

MetaNeighbor

We ran MetaNeighbor (v1.13.0) using the default settings
on all pairwise combinations of the PBMC datasets (26).
MetaNeighbor returns an AUROC score for all cell-type
combinations. As recommended in the MetaNeighbor vi-
gnette, we consider two cell types a match when the AUROC
is higher than 0.9.

Azimuth

We run Azimuth using Seurat v4.3.0 (4) and follow the ‘in-
tegration_mapping’ vignette.

RESULTS
treeArches accurately learns PBMC hierarchy

We showcase treeArches with a simulation where we build
a cell-type hierarchy using one bone marrow and three
PBMC datasets (Supplementary Table S2). We consider
three datasets as the reference (Freytag, Oetjen and Sun),
and one as the query (10X). The annotations of these
datasets have been manually harmonized by Luecken et al.
(16), so we relabel some cells to enforce the datasets to be an-
notated at different resolutions (Supplementary Tables S3
and S4). In the Oectjen dataset, for instance, we relabel all
the CD4 + and CDS8 + T cells as T cells. The challenge here
is to correctly match cell types present in multiple datasets
and to reconstruct their hierarchy. Some cell types, however,
are dataset-specific and these should thus be added as a new
node in the tree. Here, it is important to note that these new
cell types are not forced to be aligned with other existing
cell types during the integration step and that the classifier
used by scHPL contains a good rejection option during the
matching step. This harmonizing and afterward relabeling
of the cells allows us to manually construct a ground truth
hierarchy that we can use to evaluate treeArches (Supple-
mentary Figure S1).

We remove the batch effects from the reference datasets
using scVI (14) and match the cell types in the learned latent
space (see Materials and Methods) (Figure 1C, D, Supple-
mentary Figure S2). Since both scArches and scHPL are
invariant to a different order of the datasets, treecArches
will also be invariant (10,12). For scHPL, however, the
datasets still have to be added progressively, which we will
do from low to high resolution (Sun—Oectjen—Freytag). The
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constructed tree by treeArches largely matches the ground
truth: seven out of eight Oetjen cell types and all nine Frey-
tag cell types are correctly matched to the Sun cell types (e.g.
the CD4+ T cells are a subpopulation of the T cells which
are a subpopulation of the Group 1 - Sun cells). The six cell
types only found in one dataset are all added as new cell
types to the tree (e.g. the CD10+ B cells and erythrocytes).

However, the megakaryocyte (MK) progenitor cells from
the Freytag and Sun dataset do not match the cells from
Oectjen. The Freytag and Sun datasets are PBMC datasets
and the Oetjen dataset is a bone marrow dataset. Looking
at the expression of marker genes and the location of the
megakaryocyte progenitor cells in the UMAP embedding
supports our claim that the cell types from Sun and Frey-
tag should not match Oetjen in the hierarchy (Supplemen-
tary Figure S3). Based on marker gene expression, the MK
progenitor cells in the Oetjen dataset should be relabeled as
early erythrocytes and the MK progenitor cells in the Frey-
tag and Sun dataset as platelets.

After constructing the reference tree from the three
datasets, we align the query dataset to the latent space of the
reference datasets using scArches and update the learned
hierarchy with the new cell types (Figure 1E, F). For this
step, only the trained model and reference latent space are
needed. Again, almost all cell types (10 out of 12) are added
to the correct node in the tree, while the plasma cells and
the MK progenitors are added to the tree as new cell types.
These cell types contain 21 and 18 cells, respectively, which
makes them difficult to match compared to the other cell
types in the query dataset, which contain more than 1000
cells on average.

For some of the cell types, we would expect a per-
fect match, but the 10X cell type is a subpopulation in-
stead (NKT cells, CD8+ T cells, MC-derived DC, and
HSPCs). We tested whether this is indeed a subpopula-
tion and if there are interesting biological differences be-
tween the groups. To do so, we used the classifier trained
on the 10X dataset and split the cells from these cell types
from the reference into two groups: (i) correctly classified
and (ii) rejected. Next, we tested whether there are genes
differentially expressed between the two groups. Here, we
did not look at the HSPCs, since only six cells were cor-
rectly predicted. For the NKT cells - Freytag, NKT cells
- Oetjen, and CD8+ T cells - Freytag, there are (almost) no
genes differentially expressed (adjusted P-value < 0.01, log
foldchange > 0.5) (Supplementary Table S5). However, in
the monocyte-derived dendritic cells - Oetjen, there are 85
genes upregulated in the rejected cells. According to Enrichr
(27-29) 41 of these genes are related to the Cell Cycle R-
HSA-1640170 Reactome pathway (adjusted P-value = 3e-
40) (30). The rejected cells are thus probably dividing cells.
These results indicate that there could be biological differ-
ences between the two groups, but that this is not always the
case.

Since there are many dataset-specific cell types in the
PBMC datasets, it is important that the rejection option
works correctly to ensure that cell types such as erythro-
cytes from the Oetjen dataset are added to the root node.
In treeArches, there are different rejection options: (i) the
maximum distance to the training data, (ii) the reconstruc-
tion error and (ii1) the posterior probability. If a cell is re-
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jected based on the first or second option, this indicates that
the cell potentially belongs to a new cell type. In the third
case, this indicates that the cell’s gene expression is simi-
lar to two or more cell types and that we thus cannot la-
bel it with enough confidence. Using the default settings for
these parameters, all dataset-specific cell types are indeed
correctly rejected. We tested three options for all thresholds
to test the effect related to the different rejection options.
This results in minimal differences in the constructed hier-
archies (Supplementary Figure S4). The hierarchies mainly
differ in the number of perfect matches. Changing the re-
jection option causes cell types that were a perfect match to
be subpopulations of one another. For example, when using
the default settings the CD4+ T cells from the Oetjen and
Freytag dataset are a perfect match, but when changing the
percentage of false negatives allowed for the reconstruction
error to 1%, CD4+ T cells - 10X is a subpopulation of the
CD4+ T cells - Freytag. In two cases, however, treeArches
cannot resolve where the NKT cells from the 10X dataset
should be added to the hierarchy and this cell type is thus
missing. In three cases, the megakaryocyte progenitor cells
from the Oetjen dataset form a match with the HSPCs from
the 10X dataset. When removing all three rejection options,
however, the tree looks completely different (Supplemen-
tary Figure S4). Cell types that are dataset-specific are not
added to the root node but match another population. For
instance, the erythrocytes now are a subpopulation of the
Group 1 cells (a combination of T cells, NK cells, NKT
cells and B cells) from the Sun dataset. This shows the im-
portance of the rejection options within treeArches.

Since there is no method with exactly the same function-
ality as treeArches, we benchmark parts of the algorithm
separately. First, we compare our constructed hierarchy for
the reference data to the output of two cell-type match-
ing algorithms: FR-Match and MetaNeighbor (23,24,26).
It is important to note that these methods were developed
for pairwise comparisons and do not construct a hierarchy.
We ran both methods on all combinations of the reference
datasets and visualized their matches in a graph (Supple-
mentary Figure S5). To allow comparisons, we transform
the learned hierarchy by treeArches to a graph by adding
edges between a parent and all descendants (Supplementary
Figure S5). When comparing the resulting graphs to the
ground-truth graph constructed based on the relabeled cell
types, treeArches outperforms FR-Match and MetaNeigh-
bor (Supplementary Table S6). Using treeArches, only two
edges are missing and no wrong edges were introduced while
using FR-Match and MetaNeighbor there are respectively
11 and 8 wrong edges, and 7 and 11 missing edges.

Next, we compare the cell type classification performance
of treeArches to Azimuth (4). Azimuth allows label trans-
fer by projecting a query dataset onto a reference atlas but
assumes that the labels of the reference are already har-
monized. Therefore, we compare the performance in two
ways: (i) using the datasets annotated at a different reso-
lution and (ii) using the datasets with the manually harmo-
nized labels. We use the Sun, Oetjen, and Freytag datasets
as a reference and the 10X dataset as the query. In the
first comparison, treeArches outperforms Azimuth (Sup-
plementary Figure S6), but during the second compari-
son, Azimuth performs better (Supplementary Figure S7).
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During the second comparison, treeArches uses a flat classi-
fier instead of the hierarchical classifier, which might explain
why treeArches’ performance decreases. Both Azimuth and
treeArches rely on a nearest neighbor classifier. Therefore,
it’s most likely that Azimuth outperforms treeArches be-
cause of better data integration. For the data integration,
however, Azimuth needs both the reference and query data,
while treeArches only uses the trained model and the query
data. Purely looking at cell type classification, Azimuth thus
outperforms trecArches on this dataset but treeArches of-
fers a broader functionality. Here, we also compare the per-
formance of treeArches using the kNN (default) and a lin-
ear SVM which is the best-performing method according to
our classification benchmark (31). Since the latent space is
not linearly separable anymore, the kNN outperforms the
linear SVM (Supplementary Figure S7). This motivates the
use of a kNN classifier within treeArches.

Increasing the resolution of the human lung cell atlas using
treeArches

The human lung cell atlas (HLCA) is a carefully con-
structed reference atlas for the human respiratory system
(2). Sikkema et al. integrated 14 datasets, re-annotated the
cells and constructed a cell-type hierarchy consisting of five
levels (Figure 2A, Supplementary Figure S8). Furthermore,
they used scArches to project multiple datasets to this refer-
ence atlas. Since the cell-type hierarchy for the reference is
well-defined, we can omit the reference-building step and
leverage treeArches to update the reference hierarchy us-
ing one of the labeled query datasets (Meyer) (32). Using
scHPL, we matched the cell types of the Meyer dataset to
the cell types from the reference (Supplementary Figure S9).
In the updated hierarchy, many cell types from the query
dataset match a cell type from the reference as expected
based on the cell-type names. Neuroendocrine-Meyer, for
instance, is a perfect match to the neuroendocrine cells from
the reference. Since no ground truth cell-type matches be-
tween the reference datasets and Meyer is known, we cannot
assess this quantitatively. For some parts of the hierarchy,
we can even increase the resolution. If we zoom in on the
blood vessel branch in the tree, for instance, the pulmonary
and systemic endothelial vascular arterial cell types from
the query both match endothelial cells arterial (EC arterial)
from the reference (Figure 2B).

For some parts of the tree, e.g. the airway epithelium se-
cretory cells, the matches are not what we would expect
based on the names (Figure 2C). The secretory goblet cells
from the query dataset match not only the goblet but also
the club cells from the reference and the secretory club
cells match the transitional club-alveolar type 2 (AT2) cells.
Transitional club-AT2 cells were only recently discovered,
which could explain why they are missing from the origi-
nal Meyer annotations (33-35). Based on the expression of
marker genes, we can conclude that the match between the
transitional club-AT2 and secretory club cells is a correct
match (Figure 2D). The expression of the marker genes in
the other cell types, however, is ambiguous and it is hard to
determine what is the correct match. Furthermore, in the
HLCA paper, label transfer for these cell types from the ref-

erence atlas to the Meyer data did not match well with the
original labels either (2).

Furthermore, we see sixteen cell types from the query
added to the root node of the tree as a new cell type (Sup-
plementary Figure S9). Of these cell types, most of them,
e.g. chondrocytes, erythrocytes, Schwann cells, and B plas-
mablasts, are indeed not in the reference atlas. For some,
such as some macrophage subtypes that are seen as new, it is
more difficult to determine whether they are new or whether
they should match one of the macrophage subtypes in the
tree. The “Macro CHIT1’ cells from the Meyer dataset, for
instance, form a relatively big cell type of 1570 cells and are
still seen as new. We visualized the expression of CHIT1, the
gene this cell type was named after, and the marker genes
that were used to annotate the cells in the reference data
(Supplementary Figure S10). This shows that the Macro
CHIT]1 cell type is the only cell type that expresses CHITI.
Furthermore, the marker gene profile of the other cell types
does not correspond to the profile of the Macro CHIT1
cells, which indicates that this cell type was indeed rejected
correctly.

However, twelve out of 77 cell types are missing from
the tree, which means that it was impossible to match these
Meyer cell types with a cell type from the reference. Due
to many-to-many matches between the reference and query
cell types, it is sometimes unclear where a cell type should
be added to the tree. Especially, when the boundary between
cell types is diffuse, it can be quite arbitrary where to put the
threshold. If this threshold is different in each dataset or if
cells are wrongly annotated in general, this can cause impos-
sible matching scenarios. Here, we notice that this mainly
happens with some immune and stromal subtypes. The B
cells and plasma cells from the reference and Meyer dataset,
for instance, could not be matched automatically, which is
caused by the plasma cells in the Meyer dataset that are
partially misannotated (Supplementary Figure S11). Cell
types that are missing from the hierarchy thus usually in-
dicate that these cells are wrongly annotated in at least one
of the datasets. This information could thus still be used to
improve the annotations. Either by using label transfer for
these cells using trained hierarchy or manually by visualiz-
ing specific marker genes in both datasets.

Next, we annotate a second healthy query dataset (Tata)
(34) using the original and updated reference to show that
cells in this new query dataset will indeed be mapped to the
new Meyer cell types we added to the hierarchy. The major-
ity of the predictions remained unchanged (72.1%) (Sup-
plementary Figure S12). When the predictions differ, cells
are often annotated as a Meyer cell type which is a sub-
population of the original annotation (18.4%). A clear ex-
ample is the T cells: cells previously annotated as CD4+ or
CD8+ T cells are now annotated as a subpopulation (Figure
2e). These new annotations are supported by the expression
of marker genes (Figure 2F, Supplementary Figure S13).

treeArches identifies unseen disease-associated cell types in
the query data

Next, we show how we can use treeArches to detect pre-
viously unseen cell types in idiopathic pulmonary fibrosis
(IPF) samples (36). This dataset was mapped on the HLCA
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with scArches (Figure 3A-C). Ideally, we would use scHPL
to update the hierarchy with the cell types from this query
dataset. A downside of the original annotations, however, is
that the resolution is very low. Cells are, for instance, only
annotated as endothelial cells. Therefore, we used scHPL to
predict the labels of the IPF data and compare those predic-
tions to the original annotations (Figure 3D). In the predic-
tions, we see some interesting differences between the IPF
and healthy cells.

For the IPF cells, many macrophages and epithelial cells
are rejected, while almost none for the healthy cells. Fur-
thermore, most healthy Coll+ cells are predicted to be alve-
olar fibroblasts, while the diseased Coll+ are mainly SM-
activated stress response cells. In all datasets, however, we
notice confusion between the B cells and dendritic cells.
Based on marker gene expression, the cells originally an-
notated as B cells and dendritic cells are more likely to be
plasma cells and B cells respectively (Supplementary Figure
S14). The cells originally annotated as dendritic cells also
overlap in the UMAP with the lymphoid lineage mainly in-
stead of the myeloid lineage (Figure 3A, B).

Next, we annotated the cells at a higher resolution (see
Materials and Methods) and used these annotations to up-
date the hierarchy (Supplementary Figure S15). In the up-
dated hierarchy, the healthy and IPF transitioning epithe-
lial cells are not present in the reference atlas and are now
correctly added as a new cell type. As expected, we also see
some differences in how the healthy and IPF cell types were
added to the tree. IPF alveolar macrophage proliferating
cells, for instance, are seen as new, while the healthy cells
match with the same cell type in the hierarchy. For other
IPF macrophage cell types, however, this is not the case even
though many cells were rejected previously. Comparing the
new annotations with the previously obtained predictions
and the matches in the hierarchy, we notice that there are
still many macrophages rejected (Figure 3E). For most IPF
cell types, however, only a subset of the cells is rejected. For
instance, for the IPF monocyte-derived macrophages (Md-
M), 486 cells are rejected and 750 are predicted to be Md-M.
Therefore, the two cell types are still matched. Comparing
the two IPF ‘subtypes’ of Md-M, the top differentially ex-
pressed gene is SPPI (adjusted P-value = 9.9¢-20). Mono-
cytes and macrophages expressing SPPI are known to be
a hallmark of IPF pathogenesis (37,38). The rejected Md-
M cells are the only group of cells expressing SPP1 (Figure
3F). For the alveolar and interstitial macrophages, there are
214/493 and 19/276 cells rejected respectively. In these re-
jected populations, SPPI is also upregulated, but only in
the alveolar macrophages, it is also differentially expressed
(adjusted P-value = 0.0011) (Supplementary Figure S16).
This could indicate that these rejected cells are also a dis-
eased subpopulation. By combining the confusion matrices
with the created hierarchy, these diseased subtypes are easily
found, either directly as the proliferating cells, or by looking
at the rejected cells of a matched cluster.

treeArches can correctly map cell types across species

Next, we show how treeArches can be applied to map the
relationship between cell types of different species. We con-
struct a cell-type hierarchy for the motor cortex of the brain

using human, mouse, and marmoset data (Supplementary
Table S7) (22). We integrate the reference datasets, mouse
and marmoset, using scVI and construct the cell-type hier-
archy using scHPL (Figure 4A, B, Supplementary Figure
S17). Here, we focus on the GABAergic neurons to make
the results less cluttered. Almost all cell types (5 out of 7) are
a perfect match, except for ‘Meis2’ and ‘Sncg’. In the latent
space, the Meis2 cell types from mouse and marmoset also
show no overlap, and both cell types were defined using dif-
ferent marker genes (Supplementary Figure S18A-B). Fur-
thermore, Bakken et al. didn’t find a match between these
two either (22). This could indicate that the Meis2 cells are
species-specific and should indeed not match one another. It
is unclear why the Sncg cell types (559 and 960 cells in mouse
and marmoset respectively) do not match. Even though the
cell types are aligned in the UMAP embedding as expected
and the marker genes correspond quite well, the cells are re-
jected based on distance (Supplementary Figure S18C, D).
This means that the cells are still too separated in the latent
space. Next, we align the human dataset to the reference us-
ing architectural surgery and add the human cell type to the
reference hierarchy (Figure 4B, C). Here, the constructed hi-
erarchy looks like what we would expect based on the names
of the cell types.

All previous results were obtained using the default pa-
rameters (number of neighbors = 50, dynamic number
of neighbors = True, see Materials and Methods), which
turned out to be relatively robust (Supplementary Figure
S19). The main difference is whether a match is found be-
tween the Sncg cell types. When increasing the number of
neighbors, this match is correctly found.

DISCUSSION

In this study, we present treeArches, a method to create
and extend a reference atlas and the corresponding cell-
type hierarchies. treeArches builds on scArches, which al-
lows users to easily map new query datasets to the latent
space learned from the reference datasets using architec-
tural surgery. Architectural surgery has the advantage that
the reference datasets are not needed anymore for the map-
ping and that the latent space corresponding to the refer-
ence datasets does not change. This last point is especially
important for scHPL, which then allows users to match the
cell types of multiple labeled datasets to build a cell-type hi-
erarchy. If the latent space of all datasets would be altered
when a new dataset is added, we would have to restart the
construction of the tree completely.

We have shown three different situations where
treeArches can be applied: building a reference atlas
from scratch, extending an existing reference atlas to
add new cell types or increase the resolution, or using
an existing reference atlas to label cells in a new dataset.
By using the HLCA data, we show an example of how
treeArches can be used to extend a hierarchy or to label
cells in a new dataset. The HLCA reference atlas consists
of 16 datasets with a well-defined cell-type hierarchy. We
show that trecArches can be used to extend this hierarchy.
For instance, by increasing the resolution of some branches
of the tree, but also by adding new cell types. We could also
detect diseased cell types in the IPF datasets.
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Whether building or extending a reference atlas or label-
ing new cells, it is essential that we can detect new cell types,
such as disease-specific cell types. To do so, it is important
that during the mapping, the cell types are not forced to
align; the biological variation should be preserved. Further-
more, during the classification, there should be a correctly
working rejection option (i.e. cells are recognized to belong
to a new unseen class). Here, we showed that this indeed
works in all tested scenarios. A disadvantage of our current
approach is that new cell types are usually added to the root
node directly instead of to an intermediate node in the hier-
archy. However, this is still informative for potential users. It
indicates that a certain cell type is different from the known
cell types in the tree, and by using prior knowledge or visual-
izing potential marker genes such cell types could manually
be placed at a different, more specific place in the hierarchy.

Due to the extended rejection options, however, it is dif-
ficult to match small cell types (<50 cells). We modified the
kNN classifier from scHPL such that the number of neigh-
bors automatically decreases when there is a small cell type
in the training data, but apparently, this is not sufficient in
all cases. The number of neighbors is a trade-off between
the ability to learn a representation for small cell types and
the generalizability of the big cell types.

treeArches relies on the original annotations to extend
the cell-type hierarchy. This can be a problem in two differ-
ent situations. If the annotations are missing or at a too low
resolution, it is impossible to extend the atlas. This was the
case with the original annotations of the IPF dataset. Alter-
natively, annotations can have a high resolution, but (par-
tially) incorrect. Especially when there is no clear boundary
between cell types, experts might disagree on where to put
the boundary (the threshold for the classifier). Inconsisten-
cies like this might result in a hierarchy that looks erroneous
at first sight. In those cases, however, treeArches can still be
more useful than expected. A cell-type hierarchy that looks

different than expected, is usually a sign that the original an-
notations are inconsistent (e.g. different thresholds are used
in different datasets). Certain parts of the dataset, e.g. the
cell types that could not be added to the tree or caused con-
fusion, can then be reannotated. Furthermore, the tree can
still be adapted afterwards. Examples of this are the goblet
and club cells in the HLCA and the megakaryocyte progen-
itor cells in the PBMC datasets. The learned hierarchy is a
good starting point. Based on marker gene expression or
expert knowledge, cell types can also be added to the tree,
removed from the tree, or rewired. After manually adapting
the tree, the classifiers have to be retrained though.

Our proposed method builds upon existing data integra-
tion methods. Thus, it naturally inherits both advantages
and disadvantages linked to these existing models. As pre-
viously reported (12), the choice of the reference building
algorithm and reference atlas itself can influence the qual-
ity of reference mapping. Therefore, in scenarios where the
query dataset is strikingly different from the reference, the
integrated query will still contain batch effects leading to
inaccurate estimation of hierarchies in treeArches. This er-
roneous modeling results in weak label transfer results and
thus identifies many overlapping cell types between query
and reference as a new cell type only present in the query.
We advise users to choose a comprehensive reference atlas
and extensively benchmark and screen various data integra-
tion methods for an optimal reference representation (16).

In summary, we present treeArches, a method that can
be used to combine multiple labeled datasets to create or
extend a reference atlas and the corresponding cell-type
hierarchy. This way we provide users with an easy-to-use
pipeline to map new datasets to a current reference at-
las, match cell types across multiple labeled datasets, and
consistently label cells in new datasets. With the increas-
ing availability of reference atlases, we envision treeArches
facilitating the usage of reference atlases allowing users to
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automatically analyze their datasets from label transfer to
the automatic identification of novel cell states in the query
data. In conclusion, treeArches will enable a data-driven
path towards consensus-based cell type annotation of (hu-
man) tissues and will significantly speed up the building and
annotation of atlases.

CODE AVAILABILITY

treeArches is part of the scArches repository (https://github.
com/theislab/scarches, https://doi.org/10.5281/zenodo.
8086075). The code for scHPL as a standalone package can
be found here: https://github.com/lcmmichielsen/scHPL,
https://doi.org/10.5281/zenodo.8086716. All code to
reproduce the results and figures can be found at the
reproducibility GitHub: https://github.com/lcmmichielsen/
treeArches-reproducibility.

DATA AVAILABILITY

PBMC count data: https://doi.org/10.6084/m9.figshare.
12420968.v8
Brain count
8086471
PBMC + brain latent space: https://doi.org/10.5281/
zenodo.8086471
HLCA latent space:
6337966

data:  https://doi.org/10.5281/zenodo.

https://doi.org/10.5281/zenodo.

SUPPLEMENTARY DATA
Supplementary Data are available at NARGAB Online.
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